
CLC Number

UDC Available for reference !Yes !No

Undergraduate Thesis

Thesis Title: Model-Independent Infinity-Category Theory

with Motivation from First-Order Logic

Student Name: Zian Zhao

Student ID: 12012720

Department: Department of Mathematics

Program: Mathematics and Applied Mathematics

Thesis Advisor: Assistant Professor Yifei Zhu

Date: May 8, 2024

 



COMMITMENT OF HONESTY

1. I solemnly promise that the paper presented comes from my

independent research work under my supervisor’s supervision. All

statistics and images are real and reliable.

2. Except for the annotated reference, the paper contents no other

published work or achievement by person or group. All people making

important contributions to the study of the paper have been indicated

clearly in the paper.

3. I promise that I did not plagiarize other people’s research achievement

or forge related data in the process of designing topic and research

content.

4. If there is violation of any intellectual property right, I will take legal

responsibility myself.

Signature:

Date:



诚信承诺书

1.本人郑重承诺所呈交的毕业设计（论文），是在导师的指导下，

独立进行研究工作所取得的成果，所有数据、图片资料均真实可靠。

2.除文中已经注明引用的内容外，本论文不包含任何其他人或集

体已经发表或撰写过的作品或成果。对本论文的研究作出重要贡献的

个人和集体，均已在文中以明确的方式标明。

3.本人承诺在毕业论文（设计）选题和研究内容过程中没有抄袭

他人研究成果和伪造相关数据等行为。

4.在毕业论文（设计）中对侵犯任何方面知识产权的行为，由本

人承担相应的法律责任。

作者签名：

年 月 日



Model-Independent Infinity-Category Theory
with Motivation from First-Order Logic

Zian Zhao

（Department of Mathematics Instructor：Yifei Zhu）

[ABSTRACT]: Model-independent∞-category theory has had abundant ap-

plications in homotopy theory and algebraic topology, with its choices of foun-

dations probed over decades. The first chapter aims to demonstrate the process

of defining the notion of ∞-categories from ordinary 1-categories. We start

from a topological point of view, by constructing higher-dimensional structures

of path homotopy classes of topological spaces from fundamental groupoids.

These structures of various dimensions can then assemble into categories of

the corresponding dimensions, provided that the definitions for them are well-

behaved. We demonstrate details about data in 2-categories, not only because

it is the first step to construct higher-dimensional categories, but also for the

reason that weak ∞-categories — ∞-categories with weakly invertible mor-

phisms of dimensions greater than 1 — along with ∞-functors and ∞-natural

transformations assemble into a Cartesian closed 2-category ∞-CAT. In the

second chapter, we shift our focus to choices of foundations for various math-

ematical subjects. First-order logic and its derived formal set theory perform

well for setting up a rigorous foundation for classical mathematics. Neverthe-

less, limitations of first-order logic as a foundation are prominently reflected

when applying to category theory and ∞-category theory. A new foundation

called type theory has been proposed and shown its compatibility when dealing

with these modern mathematical subjects, which is briefly discussed at the end.
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[摘要]：独立于模型的无穷范畴理论在同伦论和代数拓扑领域中有

着丰富的应用，其构架基础的选择在过去几十年中得到了探索。本文

第一章旨在展现从一般的一阶范畴开始定义无穷范畴的过程。我们从

拓扑的角度出发，从基本群胚开始建立拓扑空间上道路同伦类的高维

结构。这些不同维度的结构可以装配到相应维度的范畴中，前提是这

些范畴的定义有良好的基本性质。我们给出定义二阶范畴中各个要素

的过程细节，不仅仅是因为这是构建高维范畴的第一步，更因为弱无

穷范畴——维度大于一的态射都是弱可逆的无穷范畴——以及无穷

函子、无穷自然变化构成了一个笛卡尔闭的二阶范畴。在第二章中，

我们将重点转移至各种数学研究主题的构架基础的选择上。一阶逻辑

及其导出的规范集合论在为经典数学构架基础上表现良好。然而，当

应用于范畴论和无穷范畴论时，一阶逻辑作为构架基础的局限性被显

著地反应出来。一个新的称作类型论的构架基础被提出，其在处理这

些现代数学的主题时显示出很好的优势。这将在最后简要讨论。

[关键词]：群胚；范畴；同伦；一阶逻辑；类型论
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1. Introduction to∞-Category Theory
1.1 From Fundamental Groupoids to Higher Constructions

The concept ‘groupoid’ was originally ignited from analyzing the structure of paths in

a topological space. In a topological space, composition of two paths with the same terminal

point of the first and original point of the second is generically defined to be the concatenation

by reparametrizing with double speed. However, this partial binary operation has a fatal

weakness— it is not associative. To deal with this problem, topologists invented the concept

of ‘homotopy’, partitioning the set of paths between two fixed points into equivalence classes

of based homotopy called path classes. Composition of path classes with common terminal

and original points can then be well-defined as the class containing the composition of any

two paths in their corresponding classes respectively, provided that homotopy property is

preserved under composition of paths between these points. Besides the associativity of this

partially-defined binary operation, each path class also has the class containing the constant

loop based at its original point as a right identity and that based at its terminal point as a left

identity likewise, while the class containing the inverse path serves as the two-sided inverse

to its right and left identity. If we restrict ourselves to a fixed point, the set of path classes

consisting of loops based at that point equipped with this operation forms a group, called the

fundamental group of the space based at that point[1]. Moreover, for path-connected points,

the fundamental groups based at them are the same up to group isomorphism.

Like the concept of group abstracting the structure of the set of path classes starting and

ending at a fixed point, how can we extract a similar abstract one to be applicable on the

structure of path classes of a topological space? The information of a group is apparently

not enough, since we have to describe the relations between path classes based at different

points via any path classes connecting them. From category theory, a category with exactly

one object admits a monoid consisting of its morphisms, with monoid identity as the identity

morphism and monoid multiplication as the composition of morphisms (notice that in such

a category, any pair of morphisms are composable). If all the morphisms of this category are
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invertible, i.e. they are isomorphisms, then such a monoid is meanwhile a group, with group

inverse of a morphism as its inverse morphism. Analogously, a category with all morphisms

invertible should also have some utilization. This is just an ideal choice for abstracting the

structure we have mentioned above and is exactly what a groupoid means[2].

Definition 1.1. A groupoid is a category all of whose morphisms are isomorphisms.

It is easy to see ifG is a groupoid, then for any objectX ofG, the collection ofmorphisms

f : X → X is a group, as they form the morphisms of the subcategory with the single

object X .

Proposition 1.2. Let X be a topological space. The collection of path homotopy classes

between points ofX forms a groupoid, whose objects are all points ofX , morphisms are all

path classes, with identity morphisms as the classes containing constant loops, composite

morphisms as compositions of path classes.

Proof. It is easy to verify that it is a category. For any morphism [p] : x → y where

x, y are points of X and p is a path from x to y, the inverse path class [p−1] is the inverse

morphism of [p]. Hence every morphism is invertible.

Definition 1.3. The collection of path classes of a topological space equipped with its

groupoid structure is called the fundamental groupoid of the space.

Like 1-category theory provides a relatively abstract prototype for studying structures

of path homotopy classes of topological spaces,∞-category theory plays its role in studying

the structures of path homotopy classes of all dimensions of topological spaces. We are

now going to discuss model-independent∞-categories and see its power in analyzing these

structures in topological spaces.

1.2 Model-Independent∞-Category Theory

In category theory, there are three basic concepts: category, functor and natural trans-

formation. Analogously, to develop ∞-category theory, we have to define the notions of
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∞-category, ∞-functor and ∞-natural transformation. The idea for construction them is

unsurprising: first define them for dimension 2[3] and then naturally extend them.

Before starting, let us recall the definitions of dimension 1. In this case, we often omit

to write the dimension. In fact, modern mathematicians, especially for those in the area of al-

gebra and topology, already get familiar with these notions, as they have been invented and

drastically developed since 1945. We only write the definition of natural transformations

here, since it plays an important role in construction higher-dimensional categories. Defini-

tions of categories and functors will be restated in Section 2.2, for verifying the coincidence

of them in first-order logic with the ordinary ones.

Definition 1.4. Let C,D be categories, F,G : C → D be functors. A natural transforma-

tion ϕ from F to G is a map from the collection of objects of C to the collection of mor-

phisms of D that sends each object X in C to a morphism ϕ(X) : FX → GX such that

ϕ(Y ) ◦ Ff = Gf ◦ ϕ(X) whenever f : X → Y is a morphism in C, denoted as ϕ : F → G

(or ϕ : F → G : C → D).

Remark 1.5. It should be aware that the notation ϕ : F → G has nothing to do with saying

that ϕ is a map from F to G, just like the notation f : X → Y for a morphism, though the

latter one often even makes no sense to be regarded as a map.

Definition 1.6. Let C,D be categories, F : C → D be a functor. The identity (natural)

transformation 1F : F → F is defined to be the natural transformation from F to itself that

sends X to the identity morphism 1FX , i.e. 1F (X) = 1FX : FX → FX .

It is easy to verify that the identity of a functor is indeed a natural transformation. More-

over, we can define composition between natural transformations.

Definition 1.7. Let C,D be categories, F,G,H : C → D be functors. Given two natural

transformations ϕ : F → G and ψ : G → H , the composite (natural) transformation

ψ.ϕ : F → H is defined by setting ψ.ϕ(X) = ψ(X) ◦ ϕ(X) : FX → HX whenever X is

an object of C.
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A natural transformation ϕ : F → G : C → D can also be combined with functors

towards C and away from D to form new natural transformations. This is what whisker

composition means.

Definition 1.8. Let C,D be categories, F,G : C → D be functors, ϕ : F → G be a

natural transformation. Given a category C′ and a functor H : C′ → C, the left whisker

composite (natural) transformation ϕ · H : F ◦ H → G ◦ H : C′ → D is defined by

setting ϕ · H(X ′) = ϕ(HX ′) whenever X ′ is an object of C′; analogously, given a cate-

gory D′ and a functor K : D → D′, the right whisker composite (natural) transformation

K · ϕ : K ◦ F → K ◦ G : C → D′ is defined by setting K · ϕ(X) = Kϕ(X) whenever X

is an object of C; having these definitions, the whisker composite (natural) transformation

K · ϕ ·H : K ◦ F ◦H → K ◦ G ◦H : C′ → D′ is naturally defined to be K · (ϕ ·H) (or

equivalently, (K · ϕ) ·H).

Compositions between natural transformations and natural transformations, natural

transformations and functors, have satisfactory properties as follows. The proofs of them

are straightforward and easy.

Proposition 1.9. Provided with the notions for categories C,D, functors F,G,H,K,H ′, K ′,

natural transformations ϕ,ψ,χ and their composites and whisker composites well-defined

when occurring, we have

1) associativity:

χ.(ψ.ϕ) = (χ.ψ).ϕ,

K ′ · (K · ϕ ·H) ·H ′ = (K ′ ◦K) · ϕ · (H ◦H ′);

2) identical property:

ϕ.1F = ϕ = 1G.ϕ,

K · 1F = 1K◦F ,

1F ·H = 1F◦H ,
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K · 1F ·H = 1K◦F◦H ,

ϕ · 1C = ϕ = 1D · ϕ.

3) distributivity:

K · (ψ.ϕ) ·H = (K · ψ ·H).(K · ϕ ·H).

Besides, we have an interchange property as follows.

Proposition 1.10. Let C,D,E be categories, F,G : C → D and H,K : D → E be functors,

ϕ : F → G and ψ : H → K be natural transformations. Then

(ψ ·G).(H · ϕ) = (K · ϕ).(ψ · F ).

Having the idea of categories, functors and natural transformations, we are next to define

2-categories. It should be applicable to the category of (locally small) categories as a prime

example. Thus, like natural transformations define operations between functors, morphisms

betweenmorphisms are to be introduced, while Proposition 1.9 and Proposition 1.10 provides

rules for them.

Definition 1.11. A 2-category C is a category such that

1) for each pair of objects X,Y and each pair of morphisms f, g : X → Y , there exists one

specific collection, denoted by C2(f, g), whose elements are called 2-morphisms and written

as ϕ : f → g (or ϕ : f → g : X → Y );

2) for each pair of objects X,Y and each morphism f : X → Y , there exists one specific

element of C2(f, f) called the identity 2-morphism of f , denoted by 1f ;

3) for each pair of objects X,Y , each triple of morphisms f, g, h : X → Y , and each 2-

morphisms ϕ : f → g and ψ : g → h, there exists one specific 2-morphism in C2(f, h)

called the composite 2-morphism of ϕ and ψ, denoted by ψ.ϕ;

4) for each 4-tuple of objects X,Y,X ′, Y ′, each morphisms h : X ′ → X and k : Y → Y ′,

each pair of morphisms f, g : X → Y and each 2-morphism ϕ : f → g, there exists one

specific 2-morphism in C2(k ◦ f ◦ h, k ◦ g ◦ h) called the whisker composite 2-morphisms

of f via h and k, denoted by k · ϕ · h;
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5) provided with the notions for objects X,Y , morphisms f, g, h, k, h′, k′, 2-morphisms

ϕ,ψ,χ and and their composites and whisker composites well-defined when occurring, there

are

χ.(ψ.ϕ) = (χ.ψ).ϕ,

k′ · (k · ϕ · h) · h′ = (k′ ◦ k) · ϕ · (h ◦ h′),

ϕ.1f = ϕ = 1g.ϕ,

k · 1f · h = 1k◦f◦h,

1Y · ϕ · 1X = ϕ,

k · (ψ.ϕ) · h = (k · ψ · h).(k · ϕ · h);

6) for each triple of objects X,Y, Z , each pair of morphisms f, g : X → Y , each pair of

morphisms h, k : Y → Z, each 2-morphisms ϕ : f → g and ψ : g → h, there is

(ψ · g).(h · ϕ) = (k · ϕ).(ψ · f),

and the whisker composite 2-morphism of ϕ and ψ, denoted by ψ · ϕ, is defined to be the

element (ψ · g).(h · ϕ) in C2(h ◦ f, k ◦ g).

Remark 1.12. Whisker compositions of 2-morphisms via two morphisms indeed in-

duce left and right whisker compositions of 2-morphisms via one morphism, by letting

ϕ ·h := 1Y ·ϕ ·h : f ◦h → g ◦h : X → Y ′ and k ·ϕ := k ·ϕ ·1X : k ◦f → k ◦g : X ′ → Y .

Actually whisker compositions of composable 2-morphisms induce whisker compositions of

2-morphisms via two morphisms, as k · ϕ · h = 1k · ϕ · 1h.

Proposition 1.13. Let C be a 2-category. Provided the notions for 2-morphisms ϕ,ψ,χ in C

and their whisker composites well-defined when occurring, we have

1) associativity:

χ · (ψ · ϕ) = (χ · ψ) · ϕ,

2) identical property:

ϕ · 11X = ϕ = 11Y · ϕ.
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Proposition 1.14. Let C be a 2-category,X,Y, Z be objects, f, g, h : X → Y be morphisms,

r, s, t : Y → Z be morphisms, ϕ : f → g,ψ : g → h,σ : r → s, τ : s → t be 2-morphisms.

Then we have the middle-four interchange property as follows:

(τ.σ) · (ψ.ϕ) = (τ · ψ).(σ · ϕ).

Therefore, a 2-category is just a category, i.e. a collection of objects and morphisms, in

addition to a collection of 2-dimensional morphisms defined between parallel morphisms.

And 2-morphisms with adjacent parallel morphisms have compositions analogous to those

for morphisms, but there are somethingmore than data in categories—whisker compositions

between 2-morphisms with adjacent objects. These compositions are both associative and

satisfy other well-behaved properties.

Having giving a formal definition of a 2-category, we can inductively define morphisms

of any dimension and then assemble objects, morphisms and higher-dimensional morphisms

into a higher-dimensional category. The notion of ∞-categories was first introduced for

solving the problem of Grothendieck’s homotopy hypothesis, which posits that the funda-

mental∞-groupoid construction— higher-dimensional version of fundamental groupoids in

topological spaces — defines an equivalence between homotopy types and∞-groupoids[4].

Homotopy types can be understood as isomorphism classes of objects in the homotopy cat-

egory of topological spaces, partitioning spaces into homotopy equivalence classes. This

structure can actually be assembled into a weak∞-category, called the weak∞-category of

topological spaces, in which all higher morphisms are weakly invertible. ∞-groupoids, on

the other hand, are weak ∞-categories in which all morphisms are weakly invertible. The

notion of weak ∞-categories have much more applications in algebraic topology than ∞-

categories. Models of weak ∞-categories include, in order of appearance, simplicial cat-

egories, quasi-categories, relative categories, Segal categories, complete Segal categories

and others as well. They have satisfactory properties in subjects they belong to. However,

model-independent ∞-category theory is also meaningful to analyze[5], which has been de-

veloped through this section. Though its definition was not explicitly displayed, the idea of
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its structure is analogous to 2-categories. Moreover, when restricting to weak∞-categories,

we have the following connections with a particular 2-category.

Theorem 1.15. The collection of weak ∞-categories, weak ∞-functors and weak ∞-

transformations assembles into a Cartesian closed 2-category[6].

The 2-category consisting of weak ∞-categories, weak ∞-functors and weak ∞-

transformations is denoted by ∞-CAT. It is surprising that a large portion of model-

independent ∞-category theory can actually be involved in the theory of this 2-category.

Therefore the work we have done for 2-categories are not only used for deriving the concept

of∞-categories, but also for exploring properties of them, including those models in various

subjects.

Logically speaking, category theory provides an alternative choice of ZFC set theory to

conduct mathematical study. To give more precise explanations for this, we are to discuss

mathematical logic, among which the most fundamental and easy-approaching one is first-

order logic. It serves as a foundation of mathematical world, including formal set theory and

category theory.
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2. Reimagining the Foundations of Category Theory
Logic, or mathematical logic, stays in the core of mathematics. Like vector spaces arose

historically to represent the 3-dimensional physical space we live, mathematical logic serves

as a similar role where the particular reality it attempts to represent is just the mathematics

itself. It is a prototype, i.e. a reduced model of the universe of mathematics, with which

we already get familiar[7]. In other words, we are doing logic by means of knowledge of

mathematics we have studied. It easily provides a target for polemic attack that we are using

mathematics to demonstrate itself, which is a vicious circle. The fact, necessarily, is not, since

we are here using different level of languages, say ’intuitive language’ and ’formal language’.

The mathematical world we are facing everyday and which we are going to formalize, is on

the intuitive level, whereas the process of formalization is on the formal level. Logicians also

use ’meta-language’ and ’object language’ to distinguish them, in the sense that the former

one describes the latter. But notice that there is neither ground level nor top level. Whichever

level our language stands, there is always an object language that formalizes it, as well as a

relatively intuitive meta-language that describes it. It is feasible to build all of mathematics

’ex nihilo’ but should be conducted based on the world we live in.

Modern mathematics, at least the classical parts, are based on set theory (usually ZFC

set theory) which plays its role as a foundational framework. As argued previously, formal

set theory has intuitive classical mathematics as its meta-linguistic world. To distinguish sets

in formal set theory from intuitive sets, we will henceforth always use the word ’collections’

to denote the intuitive ones. Sometimes, however, we also use the same word to represent

both the intuitive and formal meanings for an object. For example, positive integers have

widespread utilization in the intuitive sense throughout the mathematical context, while we

abuse the name and notation to represent the formal ones in set theory as well. Formal set

theory is so substantial in classical mathematics that it is often placed within the scope of

logic by mathematicians. However, it is to some extent not, since there is a more fundamen-

tal subject — first-order predicate calculus — without which even formal set theory would
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vanish. ’First-order’ here means the variables we use as placeholders in quantified sentences

have objects as their intended range. By contrast, for instance, second-order version permits

properties of objects in this range. First-order predicate calculus is thus the backbone of

first-order logic, the one that formalizes all intuitive classical mathematical subjects based

on set theory, which of course include set theory itself. We are next then to provide some

details about it. Later will we also see its applications on ordinary categories and limitations

when encountering these non-classical mathematical objects, including ∞-category theory

as well.

Remember again, that all we are going to do is to formalize the intuitive mathematical

world!

2.1 First-Order Predicate Calculus

Before starting, we should make it clear that all the concepts we are going to use which

formally originate from ZFC set theory, such as integers, cardinality of sets, maps between

sets, are in their intuitive meanings.

Definition 2.1. The collection of logical symbols consists of the following pairwise distinct

entities:

1) the countable collection of variables, often denoted as V = {vn : n ∈ N},

2) the closing parenthesis ) and the opening parenthesis (,

3) the connectives: the negation ¬, the disjunction ∨, the conjunction ∧, the implication⇒

and the equivalence ⇔,

4) the universal quantifier ∀ and the existential quantifier ∃.

The logical symbols are certain mathematical objects, whose definitions are, unfortu-

nately, difficult to explicitly expressed. A definition we commonly treat should be formally

reducible in the sense that every subject defined could in principle be replaced by the phrase

that defines it without affecting the essence of the subject. But this process of reduction must

stop eventually, otherwise there would be a ridiculously endless regress. So at the beginning

of our exposition, there must be some mathematical objects which we do not define in terms
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of others but merely take as given: they are called primitives. Similarly, mathematical proofs

start somewhere as well — there must be some propositions that are not proved but can be

used in the proofs they follow: they are called axioms[8].

Attitudes towards the understanding of primitives and axioms vary among logicians.

They belong to an interesting and dialectic part of the philosophy of mathematics which,

however, is too far away from the subject we concentrate on. It is enough at this stage to

treat primitives by platonic way — as entities whose meanings are understood in priority in

the ordinary world, e.g. the logical symbols. Each symbol is informally defined by its name

which suffices to indicate the intended meaning and role it plays. The only one thing that

needs commenting is the cardinality of the collection of variables: it is countable since we

need and only need arbitrarily finitely many variables in the context. On the other hand,

axioms should be regarded as truths (or, sometimes more accurate, assumptions) which we

suppose in order to demonstrate the properties of structures that exemplify them, and this is

what implicationists often do. We will see their places in Definition 2.12.

After having these logical symbols as primitives, let us then define first-order languages

and related concepts.

Definition 2.2. A (first-order) language L is a collection consisting of

1) the logical symbols,

2) a collection C(L) whose elements are called constants and which is disjoint from the

collection of logical symbols,

3) for each n ∈ N∗, a pairwise disjoint collection Fn(L) whose elements are called n-ary

functions (or functions with arity n) and which is disjoint from the collections of logical

symbols and constants,

4) for each n ∈ N∗, a pairwise disjoint collection Rn(L) whose elements are called n-ary

relations (or relations with arity n) and which is disjoint from the collections of logical

symbols, constants and functions of each arity.

A language is said to be with equality if an entity ≃ called equality is a particular 2-ary
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relation of it. Moreover, the elements that are not logical symbols of a language are called

its non-logical symbols.

For first-order languages, the unchanged part is logical symbols. Therefore, when

referring to a language, it is enough to only speak about its non-logical symbols. In

most cases, the collections of constants, functions and relations of each arity is finite, and

only finitely many of them is nonempty. Thus we can, for instance, use the description

‘let L = ⟨c, R, S, f, g⟩ be a language with equality where c is a constant, R is a 2-ary rela-

tion, S is a 3-ary relation and f, g are 1-ary relations’ to mean that the language L we con-

sider has C = {c}, F1 = {f, g}, Fn = ∅ for n " 2, R2 = {R,≃}, R3 = {S} and Rn = ∅

forn = 1 andn " 4. The order of constants, functions and relations we place is not important

and can be arbitrary.

Definition 2.3. Let X be a collection. The collection W(X) of words of X consists of

all finite sequences of X , where we regard any element of X as a 1-sequence. We use the

notation x1 . . . xn for a word with n elements x1, . . . , xn, respectively.

Definition 2.4. Let L be a language. The collection T (L) of terms of L is the smallest

subcollection of W(L) that contains V ∪ C(L) and such that ft1 . . . tn ∈ T (L) when-

ever n ∈ N∗, f ∈ Fn(L) and t1, . . . , tn ∈ T (L).

Proposition 2.5. For a language L, set

T0(L) = V ∪ C(L),

Tk+1(L) = Tk(L) ∪
(
⋃

n∈N∗

{ft1 . . . tn : f ∈ Fn(L), t1 ∈ Tk(L), . . . , tn ∈ Tk(L)}
)

(k ∈ N),

Then T (L) =
⋃
n∈N

Tn(L).

Remark 2.6. Given a language L and a term t ∈ T (L), there exists n ∈ N∗ and pair-

wise distinct i1, . . . , in ∈ N such that the variables having at least one occurrence in t are

among vi1 , . . . , vin , which we write t as t[vi1 , . . . , vin ] to indicate. There exists a case where

no variable has any occurrence in t, which we say t a closed term. Notice that there always

exists m ∈ N such that t = t[v0, . . . , vm].
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Definition 2.7. Let L be a language. The collection A(L) of atomic formulas of L consists

of all words of the form Rt1, . . . , tn where n ∈ N∗, R ∈ Rn(L) and t1, . . . , tn ∈ T (L).

Remark 2.8. When writing an atomic formulaRt1t2 with a 2-ary relationR, it is sometimes

more common to use the notation t1Rt2 instead. One typical example is to write t1 ≃ t2

instead of≃ t1t2. We should always be aware that this does not affect the unique readability

of the syntax.

Definition 2.9. Let L be a language. The collection F(L) of formulas

of L is the smallest subcollection of W(L) that contains A(L) and such that

¬F, (F ∨ G), (F ∧ G), (F ⇒ G), (F ⇔ G), ∀vnF, ∃vnF ∈ F(L) whenever F,G ∈ F(L)

and n ∈ N.

Proposition 2.10. For a language L, set

F (0)(L) = A(L),

F (k+1)(L) = F (k)(L) ∪ {¬F : F ∈ F (k)(L)} ∪ {(FαG) : F,G ∈ F (k)(L),α ∈ {∨,∧,⇒,⇔}}
∪ {QvnF : F ∈ F (k)(L), n ∈ N, Q ∈ {∀, ∃}} (k ∈ N),

Then F(L) =
⋃
n∈N

F (n)(L). (We use superscripts other that subscripts here just to avoid

abuse with the notations for the collections of functions of L with fixed arity.)

Remark 2.11. Given a language L, a formula F ∈ F(L) and k ∈ N, the occurrence of vk

in F , if any, is called free if it is not quantified by ∀ or ∃, i.e. it is not in any segment of F

of the form QvkG where Q ∈ {∀, ∃} and G ∈ F(L), and vk itself is called free in F if it

has at least one free occurrence in F . Similarly as Remark 2.6 stated, there exists n ∈ N

and pairwise distinct i1, . . . , in ∈ N such that the free variables in F are among vi1 , . . . , vin ,

which we write F as F [vi1 , . . . , vin ] to indicate. There exists a case where F has no free

variable, which we say F is a closed formula. Notice that there always exists m ∈ N such

that F = F [v0, . . . , vm].

Definition 2.12. Let L be a language. A theory T of L is a collection of closed formulas

of L, and elements of T are called its axioms.
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The word ‘structure’ in mathematics is generally understood as a collection on which

certain functions and relations are defined. The languages just defined serve as systems of

alphabet and syntax for conducting analysis on structures, while structures provide models

for corresponding languages. A languagewill make nomeaningful utilizationwithout certain

structure, and a structure needs to be expressed by a language under consideration. We are

next to present the definition of a structure of a language and then determine interpretations of

terms as well as satisfactions of formulas of that language. To distinguish between intuitive

and formal sense, we often use the word ‘model’ for the formal one.

Definition 2.13. Let L be a language. A model (or structure) M of L is a non-empty col-

lection such that

1) each constant c has a specified element cM of M called the interpretation of c in M,

2) each n ∈ N∗ and each n-ary function f has a map f
M from Mn to M called the inter-

pretation of f in M,

3) each n ∈ N∗ and each n-ary relation R has a subcollection R
M of Mn called the inter-

pretation of R in M.

In most cases, equality pertains in structures we consider in mathematics. Such a struc-

ture(model) has the following definition.

Definition 2.14. Let L be a language with equality. A model M of L is said to respect

equality if the interpretation≃M of the equality≃ inM is dia(M) = {(a, b) ∈ M2 : a = b}.

To define a model of a given language, it suffices to determine the underlying col-

lection and interpretations of each non-logical symbols in that collection. For instance, let

L = ⟨c, f, R⟩ be a language with equality, where c is a constant, f is a 1-ary function and

R is a binary relation, then M = R is a model of L that respects equality where cM = π,

f
M

= cos, RM
=#R and ≃M = dia(R), which can be written as ‘M = ⟨R,π, cos,#R⟩

respecting equality’. When using this notation, we should always put the underlying collec-

tion at the most front and the places of interpretations respectively corresponding to those of

the non-logical symbols of the language we write.
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Definition 2.15. Let L be a language, M be a model of L. For any t ∈ T (L), sup-

pose t = t[vi1 , . . . , vin ] for some n ∈ N∗ and pairwise distinct i1, . . . , in ∈ N. Let a1, . . . , an

be elements of M. The interpretation of t in M when vi1 , . . . , vin are interpreted respec-

tively by a1, . . . , an is an element of M, denoted by t
M
[vi1 | a1, . . . , vin | an], defined as

follows:

1) tM[vi1 | a1, . . . , vin | an] = aj whenever t = vij ∈ V for some j ∈ {1, . . . , n},

2) tM[vi1 | a1, . . . , vin | an] = cM whenever t = c ∈ C(L),

3) tM[vi1 | a1, . . . , vin | an] = f
M
(t1

M
[vi1 | a1, . . . , vin | an], . . . , tk

M
[vi1 | a1, . . . , vin | an])

whenever t = ft1 . . . tk for some k ∈ N∗, f ∈ Fk(L), t1, . . . , tk ∈ T (L) and we have

defined t1
M
[vi1 | a1, . . . , vin | an], . . . , tk

M
[vi1 | a1, . . . , vin | an].

Remark 2.16. This definition is well-defined. Firstly, it goes through every case

of the form of t by induction. Secondly, the interpretation of t is indepen-

dent of different expressions of it, i.e. for any m ∈ N∗, pairwise distinct

in+1, . . . , in+m ∈ N which are also distinct from i1, . . . , in and b1, . . . , bm ∈ M, (notice

that t = t[vi1 , . . . , vin ] = t[vi1 , . . . , vin , vin+1 , . . . , vin+m ])

t
M
[vi1 | a1, . . . , vin | an] = t

M
[vi1 | a1, . . . , vin | an, vin+1 | b1, . . . , vin+m | bm],

and for any n-permutation σ,

t
M
[vi1 | a1, . . . , vin | an] = t

M
[viσ(1)

| aσ(1), . . . , viσ(n)
| aσ(n)].

Remark 2.17. When t is a closed term of L, there is no variable in t, thus we can just say

about ‘the interpretation of t in M’ with no condition, which is denoted by tM.

Definition 2.18. Let L be a language, M be a model of L. For any F ∈ F(L), suppose

F = F [vi1 , . . . , vin ] for some n ∈ N∗ and pairwise distinct i1, . . . , in ∈ N. Let a1, . . . , an

be elements of M. Then F is said to be satisfied in M when vi1 , . . . , vin are interpreted

respectively by a1, . . . , an, denoted as M |= F [vi1 | a1, . . . , vin | an], if

1) (t1
M
[vi1 | a1, . . . , vin | an], . . . , tk

M
[vi1 | a1, . . . , vin | an]) ∈ R

M whenever

F = Rt1 . . . tk ∈ A(L) for some k ∈ N∗, R ∈ Rk(L) and t1, . . . , tk ∈ T (L),
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2) M ̸|= G[vi1 | a1, . . . , vin | an] whenever F = ¬G for some G ∈ F(L),

3) M |= G[vi1 | a1, . . . , vin | an] or M |= H[vi1 | a1, . . . , vin | an] whenever F = (G ∨H)

for some G,H ∈ F(L),

4)M |= G[vi1 | a1, . . . , vin | an] andM |= H[vi1 | a1, . . . , vin | an] whenever F = (G∧H)

for some G,H ∈ F(L),

5)M ̸|= G[vi1 | a1, . . . , vin | an] orM |= H[vi1 | a1, . . . , vin | an]wheneverF = (G ⇒ H)

for some G,H ∈ F(L),

6) either M |= G[vi1 | a1, . . . , vin | an] and M |= H[vi1 | a1, . . . , vin | an], or else

M ̸|= G[vi1 | a1, . . . , vin | an] and M ̸|= H[vi1 | a1, . . . , vin | an] whenever F = (G ⇔ H)

for some G,H ∈ F(L),

7) for every a ∈ M , M |= G[vm | a, vi1 | a1, . . . , vin | an] whenever F = ∀vmG for some

G ∈ F(L) and m ∈ N− {i1, . . . , in},

8) there exists a ∈ M such that M |= G[vm | a, vi1 | a1, . . . , vin | an] whenever F = ∃vmG

for some G ∈ F(L) and m ∈ N− {i1, . . . , in},

9) for every a ∈ M , M |= G[vi1 | a1, . . . , vij | a, . . . , vin | an] whenever F = ∀vijG for

some G ∈ F(L) and j ∈ {1, . . . , n},

10) there exists a ∈ M such that M |= G[vi1 | a1, . . . , vij | a, . . . , vin | an] whenever

F = ∃vijG for some G ∈ F(L) and j ∈ {1, . . . , n}.

Remark 2.19. This definition is well-defined. Firstly, it goes through every case

of the form of F by induction. Secondly, the satisfaction of F is indepen-

dent of different expressions of it, i.e. for any m ∈ N∗, pairwise distinct

in+1, . . . , in+m ∈ N which are also distinct from i1, . . . , in and b1, . . . , bm ∈ M, (notice

that F = F [vi1 , . . . , vin ] = F [vi1 , . . . , vin , vin+1 , . . . , vin+m ])

M |= F [vi1 | a1, . . . , vin | an] if and only if

M |= F [vi1 | a1, . . . , vin | an, vin+1 | b1, . . . , vin+m | bm],

and for any n-permutation σ,

16



M |= F [vi1 | a1, . . . , vin | an] if and only if M |= F [viσ(1)
| aσ(1), . . . , viσ(n)

| aσ(n)].

Moreover, we can see this definition coincides with the meanings of the logical symbols in

the intuitive mathematical world.

Remark 2.20. When F is a closed formula of L, there is no free variable in F , thus we

can just say about whether ‘F is satisfied in M’ or not with no condition, which is denoted

as M |= F . This can be generated to theories of L. In fact, the following definitions about

theories all apply to closed formulas, as long as we modify a little by regarding a closed

formula as a theory with one axiom.

Definition 2.21. Let L be a language, M be a model of L. Given a theory T of L, it is said

to be satisfied in M if each axiom of T is satisfied in M, denoted as M |= T .

Definition 2.22. Let L be a language. Given a theory T of L, it is called consistent if it is

satisfied in at least one model of L, otherwise it is called contradictory.

Definition 2.23. Let L be a language. Given a theory T of L, it is called universally valid

if it is satisfied in any model of L, denoted as ⊢ T .

Definition 2.24. Let L be a language. Given two theories T, S of L, S is called a (semantic)

consequence of T if every model of L that satisfies T also satisfies S, denoted as T ⊢ S.

Remark 2.25. We use the word ‘semantic’ here to distinguish from ‘syntactic’. A syntactic

consequence means that we can derive(prove) one from another by a formal proof. We will

not necessarily introduce any formal proof theory here, thanks to the Gödel’s completeness

theorem, which states that the notions of semantic consequence and syntactic consequence

make no difference. Henceforth, we will ignore the two adjectives and just say ‘consequence’.

Definition 2.26. Let L be a language. Two theories T, S of L are called universally equiv-

alent if both T ⊢ S and S ⊢ T , denoted as T ∼ S.

There are many typical properties about universal validness, universal equivalence and

consequence in first-order predicate calculus. However, we will not list them out but rather

mention and explain any in need.
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Last but not least, we are to introduce maps between models of a language that ‘respect’

interpretations of non-logical symbols.

Definition 2.27. Let L be a language, M,N be models of L, φ : M → N be a map. φ is

called a homomorphism if

1) for each constant c of L,

φ(cM) = cN ,

2) for each n ∈ N∗, each n-ary function f of L and each n-tuple of elements a1, . . . , an

of M,

φ(f
M
(a1, . . . , an)) = f

N
(φ(a1), . . . ,φ(an)),

3) for each n ∈ N∗, each n-ary relation R of L and each n-tuple of elements a1, . . . , an

of M,

(φ(a1), . . . ,φ(an)) ∈ R
N

whenever (a1, . . . , an) ∈ R
M.

φ is called a monomorphism if it is a homomorphism and for each n ∈ N∗, each n-ary

relation R of L and each n-tuple elements a1, . . . , an of M,

(φ(a1), . . . ,φ(an)) ∈ R
N

if and only if (a1, . . . , an) ∈ R
M.

φ is called a isomorphism if it is a bijective monomorphism.

A typical example of isomorphism is the identity map of a model. Obviously, the iso-

morphic relation with its natural meaning partitions the collection of models of L into equiv-

alence classes.

Proposition 2.28. Let L be a language with equality, M,N be models of L that respect

equality. Then every monomorphism from M to N is injective.

Proof. Given a monomorphism φ : M → N , since≃∈ L, for any pair of elements a, b

ofM,
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(φ(a1),φ(a2)) ∈ ≃N if and only if (a1, a2) ∈ ≃M,

i.e. φ(a1) = φ(a2) if and only if a1 = a2, which implies that φ is injective.

Provided with enough prerequisites, we can define a 1-category in first-order logic

which includes all information provided from the ordinary one.

2.2 Categories in First-Order Logic

In this section, the language we consider, except specially instructing, is always

L = ⟨Mor,Obj, dom, cod, id, comp⟩ with equality, where Mor,Obj are 1-ary rela-

tions, dom, cod, id are 1-ary functions and comp is an 2-ary function.

Definition 2.29. A category C is a model of L that respects equality and satisfies the theory

T consisting of the following six closed formulas of L:

F1 = ∀v0(Morv0 ∨Objv0),

F2 = ∀v0(Morv0 ⇒ (Objdomv0 ∧Objcodv0)),

F3 = ∀v0(Objv0 ⇒ (Moridv0 ∧ domidv0 ≃ v0 ∧ codidv0 ≃ v0)),

F4 = ∀v0∀v1((Morv0 ∧Morv1 ∧ codv0 ≃ domv1)

⇒ (Morcompv0v1 ∧ domcompv0v1 ≃ domv0 ∧ codcompv0v1 ≃ codv1)),

F5 = ∀v0(Morv0 ⇒ (compv0idcodv0 ≃ v0 ∧ compiddomv0v0 ≃ v0)),

F6 = ∀v0∀v1∀v2((Morv0 ∧Morv1 ∧Morv2 ∧ codv0 ≃ domv1 ∧ codv1 ≃ domv2)

⇒ (compcompv0v1v2 ≃ compv0compv1v2));

in other words, C |= T .

Provided with this definition, a category C is a collection consisting of morphisms and

objects (following from the axiom F1) such that

1) each morphism f has two specified objects, i.e. its domain dom(d) and codomain cod(f)

(following from the axiom F2),

2) each objectX has one specified morphism whose domain and codomain are bothX itself,

i.e. its identity morphism (or identity) 1X : X → X (following from the axiom F3),

3) each pair of morphisms f, g with cod(f) = dom(g) has one specified morphism whose

domain is dom(f) and codomain is cod(g), i.e. their composite morphism (or composite)

g ◦ f : dom(f) → cod(g) (following from the axiom F4),
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4) for any morphism f , there are 1cod(f) ◦ f = f and f ◦ 1dom(f) = f (following from the

axiom F5),

5) for any triple of morphisms f, g, h with cod(f) = dom(g) and cod(g) = dom(h), there

is h ◦ (g ◦ f) = (h ◦ g) ◦ f , i.e. the notation h ◦ g ◦ f is well-defined (following from the

axiom F6).

This corresponds to the ordinary definition of a category.

Definition 2.30. Let C,D be two categories. A functor F from C to D is a homomorphism

F : C → D.

While functors are defined to be specific maps between collections, the parentheses are

often omitted unless demanded for notational clarity. Provided with this definition, a functor

F : C → D between categories C and D is a map such that

1) F sends each object X in C to an object FX in D (respecting interpretations of Obj),

2) F sends each morphism f : X → Y in C to a morphism Ff : FX → FY inD (respecting

interpretations ofMor, dom and cod),

3) for each object X in C, F sends 1X to 1FX (respecting interpretations of id),

4) for each pair of morphisms f, g in C with cod(f) = dom(g), there is Fg ◦Ff = F (g ◦f).

This corresponds to the ordinary definition of a functor between categories. In addition, for

each category C, there is an identity functor, denoted by 1C, that serves as the identity of the

model itself. Isomorphisms between functors are thus naturally defined to be isomorphisms

between models, and the natural isomorphic relation partitions the collection of categories

into equivalence classes.

The collection of categories and functors between them assemble into a category, with

composition of functors as compostion of homomorphisms. But we should be careful that

this may cause a paradox. To clear from that, we often restrict ourselves to locally small

categories and speak of the category of locally small categories CAT. Things will be further

discussed in the following section.
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2.3 Limitations of First-Order Logic as A Foundation

classical mathematical subjects fit well in the foundation of first-order logic, which is

sufficient for formalizing them properly. However, it still has some limitations and weak-

nesses when applying to categories. Firstly, there is more information provided for a 1-

category in Definition 2.29: in fact, we have defined two binary operations dom and cod

on the category, but only those images of morphisms are meaningful in category theory and

are called domains and codomains; similar non-sense interpretations are defined for images

of morphisms of id and of non-composable morphisms of comp. One way is to re-define

the concept of a category by identifying any object with its identity morphism, but problems

still exist for the interpretation of comp. Secondly, category theory suggests a particular per-

spective to be used in the study of mathematical objects that pays much attention to the maps

between them, i.e. functors between categories, while first-order logic seems not to empha-

size homomorphisms between models that much. All these clues suggest category theory

induce a novel foundation for mathematics that is more widely applicable. This is what we

are going to give a brief overview about in the next section.

One more thing needs to be discussed. In naive set theory and ordinary category theory,

there are respectively Russell’s paradoxes as ‘set of all sets’ and ‘category of all categories’.

This issue seems to be solved by using the vague word ‘collection’ instead of ‘set’ when

defining a structure(model) in first-order logic. By von Neumann’s cumulative hierarchy,

there are infinitely many universes in our mathematical world. For a most front universe U ,

there are just sets. It is in fact a model of the language with equality consisting of a single

2-ary relation ∈ called membership that respects equality and satisfies the Zermelo-Frankel

axioms. Small categories are just those whose objects and morphisms belong to one of this

universe, including Cat, the category of all small categories. But we can transfinitely con-

struct the hierarchy and obtain another universe V such that U ∈ V . The notion of collections

just include all cases of universes in this hierarchy. However, we should be conscious that

Russell’s paradoxes do not disappear. Therefore when defining the category of categories, it
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has to be not too ‘large’ to include itself as an object, which we guarantee by only considering

locally small categories. This is the definition of CAT. In fact, Gödel’s second imcomplete-

ness theorem states that any formal axiomatic theory cannot demonstrate its own consistency.

This is actually a limitation for all formal axiomatic theory, including type theory which we

will briefly discuss. It perfectly solves the problems of category theory mentioned in the

previous paragraph.

2.4 An Overview of Type Theory

In first-order logic, interpretations of equality, if exists, pervades throughout any model

that respects equality. However, in mathematical usage, many cases happen where speaking

about equality does notmake sense for all pairs of variables, such as objects andmorphisms of

various dimension in∞-category theory. Type theory comes out to divide the mathematical

objects we are focusing on into different parts, say types, such that identity information only

applies for variables in the context of a common type. Like the way in ZFC set theory to

avoid Russell’s paradox, this system creates a hierarchy of types by exclusively building

larger types, i.e. types in the higher hierarchy, and then assigns each mathematical object to

a specific type. For instance, an identity type is of the form

’in the type of two terms x, y : A, there is another type x =A y’,

where terms in types witness the truth of the statement within a single type. Here we mainly

follow the version of Martin-Löf’s type theory called dependent type theory[9]. It is a formal

system where all constructions are continuous in paths and equivalences between types are

well-defined, following from the univalence axiom in the system, with the latter one resulting

this system to become the system of univalence foundation, which has a more famous name

among categorists: homotopy type theory. Advantages for choosing this as the foundation of

category theory and∞-category theory are not only reflected as being more compatible with

the essential idea of categorical notions, but also when comparing proofs of some significant

theorems, such as Yoneda lemma with the ordinary ones. Type theory indeed provides an

alternative choice of foundation that are more suitable than first-order logic in some cases.
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