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Overview






In 1966, Mark Kac asked the famous question: 



                                Can you hear the shape of a drum?



To hear the shape of a drum is to infer information about the shape of the 
drumhead from the sound it makes, using mathematical theory.

 

In this talk, we mirror the question across senses and address instead: 



                         Can you see the sound of a human speech?
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Overview: context & summary






Topological speech (and audio) signal processing, beyond direct biologically 
inspired engineering: topological features vs. STFT/MFCC
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Periodic phenomena: a motivating example



Let T ² = ( ℝ / ℤ )² be the 2D torus.  Consider the dynamical system given by







If σ is rational, then every orbit is periodic.  Otherwise every orbit is dense in T ².



















From time series to topological shapes 


Most periodic time series can be realized by a topological circle S¹ embedded 
in a Euclidean space of higher dimension.
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Topological time series analysis



Let us make the assumption that sampled signals are distributed over a 
manifold (!)  To topologically analyze time series, we then proceed as follows:




	 Step1  Embed the data into a Euclidean space of suitable dimension;




	 Step 2  Compute the algebraic invariants for statistical inference. 
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Jose A. Perea, Topological time series analysis, Notices of the American Mathematical Society, 
2019.



Jose A. Perea and John Harer, Sliding windows and persistence: An application of topological 
methods to signal analysis, Foundations of Computational Mathematics, 2015.
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An application: detection of wheeze in medical science (pulmonology)






               Original sound signals            Realized topological           “Persistence barcodes” as  

       	 	 	 	 	 	 	 	 	 	 	 	 shapes embedded in          representations of the algebraic

                		 	 	 	 	 	 	 	 	 	 2D Euclidean space            invariant (1D homology group)
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Emrani et al., Persistent homology of delay embeddings and its application to wheeze detection, 
IEEE Signal Processing Letters, 2014.
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Classification of speech signals



In consultation with Meng Yu of Tencent AI Lab, we applied topological 
methods to classify voiced/voiceless and vowel/consonant speech data, with 
motivations from industrial applications.  



We were inspired by Carlsson et al.’s discovery of the Klein-bottle distribution 
of local natural images, as well as their subsequent recent work of topological 
convolutional neural networks learning video data.  We would like to 
understand an analogous “moduli space” for speech data and how its input 
may enable smarter learning.





Display of speech signals 


There are speech signal 
processing softwares for 
professional use.
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Primary experiments combining topological features with ML models



Here is a flowchart for our method of TopCap:
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Machine learning results with topological features 
a, Receiver operating characteristic curves of traditional machine learning algorithms.
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It I
Machine learning results with topological features 
b, Accuracy and area under the curve of each of these algorithms.
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It I
Machine learning results with topological features 
c, Histograms of records represented by their PH-lifetime for voiced and voiceless 
consonants, together with kernel density estimation and rug plot.  The distributions of 
maximal persistence can distinguish voiced and voiceless consonants.
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It I
Machine learning results with topological features 
d, Diagrams of records represented as (birth time, lifetime) for voiced consonants (left) 
and voiceless consonants (right), where voiced consonants exhibit higher birth time 
and lifetime.  The color represents the density of points in each unit grid box.














Model comparison on benchmark datasets
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Accuracy rates % of TopCap on 8 small datasets and 4 large datasets stand in comparison 
with state-of-the-art methods.  While MFCC–Transformer and STFT–CNN-16 generally 
outperform TopCap, it is important to note that TopCap exceeds the performance of 
MFCC–GRU (gated recurrent unit, which also uses advanced architecture) and STFT–
CNN-8 (convolutional neural network, a smaller model than STFT–CNN-16) on small 
datasets.  For larger datasets, TopCap generally does not match the performance of deep 
neural networks, primarily due to its use of simpler topological features and basic machine 
learning models.  This limitation motivates the integration TopNN of topological features 
into neural networks.  Overall, while TopCap may not achieve the highest performance 
across all benchmarks, it produces decent results.
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Advantages of TopCap: 
• Structural efficiency.  Neural network models require further feature extraction from 

input MFCC sequences or STFT spectrograms for classification tasks, necessitating a 
training process which lengthens with the growing dataset.  In contrast, TopCap mainly 
utilizes topology-based methods (TDE and PH) which are more straightforward for 
feature extraction.  Meanwhile, the topological fingerprints (e.g., maximal persistence) 
are strong enough to characterize phonemes effectively for our classification tasks.  
Therefore, TopCap gains higher efficiency, especially when handling larger datasets.    
On a related note, deep learning methods, as a data-driven approach, require large 
amounts of data for training and generalization.  In contrast, comparing the upper and 
lower halves of the above table, we see that TopCap achieves equally good performance 
on relatively small datasets.
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feature extraction.  Meanwhile, the topological fingerprints (e.g., maximal persistence) 
are strong enough to characterize phonemes effectively for our classification tasks.  
Therefore, TopCap gains higher efficiency, especially when handling larger datasets.    
On a related note, deep learning methods, as a data-driven approach, require large 
amounts of data for training and generalization.  In contrast, comparing the upper and 
lower halves of the above table, we see that TopCap achieves equally good performance 
on relatively small datasets.
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goes sAdvantages of TopCap: 
• Interpretability.  Neural networks are often referred to as “black boxes” due to their low 

explainability and interpretability, which make it challenging to understand the 
mechanisms of feature extraction and effectively improve a model for classification. 
However, TopCap offers a white-box method for visualizing features of time series data, 
which gives insight to the intrinsic properties and nuanced differences within the data, 
enabling us to better understand and improve the model.
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Advantages of TopCap: 
• Computational speed.  Neural networks involve time-consuming training processes, 

even with GPU acceleration.  For instance, on the TIMIT dataset, a full training cycle of 
15 epochs can take approximately 30 minutes with GPU parallelization.  In contrast, 
TopCap bypasses the need for iterative training and achieves significantly faster 
computation.  TopCap performs lightweight machine learning with negligible runtime 
overhead, completing both feature extraction and classification in just 2 minutes when 
utilizing 16-thread CPU parallelization.  TopCap’s efficiency advantage comes from 
avoiding gradient-based optimization and using computationally cheaper topologically 
derived features, along with a highly parallelizable pipeline.  These make it significantly 
faster and more scalable especially for large datasets or real-time applications.
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From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  We may view the Klein bottle 
as a moduli space for local image data.



A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein 
bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they 
have incorporated the tangent bundle of a Klein 
bottle into TCNNs for learning video data.  Both 
learnings achieved higher accuracies with smaller 
training sets.
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We have reproduced some of their results.  
Analogously, a main goal is to use topological 
methods to reveal distribution spaces for speech 
signals and apply them to deep learning.
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From topological data analysis to topological deep learning



Motivated by the works of Carlsson and his collaborators’, we have been 
investigating analogous questions for speech signals

, with the additional tool of time-delay embedding for turning time series data to 
point clouds in Euclidean spaces.



• For phonetic data, linguists created a charted “distribution space” of vowels:



• Using speech files from SpeechBox, our 

topological approach achieved an average 
accuracy exceeding 95% in classifying 
voiced and voiceless consonants via 
machine learning.




• A main goal remains to use topological 

methods to reveal distribution spaces for 
speech signals and apply them to deep learning.
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• Moreover, we exploited the reduced symmetry of spectrograms and 

designed topological convolutional layers for deep learning speech data.
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A generic flow chart for enhancing neural networks with topological features

Architecture of a specific TopNN, concatenating GRU and TopCap features
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Architecture of a specific TopNN, concatenating GRU and TopCap features
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A generic flow chart for enhancing neural networks with topological features

Architecture of a specific TopNN, concatenating GRU and TopCap features

Visual analytics of experiments with TopNN 
a, Training curves of TopNN, ZeroNN (NN features concatenated with null 
topological feature, as a sanity check), and NN on 36000 original speech data from 
the TIMIT dataset.  They demonstrate that TopNN has higher accuracy and faster 
convergence in loss function than ZeroNN and NN.
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Architecture of a specific TopNN, concatenating GRU and TopCap features

Visual analytics of experiments with TopNN 
a, Training curves of TopNN, ZeroNN (NN features concatenated with null 
topological feature, as a sanity check), and NN on 36000 speech data from the 
TIMIT dataset.  They demonstrate that TopNN has higher accuracy and faster 
convergence in loss function than ZeroNN and NN.
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A generic flow chart for enhancing neural networks with topological features

Architecture of a specific TopNN, concatenating GRU and TopCap features

Visual analytics of experiments with TopNN 
a, Training curves of TopNN, ZeroNN (NN features concatenated with null 
topological feature, as a sanity check), and NN on 36000 speech data from the 
TIMIT dataset.  They demonstrate that TopNN has higher accuracy and faster 
convergence in loss function than ZeroNN and NN.
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A generic flow chart for enhancing neural networks with topological features

Architecture of a specific TopNN, concatenating GRU and TopCap features

Visual analytics of experiments with TopNN 
b, Training curves of TopNN, ZeroNN, and NN with the same set up as in a and 
including noise (signal-to-noise ratio = 5dB).  With noise added, TopNN's 
improvement in accuracy and loss decrease are more prominent compared with 
the results in a. 
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A generic flow chart for enhancing neural networks with topological features

Architecture of a specific TopNN, concatenating GRU and TopCap features

Visual analytics of experiments with TopNN 
b, Training curves of TopNN, ZeroNN, and NN with the same set up as in a and 
including noise (signal-to-noise ratio = 5dB).  With noise added, TopNN's 
improvement in accuracy and loss decrease are more prominent compared with 
the results in a. 
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A generic flow chart for enhancing neural networks with topological features

Architecture of a specific TopNN, concatenating GRU and TopCap features

Visual analytics of experiments with TopNN 
c, d, and e, Comprehensive performance comparison and noise robustness analysis 
of TopNN and NN based on training and test accuracy rates with the large datasets 
ALLSSTAR, LJSpeech, and TIMIT, respectively.  Noise levels include none, weak (SNR 
= 10dB), moderate (SNR = 5dB), and strong (SNR = 0dB).  TopNN consistently 
achieves higher accuracy, steadier performance, and more robustness against noise.
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Visual analytics of experiments with TopNN 
c, d, and e, Comprehensive performance comparison and noise robustness analysis 
of TopNN and NN based on training and test accuracy rates with the large datasets 
ALLSSTAR, LJSpeech, and TIMIT, respectively.  Noise levels include none, weak (SNR 
= 10dB), moderate (SNR = 5dB), and strong (SNR = 0dB).  TopNN consistently 
achieves higher accuracy, steadier performance, and more robustness against noise.
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Architecture of a specific TopNN, concatenating GRU and TopCap features

Visual analytics of experiments with TopNN 
c, d, and e, Comprehensive performance comparison and noise robustness analysis 
of TopNN and NN based on training and test accuracy rates with the large datasets 
ALLSSTAR, LJSpeech, and TIMIT, respectively.  Noise levels include none, weak (SNR 
= 10dB), moderate (SNR = 5dB), and strong (SNR = 0dB).  TopNN consistently 
achieves higher accuracy, steadier performance, and more robustness against noise.
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Topology-informed convolution kernels for speech recognition



We defined a notion of contrast for 3 x 3 convolution kernels that process 
spectrograms, and introduced rigid constraints (unit norm and zero-sum of 
column vectors) to define a space V of kernels.  We showed that V is 
homeomorphic to S⁵ and that the natural SO(3)-action on V induces a quotient 
space B that is homeomorphic to a disk D².  We then defined untrained 
Orthogonal Filters (OF) layer with convolution kernels informed by this topology.
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Comparisons of normal (NOL), Love et al.’s circle filter (CF) and Klein-bottle filter (KF), 
and our orthogonal filter (OF) convolutional layers for phoneme classification tasks via 
loss and accuracy on datasets SpeechBox, TIMIT, and LJSpeech
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Comparisons with noise added 
Our proposed OF layer enables superior performance in phoneme recognition, 
particularly in low-noise scenarios.
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Comparisons for image classification on CIFAR10

Comparison for word classification on SpeechCommands
























                                                       Thank you. 
 
 
 
 
 
 
 
 
 
 
 


