22nd Westlake Math Colloquium | Yifei Zhu: Topology of stratified singular moduli spaces for gapless quantum mechanical systems

Time: 16:00-17:00, Friday, Nov 11, 2022
Venue: E4-233, Yungu Campus \& ZOOM
ZOOM ID: 86366066486
PASSCODE: 738489

Abstract

Host: Dr. Xing Gu, Institute for Theoretical Sciences, Westlake University Speaker: Dr. Yifei Zhu, an assistant professor at the Department of Mathematics of the Southern University of Science and Technology. His research interests are in algebraic topology and related fields, particularly in its connections to algebraic geometry and number theory via objects such as formal groups, elliptic curves, and modular forms.

Title: Topology of stratified singular moduli spaces for gapless quantum mechanical systems Abstract: This talk presents an external application of the algebraic topology of moduli spaces. In condensed matter physics, the Hamiltonian of a quantum mechanical system takes a mathematical form of a square matrix, with parameters functions on the 3D momentum space. Such a matrix satisfies the Hermitian symmetry, so that its eigenvalues are real and represent observed energies. We will discuss this space of parameters for Hamiltonians, especially its degeneracy locus where eigenvalues occur with multiplicities. Such a locus gives rise to exceptional properties in the larger scale, with applications to the design of sensing and absorbing devices. We focus on certain non-Hermitian Hamiltonians, the imaginary parts of whose eigenvalues model energy exchange of open systems. Their parameter space possesses intriguing topology, with a stratification of non-isolated singularities, which affords interesting phenomena such as the so-called bulk-edge correspondence. The associated algebraic invariants enable classifications and predictions for phases of matter. This work is in collaboration with C. T. Chan, Jing Hu, Hongwei Jia, Xiaoping Ouyang, Yixiao Wang, Yixin Xiao, Ruo-Yang Zhang, and Zhao-Qing Zhang.

Topology of stratified singular moduli spaces for gapless quantum mechanical systems

Yifei Zhu (SUSTech)

Westlake Math Colloquium, November 2022

Phases of matter: a motivating example

Ice, water, and vapor are different forms of $\mathrm{H}_{2} \mathrm{O}$:

Phases of matter: a motivating example

Ice, water, and vapor are different forms of $\mathrm{H}_{2} \mathrm{O}$:

The real line of temperatures (in ${ }^{\circ} \mathrm{C}$) minus the two transition points has 3 path components. Forms of $\mathrm{H}_{2} \mathrm{O}$ connected continuously by a path are considered to be in the same phase.

Phases of matter: a motivating example

Ice, water, and vapor are different forms of $\mathrm{H}_{2} \mathrm{O}$:

The real line of temperatures (in ${ }^{\circ} \mathrm{C}$) minus the two transition points has 3 path components. Forms of $\mathrm{H}_{2} \mathrm{O}$ connected continuously by a path are considered to be in the same phase.

If we also allow pressure to vary, then there are only two phases of $\mathrm{H}_{2} \mathrm{O}$.

Phases of matter: a motivating example

Ice, water, and vapor are different forms of $\mathrm{H}_{2} \mathrm{O}$:

The real line of temperatures (in ${ }^{\circ} \mathrm{C}$) minus the two transition points has 3 path components. Forms of $\mathrm{H}_{2} \mathrm{O}$ connected continuously by a path are considered to be in the same phase.

If we also allow pressure to vary, then there are only two phases of $\mathrm{H}_{2} \mathrm{O}$.

A mathematical framework

There is a space \mathscr{M} of "systems" with a "singular" locus $\Delta \subset \mathcal{M}$, and we are interested in $\pi_{0}(\mathcal{M}-\Delta)$ or, more generally, the homotopy type of $\mathcal{M}-\Delta$.

Moduli problems: a basic example

Fix a positive integer n. Let \mathcal{M}_{n} be the space of configurations of n points on the real line \mathbb{R}.

Moduli problems: a basic example

Fix a positive integer n. Let \mathcal{M}_{n} be the space of configurations of n points on the real line \mathbb{R}.

Moduli problems: a basic example

Fix a positive integer n. Let \mathcal{M}_{n} be the space of configurations of n points on the real line \mathbb{R}.

The position of the $i^{\prime \prime}$ th point is a function $x^{i}: \mathscr{M}_{\mathrm{n}} \rightarrow \mathbb{R}$. Together these position functions define an isomorphism $\mathcal{M}_{\mathrm{n}} \cong \mathbb{R}^{n}$.

Moduli problems: a basic example

Fix a positive integer n. Let \mathcal{M}_{n} be the space of configurations of n points on the real line \mathbb{R}.

The position of the i^{\prime} th point is a function $x^{i}: \mathcal{M}_{\mathrm{n}} \rightarrow \mathbb{R}$. Together these position functions define an isomorphism $\mathcal{M}_{\mathrm{n}} \cong \mathbb{R}^{n}$.

Here \mathcal{M}_{n} is a moduli space, and so far there is no interesting topology since it is contractible.

Moduli problems: a basic example

Fix a positive integer n. Let \mathcal{M}_{n} be the space of configurations of n points on the real line \mathbb{R}.

The position of the i^{\prime} th point is a function $x^{i}: \mathcal{M}_{\mathrm{n}} \rightarrow \mathbb{R}$. Together these position functions define an isomorphism $\mathcal{M}_{\mathrm{n}} \cong \mathbb{R}^{n}$.

Here \mathcal{M}_{n} is a moduli space, and so far there is no interesting topology since it is contractible.

Let $\Delta \subset \mathscr{M}_{\mathrm{n}}$ be the locus of n-tuples $x=\left(x^{1}, \ldots, x^{n}\right)$ in which not all x^{i} are distinct. Configurations in $\mathscr{M}_{\mathrm{n}}-\Delta$ satisfy a "gap condition," and now there is nontrivial topology: $\mathscr{M}_{\mathrm{n}}-\Delta$ has n ! contractible components.

Moduli problems: a basic example

Fix a positive integer n. Let \mathcal{M}_{n} be the space of configurations of n points on the real line \mathbb{R}.

The position of the i^{\prime} th point is a function $x^{i}: \mathcal{M}_{\mathrm{n}} \rightarrow \mathbb{R}$. Together these position functions define an isomorphism $\mathcal{M}_{\mathrm{n}} \cong \mathbb{R}^{n}$.

Here \mathscr{M}_{n} is a moduli space, and so far there is no interesting topology since it is contractible.

Let $\Delta \subset \mathscr{M}_{\mathrm{n}}$ be the locus of n-tuples $x=\left(x^{1}, \ldots, x^{n}\right)$ in which not all x^{i} are distinct. Configurations in $\mathscr{M}_{\mathrm{n}}-\Delta$ satisfy a "gap condition," and now there is nontrivial topology: $\mathcal{M}_{\mathrm{n}}-\Delta$ has n ! contractible components.

A gapped configuration $x \in \mathscr{M}_{\mathrm{n}}-\Delta$ determines a permutation $\sigma(x) \in \operatorname{Sym}_{\mathrm{n}}$. In fact, σ induces an isomorphism $\pi_{0}\left(\mathcal{M}_{\mathrm{n}}-\Delta\right) \cong$ Sym $_{\mathrm{n}}$ of groups.

Moduli problems: key common features

- There are discrete parameters, e.g., the positive integer n.

Moduli problems: key common features

- There are discrete parameters, e.g., the positive integer n.
- There is a singular locus Δ in the moduli space \mathcal{M} :
- away from Δ, the parametrized objects satisfy a nonsingular (or gap) condition;

Moduli problems: key common features

- There are discrete parameters, e.g., the positive integer n.
- There is a singular locus Δ in the moduli space \mathcal{M} :
- away from Δ, the parametrized objects satisfy a nonsingular (or gap) condition;
\circ moving across Δ, gap closes and reopens, which signifies a phase transition.

Moduli problems: key common features

- There are discrete parameters, e.g., the positive integer n.
- There is a singular locus Δ in the moduli space \mathcal{M} :
\circ away from Δ, the parametrized objects satisfy a nonsingular (or gap) condition;
\circ moving across Δ, gap closes and reopens, which signifies a phase transition.
- There are interesting functions on \mathcal{M} which encode geometric information about the parametrized objects, e.g., $\left|x^{1}-x^{3}\right|$, the distance between the 1st and 3rd points.
(Also think about moduli spaces of elliptic curves.)

Moduli problems: key common features

- There are discrete parameters, e.g., the positive integer n.
- There is a singular locus Δ in the moduli space \mathcal{M} :
\circ away from Δ, the parametrized objects satisfy a nonsingular (or gap) condition;
\circ moving across Δ, gap closes and reopens, which signifies a phase transition.
- There are interesting functions on \mathcal{M} which encode geometric information about the parametrized objects, e.g., $\left|x^{1}-x^{3}\right|$, the distance between the 1st and 3rd points.
(Also think about moduli spaces of elliptic curves.)
- There is a complete invariant of the path component, which is an isomorphism to a known or computable set.

Moduli problems: key common features

- There are discrete parameters, e.g., the positive integer n.
- There is a singular locus Δ in the moduli space \mathcal{M} :
\circ away from Δ, the parametrized objects satisfy a nonsingular (or gap) condition;
\circ moving across Δ, gap closes and reopens, which signifies a phase transition.
- There are interesting functions on \mathcal{M} which encode geometric information about the parametrized objects, e.g., $\left|x^{1}-x^{3}\right|$, the distance between the 1st and 3rd points.
(Also think about moduli spaces of elliptic curves.)
- There is a complete invariant of the path component, which is an isomorphism to a known or computable set.
Such a complete invariant is not present in all situations.

Why do we care about moduli spaces for physical systems?

Holography featured prominently in recent Olympic ceremonies
Holography is made possible via exceptional optical devices and materials.

Why do we care about moduli spaces for physical systems?

Holography featured prominently in recent Olympic ceremonies
Holography is made possible via exceptional optical devices and materials.
Moduli spaces of physical systems, especially their singular loci, play a pivotal role in designing such.

Why do we care about moduli spaces for physical systems?

Holography featured prominently in recent Olympic ceremonies
Holography is made possible via exceptional optical devices and materials.
Moduli spaces of physical systems, especially their singular loci, play a pivotal role in designing such.

Design materials that can "do wonders", which cannot be found in nature, e.g., invisibility cloaks.

Moduli spaces for quantum mechanical systems

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system.

Moduli spaces for quantum mechanical systems

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system.

In mathematical terms, as a first example, let us consider a 2-band Hamiltonian with Hermitian and parity-time symmetries.

Moduli spaces for quantum mechanical systems

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system.

In mathematical terms, as a first example, let us consider a 2-band Hamiltonian with Hermitian and parity-time symmetries.

Let $\vec{k}=\left(k_{x}, k_{y}, k_{z}\right)$ in the momentum space (or \vec{k}-space).

Moduli spaces for quantum mechanical systems

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system.

In mathematical terms, as a first example, let us consider a 2-band Hamiltonian with Hermitian and parity-time symmetries.

Let $\vec{k}=\left(k x, k_{y}, k_{z}\right)$ in the momentum space (or \vec{k}-space). Consider the 2×2 matrix

$$
H_{2}(\vec{k})=f_{0}(\vec{k}) \mathbf{1}+\vec{f}(\vec{k}) \cdot \vec{\sigma}
$$

where $\mathbf{1}$ is the identity matrix and $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are the Pauli matrices

$$
\sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Moduli spaces for quantum mechanical systems

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system.

In mathematical terms, as a first example, let us consider a 2-band Hamiltonian with Hermitian and parity-time symmetries.

Let $\vec{k}=\left(k x, k_{y}, k_{z}\right)$ in the momentum space (or \vec{k}-space). Consider the 2×2 matrix

$$
H_{2}(\vec{k})=f_{0}(\vec{k}) \mathbf{1}+\vec{f}(\vec{k}) \cdot \vec{\sigma}
$$

where $\mathbf{1}$ is the identity matrix and $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are the Pauli matrices

$$
\sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

We have

$$
H_{2}=\left[\begin{array}{cc}
f_{0} & 0 \\
0 & f_{0}
\end{array}\right]+\left[\begin{array}{cc}
0 & f_{1} \\
f_{1} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & -f_{2} i \\
f_{2} i & 0
\end{array}\right]+\left[\begin{array}{cc}
f_{3} & 0 \\
0 & -f_{3}
\end{array}\right]
$$

Moduli spaces for quantum mechanical systems

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system.

In mathematical terms, as a first example, let us consider a 2-band Hamiltonian with Hermitian and parity-time symmetries.

Let $\vec{k}=\left(k x, k_{y}, k_{z}\right)$ in the momentum space (or \vec{k}-space). Consider the 2×2 matrix

$$
H_{2}(\vec{k})=f_{0}(\vec{k}) \mathbf{1}+\vec{f}(\vec{k}) \cdot \vec{\sigma}
$$

where $\mathbf{1}$ is the identity matrix and $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are the Pauli matrices

$$
\sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

We have

$$
H_{2}=\left[\begin{array}{cc}
f_{0} & 0 \\
0 & f_{0}
\end{array}\right]+\left[\begin{array}{cc}
0 & f_{1} \\
f_{1} & 0
\end{array}\right]+\underset{\substack{\text { PT symmetry }}}{\left[\begin{array}{cc}
0 & -f_{2} i \\
f_{2} & 0
\end{array}\right]^{0}}+\left[\begin{array}{cc}
f_{3} & 0 \\
0 & -f_{3}
\end{array}\right]
$$

Moduli spaces for quantum mechanical systems

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system.

In mathematical terms, as a first example, let us consider a 2-band Hamiltonian with Hermitian and parity-time symmetries.

Let $\vec{k}=\left(k x, k_{y}, k_{z}\right)$ in the momentum space (or \vec{k}-space). Consider the 2×2 matrix

$$
H_{2}(\vec{k})=f_{0}(\vec{k}) \mathbf{1}+\vec{f}(\vec{k}) \cdot \vec{\sigma}
$$

where $\mathbf{1}$ is the identity matrix and $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are the Pauli matrices

$$
\sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

We have

$$
\begin{aligned}
& H_{2}=\left[\begin{array}{cc}
f_{0} & 0 \\
0 & f_{0}
\end{array}\right]+\left[\begin{array}{cc}
0 & f_{1} \\
f_{1} & 0
\end{array}\right]+\underset{\text { PT symmetry }}{\left[\begin{array}{cc}
0 & -f_{2} i \\
f_{2} & 0
\end{array}\right]^{0}}+\left[\begin{array}{cc}
f_{3} & 0 \\
0 & -f_{3}
\end{array}\right]=\left[\begin{array}{cc}
f_{0}+f_{3} & f_{1} \\
f_{1} & f_{0}-f_{3}
\end{array}\right] \\
& \text { (complex conjugation) }
\end{aligned}
$$

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue.

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue. For this purpose, we may assume $f_{0}=0$ and get the characteristic polynomial $\left|\begin{array}{cc}f_{3}-\omega & f_{1} \\ f_{1} & -f_{3}-\omega\end{array}\right|=\omega^{2}-f_{1}^{2}-f_{3}^{2}$.

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue. For this purpose, we may assume $f_{0}=0$ and get the characteristic polynomial $\left|\begin{array}{cc}f_{3}-\omega & f_{1} \\ f_{1} & -f_{3}-\omega\end{array}\right|=\omega^{2}-f_{1}^{2}-f_{3}^{2}$.

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue. For this purpose, we may assume $f_{0}=0$ and get the characteristic polynomial $\left|\begin{array}{cc}f_{3}-\omega & f_{1} \\ f_{1} & -f_{3}-\omega\end{array}\right|=\omega^{2}-f_{1}^{2}-f_{3}^{2}$.

This gives the moduli space (not quite). $\mathrm{A} \mathbb{Z}_{2}$-symmetry is present:

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue. For this purpose, we may assume $f_{0}=0$ and get the characteristic polynomial $\left|\begin{array}{cc}f_{3}-\omega & f_{1} \\ f_{1} & -f_{3}-\omega\end{array}\right|=\omega^{2}-f_{1}^{2}-f_{3}^{2}$.

This gives the moduli space (not quite). $\mathrm{A} \mathbb{Z}_{2}$-symmetry is present:

$$
\begin{array}{ll}
\omega_{+}=\sqrt{f_{1}^{2}+f_{3}^{2}} & \vec{\phi}_{+}=\left[\begin{array}{c}
f_{3}+\sqrt{ } \\
f_{1}
\end{array}\right] \\
\omega_{-}=-\sqrt{ } & \vec{\phi}_{-}=\left[\begin{array}{c}
f_{3}-\sqrt{\square} \\
f_{1}
\end{array}\right]
\end{array}
$$

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue. For this purpose, we may assume $f_{0}=0$ and get the characteristic polynomial

$$
\left|\begin{array}{cc}
f_{3}-\omega & f_{1} \\
f_{1} & -f_{3}-\omega
\end{array}\right|=\omega^{2}-f_{1}^{2}-f_{3}^{2} .
$$

This gives the moduli space (not quite). $\mathrm{A} \mathbb{Z}_{2}$-symmetry is present:

$$
\begin{array}{lll}
\omega_{+}=\sqrt{f_{1}^{2}+f_{3}^{2}} & \vec{\phi}_{+}=\left[\begin{array}{c}
f_{3}+\sqrt{ } \\
f_{1}
\end{array}\right] \text { normalize } & \omega_{+}=1
\end{array} \vec{\phi}_{+}=\left[\begin{array}{c}
\cos \theta+1 \\
\sin \theta
\end{array}\right] .
$$

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue. For this purpose, we may assume $f_{0}=0$ and get the characteristic polynomial

$$
\left|\begin{array}{cc}
f_{3}-\omega & f_{1} \\
f_{1} & -f_{3}-\omega
\end{array}\right|=\omega^{2}-f_{1}^{2}-f_{3}^{2} .
$$

This gives the moduli space (not quite). $\mathrm{A} \mathbb{Z}_{2}$-symmetry is present:

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue. For this purpose, we may assume $f_{0}=0$ and get the characteristic polynomial

$$
\left|\begin{array}{cc}
f_{3}-\omega & f_{1} \\
f_{1} & -f_{3}-\omega
\end{array}\right|=\omega^{2}-f_{1}^{2}-f_{3}^{2} .
$$

This gives the moduli space (not quite). $\mathrm{A} \mathbb{Z}_{2}$-symmetry is present:

$\Longrightarrow H_{2}=\mathbf{1}-2\left|\phi_{-}\right\rangle\left\langle\phi_{-}\right|$

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue. For this purpose, we may assume $f_{0}=0$ and get the characteristic polynomial

$$
\left|\begin{array}{cc}
f_{3}-\omega & f_{1} \\
f_{1} & -f_{3}-\omega
\end{array}\right|=\omega^{2}-f_{1}^{2}-f_{3}^{2} .
$$

This gives the moduli space (not quite). $\mathrm{A} \mathbb{Z}_{2}$-symmetry is present:

$\Longrightarrow H_{2}=\mathbf{1}-2\left|\phi_{-}\right\rangle\left\langle\phi_{-}\right|$
Observe that $\quad\left|\phi_{-}\right\rangle \mapsto-\left|\phi_{-}\right\rangle \quad$ does not change H_{2}.

Moduli spaces for quantum mechanical systems

We compute for which values of parameters H_{2} has a doubled eigenvalue. For this purpose, we may assume $f_{0}=0$ and get the characteristic polynomial

$$
\left|\begin{array}{cc}
f_{3}-\omega & f_{1} \\
f_{1} & -f_{3}-\omega
\end{array}\right|=\omega^{2}-f_{1}^{2}-f_{3}^{2} .
$$

This gives the moduli space (not quite). $\mathrm{A} \mathbb{Z}_{2}$-symmetry is present:

$$
\left.\begin{array}{lll}
\omega_{+}=\sqrt{f_{1}^{2}+f_{3}^{2}} & \vec{\phi}_{+}=\left[\begin{array}{cc}
f_{3}+\sqrt{ } \\
f_{1}
\end{array}\right] \text { normalize } & \omega_{+}=1
\end{array} \vec{\phi}_{+}=\left[\begin{array}{c}
\cos \theta+1 \\
\sin \theta
\end{array}\right] \xrightarrow{\text { normalize }} \vec{\phi}_{+}=\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2)
\end{array}\right]=\left|\phi_{+}\right\rangle\right)
$$

$$
\Longrightarrow H_{2}=\mathbf{1}-2\left|\phi_{-}\right\rangle\left\langle\phi_{-}\right|
$$

Observe that $\quad\left|\phi_{-}\right\rangle \mapsto-\left|\phi_{-}\right\rangle \quad$ does not change H_{2}.
Thus the moduli space $\mathbb{M}_{2}=S O(2) / \mathbb{Z}_{2} \cong S^{1}$ and its "topological charge" (a homotopy invariant) is $\pi_{1}\left(\mathcal{M}_{2}\right) \cong \mathbb{Z}$.

Moduli spaces for quantum mechanical systems

Taking

$$
\begin{aligned}
f_{1}(\vec{k}) & =k_{x} k_{z} \\
f_{3}(\vec{k}) & = \pm k_{x}^{2}+k_{y}^{2} \pm k_{z}^{2}-4
\end{aligned}
$$

Moduli spaces for quantum mechanical systems

Taking

$$
\begin{aligned}
f_{1}(\vec{k}) & =k_{x} k_{z} \\
f_{3}(\vec{k}) & = \pm k_{x}^{2}+k_{y}^{2} \pm k_{z}^{2}-4
\end{aligned}
$$

we have in the \vec{k}-space

Wu et al., Science 365, 1273-1277 (2019)

Moduli spaces for quantum mechanical systems

Taking

$$
\begin{aligned}
f_{1}(\vec{k}) & =k_{x} k_{z} \\
f_{3}(\vec{k}) & = \pm k_{x}^{2}+k_{y}^{2} \pm k_{z}^{2}-4
\end{aligned}
$$

we have in the \vec{k}-space

Wu et al., Science 365, 1273-1277 (2019)
and in the moduli space

Moduli spaces for quantum mechanical systems

Taking

$$
\begin{aligned}
f_{1}(\vec{k}) & =k_{x} k_{z} \\
f_{3}(\vec{k}) & = \pm k_{x}^{2}+k_{y}^{2} \pm k_{z}^{2}-4
\end{aligned}
$$

we have in the \vec{k}-space

Wu et al., Science 365, 1273-1277 (2019)
and in the moduli space

The winding number w_{Γ} of the loop 「 equals 2.

Moduli spaces for quantum mechanical systems

The winding number serves as a topological classifier:

Moduli spaces for quantum mechanical systems

The winding number serves as a topological classifier:

More generally, for all $n \geq 2$, Wu et al. computed topological charges for n-band Hermitian Hamiltonians with PT symmetry and found that $\pi_{1}\left(\mathcal{M}_{\mathrm{n}}\right)$ is non-Abelian when $n \geq 3$.

Moduli spaces for quantum mechanical systems

The winding number serves as a topological classifier:

More generally, for all $n \geq 2$, Wu et al. computed topological charges for n-band Hermitian Hamiltonians with PT symmetry and found that $\pi_{1}\left(\mathcal{M}_{\mathrm{n}}\right)$ is non-Abelian when $n \geq 3$. For example,

$$
\mathscr{M}_{3}=\mathrm{SO}(3) / D_{2}
$$

where $\quad D_{2}=$ the three-dimensional "dihedral" crystallographic point group
\cong the Klein four-group

Moduli spaces for quantum mechanical systems

The winding number serves as a topological classifier:

More generally, for all $n \geq 2$, Wu et al. computed topological charges for n-band Hermitian Hamiltonians with PT symmetry and found that $\pi_{1}\left(\mathcal{M}_{\mathrm{n}}\right)$ is non-Abelian when $n \geq 3$. For example,

$$
\mathcal{M}_{3}=\mathrm{SO}(3) / D_{2}
$$

where $\quad D_{2}=$ the three-dimensional "dihedral" crystallographic point group
\cong the Klein four-group
and $\pi_{1}\left(\mathcal{M}_{3}\right) \cong Q=\{ \pm 1, \pm i, \pm j, \pm k\}$, the quaternion group.

Moduli spaces for quantum mechanical systems

The winding number serves as a topological classifier:

More generally, for all $n \geq 2$, Wu et al. computed topological charges for n-band Hermitian Hamiltonians with PT symmetry and found that $\pi_{1}\left(\mathcal{M}_{\mathrm{n}}\right)$ is non-Abelian when $n \geq 3$. For example,

$$
\mathcal{M}_{3}=\mathrm{SO}(3) / D_{2}
$$

where $\quad D_{2}=$ the three-dimensional "dihedral" crystallographic point group
\cong the Klein four-group
and $\pi_{1}\left(\mathcal{M}_{3}\right) \cong Q=\{ \pm 1, \pm i, \pm j, \pm k\}$, the quaternion group.
(We have $\pi_{1}(\mathrm{SO}(3)) \cong \pi_{1}\left(\mathbb{R} P^{3}\right) \cong \mathbb{Z}_{2}, \mathrm{SU}(2) \cong S^{3}$ its 2 -fold universal cover.)

Moduli spaces for non-Hermitian Hamiltonians

Beyond the well-studied Hermitian symmetry, non-Hermitian Hamiltonians possess eigenvalues with imaginary part that represents energy exchanges with surrounding environment.

Moduli spaces for non-Hermitian Hamiltonians

Beyond the well-studied Hermitian symmetry, non-Hermitian Hamiltonians possess eigenvalues with imaginary part that represents energy exchanges with surrounding environment.

Joint with the physics group at HKUST led by Che Ting Chan, especially Hongwei Jia and Jing Hu, we investigated moduli spaces for 2-band and 3band Hamiltonians with the following symmetries:

$$
\eta H \eta^{-1}=\overline{H^{t}} \quad \text { and } \quad[P T, H]=0
$$

pseudo-Hermiticity
parity-time symmetry
where

$$
\eta=\left[\begin{array}{cc}
I_{n-1} & 0 \\
0 & -1
\end{array}\right] \quad \text { is a Riemannian metric form }
$$

$P T=$ complex conjugation operator

Moduli spaces for non-Hermitian Hamiltonians

Beyond the well-studied Hermitian symmetry, non-Hermitian Hamiltonians possess eigenvalues with imaginary part that represents energy exchanges with surrounding environment.

Joint with the physics group at HKUST led by Che Ting Chan, especially Hongwei Jia and Jing Hu, we investigated moduli spaces for 2-band and 3band Hamiltonians with the following symmetries:

$$
\eta H \eta^{-1}=\overline{H^{t}} \quad \text { and } \quad[P T, H]=0
$$

pseudo-Hermiticity
parity-time symmetry
where

$$
\eta=\left[\begin{array}{cc}
I_{n-1} & 0 \\
0 & -1
\end{array}\right] \quad \text { is a Riemannian metric form }
$$

$P T=$ complex conjugation operator
Here emerge non-isolated, stratified singular loci, making our systems gapless and their topology much intriguing.

Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give complete invariants.

$$
H_{2}=\left[\begin{array}{cc}
f_{3} & f_{2} \\
-f_{2} & -f_{3}
\end{array}\right] \quad \text { Recall Hermitian }\left[\begin{array}{cc}
f_{3} & f_{1} \\
f_{1} & -f_{3}
\end{array}\right] \text {) }
$$

Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give complete invariants.

Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give complete invariants.

$H_{2}=\left[\begin{array}{cc}f_{3} & f_{2} \\ -f_{2} & -f_{3}\end{array}\right]$ (Recall Hermitian $\left[\begin{array}{cc}f_{3} & f_{1} \\ f_{1} & -f_{3}\end{array}\right]$)
I, III: real eigenstates
II, IV: complex eigenstates
Stratified singular locus:

- EL (exceptional line): doubled eigenstate (defective degeneracies)
- CIP (complete intersection point): η-orthogonal eigenstates (non-defective degeneracy)

Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give complete invariants.

$H_{2}=\left[\begin{array}{cc}f_{3} & f_{2} \\ -f_{2} & -f_{3}\end{array}\right]$ (Recall Hermitian $\left[\begin{array}{cc}f_{3} & f_{1} \\ f_{1} & -f_{3}\end{array}\right]$)
I, III: real eigenstates
II, IV: complex eigenstates
Stratified singular locus:

- EL (exceptional line): doubled eigenstate (defective degeneracies)
- CIP (complete intersection point): η-orthogonal eigenstates (non-defective degeneracy)

Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give complete invariants.

$$
H_{2}=\left[\begin{array}{cc}
f_{3} & f_{2} \\
-f_{2} & -f_{3}
\end{array}\right] \quad \text { Recall Hermitian }\left[\begin{array}{cc}
f_{3} & f_{1} \\
f_{1} & -f_{3}
\end{array}\right] \text {) }
$$

I, III: real eigenstates
II, IV: complex eigenstates

Stratified singular locus:

- EL (exceptional line): doubled eigenstate (defective degeneracies)
- CIP (complete intersection point): η-orthogonal eigenstates (non-defective degeneracy)

Moduli spaces for non-Hermitian Hamiltonians: 2-band systems

In the generic 2-band case, we give complete invariants.

$$
H_{2}=\left[\begin{array}{cc}
f_{3} & f_{2} \\
-f_{2} & -f_{3}
\end{array}\right] \quad \text { (Recall Hermitian }\left[\begin{array}{cc}
f_{3} & f_{1} \\
f_{1} & -f_{3}
\end{array}\right] \text {) }
$$

I, III: real eigenstates
II, IV: complex eigenstates
Stratified singular locus:

- EL (exceptional line): doubled eigenstate (defective degeneracies)
- CIP (complete intersection point): η-orthogonal eigenstates (non-defective degeneracy)

The moduli space \mathscr{M}_{2} can be identified as $S^{1} \vee$ $S^{1} \vee S^{1}$ doubly covering $S^{1} \vee S^{1}$. Thus $\pi_{1}\left(\mathscr{M}_{2}\right)$ is a free subgroup of $F(a, \beta)$ on 3 generators. This gives the gapless system a physically meaningful, non-Abelian topological charge.

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

The 3-band case is more complex and exotic. Here is a sample of portraits for the stratified singular moduli spaces.

$$
\left[\begin{array}{ccc}
1 & f_{1} & f_{2} \\
-f_{1} & -1 & f_{3} \\
-f_{2} & f_{3} & -1
\end{array}\right]\left[\begin{array}{ccc}
1-f_{1}-f_{2} & f_{1} & f_{2} \\
-f_{1} & f_{1}-f_{3} & f_{3} \\
-f_{2} & f_{3} & f_{2}-f_{3}
\end{array}\right]
$$

$\left[\begin{array}{cccc}0 & -f_{1} & -f_{2} & -f_{3} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$

A mechanical wave system

$$
\left[\begin{array}{lll}
f_{1} f_{2} & f_{1} & f_{2} \\
-f_{1} & f_{1} & f_{3} \\
-f_{2} & f_{3} & f_{2}
\end{array}\right]
$$

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

The 3-band case is more complex and exotic. Here is a sample of portraits for the stratified singular moduli spaces.

$$
\left[\begin{array}{ccc}
1 & f_{1} & f_{2} \\
-f_{1} & -1 & f_{3} \\
-f_{2} & f_{3} & -1
\end{array}\right]\left[\begin{array}{ccc}
1-f_{1}-f_{2} & f_{1} & f_{2} \\
-f_{1} & f_{1}-f_{3} & f_{3} \\
-f_{2} & f_{3} & f_{2}-f_{3}
\end{array}\right]
$$

$\left[\begin{array}{cccc}0 & -f_{1} & -f_{2} & -f_{3} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$

A mechanical wave
The central figure within these configurations is the so-called swallowtail catastrophe.

$$
\left[\begin{array}{ccc}
f_{1} f_{2} & f_{1} & f_{2} \\
-f_{1} & f_{1} & f_{3} \\
-f_{2} & f_{3} & f_{2}
\end{array}\right]
$$

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

The singularity of a swallowtail arises in the discriminant surface of a generic degree-4 polynomial. Here, it is the characteristic polynomial of $H\left(f_{1}, f_{2}, f_{3}\right)$.

$$
\left|\begin{array}{cccc}
-\omega & -f_{1} & -f_{2} & -f_{3} \\
1 & -\omega & 0 & 0 \\
0 & 1 & -\omega & 0 \\
0 & 0 & 1 & -\omega
\end{array}\right|=\omega^{4}+f_{1} \omega^{2}+f_{2} \omega+f_{3}
$$

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

The singularity of a swallowtail arises in the discriminant surface of a generic degree-4 polynomial. Here, it is the characteristic polynomial of $H\left(f_{1}, f_{2}, f_{3}\right)$.

$$
\begin{array}{r}
\left|\begin{array}{cccc}
-\omega & -f_{1} & -f_{2} & -f_{3} \\
1 & -\omega & 0 & 0 \\
0 & 1 & -\omega & 0 \\
0 & 0 & 1 & -\omega
\end{array}\right|=\omega^{4}+f_{1} \omega^{2}+f_{2} \omega+f_{3} \\
\Delta\left(f_{1}, f_{2}, f_{3}\right)=4 f_{1}^{3} f_{2}^{2}+27 f_{2}^{4}-16 f_{1}^{4} f_{3}-144 f_{1} f_{2}^{2} f_{3}+128 f_{1}^{2} f_{3}^{2}-256 f_{3}^{3} \\
\text { https:///yifeizhu.github.io/swtl.mp4 }
\end{array}
$$

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

The singularity of a swallowtail arises in the discriminant surface of a generic degree-4 polynomial. Here, it is the characteristic polynomial of $H\left(f_{1}, f_{2}, f_{3}\right)$.
$\left|\begin{array}{cccc}-\omega & -f_{1} & -f_{2} & -f_{3} \\ 1 & -\omega & 0 & 0 \\ 0 & 1 & -\omega & 0 \\ 0 & 0 & 1 & -\omega\end{array}\right|=\omega^{4}+f_{1} \omega^{2}+f_{2} \omega+f_{3}$

$$
\begin{array}{r}
\Delta\left(f_{1}, f_{2}, f_{3}\right)=4 f_{1}^{3} f_{2}^{2}+27 f_{2}^{4}-16 f_{1}^{4} f_{3}-144 f_{1} f_{2}^{2} f_{3}+128 f_{1}^{2} f_{3}^{2}-256 f_{3}^{3} \\
\text { https://yifeizhu.github.io/swtl.mp4 }
\end{array}
$$

Discriminant surfaces are ruled (in fact, developable).

1908 quadratic $\left(\Delta=b^{2}-4 a c\right)$

cubic

$$
\left[\begin{array}{cccc}
0 & -f_{1} & -f_{2} & -f_{3} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Illustration from Klein's lecture notes by Hellinger.

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

As the singular loci of moduli spaces for polynomials, swallowtail and other catastrophes are important and well-studied objects in dynamical systems and algebraic geometry. Arnold famously related their complements to braid groups and computed their cohomology, establishing a connection to topology as well.

V. I. Arnold's tombstone at the Novodevichy Cemetery in Moscow

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

As the singular loci of moduli spaces for polynomials, swallowtail and other catastrophes are important and well-studied objects in dynamical systems and algebraic geometry. Arnold famously related their complements to braid groups and computed their cohomology, establishing a connection to topology as well.

However, moduli spaces for Hamiltonians carry additional structures and are more complex:

- Physicists desire classifications for the behavior of eigenstates along a loop across/encircling the stratified non-isolated singularity (e.g., Berry phase of adiabatic transformation,

V. I. Arnold's tombstone at the Novodevichy Cemetery in Moscow

Reg I and Reg II: PT-exact phases Reg III: PT-broken phase close and open of gaps).

- Over the reals, we know less even on the mathematical side.

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians, the question of the desired classification appears to be purely mathematical.

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians, the question of the desired classification appears to be purely mathematical.

We obtained results for intersection homotopy classes of loops near the swallowtail, i.e., deformations of loops conserving topological charges, with electric-circuit experimental realizations.

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians, the question of the desired classification appears to be purely mathematical.

We obtained results for intersection homotopy classes of loops near the swallowtail, i.e., deformations of loops conserving topological charges, with electric-circuit experimental realizations.

Example: transition from two EL3s to NIL and NL
https://yifeizhu.github.io/loop.mp4

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians, the question of the desired classification appears to be purely mathematical.

We obtained results for intersection homotopy classes of loops near the swallowtail, i.e., deformations of loops conserving topological charges, with electric circuit realizations.

Example: transition from two EL3s to NIL and NL
https://yifeizhu.github.io/loop.mp4
EL3 = triple exceptional line
NIL = nodal intersection line
NL = nodal line
a1, b1: loops on the spherical crosssection of the swallowtail

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians, the question of the desired classification appears to be purely mathematical.

We obtained results for intersection homotopy classes of loops near the swallowtail, i.e., deformations of loops conserving topological charges, with electric circuit realizations.

Example: transition from two EL3s to NIL and NL
https://yifeizhu.github.io/loop.mp4
EL3 = triple exceptional line
NIL = nodal intersection line
NL = nodal line
a1, b1: loops on the spherical crosssection of the swallowtail
a2, b2: trajectories of eigenvalues

Moduli spaces for non-Hermitian Hamiltonians: 3-band systems

Despite the delicate physical meanings of this moduli space for Hamiltonians, the question of the desired classification appears to be purely mathematical.

We obtained results for intersection homotopy classes of loops near the swallowtail, i.e., deformations of loops conserving topological charges, with electric circuit realizations.

Example: transition from two EL3s to NIL and NL
https://yifeizhu.github.io/loop.mp4
EL3 = triple exceptional line
NIL = nodal intersection line
NL = nodal line
a1, b1: loops on the spherical crosssection of the swallowtail
a2, b2: trajectories of eigenvalues a3, b3: trajectories of eigenframe, experimental (above) and theoretical (below)

Implications and ramifications

- Our $S^{1} \vee S^{1} \vee S^{1}$ classification for 2-band systems predicts a new kind of nonHermitian gapless phase of matter, with topologically protected edge states.

Implications and ramifications

- Our $S^{1} \vee S^{1} \vee S^{1}$ classification for 2-band systems predicts a new kind of nonHermitian gapless phase of matter, with topologically protected edge states.
- We have been experimentally investigating the bulk-edge correspondence for hypersurface singularities stemmed from our theoretical analysis with the swallowtail moduli space,

Implications and ramifications

- Our $S^{1} \vee S^{1} \vee S^{1}$ classification for 2-band systems predicts a new kind of nonHermitian gapless phase of matter, with topologically protected edge states.
- We have been experimentally investigating the bulk-edge correspondence for hypersurface singularities stemmed from our theoretical analysis with the swallowtail moduli space, i.e., the topology of bulk states (moduli space) determines the numerology of edge states (parametrized system).

Implications and ramifications

- Our $S^{1} \vee S^{1} \vee S^{1}$ classification for 2-band systems predicts a new kind of nonHermitian gapless phase of matter, with topologically protected edge states.
- We have been experimentally investigating the bulk-edge correspondence for hypersurface singularities stemmed from our theoretical analysis with the swallowtail moduli space, i.e., the topology of bulk states (moduli space) determines the numerology of edge states (parametrized system). There has not been a rigorous mathematical explanation for such a correspondence, but it is reminiscent of the geometric Langlands duality.

Implications and ramifications

- Our $S^{1} \vee S^{1} \vee S^{1}$ classification for 2-band systems predicts a new kind of nonHermitian gapless phase of matter, with topologically protected edge states.
- We have been experimentally investigating the bulk-edge correspondence for hypersurface singularities stemmed from our theoretical analysis with the swallowtail moduli space, i.e., the topology of bulk states (moduli space) determines the numerology of edge states (parametrized system). There has not been a rigorous mathematical explanation for such a correspondence, but it is reminiscent of the geometric Langlands duality.
- Along a resolution of singularities, homotopy type of the (complex) swallowtail complement has a precise relationship to the homotopy groups of spheres in specific dimensions.

The unfurled swallowtail over the ordinary swallowtail

Implications and ramifications

- Our $S^{1} \vee S^{1} \vee S^{1}$ classification for 2-band systems predicts a new kind of nonHermitian gapless phase of matter, with topologically protected edge states.
- We have been experimentally investigating the bulk-edge correspondence for hypersurface singularities stemmed from our theoretical analysis with the swallowtail moduli space, i.e., the topology of bulk states (moduli space) determines the numerology of edge states (parametrized system). There has not been a rigorous mathematical explanation for such a correspondence, but it is reminiscent of the geometric Langlands duality.
- Along a resolution of singularities, homotopy type of the (complex) swallowtail complement has a precise relationship to the homotopy groups of spheres in specific dimensions. The rich geometric (and physical) structure of this stratified space can be exploited to introduce additional structures in $\left\{\pi_{i}\left(S^{d-\mu-2}\right)\right\}$.

The unfurled swallowtail over the ordinary swallowtail

Implications and ramifications

- Our $S^{1} \vee S^{1} \vee S^{1}$ classification for 2-band systems predicts a new kind of nonHermitian gapless phase of matter, with topologically protected edge states.
- We have been experimentally investigating the bulk-edge correspondence for hypersurface singularities stemmed from our theoretical analysis with the swallowtail moduli space, i.e., the topology of bulk states (moduli space) determines the numerology of edge states (parametrized system). There has not been a rigorous mathematical explanation for such a correspondence, but it is reminiscent of the geometric Langlands duality.
- Along a resolution of singularities, homotopy type of the (complex) swallowtail complement has a precise relationship to the homotopy groups of spheres in specific dimensions. The rich geometric (and physical) structure of this stratified space can be exploited to introduce additional structures in $\left\{\pi_{i}\left(S^{d-\mu-2}\right)\right\}$.

The unfurled swallowtail over the ordinary swallowtail

- We have been zooming in to local details of combinations of swallowtails (and other basic types of singularities) in order to pass from local invariants to global (and complete) invariants via fuller power of algebraic topology.

Credits and references

- Daniel S. Freed, Lectures on field theory and topology, American Mathematical Society, 2019
- Phase diagram of water (simplified) from Wikipedia (author of the original work: Cmglee)
- Beijing Winter Olympics picture: http://en.kremlin.ru/events/president/news/67715
- Quadric surfaces diagrams for \vec{k}-spaces of Hermitian systems and winding number comparison diagrams adapted from
QuanSheng Wu, Alexey A. Soluyanov, and Tomáš Bzdušek, Non-Abelian band topology in noninteracting metals, Science, 2019
- Order parameter space diagrams for non-Hermitian systems from Hongwei Jia, Ruo-Yang Zhang, Jing Hu, Yixin Xiao, Yifei Zhu, and C. T. Chan, Topological classification for intersection singularities of exceptional surfaces in pseudo-Hermitian systems, preprint, 2022
- 3D plots for 3-band-system moduli spaces drawn with Mathematica, middle-right pair by Hongwei Jia
- Swallowtail 3D video: Oliver Labs, https://yifeizhu.github.io/swtl.mp4
- Sketch of ruled swallowtail surface from Felix Klein's lecture notes by Ernst David Hellinger, 1907-1909.
- Photo of Arnold's tombstone from

Boris A. Khesin and Serge L. Tabachnikov, ed., Arnold: Swimming against the tide, American Mathematical Society, 2014

- Spherical swallowtail plot, loop transition video and diagrams from

Jing Hu, Ruo-Yang Zhang, Yixiao Wang, Xiaoping Ouyang, Yifei Zhu, Hongwei Jia, and C. T. Chan, NonHermitian swallowtail catastrophe revealing transitions across diverse topological singularities, preprint, 2022

- Unfurled swallowtail plot from
V. I. Arnold, Singularities of caustics and wave fronts, Springer, 1990
- Swallowtail ensemble and detail plots drawn with Mathematica by Pingyao Feng

