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Motivation: cohomology theories and their operations

Generalized cohomology theory {h"}: Spaces — AbGroups
Cup product ~» h*(X) a graded commutative algebra over h*(pt)

Cohomology operation Q%: h*(—) — h**i(-)

Example (ordinary cohomology with Z /2-coefficients)
Steenrod squares Sq': H*(—;Z/2) — H**(—;Z/2)

Power operation Sq'(z) = 22 if i = |z
[]

. iQed _ .7 —k— i+j—k
Adem relations Sq*Sq kzo < o on Sq Sq¥, 0 <i<2j

Cartan formula Sq‘( zy) ZSq’ k (v)
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Motivation: cohomology theories and their operations

Generalized cohomology theory {h"}: Spaces — AbGroups
Cup product ~» h*(X) a graded commutative algebra over h*(pt)
Cohomology operation Q%: h*(—) — h*ti(-)

Example (complex K-theory)
Adams operations 9*: K(—) — K(—)

Power operation ¢P(x) = 2P mod p

Piopl = ¥ P (zy) = ¥ (x)P'(y)

J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962)
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Motivation: cohomology theories and their operations

Generalized cohomology theory {h"}: Spaces — AbGroups
Cup product ~» h*(X) a graded commutative algebra over h*(pt)
Cohomology operation Q%: h*(—) — h*+i(-)

Example (more — a sample)

Voevodsky, Reduced power operations in motivic cohomology,
2003.

Lipshitz and Sarkar, A Steenrod square on Khovanov homology,
2014.

Feng, Etale Steenrod operations and the Artin—Tate pairing, 2018.

Seidel, Formal groups and quantum cohomology, 2019.
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Background: Chromatic Homotopy Theory faJE[F{£12

A connection between Topology and Arithmetic  (Quillen '69)

stable homotopy theory «~ 1-dim formal group laws
complex-oriented h*(—) F(x,y) over h*(pt)
Cl(Ll ®L2) = F(Cl(Ll),Cl(LQ))

H*(—;Z) e Go(z,y) =2 +y

K*(=) e Gu(z,y) =v+y—zy=1-(1-2z)(1-y)
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M = E-module moM =[S, M]s = [E,M|g

\/ IP’z \/ MAg - Ng M)hz)
i>0 i>0 i-fold

A = commutative F-algebra
= algebra for the monad Pg with u: Pg(A) - A

; i Bz
total power opel.'at|.0|_1 Y mgA = mo (A ) JAS additive
Vn € moP% (E), individual po Q,: m9A — mpA

P (fu
' (f2)

E I Pi(E) Pi(A) < Pp(A) % A

Yifei Zhu Algebraic topology and arithmetic



Power operations for Morava E-theory (height n prime p)

Theorem (Rezk '09, Barthel-Frankland '13)
If A= K(n)-local commutative E-algebra, then

A = graded amplified L-complete I'-ring
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Theorem (Z.'19)

Given any Morava E-theory E of height 2 at a prime p, there is an
explicit presentation for its algebra of power operations, in terms of
generators Q;: E°(—) — E°(-), 0<i<p,
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Power operations for Morava E-theory (height n = 2)

Theorem (Z.'19)

Given any Morava E-theory E of height 2 at a prime p, there is an
explicit presentation for its algebra of power operations, in terms of
generators @Q;: E°(—) — E°(—), 0 < i < p, and quadratic

relations
p k-1
QiQo = Zwo QirkQk — Y Y Wi di k-m QmQs
k=1 m=0
for 1 <1 <p,
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Power operations for Morava E-theory (height n = 2)

Theorem (Z.'19)

Given any Morava E-theory E of height 2 at a prime p, there is an
explicit presentation for its algebra of power operations, in terms of
generators @Q;: E°(—) — E°(—), 0 < i < p, and quadratic

relations
p—i p k-1
k
QiQo =~ wiQiprQk — Y > Wi di k-m QmQs
k=1 k=1m=0

for 1 <4 < p, where the coefficients wq and d; j_, arise from
certain modular equations for elliptic curves.

Remark The first example, for p = 2, was calculated by Rezk '08.
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These have been applied to computations in unstable vs-periodic
homotopy theory (Z.'18 and ongoing joint work with G. Wang).
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Recall E-theory at height n and prime p has an underlying model
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Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

univ defo

Fro < Twr)[ur,sun_1]

O

Frobenius isogenies
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Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

univ defo
Fr & Tw(k)[ut,...,un—1] e E
Frobenius isogenies power operations

An equivalence of cats (Ando—Hopkins—Strickland '04, Rezk '09)

gcoh sheaves of grd comm algs grd comm algs over
over the moduli problem of > ¢ the Dyer—Lashof algebra
defos of F'/k and Frob isogs for £
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Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

univ defo
Fr & Tw(k)[ut,...,un—1] e E
Frobenius isogenies power operations

An equivalence of cats (Ando—Hopkins—Strickland '04, Rezk '09)

gcoh sheaves of grd comm algs grd comm algs over
over the moduli problem of > ¢ the Dyer—Lashof algebra
defos of F'/k and Frob isogs for £

Goal Compute one side explicitly to get the other side.
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Moduli of elliptic curves and D.—L. algebras at height 2

Moduli of formal groups and moduli of ell. curves (Serre—Tate '64)
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specific modular forms
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Moduli of formal groups and moduli of ell. curves (Serre—Tate '64)
p-adically, defo thy of a s.sing. ec = defo thy of its formal gp
[Co(p)] as an open arithmetic surface (Katz—Mazur '85)
parameters for its local ring at a supersingular point, chosen from
specific modular forms

e Compactify the moduli
T e Compute with explicit

@-expansions
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Moduli of elliptic curves and D.—L. algebras at height 2

Moduli of formal groups and moduli of ell. curves (Serre—Tate '64)
p-adically, defo thy of a s.sing. ec = defo thy of its formal gp
[Co(p)] as an open arithmetic surface (Katz—Mazur '85)
parameters for its local ring at a supersingular point, chosen from
specific modular forms

e Compactify the moduli
T e Compute with explicit
g-expansions
e Transport from cusps

to s.sing. pt

Theorem (Z.'19)

A choice of such parameters, h and «, satisfies the equation
(@ = 1P(a = p)— (-1 + (~1" (-p)p+h)a =0
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Moduli of formal groups and moduli of ell. curves (Serre—Tate '64)
p-adically, defo thy of a s.sing. ec = defo thy of its formal gp
[Co(p)] as an open arithmetic surface (Katz—Mazur '85)
parameters for its local ring at a supersingular point, chosen from
specific modular forms

e Compactify the moduli
T e Compute with explicit
g-expansions
e Transport from cusps

to s.sing. pt

Theorem (Z.'19)

A choice of such parameters, h and «, satisfies the equation
(0= 1P (o= p)—(—1) + (1)~ (=p)p+h)a = 0
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Moduli of elliptic curves and D.—L. algebras at height 2

Moduli of formal groups and moduli of ell. curves (Serre—Tate '64)
p-adically, defo thy of a s.sing. ec = defo thy of its formal gp
[Co(p)] as an open arithmetic surface (Katz—Mazur '85)
parameters for its local ring at a supersingular point, chosen from
specific modular forms

e Compactify the moduli
T e Compute with explicit
g-expansions
e Transport from cusps

to s.sing. pt

Theorem (Z.'19)

A choice of such parameters, h and «, satisfies the equation
(@ = 1)P(er = p)= (1P + (1)~ (=p)p+h)a = a(aP—h) mod p
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Moduli of elliptic curves and D.—L. algebras at height 2

Question At height n > 2, can we get an explicit presentation for
the Dyer—Lashof algebra of Morava E-theory?
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Moduli of elliptic curves and D.—L. algebras at height 2

Question At height n > 2, can we get an explicit presentation for
the Dyer—Lashof algebra of Morava E-theory?

Investigating J. Weinstein’s approach to integral models for
modular curves via the infinite Lubin—Tate tower.
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Moduli of elliptic curves and D.—L. algebras at height 2

Question At height n > 2, can we get an explicit presentation for
the Dyer—Lashof algebra of Morava E-theory?

Investigating J. Weinstein’s approach to integral models for
modular curves via the infinite Lubin—Tate tower.

A picture from Jared Weinstein, Semistable models for modular curves of arbitrary level
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About Southern University of Science and Technology (SUSTech) R /7 RHI K2

Established in 2012, a public research-oriented university
funded by the municipal government of Shenzhen, China's
innovation center.

Over 800 faculty members, 4205 undergrad students, 2214
postgrad/doctoral students, international students from 15
countries, student:teacher = 10:1.

Set on five hundred acres of wooded landscape in the
picturesque South Mountain area.

Department of Mathematics founded in June 2015.

28 research-and-teaching-line faculty members, 6 teaching-line
faculty members, 101 grad students, 205 undergrad majors.

International Center for Mathematics founded in February
20109.
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Thank you.
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