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ABSTRACT

Topological data analysis (TDA) offers mathematical tools for deep
learning and insights for its interpretability. Inspired by Carlsson
and his collaborators’ seminal work on topological convolutional
neural networks with image and video data, in this study we design
topology-aware convolution kernels which significantly improve
speech recognition networks. Theoretically, by investigating orthog-
onal group actions on kernels, we establish a fiber-bundle decom-
position of matrix spaces, enabling new filter generation methods.
In practice, our proposed Orthogonal Filters layer achieves superior
performance in phoneme recognition, particularly in low-noise sce-
narios, while demonstrating cross-domain adaptability for other au-
dio and visual recognition tasks. This work reveals TDA’s potential
in neural network optimization, opening new avenues for interdisci-
plinary studies with topological methods and machine learning.

Index Terms: Topological data analysis, convolutional neural
network, speech recognition, group action, orthogonal filters.

1 INTRODUCTION

1.1 Background
This study aims to integrate topological data analysis with deep
neural networks, focusing on the application of topological convolu-
tion kernels in speech recognition tasks, particularly for phoneme
identification and word classification. By incorporating topological
feature extraction, we seek to enhance a network’s ability to capture
key topological characteristics in speech signals, thereby improving
recognition performance.

The development of deep neural networks has undergone several
critical phases. Early fully connected networks were constrained
by computational limitations and theoretical understanding until the
emergence of convolutional neural networks (CNNs), which marked
the golden age of deep learning. CNNs significantly reduced pa-
rameter complexity through local connectivity and weight sharing
while preserving essential spatial hierarchical features. However,
traditional CNNs exhibit inherent limitations in comprehending the
global topological properties of data. In this context, topological
neural networks emerged as a promising solution. In 2004, de Silva
and Carlsson identified a topological structure of three rings in image
data using persistent homology [13]. Based on this, in [4], together
with Ishkhanov and Zomorodian they further detected a distribu-
tion of such data as over the Klein bottle, a complex topological
manifold. Around the same time, Carlsson proposed a theoretical
framework explaining the significance of topological features in data
analysis [2]. A decade later, since around 2018, Carlsson and his
collaborators have extended topological analysis to the study of con-
volutional neural network weight distributions [3] and demonstrated
significantly improved performance by directly encoding topological
features in the design of convolution kernels [9]. These groundbreak-
ing discoveries provided a starting point for our research, particu-
larly in the integration of topological feature extraction methods
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into speech-specific convolution kernel designs. Of course, besides
architectures, there are other aspects of topological deep learning,
such as representations, which go beyond the scope of this article
but serve as an overarching context of research and applications (see,
e.g., [16]).

Traditional speech processing methods often overlook the rich
topological structures embedded in speech signals. The complex
patterns exhibited by speech signals in the time–frequency domain
contain topological features that play a vital role in phoneme dis-
crimination and word recognition [5, 14]. Using TDA tools, we can
capture these structural characteristics more effectively. Notably,
the local extrema and connectivity relationships formed by speech
signals in a mel spectrogram constitute specific topological configu-
rations, which exhibit systematic differences across phonemes. The
topological convolution kernel proposed in this study is specifically
designed to model these features, enabling simultaneous extraction
of conventional spectral features while explicitly representing the
topological properties of speech signals. This approach not only
improves recognition accuracy, but also enhances the model’s ro-
bustness to noise and variations, offering a new technical pathway
for speech recognition systems in complex environments.

1.2 Statement of Results
The main focus of this article is the application of convolution ker-
nels, constructed using the newly defined Orthogonal Filters (OF)
layer, to phoneme recognition. Moreover, the approach is general-
ized to word recognition and image recognition, demonstrating its
versatility and adaptability across multiple domains.

Firstly, in Sec. 3, geared towards speech data instead of image
data, we consider the matrix space M3×3(R), which is the most
common space of convolution kernels, as {[vvv1,vvv2,vvv3] | vvvi ∈ R3}.
Without loss of generality, define the subspace M = {[vvv1,vvv2,vvv3] |
∥vvv1∥2 + ∥vvv2∥2 + ∥vvv3∥2 = 1, vvv1 + vvv2 + vvv3 = 000}. Next, we define a
group action on M by

θ(QQQ,mmm) = QQQmmm for QQQ ∈ SO(3) and mmm ∈ M.

Denote the quotient map from M to M/SO(3) by π . Then the
orbit space M/SO(3), denoted as B, is homeomorphic to a disk D2.
Moreover, π has the structure of a stratified fiber bundle. The fiber is
SO(3)/(SO(2)⋊Z2)∼=RP2 when vvv1+vvv3 = 000, SO(3)/SO(2)∼= S2

when vvv1 and vvv3 are collinear, SO(3)/Z2 ∼= L(4,1) when vvv1 and vvv3
are of equal magnitudes, and SO(3) otherwise. The above provides
a representation of M by special orthogonal group action.

Secondly, in Sec. 4, we define our OF layer by selecting elements
in B and SO(3). Then, we compare neural networks constructed
using OF convolution kernels to traditional neural networks and
the networks proposed by Love et al. [9] on phoneme datasets.
The results indicate that OF achieves the highest accuracy under
low-noise conditions. However, in high-noise environments, OF’s
performance declines, with KF (Klein Filters) emerging as a superior
approach.

Finally, in Sec. 5, the applicability of OF convolution kernels is
further explored by extending their use to word datasets and image
datasets. Results demonstrate consistent generalization properties
that showcase the versatility and robustness of the proposed method-
ology.

In this article, we treat weight vectors and convolution ker-
nels interchangeably, without differentiating the two concepts.
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The integration of TDA and CNN is presented not only as a
promising research direction but also as a practical solution that
addresses some of the key challenges in modern data science.
For details, the source codes of all experiments are available at
https://github.com/ZhiwangYu/TDLforSpeechRecognition.

1.3 Outline
This article integrates theory, methodology, and applications of
topological deep learning through 5 systematically organized sec-
tions. Sec. 2 introduces the fundamental objects of study, CNNs,
topological CNNs, and phonemes. Sec. 3 formalizes the spectro-
gram convolution kernel space through geometric and topological
constraints, including contrast maximization and group actions, pro-
viding a structured framework for speech processing. This leads to
Sec. 4, where we introduce novel kernel designs, demonstrating im-
proved phoneme recognition accuracy and robustness against noise.
Sec. 5 discusses broader implications, including model performance
on unfiltered phonemes, as well as generalization to word and image
tasks.

2 TOPOLOGICAL CONVOLUTIONAL NEURAL NETWORKS
AND PHONETIC DATA

2.1 Convolutional Neural Networks
Definition 2.1 (Algebraic Formalism of Convolutional Neural Net-
works). A convolutional neural network is a feedforward system
N = (V,E,Λ) where

1. the vertex set V =
⊔L

k=0 Vk decomposes into layers with V0
representing the input and VL representing the output,

2. the directed edges E ⊂
⋃L−1

k=0 (Vk ×Vk+1) respect layer order-
ing, and

3. the weight parameters Λ = {λe ∈ R}e∈E exhibit translational
symmetry.

The CNN dynamics are governed by the following 2 fundamental
constraints.

• Spatial Locality: For convolutional layers Vk = χk ×Zd , each
(v,w) =

(
(κ,xxx),(κ ′,xxx′)

)
∈ E satisfies ∥xxx− xxx′|rVert∞ ≤ rk for

some receptive field radius rk.

• Parameter Sharing: Weight values λ(κ,xxx),(κ ′,xxx′) depend solely
on κ,κ ′ and the displacement xxx− xxx′.

Definition 2.2 (Forward Propagation). The activation aw at node
w ∈Vk+1 is computed as

aw = σ

 ∑
v∈Vk

(v,w)∈E

λ(v,w)av +bw


where σ denotes the ReLU activation and bw denotes the bias term.

CNNs implement multiscale processing through the following
interleaved operations.

• Convolutional Blocks: Combine spatial filtering (via learned
kernels) with pointwise nonlinearities. Each block transforms
feature maps Fk : Zd → Rck to Fk+1 : Zd → Rck+1 (where ci =
dim(Fi) is the channel dimension at layer i) through

Fk+1(xxx) = σ

(
∑

∥yyy∥≤r
K(yyy)Fk(xxx+ yyy)+bbb

)

where x ∈ Zd is spatial position in output feature map, y ∈
{−r, ...,r}d is offset within a convolution kernel, K(y) ∈ R is
kernel weight at offset y, Fk(x+y) is input feature at position
x+y, b∈R is bias term, σ is nonlinear activation (e.g., ReLU),
and r is kernel radius (e.g., r = 1 for 3×3 kernels).

• Downsampling: Pooling layers induce spatial compression by
local aggregation, typically via max or average operations over
s× s windows.

Remark 2.3. The architectural constraints of CNNs – locality,
weight sharing, and hierarchical composition – encode an implicit
prior favoring translation-equivariant feature detection while main-
taining parametric efficiency.

2.2 Topological Convolutional Neural Networks
To contextualize our analytical framework (cf. Carlsson [2]), we
adopt theoretical proof of the existence of Klein bottle in the space
of local image patches. The 3×3 image patches are interpreted as
discrete samples obtained by evaluating smooth functions f : D →R
at nine predetermined grid points {pk}9

k=1 ⊂ D. Our investigation
focuses on identifying closed subspaces F ⊂C(D,R) that satisfy
the approximation property

sup
f∈F

∥ f∥L2({pk}) ≈ ∥ f∥L2(D)

where the left-hand norm corresponds to patch space measurements.
Let Q denote the space of bivariate quadratic polynomials, ex-

plicitly parametrized as

f (x,y) = A+Bx+Cy+Dx2 +Exy+Fy2 (A, . . . ,F ∈ R).

This constitutes a 6-dimensional real vector space. Our analysis fo-
cuses on the constrained subspace P ⊂Q defined by the conditions∫

D
f (x,y)dxdy = 0 (mean centering),∫

D
f (x,y)2 dxdy = 1 (contrast normalization).

The linear constraint alone reduces Q to a 5-dimensional affine
subspace, while the quadratic normalization further restricts P to a
4-dimensional ellipsoid embedded within this subspace.

We subsequently characterize the submanifold P0 ⊂ P consist-
ing of functions with the specialized form

f (x,y) = q(λx+µy)

where q is a single-variable quadratic function, and λ 2 + µ2 = 1.
The space of such functions within Q is 4-dimensional: 3 parameters
define q, and (λ ,µ) lies on the unit circle, which is 1-dimensional.
Incorporating the two additional constraints reduces this to a 2-
dimensional complex P0.

Theorem 2.4 (Carlsson [2]). P0 is homeomorphic to the Klein
bottle K .

Proof. The function space P0 consists of all univariate quadratic
polynomials of the form

q(t) = c0 + c1t + c2t2 (ci ∈ R)

subject to the integral constraints∫ 1

−1
q(t)dt = 0 (zero mean),

∫ 1

−1
q2(t)dt = 1 (unit energy).
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Let us construct K by quotient maps as follows. The original
space Q is homeomorphic to R3 ×S1. The mean centering can be
considered as a quotient θ1 as

θ1(q) = q1

where q(t) = c0 + c1t + c2t2 and q1(t) = c01 + c1t + c2t2 satisfying
the mean centering condition. The unit energy can be considered as
a quotient θ2 as

θ2(q) = q2

where q2 =
q

∥q∥2
.

Define an involution f : Q → Q by

f (q)(t) = q0(t) = c0 − c1t + c2t2

which reverses the sign of the linear term c1. This satisfies f 2 = id.
The quotient θ1 enforces

∫
S1 q(t)dt = 0, eliminating c0. The

reduced space is

θ1(Q)∼= R2 ×S1 (parameters (c1,c2) ∈ R2, t ∈ S1).

Under f , the coefficients transform as (c1,c2) 7→ (−c1,c2).
The quotient θ2 normalizes the energy:

θ2(q) =
(c1,c2)

∥(c1,c2)∥2
∈ S1 (unit circle).

The resulting space after θ2 is a fiber bundle over S1 with fiber S1.
The involution f acts on the normalized coefficients as

f : (c1,c2) 7→ (−c1,c2)=⇒(cosθ ,sinθ) 7→ (cos(π−θ),sin(π−θ)).

This corresponds to a reflection θ 7→ π −θ on S1. Simultaneously,
the base S1 (original t ∈ S1) is twisted by a half-period shift t 7→ t+π

due to the phase dependency in Q. The total space is constructed
by gluing the fibers S1 over the base S1 with a reflection map. This
gluing is equivalent to the Klein bottle:

K ∼= (S1 ×S1)/∼, (θ , t)∼ (π −θ , t +π).

Since the involution f introduces a non-orientable twist in both the
fiber and base, the quotient space is the Klein bottle.

2.3 Phonemes
2.3.1 Phonetic Building Blocks
Phonemes, systematically categorized into vowels and consonants
based on articulatory properties, serve as the atomic units of
speech. The systemic coordination between these units forms the
structural basis of the spoken language. This hierarchical organi-
zation drives research emphasis toward suprasegmental analysis
(words/sentences), where expanded contextual dependencies enable
more reliable pattern identification. Most speech systems employ a
three-tiered processing hierarchy:

• Phoneme Level: 40–60 basic units (English: 44 phonemes)
with 50–200 ms duration, subject to coarticulatory variation

• Syllable Level: Combinations constrained by phonotactic
rules, yielding approximately 102 to 105 licit structures pos-
sible through phoneme concatenation. The number of licit
syllables varies greatly across different languages, depending
on their syllable structure rules.

• Prosodic Level: Supra-segmental features, such as pitch con-
tours and stress patterns, encode pragmatic and syntactic infor-
mation, these features play a crucial role in conveying semantic
information

The precise alignment between transient acoustic features and
discrete phonetic symbols remains challenging, particularly for co-
articulated phonemes where adjacent sounds blend spectrally.

2.3.2 Phonetic Classification via IPA Standards

The International Phonetic Alphabet (IPA) is a system of phonetic
notation designed to represent the sounds of spoken language. Each
symbol in the IPA corresponds to a specific phoneme. This includes
consonants, vowels, and suprasegmental features like stress and
intonation. Our analysis focuses exclusively on pulmonic conso-
nants and vowels, as non-pulmonic consonants exhibit negligible
prevalence in English.

Consonants are classified through three articulatory dimensions.
The place of articulation refers to where the airflow is obstructed,
such as bilabials [p][b], labiodentals [f][v], and alveolars [t][d]. The
manner of articulation describes how the airflow passes through the
oral cavity, including plosives [p][t][k], fricatives [s][z] [f], affricates
[ts][tS], nasals [m][n][N], and approximants [j] [w]. Voicing indi-
cates whether the vocal cords vibrate; for example, [p] is voiceless,
while [b] is voiced. This three-dimensional classification system
comprehensively describes the phonetic characteristics of conso-
nants.

Vowels are systematically mapped in the IPA based on tongue
height, backness, and lip rounding (Fig. 1). Tongue height is
divided into high, mid, and low, with [i] as a high vowel, [e] as a mid-
high vowel, and [a] as a low vowel. The frontness or backness refers
to the position of the tongue in the mouth, with [i] as a front vowel,
[u] as a back vowel, and [@] as a mid vowel. Lip rounding indicates
whether the lips are rounded during articulation; for instance, [i]
is an unrounded vowel, while [u] is a rounded vowel. This three-
dimensional classification method allows for precise identification
of various vowels, such as [i] (front, high, unrounded) and [u] (back,
high, rounded) in English.

Figure 1: Positioning of vowels in oral cavity

To streamline English phonetic notation, ARPABET was devel-
oped as a practical alternative, encoding the 39 phonemes of General
American English into ASCII-based representations. Created by
the Advanced Research Projects Agency (ARPA) during the 1970s
as part of the Speech Understanding Research project, ARPABET
provides a systematic mapping of phonemes and allophones using
distinct ASCII character sequences. Two encoding schemes were
initially proposed: a single-character system (with alternating upper-
case and lowercase letters) and a more flexible one- or two-character
case-insensitive system. The latter gained broader adoption due to
its practicality. In this study, we exclusively employ the two-letter
coding scheme for phonetic representation. For a detailed compar-
ison between ARPABET and the IPA, please refer to the mapping
table in Tab. 1.

Both Fig. 1 and Tab. 1 are adapted from Wikipedia articles:
https://en.wikipedia.org/wiki/International Phonetic Alphabet and
https://en.wikipedia.org/wiki/ARPABET.
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2-Letter Codes IPA Examples 2-Letter Codes IPA Examples 2-Letter Codes IPA Examples

AA A∼6 balm, bot UW u boot N n night
AE æ bat UX 0 dude NX or NG N sing
AH 2 butt B b buy NX R̃ winner
AO O caught, story CH tS China P p pie
AW aU bout D d die Q P uh-oh
AX @ comma DH D thy R ô rye

AXR Ä letter, forward DX R butter S s sigh
AY aI bite EL l

"
bottle SH S shy

EH E bet EM m
"

rhythm T t tie
ER Ç bird, foreword EN n

"
button TH T thigh

EY eI bait F f fight V v vie
IH I bit G g guy W w wise
IX 1 roses, rabbit HH or H h high WH û why (without
IY i beat JH dZ jive wine–whine merger)

OW oU boat K k kite Y j yacht
OY OI boy L l lie Z z zoo
UH U book M m my ZH Z pleasure

Table 1: ARPABET–IPA phonetic notation system mapping table

2.3.3 STFT and Spectrograms

The conversion of raw speech waveforms into spectrograms begins
with the Short-Time Fourier Transform (STFT), which decomposes
the signal into its frequency components across time intervals [11].

Formally, the STFT of a signal x(t) is given by:

X( f , t) =
∫

∞

−∞

x(τ)w(τ − t)e−2πi f τ dτ

where w(t) denotes a window function (such as Hamming or Gaus-
sian windows) centered at each temporal point t, and f corresponds
to the frequency domain. This approach captures localized frequency
content while preserving temporal resolution.

To illustrate the transformation of speech signals from waveforms
to spectrograms, we apply STFT. This process captures temporal–
frequency domain features, providing a foundation for subsequent
audio analysis. Fig. 2 demonstrates an example of a speech wave-
form (top) and its corresponding spectrogram (bottom), offering a
clear visualization of how sound evolves across time and frequency
domains.

Figure 2: Waveform of the word “left” and its corresponding spec-
trogram on mini speech commands

3 THE SPACE OF SPECTROGRAM CONVOLUTION KERNELS

In this section, we consider the group action of the third-order special
orthogonal group SO(3) on the space of 3× 3 real matrices. By
leveraging the invariance properties of the group action, we first
reduce the dimension of the matrix space to 5. Subsequently, a new
representation of the matrix space is introduced through orbit spaces
and the special orthogonal group.

3.1 The Space of High-Contrast Spectrogram Convolu-
tion Kernels

Spectrograms, unlike ordinary images, lose their semantic interpre-
tation under rotation. We view convolution kernels for spectrograms
as local fragments of speech, where the variation is predominantly
along the temporal axis. Thus it is natural to restrict our attention to
kernels that reflect this asymmetry.

Definition 3.1 (Norm of Convolution Kernels). Let

AAA = [vvv1,vvv2,vvv3] ∈ M3×3(R)

be a 3×3 convolution kernel with column vectors vvv1,vvv2,vvv3 ∈ R3.
Define the norm of AAA by

∥AAA∥=
√

∥vvv1∥2 +∥vvv2∥2 +∥vvv3∥2.

Definition 3.2 (Contrast of Convolution Kernels). The contrast of a
convolution kernel AAA = [vvv1,vvv2,vvv3] ∈ M is defined by

con(AAA) =
√

∥vvv1 − vvv2∥2 +∥vvv2 − vvv3∥2.

Remark 3.3. The use of the contrast measure is motivated by the
observation that spectrograms are inherently directional. Since
rotation typically destroys the temporal structure of a spectrogram,
a high-contrast convolution kernel (with respect to the temporal
axis) is desirable for effectively capturing local speech features.

We now introduce a constrained space of convolution kernels that
are both normalized and optimized for high contrast.

Definition 3.4 (Normalized Convolution Kernels). We consider
the subspace of M3×3(R) consisting of convolution kernels AAA =
[vvv1,vvv2,vvv3] satisfying the unit norm condition

∥AAA∥= 1.



Definition 3.5 (Contrast-Maximizing Constraint). In order to max-
imize contrast, we further impose the constraint that the kernels
belong to the orthogonal complement of the zero-contrast subspace.
Concretely, we require

vvv1 + vvv2 + vvv3 = 000.

Definition 3.6 (The Kernel Space M). Let M denote the set of
all normalized 3× 3 convolution kernels satisfying the contrast-
maximizing constraint, i.e.,

M = {AAA ∈ M3×3(R) | ∥AAA∥= 1, vvv1 + vvv2 + vvv3 = 000}.

Theorem 3.7. The space M is homeomorphic to the 5-dimensional
sphere S5.

Sketch of Proof. The constraints ∥AAA∥= 1 and vvv1 + vvv2 + vvv3 = 000 de-
fine a smooth submanifold of M3×3(R). One may show via dimen-
sion counting and the implicit function theorem that this submanifold
has dimension 9−1−3 = 5, since M3×3(R)∼= R9 and the two con-
straints remove 4 degrees of freedom. An explicit construction or
application of known results then shows that this 5-dimensional
manifold is in fact diffeomorphic to (and hence homeomorphic to)
the standard sphere S5.

3.2 Group Actions and Quotient Spaces
Observe that the group of orthogonal transformations acts on M as
follows.

Definition 3.8 (Orthogonal Group Action). Let θ : SO(3)×M → M
be defined by

θ(QQQ,mmm) = QQQmmm, for QQQ ∈ SO(3) and mmm ∈ M.

Then θ is a smooth group action.

Theorem 3.9 (Contrast Projection for General Matrices). Given
any matrix AAA ∈ M3×3(R) whose 3 column vectors are not iden-
tical (otherwise the contrast is defined as 0, such as the matrix 1 1 1

0 0 0
−1 −1 −1

), the following procedure projects it onto the

constrained subspace M.

1. Orthogonal Transformation: Apply an orthogonal matrix
QQQ ∈ SO(3) to transform the sum of column vectors into a
uniform vector, i.e.,

QQQ(vvv1 + vvv2 + vvv3) = λ111, λ ∈ R, 111 = (1,1,1)⊤.

2. Centering: Subtract the mean value from each component and
obtain

ÃAA = QQQAAA− λ

3
111111⊤. (1)

The resulting matrix ÃAA satisfies ṽvv1 + ṽvv2 + ṽvv3 = 000, i.e., ÃAA ∈ M.

Remark 3.10. This projection satisfies

• invariance under orthogonal transformations, i.e., ∥QQQvvv∥ =
∥vvv∥, and

• translation invariance, i.e., vvvi 7→ vvvi + ccc cancels in (1).

The contrast con(ÃAA) =
√

∥ṽvv1 − ṽvv2∥2 +∥ṽvv2 − ṽvv3∥2 on M inherits
these properties. In particular, for any mmm ∈ M and any QQQ ∈ SO(3),
the group action defined above is compatible with the previously
defined contrast, that is,

con(QQQmmm) = con(mmm).

Definition 3.11 (Quotient Space under Orthogonal Group Action).
Define the homogeneous space (or orbit space)

B = M/SO(3)

i.e., two kernels in M are identified if one can be obtained from the
other by an orthogonal transformation.

Given coordinates derived from the columns of a kernel, let

x = ∥vvv1∥2, y = ∥vvv3∥2, z = vvv1 · vvv3.

Then the constraints in M imply the following relations:

x+ y+ z =
1
2

and z2 ≤ xy. (2)

Proposition 3.12. The quotient space B = M/SO(3) is homeomor-
phic to the closed disk D2.

Sketch of Proof. Note that the relations (2) are equivalent to

x+ y+ z =
1
2

and 9
(

x+ y− 2
3

)2
+3(x− y)2 ≤ 1.

From this, one can show that the set of equivalence classes is contin-
uously parametrized by two independent parameters satisfying an
inequality that defines a closed 2-dimensional disk. A detailed study
of the invariants associated with the SO(3)-action yields the claim
that B is homeomorphic to D2.

In particular, the boundary of B, denoted by ∂B, corresponds to
when the equality z2 = xy holds in (2).

Remark 3.13. For the equivalence class (orbit) containing

1√
6

1 0 −1
1 0 −1
1 0 −1

 in B, its preimage set in M along the quotient

map is 
a 0 −a

b 0 −b
c 0 −c

∣∣∣∣∣∣ a2 +b2 + c2 =
1
2

 .

However, the dimension of preimage is 2, not 3 = 5−2, which shows
that M → B is not a fiber bundle.

Indeed, we obtain a stratified fiber bundle (see, e.g., [12]) over B
as follows.

• On the boundary of B, denoted ∂B, the fiber is SO(3)/SO(2)∼=
S2, each modulo rotations around a fixed axis.

• On the region where x = y, the fiber is SO(3)/Z2 ∼= L(4,1),
each modulo rotation by 180◦ about a fixed axis. Here L(4,1)
is a lens space.

• On the intersection of the two aforementioned cases, i.e. vvv1 +
vvv3 = 000, the fiber is given by SO(3)/(SO(2)⋊Z2), which is
isomorphic to RP2 (the real projective plane).

• On the remaining portion, we have a principal SO(3)-bundle.

Example 3.14. More explicitly, given (x,y) ∈ B, we can choose a
representative in its preimage in M to be [vvv1,−vvv1 − vvv3,vvv3] with

vvv1 =

√
x
3

1
1
1

 and vvv3 =

√
y
3

cosφ

1
1
1

+√ y
6

sinφ

 1
−2
1


where sinφ =

√
1− cos2 φ and cosφ =

1
2 −x−y√

xy for xy ̸= 0. This

choice extends continuously to (x,y) = (0, 1
2 ) and (x,y) = ( 1

2 ,0).



3.3 Summary of Theoretical Framework

To summarize, we have defined a notion of contrast for spectrogram
convolution kernels and introduced rigid constraints (unit norm and
zero-sum of column vectors) to define a space M of kernels that
are well-suited for processing spectrograms. We have established
that M is homeomorphic to S5 and that the natural SO(3)-action on
M induces a quotient space B that is homeomorphic to a disk D2.
These results lay a topological foundation for further analysis and
applications in spectrogram-based speech processing.

4 NEW SPECTROGRAM CONVOLUTION FILTERS

As shown in Lee et al. [8], there exist 8 basic vectors in the image
patch. Here, up to constant factors, they will be reduced to just
2, since 2 of them are of zero contrast and the remaining can be
reduced to 2 vectors through group actions.

Let us consider the orbits of these 2 vectors under group actions
as convolution kernels, namely,

AAA1 = QQQ

1 0 −1
1 0 −1
1 0 −1

/√6 and AAA2 = QQQ

1 −2 1
1 −2 1
1 −2 1

/√18

with QQQ ∈ SO(3).
Additionally, this section focuses exclusively on phoneme-level

recognition. Regarding the dataset, we cannot directly obtain
phoneme-level annotations but instead employ segmentation tools.
The Montreal Forced Aligner (MFA) [10] is utilized for this purpose.
All segmented phonemes undergo appropriate merging processes:
stress variations are not differentiated and are combined, open/close
vowel distinctions are eliminated, and highly similar vowel variants
are merged. Notably, post-segmentation analysis revealed that cer-
tain phonemes with extremely low frequencies tend to be overlooked
in prediction models, while overrepresented phonemes create pre-
diction biases. Therefore, all experiments in this section employ a
balanced subset of 500 samples per phoneme class for classification
tasks. Finally, the primary datasets used in this section are derived
from the SpeechBox corpus [1], TIMIT [17], and LJSpeech [6] with
specific implementation details provided in the experimental section.
We selected only half of the LJSpeech dataset for computability.

The general procedure for all experiments in this section goes
as in Fig. 3. First, segment the audio signals from the dataset into
phonemes through MFA. Subsequently, convert the audio signal
corresponding to each phoneme into a spectrogram via STFT (see
Sec. 2.3.3). These spectrograms are then fed into a CNN for training,
where the network architecture contains two convolutional layers
with 64 filters each, ultimately yielding the classification accuracy.

Start Input: Speech
Signals

Phonetic 
   Data

MFA

Spectrograms

STFT

Output: Results
CNNs

End

Figure 3: Workflow of topological CNNs for speech recognition,
where topological enhancement takes place in prescribing the CNN
kernels.

4.1 Theoretical Construction of Orthogonal Filters Layer

Given the 2 initial matrices AAA1,AAA2 ∈ M3×3(R), the layer is con-
structed through the following mathematical operations.

4.1.1 Matrix Augmentation

Extend the matrix set to ensure algebraic closure under inversion:

M = {AAA1,AAA2,−AAA1,−AAA2}.

4.1.2 SO(3)-Informed Kernel Generation

Let so(3) denote the Lie algebra with basis generators

LLLx =

0 0 0
0 0 −1
0 1 0

 , LLLy =

 0 0 1
0 0 0
−1 0 0

 , LLLz =

0 −1 0
1 0 0
0 0 0

 .

Stochastic kernel generation proceeds as follows.

1. Sample θx,θy,θz ∼ N (0,σ2) independently.

2. Construct Lie algebra element

θθθ = ∑
i=x,y,z

θiLLLi ∈ so(3).

3. Apply the exponential map and obtain

RRR = exp(θθθ) ∈ SO(3)

where

exp(θθθ) = III +
sin∥θθθ∥
∥θθθ∥

θθθ +
1− cos∥θθθ∥

∥θθθ∥2 θθθ
2

with ∥θθθ∥=
√

∑i=x,y,z θ 2
i .

4.1.3 Definition of Orthogonal Filters Layer

Definition 4.1 (Orthogonal Filters (OF) Layer). Given the kernel
space M, each convolution kernel of untrained Orthogonal Filters
layer is defined by

WWW k = α ·RRRkMMMk

where RRRk ∈ SO(3), MMMk ∈ M , and α ∈ R+ is an adjustable scaling
factor.

4.2 Empirical Evaluation of Orthogonal Filters Layer in
Phoneme Classification Tasks

In this section, we conduct experiments on phoneme classification
and compare the newly proposed OF layers with multiple other con-
volutional neural network architectures, such as CF (Circle Filters)
and KF (Klein Filters) from [9]. We will classify approximately 40
phoneme categories (with prosodic stress markers merged) across
distinct datasets and experimental conditions to evaluate model ro-
bustness and generalizability.

4.2.1 Experiments on OF Kernels

The comparative results shown in Fig. 4 reveal two key observations.
First, both KF and CF models demonstrate significantly superior
performance in phoneme-balanced segmentation compared to tradi-
tional CNNs when evaluated against word-level phoneme frequency
distributions. Second, and more critically, the proposed OF architec-
ture exhibits marginally better effectiveness than both KF and CF
configurations in these phoneme-aware classification tasks.
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Figure 4: Comparisons of loss and accuracy on SpeechBox

4.2.2 Experiments on Canonical OF Kernels
If we relax the condition of orthogonality to the zero-contrast space,
we can obtain a canonical set of convolution kernels

QQQ

1 0 −1
1 0 −1
1 0 −1

/√6 and QQQ

1 0 1
1 0 1
1 0 1

/√6, QQQ ∈ SO(3). (3)

In essence, this set of convolution kernels corresponds to vertical
stripe detectors with the middle column set to be zero, structured as
[vvv1,000,±vvv1], which is homeomorphic to the 2-sphere. For simplic-
ity, the neural network architectures constructed using this set of
convolution kernels will retain the name of OF convolutional layers.
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Figure 5: Comparisons of loss and accuracy on SpeechBox, TIMIT,
and LJSpeech (with canonical OF kernels)

First, let us analyze the performance of these convolution kernels
on the SpeechBox dataset (see Fig. 5). Here, we observe that the
accuracy has approached 70%, outperforming both the previous or-
thogonal counterparts and other comparative models. Experimental

results on the two additional datasets, TIMIT and LJSpeech, are also
reported, yielding consistent findings.

4.2.3 Experiments with Noise
Analysis of the figures reveals that the datasets exhibit descending
accuracy rankings: LJSpeech > SpeechBox > TIMIT, which is
likely attributed to the variation in acoustic clarity across the datasets.
This section investigates the impact of introducing additive white
Gaussian noise (AWGN) on model performance.

AWGN is systematically introduced under controlled signal-to-
noise ratio (SNR) conditions, where SNR is mathematically ex-
pressed as

SNR (dB) = 10log10
(
Psignal/Pnoise

)
with Psignal and Pnoise representing the power of the original speech
signal and the injected Gaussian noise, respectively. The implemen-
tation protocol comprises the following 3 phases.

1. Data Partitioning: Split the speech corpus into training and
validation subsets.

2. Noise Injection: Apply AWGN exclusively to the training set
across SNR levels ranging from 0 dB to 20 dB.

3. Feature Extraction: Convert the noise-augmented training
data into STFT spectrograms for downstream processing, while
the validation set remains unaltered to preserve evaluation
integrity.

Experimental results on the SpeechBox dataset under varying
SNR conditions are shown in Fig. 6. The graphical comparison
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Figure 6: Comparisons of loss and accuracy on SpeechBox with
noise (Upper: with SNR = 20; Lower: with SNR = 0 )

between the aforementioned diagrams demonstrates congruence be-
tween the SNR = 20 measurements and their noise-free counterparts.
When SNR = 0, OF demonstrates moderate performance, CF ex-
hibits inferior results, and KF achieves the optimal performance.



This phenomenon might arise from the severe degradation of ver-
tical stripe structures caused by additive noise, leading to reduced
accuracy. Consequently, in anti-noise experiments, KF manifests
enhanced stability, while OF maintains superior accuracy under
low-noise scenarios.

As for the convolution kernel corresponding to this orthogonal
group action, there exist multiple generation approaches, which we
omit further elaboration here. In practice, our experiments with sev-
eral such methods revealed accuracy rates nearly identical to those of
the OF+NOL configuration across all aforementioned experimental
groups.

5 FURTHER APPLICATIONS AND EXTENSIONS OF THEORET-
ICAL FRAMEWORK

This section focuses on addressing gaps and extending prior exper-
imental findings. We begin by supplementing earlier experiments
with an analysis of scenarios where no phoneme filtering is applied,
providing insights into performance under realistic conditions. Sub-
sequently, we examine how different convolutional neural network
architectures perform in word and image classification tasks, show-
casing OF’s versatility and efficiency across domains.

5.1 Phoneme Classification
While previous noise robustness evaluations were conducted under
phoneme-averaged conditions, an idealized scenario deviating from
empirical requirements, this section implements dataset-averaged
noise testing (without phoneme-level data selection) to assess per-
formance under more realistic conditions.
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Figure 7: Comparisons of loss and accuracy on SpeechBox without
selection
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Figure 8: Comparisons of loss and accuracy on SpeechBox (SNR
= 0) without selection

Here, the 4 figures illustrate the training performance of various
neural network architectures across 4 datasets, SpeechBox (Fig. 7),
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Figure 9: Comparisons of loss and accuracy on TIMIT without
selection
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Figure 10: Comparisons of loss and accuracy on LJSpeech without
selection

SpeechBox with SNR = 0 (Fig. 8), TIMIT (Fig. 9), and LJSpeech
(Fig. 10), under conditions where no phoneme-count filtering is
applied.

The experimental results align with expectations in that our pro-
posed convolution kernel remains optimal, particularly under noise-
free conditions. However, it is noteworthy that neural networks
incorporating circle features and Klein features unexpectedly out-
performed traditional architectures, despite prior assertions of their
incompatibility with audio tasks. It is desirable to have a better un-
derstanding of the mechanism behind topological inputs enhancing
neural networks.

5.2 Word Classification
Notably, the proposed convolutional layer demonstrates cross-
linguistic efficacy, achieving excellent recognition accuracy not only
for phoneme-level tasks but also in word-level classification. To
systematically validate this capability, this section utilizes the full
Speech Commands benchmark dataset [15], a dedicated word-level
corpus explicitly designed with approximately balanced frequency
distributions across all lexical entries, for comprehensive evaluation.
Fig. 11 demonstrates that our neural network model exhibits ro-
bust adaptability to word-level tasks, further validating its versatility
across lexical processing challenges.

5.3 Image Classification
Applying these findings retroactively to image processing tasks
demonstrates performance metrics comparable to those achieved
with Klein bottle configurations, validating the cross-domain adapt-
ability of our OF method. We selected the CIFAR10 dataset [7] for
its higher complexity relative to MNIST, providing a more challeng-
ing benchmark to evaluate model robustness in handling intricate
feature representations (see Fig. 12). The results demonstrate that
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Figure 11: Comparisons of loss and accuracy on SpeechCommands
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Figure 12: Comparisons of loss and accuracy on CIFAR10

our model achieves superior performance over conventional neural
networks on image-based tasks, while maintaining parity with ar-
chitectures utilizing Klein features, underscoring its cross-modal
versatility.

6 CONCLUSIONS

This study establishes two principal contributions to convolution
kernel design. First, it rigorously bridges geometric feature repre-
sentation with frequency-domain characteristics by systematically
analyzing 3× 3 kernels through dual frameworks, i.e., manifold
theory and Fourier spectral decomposition. Second, it derives an
optimized set of foundational kernels from first principles, demon-
strating measurable improvements over conventional initialization
methods.

Practically, our work leverages topological methods (inspired by
Carlsson and his collaborators’ pioneering work) to extract weight
distribution features, enabling the construction of specialized kernels
for phoneme recognition. A novel contrast metric, based on temporal
audio variations, further guides targeted kernel selection. Experi-
ments reveal that the proposed kernels significantly enhance speech

recognition accuracy, particularly in low-noise environments, while
maintaining robustness against moderate noise. Notably, the kernels’
performance extends beyond their original domain: though designed
for audio tasks, they achieve competitive accuracy in traditional
image classification, underscoring the versatility of our topological
approach.

While the kernels exhibit modest gains under high noise, their
cross-domain efficacy—matching or surpassing methods such as
Love et al.’s in both speech and image tasks—highlights the broader
potential of mathematically grounded kernel optimization. Future
work could refine noise resilience, but the current results affirm
that unifying geometric and spectral principles yields kernels with
generalized representational power.

Finally, there are two questions which we do not address in this
article. First, a direct comparison between the OF-topological deep
learning with spectrograms as presented here and state-of-the-art
neural networks for speech recognition, such as Gated Recurrent
Unit, or how the former approach may enhance the latter. Indeed,
topological characteristics for audio and speech signals and their
integration with machine learning (in terms of both feature repre-
sentations and neural network architectures) have yet gained wide
recognition and utilization in the field of speech processing. They
are currently more of theoretical interest and practical potential to
the industry. Nevertheless, in consultation with experts in the field,
our research group has carried out experiments in this direction and
obtained informative results that confirm the potential of topological
deep learning (see [5, esp. Secs. 2.2, 2.1.2, and 2.1.3]). The other
question concerns intrinsic topological distributions of speech or
audio signals, analogous to the Klein bottle model for high-contrast
local natural image data. The spectrograms we work with here serve
as a mediator between the two types of data, image and speech,
though our proposed OF kernels apply and extend to visual and time
series data with certain rotational asymmetry as well.
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