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Motivation: cohomology theories and their operations

Generalized cohomology theory {hn} : Spaces→ AbGroups

Cup product  h∗(X) a graded commutative algebra over h∗(pt)

Cohomology operation Qi : h∗(−)→ h∗+i(−)

Example (ordinary cohomology with Z/2-coefficients)

Steenrod squares Sqi : H∗(−;Z/2)→ H∗+i(−;Z/2)

Power operation Sqi(x) = x2 if i = |x|

Steenrod algebra
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Motivation: cohomology theories and their operations

Generalized cohomology theory {hn} : Spaces→ AbGroups

Cup product  h∗(X) a graded commutative algebra over h∗(pt)

Cohomology operation Qi : h∗(−)→ h∗+i(−)

Example (complex K-theory)

Adams operations ψi : K(−)→ K(−)

Power operation ψp(x) ≡ xp mod p

ψiψj = ψij ψi(xy) = ψi(x)ψi(y)

J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962)
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Motivation: cohomology theories and their operations

Generalized cohomology theory {hn} : Spaces→ AbGroups

Cup product  h∗(X) a graded commutative algebra over h∗(pt)

Cohomology operation Qi : h∗(−)→ h∗+i(−)

Example (more – a sample)

Voevodsky, Reduced power operations in motivic cohomology,
2003.

Lipshitz and Sarkar, A Steenrod square on Khovanov homology,
2014.

Feng, Étale Steenrod operations and the Artin–Tate pairing, 2018.

Seidel, Formal groups and quantum cohomology, 2019.
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Background: Chromatic Homotopy Theory 色展同伦论

A connection between Topology and Arithmetic (Quillen ’69)

stable homotopy theory! 1-dim formal group laws

complex-oriented h∗(−) F (x, y) over h∗(pt)

c1(L1 ⊗ L2) = F
(
c1(L1), c1(L2)

)
Example

H∗(−;Z)! Ga(x, y) = x+ y

K∗(−)! Gm(x, y) = x+ y − xy = 1− (1− x)(1− y)
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Elliptic cohomology and Morava E-theory

Definition (Ando–Hopkins–Strickland ’01, Lurie ’09, ’18)

elliptic cohomology theory =

{
E, CE0(pt),

α : Spf E0(CP∞)
∼−→ Ĉ

}

Theorem (Morava ’78, Goerss–Hopkins–Miller ’90s–’04)

E : {formal groups over perfect fields, isos} → {E∞-ring spectra}

Spf E0(CP∞) = the univ deformation of a fg F of height n
over a perfect field k of char p

π∗E ∼= W(k)Ju1, . . . , un−1K[u±1], |u| = −2
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Power operations for Morava E-theory

M = E-module π0M = [S,M ]S ∼= [E,M ]E

PE(M) =
∨
i≥0

PiE(M) =
∨
i≥0

(M ∧E · · · ∧E M︸ ︷︷ ︸
i-fold

)hΣi

A = commutative E-algebra
= algebra for the monad PE with µ : PE(A)→ A

total power operation ψi : π0A→ π0

(
ABΣ+

i

)
∀η ∈ π0PiE(E), individual po Qη : π0A→ π0A

}
/I
 additive

E
fη−→ PiE(E)

PiE(fx)
−−−−→ PiE(A) ↪→ PE(A)

µ−→ A
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Power operations for Morava E-theory (height n prime p)

Theorem (Rezk ’09, Barthel–Frankland ’13)

If A = K(n)-local commutative E-algebra, then

π∗A = graded amplified L-complete Γ-ring

Γ = twisted bialgebra over E0 (Dyer–Lashof algebra)

∃ Q0 ∈ Γ with Q0(x) ≡ xp mod p (Frobenius congruence)

Goal make this structure explicit just as for Dyer–Lashof/Steenrod
operations in ordinary homology.
The case of n = 2 has been worked out.  Arithmetic
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Power operations for Morava E-theory (height n = 2)

Theorem (Z. ’19)

Given any Morava E-theory E of height 2 at a prime p, there is an
explicit presentation for its algebra of power operations, in terms of
generators Qi : E

0(−)→ E0(−), 0 ≤ i ≤ p, and quadratic
relations

QiQ0 = −
p−i∑
k=1

wk0 Qi+kQk −
p∑

k=1

k−1∑
m=0

wm0 di, k−mQmQk

for 1 ≤ i ≤ p, where the coefficients w0 and di, k−m arise from
certain modular equations for elliptic curves.

Remark The first example, for p = 2, was calculated by Rezk ’08.
These have been applied to computations in unstable v2-periodic
homotopy theory (Z. ’18 and ongoing joint work with G. Wang).
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Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando–Hopkins–Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer–Lashof algebra

for E


Goal Compute one side explicitly to get the other side.
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Moduli of elliptic curves and D.–L. algebras at height 2

Moduli of formal groups and moduli of ell. curves (Serre–Tate ’64)
p-adically, defo thy of an ec ∼= defo thy of its p-divisible gp
[Γ0(p)] as an open arithmetic surface (Katz–Mazur ’85)
parameters for its local ring at a supersingular point, chosen from
specific modular forms

• Compactify the moduli

• Compute with explicit

q-expansions

• Transport from cusps

to s.sing. pt

Theorem (Z. ’19)

A choice of such parameters, h and α, satisfies the equation
(α− 1)p(α− p)−

(
(−1)p + (−1)p−1(−p)p+h

)
α = 0
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Moduli of elliptic curves and D.–L. algebras at height 2

Question At height n > 2, can we get an explicit presentation for
the Dyer–Lashof algebra of Morava E-theory?
Investigating J. Weinstein’s approach to integral models for
modular curves via the infinite Lubin–Tate tower.

A picture from Jared Weinstein, Semistable models for modular curves of arbitrary level
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About Southern University of Science and Technology (SUSTech) 南方科技大学

Established in 2012, a public research-oriented university
funded by the municipal government of Shenzhen, China’s
innovation center.

Over 800 faculty members, 4205 undergrad students, 2214
postgrad/doctoral students, international students from 15
countries, student:teacher = 10:1.

Set on five hundred acres of wooded landscape in the
picturesque South Mountain area.

Department of Mathematics founded in June 2015.
28 research-and-teaching-line faculty members, 6 teaching-line
faculty members, 101 grad students, 205 undergrad majors.

International Center for Mathematics founded in February
2019.
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Thank you.
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