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Phases of matter: a motivating example



Ice, water, and vapor are different forms of H₂O:

           

                                 Solid                   Liquid                 Gas

                                                0                           100



The real line of temperatures (in °C) minus the two transition points has 3 path 
components.  Forms of H₂O connected continuously by a path are considered 
to be in the same phase.



If we also allow pressure to vary, then there are 
only two phases of H₂O.





A mathematical framework 


There is a space ℳ of “systems” with a “singular” locus ∆ ⊂ ℳ, and we are 
interested in π₀(ℳ—∆) or, more generally, the homotopy type of ℳ—∆.
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Moduli problems: a basic example



Fix a positive integer n.  Let ℳₙ be the space of configurations of n points on 
the real line ℝ.



The position of the i’th point is a function x ⁱ : ℳₙ → ℝ.  Together these position 
functions define an isomorphism ℳₙ ≅ ℝⁿ.



Here ℳₙ is a moduli space, and so far there is no interesting topology since it is 
contractible.



Let ∆ ⊂ ℳₙ be the locus of n-tuples x = ( x¹, …, xⁿ ) in which not all x ⁱ are distinct.  
Configurations in ℳₙ—∆ satisfy a “gap condition,” and now there is nontrivial 
topology: ℳₙ—∆ has n! contractible components.



A gapped configuration x ∈ ℳₙ—∆ determines a permutation σ ( x ) ∈ Sym ₙ.  In 
fact, σ induces an isomorphism π₀(ℳₙ—∆) ≅ Sym ₙ of groups.
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Moduli problems: key common features




There are discrete parameters, e.g., the positive integer n.
•



There is a singular locus ∆ in the moduli space ℳ:
•
away from ∆, the parametrized objects satisfy a nonsingular (or gap) ◦
condition;

moving across ∆, gap closes and reopens, which signifies a phase ◦
transition.




There are interesting functions on ℳ which encode geometric information •
about the parametrized objects, e.g., | x¹—x³ |, the distance between the 1st 
and 3rd points.

(Also think about moduli spaces of elliptic curves.)




There is a complete invariant of the path component, which is an •
isomorphism to a known or computable set.

Such a complete invariant is not present in all situations.
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Why do we care about moduli spaces for physical systems? 
 
 
 
 
 
 
 
 
 
                              Holography featured prominently in recent Olympic ceremonies 

 
Holography is made possible via exceptional optical devices and materials.



Moduli spaces of physical systems, especially their singular loci, play a pivotal 
role in designing such.



Design materials that can “do wonders”, which cannot be found in nature, e.g., 
invisibility cloaks. 
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Moduli spaces for quantum mechanical systems 
 
In quantum mechanics, the Hamiltonian of a system is an operator 
corresponding to the total energy of that system.



In mathematical terms, as a first example, let us consider a 2-band Hamiltonian 
with Hermitian and parity–time symmetries.



Let k = (kx, ky, kz) in the momentum space (or k-space). Consider the 2 x 2 matrix

 
 
where 1 is the identity matrix and are the Pauli matrices 

 
 
We have 
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Moduli spaces for quantum mechanical systems 
 
We compute for which values of parameters H₂ has a doubled eigenvalue.

For this purpose, we may assume f₀ = 0 and get the characteristic polynomial











This gives the moduli space (not quite).

A ℤ₂-symmetry is present:











Observe that does not change H₂.



Thus the moduli space ℳ₂ = SO(2) / ℤ₂ ≅ S¹ and its “topological charge” (a 
homotopy invariant) is π₁(ℳ₂) ≅ ℤ. 
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Moduli spaces for quantum mechanical systems 
 
Taking 







we have in the k-space                            and in the moduli space
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Moduli spaces for quantum mechanical systems 
 
The winding number serves as a topological classifier: 
 
 
 
 
 
 
 
More generally, for all n ≥ 2, Wu et al. computed topological charges for n-band 
Hermitian Hamiltonians with PT symmetry and found that π₁(ℳₙ) is non-Abelian 
when n ≥ 3.  For example, 

                                                       ℳ₃ = SO(3) / D₂

where    D₂ = the three-dimensional “dihedral” crystallographic point group

                    ≅ the Klein four-group

and π₁(ℳ₃) ≅ Q = {±1, ± i, ± j, ± k}, the quaternion group.

(We have π₁(SO(3)) ≅ π₁( ℝ P³ ) ≅ ℤ₂, SU(2) ≅ S³ its 2-fold universal cover.)
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Moduli spaces for non-Hermitian Hamiltonians 
 
Beyond the well-studied Hermitian symmetry, non-Hermitian Hamiltonians 
possess eigenvalues with imaginary part that represents energy exchanges with 
surrounding environment.



Joint with the physics group at HKUST led by Che Ting Chan, especially 
Hongwei Jia and Jing Hu, we investigated moduli spaces for 2-band and 3-
band Hamiltonians with the following symmetries:                                                 



 
                              pseudo-Hermiticity                           parity–time symmetry      
where 

        is a Riemannian metric form 



           PT = complex conjugation operator

                            
Here emerge non-isolated, stratified singular loci, making our systems gapless 
and their topology much intriguing. 
 
 

Mtg

[P T ;H] = 0´H´¡1 = Ht

´ =

·
In¡1 0

0 ¡1

¸














Moduli spaces for non-Hermitian Hamiltonians 
 
Beyond the well-studied Hermitian symmetry, non-Hermitian Hamiltonians 
possess eigenvalues with imaginary part that represents energy exchanges with 
surrounding environment.



Joint with the physics group at HKUST led by Che Ting Chan, especially 
Hongwei Jia and Jing Hu, we investigated moduli spaces for 2-band and 3-
band Hamiltonians with the following symmetries:                                                 



 
                              pseudo-Hermiticity                           parity–time symmetry      
where 

        is a Riemannian metric form 



           PT = complex conjugation operator

                            
Here emerge non-isolated, stratified singular loci, making our systems gapless 
and their topology much intriguing. 
 
 

e

[P T ;H] = 0´H´¡1 = Ht

´ =

·
In¡1 0

0 ¡1

¸














Moduli spaces for non-Hermitian Hamiltonians 
 
Beyond the well-studied Hermitian symmetry, non-Hermitian Hamiltonians 
possess eigenvalues with imaginary part that represents energy exchanges with 
surrounding environment.



Joint with the physics group at HKUST led by Che Ting Chan, especially 
Hongwei Jia and Jing Hu, we investigated moduli spaces for 2-band and 3-
band Hamiltonians with the following symmetries:                                                 



 
                              pseudo-Hermiticity                           parity–time symmetry      
where 

        is a Riemannian metric form 



           PT = complex conjugation operator

                            
Here emerge non-isolated, stratified singular loci, making our systems gapless 
and their topology much intriguing. 
 
 

[P T ;H] = 0´H´¡1 = Ht

´ =

·
In¡1 0

0 ¡1

¸














Moduli spaces for non-Hermitian Hamiltonians: 2-band systems 
 
In the generic 2-band case, we give complete invariants.




(Recall Hermitian )






I, III: real eigenstates             II, IV: complex eigenstates

Stratified singular locus:


EL (exceptional line): doubled eigenstate (defective •
degeneracies)

CIP (complete intersection point): η-orthogonal •
eigenstates (non-defective degeneracy)




The moduli space ℳ₂ can be identified as S¹ ⋁ 

S¹ ⋁ S¹ doubly covering S¹ ⋁ S¹.  Thus π₁(ℳ₂) is 
a free subgroup of F(α, β) on 3 generators.  
This gives the gapless system a physically 
meaningful, non-Abelian topological charge.
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Moduli spaces for non-Hermitian Hamiltonians: 3-band systems 
 
The 3-band case is more complex and exotic.  Here is a sample of portraits for 
the stratified singular moduli spaces.




The central figure within these 

configurations is the so-called

swallowtail catastrophe.
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Moduli spaces for non-Hermitian Hamiltonians: 3-band systems 
 
The singularity of a swallowtail arises in the discriminant surface of a generic 
degree-4 polynomial.  Here, it is the characteristic polynomial of 












     S                                                                https://yifeizhu.github.io/swtl.mp4



 Discriminant surfaces are ruled (in fact, developable).










Illustration from Klein’s 

1908 quadratic (Δ = b² — 4ac)            cubic          lecture notes by Hellinger.

 


in

mi

µ

n

i.NAME

2

664

0 ¡f1 ¡f2 ¡f3
1 0 0 0
0 1 0 0
0 0 1 0

3

775

H(f1; f2; f3)
¯̄
¯̄
¯̄
¯̄

¡! ¡f1 ¡f2 ¡f3
1 ¡! 0 0
0 1 ¡! 0
0 0 1 ¡!

¯̄
¯̄
¯̄
¯̄
= !4 + f1!

2 + f2!+ f3

¢ (f1; f2; f3) = 4f
3
1f

2
2 + 27f

4
2 ¡ 16f 41f3¡ 144f1f 22f3 + 128f 21f 23 ¡ 256f 33














Moduli spaces for non-Hermitian Hamiltonians: 3-band systems 
 
The singularity of a swallowtail arises in the discriminant surface of a generic 
degree-4 polynomial.  Here, it is the characteristic polynomial of 












     S                                                                https://yifeizhu.github.io/swtl.mp4



 Discriminant surfaces are ruled (in fact, developable).










Illustration from Klein’s 

1908 quadratic (Δ = b² — 4ac)            cubic          lecture notes by Hellinger.

 


as

l

Marano

intros

2

664

0 ¡f1 ¡f2 ¡f3
1 0 0 0
0 1 0 0
0 0 1 0

3

775

H(f1; f2; f3)
¯̄
¯̄
¯̄
¯̄

¡! ¡f1 ¡f2 ¡f3
1 ¡! 0 0
0 1 ¡! 0
0 0 1 ¡!

¯̄
¯̄
¯̄
¯̄
= !4 + f1!

2 + f2!+ f3

¢ (f1; f2; f3) = 4f
3
1f

2
2 + 27f

4
2 ¡ 16f 41f3¡ 144f1f 22f3 + 128f 21f 23 ¡ 256f 33














Moduli spaces for non-Hermitian Hamiltonians: 3-band systems 
 
The singularity of a swallowtail arises in the discriminant surface of a generic 
degree-4 polynomial.  Here, it is the characteristic polynomial of 












     S                                                                https://yifeizhu.github.io/swtl.mp4



 Discriminant surfaces are ruled (in fact, developable).










Illustration from Klein’s 

1908 quadratic (Δ = b² — 4ac)            cubic          lecture notes by Hellinger.
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Moduli spaces for non-Hermitian Hamiltonians: 3-band systems 
 
As the singular loci of moduli spaces for polynomials, 
swallowtail and other catastrophes are important and 
well-studied objects in dynamical systems and algebraic 
geometry.  Arnold famously related their complements to 
braid groups and computed their cohomology, 
establishing a connection to topology as well.



However, in our situation of moduli 
spaces for Hamiltonians, we wish to 
understand more:




Physicists desire classifications for •
the behavior of eigenstates along a 
loop across/encircling the stratified 
non-isolated singularity (e.g., Berry 
phase of adiabatic transformation,

close and open of gaps).




Over the reals, we know less even on the mathematical side.
•
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Moduli spaces for non-Hermitian Hamiltonians: 3-band systems 


Despite the delicate physical meanings of this moduli space for Hamiltonians, 
the question of the desired classification appears to be purely mathematical.



We obtained results for intersection homotopy classes of loops near the 
swallowtail, i.e., deformations of loops conserving topological charges, with 
electric-circuit experimental realizations.




Example: transition from two EL3s to 
NIL and NL



https://yifeizhu.github.io/loop.mp4



EL3 = triple exceptional line

NIL = nodal intersection line

NL = nodal line



a1, b1: loops on the spherical cross-

            section of the swallowtail

a2, b2: trajectories of eigenvalues

a3, b3: trajectories of eigenframe, 

            experimental (above) and

            theoretical (below)
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Implications and ramifications 



Our S¹ ⋁ S¹ ⋁ S¹ classification for 2-band systems predicts a new kind of non-•
Hermitian gapless phase of matter, with topologically protected edge states.





We have been experimentally investigating the bulk–edge correspondence •
for hypersurface singularities stemmed from our theoretical analysis with the 
swallowtail moduli space, i.e., the topology of bulk states (moduli space) 
determines the numerology of edge states (parametrized system).  There has 
not been a rigorous mathematical explanation for such a correspondence, 
but it is reminiscent of the geometric Langlands duality.





Along a resolution of singularities, homotopy type of the •
(complex) swallowtail complement has a precise 
relationship to the homotopy groups of spheres in 
specific dimensions.   The rich geometric (and physical) 
structure of this stratified space can be exploited to 
introduce additional structures in  





We have been zooming in to local details of combinations of swallowtails •
(and other basic types of singularities) in order to pass from local invariants to 
global (and complete) invariants via fuller power of algebraic topology.
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