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Let T2 =(R/Z)? be the 2D torus. Consider the dynamical system given by
O, T* xR — T?
(a,0),t) = (a+1t,b+ ot)

If o is rational, then every orbit is . Otherwise every orbit is dense in T2,

rational o irrational o

From time series to topological shapes

Most periodic time series can be realized by a embedded
in a Euclidean space of higher dimension.
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Topological time series analysis
Let us make the assumption that sampled signals are distributed over a
() To topologically analyze time series, we then proceed as follows:
Step 1 Embed the data into a of suitable dimension;

Step 2 Compute the algebraic invariants for statistical inference.

Jose A. Perea, Topological time series analysis, Notices of the American Mathematical Society,
2019.

Jose A. Perea and John Harer, Sliding windows and persistence: An application of topological
methods to signal analysis, Foundations of Computational Mathematics, 2015.
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Persistence barcodes as

representations of the algebraic
invariant (1D homology group)

Emrani et al., Persistent homology of delay embeddings and its application to wheeze detection,

IEEE Signal Processing Letters, 2014.
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dimension Preprocessing —

AN

Euclidean shape: point cloud (x4, x14+7), (X2, X547), (X3, X365, --.

delay

Euclidean embedding of time series data dates back to Takens’s work on
fluid turbulence.

Theorem (Takens 1981). Let M be a compact manifold of dimension n.
Given pairs (¢, y) with.¢: M — M a smooth diffeomorphismandy: M — R a
smooth function, it is a generic property that the map @e.,: M — R

defined by
D(py) (@) = (y (@), y(p(@)),--- ,y(so””(x)))

IS an
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A pipeline for topological time series analysis

Time series data: x4, X5, X3, X4, ...

dimension Preprocessing ——>

N\

Euclidean shape: point cloud (x4, x14+7), (X2, X547), (X3, X367, --.

Topological feature extraction —— delay

Algebraic invariants: homology groups, persistence barcodes, ...

Statistical inference ——>

Characteristics conclusions
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Classification of speech signals

Sinusoid in
time domain
Voiced
exhibit periodic Harmonics in
frequency
waveforms oAl
resulting from
glottal vibrations
Time and Time- . Frequency response
Frequency domain
Like a white

noise

Voiceless

predominantly characterized by
aperiodic, turbulence-induced
noise
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a, Receiver operating characteristic curves of traditional machine learning algorithms.
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b, Accuracy and area under the curve of each of these algorithms.



Primary experiments combining topological features with ML models

a b .
100 ~ Bl AucC
1 e 7/. Accuracy
7
’ S
7/
0.8 =t 95 A 3 o
N
- ’ b R R
'f]f 0.6 = N N
2 el
= 90 A =
3 — Tree (63)
%‘J 0.4 s Discriminant
E e Regression
E= w—— NaiveBayes
0.2 SVM
m— KNN
e |inear
0 Ensemble
0 0.5 1
False Positive Rate
25+ voiceless
M voiced
204
2 154
[0
=
7}
O 104
Q
3 £
@
0 | T e =
4 I 11

0 0.5 1 1.5 2 02 03 : : 5 02 03
Lifetime Birth Time Birth Time

0.4

Machine learning results with topological features

¢, Histograms of records represented by their PH-lifetime for voiced and voiceless
consonants, together with kernel density estimation and rug plot. The distributions of
maximal persistence can distinguish voiced and voiceless consonants.
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Machine learning results with topological features

d, Diagrams of records represented as (birth time, lifetime) for voiced consonants (left)
and voiceless consonants (right), where voiced consonants exhibit higher birth time
and lifetime. The color represents the density of points in each unit grid box.



Model comparison on benchmark datasets

| ALLSSTAR corpora | Random samples
Small dataset HT1 HT2 DHR L.PP NWS L] TIMIT  Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 94.3 9% 92:8 919 88.8 94.6 83.9 85.1
MFCC-GRU 93.3 92.2 98.2 91.4 89.8 86.0 70.5 79.0
MFCC-Transformer 96.0 93.9 94.2 924 94.4 92.0 96.3 87.5
STFT-CNN-8 87.1 84.0 78.2 79:1 79.9 82.7 76.3 7.5
STFT-CNN-16 96.7 95.1 94 4 921 94.0 95.6 89.4 88.7
Large dataset ALLSSTAR L]Speech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 925 92.9 92.8 88.7
MFCC-GRU 95.9 96.2 97.4 91.0
MFCC-Transformer 93.7 96.9 97.6 92.1
STFI-CNN-8 812 85.4 77.5 80.3
STFI-CNN-16 94.6 96.3 91.4 90.6

Accuracy rates % of TopCap on 8 small datasets and 4 large datasets stand in comparison
with state-of-the-art methods.
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learning models. This limitation motivates the integration of topological features
into neural networks.
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datasets. For larger datasets, TopCap generally does not match the performance of deep
neural networks, primarily due to its use of simpler topological features and basic machine
learning models. This limitation motivates the integration of topological features
into neural networks. Overall, while may not achieve the highest performance
across all benchmarks, it produces results.



Model comparison on benchmark datasets

| ALLSSTAR corpora | Random samples
Small dataset HT1 HT2 DHR L.PP NWS L] TIMIT  Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 94.3 90 92 Lo 88.8 94.6 83.9 85.1
MFCC-GRU 93.3 92.2 93.2 91.4 89.8 86.0 70.5 79.0
MFCC-Transformer 96.0 93.9 94.2 924 94.4 92.0 96.3 87.5
STFT-CNN-8 87.1 84.0 78.2 79:1 79.9 82.7 76.3 775
STFT-CNN-16 96.7 95.1 94 4 921 94.0 95.6 89.4 88.7
Large dataset ALLSSTAR L]Speech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 925 929 92.8 88.7
MFCC-GRU 95.9 96.2 97.4 91.0
MFCC-Transformer 93.7 96.9 97.6 92.1
STFI-CNN-8 81.2 85.4 77.5 80.3
STFI-CNN-16 94.6 96.3 91.4 90.6

Advantages of TopCap:

 Structural efficiency. Neural network models require further feature extraction from
input MFCC sequences or STFT spectrograms for classification tasks, necessitating a
training process which lengthens with the growing dataset.



Model comparison on benchmark datasets

| ALLSSTAR corpora | Random samples
Small dataset HT1 HT2 DHR LPP NWS 1B TIMIT  Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 94.3 9 92 oo 88.8 94.6 83.9 85.1
MFCC-GRU 93.3 92.2 93.2 91.4 89.8 86.0 70.5 79.0
MFCC-Transformer 96.0 93.9 94.2 924 94.4 92.0 96.3 87.5
STFT-CNN-8 87.1 84.0 78.2 79:1 79.9 82.7 76.3 775
STFT-CNN-16 96.7 95.1 94 4 92.1 94.0 95.6 89.4 88.7
Large dataset ALLSSTAR L]Speech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 925 929 92.8 88.7
MFCC-GRU 95.9 96.2 97.4 91.0
MFCC-Transformer 93.7 96.9 97.6 92.1
STFI-CNN-8 81.2 85.4 77.5 80.3
STFI-CNN-16 94.6 96.3 91.4 90.6

Advantages of TopCap:

 Structural efficiency. Neural network models require further feature extraction from
input MFCC sequences or STFT spectrograms for classification tasks, necessitating a
training process which lengthens with the growing dataset. In contrast, TopCap mainly
utilizes topology-based methods (TDE and PH) which are more straightforward for
feature extraction. -



Model comparison on benchmark datasets

| ALLSSTAR corpora | Random samples
Small dataset HT1 HT2 DHR LPP NWS 1B TIMIT  Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 94.3 927 9.3 9o 88.8 94.6 83.9 85.1
MFCC-GRU 93.3 92.2 93.2 91.4 89.8 86.0 70.5 79.0
MFCC-Transformer 96.0 93.9 94.2 924 94.4 92.0 96.3 87.5
STFT-CNN-8 87.1 84.0 78.2 791 79.9 82.7 76.3 775
STFT-CNN-16 96.7 95.1 94 4 9271 94.0 95.6 89.4 88.7
Large dataset ALLSSTAR L]Speech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 925 929 92.8 88.7
MFCC-GRU 95.9 96.2 97.4 91.0
MFCC-Transformer 93.7 96.9 97.6 92.1
STFI-CNN-8 81.2 85.4 77.5 80.3
STFI-CNN-16 94.6 96.3 91.4 90.6

Advantages of TopCap:

 Structural efficiency. Neural network models require further feature extraction from
input MFCC sequences or STFT spectrograms for classification tasks, necessitating a
training process which lengthens with the growing dataset. In contrast, TopCap mainly
utilizes topology-based methods (TDE and PH) which are more straightforward for
feature extraction. Meanwhile, the topological fingerprints (e.g., maximal persistence)
are strong enough to characterize phonemes effectively for our classification tasks.



Model comparison on benchmark datasets

| ALLSSTAR corpora | Random samples
Small dataset HT1 HT2 DHR PP NWS 1B TIMIT  Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 94.3 Ve S JILY 88.8 94.6 83.9 851
MFCC-GRU 93.3 92.2 982 91.4 89.8 86.0 70.5 79.0
MFCC-Transformer 96.0 98:9 94.2 92.4 94.4 92.0 96.3 87.5
STFT-CNN-8 87.1 84.0 78.2 791 79.9 82.7 76.3 715
STFT-CNN-16 96.7 95.1 94.4 92:1 94.0 95.6 89.4 88.7
Large dataset ALLSSTAR L]Speech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 925 200 92.8 88.7
MFCC-GRU 98.9 96.2 97.4 91.0
MFCC-Transformer 93.7 96.9 97.6 92.1
STFT-CNN-8 812 85.4 77.5 80.3
STFT-CNN-16 94.6 96.3 91.4 90.6

Advantages of TopCap:

 Structural efficiency. Neural network models require further feature extraction from
input MFCC sequences or STFT spectrograms for classification tasks, necessitating a
training process which lengthens with the growing dataset. In contrast, TopCap mainly
utilizes topology-based methods (TDE and PH) which are more straightforward for
feature extraction. Meanwhile, the topological fingerprints (e.g., maximal persistence)
are strong enough to characterize phonemes effectively for our classification tasks.
Therefore, TopCap gains higher efficiency, especially when handling



Model comparison on benchmark datasets

| ALLSSTAR corpora | Random samples
Small dataset HT1 HT2 DHR PP NWS B TIMIT  Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 94.3 97 92 9o 88.8 94.6 83.9 85.1
MFCC-GRU 93.3 92.2 93.2 91.4 89.8 86.0 70.5 79.0
MFCC-Transformer 96.0 93.9 94.2 924 94.4 92.0 96.3 87.5
STFT-CNN-8 87.1 84.0 78.2 791 79.9 82.7 76.3 775
STFT-CNN-16 96.7 95.1 94 4 9271 94.0 95.6 89.4 88.7
Large dataset ALLSSTAR L]Speech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 925 929 92.8 88.7
MFCC-GRU 95.9 96.2 97.4 91.0
MFCC-Transformer 93.7 96.9 97.6 92.1
STFI-CNN-8 81.2 85.4 77.5 80.3
STFI-CNN-16 94.6 96.3 91.4 90.6

Advantages of TopCap:

 Structural efficiency. Neural network models require further feature extraction from
input MFCC sequences or STFT spectrograms for classification tasks, necessitating a
training process which lengthens with the growing dataset. In contrast, TopCap mainly
utilizes topology-based methods (TDE and PH) which are more straightforward for
feature extraction. Meanwhile, the topological fingerprints (e.g., maximal persistence)
are strong enough to characterize phonemes effectively for our classification tasks.
Therefore, TopCap gains higher efficiency, especially when handling
On a related note, deep learning methods, as a data-driven approach, require large
amounts of data for training and generalization.



Model comparison on benchmark datasets

| ALLSSTAR corpora | Random samples
Small dataset HT1 HT2 DHR PP NWS B TIMIT  Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 94.3 97 92 9o 88.8 94.6 83.9 85.1
MFCC-GRU 93.3 92.2 93.2 91.4 89.8 86.0 70.5 79.0
MFCC-Transformer 96.0 93.9 94.2 924 94.4 92.0 96.3 87.5
STFT-CNN-8 87.1 84.0 78.2 791 79.9 82.7 76.3 775
STFT-CNN-16 96.7 95.1 94 4 9271 94.0 95.6 89.4 88.7
Large dataset ALLSSTAR L]Speech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 925 929 92.8 88.7
MFCC-GRU 95.9 96.2 97.4 91.0
MFCC-Transformer 93.7 96.9 97.6 92.1
STFI-CNN-8 81.2 85.4 77.5 80.3
STFT-CNN-16 94.6 96.3 91.4 90.6

Advantages of TopCap:

 Structural efficiency. Neural network models require further feature extraction from
input MFCC sequences or STFT spectrograms for classification tasks, necessitating a
training process which lengthens with the growing dataset. In contrast, TopCap mainly
utilizes topology-based methods (TDE and PH) which are more straightforward for
feature extraction. Meanwhile, the topological fingerprints (e.g., maximal persistence)
are strong enough to characterize phonemes effectively for our classification tasks.
Therefore, TopCap gains higher efficiency, especially when handling
On a related note, deep learning methods, as a data-driven approach, require large
amounts of data for training and generalization. In contrast,

, We see that TopCap achieves equally good performance

on relatively



Model comparison on benchmark datasets

| ALLSSTAR corpora | Random samples
Small dataset HT1 HT2 DHR PP NWS B TIMIT  Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 94.3 97 92 9o 88.8 94.6 83.9 85.1
MFCC-GRU 93.3 92.2 93.2 91.4 89.8 86.0 70.5 79.0
MFCC-Transformer 96.0 93.9 94.2 924 94.4 92.0 96.3 87.5
STFT-CNN-8 87.1 84.0 78.2 791 79.9 82.7 76.3 775
STFT-CNN-16 96.7 95.1 94 4 9271 94.0 95.6 89.4 88.7
Large dataset ALLSSTAR L]Speech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 925 929 92.8 88.7
MFCC-GRU 95.9 96.2 97.4 91.0
MFCC-Transformer 93.7 96.9 97.6 92.1
STFI-CNN-8 81.2 85.4 77.5 80.3
STFT-CNN-16 94.6 96.3 91.4 90.6

Advantages of TopCap:

* Interpretability. Neural networks are often referred to as “black boxes” due to their low
explainability and interpretability, which make it challenging to understand the
mechanisms of feature extraction and effectively improve a model for classification.
However, TopCap offers a white-box method for visualizing features of time series data,
which gives insight to the intrinsic properties and nuanced differences within the data,
enabling us to better understand and improve the model.
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even with GPU acceleration. For instance, on the TIMIT dataset, a full training cycle of
15 epochs can take approximately 30 minutes with GPU parallelization.
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Advantages of TopCap:

« Computational speed. Neural networks involve time-consuming training processes,
even with GPU acceleration. For instance, on the TIMIT dataset, a full training cycle of
15 epochs can take approximately 30 minutes with GPU parallelization. In contrast,
TopCap bypasses the need for iterative training and achieves significantly faster
computation. TopCap performs lightweight machine learning with negligible runtime
overhead, completing both feature extraction and classification in just 2 minutes when
utilizing 16-thread CPU parallelization. TopCap'’s efficiency advantage comes from
avoiding gradient-based optimization and using computationally cheaper topologically
derived features, along with a highly parallelizable pipeline. These make it significantly
faster and more scalable especially for or
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Gunnar Carlsson et al., On the local behavior of spaces of natural images, International
Journal of Computer Vision, 2008.

Gunnar Carlsson, Topology and data, Bulletin of the American Mathematical Society, 2009.
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Motivated by the works of Carlsson and his collaborators’, we have been
investigating analogous questions for , with the additional tool of
time-delay embedding for turning time series data to point clouds in Euclidean
spaces, as well as spectrograms as their imagery representations.

« For phonetic data, linguists created a charted “distribution space” of vowels.

- A main goal remains to use topological methods to reveal a
, even a
, and apply these topological
inputs for smarter

* In a related direction, based on TopCap, we developed topology-enhanced
neural networks.

« Moreover, we exploited the reduced symmetry of spectrograms and
designed topological convolutional layers for deep learning speech data.
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neural network

interpretable features informed by topology Top

A generic flow chart for enhancing neural networks with topological features
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Architecture of a specific TopNN, concatenating GRU and TopCap features
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Visual analytics of experiments with TopNN

a, lraining curves of TopNN, ZeroNN (NN features concatenated with null
topological feature, as a sanity check), and NN on 36000 speech data from the
TIMIT dataset. "
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Visual analytics of experiments with TopNN
a, lraining curves of TopNN, ZeroNN (NN features concatenated with null
topological feature, as a sanity check), and NN on 36000 speech data from the
TIMIT dataset. They demonstrate that TopNN has higher accuracy and faster
convergence in loss function than ZeroNN and NN.
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Visual analytics of experiments with TopNN
b, Iraining curves of TopNN, ZeroNN, and NN with the same set up as in a and
including noise (signal-to-noise ratio = 5dB).
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Visual analytics of experiments with TopNN
b, Iraining curves of TopNN, ZeroNN, and NN with the same set up as in a and
including noise (signal-to-noise ratio = 5dB). With noise added, TopNN's

improvement in accuracy and loss decrease are more prominent compared with

the results in a.
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Visual analytics of experiments with TopNN

¢, d, and e, Comprehensive performance comparison and noise robustness analysis
of TooNN and NN based on training and test accuracy rates with the large datasets
ALLSSTAR, LJSpeech, and TIMIT, respectively.
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Visual analytics of experiments with TopNN

¢, d, and e, Comprehensive performance comparison and noise robustness analysis
of TooNN and NN based on training and test accuracy rates with the large datasets
ALLSSTAR, LJSpeech, and TIMIT, respectively. Noise levels include none, weak (SNR
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= 10dB), moderate (SNR = 5dB), and strong (SNR = 0dB).
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Visual analytics of experiments with TopNN

¢, d, and e, Comprehensive performance comparison and noise robustness analysis
of TooNN and NN based on training and test accuracy rates with the large datasets
ALLSSTAR, LJSpeech, and TIMIT, respectively. Noise levels include none, weak (SNR
= 10dB), moderate (SNR = 5dB), and strong (SNR = 0dB). TopNN consistently
achieves higher accuracy, steadier performance, and more robustness against noise.
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column vectors) to define a space V of kernels.
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Topology-informed convolution kernels for speech recognition

We defined a notion of contrast for 3 x 3 convolution kernels that process
spectrograms, and introduced rigid constraints (unit norm and zero-sum of
column vectors) to define a space V of kernels. We showed that V' is
homeomorphic to S° and that the natural SO(3)-action on V induces a quotient
space B that is homeomorphic to a disk D2. We then defined untrained
Orthogonal Filter (OF) layer with convolution kernels informed by this topology.
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Comparisons of normal (NOL), Love et al.’s circle filter (CF) and Klein-bottle filter (KF),
and our orthogonal filter (OF) convolutional layers for phoneme classification tasks via
loss and accuracy on datasets SpeechBox, TIMIT, and LJSpeech
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SpeechBox with SNR = 20
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SpeechBox with SNR = 0
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Comparisons with noise added
Our proposed OF layer enables superior performance in phoneme recognition,
particularly in low-noise scenarios.
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Comparison for word classification on SpeechCommands
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Comparisons for image classification on CIFAR10
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