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In condensed matter physics, the Hamiltonian of a quantum mechanical system takes a
mathematical form of a square matrix, with parameters functions on the 3D momentum space.
Such a matrix satisfies the Hermitian symmetry, so that its eigenvalues are real and represent
observed energies. We will discuss this space of parameters for Hamiltonians, especially its
degeneracy locus where eigenvalues occur with multiplicities. Such a locus gives rise to
exceptional properties in the larger scale, with applications to the design of sensing and
absorbing devices. We focus on certain non-Hermitian Hamiltonians, the imaginary parts of
whose eigenvalues model energy exchange of open systems. Their parameter space possesses
intriguing topology, with a stratification of non-isolated singularities, which affords interesting
phenomena such as the so-called bulk-edge correspondence. The associated algebraic
invariants enable classifications and predictions for phases of matter. This work is in
collaboration with C. T. Chan, Jing Hu, Hongwei Jia, Xiaoping Ouyang, Yixiao Wang, Yixin Xiao,
Ruo-Yang Zhang, and Zhao-Qing Zhang,.
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Phases of matter: a motivating example

lce, water, and vapor are different forms of H,O:

Solid _ Liquid _ Gas S
0 100
The real line of temperatures (in °C) minus the two points has 3
. Forms of H,O connected continuously by a path are considered
to be in the same : e o e e I e e o e
10 GPar ,/lt‘Hu
If we also allow pressure to vary, then there are N gl
only two phases of H,O. oy SON T
A mathematical framework - R ..

There is a space A of “systems” with a “singular” locus A C A4, and we are
interested in r1y( —A) or, more generally, the of M —A.
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Fix a positive integer n. Let A, be the space of of n points on
the real line R. —s o o+ 3 >
21 S 3 e T

The position of the i’th point is a function x': «#, — R. Together these position
functions define an isomorphism A, = R".

Here A, is a moduli space, and so far there is no interesting topology since it is
contractible.

Let A C o, be the locus of n-tuples x = (x7, ..., x") in which not all x ‘are distinct.
Configurations in A4 ,—A satisfy a “ ,” and now there is nontrivial
topology: 4 ,— A has n! contractible components.

A gapped configuration x € 4 ,—A determines a permutation g(x) € Sym,. In
fact, o induces an isomorphism ry(4,—A) = Sym, of groups.
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Moduli problems: key common features
« There are discrete parameters, e.g., the positive integer n.

- There is a singular locus A in the moduli space A

o away from A, the parametrized objects satisfy a nonsingular (or gap)
condition;

© moving across A, gap closes and reopens, which signifies a phase
transition.

« There are interesting functions on 4 which encode geometric information

about the parametrized objects, e.g., | x'—x3|, the distance between the 1st
and 3rd points.
(Also think about moduli spaces of elliptic curves.)

« There is a complete invariant of the path component, which is an
Isomorphism to a known or computable set.
Such a complete invariant is not present in all situations.
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Why do we care about moduli spaces for physical systems?

Holography featured prominently in recent Olympic ceremonies
Holography is made possible via optical devices and materials.

Moduli spaces of physical systems, especially their singular loci, play a pivotal
role in designing such.

Design materials that can “do wonders”, which cannot be found in nature, e.q.,
invisibility cloaks.
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In quantum mechanics, the Hamiltonian of a system is an operator
corresponding to the total energy of that system.

In mathematical terms, as a first example, let us consider a Hamiltonian
with and symmetries.

Let k = (kx, ky, kz) in the momentum space (or ;—space). Consider the 2 x2 matrix
— — —
Hy(F) = fo(F)1+ [(F)- @

where 1 is the identity matrix and @ = (01,02,03) are the Pauli matrices

01 o =i S B
1711 o0 =i 0 3710 —1

We have 0
_|Jo O 0 f 0 £ fs 0| |fot+f3 J1
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PT symmetry

(complex conjugation)
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We compute for which values of parameters H, has a doubled eigenvalue.
For this purpose, we may assume f, = 0 and get the characteristic polynomial

fi
f3_w f1 . 2_f2_f2 1
fi —fy3—w| w 1 3 - exceptional point

I > f3
This gives the moduli space (not quite). (0,0)

A Z,-symmetry is present:

_ 22 - _ _f3+\/_- — 6+ 1 o cos(6/2) =
wr=ylitls oy A normalize “* =1 ¢+ = [COS ] normalize P+ sin(6/2) 9]

_ \/__' AN sir019 ] AN - (0/2)
B — | f3— W = _l: Ccost — ~ _ |—sin B
w-==v - = £ Lo [ sin ¢ } ¢-= ] cos(0/2) ] = 19-)
— Hy=1-2|¢p-){¢-|
Observe that |¢-) — —|¢-) does not change H..
Thus the moduli space and its “topological charge” (a

homotopy invariant) is
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Taking
—
h(k) = kok.
= 2 2 2
fa(k)=+ki+kl+k2—4
we have in the R’—space and in the moduli space
fi
“— .
normalization
(deformation retraction)
r'(o, 0) > /s

Z,-symmetry

The winding number wr of the
loop [ equals 2.

Wu et al., Science 365, 1273—1277 (2019)
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The winding number serves as a topological classifier:

A

More generally, for all n = 2, Wu et al. computed topological charges for n-band
Hermitian Hamiltonians with PT symmetry and found that r1,(A4,) is

when n = 3. For example,

Mz = SO3)/D,
where D, = the three-dimensional “dihedral” crystallographic point group
= the Klein four-group
and (A 5) = Q = {x1, i, =/, +k}, the quaternion group.
(We have r,(SO(3)) = rr4(RP3) = Z,, SU(2) = S8 its 2-fold universal cover.)
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Moduli spaces for non-Hermitian Hamiltonians

Beyond the well-studied Hermitian symmetry, Hamiltonians
possess eigenvalues with that represents with
surrounding environment.

Joint with the physics group at HKUST led by Che Ting Chan, especially
Hongwei Jia and Jing Hu, we investigated moduli spaces for 2-band and 3-
band Hamiltonians with the following symmetries:

nHn ' = H! and \[PT,H] =0

where

_ [Inol 01] is a Riemannian metric form

PT = complex conjugation operator

Here emerge non-isolated, stratified singular loci, making our systems gapless
and their topology much intriguing.



Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give

_ | £| (Recall Hermitian |/3 /1
H2_[f2 f;;] (Recall Hermitian n s )



Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give

EL, - B El»

i\ o

7

i

—fo —J3

fi —f3

Hy = [f3 f2] (Recall Hermitian [f3 fl] )

, lll: real eigenstates

I, IV: complex eigenstates



Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give

_ | £| (Recall Hermitian |/3 /1
HQ_[fQ f3] (Recall Hermitian h s )

EL,

o , lll: real eigenstates I, IV: complex eigenstates

7 Stratified singular locus:
« EL (exceptional line): doubled eigenstate (defective

degeneracies)
« CIP (complete intersection point): n-orthogonal
eigenstates (non-defective degeneracy)




Moduli spaces for non-Hermitian Hamiltonians: 2-band systems
In the generic 2-band case, we give

_ | £| (Recall Hermitian |/3 /1
H2_[f2 f3] (Recall Hermitian n s )

/2

EL,

, lll: real eigenstates I, IV: complex eigenstates

Stratified singular locus:

« EL (exceptional line): doubled eigenstate (defective
degeneracies)

« CIP (complete intersection point): n-orthogonal
eigenstates (non-defective degeneracy)

- (o

\ a
Jquotient ™

# 'WA'
s



Moduli spaces for non-Hermitian Hamiltonians: 2-band systems
In the generic 2-band case, we give

_ | £| (Recall Hermitian |/3 /1
H2_[f2 f3] (Recall Hermitian n s )

/2

EL,

, lll: real eigenstates I, IV: complex eigenstates

Stratified singular locus:

« EL (exceptional line): doubled eigenstate (defective
degeneracies)

« CIP (complete intersection point): n-orthogonal
eigenstates (non-defective degeneracy)

=P o’ ol ==

“quotient®,

# '\B-'—/.A'
s




Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give

_ | f| (Recall Hermitian |/3 /1
HZ_[fQ f3] (Recall Hermitian h s )

EL,

o , lll: real eigenstates ll, IV: complex eigenstates
f  Stratified singular locus:

« EL (exceptional line): doubled eigenstate (defective
degeneracies)

« CIP (complete intersection point): n-orthogonal
eigenstates (non-defective degeneracy)

A (A"

The moduli space 4, can be identified as S'v
S1v 81 doubly covering STV S'. Thus (A4 >,) is

a free subgroup of F(a, B) on 3 generators.
BN e This gives the gapless system a

, hon-Abelian topological charge.
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The 3-band case is more complex and exotic. Here is a sample of portraits for
the stratified singular moduli spaces.
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The 3-band case is more complex and exotic. Here is a sample of portraits for
the stratified singular moduli spaces.
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A mechanical wave

The central figure within these system
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The singularity of a swallowtail arises in the discriminant surface of a generic
degree-4 polynomial. Here, it is the characteristic polynomial of H(fi, f2, f3).

—w —fi —f2 —f3
1 —Ww 0 0
0 1 —Ww 0
0 0 1 —w

=w'+ fiv* + hw+ f




Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

The singularity of a swallowtail arises in the discriminant surface of a generic
degree-4 polynomial. Here, it is the characteristic polynomial of H(fi, f2, f3).
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The singularity of a swallowtail arises in the surface of a generic
. Here, it is the characteristic polynomial of H(fi, f2, f3).
—w —fi —f2 —f3

1 —w 0 0
0 1 —W 0
0 0 1 —w

A(f1, fo, f3) = ASDf5 + 2T fy — 16f1 fs — 144 f1f3 f3 + 128 f7 f3 — 256 f3
https://yifeizhu.github.io/swtl.mp4

=w'+ fiv* + hw+ f

Discriminant surfaces are ruled (in fact, developable).

0 —fi —fo —fs
1 0 0 0
_ = = 0 1 0 0
NinnnnaaeSl g Y
%‘.h\;‘\‘;:}?;p 0 0 1 0

~a

lllustration from Klein’s

1908 quadratic (A = b2 — 4ac) cubic lecture notes by Hellinger.
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As the ,
swallowtail and other catastrophes are important and
well-studied objects in dynamical systems and algebraic
geometry. Arnold famously related their to
braid groups and computed their cohomology,
establishing a connection to topology as well.

However,
carry additional
structures and are more complex:

« Physicists desire classifications for
the behavior of along a
loop across/encircling the stratified
non-isolated singularity (e.qg., Berry _

. . ] Reg | and Reg II: PT-exact phases
phase of adiabatic transformation, Reg Ill: PT-broken phase
close and open of gaps).

V. I. Arnold’s tombstone at the
Novodevichy Cemetery in Moscow

 Qver . we know less even on the mathematical side.



Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians,
the question of the desired classification appears to be purely mathematical.



Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians,
the question of the desired classification appears to be purely mathematical.

We obtained results for of loops near the
swallowtail, i.e., deformations of loops conserving , With
electric-circuit experimental realizations.



Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians,
the question of the desired classification appears to be purely mathematical.

We obtained results for of loops near the
swallowtail, i.e., deformations of loops conserving , With
electric-circuit experimental realizations.

Example: transition from two EL3s
to NIL and NL

https://yifeizhu.github.io/loop.mp4



Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians,
the question of the desired classification appears to be purely mathematical.

We obtained results for of loops near the
swallowtail, i.e., deformations of loops conserving , With
electric circuit realizations.

a1 Example: transition from two EL3s to

NIL and NL
https://yifeizhu.github.io/loop.mp4
EL3 = triple exceptional line

NIL = nodal intersection line

NL = nodal line

al, b1: loops on the spherical cross-
section of the swallowtail




Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians,
the question of the desired classification appears to be purely mathematical.

We obtained results for of loops near the
swallowtail, i.e., deformations of loops conserving , With
electric circuit realizations.

al £:=0.3 a2

Example: transition from two EL3s to
NIL and NL

https://yifeizhu.github.io/loop.mp4

EL3 = triple exceptional line
NIL = nodal intersection line
NL = nodal line

al, b1: loops on the spherical cross-
section of the swallowtail
a2, b2: trajectories of



Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians,
the question of the desired classification appears to be purely mathematical.

We obtained results for of loops near the
swallowtail, i.e., deformations of loops conserving , With
electric circuit realizations.

al  f03 a2 '/ Example: transition from two EL3s to
¢ NIL and NL
https://yifeizhu.github.io/loop.mp4
g EL3 = triple exceptional line
NIL = nodal intersection line
NL = nodal line
Im

1] al, b1: loops on the spherical cross-
section of the swallowtail
a2, b2: trajectories of
a3, b3: trajectories of ,
Q experimental (above) and
theoretical (below)
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- Our S'v S'v S1 classification for 2-band systems predicts a new kind of non-
Hermitian gapless phase of matter, with

« We have been experimentally investigating the
for hypersurface singularities stemmed from our theoretical analysis with the
swallowtail moduli space, i.e., the topology of bulk states (moduli space)
determines the numerology of edge states (parametrized system). There has
not been a rigorous mathematical explanation for such a correspondence,

but it is reminiscent of the : RA—
« Along a resolution of singularities, homotopy type of the Y gx

(complex) swallowtail complement has a precise B MQy
relationship to the in .
specific dimensions. The rich geometric (and physical)

structure of this stratified space can be exploited to

introduce additional structures in  {m;(S%#72)} The unturled swallowtail over
. the ordinary swallowtail

« We have been zooming in to of combinations of swallowtails
(and other basic types of singularities) in order to pass from local invariants to
via fuller power of algebraic topology.
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