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[Abstract]: This paper is a reading report that mainly follows “Algebraic
Topology” by Allen Hatcher and “Homology Theory” by Jiang Boju. It
introduces basic concepts in homological algebra, singular (co)homology
theory, ring structure in cohomology theory, vector bundle theory and the
process of how algebraic topology helps with classifying vector bundles. It
also includes three computational methods: cellular homology, varying
coefficients in (co)homology and the Universal coefficients theorem. Towards
the end, we present a set of examples that illustrates computations of
(co)homology for certain well-known spaces. Then we analyze the advantages
and blindness of varying coefficient groups as a method to detect whether a
map is null-homotopic. The author also hopes this report serves as a crash

course for those who are interested in learning this part of algebraic topology.

[Keywords|: Algebraic topology, Computational methods, Singular
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1. Introduction

Topology studies properties of topological spaces under continuous transformations. A
well-known example is that a donut is topologically equivalent to a mug. Algebraic
topology uses algebra to study topology and it helps with solving problems (such as if
n # m, then R™ 2 R™) that are difficult to answer with traditional topology arguments.

This is a reading report on algebraic topology which mainly follows “Homology
Theory™ by Jiang Boju and “Algebraic Topology” by Allen Hatcher. The purpose is to
understand basic concepts in homology and cohomology as well as algebraic topology
methods for classifying vector bundles. Also, we introduce basic computational methods
and their applications.

The paper is organized as follows. In Chapter 2, we introduce the categorical language.
We mainly follow “Homology Theory™ by Jiang to present singular homology and related
concepts in Chapter 3. Then in Chapter 4 with the help of “An Introduction to Algebraic
Topology™ by Joseph J. Rotman we give a quick overview of singular cohomology and its
ring structure. How algebraic topology helps with classifying real vector bundles is
presented in Chapter 5 and this section is based on “Vector Bundles and K-Theory” by
Hatcher. Finally, in Chapter 6 we follow “Algebraic Topology™ by Hatcher and “An
[ntroduction to Algebraic Topology” by Rotman to study some computational methods as
well as their applications, such as computing (co)homology groups of certain topological

spaces and detecting null-homotopic maps.

2. Category and Functor

2.1 Category and Functor

Category theory as an abstraction of a lot of mathematical concepts, offers a more
general and more concise method to describe many mathematical situations. It plays an

important role in modern mathematics.

Definition 2.1. A category contains three ingredients: a class C of objects; sets of

1



morphisms Hom(A4, B), each of which corresponds to an ordered pair of objects A,B inC;
composition Hom(A,B) X Hom(B,C) = Hom(A, (), denoted by (f,g) — gf forevery
object A,B,C inC such that the followings hold:
(1) Hom(A, B)s are disjoint for different ordered pairs of objects.
(2) Associative law holds for composition when defined. i.e. (fg)h = f(gh) for
appropriate morphisms f, g, h.
(3) For each object A in C, there exists an identity 1, € Hom(A, A) such that for all
objects B,C of C and f € Hom(A,B) and g € Hom(C,A) we have f1, =

fand 1,9=g.

Example 2.2. C = Top the class of all topological spaces.

Hom(A, B)= {all continuous functions from A to B} with the usual composition for

continuous functions.

Example 2.3. C = Top? the class of all ordered pairs of topological spaces (X, 4),
where A € X a subspace. Hom((}(, A), (Y,B)) ={(f,f)| f:X = Y continuous and

f(A) € B} with coordinatewise composition.

Definition 2.4. A congruence on a category C is an equivalence relation ~ defined
on the class of all morphisms in € such that the followings hold:

(1) f € Hom(A,B) and f'~f,then f' € Hom(A,RB).

(2) f~f', g~g' implies gf~g'f".

Definition 2.5. A quotient category C' of a category C is defined on € witha
congruence ~ such that the followings hold:
(1) Objects of € and C' are the same.
(2) Home'(A,B) = {[f]lf € Hom:(4,B)} ([f] denotes the equivalence class of
f under the equivalence relation ~).
(3) [gllf] = lgf] for f € Home'(A,B) and g € Homer(B,C) where C is an

2



object in C.

Example 2.6. The quotient category hTop of the category Top with the
congruence — homotopy (details in 3.3). The equivalence class of f is [f] ={g €

Hom(X,Y)|g=f}, called the homotopy class of f.

Definition 2.7. A covariant functor F: A — C is a function between two
categories A and C such that:

(1) A € A implies F(A) € C.

(2) Given f € Hom(A,A") amorphism in A, then F(f) € Hom(F(A),F(A")) a
morphism in € such that:
(a) For f € Hom(A,A"), g € Hom(A',A"") suchthat gf is defined, then

F(g9f) = F(g)F(f) € Hom(F(A),F(4)").

(b) For identity map 1, € Hom(A,A) in A,

Example 2.8. The forgetful functor F: Top — Sets maps topological spaces to their

underlying sets and continuous functions to itself without continuity.

Example 2.9. The identity functor 1: C — C maps any object 4 in C toA and f to

Definition 2.10. A contravariant functor F: A — C is a function between two
categories A and C such that:
(1) A € A implies F(A) € C.
(2) Given f € Hom(4,A") a morphism in A, F(f) € Hom(F(A"),F(4)) a
morphism in C such that:
(a) For f € Hom(4,A"), g € Hom(A',A") such that gf is defined, then F(gf)
= F(9)F(f) € Hom(F(A"), F(A)).

3



(b) For identity map 1, € Hom(A,A) in A,

Note that the contravariant functor changes the “direction” of morphisms.

Definition 2.11. An equivalence in a category C is a morphism T E

Hom(A, B) and there exists a morphism g € Hom(B,A) suchthat fg = 15 and

af =1,.

Theorem 2.12. A functor (of either variance) T: A — C for two categories maps
equivalence to equivalence.

Proof: Here we only prove the covariant case! By the definition of equivalence we
have a morphism f € Hom(A,B) in A and there exists a morphism

g € Hom(B,A) suchthat fg =15 and gf = 1,. We apply our functor T then by the
definition of functor we get T(fg) = 1yz) = T(f)T(g) and T(gf) = 11) =

T(g)T(f). Hence T(f) € Hom(T(A), T(B)) is an equivalence in C.

3. Singular Homology
3.1 The Category of Chain Complexes

Definition 3.1. A graded group is a collection of abelian groups, which is denoted by

G. = {Gylq € Z}.

Definition 3.2. A homomorphism ¢,:G, — G between two graded groups are a

collection of homomorphisms {¢@,: G, = G}

Definition 3.3. All graded groups together with graded group homomorphisms form a

category GradedG. The composition of graded groups homomorphism is defined as
4



.0, = {qugq}-

We sometimes abuse the language and does not specify the “dimension™ of one

graded group homomorphism. For example if we take an arbitrary element s, € S, of

S. ={Sq|q € Z}, then @.(sq) actually means @,(sq).

Definition 3.4. A chain complex C = {C,,d, } is a sequence of abelian groups C; and
homomorphisms (also called gth boundary map) 9,: C; = C4-; such that 8,8,,,= 0 for

each q € Z.

a
q+1 q
A CQ+1 Ly Cq — Cq—l - e

Note that the condition 9d,d,,,= 0 is equivalent to imd,,, S kerd,. And a chain

complex is indeed a graded group equipped with the boundary maps.

Definition 3.5. Given a chain complex C = {C,d,}. Z4(C) := kerd, is called the
group of g-cycles; B,(C) :=imd,., is called the group of g-boundaries. The quotient
group Hg(C) :=Z24(C)/By(C) is called the gth homology group of C. The elements of
Hq(C) is called homology classes. The homology class of a g-cycle z, is [z,] i=z, +

B, (C). We usually put homology groups of all dimensions together as a graded group

H.(C) = {H,(O)}.

Note that the definition of quotient group H,(C) makes sense since C, is abelian
hence its subgroups are normal and by requirement of our gth boundary map we have
imdgq € kerd,.

To make chain complexes a category we need to define the morphisms between two

objects.

Definition 3.6. Given two chain complexes C = {C,,9,} ,D = {D,,d,}, a chain map



f:C — D is asequence of homomorphisms {f;: C, — D,} such that 04fq = [q-104
foreach g € Z. i.c. the diagram commutes.

d a
g+1 q
ser b G = Gyt Cpg —bovee

Loy 4 B Bifs

q+1 q
. ‘D(H—l _)Dq _>Dq“1 — e

Note that actually we should denote D by D = {D,,d;} as it might have different
boundary maps than C = {C,, d,}. Here we “ignore” the difference for convenience but

one should not forget about it.

Lemma 3.7. A chain map f:C — D induces a homomorphism between homology
groups f, = H.(C) = H.(D), f.([z,]) := [fo(2,)] for [z,] € Hy(C).

Proof: By definition of a chain map, we have d,f, = f;-10, for each g€ Z. Take
z, € Z4(C), we know 6q(zq) =0 since Z,(C) = kerd,. Hence
8yfy(2) = f4-18,(2z5) = 0 implies f,(z,) € Z,(D). Take b, € B,(C) = imdgy, we
know there exists some by.q € Cyyq such that aq“(bqﬂ) = b,. Hence fq(bq) =
fiBqs1(bqr1)=0qri fasa(bgsr) € imBuuy = Bo(D)). So fy (Z4(C)) € Zy(D) and
fa (B4(€)) & Bo(D). We may define f. = H.(C) - H.(D), £.([z,]) := [fu(2,)]
for [z,] € Hy(C).

Firstly, we check if it is well-defined. i.e. independent of the choice of representatives.
If by € By(C). £u([24 + bo]) = [fa(za + ba)] = [fa(za) + fa(ba)] = Ua(24)]
since f; (By(C)) < By(D). So it is well-defined.

Secondly, let’s verify that it is a homomorphism. For any [z}],[23] € H,(0),
(L8] + 22D = £([24 +221) = [ (24 + 22)] = U] + ()] = £([23)) +
f(zzD-



So we can define the induced homomorphism f.: H,(C) = H.(D).

Definition 3.8. All chain complexes together with chain maps form a category Comp.

The composition of chain maps is defined by {gq}{fq} = {gqfq }

Theorem 3.9. We have a covariant functor H.: Comp — GradedG (the category of
all graded groups) with H,(f) = f..

Proof. By Definition 3.5 and Lemma 3.7.

Definition 3.10. Given a chain complex C = {C,, d, }, we can define its subcomplex

C" = {Cq, 04} witheach Cg asubgroup of C; and each 95 = gl

Definition 3.11. Given a chain complex C = {C;,d, } and its subcomplex C* =

{Cq,05}. We can define their quotient complex C/C' :={C,/C,, a} where 5;:

cq+ Cq = 8y(cq) +Coy € Cuus/Chy.

Note that the map 8, is well-defined since 9,(C;) € Cj—; by the definition of

subcomplex. Actually when dealing with chain complexes we can imagine that we are

dealing with abelian groups.

Definition 3.12. Given a family of chain complexes {C;|i € I} where C; = {C,,0;,}
we can define their direct sum @Die; C; := {Bie1 Cig) Dier 0ig} (Bier Cig is direct sum of
abelian groups and ¢ 9;4 is direct sum of group homomorphisms), which is also a

chain complex.

Theorem 3.13. Given a family of chain complexes {C;|i € I} where C; = {Ci4, 0y}
7



The homology groups of their direct sum ;¢; C; has the property H,(Bie C;) =
Bier H.(C)-

Proof: For each dimension ¢. Take an element ¢;; €Dj¢; Ciq. By the definition of
direct sum we can write ¢ as (C"‘?)ier with finitely many of ¢;,’s nonzero and we denote

such nonzero terms by (¢;4). Hence we have
(Dier 9iq) (€1a) =Bier BiqCia)
So we can see that (EBiE[ Biq)(cm) = 0 ifand only if @Bjg (E}iqciq) = (.
We now define @: H,(@ie C;) »Dier H,(C) by dJ([(ciq.)]) = [[qq]).

And ¥: @ier He(C) = Hy(®ier €) by ¥([cig]) = ([(cig)])-

Now we want to check if these functions are well-defined:

I [(ciq)] = [(eiq)]: then itmeans [(ciq)] = [(cig)] = [(cia) = (ig)] = [(ciq -
ciy)] = 0, which means there exists (bi(q+1)) EDier Cicgs1) Such that
(Biet Bicq+1)) (Picg+1)) = (€iq — €iy)- The equation holds if and only if c;q = cj, +
Bitq+1)Ciq+1) foreach i € I, which implies ([ciq]) = ([¢f,]) if and only if

®([(cig)]) = ([eig]) = ([ely]) = @([(ciy)]). Hence @ is well-defined.

Similarly we can prove ¥ is also well-defined. And because both of them are clearly
homomorphisms between abelian groups and either of them is indeed an inverse function

of another. Hence we have H.(Bj¢ C;) =®ie H.(C).

Definition 3.14. Two chain maps f,g: C — D are called chain homotopic if there is a
sequence of homomorphisms T = {T,: C; = D441} such that forall g € Z we have
0g+1Ty +Tq-10, = gq — fy- We call such T = {T;} a chain homotopy, denoted by
f=g:C - D.

Theorem 3.15. Given two homotopic chain maps f=g: € — D, they induce the same

8



homomorphisms H.(f) = H.(g) = f. = g.: H.(C) > H.(D).
Proof: Since g.([z,]) — £.([2a]) = [94(24)] = [fa(2)]
= [94(24) — fo(24)]
= [(9q — f)(24)]

(By Definition 3.14) = [3,41T,(2z,) + Ty-194(2,)]

(84(2q) = 0) = [9g+1T¢(2,)] € B, (D) = 0

Hence g, = f

Proposition 3.16. The relation of homotopy is an equivalence relation on the set of all
chain maps from C to D.

Proof: Suppose T: f=g:C - D and F: g=h:C = D.

(1) Reflexive: T: f=f bysetting T = 0.

(2) Symmetric: T: f=g suchthat dq41Ty + T4-194 = gq — fy-

So —T: f=g such that 8qs1(—T,) + (~T4-1)3, = f; — 94
(3) Transitive: T: f=g:C = D and F: g=h:C = D.
hg=fa=hq—=9q+ 94— fo
= Bg41Fy + Fps10q + 0g41Ty + Ty 10,

= 0g41(Fy + Tg) + (Fg1 + Tq-1) 9,

Definition 3.17. A chain map f:C — D is called a chain equivalence if there exists
achainmap g:D — C suchthat gf=1,:C = C and fg=1,:D — D. And two chain
complexes are called chain equivalent if there exists a chain equivalence between them,

denoted by C=D.

Proposition 3.18. The relation of chain equivalent is an equivalence relation on the
9



class of all chain complexes.
Proof: We first prove the claim:
if T:f=f":"C—-D,F:g=g":D—=E, gf—g'f":€C = E.

Since T: f=f":C —» D, we have f; — fy = 844174 + Tq—194. Compose with g on
the left side we get g,(fy — fy) = 9q(0g+1Tq + Ty-104). Since g is a chain map, we
have 9,9, = g4-19,. Hence the equation above becomes

aq+lgq+1Tq + HqTq—laq

Hence gq4+1Tq:9f'=gf:C - E.

Similarly, since F:g=g":D — E, then gg — gq = 8441F, + F;_13,. Compose with
f" on the right side and by the fact that f’ isa chain map. We have

Fofy:of =g'f":C > E

By Proposition 3.16 we conclude gf=g'f".

Now we prove the three conditions for equivalence relation:

(1) Reflexive: C=C by the identity chain map 1.

(2) Symmetric: C=D implies D=C by definition.

(3) Transitive: If C=D,D=E, we have

f:€C->D,g:D - Csuchthat fg =1p,g9f = 1¢

p:D = E,q:E — D such that pq = 1g,qp = 1p
Hence by the claim we just proved we have gp=1p. Since f—=f we get qpf=f.
Because g=g we also get gqpf=gf=1¢.So pf is an equivalence with inverse

gq.

3.2 Singular Homology with Coefficient Z

In this section we firstly construct a functor S, from the category of topological
spaces Top to the category of chain complexes Comp. Then similar to Theorem 3.9 we
construct a functor from Comp to the category of graded groups GradedG. And take
their composition we will have the “homology functor” H.: Top — GradedG.

Definition 3.19. A standard g-simplex A= [xg,---,x,]| is a subset in RI*! of the
10



form A7 :={(xo,,x;) € R BT x; = 1,x; € [0,1]}.

Definition 3.20. A singular q-simplex in a topological space X is a continuous map

0q:A%— X, where A% is the standard g-simplex.

Since A'~ [ (homeomorphic to), a singular /-simplex in X can be regarded as a
path in X. Since A° is a one-point set, a singular 0-simplex in X can be regarded as a

pointin X.

Definition 3.21. Given a topological space X, define the singular q-chain group
§4(X) as the free abelian group with basis all singular g-simplexes in X. The elements of

Sq(X) are called singular q-chains in X. S;(X) =0 when g < 0.

By the definition of free abelian group, a singular g-chain ¢, has a unique expression

Cy & kld'éi) + et .-’znaé”),ki €Z, a’é”: Al X,

Definition 3.22. Given a singular g-simplex a,: A7 X, its boundary is defined as

0q04 = ?=0(-1)iaq£f € Sq-1(X), where the ith face map

g1 097 > A9, (xg,+++, Xg-1) = (o), % = 0,+,%5). And 8y = 0.

Lemma 3.23. Given a free abelian group F with basis B. If G is an abelian group
and ¢:B — ( isa function. Then the extending by linearity of ¢ is a unique
homomorphism @: F — G such that $(b) = ¢(b) forall b € B.

Proof: Take an arbitrary element x € F, we have x = Y kb (k, € Z, b € B and all
but finitely many of kjs nonzero). Define @(x) = ¢(X kpb) = X kp(b). Now we need
to verify if @ is well-defined and unique. But since the expression of each x is unique, we

have @ is well-defined. And because @ is defined on basis B, it is also unique.

11



So with the boundary of a singular g-simplex defined, we can extend it by linearity

since S,(X) isa free abelian group generated by singular g-simplexes.

Theorem 3.24. For each g € N, we have the qth boundary operator, which is a
unique homomorphism d4:S,(X) = §;_1(X) defined by 9,0, = Z?EO(—l)iaqaf for
every singular ¢g-simplex in X.

Proof: For each q € N, by definition we have the boundary d,0, € 5;_,(X) forany
singular g-simplex in X. Then by Lemma 3.23 we can extend our boundary map d, by
linearity (regard F as S;(X), B as the class of all singular g-simplexes. i.e. the basis of

F,and G as S,;_,(X)). Hence we get the unique homomorphism and denote it by 9, for

convenience.
Lemma 3.25. sjqﬂsg = £E+1£f_1:ﬂ“*1—> AWML i Bt
Proof: This can be directly shown by computation.

Theorem 3.26. For all g € N, we have d,d,,, = 0.
Proof: We prove it by verifying such equation holds for an arbitrary singular

(g+1)-simplex o.

q+1 q q+1
— i q+l } _ i+j g+l _q
0400410 = g | D (~Digef™ | = 3 (~1)i*Ioel e
i=0 j=0 i=0
. L
- Z(—l)”*'crsfﬂsf + Z(—l)’”aef* ]
T T<i
_ i+j .a+1_q i+ a+1.q
_Z(—nl el e; +Z(—1)1 Toed* el
j=i j<i

Note that we got the last equation by Lemma 3.25. Now let m = j,n=i—1 inthe
12



second sum. j < i implies j < i — 1. Hence the equation becomes:
Z( 1)1+}UEQ+1 a4 Z( 1)m+ﬁ+1 t}+1 f?
j=i msn
Which equals to 0 since (—1)"*/ and(—=1)™*"*1 cancelled each other.

So 840441 = 0 forall g € N.

So far we actually have constructed a chain complex from a topological space X.

Definition 3.27. Given a topological space X, we can define the singular chain
complex S.(X) :={5;(X),8,}. And 94044, =0 forall g €N as proved in Theorem
3.26.

q+1

o S () =5 8, (X)-»Sq 1(X) -

Now for an object X in the category Top we have an object S,(X) in the category
Comp. To get a functor between them we need to observe what happens to elements in
Hom(X,Y) in Top: Given a continuous f:X — Y € Hom(X,Y) and a singular
g-simplex ¢ in X Their composition fo:A9— Y is a singular g-simplex in Y. Moreover,
if we extend such f by linearity as in Lemma 3.23 (B the class of all singular g-simplex
in X; F denotes S3(X); G denotes S,(Y); ¢ = f:B = 5,(Y)) we geta
homomorphism fy:5,(X) = 5,(Y) (fy does depend on q!), which is defined as
fe(Bks0) = Xks(fo) , k € Z.

Now the last step is to show that f; isa chain map.

Lemma 3.28. The fy:5,(X) — S,(Y) is a chain map. i.e. the following equation

holds: 3qf# = f#@q
Proof: We prove it by considering the basis elements o: A%7— X € §,(X).

fe04(0) = fe(BLo(=Doel) = (Bl o(-1)'f(oel)) and



8,fu(0) = XL (=D (fo)e]

Hence the two maps coincide.

Theorem 3.29. S, is a functor from Top to Comp which assigns a topological space

X achain complex S.(X) :={5,(X),8,} and a continuous map f:X —» Y € Hom(X,Y) a
chain map fi: S,(X) = Su(Y) € Hom(S.(X),S.(Y)).

Proof: A routine.

Definition 3.30. Given a topological space X and the singular chain complex
S.(X) = {S5,(X),04}. Zq(X) := kerd, is called the group of singular q-cycles in X;
B, (X) :=imdy,, is called the group of singular q-boundaries in X; Their quotient
group Z,(X)/B,(X), denoted by H,(X) is called the qth singular homology group of X.
The elements of H,(X) are called singular homology classes. The singular homology

class of a singular g-cycle z, is [2,] := 2, + B,(X) € H,(X). We put singular homology

groups of all dimensions together as H,(X) := H.(S,(X)) = {H,(X)}.

Note that H,(@) =0 for q € N since the free abelian group generated by the empty
basis is nothing but the trivial group.

Now we want to construct a functor from Comp to GradedG by imitating Theorem

3.9.

Lemma 3.31. Given a chain map f;:S.(X) — S.(Y) induced by f:X — Y. We have

an induced homomorphism f,: H,(X) — H.(Y) between graded groups and ﬂ([zq])

:= [fu(zq)] € Hy(Y) for [z,] € Hy(X).

Proof: Similar to Lemma 3.7.



Theorem 3.32. We have a covariant functor H,: Comp — GradedG with

H.(S.00) = H.(X) and H.(fy) = (fi)..

Proof: A routine.

So we take the composition of our two functors S.: Top — Comp and H.: Comp —
GradedG then get a new functor from Top to GradedG. For convenience we still
denote itby H..And H,(X) = H,(S,(X)) for atopological space X; H.(f) = (f&). = f.

for a continuous function f.

Corollary 3.33. Given two homeomorphic topological spaces X and Y, we have two
isomorphic singular homology groups H,(X) and H.(Y).
Proof. Theorem 2.12 as there is an equivalence between two homeomorphic spaces.

Theorem 3.34 (Singular Homology of a one-point space/Dimension Axiom). Given
a one-point space {pt}, its singular homology group foreach g € N is
Ho ={z 02
Proof: The key observation is that since {pt} contains only one point. So for each

q € N, there is only one singular g-simplex g,: A9 X. So §,({pt}) = Z as a free abelian

group generated by one element. Then we can calculate 9,0, by definition.
% ] 0 q>00dd 0
2 ; ‘ _ q 0 orq =
0404 = z(_l)I%‘g& = (Z(—l)‘) Oq-1 = { B q >0 even
i=0 i=0

f=

Note that the second equation holds because there is only one singular simplex for
each dimension! And Uq.Eé is a (g-1)-simplex.

Hence 9, =0 forallodd q €N and ¢ = 0. 3, is an isomorphism for even g € N.

L5



The singular chain is illustrated below:

o S P) =TS S,([(pt) =5 S,({pt]) =TS Se({pth) =20

Now we compute the homology group of each dimension.

Z g>00ddorg=20
Zq({pt}) = kerd, = { Oq q

q > 0 even
N (Z  g>0o0dd
Blipth) = imBysi =10 4 s 0 spemorg = 0

So we have H,({pt}) = Z,({pt})/B,({pt}) = {% g iN{]

Definition 3.35. Given a singular 0-chain ¢, € S;(X) in a topological space X, we
have ¢y = kyay + -+ kra, where a; € X, k; € Z since each 0-simplex is a pointin X.

The Kronecker index of c is defined as e(cy) :=ky + -+ + k.

So the Kronecker index actually defines a function & between two abelian groups

So(X) and Z. 1t is natural to ask if € is a group homomorphism.

Lemma 3.36. ¢:5,(X) - Z is a homomorphism.
Proof: Take two elements C((,l) = kia, + -+ kray, C{EZ) =pa; + -+ paa, in
So(X). Since &(c§? +¢P) = e(kyay + -+ kry + p1as + -+ Pgag)
=k +-+k.+p+-+pg
= (ky + -+ k) + (pr+ -+ pg)
= E(cél)) i s(céz))

Hence & is indeed a homomorphism.

How do we compute the homology groups of a certain topological space X? Actually
it is kind of hard for us to compute H,(X) even for a path-connected space as one can

imagine. But we can always do it in the ¢ = 0 case!
16



Theorem 3.37. Given a non-empty, path-connected topological space X, Hy(X) = Z.

Proof: Since dy; =0 we have kerd, = Zy(X) = S5(X). Now by Lemma 3.36 we
have a homomorphism &: S5(X) = Zy(X) = Z in hand. To prove Hy(X) = Zy(X)/
By(X) = 7Z, we just need to prove kere = By(X) and we will get what we want by First
[somorphism Theorem of Groups.

Firstly we prove By(X) < kere: Since By(X) = imd;, we take an arbitrary
singular /-simplex oy:A'— X then 3,07 = x; — x5 € By(X) if we denote oy by [x,,x].
So &(0,01) = 0 implies By(X) c kere.

Secondly we prove kere < By(X): Take an arbitrary singular 0-chain ¢, = kya, +
-+ kya, € S5(X) in X, where ay,...,a, are points in X. Select a point b € X as our
base point. By the fact that .X is path-connected there is a path from b to a for any point
a € X. Hence there is a path (singular /-simplex) g,: A= X such that 8,0, = a — b. So
for our ¢g, we have ¢y — &(cg)b = Xi_gki(a; — b) € By(X) as the boundary of

Ni—o kioq, € S1(X). Finally restrict our choice of ¢, in kere c S§o(X) we get kere

By (X).

There is a more general case.

Theorem 3.38. Given a set of path components {X; c X|i € I} of a topological space
X. We have the direct sum decomposition of the homology groups of X:
H.(X) =@ H.(X;)
Proof: Since the image of a singular simplex lies in a unique path-component of X,
then with the help of Theorem 3.13 we can prove it. Refer to Theorem 4.13, page 69, An

Introduction to Algebraic Topology[ﬂ].

ZOZq=0

By last Theorem we have H,(S5°) = H,({a, b}) = [ 0 g>0°

17



Corollary 3.39. A topological space X is path-connected if and only if Hy(X) = Z.
Proof: (=) Theorem 3.37.
(<) Theorem 3.38.

3.3 Homotopy Invariance

In last section we constructed the homology functor H,: Top — GradedG so two
homeomorphic topological spaces have isomorphic homology groups. But actually, two
topological spaces with the same homotopy type, which is a weaker condition than being
homeomorphic, have isomorphic homology groups too.

We start with an introduction to category hTop, which is a quotient category of Top.

Lemma 3.40. Homotopy is an equivalence relation on the set of all continuous
functions from X to Y.ie. Hom(X,Y) incategory Top.

Proof: (1) Reflexive: Given f € Hom(X,Y), we define F: X XI =Y by F(x,t) =
f(x) forall x € X,t € I. Hence f=f.

(2) Symmetric: Given f=g € Hom(X,Y). By the definition of homotopy we have a
continuous F: X X I - Y such that F(x,0) = f(x),F(x,1) = g(x) forall x € X. Hence
if we define G: X XI - X as G(x,t) = F(x,1=1t), then g=f.

(3) Transitive: Given F: f=g and G:g—h. Wedefine H: X X[ =Y as
F(x,2t) te [0,%]

Hiz t) = 1
G2t-1) te[5,1]

So we have f=h since H is continuous by gluing lemma.

We denote the family of all homotopy classes from X to ¥ by [X,Y].

Lemma 3.41. Given three topological spaces X,Y,Z and f,f’ € Hom(X,Y) and
g,9' € Hom(Y,2).If f=f',g=g', then gf=g'f' € Hom(X,Z), which means
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[9][f] = [gf].
Proof: We first show that gf—=g'f then show g'f=g’'f': By the definition we have

two continuous maps F: f=f',G: g=g". Define H: X X[ = Z by H(x,t) = G(f(x),t),
which implies gf=g'f. Then define P:X X[ = Z by P(x,t) = g'F(x,t), which shows

g'f=g'f'. By Lemma 3.40 the - is an equivalence relation hence gf=g'f=g'f".

Theorem 3.42. Homotopy is a congruence on Top.

Proof: By Lemma 3.40. and Lemma 3.41.

Definition 3.43. With the congruence homotopy on Top we consider its quotient
category hTop whose objects are topological spaces and Hom(X,Y) = [X,Y] with
composition [g][f] = [gf].

So we can rephrase the definition of a homotopy equivalence as: f: X - Y isa
homotopy equivalence if and only if [f] € [X,Y] is an equivalence in hTop.

Theorem 3.44. Given two homotopic maps f=g:X - Y, we have H,(f) = f, =
g. = H.(g): H.(X) - H.(Y).

Proof: Refer to Corollary 2.11, page 111-113 in Algebraic Topology".

Now we can see that the homology functor induces a functor H,:hTop — Ab (the

category of all abelian groups) since each H,(X) is abelian.

Corollary 3.45. Given two topological spaces X,Y suchthat X=Y, we have
H,(X) = H.(Y).
Proof: By Theorem 2.12.



]
One may wonder how we visualize two topological spaces with the same homotopy
type. In page 3 of Algebraic Topology there is a statement ** two spaces X and Y have are
homotopy equivalent if and only if there exists a third space Z containing both X and V
as deformation retracts”® . The proof is in Algebraic Topology”', Corollary 0.21, page
16-17.
Recall that a topological space X is called contractible if it has the same homotopy

type as a one-point space {pt}.

Corollary 3.46. Given a contractible topological space X, we have

Z g=0

H'(X)z[o g>0

Proof: By Theorem 3.34.

3.4 Basic Homological Algebra

Definition 3.47. Given a sequence consists of abelian groups and group

homomorphisms C — D it E, itis called exact at D if imf = kerg. An infinite

sequence of abelian groups and group homomorphisms

-2 JFn=1 Ia Tn+
'"_*An—i — Ay _}An+1 e

is an exact sequence if it is exact at each A,.

Definition 3.48. Given a sequence of the form 0 — A L e 0, it is called a

short exact sequence if it is an exact sequence, where f is a monomorphism and g isan

epimorphism by exactness at A and C.

Note that given a chain complex € = {Cy, d,}. It is an exact sequence if and only if
imd, 4y = kerd,, which is equivalent to H,(C) = kerd,/imd;,, = 0. So we have its

homology groups H,(C) = 0 and such chain complexes are called acyclic complexes.
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Definition 3.49. A sequence of chain complexes and chain maps € - D = E is

I/ 9 . . ;
called exactat D if C, < Dq = E, isexactat D, forevery dimension.
Similarly, we define an exact sequence of chain complexes and chain maps. One

should remember that the 0™ on the two ends are 0 complexes.

Lemma 3.50. Given an exact sequence of chain complexes and chain maps

0-cLp%ESo

Then for each dimension g there is a homomorphism called connecting homomorphism
8q: Ha(E) = Hq—1(C), [eq] P [f52400 97 (eq)] for e, € Zy(E).

Proof: Let € ={C,,85},D ={D,, 02}, E = {E,, 8f}. Take an element e, € Zo(B),
we first have af(eq) = 0. Since we have the short exact sequence for each dimension g:

0-C £?> D, 4 Eq — 0. Each g, isan epimorphism, hence there exists a d, € D, such
that g,(d,) =e, so g;*(e,) makes sense.

By the fact that f, g are chain maps hence commute with boundary maps we get
9q-108 (dg) = 85 g4(dy) = 0, which implies that 8% (d,) € kerg,_, = imf,_, by the
exactness of the row of dimension g — 1. This also means that £, d, (dq) makes sense.

Then there exists a unique ¢,y € C;—; such that fq_l(cq_l) = 6{?(dq) since f_q

is a monomorphism. Now with the diagram chasing above we look back and see what will
happen if we get a different d; € D,. Suppose we have another dj; € D, such that we get

aunique ¢5_; € C;—; by the same process. But one can see that the two elements satisfy
gq(d, —d}}) = 0, which implies (dq - d,’{) € kerg, = imf;. Similarly, this offers us a
unique ¢, € C, such that fq(cq) = (dq — dé). Hence by commutativity we have

fa-105(cq) = 07 fq(cq) = 9 (dg — df) = fo-1(cq-1 — 1)
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By the injectivity of f,_; we conclude ¢,—y — c¢;_y = 35 (c,), which shows that
Cyeq — gy € IMBE = By_y (C). €. [cgs] = [c)=s] € Hy—1(C). Sothere isa
homomorphism from Z,(E) to C,—1/B,-1(C) thatmaps e, to [f,402 95 (eq)]-

Clearly this homomorphism maps boundaries in E, to boundaries in C,;_; and cycles to

cycles by the property of chain maps. Hence it also provides us a

homomorphism 8;: H, (E) = Hy—1(C), [eq] = [f;2402 97 (eq)] for e, € Z,(E).

Theorem 3.51. Given a short exact sequence of chain complexes and chain maps
Fo. g
0— C - D—E — 0. We have a long exact sequence

dg+1

vt Hy i CE) 28 1) % 8,07 S B, 8 2 M, 4 C) =~
Proof: We first prove the exactness at H,(D): (imf, < kerg,) Since for each
dimension we have g,f, =0 and g.f, = (gf). by definition. Hence g.f. = 0 implies
what we need (kerg. c imf.). Take an element d, + B,(D) € Hy(D) such that

9. (dq + By(D)) = [94(dg)] = [0]. 50 gq(dy) € By(E) = imdf,.;, which means that
there exists a €441 € Eg4q such that a§+1(eq+1) = gq(dq). Because gg441 isan

epimorphism, there actually exists a dg4, such that gqﬂ(dqﬂ) = eg+1- So by

commutativity
3§+1(eq+1) = 6§+lgq+1(dq+l) = Qqagﬂ(dqﬂ) = Qa(dq)

This means that g, (dq - 85’+1(dq+1)) = 0, which by exactness also implies that
dy — aé’ﬂ(dqﬂj € kerg, = imf,. Hence we can find a unique ¢, € C; such that
fu(eq) = dq — 82:1(dg41). Now we apply 7 and commutativity will provides us
02 fy(cq) = fa-10§(cq) = 08 (dg — 0241(dgs1)) = 0 because dg € Zy(D) and

9202, =0.50 £.([eq]) = [fy(cq)] = [dg = s1(dgs)] = [0] as proved
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Now we prove the exactness at H,(E): (img* c keraa) We take an element

[eq] € img, hence get some element [dq] € H,(D) such that g*([dq]) = [eq]. Notice

that if the choice of d, isin B,(D) we immediately prove what we need. So we may
assume that d, € Z4(D). Since 059.([d,]) = 95(94(dq)] = [£72407 951 94(dg)] =
[fi2108(dg)] = [f;1(0)] = [0] implies that [e,] € kerd,. (kerd; c img.) Selecta
eq € Zg(E) such that 6‘;([%]) = [fq__lagggl(eq)] = [0]. So there exists a ¢, € C,
such that 9§ (c,) = f,24105 95" (eq). We apply f,—1 then f,_,05(c,) = 82 fo(cq) =

abg;t(e,) so 32 (g;l(eq) -fq(cq)) = 0, which means gg*(e,) — f;(¢cq) € Z4(D).

So

9*([951(%) = fq(fq)]) = [gq (le(eq) - fq(fq))] = [eq]
As proved.

Finally we prove the exactness at H,(C): (imaéﬂ c kerf*) Similarly select a

[cq] € imdg,4, we can find an [eq] € Hg41(E) such that 65+1([eq]) = [cq]. If the

eq € Bg+1(E) we naturally prove it. So take such e, € Z,(E). We directly compute
f.0541([eq]) = £fi408 97 (eq)] = [85 95 (eq)] = [0, which proves the claim.
(kerf, c imd;,,) Take [cq] € Hy(C€) suchthat f.([c,]) = [0]. So there exists some

dgs1 € Dgyq suchthat 82, (dye1) = f,(c,)- Then we make use of the commutativity

8402.1(d 1) = 05,1850 (dyis) = 848,(¢q) = 0, which implies g,:1(dg41) €
Z,+1(E). But

a$+1[gq+1(dq+1)] = [fq_lagﬂg&—:l (9q+1(dq+1))] = [Cq]

As proved.

Theorem 3.52. Given a commutative diagram of two short exact sequences of chain
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complexes and chain maps

O—)C-LD-E)E%O
al plly

! r

oSS s
We have a commutative diagram of two exact homology sequences
o Ho(©) 5 1y (0) 5 Ho(B) B oy 0) -
a,l .1 i al

. |

1] f‘lf r Qi r a 7
3 Hy(€") = Ho((D") = Ho(E") =5 Hyy (C) —
Proof: The commutativity of first two squares are due to the homology functor. We

just need to show the commutativity of the last square.
a.95([eq]) = @.8;([94(d)]) = a. [ 7100 97 (94 (de) )] = @.[£7292(cg)]
= [afi102 (do)] = [fg-"" P08 (dq)] = [f5-17"02"B(dy)]
= [fa-17"0¢" 95" 948 (dg)] = 05" ([98(dq)]) = 05 ([v94(dy)])

= 05'v.[94(dg)] = 95'v.[eq]

The first equation holds since g, is an epimorphism. The fifth equation holds

because ff,-1 = f,a.

When working with such diagram we can imagine the 3-dimensional space of chains
where the z-axis of each object is the corresponding chain complex and each xy-plane is
the diagram of the same dimension.

The question is how are we supposed to get such short exact sequences of chain
complexes and chain maps then make use of the theorem? It is answered in the section

about relative homology.

Definition 3.53. Given an exact sequence of abelian groups and homomorphisms
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' 4 D% E. Itis called a split exact sequence if D = f(C) @ G forasubgroup G of D.

Lemma 3.54 (The Five Lemma). Given a commutative diagram of two exact
sequences of abelian groups and homomorphisms
Ay = Ay =5 A3 5 Ay > Ag
ard asdlazd agd agl
B,—-B,—>B;—->B,—>Bb5
If ay,a,, a4, a5 are all isomorphisms, then so is az.

Proof: By the method of diagram chasing.

We call two short exact sequence isomorphic if there is a commutative diagram
0-A-B->C-0
flglhl
054" ->B" >C"-0

such that f, g, h are isomorphisms.

Proposition 3.55. Given a short exact sequence of abelian groups and

homomorphisms 0 = C 4 D3E-o0.1tisa split exact sequence if and only if it satisfies
one of the following equivalent conditions:

(1). There is a homomorphism h: E = D such that gh = 1.

(2). There is a homomorphism k:D — C such that kf = 1.

(3). The given sequence is isomorphic (with identity maps on C, E) to the direct sum

short exact sequence 0 — C 5 CHE LA E — 0; in particular D = C @ E.

Proof: Refer to Theorem 1.18, page 177, Algebral”),

Corollary 3.56. Given a short exact sequence of abelian groups and homomorphisms
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Ji g . : . . . .
0—C—-D—E — 0.ltis asplit exact sequence if the abelian group E is free abelian.

Proof: Refer to Corollary 9.2, page 234, An Introduction to Algebraic Tapology[g].

3.5 Relative Homology

The relative homology is defined similarly to singular homology. With a topological
space X we have its singular chain complex S.(X). Suppose we have its subspace A C X.
Because singular g-chain group S,(A) of A is generated by all singular g-simplexes in A,
i.e. continuous maps from A9 to A c X. So such simplexes are also generators of S;(X)

and §,(A4) © §4(X) a subgroup. Then with the singular chain complex S.(X) =

{Sq(X),aq} we define its subcomplex S.(A4) = [SQ(A],aé}, which satisfies the definition

of a subcomplex. i.e. S;(A) a subgroup of S,(X) and 9, = dqls,(4)- Naturally we can
define their quotient complex = {SQ(X)/SQ(A)EQ], where Eq (sq +.8, (A)) =

(4(sq) + Sg-1(4)) € Sqms () /Sq-1(A).

We firstly will construct a functor S,: T(Jp2 — GradedG.

Definition 3.57. Given a pair of topological spaces (X, A). Its singular gq-chain
group is defined to be the quotient group S,(X)/S,(A). With all the discussion at the

beginning we actually already have a corresponding quotient chain complex called relative
chain complex S,(X,A) := S.(X)/S.(4) = {S,(X, A),Eq} for a topological space X. The
definition of the group of relative singular q-cycles, g-boundaries are similar and we

define the relative homology groups by H,.(X,A) :=H, (.S', (X,A)).

Actually the singular homology group H,(X) can be a special case of relative
homology group H,(X,A) := H.(S.(X,A)) by letting A = @ since S,(0) = 0.

Because S,(X)/S,(A) is the free abelian group with basis all cosets of g-simplexes
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in X whose images are not in A. So the elements of 5,(X)/S,(A) are those of S,(X)
with their coefficients of simplexes in 4 ignored. For a more formal statement refer to
Exercise II. 1.6, page 75, Algebra!,

To construct the functor we need to observe the morphism f: (X,4) = (Y,B) €
Hom((X,A),(Y,B)) in the category Top?. Recall that such f is continuous and satisfies

f(A) < B. So given a singular g-simplex crff.‘q) in A we have fcréA) a singular g-simplex

in B.

Definition 3.58. Given two objects (X, A), (Y,B) and a morphism between them
f:(X,A) - (Y,B) € Hom((X. A), (Y,B)) in the category Top?. We define the induced
relative chain map fy: S,(X,A) = S.(Y,B) (the notations are the same for convenience)
from the map fu: S,(X) = S.(Y) by fu([s4]) = [fe(s9)]-

The map is well-defined since it maps S.(A) to S.(B). Itis a chain map because
fe0q([sq]) = fe([94(s0)]) = [f0q(s9)] = [9afe(sq)] = 9qf#([s4]) by the
commutativity of fu:S,(X) = S.(V).

Now we define the relative chain functor S,: Top? - Comp by assigning a
topological pair (X,A) the chain complex S.(X,A4) = {§,(X)/5,(4), 5q} and a

morphism f:(X,A) — (Y, B) between two pairs the relative chain map fu:S5.(X,4) =
§.(Y,B) between two complexes.

Similarly, we can define a functor from Comp to GradedG.

Definition 3.59. The homomorphism between relative homology groups
fi: H.(X, 4) > H.(Y,B) induced by f: (X,4) - (¥,B) is defined by [[s,]| = [[(sq)]]:

which is defined as the induced homomorphism by the chain map fy:S.(X,4) — S.(Y, B).

So it is logical to define the relative homology functor H.: Comp — GradedG by

assigning a relative chain complex S,(X,A4) the relative homology group H.(S.(X, A))
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and a chain map fy:S.(X,A) — S.(Y,B) the induced homomorphism f,: H‘(S,(X,A)) -3

HA8u(2,.8)):

Now we will see how to make use of exact sequences by relative homology.

Theorem 3.60. Given a topological pair (X, A), there are two inclusions i:(4,9) —
(X,®) and j:(X,®) - (X,A) whose inducing chain maps iy and j; together with the

corresponding relative chain complexes give a short exact sequence 0 — S.(4,0)

i n
5 S5.(X,0) i S.(X,A) = 0 of chain complexes and chain maps. Hence we have an exact

sequence of relative homology groups:
0g41 i Jo a5 i.
TR Hq(A) Q}) = Hq(XJ G) = HQ(XIA) — Hq—l(AJ @) L
Moreover, if we have a f: (X, A) — (Y, B), which gives a commutative diagram of

two exact sequences of chain complexes and chain maps
0-5.(4,0) 3 5.0 B s.0x,4) > 0
fel  ful  ful
0 5.(8,0) 2 5.v,0) 2 5.(v,8) = 0
Hence we have a commutative diagram of two exact sequences of homology groups
s Hy(A,0) 5 Hy (X, 8) 5 (6, A) B Hy 1 (4,0) >

L L fL £l

il i’ a
> Hy(B, ) = Hy(¥,8) S Hy (Y, B) —> Hy_1(B, @) — -

Proof: It can be proved by applying Theorem 3.51. to the short exact sequence. Note

that the exactness of 0 = S.(4, @) — S.(X, 8) 2% 5.(X,4) = 0 comes from the Third
Isomorphism Theorem since S.(X,4) = S.(X,0)/S.(A, D).

Now we focus on the homotopy invariance of relative homology.



Definition 3.61. Given two morphisms f, g: (X,4) — (¥, B) between two

topological pairs. We have f=g mod A if there is a continuous function F: (X X I, 4 X

I) - (Y, B) suchthat F((x,0),(a,0) = f,F((x,1),(a,1)) = g.

Theorem 3.62. Given two homotopic mod A maps f=g:(X,A) = (Y,B). we have

H.(f) = f. = 9. = H.(g): H.(X, A) = H.(Y, B).
Proof: Refer to Proposition 2.19, page 118, Algebraic Topology®.

Corollary 3.63. Given two topological pairs (X, 4), (Y, B) such that (X,A4)=(Y,B),
we have H,(X,A) = H,(Y,B).

Proof: Apply last theorem.

Finally we introduce the exact sequence of the topological triple (X, A, B) with
B c A c X are subspaces. It will be useful together with our homological algebra tools.
Definition 3.64. Given a topological space X with two subspaces B € A C X. The
triple (X, A, B) is called a topological triple. Amap f:(X,A,B) = (X',A",B") between
two triples means the map f:X — X' satisfies f(4) c 4',f(B) € B'.

A topological pair (X,A) can be regarded as a topological triple (X, A, @). Now if
we have a triple (X, 4, B). then we have natural inclusions i:(4,B) — (X,B),j:(X,B) —
(X, A) hence a short exact sequence of chain complexes

0- S.(4,B) 3 5.(%,B) 3 5.(x,4) » 0

Note that the exactness comes from Third Isomorphism Theorem by letting

S.(X,A) = S.(X,B)/S.(A, B). Moreover, if we have amap f:(X,A4,B) = (X',A’,B") we

will get a commutative diagram of chain complexes and chain maps:
iy J#
0-S.(4,B)-S5.(X,B)->S.(X,A) -0

29



el il fal
0-S.4.BYSs.x" . B) B s.x' .4 > 0

[t is very natural for us to apply Theorem 3.60. and get the result below.

Theorem 3.65. Given a topological triple (X, A, B), we have a long exact sequence of
homology groups:

8

-. “‘ a‘ |.
- Hy(A,B) S Hy (X, B) 5 Hy(X, A) =S Hy_1 (A,B) 5 -
Moreover, if we have amap f: (X, A4, B) — (X', A", B"), which gives a commutative
diagram of topological pairs:
(4,B) = (X, B) > (X,4)
d 1l
(4',B") > (X',B") > (X', 4")
There is a commutative diagram of exact rows:
i" -- ak
- = Hy(A, B) > Hy(X, B) 5 Hy(X, A) = Hy_1(A,B) - -
il L AL A
.:- : a.f
> Ho(A',B) = Hy(X', B') 5 Hy(X', A") = Hy_y (A", B") =

Proof: Apply Theorem 3.60. to our earlier discussion.

3.6 Augmented Singular Homology

In this section we study a new chain complex called augmented singular chain
complex, which is constructed with the help of the Kronecker index. Then with this new
chain complex we apply the homology functor and get a new homology group called
reduced homology group. The goal of such construction is to simplify the algebraic
calculation in ordinary (co)homology theory.
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Definition 3.66. Given a topological space X, we define its augmented singular

chain complex S.(X) := {fq(X),gq} as

. (Sq(X) g=0 = (0, >0
Sq(x)"{z qg=-1’ a‘?‘{s q=0

¢ is the Kronecker index defined in Definition 3.35.

The augmented singular chain complex is indeed a chain complex as one can verify
that gq 5q+1 = 0: We only need to verify the case when g = 0 because the part when
g > 0 is indeed a chain complex by definition. Take an arbitrary singular /-chain

= klcrl(l) s UL k,,crl(r) € 51(X), we have 9,(c;) = 8,(c;) = 61( . ki"-'lm) -
i=1 ki (310(”) (Zn o(—1D"a;" l) = Di=1 ki (Jf‘)eg 0‘1&)&‘}) Hence

d,0:(cy) = E( 1 ki (0'1(!)80 0'1(1)811)) = 0, which means 8,0, = 0.

Definition 3.67. Given a topological space X, its reduced singular homology groups
are defined as H,(X) := H, (5.(X)). ie. H.(X) ={H,(X)} = {(Hy(5.(X)} the singular

homology groups of the augmented singular chain complex.

Given a continuous map f:X — V. In order to have its induced homomorphism
between reduced singular homology groups we want a chain map fir 8.(X) = 5.(7)
induced by f between two augmented chain complexes.

Given a continuous map f:X — VY, itinduces a chain map f,:5,(X) - Sq(Y) for
every g € N* as we verified. We now need to make such map commute with the
augmented boundary map d, = & of dimension 0. To see how our fi should behave in
dimension -1 we apply it first on a singular O-chain in X to get a O-chain in Y. Then we
apply the Kronecker index &:

Take an arbitrary singular 0-chain ¢, = kya; + -+ + kra, € $5(X) = S,(X).
fulco) = fulkyay + -+ kra,) = kyf(a,) + -+ k.-f(a,). So we have observed that if
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we apply € on fu(cy) we will get the same result as after applying & on ¢y, which tells
us once we let fy = 1z in dimension -1 then we will get a “augmented” chain map that
satisfies the definition i.e. commutes with boundary map for all dimensions! So we may
define

}z-'_:{f# g >—1
* 1 g=-1

Now not only can we define the induced homomorphism between reduced homology

groups by a continuous map as we did before, but also we can have a reduced homology

functor H,.

Lemma 3.68. Given a chain map f:S.(X) = S5.(Y) induced by f:X — Y. We have
an induced homomorphism f,: H,(X) - H,(Y) between graded groups and f;([zq])

= [fi(2g)] € Ho(¥) for [2,] € Hy(X).

Proof: Imitate the earlier ordinary singular homology case.

Theorem 3.69. We have a covariant functor H, with H,(X) = H.(S.(X)) and
H() = (f#)* for some good category to GradedG.
Proof: Refer to page 110, A Concise Course in Algebraic Topology'’. The “good”

category is called the category of nondegenerately based spaces, which we will not give

formal introductions.

Here we can make use of our knowledge in homological algebra to understand the

reduced homology group!

Theorem 3.70. Given a nonempty topological space X, we have

H"q(X) q>0

Holdy= {H'u(X) DZ q=0
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Proof: Since in the case when g > 0 it is not hard to find ﬁq (X) = Hy(X). We look

at the short exact sequence for g = 0:

0 = Hy(X) = Ho(X) SZ — 0
Where i is the inclusion (imd; € kere € S5(X) so Hy(X) = kere/imd; isa
subgroup of Hy(X) = Sy(X)/imd,) and ¢ is the induced epimorphism, which implies the
exactness. Since Z is free abelian, by Corollary 3.56. we have

Ho(X) = Hy(X) B Z

Zq=-1

It is worth mentioning that H.(@) = {O g>—1

Corollary 3.71. A topological space X is path-connected if and only if Hy(X) = 0.
Proof: Apply Theorem 3.70 to Corollary 3.39.

Theorem 3.72 (Reduced Singular Homology of a one-point space).

Given a one-point space X = {pt}, its reduced singular homology group of each
dimension g = —1,0,1, ... is 0. i.e. H.({pt}) = 0.

Proof: Those cases when g > 0 are no different from those in Theorem 3.34. So we
only need to pay attention to the case when g = 0,—1. Since X is a one-point space. For
each q there is only one singular g-simplex o4:A%— X. When q =0, (kere € imd,):
kers = {cy = kay € So(X)| k = 0} = 0 € imd,. (imd, C kere):

imd,; = {0,koy|oy € §1(X)} = {k(oye} — 0,6])|o; € S;(X)} € kere. Hence Hy(X) = 0.
When q = —1, since d_; = 0 we have Z_,(X) = Z. And the fact that the Kronecker
index £:S5,(X) = Z is an epimorphism tells us imd, = ime = Z. So we know

H. (X3 =10.

If we use our last theorem the case g = 0 can be easier.
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We should not forget that the reduced homology is connected to relative homology!
The reduced relative homology groups H.(X,A) :=H, (S‘ (X)/S. (A)) are defined on

quotient complex of two augmented chain complexes. Since we will get 0 by taking the
quotient Z/Z, so ittells us S,(X)/S.(A) = §,(X)/S.(A), from which it can be concluded

that H.(X,A) = H,(X, A). Hence we have a similar theorem here.

Theorem 3.73. Given a topological pair (X, A), there are two inclusions i: (4, @) —
(X,0) and j:(X,0) — (X,A) whose inducing chain maps iy and j, together with the

corresponding relative chain complexes give a short exact sequence 0 — S, (4, @)

3 S.(X,0) 4 (X,A) — 0 of chain complexes and chain maps. Hence we have an exact

sequence of relative homology groups:

q+1 —

= Hq(4, @—*H X, 9)—*11' X, A)—’Hq-l(/l 95 -

Proof: By the discussion above and Theorem 3.51.

Now we fix a basepoint x, € X as we did when studying relative homology groups.

With our discussion earlier we will have many interesting results!

Theorem 3.74. Given a topological pair (X, x,), we have H,(X) = H.(X, x,).
Proof: With such pair we have the short exact sequence
0 - 5.(x0,0) > 5.(X,0) > 5.(X, %5) 0

Then by Theorem 3.51. there is a long exact sequence:

o B T (0, 0) 5 (X, 8) 5 (X x0) 5 By (0, 8) 5
Note that Hq (x4, @) is nothing but Hq (xp) and similar for ﬁq (X,9). By Theorem

£ ﬁq (x9,®@) = 0. So we actually have such exact sequence:

Og+1 s
0—>H (X@)—>H (Xxo)—>0—>
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The exactness at ﬁq (X,®) implies the injectivity of j. and the exactness at

HQ(X, Xg) gives the surjectivity of j,. So j, is an isomorphism, which proves the result

since H,(X,x,) = H.(X, Xo) as we discussed earlier.

3.7 Excision and Mayer-Vietoris

In this section we will understand that when building homology groups, cutting off
some special part of topological spaces does not influence the homology groups. The

Mayer-Vietoris sequence serves as a powerful computational tool.
Excision 1. Given U c A subspaces of X and U < A’. Then we have i,: Hy (X —

UA-U) = H,(X,A), where i, is the induced homomorphism from the natural inclusion
X -UA-U)> (X A4).

Excision 2. Given two subspaces X;,X, € X and X = X, U X,. Then we have
JoiHg(Xy, Xy N X3) = Hy(X, X,), where j, is the induced homomorphism from the natural
inclusion j: (Xy,X; N X,) = (X, X,).

The Excision [ tells us that the relative homology group H,(X,A) depends only on
X — A. But how can we understand it better? If we consider the quotient space X /A,
which is visually obtained by collapsing the subspace 4 to a point. Since the group
H.(X,A) should depend on X — A. When will the map f:(X,4) = (X/A,{pt}) gives us
an isomorphism? Actually it does induce an isomorphism f.: H.(X,4) = H.(X/A, {pt})
when there is a subspace B < X and the following two conditions are satisfied: (1).

A c B" (2) There is a deformation retraction F; B — A.

Proof: Refer to page 111-119, An Introduction to Algebraic Topology!®.

Theorem 3.75. Given a subspace A © X. We have H,(X,A) = H.(X/A,{pt}) if
there is another subspace B © X such that(1). A € B" (2) There is a deformation

retraction F: B — A.
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Proof: We consider the diagram of pairs
X,4) > (X,B) &£ (X—-AB-4)

1 l Lk

(X/A,{pt}) —» (X/A,B/4) = ((X/A) - {pt}.(B/A) — (pt])

First the map k is a homeomorphism as one can verify by point-set topology. From
our condition (1) we have j acts similarly as the one in Excision | hence induces an
isomorphism H.(X — A4, B — A) = H.(X, B). From condition (2) we have the isomorphism
H.(X,B) = H,(X,A). Moreover, i induces an isomorphism
H.(X/A,{pt}) = H.(X/A,B/A) also because of one deformation retraction. Finally j
induces the isomorphism H,((X/A) — {pt},(B/A) — {pt}) = H,(X/A,B/A) since
{pt} € B/A.So H.(X,A) = H.(X/A,{pt}) by transitivity.

Lemma 3.76 (Barratt-Whitehead). Given a commutative diagram with exact rows of
abelian groups and homomorphisms, where h,,s are isomorphisms:
i iy BB BE AL
fad gnd hnl fuil

' ! i [}
coD Ay 2 By = Gy o Ay o

In an Sn

We have an exact sequence

(in.fn) , Gn—in _, dnhp'an
2> Ay — B, @ 4y > By > Ay g >

Proof: Refer to Lemma 6.2, page 107, An Introduction to Algebraic Topo]ogylg'.

Theorem 3.77 (Mayer-Vietoris). Given two subspaces X;,X, € X and X = X; UX,.
We have an exact sequence of homology groups

(i A'r: x) g‘_j" D
woo = Ha (X1 0 Xp) ——3 Hy (X)) @ Hp(X5) — Hy(X) = Hyo g (X3 00 Xg) = oo

Where L.li {Xl n Xz, @) il (X1. @), 52: (Xl N XZ;Q)) — (XZpG)n 4g: (XlJ G) = (X, Q)a
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ji(Xy, @) = (X,0) are inclusions and D = dh;'q, (h: (X, X; 0 X,) = (X, X,),
q:(X,9) — (X,X3) areinclusions, d: Hy(Xy,X; NX;) = Hyy(X; N X5, @) isthe
connecting homomorphism of (X;,X; N X,)).

Proof: It is an immediate result by applying the earlier lemma and Excision 2 to the

commutative diagram of topological pairs:

Ky N X ) 5 (s 0) S (e N XD

X0 > X035 (XX,

By applying Theorem 3.65. we have the following commutative diagram with exact

rOWSs:

i, Da d
v = Hy(Xy 0 Xp) = Hy (X1) S Hy (X1, Xy 0 X3) = Hy g (X3 0 Xp) = oo
ipl gl  hl iy L

=k Hn(xz} )__’ Hn(X) ? Hn(XJX:Z) ? Hn(Xz) = ALl

Where h, is an isomorphism by Excision 2. Then it is proved by applying previous

LLemma.

Theorem 3.78 (Mayer-Vietoris for reduced homology). Given two subspaces

X,,X, € X and X = X; U X, with the property X; N X, # @. We have an exact sequence

of reduced homology groups

oo (tyid2s) ~ . Go—je ~ B
e = Hy(Xy 0 Xp) ——5 Hy (X)) @ H,(Xp) — Hy(X) » Hyy(Xy 0 Xp) — -

The maps are those induced by maps in last theorem. And the sequence ends
- = Ho(X) @ Ho(Xp) = Hp(X) - 0
Proof: The reason why we require X; N X; # @ is because we need to take a

Xy € X1 N X,. Then consider the commutative diagram:

iy p
(Xl nXerU) = (Xlaxﬂ) = (XIJXl n XZ)
bl gl Lh



Knx0) > Kx0) > (X,X5)

Then apply Theorem 3.65. We have

iy, D. d
= Hy (X1 N Xy, x0) = Hy (X1, %) = Hy (X1, X1 0 X3) = Hyey (X3 0 X)) - o
Iy, l Gl [ iz, l

v = Hn(lex{I) }_) Hr:(erl]) ;’ Hn(XIXZ) -S-) HR{X'Z) =2

Apply the Lemma 3.76. and by Theorem 3.74. H.(X) = H.(X, xo) we get an exact

sequence:

s (i1,d2.) ~ o i i oo
snmeH HH(XI n X2) —2) Hn(Xl) @ Hn(XZ) = Hn(x) ¥ n—l(Xl n XZ) TR

Now we compute few examples
Example 3.79 ((Reduced) Homology groups of S™). For n > 0, we have

m~ (L gq=00rg=n
Ha\S )_{0 otherwise

And for all n € N, we have the reduced homology groups of S"

~ Z g=n
ny =~
Hy5™) = {0 qg#n
Proof: We prove the reduced case by induction. When n = 0 we have
ZDZq=0
0y ~
Hy($°) = { 0 g>0
So we have
Z q=0
0y =~
Hq(S7) = [0 g#0

Then consider the general case for an n > 0, we have two subsets X; = S™ —
{N}, X, = S™ — {S}, where {N},{S} are the north and the south pole. And clearly they
satisfy X; UX, = S™ and X, N X, # @. So we may apply Theorem 3.78. and get the
following exact homology sequence:

(il x'£2s)

. - s Ge—Ju ~ B ...
o= Hoy(Xy 0 X)) — Ha(Xy) @ Hy(X3) — Ha(S™) = Hy (X N X)) — o

Because both X; and X, are homeomorphic to R™, which is contractible. Hence we
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have ﬁq(Xl) = H"q(Xz) = 0. Actually X; N X,=S™! because one canregard X; N X, =~

R™ — {0}, which can be retracted to S™~ by the map r:x ”xT” Define the deformation

retraction F(x,t) = tr(x) + (1 —t)x weget 1g_}=7r. So R" — {0}=S™"1 and the
homology sequence above can be rewritten as

¥ b'LubZ‘ -_‘- i~ D
= Hq(sn—l) (!_12 0 g_", Hq(sn) = Hq—1(sn_1) e Qg

The exactness implies that Hq = ﬁq_l(sn‘l), which completes the proof.

The theorem above also helps us to solve the classic problem in point-set topology.

Corollary 3.80. Given m # n, we have (1) §™,8™ are not homeomorphic.  (2)
R™, R™ are not homeomorphic.

Proof: (1) If §™ = S™ then H.(S™) = H.(S"), which contradicts with Example 3.79.
(2) If R™ ~ R™, then we have R™ — {0} = R™ — {0}. Since we know that S*"1=R" —
{0} as in the proof of last theorem. So §™~1=§™~1 and by the homotopy invariance they

share the same homology groups, which contradicts with our theorem.

Corollary 3.81. Given n € N, (1) S™ is not a retract of D"*1, (2) S™ is not
contractible.

Proof: (1) If so, there exists a continuous map r: D1 — S™ such that ri = 1|4n
for inclusion i:S™ = D™, So (ri). = 1]g,(sny- Since D"={pt}, we know that
H,(D™*1) = 0, which contradicts with the sequence:

H.(S™) i’; H.(Dn"'l) :‘, H.(S™)
(2) If so, then H,(S™) = H,({pt}), which contradicts with the fact.

3.8 Singular Homology with Coefficient and Functor — @ G
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[n this section G is a fixed abelian group. We start from Comp as usual to define our
relative singular homology as a more general version of singular homology. Moreover,

those discussions about singular homology naturally appear here.

Definition 3.82. Given a free abelian group 4 with basis {a;}. Define the abelian
group fensor product of Aand GA QK G as
A® G = (X gia;l g € G and finitely many of g; # 0}.If {a;;} is another basis of 4
and ay = Y kyra;, kyy € Z. Then Y gia; = ¥; g;a; is equivalentto ¥, kg, for
any i. The “addition” in A @ G is defined under the same basis as ), g;a; + X, g;a; =

x(gitg)a;.

Definition 3.83. Given two free abelian groups 4, B with basis {a;}, {b;} and a
homomorphism f:A — B suchthat f(a;) = ); F;jb; where F;; € Z. We define a
homomorphism f @ 1;:AQ G —->B QG as

(f ® 15)Xigia) = X 2iFijg)by).

Theorem 3.84. — @ G is an additive functor from category of free abelian groups F
to the category of abelian groups Ab which maps A —» A ® G and
f:A->B- fR1;:AQ G — B G. ltis called tensor product functor. The
composition is given by (g @ 15)(f ® 1;) = (9f @ 1;).

Proof: Refer to Corollary 9.27, page 255, An Introduction to Algebraic Topology'™.

[ ]
How does the functor influence different kinds of sequences?

Proposition 3.85. Given abelian groups and homomorphisms, the tensor functor

— @ G satisfies the following properties:

/
(1) (Split exact property). Given a split exact sequence 0 - A — A’ 54" > 0. We

®1 Q1
have a split exact sequence 0 > A QG g ARG =% A"® G - 0.
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. A
(2) (Half-exact property). Given an exact sequence 4 = A" = A" — 0. We have an

@1 e
exact sequence A®Gf Sa' RGE—— s 7 & G- 0.

!
(3) Given an exact sequence 0 — A LA A" = A" - 0, when G is torsion-free( no

elements of finite order). We have an exact sequence

1
0548625426 2%a" @60

Proof: (1) can be proved by applying Proposition 3.55. (2) Refer to Theorem 9.29,
page 257-258, An Introduction to Algebraic Topo]ogy[sl. (3) By Property (2) of the functor

Tor introduced in 6.2.

Corollary 3.86. (1). Given m € N*, we have (Z/mZ) ® G = G/mG. (2). Given
m,n € N* with (m,n) = d, we have (Z/mZ) @ (Z/nZ) = Z/dZ.

Proof: (1). We apply the functor to the “right” part of the short exact sequence

052525 (Z/mZ) — 0 where m:1 — m and by half-exact property to get the exact

®
sequence G 3 G = (Z/mZ) @ G. Here the m: G — G still “multiplies” the elements

by m as one can verify by definition (Suppose {a;} is the basis and f(a;) = ma; =
2.j Fija; implies that F;; = m and F;; = 0 for i # j. Hence by the definition of the map
(f ® 16)(Xi giai) = (X Fijgda) = Yimgia; = m(¥; g;a;)). By First Isomorphism
Theorem G/ker(p @ 1;) = im(p @ 1;) where by exactness ker(p ® 1,) =

im(m) = maG, im(p ® 15) = (Z/mZ) ® G. So we have G/mG = (Z/mZ) Q G.

(2). Consider the short exact sequence 0 — Z S5z5 (Z/mZ) - 0. Similar to above

®1z/n

we apply ® Z/nZ and get Z/nZ 3 ?Z/nZ (Z/mZ) @ (Z/nZ). By First
Isomorphism Theorem (Z/nZ)/ker(p ® l(mﬂ)) Lm(p ® l(g/nz)) and the fact that

ker(p ® 1(1/:12;)) im(m) we finished the proof.

41



Here we illustrate an example to show that the functor does not preserve exactness.

2
Consider the short exact sequence 0 = Z — Z 5 Z/27Z - 0. Now we apply the functor
with G = Z/2Z and get

2®1 2 @1 2 .
0-Z/2Z B Z/2Z Sl Z/27Z — 0, which cannot be exact.

So given a chain complex € = {Cq,, 0q} we apply the tensor functor _ & G then get
a new chain complex € ® G = {Cq RG,8; @ 15} as one can verify that the composition

(0, ®16)(0g41 ® 1) = 8,0541 ® 15 = 0@ 15 = 0 by the additivity of the functor.

Hence we define the relative singular chain complex in this way.

Definition 3.87. Given an abelian group G, a topological pair (X, A). We have its
relative singular chain complex S.(X,4) = {S,(X)/S,(A),d,}. The relative singular
chain complex with coefficient G is the chain complex

S.(X,4;,6) :={S,(X,A) ® 6,04 ® 15} = {(S,(X)/S,(4)) ® 6,9, ® 15}
Moreover, the relative singular homology groups are the homology groups
H.(X, 4; G) = {H,(5.(X, 4; )}

Similarly, given a map f: (X,A) = (Y, B), we have the induced relative chain map
fi @ 15:5.(X,4;G) = S.(Y,B; G) isdefined from the chain map f,:S5,.(X;G) —
S.(Y; G). And it induces the homomorphism between relative homology groups with

coefficients G f,:H,(X,A;G) - H.(Y,B;G).

Note that §,(X,4) ® G = (Sq(X) ®R G)/(SQ(A) ® G) from the split exact

sequence 0 = S,(4) ® G = 5,(X) ® G — S,(X,A) ® G by applying the tensor functor
and property | on the split exact sequence 0 = S;(A) = S,(X) — S,(X,A) — 0. So
actually Sq(X,A4;G) = 5,(X;G)/S,(4;G).

Definition 3.88. The relative homology functor with coefficient G H,(—; G) assigns
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a topological pair (X,A) a graded group H,(X,A4;G) and a morphism f:(X,4) - (¥, B)
a graded group homomorphism f,: H.(X,A;G) = H.(Y,B;G).

[t is a more general situation because H.(X) = H.(X,®;Z). The reduced homology
group is defined for nonrelative case because the augmented relative chain is the same as

the ordinary relative chain.

Definition 3.89. Given a singular chain complex S,.(X) = {Sq (X)), aq} ofa
topological space X. Its augmented chain complex with coefficient G is defined as

S.(X:6) = {5‘ X)) G, 3'q ® 1¢}. The reduced homology group with coefficient G is

.06 6) = H. (5.x: 6)).
Note that 30 X 1, still takes the sum of coefficients of 0-chain and is denoted by €.

Similarly, given a map f:X — Y, we have the induced chain map fi: Sq(X;G) —»
§q(Y; G) which equals to fu:S,(X; G) = Sg(Y;6) when ¢ =0 and 1; when g = —1.
Moreover, it induces a homomorphism between reduced homology group with coefficient

G fitH.(X;G) — H.(Y; G), which is defined to be f. = H.(fy).

Naturally one can have the dimension axiom.
Theorem 3.90 (Singular Homology of a one-point space/Dimension Axiom). Given
a one-point space X = {pt}, its singular homology group with coefficient G for each

q €N is

H(wthi &) =g 27

And its reduced singular homology group with coefficient G is

H.({pt}6) =0

Proof: Imitate Theorem 3.72.
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3.9 Axioms of Homology

“The ultimate goal of the axiomatic method is the profound clarity of mathematics,
which cannot be reached by logical formalism. As the origin of the experimental method is
the transcendental belief in the eternity of the laws of nature, the origin of the axiomatic
method is the belief that mathematics is neither a casually developed collection of products
of syllogism nor a bunch of “wise” techniques which are created by lucky combinations.
Superficial observers are only able to see few different theories, in which there will be one
theory offering surprising supports to other theories with the help of mathematical geniuses.
Now the axiomatic method is teaching us to seek for the deeper reason for such surprising
supports and to grasp the common ideas hidden under the details of each theory so that we

can put those ideas in the places they should be in.” (]

Axiom of homology. A homology theory is a covariant functor from Top? to
GradedG which consists of three functions. For each g € N it assigns a topological pair
(X,A) an abelian group H,(X,4;G), a continuous f:(X,A) — (¥, B) a homomorphism
(f)q: Hy(X,A; G) = Hy(Y,B; G) and a topological pair (X,A) a homomorphism
04:Hy(X,A) = H,_;(A), which satisfy the following properties:

(1) (Identity Law). Given an identity map 1x 4y, we have an identity homomorphism

Ly, x.a6)-

(2) (Composition Law). (gf). = g.f. for defined composition.

(3) (Naturality). Given f:(X,A) — (Y, B), we have a commutative diagram
Hy(X, 4 G) 2 Hy_y (43 G)

il (flad

Hy(Y.B:6) S H,_,(B;G)

(4) (Exactness Axiom). We have the long exact sequence

T Hy(456) 5 Hy(X;6) 5 Hy(X,4:6) B Hya (45,6) 5+
(5) (Homotopy Axiom). Given two homotopic maps f=g: (X,4) — (Y, B), we have

fi = g
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(6) (Excision Axiom). Given an open subspace W € X with W c A and an
inclusion map i: (X —W,A — W) — (X, A). Then the inclusion induces an
isomorphism i.:H.(X — W,A — W) > H.(X, A).

(7) (Dimension Axiom). The homology groups of a one-point space {pt} are

G g=0

H(h @ =g 24

Axiom of reduced homology. A reduced homology theory is a covariant functor from

an appropriate category of topology spaces to GradedG consists of three functions. For

each g € N it assigns a topological space X an abelian group ﬁq(X; (), a continuous
f:X =Y ahomomorphism (f.),: Hq(){; G)— ﬁq(Y; G) and a topological space X an

isomorphism (S.),: HQ(X) = Hqﬂ (SX), which satisfy the following properties:
(1) (Identity Law). Given an identity map 1y, we have an identity homomorphism
la.x6)-
(2) (Composition Law). (gf). = g.f. for defined composition.
(3) (Naturality). Given f:X — Y, we have a commutative diagram
Ao (X 6) > Hyy1(SX; G)
il (SHA
Hy(Y;G) 3 Hy41(SY;6)
where Sf:SX — SY isthe quotientmapof f X 1 X XI -V X I.
(4) (Exactness Axiom). Given amap f: X — Y, we have the exact sequence
7,06:6) 5 ,00:6) 5 H,cf:6)
where ;Y - Cf =Y U;CX is the inclusion map.

(5) (Homotopy Axiom). Given two homotopic maps f=g:(X,A) — (Y, B), we have

fi = g..
(6) (Dimension Axiom). The homology groups of S are
s G g=0
0. e
Bgs7ia) ”[0 q#0
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4. Singular Cohomology

4.1 Basic Definitions in Cohomology

Why do we need cohomology if homology is relatively easier to compute? The
answer here is, there is a ring structure in cohomology theory which plays an important
role when classifying topological spaces. But now in this section we mainly tell how
cohomology groups are defined and formalize everything in the language of category
theory.

To introduce basic definitions we begin by defining a contravariant functor

Hom(—,G) for a fix abelian group G.

Definition 4.1. Given two abelian groups 4, B. We define the set Hom(A, B)
:={f|f: A = B homomorphisms}.

Actually the definition coincides with the situation in category Ab. Now what we

want to do is to give a group structure on this set.

Proposition 4.2. Hom(A, B) is an abelian group under the addition (f + g)(a)
= f(a) + g(a),Va € A. The identity element is 0:a = 0.

Proof: A routine.

Definition 4.3. Given three abelian groups 4, B,C. A function f:tAX B — C is
called bilinear if f(a, + a,,b) = f(a,,b) + f(ay,b) and f(a,b; + by) = f(a,by) +
f(al bZ)'

The bilinearity means the linearity on both coordinates.

Definition 4.4. If we consider ®(a) :=< ®,a > in a form that is similar to inner

product for ® € Hom(A, B), then we have a bilinear function called Kronecker product,
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which is defined by
< —,—>Hom(A,B) XA - B; < ®,a > ®(a),Y® € Hom(4,B), Va € A.

So once we fixed such G, we have an abelian group Hom(A4, G) for an abelian group

A. To make the Hom(—,G) a functor we need to pay attention to morphisms.

Definition 4.5. Given a homomorphism f: A — A'. its dual homomorphism is

definedas f*: Hom(4',G) » Hom(4,6); g - gf.
Similarly we may write < f*(g),a >=< g, f(a) >.

Theorem 4.6. Hom(—, ) is an additive contravariant functor from Ab to Ab for a
fixed abelian group G.
Proof: A routine.

We need to know how does the functor influence different exact sequences.
Theorem 4.7. Given abelian groups and homomorphisms, the hom functor
Hom(—, G) satisfies the following properties:

(1) (Split exact property). Given a split exact sequence 0 — A 5 A M A" = 0. We

# #

have 0 « Hom(A,G) £~ Hom(A',G) ):— Hom(A",G) «< 0, which is also split

exact.

(2) (Half exact property). Given an exact sequence A L A i A" — 0. We have

i

r* f c %
Hom(A,G) « Hom(A',G) «— Hom(A",G) « 0, which is also an exact sequence.

Proof: (1) can be proved by Proposition 3.55. (2) Refer to Lemma 12.5, page 380, An
Introduction to Algebraic Topology'®!.
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Naturally we wonder if applying the functor to a chain complex gives us a new chain
complex. Given a singular chain complex S,(X) = {Sq(X), 6q} on a topological space X,

we apply the hom functor with a fix abelian group G and get 0 - Hom(S,(X), G)
a# a#
- Hom(S,(X),6) = Hom(S,(X),G) — ---. Moreover, we can see that 88108 =

(aq 6q+1)# = 0" =0 for q € N. Hence we do get a new “chain complex” denoted by
§*(X; G) :== Hom(S.(X), G). As the homomorphism defined on a free abelian group is
determined by the basis of the free abelian group, we can say that the elements in

Hom(Sq (X)) G) are (-valued functions defined on the basis of Sq (X), i.e. all singular

q-simplexes on X. But the new complex is a little bit different from ordinary chain
complex as the “boundary maps”™ increases the “dimension” due to the usage of

contravariant functor Hom(—, G). This problem can be fixed by changing notation

Hom(Sq(_X),G) to A_, and 3§+1 to d_,. Then we take a look at our new chain

d d- d_
complex 4.: 0= 4, 3 A4 — A_, —3 .-+ and define homology groups naturally by
H_,(Hom(S.(X),G) = H_4(A.) :=kerd_,/imd_,., = kerdj,,/imd]. So one can see
that after applying the functor we actually get something that is intrinsically a chain

complex. We call it a cochain complex and actually cochain complexes and cochain maps
form a category as chain complexes and chain maps do since the two definitions are just
formally different. For simplicity we denote Hom(.S'q (X), G) by A? and agﬂ by &9
and define similar definitions from the following cochain complex:

s 81 &2
045 A' 5 A2 - -

Definition 4.8. Given a topological space X and its singular chain complex

S(X) = {SQ(X),BQ}. For a fixed abelian group G and g € N.

SUX; G) == Hom(S4(X),G) is called the group of singular g-chains in X with
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coefficient G. Z9(X;G) := keré9 = .’cew’iff+1 is called the group of q-cocycles in X;

BU(X;G) := im89™" = im@j is called the group of g-coboundaries in X; Their quotient
group Z9(X;G)/B9(X;G), denoted by HY(X; G) is called the g-th cohomology group of
X with coefficients G. The elements of HY(X; G) are called cohomology classes. The
cohomology class of a g-cocycle z9 is [z9] :=z% + BY(X; G). We put cohomology

groups of all dimensions together as H*(X; G) := {HY(X; G)} = {H‘?(Hom(S.(}(), G))}.

Now we already have a target in GradedG for an object in Top. To construct a
functor we need to pay attention to morphisms between two objects. Given a continuous
function f:X — Y, we have the induced chain map fu: S.(X) — S.(Y). Applying the

functor Hom(—, G) to the commutative diagram

Ig+1 9q
4 q+1(X) _}SQ(X) - q-l(X) =¥
fel  fel ful
Vs 0
o= S'|£;|l+1(V) - Sq(Y) = Sqﬂl(y) i
We will get a new commutative diagram

#
aq+1

v = Hom(Sg41(X), G) «— Hom(S,(X),G) a‘_; Hom(S,-1(X),G) « -
fit fit A

# o #

a; d
- Hom(Sg41(Y), G) <=~ Hom(S,(¥), G) <~ Hom(S,_1(Y),G) « -

Which can be simplified as
59 5§91
e ST(X; G) « SU(X; G) «— STUX;6) « -
T e g

arq 1q—1
o+ e ST(Y; 6) — SUY; 6) +— STLY;6) -

According to the definition ff:S9(Y;6) — S9(X;G),h ~ hfy for an arbitrary

h € SUY;G) = Hom(S,(Y),G) ie. h:S,(Y) — G.Let z7 € Z4(Y; G) = keré'? =

keraéﬂ#, we have by commutativity 0 = f##ﬁéﬂ#(zq) = 9%,1f4 (2%), which implies
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fE(29(Y; 6)) € Z9(X; G). Let b% € BI(Y;G) = im&""™" = imd,", we geta b9 €
$a-1(Y; G) such that ag,”(b@-l) = b?. Again by commutativity we have fi(b?) =
fEa, (b 1) = 8} ff (b9™), which tells us f£f (BY(Y;6)) < BI(X; G). Hence we may
define the induced homomorphism f*: HI(Y;G) = HY(X;G) by [z9] » [f##zq] =
[zf.] € H1(X; G) for z9 € Z9(Y; G). Eventually after collecting such homomorphisms
of all dimensions together we have a graded group homomorphism (morphism in

GradedG) f":H*(Y;G) — H*(X; G) for a continuous function f:X — ¥ and we are

ready to define the cohomology functor.

Definition 4.9. H*(—; G) is a contravariant functor from Top to GradedG called
singular cohomology functor with coefficient G, which assigns a topological space X a
graded group H"(X;G) and a continuous map f:X — Y a graded group homomorphism
H*(f;G) = f:H*(Y;G) - H*(X; G).

Note that when the coefficient G is ignored we mean the coefficient Z and such
cohomology is called integral cohomology. Now we do not go through every discussion as

we did in singular homology and will summarize them axiomatically.

Definition 4.10. Given a topological space X. Define its augmented singular

cochain complex with coefficient G by

§*(X; 6) = Hom (§(X; 6)) = {Hom($,(X),6), 81} = {$9(x; 6),89).

Note that for a augmented singular chain complex, the 0-dimensional boundary map

d, = € adds up the coefficients of points (0-complexes) of a 0-chain. Now the map

9§ = e*: Hom(Z, G) — Hom(fu(){'), G). As the homomorphisms defined on Z is
determined by its value at 1 € Z, we define the isomorphism F: Hom(Z,G) — G by
f+ f(1) so Hom(Z,G) = G.Hence the map 9] can be described as 95 (f;) = f,0,

50



for a homomorphism )‘:g: Z — G,fg(l) = g forsome g € G, which maps a (-chain
oy = kyaq + - kya, to kyg+---k,.g € G. Similarly given a continuous function

f:X = Y we have the induced augmented chain map
. (ff gEN
f# = 1 — 1
¢ 9=~
Definition 4.11. Given a topological space X. The reduced singular cohomology
groups with coefficient G is defined by H*(X;G) := {H* (Hom(i()(), G))} Given a
continuous f:X — Y between two topological spaces, the induced homomorphism

between reduced cohomology groups [~ is defined by the induced homomorphism from

the augmented cochain map ff:S"(V;6) — S*(X;G).

Definition 4.12. Given a topological space X and a subspace A < X. For a fixed

abelian group G, we define the relative cohomology groups with coefficients G by
H*(X,A; G) == H*(Hom(S.(X,A),G)). Given a morphism f:(X,A) — (Y,B) between

two objects in Top? the induced homomorphism between cohomology groups
fH*(Y,B;G) = H*(X, A; G) is defined by the induced homomorphism from the relative
chain map f§f:S*(Y,B;G) = S*(X,A; 6).

When A =@ we have H*(X,0;G) = H'(X; G).
Note that for each dimension ¢, H1(X,4;G) = H_q(Hom(S*(X,A), G)). Since we

defined the relative cohomology in a way that is similar to relative homology, in which

there is a split exact sequence of complexes

0-5.(4,0) 350 5s.x,4)-0
Since the hom functor preserves the split exact property, applying the functor on the

sequence we will get a split exact sequence

if i
0 « Hom(S.(A,8),G) ¢ Hom(S.(X,8),G) & Hom(S.(X,A),G) « 0

Then from Theorem 3.60 there is a long exact sequence
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Ty sk du sk
0= Ho(X, 4; G) = Ho(X; 6) = Ho(4; G) = Hy (X, 4;6) = -
And d?:H,(A;G) - Hyy1(X,4;G) is the connecting homomorphism.

Definition 4.13. H*(—; G): Top? — GradedG is a contravariant functor called the

cohomology functor for topological pairs.

Look back to the Kronecker product < —,—>:Hom(F,B) X F = B; < ®,a >~

®(a),VP € Hom(F,B), Ya € F. If we replace F,B by 5,(X,A),G respectively, we
have < —, —>:59(X,A; G) XSQ(X,A) = G; < @,cq >0 ga(cq),\f(p € SUX,A;6),

Ve, € 54(X, A). Note that the homomorphism on a free abelian group is determined by its

values on base elements. We actually have a commutative diagram
A i
Sq+1(X,A; G) XSq+1(X|A) ’G
T84 0q 1 1g 4
rmj

SUX,A;G) X §4(X,A) — G

i.e. <8%c9),cq41 >=< Cq,aq(cq+1) > Vel e SUX,A:G),¢; € S,(X,4)
Moreover, given a continuous f:X — Y. For V¢ € SI(Y;G),cq € Sq(X) we have

< fj‘(r,o),cq = (p,f#(cq) >. When ¢, = 0,:A%> X, we have in particular <
fi(@).0, >=< ¢, f(0,) >
<=2
SV G) % 5,{Y) — &
VAF T 161

S9(X; 6) x So(X) =5 6

4.2 Axiom of Cohomology

Axiom of cohomology. A cohomology theory is a contravariant functor from Top?
to GradedG consists of three functions. For each g € N it assigns a topological pair
(X,A) an abelian group H1(X, A; G), a continuous f:(X,A) — (Y,B) a homomorphism
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(f)9:HY(Y,B; G) = H1(X, A; G) and a topological pair (X,A) a coboundary
homomorphism d?: H1(A) — H?**(X, A), which satisfy the following properties:

(1) (Identity Law). Given an identity map 1y 4y, we have an identity homomorphism

1t (x,a:6)-
(2) (Composition Law). (gf)* = f*g" for defined composition.

(3) (Naturality). Given f:(X,4) — (Y, B), we have a commutative diagram

HI*L(X, 4; G) < HY(4; G)
NGV

HI* (Y, B: G) HY(B; G)
(4) (Exactness Axiom). We have the long exact sequence
o Hy(X,4;6) > Hy (X 6) 5 Hy (4, 6) S Hy (1, 4:6) 5 -
(5) (Homotopy Axiom). Given two homotopic maps f=g: (X,4) — (Y, B), we have
=g
(6) (Excision Axiom). Given an open subspace W c X with W < A" and an

inclusion map i: (X —W,A — W) — (X, A). Then the inclusion induces an

isomorphism i*: H*(X,4) » H*(X — W, A — W).
(7) (Dimension Axiom). The cohomology group of a one-point space {pt} is

we ={g 120

4.3 Cup Product and Ring Structure

Definition 4.14. A graded ring is aring R with additive subgroups R™(n € N) such

that R =@,y R™ and R™R™ c R™™ for n,m € N.
The second condition means xy € R™™ for x € R™,y € R™,
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Definition 4.15. Given a graded ring R =@,y R". An element x € R has degree n

if x € R™ and such elements are called homogeneous.

So the 0 element has degree » for every n € N since Or, =0 € R¥Vk € N. The
identity element 1 has degree 0 since 1 = ey + -+ ey, ¢; € R* and 1a, = a, = eya, +
w4 ea, €ER*"N(R"P - B R"™K) =R" for a, € R™. So we have a,, = eya, and
e;a, = 0,1 > 0, which implies a = eya, Va € R. Similarly, we exchange the position and

get a = ae,,Va €ER so e, =1 € R".

Definition 4.16. Given [ = 0,1,2,+-+,d € N, we define continuous functions front
face ); and back face p; from A'to A% by A;:(eg, -, e;) = (eg,*+,€;,0,++,0) and

M- (6’0, rei) = (0, o Jore(]J"':ei)-

Lemma4.17.

(1) Given the ith face map e?*':A%— A?*! (recall that the face map

da+1

d+1
el (eg, - eq) = (eg, - €1-1,0,€,,€4)), we have pg*! = f*! and

d+1 _ .d+1

Ad" = &qi1-
5 4,4 m+k _ d d n+m _ qd n+m+k ym+k _ qn+m+k  n+m
(2] Uy icHie = Hg, ﬂ-n+m)‘n - ’In and Hmtk )Lm - An+m Hm -

d+1.p+1 d+1 i —
Ap+1&; LSD 441 a_{ Hq i=d-q

3s.a+1,1a:{ ety =
() &4 Wt i=p+1” ¢ Y el g izd—g+1

Proof: 1t can be verified by calculation.

We can remember the formula in a way that is similar to quotient!
So since S9(X;G) = Hom(Sq(X), G) is the group of homomorphisms from S;(X)

to G.Anelement ¢ € S9(X; ) is a homomorphism defined on the free abelian group

Sq(X) whose basis is the class of all singular g-complexes in X. So ¢ is determined by

its values < ¢, 0 > on base elements g: A9— X.
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Definition 4.18. Given a topological space X and a commutative ring R. If we have
@ € S"™(X;R) = Hom(S,(X),R) and 6 € S™(X; R) = Hom(S,,(X), R), then define their
cup product @ U8 € S"™(X;R) by

<PUB,0>=< @, A0 >< §,au™ >,¥0 € Spim(X)

Theorem 4.19. Given a topological space X and a commutative ring R, we have
S*(X;R) =@ ,eny S™(X; R) a graded ring under cup product.
Proof: The (left)distributivity: ¢ € S™(X;R),8,¥ € S™(X;R),0: A""™> X.
<@QUB+Y¥),0>=<@,0A""™ >< 0+ ¥, ouit™ >
=< i, oA (< 0,aul™ >4+ Waul™ >)
=< pUb,c>+<pUV¥, 0>
The associativity: ¢ € S™(X;R),8 € S™(X;R),¥ € Sk(X:R),0: A" X,
<@UBU¥),0>
=% o, CARTEE se g U P, oulimtE
=< @ oART < 0, auliR AT, S W opl U >
=< @, gALEMAR AR o g gAREmAk M o 2 @, guRtmAE
=<(puUB)U¥,0>
The identity element e € S°(X;R) isdefined by <e,x >=1,¥x € §y(X) i.e.

points in X since the basis of Sy(X) are points in X. So by the cup product
<elUf,g>=<e,0l} ><f, cr,ug >=< f,o0 > itisa left identity. Similarly, it is a

right identity hence a two-sided identity.

Actually for a fixed commutative ring, S*(—; R) is a contravariant functor from

Top to GradedR (the category of graded rings and ring homomorphisms).

Lemma 4.20. Given a continuous map f:X — Y, then we have the identity
fHpub) =f(p) U ff(8),Yp € SP(Y;R),6 € SU(Y;R).And fi' maps the unit e, in

S*(Y;R) tounit e, in S*(X;R).
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Proof: Forevery 0,,, € AP*9- X,
< fi@uB),o>=<9@uUb,fopq) >
= ‘P'f(gwq)ﬁm >< 9'f(ﬂp+q)ﬁ3+q >
=< f{(9), 025" >< f{(8),0psqu) ™ >

= f##(ﬁo) U f##(B), o>

And < fi(ey),x >=<e,, f(x) >=1.

Theorem 4.21. For a fixed commutative ring R, S*(—; R) is a contravariant functor
from Topto GradedR.

Proof: From Theorem 4.19 and Lemma 4.20.

However, we normally consider another kind of commutative graded rings which
inherits the algebraic structure from S*(X; R) =@,ey S™(X; R) and satisfies the
homotopy axiom.

Lemma 4.22. Given a topological space X and a fixed commutative ring R, we have
§PH(puB) =8P(p)U B+ (—1)Pp U §i(F),Ye € SP(X;R), 8 € ST(X; R).

Proof: Refer to Lemma 12.22, page 394, An Introduction to Algebraic Topology!®!.

|
Theorem 4.23. Given a commutative ring R, H*(—; R) =@4ey H(—;R) isa
contravariant functor from hTop to GradedR.
Proof: Refer to Theorem 12.23, page 395, An Introduction to Algebraic Topology[g].
|

5. Algebraic Topology in Classifying Real Vector Bundles
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5.1 Basic Definitions

The ultimate goal of this chapter is to see how to classify all the n-dimensional vector
bundles over the same base space. The classifying problem seems purely geometric but
somehow can be connected to homotopy classes, which is a concept in topology. The

content in this chapter mainly follows “Vector Bundles and K-Theory™*l.

Definition 5.1. An n-dimensional real vector bundle (E,p,B) is a continuous
function p: E = B between two topological spaces E,B such that foreach b € B the
inverse image p~'(b) C E has an algebraic structure as a vector space and the property of
local triviality holds: There is an open cover {U,} of B such that for each of the open set

U, there is a homeomorphism h,: p~*(U,) ~ U, X R™ assigning b € U, a vector space

ha(p‘l(b)) = {b} x R™ by an vector space isomorphism.

We call such h, local trivialization of the vector bundle. The topological space E is
called total space and B is called base space. Vector bundle is actually a special case of
fiber bundle by replacing the fiber by the real vector space. That is the reason why the
vector spaces p~t(b) are called fibers. The vector bundle E = B X R" is called the

trivial bundle and the map p: E — B simply maps elements in E to its first coordinate.
Example 5.2. The Mobius strip is also a 1-dimensional real vector bundle.

Definition 5.3. Given two n-dimensional real vector bundles (E,p,B),(E',p',B'),a

vector bundle map f between them is a pair of continuous functions (f3, f5), fi:E —

E',fo: B — B' with the commutative property fop = p'f; suchthat p;|,-10y: p~t(b) —»

p’_l(fz (b)) is an isomorphism between vector spaces.

Definition 5.4. Given two n-dimensional real vector bundles (E,p,B),(E',p’,B’).
They are called isomorphic when we can find vector bundle maps
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f= (1, f2):(E,p,B) = (E',p',B") and g = (91,9,):(E',p’,B") = (E,p, B) such that
g1f1 = 1g and f; g, = 1. We denote two isomorphic vector bundles by (E,p,B) =
(E'.p".B").

Note that we call two vector bundles over the same base space B isomorphic if the
conditions above are satisfied when we take f5, g, to be identities. And the set of

isomorphism classes of n-dimensional real vector bundles is denoted by Vecty(B).

Proposition 5.5. Given an n-dimensional real vector bundle (E,p,B). Let A be any
topological space and f: A — B an arbitrary continuous map. We naturally constructed a
vector bundle (D, p,B) called the induced bundle by f or the pull-back of (E,p,B) by
f and a vector bundle map f: (D, g,B) = (E,p, B) as illustrated: D = {(a,e) € A x

Elf(a) =p(e)}pla,e) =a; f = (f,f) where f(a,e) = e. We denote the constructed

bundle by f"(E,p,B) and it is unique up to isomorphism.

Proof: Refer to Proposition 1.5, page 18, Vector Bundles and K-Theory[4l.

Before we get to the next theorem we need to introduce a definition called
paracompact. A Hausdorff space X is called paracompact if for each open cover {U,}

there is a set of continuous functions {¢,: X — I} such that

supp(@q) = {x € X[, (x) # 0} c U, and for every point x € X thereis a

neighborhood of it where only finite number of ¢,s are nonzero and Y., @, = 1.

Theorem 5.6. Given a vector bundle (E,p,B) and two homotopic maps fi=f;: A —
B. The pull-back bundles are isomorphic f;'(E,p,B) = f,'(E,p,B) if A is compact
Hausdorff or more generally paracompact.

Proof: Refer to Theorem 1.6, page 20, Vector Bundles and K-Theoryl‘”.
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5.2 Grassmann Manifolds and Conclusion

We all have encountered the n-dimensional real projective space, which is the space
of all lines through the origin in R™*!. The Grassmann manifolds can be regarded as a
generalization of real projective spaces as the ideas are very similar. And the reason why
“manifold” appears is because it can be equipped with the structure of an
n(n-k)-dimensional smooth manifold. Eventually, we will see the final conclusion that

there is a bijection between [X,B0O(n)] and Vectg(X).

Definition 5.7. Given two numbers n, k € N* and n > k. The Grassmann manifold

is defined as G, (R") := {k-dimensional linear subspaces of R“}.

From the definition we can see that RP™ is exactly G;(R™!). Now actually from
Grassmann manifolds we can construct a kind of vector bundles which has the property
that all vector bundles over paracompact spaces can be regarded as pull-backs of such

bundles.

Definition 5.8. Given a Grassmann manifold G, (R™). We define the canonical
bundles over Grassmann manifolds, which is a subset of the product space G (R™) X

R™ by Ex(R"):={(,v) € Gx(R") x R*|v € I}.

One can think of R™ as a subset of R™*!. Those subsets of R™ can also be regarded
as subsets of R™*, We have the following inclusion sequence of spaces: G(R") C
Gr(R™1) € G (R™?) < G (R™3) c --- and define the classifying space G,(R%) =
U, G (R™). Moreover we also have a similar sequence of spaces E,(R") ¢ E, (R""1) c

Ex(R™2) c E (R™*3) C - and define the universal bundle E,.(R*) =uU,, E,.(R™) (We

do not denote it by (Ek([R‘”),p, Gk(R“’)) for convenience).

Proposition 5.9. The projection p: Ex(R™) = G, (R™),p(l,v) = [ defines a vector
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bundle (E (R™),p, Gy (IR")) for both finite and infinite n.

Proof: Refer to Lemma 1.15, page 28, Vector Bundles and K-Theory*..

Theorem 5.10. Given a paracompact space X, we have a bijection [X, G,(R%)] —
Vect§(X), f = f*(Ex(R®),p, G,(R™)). i.e. a one-to-one correspondence between the set

of all homotopy classes of continuous functions from X to G,(R®) and the set of all
isomorphism classes of n-dimensional real vector bundles over X.

Proof: Refer to Theorem 1.16, page 29, Vector Bundles and K-Theory”l.

Because of the theorem above, G,(R™) is called the classifying space and E,(R")
is called the universal bundle. There is also a notation denotes G,(R™) as BO(n)
= limy_,o, G, (R™"), which is related to Lie groups and will not be introduced formally
due to the limited knowledge of the writer. So [X, G, (R®)] can be written as [X, BO(n)].
Now the problem of classifying all n-dimensional real vector bundles over X has been
transformed to the problem of understanding the set of all homotopy classes of continuous
functions from X to BO(n). When making such huge step from geometry to algebra we
should ask ourselves “Have we simplified the problem?” and “Have we lost any
information?”. The answers should be “Note that in this translation we have not lost any
information, but nor we have made our problem much easier.”™ Now we will see how
cohomology will lead us.

Recall that a continuous function f:X — BO(n) will induce a homomorphism
between cohomology groups f*: H*(BO(n); G) = H*(X; G) for an arbitrary convenient
coefficient group G.Now in order to classify the bundles we need to understand
[X, BO(n)], as the constant map and maps that are homotopic to constant map all induce
the 0 homomorphism and a constant map corresponds to the trivial bundle, we have the
trivial part of it. So how can we detect whether a map is null-homotopic or not? Of course

if a homomorphism is not trivial f*(¢) # 0 € H*(X; G) forsome ¢ € H'(BO(n);G) we
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know such f:X — BO(n) is not trivial and not null-homotopic and so is the pull-back
bundle of it. Actually we have an invariant depends only on the homotopy class of f
called the total Stiefel-Whitney class, which is an element in the mod 2 cohomology ring

H'(X;G).

5.3 Stiefel-Whitney Classes

As our question is whether a map is null-homotopic, which is equivalent to whether
the corresponding vector bundle is trivial. With the help of Stiefel-Whitney classes we can
see that the null-homotopic maps will give us the trivial Stiefel-Whitney classes. We
approach the Stiefel-Whitney classes in an axiomatic way that speeds up a bit but at the

price of its constructions.

Axioms 5.11. There is a unique sequence of functions wy, w,, -+ that gives every real
vector bundle (E,p,B) aclass w;(E,p, B) € H'(B;Z/2Z), which depends on the
isomorphism type of (E,p, B) such that

(1). wi(f‘(E)) = f‘(wi(E)] for a pull-back bundle f*(E,p,B).

(2). w(E{ @ E;) = w(E,) Uw(E;) where w=1+w; +wy + - € H(B; Z/2Z).

(3). wi(E) =0 if i > dimE.

(4). For the canonical line bundle E — RP*”, w,(E) is a generator of

H(RP*®;Z/27).

Note that the total Stiefel-Whitney class is the sum
w(E,p,B) = 1 +wi(E,p,B) + wy(E,p,B) -

So given a vector bundle (E,m, X) and ifthe map f:X — BO(n) to be detected is
actually null-homotopic. We have (E,m,X) = f*(E,(R®),p, BO(n)) then by the axiom
| we have

wi(E,m,X) = w; (f*(Ea(R*),p, BOM))) = f* (wi(En(R™),p, BOM)))

Since f*H*(BO(n);Z/2Z) —» H*(X;Z/27Z) is trivial as an induced homomorphism

61



from a null-homotopic map f:X — BO(n), we have w;(E,m, X) trivial in the mod 2
cohomology group. Moreover, knowing that w;(E,m, X) trivial for each i we can also

conclude that f is null-homotopic because of the fact that H*(BO(n),Z/27Z) =

(Z/ZZ)[Wl(En(Rm), P, BO(n)), e W“(EH(RM), p, BO(n))] the polynomial ring.

6. Computational Methods

6.1 Cell Complexes and Cellular Homology

In this section we study the basic definitions related to the CW-complex and
construction of spaces. Then cellular homology will be introduced as a computational tool

for homology groups of CW-complexes.

Definition 6.1. A CW-complex X is a topological space with a CW-decomposition,
which is an ascending chains of closed subspaces ¢ = X ' c X° c X' c -+, U;:OX"*' =
X such that (1) X° is a discrete topological space. (2) X% (the g-skeleton of X) is
formed by attaching g-cells e ~ (D9)" (topological spaces homeomorphic to the
g-dimensional open disk D7 — S9! = {x € RI|||x|| < 1}) to the (g-1)-skeleton X9~ via
the attaching maps @ : ST* (8971 ~ aD9) —» X9=1. So X" is the quotient space

X9 1 D] /

x €S9 ~ 9D, As a set it is the disjoint union X9~ [[;; e?.
x~p (x) i i ) e e;

Note that for each g-cell e/ there is a characteristic map ¢;': D] - X9 such that ¢/ o4
L
is a homeomorphism and cﬁflsga: - (pf. (3)X is given the weak topology. i.e. a subset
L

A c X isclosed ifand only if AN X9 isclosedin X9 foreach g € N. (4) If X = X9 or
q < o then we call it a finite-dimensional CW-complex, otherwise an

infinite-dimensional CW-complex.

Note that (1) CW-decomposition is not unique. (2) when q < o the CW-complex is
compact Hausdorff (for any two distinct points there are disjoint neighborhoods of them).
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(3) a CW-complex of any dimension is always normal (for any two disjoint closed subsets

there are disjoint neighborhoods of them) and any compact subset only intersects with

finite many of cells (so the closure ? of a cell only intersects with finite many of cells.
This property is called closure finite property, together with the Weak topology property
they form the name CW-complex). (4) a g-cell of a g-dimensional CW-complex is open in
X7 since it intersects e? N X* = @,k < g.And e? N X9 = e9 with the openness

preserved by homeomorphism.

Definition 6.2. Given two CW-complexes X,V with cells {e/"},{e'}. Their product
space X XY hascells {e/* x e}l}, skeletons (X % ¥)" = Upimee X 50X ™ Th
characteristic map fora cell e/" x ef' is ¢[" X ¢p/:D" x DJ' > X x Y

When at least one of X,Y is a finite-dimensional CW-complex their product complex

has the product topology.

Definition 6.3. Given a CW-complex X and its closed subspace A © X. A is called
a subcomplex of X if it is a union of cells of X. It is CW decomposition is described by

A¥ = An X*.
Note that since A is closed, the closure of each cells in A is still in A.

Definition 6.4. Given a CW-complex X and its subcomplex A < X. We call (X,A)

a CW pair.

Example 6.5. We can describe S™ with two CW decompositions. One is to consider
S™ as gluing the boundary of e™ to a single point €% by the constant map de™ — e°
hence S™ = e U e™. But in this way we cannot find the corresponding natural inclusion
5% c §* © §? in subcomplex language. So in another decomposition S™ is obtained
inductively by gluing two n-cells to the equator S™ 1. In this way S™ = 2e° U 2e' U
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2e? U+ U 2e™. And in this way we have S¥(k < n) asubcomplex of S™.

Example 6.6. The real projective plane RP" can be described as the quotient space
of §™ with antipodal points identified, which is exactly D™/~ with the antipodal points
on dD™ identified (since every point on the upper hemisphere of S™/~ is identified with
a point on the lower hemisphere and the upper hemisphere is homeomorphic to D™. Then
identifying points on equator is the same as doing it for dD"). And identifying antipodal
points of dD™ = §™ ! isexactly RP™ . So by attaching an n-cell to RP™™* by the

quotient map @™: 5"t — §™1 /~ we get RP". In this way RP" = e®Ue' U---Ue™.

Example 6.7. The complex projective plane CP" can be described as the quotient

space of §?"+1

under the equivalence relation v~Av, A € C,|A| = 1, which is the
quotient space of the disk D?" under the identification v~Av,A € C,|A| = 1 forall

v € D™ ~ §™~1 (since for a point z = (24,**,2Zp41) € S with z,.; # 0 we can
always multiply itbya A € C,|1| = 1 such that 1z = (Az,---,Azp4q1) with 1z, >0

and such points are in the same equivalence class, whose representative element

w = (Wy,--, Wnyq) with the last coordinate larger than 0 actually is a unique point

w = (W, ,Wp4q) € C* X C such that w,, ., = m.And (wy, -, wy,,0) €
D™ since Yi=q1 w; < 1. For those equivalence classes with the last coordinate zero, for
example [z'] = {z = (z,--, 2,,0) € §2"*1|z~2'}, we have (z,",2,,0) € dD?" since
Yiz12; = 1). Moreover, S"~! c C" with such equivalence relation is CP™~1. Hence we

have a CW decomposition CP™" =e® U e? U---U e,

Definition 6.8. Given a CW pair (X,A) we define their quotient X /A with cells of

X — A together with a 0-cell (collapsing A to a point). Foracell e] in X —A we have

its attaching map ¢@Z: S — X971 now its attaching map in X/A is the composition of

q
sa-1 % xa-1 5 ga-1/401
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Definition 6.9. Given a topological space X, we define its suspension SX =
X x I/~ with the equivalence relation (x;,0)~(x,,0) and (x;,1)~(x,,1) forall

X1, Xz € X. Intuitively we collapse X X {0} to a pointand X X {1} to another.

Lemma 6.10. Given a CW-complex X, we have

(1) H(X9,X91) =0 for k #+ g and is free abelian if k = g with a basis in
one-to-one correspondence with the g-cells of X.

(2) Hp(X7) =0 for k > q (soif X is finite-dimensional we have H,(X) =0 for
all k > dim(X)).

(3) There is an isomorphism i": H, (X9) 3 H(X) induced by the inclusion map
i: X9 — X for k < q. The induced homomorphism is an epimorphism if k = g.

Proof: Refer to Lemma 2.34, page 137-139, Algebraic Topology'*!.

Recall that the long exact sequence for the pairs (X9*1,X9), (X9, X971) and
(X971, X972) are respectively

a5+1

i
= Ho g (X9, X9) =5 Ho(XT) 5 Ha(X9*1) - Hy (X9, X9) = 0 > -

J ag
e = 0= Hy (X9) = Hy (X9, %Y e | Hy-1(X971) >

Jq-1

i) b Hq_l(X"_l) — Hq_l(X‘-"1,X‘?‘2) —3 ves

We define dgyy = jy0541 and dy = j,_,10; and get a sequence of homology groups

+1

vy q+1(XQ+1,X‘7) d"_, Hq(Xq,X""l) d_?Hq_l(Xq—ljxq—Z) e
And it is actually a chain complex {Hq (X9, Xq'l),dq] called cellular chain complex
since dqdgsq = dge1 = Jg-10qJq94+1 = 0 since dgj, = 0 in the long exact sequence of
(X9,X971). So one can have H,(X%*') = H,(X) by (3) in previous lemma then by the
long exact sequence of (X7*%,X?) we know imdg,, = keri, and the fact that i, is

surjective so we are able to conclude that H,(X) = H, (X7)/imdg,, by He(X9)/
keriy = imi, (First Theorem of Isomorphism). Moreover, the map j, also induces an
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isomorphism from H,(X9)/imdg,, to kerd,/imd,,, because it is injective (from the
long exact sequence) and maps imd, isomorphically onto Em(jqaaﬂ) = imd,, and
H,(X7) isomorphically onto imj, = kerd,. And j,_; as an injection has the property

that kerd, = ker(j,-,0;) = kerd;.

Definition 6.11. The homology groups of the cellular chain complex are called
cellular homology groups of X and denoted by HSW (X) and by discussion above we

have HW(X) = H,(X).

So we can have few quick applications: (1) Hy(X) = 0 if X has no g-cells. (2) If X
has no two of its cells in adjacent dimensions, then H,(X) is free abelian with basis in

one-to-one correspondence with the n-cells of X.

To compute the cellular boundary map d,, we first identify ej with the basis
element of the corresponding cellular homology group. There is a formula called Cellular
Boundary Formula which states the relationship between boundary map and degree of the
composition of some maps. The proof of the formula is written on page 140-141, Algebraic

Topology"!.

Cellular Boundary Formula. d,(ey) =Yg dageg_l. Here d,z means the degree

Pa . . . . :
of the map S?~! s L SE 1 where @ isthe attaching map and q is the quotient

n-1

map collapsing X"t — eg = toapoint.

Example 6.12. We can apply the application (2) to the CP™ which has CW
decomposition e? U e? U---U e?" in Example 6.7. There are no two of its cells in
adjacent dimensions so H,(CP™) is free abelian with basis corresponding to a g-cell so

Hy(X) = Z when there is a g-cell. So the homology groups of CP™ are

Z q=024,2n

ny =
Hq (CP )_{ 0 otherwise
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Definition 6.13. Given a continuous function f:S™ — §™,n € N*. The induced
homomorphism f,: H,(S™) = H,(S™) must be defined by a + da forsome d € Z
since H,(S") = Z. We call this d the degree of f and denote it by deg f

Here are some basic properties of degree:
(1) deglgn =1 since (1gn). = 1y, (sm.
(2) If f is not surjective, then deg f = 0 (since f is not surjective we may choose

apoint xo € S™ — f(S™) then factor f as the composition S™ - §™ — {x,}

—£> S™ where i is the inclusion. Then by the fact that S™ — {x,} is contractible so
H,(S" —{x}) = 0 hence f, =0).

(3) If f=g,then f, = g. so degf = degg. Moreover, if degf = deg g, then
f=g.

(4) degfg = deg f degg since (fg). = f.g.. Hence if f is a homotopy
equivalence we have deg f = +1.

(5) deg f = =1 if f isa reflection which switches two complementary hemispheres
with points on a chosen S™* fixed.

(6) The antipodal map a:S™ — S™, x v~ —x has degree dega = (—1)™*! since it
can be factored as a composition of n + 1 reflections, each of which changes the
sign of one coordinate in R"*1,

(7) If f has no fixed points, then deg f = (=1)"** (if f(x) # x the line segment
connecting f(x) and -x is defined by t ~ (1 —t)f(x) — tx does not pass

through the origin. So there is a homotopy F: S™ X [ —» S™ from f to the

[(1=t)f (x)~tx]

antipodal map defined by F(x,t) = EmryTEe

).

Example 6.14. As illustrated in example 6.6 we know RP™ = e Ue' U-:-Ue™ and
attaching map @™ S™™! — §""1/~ By lemma 6.10. (1) we have the cellular chain

complex
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sy dp _ dp—y do
0—Z—-Z—Z->0

So in order to compute d), we need the degree of the map go™: S¥~1 s rpn

Lgkta RP*=1/RP*=2. First we can see (") Y (RP*?) = §¥=2 c §¥~1. Then
we have Sk~1 — §k=2 ~ gk=1 y ek=1 which are mapped to RP¥~1 — RP¥~2
homeomorphically. So the map g¢™ is a homeomorphism when restricted to each
e*=1 (one antipodal and one identity). Finally we can conclude that d; = degg =
deg 15—+ + dega = 1 + (—1)*. So the cellular chain complex when n is an odd

number is

0_2 0 0
02Z-Z->Z—> —>Z—-0

When n is an even number:

2 _0_2 0
0=2Z—oZ—-Z-—2LZ-0

So the homology groups of RP™:

Zk=0ornisodd,k=n
H (RP") ={Z/2Z kisodd,0<k <n
0 otherwise

6.2 Universal Coefficient Theorem

It is very natural to ask the relationship between H,(X;G) and H,(X) @ G.As one
may mix them up in an optimistic attitude. One can see that actually it is the case when G
is free abelian. Moreover, the homology groups of a topological space and the chosen
coefficient group determine the corresponding cohomology groups. The properties of Tor

and Ext are taken from “An Introduction to Algebraic Topology”!®.

Definition 6.15. Given an abelian group A and an arbitrary short exact sequence

0> R—F—A—0 where F is free abelian (sois R as a subgroup of it). Then for an

arbitrary abelian group B we define Tor(A,B) :=ker(i @ 1g).

The following theorem tells the relationship between homology groups with
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coefficient and ordinary homology groups.

Theorem 6.16 (Universal Coefficient Theorem). Given an arbitrary topological space

X and an abelian group G, we can find such exact sequences for all g = 0:
0-H,(X)®G Y, H,(X;G) = Tor(H,-1(X),G) — 0, where the map f is defined by
£ [zq] ®Rgr- [zq ®g]. And the sequence splits. i.e.

Hy(X;G) = (Hy(X) @ G) @ Tor(H,-1(X),6)
Proof: Refer to Theorem 9.32, page 261-264, An Introduction to Algebraic

T{qulogyls'.

Properties 6.17. Here are some properties of Tor(—,—):
(1) Fix an abelian group G, Tor(—, ) is an additive covariant functor from Ab to
Ab.
(2) Given a short exact sequence 0 - A" = A - A" — 0 and a fixed abelian group
G, we have an exact sequence
0-Tor(A',G6) = Tor(4,G) > Tor(A",G) A RGC-ARG-A"RG -0
(3) Given a torsion-free abelian group A( no nontrivial element with finite order),

then Tor(A,G) = 0 for any abelian group G.
(4) Tor(®; A;,G) =@, Tor(A;, G) and Tor(A,®; G;) =@; Tor(4,G;).

(5) Tor(Z/mZ,G) = G[m] = {g € Glmg = 0}
(6) Tor(A,G) = Tor(G,A) forall A and G.

Actually by property (2) we can interpret Tor as something to measure the failure of

exactness of the tensor functor.

Example 6.18. To compute the homology group of S™,n € N with coefficient Z/2Z,
we use Theorem 6.16. so we have for g € N*:
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Ho(S™Z/22) = (Hy(S™) ® Z/2Z) @ Tor(Hy-1(S™),Z/2Z)
Since the homology groups of S™ are Z,Z @ Z and 0, which are all torsion-free

abelian groups. Hence by Property (3) we know Tor(H,_,(S™),Z/2Z) = 0
H,(S™2/2Z) = (H,(S™) ® Z/21Z)

Hence for n =0, H,(S™;Z/2Z) = {(Z/%Z) @Oﬁéffzsi =1

Z/2Z q=00rgq=n

For n € N*, H,(S™Z/2Z) = { 0 otherwise

Definition 6.19. Given an abelian group A and an arbitrary short exact sequence

0= R—>F—A—0 where F is free abelian (sois R asa subgroup of it). Then for an

arbitrary abelian group B we define

Ext(A,B) := coker(i*) = Hom(R,G) /i*(Hom(F,G))

Definition 6.20. Given an abelian group G, it is called a divisible group if for every

g € G and every n € N, there exists y € G such that g = ny.
Example 6.21. Q,R and C are all divisible groups.

Properties 6.22. Here are some properties of Ext(—,—):
(1) Given a short exact sequence 0 - A" - A —» A” — and a fixed abelian group G,
we have an exact sequence
0 = Hom(A",G) » Hom(A,G) -» Hom(A',G) — Ext(A",G) — Ext(4,G) —
Ext(A',G) - 0
(2) Given a short exact sequence 0 = G' — G — G" —, we have an exact sequence
0 - Hom(A,G'") = Hom(A,G) = Hom(A,G") — Ext(A,G') —» Ext(A,G) —
Ext(A,G'") - 0
(3) Given a free abelian group F,then Ext(F,G) = 0.
(4) Given a divisible group D, then Ext(A,D) = 0.
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(5) Ext(Z/mZ,G) = G/mG.

Similarly, we can interpret Ext as a measurement for the failure of exactness of hom

functor.

Theorem 6.23. Given a topological space X and an abelian group G, there are exact

sequences for all g € N:
0 - Ext(Hy-1(X),G) = HU(X; G) 5 Hom(H,(X),G) — 0, where

B: HY(Hom(S.(X),6)) » Hom(Hy(5.(X)),6); [¢] = @' (#'([24]) = ¢(2,) ). And the

sequence splits. i.e.
H(X;G) = Hom(H,(X),G) @ Ext(Hy—,(X),G)

Proof: Refer to Theorem 12.11, page 385, An Introduction to Algebraic Topology!'™.

This theorem reveals the relation between homology groups and cohomology groups.
Example 6.24. The cohomology groups of §™,n € N* are determined by homology

groups of S™ in the way the theorem described
HI(S™ G) = Hom(Hq(S“),G) @ Ext(Hq_l(S“), G) and since H,(S™) iseither Z

or 0, which are both free abelian. Then by property (3) we conclude

G g=norg=0

q mn. s
RS k)= { 0 otherwise

Example 6.25. The cohomology groups of RP"™ when n € N* is even: since the

homology groups of RP™ with coefficient Z are

Z g=20
H,(RP") ={Z/2Z qisodd,0<q<n
0 otherwise

So by Theorem we have

HI(RP™; G) = Hom(H,(RP™),G) @ Ext(H,—,(RP™),G)
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So for q is even,0 < g < n, we have g —1 > 0 and is odd. So
Ext(H,_,(RP™"),G) = Ext(Z/2Z,G) = G/2G by property (5) and
Hom(H,(RP™),G) = Hom(0,G) = 0.

When g > 0 isodd, we have ¢ —1 =0 iseven. So Ext(Hq_l([RP“),G) =0 and
Hom(Hq(]RP“),G) =Hom(Z/2Z,G) = {g € G|(2n)g = 0,n € N} by observation on
the value of [1]. We denote it by G[2].

When g = 0, Hom(H,(RP™),G) = G and Ext(H,_,(RP™),G) = 0.

Hence the cohomology groups of RP™ with coefficient & when n is even are:

G/2G giseven,0<g<n

HI(RP™; G) = G[2] q is odd
G g=0
0 otherwise

6.3 Coefficient as probe for null-homotopic maps

In either homology or cohomology theories, one has a functor from Top to GradedG
with a fixed abelian group G. By homotopy invariance if a map is null-homotopic we have
its induced homomorphism trivial. So by varying the coefficient group G one is able to
detect whether a map is null-homotopic or not and the choice of the coefficient group
sometimes eases the problem. But there might be blindness as we will study in this section,
that is, one may have a map that is not null-homotopic but with a trivial induced

homomorphism.

Lemma 6.26. Given a map f:5% — ¥ of degree m, then f,.: Hi(S%;G) —»
H(S¥%; G) is multiplication by m.

Proof: Given a homomorphism ¢: Gy = (&, it induces chain maps
@u:Sq(X, A; Gy) = S4(X, A; G3), which induces homomorphisms ¢.: H, (X, 4; G,) —

H, (X, A; G;)( it is indeed a chain map since
040y (2:91°[2"]) = o0 (Zi91” [00(28")]) = Zio(01”) [00 (22”)] =
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Baen (2:9°[20]) = 8 (Zi0(ai?)[25"]) = Zio(9”) [8a(2)])- Similarly the
homomorphism ¢, also commutes with the homomorphisms f, induced by f:(X,A) =

(Y,B). Now suppose f:S* — Sk, degf =m andlet ¢:Z — G,1 ~ g forsome g € G.
We have a commutative diagram

Z = H.(S%7) 5 H(5%2) =17

pl .1 o1 Lo

G = (5% 6) 5 B (s%6) = 6

So for an arbitrary a € H,(5%;7), ¢.f.(a) = p.(ma) = mga = f.o.(a) =
f.(ga) implies the f, below is multiplication by m as well.
[

Example 6.27. By the Universal coefficient theorem the homology groups of RP™ (n

is odd) with coefficient an abelian group G are

G g=0o0rg=n
G/2G q>0,qisodd

H,(RP") =
a(RP™) G[2] q > 0,qiseven
0 otherwise
When n is even we have
G g=10

G/2G q>0,qisodd
G[2] 0< g <n,qiseven
0 otherwise

H,(RP") =

Actually choosing a proper abelian group G can simplify the homology groups!

Example 6.28. By the example above the homology groups of RP™ with coefficient

Z/2Z are

Z/2Z 0<q<n

H,(RP™Z/27) =
q( /28] [ 0 otherwise

Now an example will show that how varying coefficient groups helps with detecting if

a map is null-homotopic.
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Example 6.29. Given a Moore space X = M(Z/mZ,n) (H,(X) = Z/mZ and
ﬁq(h’) = 0,Vq # n) obtained by attaching an (n+1)-cell e™* to S™ via amap of degree
m. Now consider the quotient map f:X — X/S™ =~ ™1 It induces trivial
homomorphisms f.: H.(X) — H.(S™*1) since ﬁq(S"“) =Z,qg=n+1 but HQ(X) =
Z/mZ,q = n. So by using integral homology we are not able to see if f is

null-homotopic or not. However, it will be different once we set the coefficient group as

Z/mZ. The part of the long exact sequence

0 = By (S5 2/m2) > Hoa (6 2/mB) 5 H (X/S™2/mT)
shows that f, is injective hence nontrivial because H,,.,(X;Z/mZ) = Z/mZ. Hence the

map f is not null-homotopic, which cannot be checked by integral homology.

However, there can be blindness too as one may find trivial induced homomorphism

with a map that is not null-homotopic.

Example 6.30. Consider the map f:S' —» S of degree 2. By Lemma 6.26 we have
its induced homomorphism f.: H,(S') = H,(S") is multiplication by 2. And it is
nontrivial since Hy(S') = H,(S') = Z. But if we change the coefficient group to Z/2Z,
by Lemma 6.26 we have f,: H,(S';Z/2Z) - Hq(Sl; Z/2Z) is multiplication by 2 hence

trivial.

7. Conclusion

This paper firstly introduces basic concepts in singular homology, then its axiomatic
approach. Next, we study basic definitions of cohomology, cohomology axioms and then
the ring structure. With the ring structure we begin the study of classifying vector bundles,
which ends up in the Stiefel-Whitney class. In the end, we present cellular complex, the
Universal coefficients theorem and then compute the (co)homology groups of certain
topological spaces. Moreover, we tell the advantages and blindness of using different

coefficient groups to detect if a map is null-homotopic.
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