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Homotopical Methods in The
Classification of Topological
Materials and Applications

Pengxu Zhang

（Department of Physics Thesis Advisor：Yifei Zhu）

[ABSTRACT]: This thesis investigates topological phases of matter, quan-
tum anomalies, and their interplaywithmodern theoretical physics from amath-

ematical point of view. We begin by reviewing the classification of free symmetry-

protected topological (SPT) phases via the Freed-Moore framework, linking

symmetry groups to fermionic band topology. Building on this, the Freed-

Hopkins classification is employed to unify SPT phases and t’ Hooft anoma-

lies through invertible field theories (IFTs). Anomalies are analyzed from dual

perspectives: index theory (e.g., anomaly polynomials, local anomaly) and bor-

dism invariants (e.g., η-invariants, global anomalies), which are unified under

the above formalism of IFTs. These tools are applied to anomaly cancellation in

string theory and we compare Freed-Hopkins’bordism methods on explicitly

calculating anomalies with Tachikawa-Yamashita’s approach making use of

Stolz-Teichner conjecture. Synthesizing bordism, K-theory, index theory, and

elliptic cohomology, this survey bridges mathematical frameworks and physi-

cal phenomena in quantum gravity, condensed matter, and high-energy theory.

[Key words]: SPT Phases, Quantum Anomaly, Functorial Field Theory,

Homotopy Theory
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[摘要]：本论文从数学角度研究物质拓扑相、量子反常及其与现代理论
物理的相互作用。首先，我们通过弗里德-摩尔（Freed-Moore）框架回顾

自由对称性保护拓扑相（SPT）的分类，将对称群与费米子能带拓扑联系

起来。在此基础上，采用弗里德-霍普金斯（Freed-Hopkins）分类，通过

可逆场论（IFTs）统一 SPT 相与’t Hooft 反常。反常从双重视角被分析：

指标理论（如反常多项式、局部反常）与配边不变量（如 η-不变量、全

局反常），而这些在上述 IFT形式体系中得以统一。这些工具被应用于超

弦理论中的反常抵消问题，并比较了弗里德-霍普金斯的配边方法与塔奇

科瓦-山下（Tachikawa-Yamashita）基于斯托尔兹-泰希纳（Stolz-Teichner）

猜想的反常计算方法。本综述综合配边论、K-理论、椭圆上同调与指标

理论，架起了数学框架与量子引力、凝聚态及高能物理理论中物理现象

之间的桥梁。

[关键词]：对称保护拓扑序；量子反常；函子场论；同伦论
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1. Introduction
In this section, we briefly introduce some main ingredients in the thesis.

1.1 What is a symmetry protected topological phase?

Symmetry-protected topological (SPT) phases represent a fascinating class of quantum

many-body systems that exhibit robust boundary phenomena—such as gapless edge modes

or fractionalized excitations—while remaining gapped and trivial in the bulk. These phases

are “protected” by global symmetries: if the symmetry is explicitly broken, the system can be

adiabatically connected to a trivial phase without closing the bulk energy gap. First brought

to prominence by the discovery of topological insulators and superconductors in condensed

matter physics, SPT phases have since become a cornerstone of modern quantummany-body

theory, bridging abstract algebraic topology with experimentally observable phenomena.

At their core, SPT phases are characterized by topological invariants—quantities that

remain invariant under continuous deformations of the system’s Hamiltonian, provided the

symmetry constraints are preserved. For non-interacting fermions, these invariants are ele-

gantly captured by K-theory, which classify band structures based on their symmetry class

(e.g., time-reversal, particle-hole, or chiral symmetries) and spatial dimension. For example,

the classification of free-fermion SPT phases in the tenfold way[1] reveals a periodic structure

across spatial dimensions and symmetry classes, mirroring the mathematics of Clifford alge-

bras. However, interactions complicate this picture, necessitating more sophisticated tools

such as group cohomology[2], cobordism theory[3-4] , or more generally invertible field theo-

ries (IFTs)[5] to classify interacting SPT phases. The general classification regime is based on

the idea that the low-energy effective field theories of SPT phases are invertible topological

field theories, which possess rigorous mathematical formulation in the language of functorial

field theories. The main result of this thesis is due to D. Freed and J. Hopkins[5], by explic-

itly relating the classification of invertible field theories to homotopy theory, in particular

the bordism theories and its anderson duals.
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Theorem 1.1.1. Freed-Hopkins (2016)
{

n+ 1Dbosonic symmetry protected
topological phaseswith symmetryG

}
= (IZ!SO)n+2(BG)tor,

{
n+ 1Dfermionic symmetry protected
topological phaseswith symmetryG

}
= (IZ!Spin)n+2(BG)tor,

Moreover, this description of SPT phases should be complete since topological feature

of SPT phases is invariant under the RG flow, whence the corresponding invertible topolog-

ical field theories entirely captures phases of symmetry-protected topological materials.

1.2 What is an anomaly?

Another defining feature of SPT phases is their bulk-boundary correspondence : the

topological invariant of the bulk guarantees the existence of anomalous gapless modes at the

physical boundary. For instance, the edge of a two-dimensional quantum spin Hall insulator

hosts helical one-dimensional modes protected by time-reversal symmetry, while the surface

of a three-dimensional topological insulator supports massless Dirac fermions. These bound-

ary modes are “anomalous” in the sense that they cannot exist independently of the bulk—

they require the higher-dimensional SPT phase to cancel gauge or gravitational inconsisten-

cies. From the quantum field theory point of view, these boundary theories alone are said to

possess quantum anomalies, which are captured by invertible field theories frommodern per-

spectives. In the language of functorial field theories, we have mathematical underpinnings

of the above boundary-bulk correspondence, dated back to D. Freed[6].

Theorem 1.2.1. Freed, Freed-Hopkins

Quantum anomalies of a nD functorial field theory with structure ξ are given by ele-

ments in (IZ!ξ)n+2, which lies in

0 −→ Hom(!ξ
n+1,C

→) −→ (IZ!
ξ)n+2 −→ Hom(!ξ

n+2,Z) −→ 0.

The last term describes the local anomaly of the quantum field theory while the first term

captures the global anomaly.

The deep connection between SPT phases and quantum anomalies lies at the heart of
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their classification and physical relevance.

1.3 Outline

We begin by revisiting the classification of free fermionic SPT phases through the lens

of the Freed-Moore formalism, which systematically associates symmetry groups with topo-

logical invariants in band theory. This framework provides a rigorous foundation for under-

standing how global symmetries constrain the possible phases of quantum matter. Building

on this, we turn to the Freed-Hopkins classification, a groundbreaking approach that unifies

SPT phases and’t Hooft anomalies under the umbrella of invertible field theories (IFTs).

By treating anomalies as obstructions to gauging symmetries, this perspective reveals a hid-

den unity between seemingly distinct phenomena: the topological order of materials and the

consistency of quantum field theories.

A key focus of this work is the dual analysis of anomalies through two complementary

mathematical paradigms: index theory and bordism invariants. Index theorems, exemplified

by anomaly polynomials and local anomaly formulas, connect anomalies to the geometry

of gauge and gravitational backgrounds. Meanwhile, bordism theory, through tools like η-

invariants and global anomaly measures, classifies anomalies via topological obstructions in

higher-dimensional manifolds. By synthesizing these viewpoints within the Freed-Hopkins

framework, we demonstrate how IFTs serve as a Rosetta Stone for translating between alge-

braic topology, differential geometry, and quantum field theory.

The physical implications of this formalism are explored in two major contexts. First,

we apply these tools to anomaly cancellation mechanisms in string theory, where the consis-

tency of spacetime geometries hinges on the precise matching of chiral fermion content and

background fields. Second, we compare the bordism-based calculations of Freed-Hopkins

with the Stolz-Teichner-inspired approach[7] of Tachikawa and Yamashita[8], illuminating

distinct pathways to characterize anomalies. This comparison not only clarifies the strengths

and limitations of each method but also hints at deeper connections between extended topo-

logical field theories and algebraic topology.
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Ultimately, this survey weaves together three mathematical pillars—bordism theory,

K-theory, index theory, and elliptic cohomology—into a cohesive narrative that transcends

traditional disciplinary boundaries, sheding light on open questions in quantum gravity, con-

densed matter, and beyond at the intersection of mathematics and theoretical physics.

The appendix serves as a concise introduction to necessary homotopical tools for the

whole story in a self-contained way. Moreover, the organization and logical order of the

appendix is very different from the traditional ones. All theorems and proofs are not original

and most of the results in the main body are consequences of the main reference[5] by Freed

and Hopkins.

2. Classification of SPT phases
The mathematical formalism of SPT phases has evolved significantly in recent years.

The Freed-Moore framework systematically links symmetry groups to topological invari-

ants by incorporating graded algebras and twisted equivariant K-theory, generalizing earlier

results on the periodic table of topological materials to include spatial symmetries and crys-

talline materials. Meanwhile, the Freed-Hopkins classification captures SPT phases via its

low-energy effective field theory, which is what we observe in the laboratory. We present

these two framework in this chapter and make some comparisons which also have great im-

plications to the mathematical theory of algebraic topology.

2.1 K-theory and free SPT phases

In this section, we present Kitaev’s seminal work[1] on the classification of free fermion

systems with prescribed symmetry in the ten-fold way, the so-called “Periodic Table of

Topologial Phases”.

The idea of the ten-fold way goes back to Altland and Zirnbauer, who discovered that

substances can be divided into 10 kinds according to the symmetry class they live in. There

are three symmetry types involved in their classification: time reversal symmetry T (anti-

unitary), particle-hole symmetry P (anti-unitary) and chiral symmetry C (unitary). Further-

more, the fact that these physical operators C, P and T that square to 1,−1 or do not exist is
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closely connected to the classification of associative real super division algebras. There are

exactly 10 associative real super division algebras up to Morita equivalence:

• Three of them are purely even, with no odd part: the usual division algebras R, C and

H.

• Even of them are not purely even. Of these, Six of them are Morita equivalent to the

real Clifford algebras Cl1, Cl2, Cl3, Cl5, Cl6 and Cl7. These are the super algebras

generated by 1, 2, 3, 5, 6, or 7 odd square roots of -1. The left is the complex Clifford

algebra Cl1.

It turns out that the representations of these Clifford algebras 1-to-1 correspond to the Hilbert

spaces within one of the prescribed symmetry class above, once we figure out the action of

C, P and T on the Hilbert spaces and the presentation of each Clifford algebra. The combi-

nation of the above three fundamental symmetry operators C, P and T results in exactly ten

possibilities exactly corresponds to the ten Morita-inequivalent real super division algebras.

The Hamiltonian H of the system is commutative under the change with these operators in

the prescribed symmetry class. Mathematically, it corresponds to the extension of a new

generator H to the Clifford algebra associated to the symmetry class. i.e. the extension of

Clk to Clk+1 We have the following classical result:

Theorem 2.1.1. (Atiyah-Bott-Shapiro)

KO→k(•) ∼= ModClk /ModClk+1

Therefore, the phases according to the symmetry are given by

KOn+s→2(•), (1)

The calculation ofK-theory andKO theory is mathematically known for a quite long time,

given by
0 1

K̃∗(•) Z 0

0 1 2 3 4 5 6 7

K̃O
∗
(•) Z Z2 Z2 0 Z 0 0 0
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where n is the spatial dimension and s indicates the symmetry class in terms of how many

fundamental operators live in that class.

Therefore, we get Kitaev’s table of topological materials

class C P T d = 0 1 2 3 4 5 6 7
A Z Z Z Z
AIII 1 Z Z Z Z
AI 1 Z Z Z2 Z2

BDI 1 1 1 Z2 Z Z Z2

D 1 Z2 Z2 Z Z
DIII 1 1 −1 Z2 Z2 Z Z
AII −1 Z Z2 Z2 Z
CII 1 −1 −1 Z Z2 Z2 Z
C −1 Z Z2 Z2 Z
CI 1 −1 1 Z Z2 Z2 Z

Example 2.1.2. Some examples of topological materials lying in the periodic table are

• 1d: Majorana chain of class D (s = 0) represents the nontrivial phase inKO→1(•)

• 2d: Chern insulator (A), p-wave superconductor (D), topological insulator (AII).

• 3d: the strong phase of the TRS topological insulator of class AII (s = −2) generates

KO→1(•)

One might be wondering what the AZ labels really mean, i.e. A, AIII, AI, ...These

actually coincide with the labels of 10 classical infinite families of compact symmetric spaces

discovered by Éllie Cartan and there are also 17 exceptional ones. Starting from a Clifford

algebra, one can explicitly construct a compact symmetric space and vice versa which is

compatible with the labelling in the table. The construction is as follows: We consider the

unitary elements in a Clifford algebra and this gives rise to a Lie group! By the way, these

groups are not the Spin groups that Clifford algebras are famously used to construct. Since

each Clifford algebra sits inside the next one as an algebra, we can take quotient to get a

compact symmetric space. It turns out that the π0 of these symmetric spaces are given exactly

by the KO-group above (1). The physically underpinning of these construction utilize our

original notion of deformation of Hamiltonians of SPT phases.
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2.2 Invertible topological field theories and SPT phases

The low energy effective field theory of SPT phases are captured by the invertible topo-

logical field theories, mathematically modelld by the functorial formalism of field theories

as we have seen in the introductory part of this thesis. The invertibility, which is the math-

ematical incarnation of the very property of SPT phases requiring a unique gapped ground

state, is a very strong constraints on the mathematical structure so that we can rigorously

derive its classification result, as we will present in this section.

Since the partition function of SPT phases are in the form of

Z(W ) =

∫ ∏
Dφe→SW (φ) = |Z(W )|eiStop(W ) = |Z(W )|Ztop(W ),

where the partition function of the topological field theory valued in C×, in the formalism of

functorial field theory, this motivates the following definition.

Definition 2.2.1. A n+1 dimensional functorial field theory α : Bord(n,n+1)(F) −→ VectC

is invertible if, for each closed n-manifold N with fields F , the vector space α(N) is one-

dimensional, and for every (n+ 1)-dimensional bordismM : N0 → N1, the linear operator

α(M) : α(N0)→ α(N1) is invertible. Equivalently, α lies in a Picard groupoid:

α : Bord(n→1,n)(F) −→ Vect×C = LineC .

Describing the topological phases via its low-energy effective field theory is conjec-

turally complete since the term topological reminiscent of the property that is invariant under

the RG flow, and in the case of n + 1D G-SPT phases, the IR picture should be probed as

invertibel topological field theories

α : Bordεn+1 −→ LineC,

together with some equivariance condition under the symmetry groupG. Follow from strat-
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egy in the introduction, in order to classify SPT phases, we would like to understand

ITFTn+1
ξ,G := π0

({
α : Bordξn+1 −→ LineC,

with prescribed symmetryG

})
.

The homotopy theory provides powerful tools to attack this problem which is based on the

following foundational theorem saying that the bordism category is represented by the spec-

trumMT ξn+1 in the world of homotopy theory

Theorem 2.2.2 (Madsen-Tillmann[9]).

There are homotopy equivalences |Bordξn+1| ≃ τ!1!nMT ξn+1, | sLine→C | ≃ τ!1!IZ and

|Line→C | ≃ !HZ, where IZ is called the Pontrjagin dual to the sphere spectrm satisfying

the universal property [E,!IZ] ∼= Hom(πn+1E,C→).

Therefore, ITFTn+1
ξ,G should be an abelian group likeHom(πn+1E,C→) aswe have promised

in the introduction. The homotopy groups of the spectrumMT ξn+1 is precisely the bordism

group Ωξ
n+1. Therefore, with some mild efforts, we can deduce that

Theorem 2.2.3 (Freed-Hopkins[5]).

n+1D invertible topological field theories with ξ-structures and symmetryG, or equivalently

n+ 1D G-SPT phases are classified by (IZΩξ)n+2(BG)tor.

Proof. The proof relies on the stable homotopy hypothesis: Let C, D be Picard groupoids,

constructing classifying spectra establishes an isomorphism of abelian groupsHom⊗(C,D) ∼=

[|NC|, |ND|]. F : C → D is invertible means that we have C → D→. Therefore, the

theorem boils down to understand |Bordξn+1| and | sLine→C | which are MT ξn and τ!1!IZ

respectively according to Theorem 2.2.2, where Bordξn+1 is the Picard groupiod of Bord
ξ
n+1.

While with additional symmetry G, the homotopy classes of G-SPT phases form the group

(IZΩξ)n+2(BG)tor, where the group (IZΩξ)n+2(BG) lies in the short exact sequence

. . . −→ Hom(Ωξ
n+1(BG),C→) −→ (IZΩ

ξ)n+2(BG) −→ Hom(Ωξ
n+2(BG),Z) −→ · · · .

This splits and often the torsion part is given by Hom(Ωξ
n+1(BG),C→) .
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In general, for invertible non-topological field theories, we have the theorem

Theorem 2.2.4 (Freed-Hopkins[5], Grady[10]).

The group of n+1D invertible field theories with ξ-structures lies in the short exact sequence

0 −→ Hom(!ξ
n+1,C

→) −→ IFTn+1
ξ −→ Hom(!ξ

n+2,Z) −→ 0,

which is mathematically the group (IZ!ξ)n+2(•). The underlining spetrum is the anderson

dual of the Madsen-Tillmann spectrum.

Let’s look at some explicit examples.

Example 2.2.5 (Bosonic SPT phases).

The tangential structure corresponding to bosonic SPT phases without any additional sym-

metry, the so-called invertible bosonic topological order, is the oriented structure. Therefore,

it suffices to calculate oriented bordism groups at relevant dimensions

!SO
4 (•) = Z, !SO

5 (•) = Z/2

• The Z group generated by CP4 in the Anderson dual of the bordism group corresponds

to the free part, interpreted as invertible phases in one dimension lower. This Z indi-

cates the existence of 2 + 1D invertible topological phases that require no symmetry

protection. The generator of this Z is the so-calledE8 phase, whose boundary can host

a 1 + 1D chiral CFT – the (E8)1 theory.

• The Z/2 generator is represented by the Wu manifold SU(3)/SO(3), with the topo-

logical invariant given by the integral . The Anderson dual of the finite part of the

bordism group provides the classification of invertible topological phases in this di-

mension. Thus, there exists a (4+1)D invertible TQFT whose partition function on the

Wu manifold equals −1.

Previously, the bosonic SPT phases are classified by the group cohomologyHn+2(BG,Z)[2]

in physical relevant dimensions. However, in higher dimensions, this is wrong in the lan-

9



guage of topological field theories andmathematicallywe have a truncationmapHn+2(BG,Z)→

(IZ!SO)n+2(BG).

Example 2.2.6 (Fermionic SPT phases).

The tangential structure correponding to fermionic SPT phases without any additional sym-

metry, the so-called invertible fermionic topological order, is the Spin structure. The spin

bordism groups at some dimensions are

!Spin
1 (•) = Z/2, !Spin

2 (•) = Z/2, !Spin
4 (•) = Z

• The first Z/2 corresponds to the parity of fermion number in 0 + 1D.

• The second Z/2 represents the 1 + 1D Majorana chain.

• The Z group (similar to the bosonic case) now has K3 surfaces as generators, corre-

sponding to 2 + 1D class D topological superconductors.

In general, the tangential structures corresponding to fermionic SPT phases with ten-fold-

way symmetry type are twisted spin structures. For time-reversal symmetry, the twisted spin

structure is the Pin→ structrue. The torsion part of the corresponding bordism group is

!Pin−
2 (•)tor ∼= Z/8.

This nontrivial phase is given by the time-reversal Majorana Chain whose low energy field

theory has partition function valued 1 on the manifold RP2.

2.3 Conclusion and outlook

Let’s summarize previous two sections and analyze some mathematical implications

out of the following two main results. The ten fold way classification of free fermionic SPTs

with symmetry type s at spatial dimension n is given by

KOn+s→2(•)

10



Meanwhile, the low energy field theories of n + 1D interacting fermionic SPT phases are

described by reflection-positive invertible TQFTs for manifolds with twisted spin structures

τ , which can be classified by the homotopy group

[MT τ,!n+2IZ]tor ∼= Hom(Ωτ
n+1,C

→).

Therefore, it is natural to ask whether this two approaches match when we restricting our

field theory classification to only weakly interacting cases. The answer is no in general.

Time-reversal Majorana chain is an great counter-example of this hypothesis. The class BDI

in the Kitaev’s table is given by Z and generated by the time-reversal Majorana chain with

Hamiltonian H = i
2!lc2lc2l+1. It can be shown that eight copies of this Hamiltonian can be

adiabatically connected to the trivial topological phase, matched the bordism classification

ΩPin−
2 (•)tor ∼= Z/8.

The reason is that when classifying free fermionic phases, we only allow Hamiltonians with

quadratic terms in the path of the deformation, while in the interacting case, high order terms

are permitted. Therefore, these two classification resulted from two notions of deformation,

i.e. π0 of the configuration space. The goal of this section is to mathematically capture this

phenenomena by the so-called free-to-interacting map between two spectra. The kernel and

cokernel are both physically interesting. The kernels are free phases that become trivialized

after tunning on interaction-allowed deformations.

According to the periodic table[1], free topological phases without symmetry is given

by KOn−2(•) and we have a map of spectra

KOn−2 −→ IFTn+1
Spin
∼= (IZΩ

S)n+2 (2)

The above map (2) is the Anderson dual to the Atiyah-Bott-Shapiro orientation

ΩSpin
n −→ KOn M $→ DM (3)

11



sending to the Cln-linear Dirac operator. Here we use the anderson self-dual of the KO to

get (2). Homotopically speaking, the K-Thom class is given by the following. First, let τV

be the relative K class [!evenV,!oddV, (v, w) !→ (v, v ∧ w)], where V is a vector bundle on

M . The relative K-theory is isomorphic to the K0(Th(V )) and let β ∈ K→2 be the Bott

element. Then the class

β→nτV ∈ K2n(Th(V ))

is aK-Thom class of the vector bundle V , therefore according to the appendix, we have the

orientation map (3).

Freed-Hopkins[5] generalized ABS map Ωτ(s)
n → KOn+s homotopically for ten twisted

spin structures τ(s) and following their work, Camerana et al.[11] generalize these to symme-

tries beyond the ten fold way in the language of fermionic groups. The most general form

of free-to-interacting map gives mathematical underpinnings of the Bott spiral when studing

two kinds of deformations classes of Hamiltonians by Queiroz, Khalaf and Stern and makes

possible prediction on the presence of weak topological phases that have potentially appli-

cations to topological quantum computing. Moreover, these orientations maps might play

pivotal roles in the homotopy theory as well.

3. Anomalies, index theory, and invertible field theory
3.1 Introduction

Consider a quantum field theory with action S[ψ]

Z =

∫
Dψe→S[ε]

Suppose Lie group G is a symmetry of the action S[g · ψ] = S[ψ], ∀g ∈ G, the Noether’s

Theorem says that there exists vector fields jaµ measuring the variation of the action

S[g · ψ]− S[ψ] = −
∫

X

d4x∂µjaµ(x)θa(x),
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where θa(x) is an infinitesimal transformation

∂µj
aµ = 0.

Aquantum symmetry of this theory is construed as the invariance of the partition function, i.e.

under symmetry transformation ofG. In the quantum theory, equation ∂µjaµ = 0 is replaced

by the statement that the correlation function of ∂µjaµ with any number of operators Oi(xi)

at points xi ̸= x must vanish:
〈
∂µj

aµ(x)
∏

i

Oi(xi)

〉
= 0.

This is known as Ward’s identity, which is the quantum version of Noether’s theorem. Very

roughly speaking, anomalies are the failures of lifting classical symmetries to corresponding

quantum symmetries.

3.1.1 ABJ anomaly

LetMd be a closed even Riemannian spin manifold. Consider massless Dirac fermions

under U(1) background fields A onM . The partition function is given by

Z[A] =

∫
DψDψ̄e→

∫
M ψ̄DMψ

where DM is the Dirac operator on M as discussed in the appendix. The action term S =

e→
∫
M ψ̄DMψ is invariant under axial U(1) transformation ψ(x) → eiε5θ(x)ψ(x), ψ̄(x) →

ψ̄(x)eiε5θ(x), denote the Noether current by jµA.

Heuristically, since DX is a self-adjoint operator, we have the spectral decompostion

DXψn = λnψn, where {ψn} is an orthonormal basis for the Dirac operator. If we can expand

fields ψ in terms of this orthonormal basis as

ψ =
∑

anψn, ψ̄ =
∑

b̄nψ̄n,
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Therefore, the path integral becomes

∫
DψDψ̄e→

∫
X ψ̄DXψ =

∏

n

db̄ndane
∑

n anb̄nεn = detDX .

Since γ5 anti-commutes with the Dirac operator {γ5,D} = 0, γ5 only changes the sign of

each eigenvalue. Hence, after applying infinitesimal chiral transformation, only zero modes

attribute:

DψDψ̄ → exp(−(n+ − n→))DψDψ̄,

where we denote the subspace of zero modes as E0 = E+ ⊗ E→, where E± is the subspace

of γ5 = ±1 with dimension n±, and we refer (n+ − n→) as the chiral anomaly, since after

modification of the Ward identity, the chiral anomaly measures the non-conservative of ∂µjµA

Then the chiral anomaly is essentially

inda(D) = dim kerD− dim kerD†

By Atiyah-Singer index theorem, the chiral anomaly can be computed as

indt(D) =

∫

X

Â(R) ch(F ) (4)

If instead the symmetry is the gauge symmetry of the quantum system, the presence of

anomaly will render the theory inconsistent, since the partition fucntion detDX above is

not a “function” rather a section of the determinant line bundle associated to the Dirac op-

erator DX , there is always ambiguity in the definition of the partition function. Roughly

speaking, the topological index is the characteristics class of this determinant line bundle.

3.1.2 What is an anomaly?

Roughly speaking, a theory has an anomaly if a symmetry that is present at the classical

level is absent at the quantum level. This could happen for both global and gauge symmetries

and in fact they are of very different nature. While the existence of an anomalous global

symmetry may be useful, the existence of an anomalous gauge symmetry is fatal because
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it spoils the gauge invariance, which manifests as the redundant degrees of freedom in the

physical descriptions of our theories, and hence renders the theory inconsistent.

As the first kind of quantum anomaly to ever be discovered, anomalous global symme-

try is in fact very amiable and obliging, for example, it helps us to explain the puzzle in the

calculation of the decay rate of neutral pions into two photons in its original discovery, there-

fore anomalies of global symmetry are sometimes called ABJ anomalies. While anomalies

in global symmetries are physically interesting, gauge anomalies kill all the physics com-

pletely: they render the theory mathematically inconsistent! This is because “gauge symme-

tries” are not really symmetries at all, but redundancies in our description of the theory. It

we wish to build a consistent theory, we must ensure that all gauge anomalies vanish.It also

has many other phenomenological applications ranging form the computation of quantum

numbers in the Skyrme model of hadrons to the mechanisms for baryogenesis in the stan-

dard model. We can also distinguish between several possible types of gauge anomalies .

Local anomalies, the ones that are most frequently referred as anomalies in the mathematics

literature, are defined to be the absence of invariance of continuous gauge transformations

that are local at the quantum level, here local means that they can be continously connected

to the identity transformation, gauge transformations in electrodynamics are local. Global

anomalies are therefore referred to those related to global gauge transformations. For ex-

ample, we can view general relativity as a gauge theory with gauge transformations being

diffeomorphisms of the ambient spacetime and in this case, they are usually dubbed global

gravitational anomalies[12].

3.1.3 Gauge anomaly

For similar reasons in section 3.1.1, the path integral of massless chiral fermions is also

ill-defined, which is characterized by the Pfaffian line bundle. We have already seen that

certain theory of massless fermions living on the boundary of a SPT is perfectly fine. Now

suppose our gauge theory live in X which is the boundary of Y in which massive Dirac

fermions live. By Dai-Freed theorem and later by Witten[13], the partition function of the
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whole theory on Y is

ZY = | detDX | exp(−iπη(DY )/2)

which is always a well-defined function on the moduli space of connectionsM. Therefore,

this might be our definition of the partition function. However, this depends on the choices

of Y which might results in different answers for different Y , except all such choices are

compatible with each other, i.e.

exp
(
iπη

(
DY1→Y2

)
/2
)
= 1,

for any choices of Y1 and Y2. Here we have used the gluing property of η-invariant. This

means that for all closed manifolds Y , the η-invariant vanishes. Using this picture, we can

not only recover our previous derivation of perturbative anomalies but also that of non-

perturbative anomaly (a.k.a. global anomaly) as we will explained below.

For g continuously connected to the identity, one can write Y = ∂Z, whereZ = X×D2

is a (d + 2)-dimensional manifold, since the gauge bundle can be extended to Z without

problem. In this case, we can use the Atiyah-Patodi-Singer index theorem for manifolds

with boundary which relates

inda(DZ) =

∫

X×D2

Â(R) ch(F ) +
η(DY )

2
,

Since inda(DZ) is always an integer, we get

exp(−iπη(DY )/2) = exp
(
iπ

∫

X×D2

Â(R) ch(F )

)
.

Moreover, for g not continuously connected to identity, the global anomaly is exp
(
−iπη(DXg)/2

)
,

the η-invariant of the mapping torus. For a singlet SU(2)Weyl fermion, this invariant coin-

cides with the mod 2 Dirac operator on the mapping torus.

Example 3.1.1. (SU(2) global anomaly[14])

Let us examine a single Weyl fermion interacting with a background SU(2) gauge field

16



in four-dimensional Euclidean spacetime. A gauge transformation g that decays at spatial

infinity falls under the homotopy group π4(SU(2)) = Z2, indicating that transformations

corresponding to non-trivial elements of this homotopy group cannot be smoothly linked to

the identity. The partition function is expressed through

Z[A] =

∫
DψDψ̄e→

∫
d4xψ̄iDψ = Pf[iD]

The famous mapping torus argument is the following: consider a loop in the moduli space of

connections: A(s) = sA′ + (1− s)A and by assumption [A] = [A′] ∈M. If Z[A] ̸= Z[A′],

we say there is a gauge anomaly. In this case the partition function is not a function on the

moduli space, rather a section. The gauge anomaly is given by the non-trivial holonomy

around loops. From another point of view, A(s) determines an extension of bundle P on X

to X × S1 which is usually dubbed mapping torus. By the theorem in the appendix:

holεDetDX/S(V ) = lim
ε→0

e→2πiξXϕ(ε)(V ),

we see that the η-invariant is precisely this holonomy.

All in all, we get the statement that once there is no local anomaly, the exponentiated

η-invariant, which measures global anomaly in this case is bordism invariant since it is zero

whenever Y is null-bordant by the APS index theorem. Therefore, whenever the anomaly

polynomial vanishes, the exponentiated η-invariant is a homomorphism from appropriate

bordism group to U(1).

To study local and global anomalies, we can follow these two steps to verify the absence

of gauge anomalies:

• Compute
∫
X×D2 Â(R) ch(F ), in general this is replaced by the anomaly polynomial de-

pending on the fermion contents of the theory. If it vanishes, there is no local anomaly.

• Compute !ξ
d+1(U(1)), in general this is replaced by !ξ

d+1(BG). If it vanishes, there

can be no global anomaly. If !ξ
d+1(BG) ̸= 0, compute η-invariant explicitly on gen-
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erators of the bordism group.

3.1.4 Anomaly inflow and invertible field theory

An ’t Hooft anomaly is a mild violation of quantum gauge symmetry when turning on

background gauge field A. It gives a lot of information about the dynamics of the theory.

Z[Ag] = Z[A] exp
(
−2πi

∫

X

α(g, A)

)
.

It is convenient to describe anomalies using a classical, local action for the gauge fields A in

(d + 1)-spacetime dimensions. Such actions are also referred to as invertible field theories.

In this presentation the d-dimensional manifold X supporting the dynamical field theory is

viewed as the boundary of a (d + 1)-manifold Y , and we extend the classical gauge field

sources A to the manifold Y . On Y there is a local, classical Lagrangian−2πiω(A) with the

property that

exp
(
2πi

∫

Y

ω(Ag)− 2πi

∫

Y

ω(A)

)
= exp

(
2πi

∫

X

α(g, A)

)
,

where ω(A) is the Lagrangian of the anomaly theory. Introduce a modified partition function

Z̃[A] := Z[A] exp
(
2πi

∫

Y

ω(A)

)
,

which is gauge invariant under the transformation A "→ Ag. The partition function of the

anomaly theory is defined as

A[A] = exp
(
2πi

∫

Y

ω(A)

)
,

which is an invertible field theory, this is exactly a field theory charactering a non-trivial SPT

phase. Therefore in this scheme, the ’t Hooft anomaly of the boundary theory is provided by

inflow from the nontrivial bulk Y . This is known as the anomaly inflow.

Example 3.1.2. Aprototypical example of this phenomena is the integer quantumHall effect.

The 1 + 1D boundary possesses gapless chiral edge modes, i.e. massless chiral fermions
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which cannot exist alone in 1 + 1D as in the case of 3 + 1D in the previous section. The

effective field theory of the bulk is the renowned Chern-Simons field theory

SCS[A] =
ν

4π

∫
A ∧ F,

where ν here gives the integer characterizing the quantized Hall conductance σH = ν e2

h ,

called level. TheChern-Simons theory also suffers form the gauge inconsistenciesZCS[Ag] ̸=

ZCS[A] when living on manifolds with boundaries. The gauge variation is

δSCS ∼ δ

(∫

M3

A ∧ F

)
∼
∫

N2

F ∧ F,

which is exactly the anomaly polynomial as in (4) at 1 + 1D.

From our previous discussions, we have seen that directly starting from studying invert-

ible field theories smoothly connects the analysis of various kinds of anomalies.

Remark 3.1.3. Whenever exp(−iπη(DY )/2) can be expressed in terms of a characteristic

class
∫
Y !, we can define the partition function according to[13], independent of the extension

Y , even if the exponentiated η-invariant does not vanish for closed manifold Ȳ .

ZX = | PfDX | exp
(
− iπ

2
ηY

)
exp

(
i

∫

X

I0d+1

)

3.2 Anomalies and index theory

It is widely recognized that local anomalies arising in a d-dimensional quantum field

theory are captured by a (d + 2)-dimensional characteristic form, with chiral fermions con-

tributing a degree-(d + 2) index density linked to a specific Dirac operator. Both global

and local anomalies may be derived from a (d + 1)-dimensional geometric invariant I . In

this section, we give general formalism of this slogan and explicitize some examples and

calculations.
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3.2.1 Local anomaly and anomaly polynomials

Local anomalies on a d-dimensional curved spacetime are determined by an charac-

teristic class in d + 2 dimensions called anomaly polynomial Id+2, as its name suggests, is

written as a polynomial in traces of powers of the spacetime curvature trRk and the gauge

field strength trr F k, here r indicates a representation of the gauge group, which varies from

theories to theories

Id+2 = P (trRk, trr Fk)

In general, the anomaly polynomial Id+2 is written as the summation of contributions from all

of the fields in the theory, each are given by an characteristic class in d+2 dimensions served

as certain index density. By the index-type theorem, the integration of anomaly polynomial

over the compact manifoldequals the index of certain elliptic operator in d + 2 dimensions,

which in most cases we consider is a Dirac-type operator. Also, by the theory of Chern-Weil,

the anomaly polynomial I2n is closed. Therefore, it is locally exact Id+2 = dI0d+1, where I0d+1

is the Chern-Simons form. This (2n−1)-form can be integrated overMd+1, whose boundary

∂Md+1 is identified with the physical spacetime.

!eff = 2πi

∫

Md+1

I0d+1,

One can showcase that the gauge variation of the Chern-Simons form is also closed, dδI0d+1 =

0, therefore locally we have δI0d+1 = dI1d . The anomaly is the variation of the effective action

under gauge transformation

δ!eff = 2πi

∫

(∂M)d
I1d .

Conversely, the precise relationship between local anomalies and the anomaly polynomial

is as follows. The anomalous variation of the quantum effective action δ!eff can be related

to the (d + 2)-dimensional anomaly polynomial through what is called the Wess-Zumino
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descent procedure:

δ!eff =

∫

Md

I1d =

∫

W d+1

dI0d+1 = δ!

[∫

W d+1

I0d+1

]
≡ δ[α(W d+1)]

where ∂W d+1 = Md and α(W d+1) is called the anomaly theory. The anomaly of certain

gauge theory is computed by the integral of I1d over the spacetime manifoldMd.

Proposition 3.2.1. Here are anomaly polynomials for some fermions of some types.

i. Weyl fermion

I1/2 = [Â(R) trr eiF/2π]d+2,

in particular, fermion singlet IDirac = [Â(R)]d+2.

ii. Left-handed Weyl gravitino :

I3/2 = [Â(R)(tr eiR/2π) trr eiF/2π]d+2.

iii. Self-dual tensor field:

ISD =

[
−1

8
L(R)

]

d+2

3.2.2 Examples

Example 3.2.2. Non-linear Sigma model

A non-linear sigma model has bosonic fields ϕ ∈ F = {ϕ : X → M}. The mani-

fold M is called the target space, Xd is the d-dimensional worldsheet. The bosonic action

functional is given by

Sb =

∫

X

⟨dϕ, dϕ⟩.

With supersymmetry, we get fermionic fields on the worldsheet X which are sections of

spinor bundles S± tensored with ϕ→(TM), then the total action is given by

S =

∫

X

〈
ψ̄, ̸ Dεψ

〉
+ ⟨dϕ, dϕ⟩.
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Anomalous gauge symmetries compromise the consistency of the standard Fadeev-Popov

gauge-fixing approach, resulting in unphysical negative-norm states and/or ultraviolet-divergent

theories. The quantization procedure encounters the problem that the regularized fermion de-

terminant is nowell-defined function, but the section of a line bundleLwhich is characterized

by

m =

∫

X

c1(L)

We can now relate it to the anomaly

m =

∫

X

c1(L) = indD2n+2 =

∫

X

chn+1(ϕ
→(TM))

By naturality, we see that the theory is anomaly free if and only if the n + 1-th chern char-

acter of the tangent space vanishes. For n = 1, ϕ→ ch2(TM) = 1
2c1(X)c1(M). Therefore,

for 2d sigma models to be physically available, one must either impose generic base mani-

folds alongside the trivialization of the target space’s first Chern class or constrain the base

manifold to trivial configurations. This establishes the celebrated conclusion that the non-

linear sigma model is anomaly-free precisely when the target manifold’s first Chern class

vanishes—that is, when the target space qualifies as a Calabi-Yau manifold.

Example 3.2.3. The standard model

The standard model of particle physics is the jewlery of modern theoretical physics. It

has been verififed to be utterly precise through enourmous amount of experiments. There-

fore, theoretically, is should be anomaly-free. Let’s look at a generation of fermions includ-

ing leptons and quarks.

QL ūR d̄R lL ēR
SU(3) 3 3̄ 3 1 1
SU(2) 2 1 1 2 1
U(1) 1/6 −2/3 1/3 −1/2 1

The anomaly of any spin-1/2 fermion in this generation is given by

I1/2[F ,R] =
∫
M4×D2 [Â(R) ch(F )]6,

= 1
48π3

(
trf F3 − 1

8 trR
2 trf F

)
,

(5)
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where f indicates the representation of the gauge group that this type of fermion lives in.

The total anomaly is then the summation of (5) over the representation of the gauge group f

of all particles in the table, which is given by

3 · 2 · (16)
3 + 3 · (−2

3)
3 + 3 · (13)

3 + 2 · (−1
2)

3 + 1 = 0,
3 · 2 · (16) + 3 · (−2

3) + 3 · (13) + 2 · (−1
2) + 1 = 0,

up to some constant depending on the base manifold. Therefore, the standard model is free of

local anomalies. The global anomaly of the standard model also vanishes[13], by computing

the bordism group of the SU(5) Grand Unified Theory !SU(5)
4 and evaluate the η-invariant

on its generator, which results in zero.

3.3 Anomalies and Invertible Field Theory

In this section, we first mathematically indicate how invertible field theories character-

ize the quantum anomalies in the language of relative field theories. Then we derive from the

statement that anomalies are invertible field theories in one higher dimension to recover our

previous discussions on anomalies using topological index, η-invariant and bordism groups.

3.3.1 Relative field theory

Suppose the quantum field theoryZ has a symmetryG; in order for the partition function

to respect this symmetry, it must descend to a map Z → : F(M)/G → C. In general, there is

no reason for this to be possible. To understand the obstruction, let us view Z : F(M)→ C

as a section of the trivial complex line bundle ϵF(M) over F(M). If the G-symmetry is

anomalous, then we will find that Z(g · Φ) = P (g,Φ)Z(Φ) for some coefficient P (g,Φ)

which depends on g and Φ. This says that Z can be understood as the section of the line

bundle LM := (C× F(M))/G over F(M)/G, where G acts on C× F(M) by the formula

g : (λ,Φ) $→ (P (g,Φ)λ, g · Φ)

Therefore, the G-symmetry being anomalous is equivalent to the failure of the line bundle

LM to be trivial over F(M)/G, i.e., the non-vanishing of c1(LM) ∈ H2(F(M)/G;Z).
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Similarly, supposeN is a closed (n− 1)-dimensional manifold. Then Z can be viewed

as a function from F(N) to finite-dimensional vector spaces. Running a similar argument

as above, one finds that there is an obstruction to descending Z from F(N) to F(N)/G,

and it is given by the failure of an invertible gerbe GN to be trivializable. One can think of

this obstruction as a class inH3(F(N)/G). Despite the fact that for a closed n-dimensional

manifold M , the map Z : F(M) → C may not descend to a map Z → : F(M)/G → C, we

see that there is a canonically-defined line bundle LM over F →(M) := F(M)/G. We might

therefore wish to consider a functor α : Bord[n−1,n](F →) → CatC which assigns to a closed

n-manifold M the line bundle LM over F →(M), and to a closed (n − 1)-manifold N the

invertible gerbe GN over F →(N) := F(N)/G. Since α assigns a vector space (really, vector

bundle) to an n-manifold, α is begging to be viewed as an (n+ 1)-dimensional field theory,

extended to dimension n−1. α can indeed be viewed as an (n+1)-dimensional field theory,

i.e. a functor Bord[n−1,n+1](F →) → ModModC, where ModModC is a target (∞, 2)-category

whose objects are C-linear categories, whose morphisms are C-vector spaces, and whose 2-

morphisms are complex matrices. Moreover, notice that since LM and GN are invertible, the

functor α can be viewed as an invertible field theory.

To recover Z : Bord[n−1,n](F) → VectC from α : Bord[n−1,n+1](F →) → C, note that

the partition function can be viewed as a section of LM , i.e., as a bundle map ϵM → LM

from the trivial line bundle over F →(M) to LM . Similarly, for a closed (n − 1)-manifold

N , we can view Z on F →(N) as a “section” of GN , i.e., as a gerve map ϵN → GN from

the trivial gerbe over F →(N) to GN . Motivated by this, we make the following definition.

Let D be a symmetric monoidal ∞-category. Define the “trivial” invertible field theory

1 : Bord[n−1,n+1](F →)→ D to be the tensor unit in the category of field theories, i.e., the one

which assigns to every closed ( n − 1 )-manifold the tensor unit in C, and to every closed

n-manifold the tensor unit in EndC(1C). Then, Z can be viewed as a natural transformation

1 → τ≤nα, where τ≤nα is the restriction of α to (n − 1) - and n-dimensional manifolds.

In this generalized setup, α is the anomaly theory, and the anomaly is trivializable if it is
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equipped with an isomorphism 1
→−→ α of (invertible) (n + 1)-dimensional field theories.

This motivates the following definition.

Definition 3.3.1. A d-dimensional relative quantum field theory is therefore defined as a

(2-)natural transformation R : A → 1d+1, where A : Bd+1 → H is a (d + 1)-dimensional

field theory functor.

Now supposeZ : Bordn(F)→ C is an n-dimensional extended QFT. Then an anomaly

theory for Z is an (n+1)-dimensional invertible extended QFT α : Bordn+1(F ′)→ C′ such

that Z is a natural transformation 1→ τ≤nα, where C′ is a symmetric monoidal (∞, n+1)-

category such that C = EndC′(1C′) = !C ′. Given this observation, consider invertible TQFTs

α : Bordn+1(F ′) → Mod(n+1)
C , where Mod(n+1)

C is the (∞, n + 1)-category defined induc-

tively by Mod(1)C := ModC and Mod(n+1)
C := ModMod(n)

C
. Let |Bordn+1(F ′)| be the geomet-

ric realization of Bordn+1(F ′), so that it is an infinite loop space, the associated connec-

tive spectrum by MT(F ′) of Madsen-Tillmann as we have seen in the previous chapter, we

also saw that such invertible TQFTs were classified by maps of infinite loop spaces from

|Bordn+1(F ′)| to the Picard groupoid of Mod(n+1)
C . But this Picard space isK(C×, n+1) =

!∞Σn+1HC×, so we see that invertible TQFTs α : Bordn+1(F ′)→ Mod(n+1)
C are classified

by elements of

Mapinf. loop (|Bordn+1(F ′)|, K(C×, n+ 1)) ≃ MapSp(MT(F ′),Σn+1HC×)

whose π0 is Hn+1(MT(F ′);C×). If MT(F ′) is the Thom spectrum of a map BF : F ′ →

BO × Z from some space BF′ behaving like the moduli space of tangential structures, then

the Thom isomorphism gives Hn+1(MT(F ′);C×) ≃ Hn+1(BF′;C×). Initially, this was the

group that was assumed to classify deformation classes of anomalies of n-dimensional QFTs;

for example, if BF′ is the classifying space of some group G, then this is the group cohomol-

ogy Hn+1(BG;C×).

The target category of n-dimensional QFTs should be !∞Σn+1IC× , where IC× is the

Brown-Comenetz dualizing spectrum. Following the above analysis, one posits that defor-
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mation classes of anomalies of n-dimensional QFTs are classified by In+1
C× (MT(F →)). This

is closely related toHn+1(MT(F →);C×): the connective cover of I×Z isHC×, so we obtain a

canonical map Hn+1(MT(F →);C×) → In+1
C× (MT(F →)). If α is trivializable, then there is an

isomorphism 1
∼−→ α. The space of all isomorphisms is precisely π1 of the space of invertible

field theories, which is π1(MapSp(MT(F →),!n+1IC×) = InC×(MT(F →))

3.3.2 Recovering the classical picture

Hamiltonian anomaly Assuming A invertible, A(Md) ≃ H and G acts on through the

tensor product of lines:

g · V = Lg ⊗ V

After the identification Lg
∼= C we get an endomorphism φg of H for each g such that

φg1g2 ◦ φg−1
2
◦ φg−1

1
= αg1,g21H

which means φ is a projective representation ofG onH, i.e. Hamiltonian anomalies. The Lie

algebra cocycle condition is the so-called the Wess-Zumino consistency conditions. Let’s

unravel it in detail. In the BRST formalism, let’s denote G : X → G local gauge group

and gloc be its corresponding Lie algebra. s is the BRST charge, ω represents the ghost

field. W [ω, A] = sSeff[A] denotes the anomaly polynomial. Floc[A] denotes all the local

functionals on the space of connections. Wess-Zumino consistency condition writes

sW = 0,

which meansW is an element in the BRST cohomologyH !
BRST(gloc;Floc[A]). IfW is BRST

exact, then it is null-homologous, indicating that there is no perturbative anomaly, since in

this case, Seff is a local functional which can be cancelled by local counterterms.

The anomaly descent equation is basically deriving anomaly through a gauge-invariant

closed n + 2-form P [A]. In the BRST formalism, the derivation is as follows. Since P is

closed, locally P = dQ0
n+1, where subscript indicates the de Rham degree and superscript
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indicates ghost number. By gauge invariance sP = 0 = d(sQ0
n+1), then locally sQ0

n+1 =

dQ1
n. Therefore

∫
X Q1

n gives an element in BRST cohomology of degree one, which is the

anomaly.

A short calculation shows that the generators obey the algebra

[J a(x),J b(y)] = ifabcδ4(x− y)J c(x)

and this, along with the definition of the anomaly Aa as the covariant divergence of the

current implies the Wess-Zumino condition

J a(x)Ab[y, A]− J b(x)Aa[x,A] = ifabcδ4(x− y)Ac[y, A].

This equation is non-linear in the gauge potential implying that the anomaly can be deter-

mined completely once the leading order piece is known.

Local anomaly For all established anomaly field theoriesA, the anomaly polynomial can

be reconstructed from the value.

1

2πi
lnA(M × S1) modZ.

For instance, in the case of complex chiral fermions 1
2πi lnA(M × S1) is the modified eta

invariant ξV (M × S1), which according to the Atiyah-Patodi-Singer theorem can be written

as

ξV (M × S1) =

∫

M→D2

IV − ind(DV,M→D2),

where IV is its index density. Since the index is an integer, we find that the anomaly poly-

nomial of the complex chiral fermion is given by the degree d+ 2 component of IV .

Global anomaly and bordism Recall the theorem on the classification of invertible field

theories which says

Theorem 3.3.2. (Freed-Hopkins[5], Grady[10])
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Let IFTd+1
ξ denote the abelian group of (d+1)-dimensional reflection-positive IFTs on

manifolds with ξ-structure. Then we have a short exact sequence

0 −→ Hom(!ξ
d+1,C

→) −→ IFTd+1
ξ −→ Hom(!ξ

d+2,Z) −→ 0

According to the appendix Hom(!ξ
d+2,Z) is basically a characteristic classes which is

the anomaly polynomial in the current framework. Therefore, if we assume the vanishing of

the local anomaly, according to[15], the global anomalies are then bordism invariants charac-

terized by torsion homomorphisms !ξ
n+1 −→ C→.

4. Stolz-Teichner program and Anomaly Cancellation
4.1 Introduction

The Stolz-Teichner conjecture[7] stands as a profound bridge between algebraic topol-

ogy and quantum field theory, proposing a geometric realization of topological modular

forms (TMF) —a generalized cohomology theory—through supersymmetric Euclidean field

theories (SEFTs). This conjecture asserts that the space of sufficiently well-behaved super-

symmetric QFTs, when organized into a moduli space, geometrically encodes the spectrum

of TMF. In doing so, it elevates the interplay between supersymmetry, modular invariance,

and bordism invariants to a foundational principle, unifying insights from string theory, con-

densed matter physics, and homotopy theory.

To motivate the conjecture, consider the archetypal role of supersymmetry in quantum

systems: in 0+1D dimensions, supersymmetric quantum mechanics (SQM) provides a phys-

ical model for K-theory, where the Witten index—a supersymmetric analog of the Euler

characteristic—classifies ground-state degeneracies protected by symmetry. Extending this

to 1+1D, supersymmetric sigmamodels with Calabi-Yau targets exhibit modular invariance,

with their partition functions valued in the ring of weakly holomorphic modular forms. These

observations suggest a hierarchy: low-dimensional SUSY QFTs naturally probe generalized

cohomology theories, with TMF emerging as the 2+1D analog of K-theory.

Stolz and Teichner formalized this intuition by defining Euclidean field theories—a
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variant of Atiyah-Segal topological quantum field theories (TQFTs)—that incorporate Rie-

mannian metrics and supersymmetry. A d-dimensional SEFT assigns to every closed (d−1)-

manifold a Hilbert space and to every d-dimensional bordism a linear operator, subject to

compatibility conditions ensuring supersymmetry and modular covariance. Crucially, these

theories are “Euclidean” in the sense that their partition functions depend only on the con-

formal structure of spacetime, mirroring the worldsheet geometry of strings. The conjecture

posits that the space of 2-dimensional SEFTs (with N = (1, 1) supersymmetry) realizes

the spectrum TMF, with homotopy groups π→ TMF encoding deformation classes of such

theories.

The Stolz-Teichner program also intersects with the Freed-Hopkins classification of

invertible field theoreis, which we have encountered in the last two chapters. For instance,

anomalies in 2-dimensional SCFTs—such as those arising from chiral fermions—can be

canceled by coupling to 3-dimensional invertible bulk theories, mirroring the bulk-boundary

correspondence of SPT phases. This duality reveals a hidden unity: both anomalies and

supersymmetric genera are governed by Thom spectra (e.g., MString for TMF), with now

SEFTs acting as “generators” for TMF.

Despite its elegance, the conjecture remains open in full generality. However, partial

results—such as the construction of TMF via 2-dimensional gauged sigma models and the

classification of 1-dimensional SQM theories via K-theory—support its validity. These de-

velopments underscore the power of supersymmetry as a tool for probing topology, while

challenging physicists to uncover deeper physical interpretations of TMF, such as its role in

quantum gravity or the classification of interacting topological phases.

4.2 Anomaly cancellation through TMF

Given a modular invariant 2D worldsheet CFT Tw.s. with (cL, cR) = (16, 0) we can

produce 10D heterotic string theory on target space X10 equipped with a 3-form H with

dH = p1(X)/2 in order to be non-anomalous. According to bordism picture discussed in
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the previous chapter, each worldsheet chiral fermion has the anomaly

Aw.s.[X] = exp
(
−2πi

∫

Y 11

f →(p1(X))

2

)
,

which can be cancelled by introducing a 3-form H with the coupling exp
(
2πi
∫
X f →(H)

)
.

The condition on the existence of such 3-form H is called string structure on the manifold

X10 since it can also be treated as a trivialization of the characteristic classes p1/2. There will

be N 10d fermions, where N is the number of states that have eigenvalue 1 under L0. From

the last chapter we know that the anomaly polynomial, which measures local anomalies, of

a 10D gravitino is

[I3/2]12 =
p31

3780
− 13p1p2

756
+

31p3
3780

=
31p3
3780

,

while that of chiral fermions is

[I1/2]12 = −
31p31

967680
+

11p1p2
241920

− p3
60480

= − p3
16 · 3780 .

Note that we have a 3-form field H satisfying dH = p1/2. We see that there is no mixed

gravitational-gauge anomaly if and only if N = 31 · 16 = 496. There are only two such 2d

CFTs, with E8 × E8 or SO(32) Lie group as the gauge group.

Due to the vanishement of local anomaly, recall that, the global anomaly is measured

by a bordism invariant

Ahet : !
string
11 → U(1).

Surprisingly, the string bordism group at 11 is zero, implying that the global anomaly auto-

matically vanishes. Nowwe switch our gear to consider lower dimensional compactifications

of heterotic string theory. A compactifications to D dimensions produces a heterotic string

theory on D dimensional spacetime XD and replaces our worldsheet CFT Tw.s. with a 2d

N = (0, 1) SCFT with (cL, cR) = (36−D, 3(10−D)/2).

Example 4.2.1. D = 4 and Tw.s. is give by 2D N = (0, 1) SCFT with (cL, cR) = (22, 9).

The R-sector states of Tw.s. with (L0, L̄0) = (1, 0) produce 4D chiral fermions. In some
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cases we have SU(2) symmetry. The SU(2) symmetry and chirality might yield potential

anomalies. This is directly related to our previous discussions on Witten’s SU(2) global

anomaly that is given by the exponentiated η-invariant and equivalently mod 2 index of the

Dirac operator in this case. Therefore this 4d theory is anomaly-free iff the number of SU(2)

doublet fermions in the the R-sector states is even.

Example 4.2.2. D = 2 and Tw.s. is a 2DN = (0, 1) SCFT with (cL, cR) = (24, 12). The R-

sector states give 2D chiral fermions as before and the anomaly polynomial is p1/48, which

is automatically absent since dH = p1/2. Therefore the exponentiated η-invariant gives the

global anomaly. We know that the generator of !string
3 = Z/24 is a 3-sphere with

∫
S3 H = 1,

then the anomaly is characterized by

Ahet : !
string
3 = Z/24→ U(1), 1 "→ exp

(
2πi

N

24

)
.

As a result, the theory has the Z/24 global anomaly unless Tw.s. has net number of chiral

fermions equal to 24.

The above two constraints can all be derived from TMF calculation based on the Segal-

Stolz-Teichner conjecture, in fact we could do more: the global anomalis of all heterotic

string theories vanish. The second examples will be treated in the third section. Now we

sketch what the Stolz-Teichner conjecture is and how one can use TMF spectra to justify the

absence of global anomalies.

Similar to Freed-Hopkins conjecture, the Segal-Stolz-Teichner conjecture says the de-

formation classes of 2DN = (0, 1) supersymmetric QFTs are given by the TMF spectra.

TMFn = π0

({
2DN = (0, 1) supersymmetricQFTs

of degreen = 2(cR − cL)

})

An 2D N = (0, 1) SCFT T with 2(cR − cL) = n should then determine an element [T ] ∈

TMFn. As we have seen in the appendix, there is a map from TMF to the ring of modular
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forms of weight n/2 with integer coefficients

φW : TMFn → Z((q)),

which resembles the elliptic genus of a SQFT. Moreover, we also have the string orientation

map from string bordism to TMF

σ : !string
n → TMFn,

where the image is given byN = (0, 1) sigmamodel. This mapmanifests as the quantization

map under the conjecture. Now the composition of the above two maps physically gives

elliptic genera of N = (0, 1) sigma models σ(M,H) and in fact this coincide with the

comutations done in the mathematical side.

The Witten’s SU(2) global anomaly in 4d is related to the nontrivial loops in the space

of gauge transformations. Heuristically, in the first example D = 4 we described above,

the global anomaly is similarily associated to nontrivial loops in configurations space of 2d

N = (0, 1) SCFTs with (cL, cR) = (26, 15), where D = 0 in the above formula. So, the

global anomaly is given by

π1

({
2DN = (0, 1) SCFTs
with(cL, cR) = (26, 15)

})
,

which is TMF→21 according to Stolz-Teichner conjecture and in fact this groupwas calculated

long before to be zero! Therefore there is no global anomaly. The heterotic compactification

is a construction sending 2D N = (0, 1) SCFTs with (cL, cR) = (36 − D, 3(10→D)
2 ) with

flavor symmetry G to D-dimensional heterotic string theories with gauge symmetry G. We

can calculate the anomaly of this theory and according to the Freed-Hopkins’ conjecture, this

is given by (IZ!string)D+2(BG). Therefore we get a homomorphism

A : TMFD+22(BG)→ (IZ!
string)D+2(BG),

characterizing local and global anomalies of heterotic string theories.
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This map, first of all, should be a map of spectra, i.e.

A ∈ [TMF,!→20IZΩ
string]

Also, D dimensional heterotic string theory with Tw.s. can be further compactified on a d-

dimensional string manifold (M,H), which is a D − d dimensional heterotic string theory

with Tw.s. × σ(M,H). This corresponds to a multiplication map mathematically

⋆ : TMF∧Ωstring → TMF, [Tw.s.]× [(M,H)] &→ [Tw.s. × σ(M,H)]

which should be compatible with the anomalymap in the following sense: A can be identified

with an element in [TMF∧Ωstring, IZ] and this element should factor through the multiplica-

tion map ⋆. Therefore we get another map of spectra B : TMF −→ !→20IZ which is in

(IZ TMF)→20(•),which lies in

. . . −→ ExtZ(TMF→21(•),Z) −→ (IZ TMF)→20(•) −→ HomZ(TMF→20(•),Z) −→ · · ·

As we have explained in the previous chapter, the global anomaly part is in the torsion sub-

group, i.e. ExtZ(TMF→21(•),Z). However, we have TMF→21(•) = 0. Therefore, there is

no global anomaly. As we will see in the third section, the bordism calculation to prove the

vanishment of global anomalies is fairly complicated, though more general.

4.3 Anomaly cancellation using bordism

Local anomalies can somtimes be cancelled by introducing new terms, now known as

the Green-Schwarz Mechanism[16]. In relevant dimensions, the anomaly polynomial factors

as

I12 = X4X8.

We can kill the anomaly by adding the term:

−
∫

B2 ∧X8,
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to the action functional, where B2 is a 2-form called B-field and it relates to X4 through its

gauge-invariant curvature H3 ≡ dB2 − ωCS. Using the Bianchi identity and Pd+2 = dId+1,

we see that this adds a term −X4X8 to the anomaly polynomial, so the total local anomaly

vanishes.

In the seminal work of Freed and Hopkins[17], they calculate the global anomalies from

the non-vanishing bordism groups by evaluating the Green-Schwarz term on all generators

of the bordism group and see whether it vanishes or not. This method is transparent in that

on the one hand, local anomaly can be cancelled by the Green-Schwarz term, and on top of

that, on the other hand, the global anomaly is an bordism invariant from this term which can

be expressed as integral of characteristic classes, utilizing the power of algebraic topology.

The local expression of anomaly field theories, which are invertible, are then given by the

Green-Schwarz term.

αGS(Y11) =

∫

Y11

H ∧X8.

On a manifold which is itself a boundary, Ỹ11 = ∂Z12 which has a twisted string structures,

αGS(Ỹ11) =

∫

Z12

dH ∧X8 =

∫

Z12

X4 ∧X8,

which is used to cancel local anomaly. In general

Example 4.3.1. (E8 × E8 heterotic string theory)

Our spacetime inE8×E8 heterotic string theory is a spin manifoldM and field are sec-

tions of two principal E8-bundles V, U → M . The Green-Schwarz data, which is basically

the B-field, given by a trivialization of

1

2
p(M)− c(V )− c(U) ∈ H4(M ;Z)

where c is the canonical generator ofH4(BE8;Z) that defines a universal characteristic class

forE8-bundles. This is called a twisted string structure. One can show that the corresponding

bordism group is trivial. However, E8 × E8 heterotic string theory also possesses a Z/2
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symmetry which switches the two E8-bundles. In this case, the corresponding cobordism

group !ξ
n+1 ̸= 0. To rescue this, we find a nice set of generators for !ξ

n+1, then calculate the

anomaly field theory using Green-Schwarz mechanism, eventually evaluate the anomaly on

the set to prove the vanishment.

Theorem 4.3.2. (Basile-Debray-Delgado-Montero[18])

Let ξ denote the tangential structure for the E8 × E8 heterotic string with its Z/2 sym-

metry.

i. !ξ
11 is of order 64 (isomorphic to either Z/8 ⊕ Z/8, Z/16 ⊕ Z/4, Z/32 ⊕ Z/2, or

Z/64. And a generating set is Bott×RP3 and (possibly) a certain (S4 × S4)-bundle

over RP3.

ii. The anomaly theory vanishes.
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Appendix

A Modern homotopy theory
A.1 Introduction to homotopy theory through the lens of characteristic classes

In this introductory section, we illustrate an important concept heavily used, but in sev-

eral different ways, during the main body of the thesis - characteristic classes, together with

several closely-related generalized cohomology theories which are also frequently referred

to in the thesis, such as K-theory, cobordism, elliptic cohomology and differential coho-

mology. The structure presented here is quite unique in order to elaborate approaches to

characteristic classes as well as concepts in modern homotopy theory for readers with min-

imal backgrounds on algebraic topology in a concise manner, though we assume the reader

familiar with basic theory of ordinary cohomology and differential geometry.

A.1.1 Four approaches to characteristic classes

First approach: axiomatic approach

Definition A.1.1. The ith Chern class of a complex vector bundle V → M is defined to be

a 2i-degree class ci(V ) ∈ H2i(M ;Z) satisfying the following axioms:

i. c0(V ) = 1.

ii. (Naturality) ci(f →V ) = f →(ci(V ))

iii. (Whitney sum formula) Let U →M be another complex vector bundle, we have

ck(V ⊕ U) =
∑

i+j=k

ci(V )cj(U).

If we define the total Chern class c(V ) := c0(V )+ c1(V )+ · · · , we have c(V ⊕U) =

c(V )c(U)

iv. (Normalization) ci(M) := ci(TM). We have c(CPn) = (1 + x)n+1 where x be the

generator of H2(CPn) ∼= Z.
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Grothendieck proves the existence and uniqueness of the Chern classes in the context

of algebraic geometry. Here are some properties that can be deduced from these axioms:

i. (Additivity) c1(L1 ⊗ L2) = c1(L1) + c1(L2).

ii. (Stability) c (V ⊕ C) = c(V ).

iii. ci(V ) = 0 if i > rank(V ).

Second approach: classifying space Let G be a compact Lie group. Let BunG(M) de-

note the set of principal G-bundles overM up to bundle isomorphism. We can construct a

universal principal G-bundle EG→ BG in the following sense.

Theorem A.1.2. To each map f : M → BG we can assign the pullback bundle f →(EG)→

M . This becomes a natural bijection if we consider the homotopy classes of maps f : M →

BG, i.e.

[M,BG]
∼=→ BunGM, f $→ f →(EG).

The general principle of building characteristic classes is as follows: to construct charac-

teristic classes of principalG-bundles, in particular vector bundles as principle GLn-bundles,

it suffices to choose one in the cohomology of the corresponding classifying space. Then we

can build characteristic classes for all bundles through pulling back which is a map

c : BunG(M)→ H→(M ;Z) [f : M → BG] $→ f →c,

the naturalness of these classes is for free. In other words, a characteristic class c for principle

G-bundles is determined by its value on the classifying space c ∈ H→(BG).

Example A.1.3. (Chern classes)

Let’s consider a rank n complex vector bundles V →M , we get a map fV : M → BUn.

If we select a class c ∈ H→(BUn), which satisfies the axioms in Definition A.1.1 for its

universal bundles, then let c(E) := f →
Ec, this is what we want. We could do this construction
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for all rank at the same time by considering the the classifying space for complex vector

bundles

BU := colimn→∞BUn.

Therefore, it suffices to consider the cohomology of this space. We have the following

theorem:

Theorem A.1.4. H∗(BU) ∼= Z[c1, c2, . . .], with |ck| = 2k, where ck is the kth Chern class.

Third approach: the splitting principle In fact, it suffices to only construct the first Chern

class, as we will see in later section that, the first Chern class also gives higher Chern classes

in generalized cohomology theories. This follows from the splitting principle which asserts

that every vector bundles can be decomposed to direct sum of line bundles after pulling

back. Since the Chern classes are natural and higher Chern classes of line bundles vanishes,

we only need to consider the first Chern class of the line bundle in related problem. Here we

present how to construct higher Chern classes from first Chern class to elaborate the splitting

principle.

Theorem A.1.5. (Splitting principle)

After pulling back along the flag bundle p : Fℓ(V ) → X , a complex vector bundle

V → X can be decomposed as a direct sum of line bundles p∗V = L1⊕ . . .⊕Ln. Moreover,

the map p∗ : H∗(X;Z)→ H∗(Fℓ(V );Z) is injective.

Then the total Chern class c(V ) = 1+ c1(V ) + · · ·+ cn(V ), with ck(V ) ∈ H2k(X;Z),

equals to

1 + c1(V ) + · · ·+ cn(V ) = c(L1 ⊕ . . .⊕ Ln) = (1 + x1) · · · (1 + xn)
= 1 + σ1(x1, . . . , xn) + · · ·+ σn(x1, . . . , xn)

with Chern roots xi = c1(Li) ∈ H2(X;Z), i = 1, 2, . . . ., n. Then by degree reason ck(E) is

the kth symmetric polynomial σk in these roots. Reverse the above procedure, we can define

Chern classes for all complex vector bundles once we know how to define the total Chern
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class of line bundles c(L). We can identify p→c(E) with c(E) since by Theorem A.1.5, p→ is

injective.

The above story can also be generalized to the case of principleG-bundles. However, we

can no longer work overZ anymore, we have to work overQ and the decomposition analogue

involves the maximal torus T of the structure group G. Let G be a compact, connected Lie

group, then T is isomorphic to Tn for some n called rank of G. We define a G/T -bundle

p : Z → M similar to the flag bundle above as the pullback along fP : M → BG and

i : T ↪→ G

Z = M ×BG BT.

The generalized splitting principle says that after pulling back to Z, the bundle p→P can

be viewed as a T -bundle. Furthermore, The map q→ : H→(X;Q) → H→(Z;Q) is also an

injection. Therefore, to define a characteristic class c for principle G-bundles, it suffices to

consider its values c(Q) on principle T -bundlesQ. Since we have the isomorphism T ∼= Tn,

c(Q) decomposes as a product
n∏

i=1

(1 + xi)

Definition A.1.6. Choose a connection ∇ on V . The total Chern class c(V ) is

c(V ) := det
(
I − F∇

2πi

)
∈ H2→

dR(M)

The renowned Chern-Weil theorem says it is independent of the choice of connection.

Moreover, this lives in H2k
dR(M ;Z) ⊂ H2k

dR(M) ⊗ Q a priori only in H2k
dR(M) ⊗ Q. More

general Chern-Weil theory and the phenomenon of integral lifts of de Rham classes are the

genesis of differential cohomology, which we will elaborate at the end of our introductory

part in section A.1.9.

A.1.2 Characteristic classes as obstructions to tangential structures

Theorem A.1.7. As graded rings, H→(BO;F2) ∼= F2[w1, w2, w3, . . .], with |wk| = k.

Therefore, characteristic classes for real vector bundles in HF2 is a polynomial in wk.
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These wk’s are the Stiefel-Whitney classes. Set w0 = 1, the total Stiefel-Whitney class is

w(V ) := 1 + w1(V ) +w2(V ) + · · · . The Stiefel-Whitney classes also satisfy the axioms in

Definition A.1.1 as well as the properties like stability and rank condition as the Chern classes

do. It turns out that Stiefel-Whitney classes are obstruction to several structures ubiquitous

in geometry and topology.

Here are some examples of some common topological structure. Notice that we sayM

has a H-structure if its frame bundle F(M), which is a GLn(R)-bundle, has one.

Example A.1.8. Using the more geometric language of reduction, we unravel some familiar

concepts:

i. Consider ρ : On ↪→ GLn(R). A lift of F(M) to a On-bundle is equivalent to a Rie-

mannian metric, i.e. smoothly varing inner product on TxM .

ii. Consider ρ : SOn ↪→ GLn(R). A lift of F(M) to a SOn-bundle is equivalent to an

orientation. Two lifts are homotopic iff they define the same orientation.

iii. Consider ρ : Un ↪→ GLn(R). A lift of F(M) to Un-bundle is equivalent to an almost

complex structure.

Definition A.1.9. (Spin and Pin±-structrues)

A spin structure onM is a Spinn-structure along the map ρ : Spinn → SOn ↪→ GLn(R).

Spinn is the double cover of SOn. Moreover, there are two groups Pin+n and Pin
→
n double

covering the On and they both possess the connected component of the identity as Spinn.

Similarily, we can speak of Pin±-structures.

Theorem A.1.10. Let M be a manifold.

• M is orientable if and only if w1(M) = 0.

• M is spin if and only if w1(M) = 0 and w2(M) = 0.

• M has a Pin+(Pin→)-structures if and only if w2(M) = 0. (w2 + w2
1(M) = 0 resp .)
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Characteristic classes and cobordism The theorem is a culminating result in modern dif-

ferential topology and is of enormous importance to the problem of immersions and embed-

ding of manifolds.

A.1.3 Digression: cohomology operations and Wu classes

Definition A.1.11. A cohomology operation is a natural transformation of contravariant

functors O : Hp(−;A) → Hq(−;B). We say O is stable if it also commutes with sus-

pension isomorphism !.

An example of cohomology operation is x #→ x2, which exists in any degree. Though

this is in some sense universal, it’s not stable. They are genesis of a large class of stable

operations.

Let’s consider the case p = 2.

Definition A.1.12. All stable cohomology operationsH→(−;F2)→ H→(−;F2) over F2 con-

stitute a graded F2-algebra called the Steenrod algebra A , which is generated by classes

Sqn ∈ An, called Steenrod squares, such that:

i. Sqn : Hk(−;F2)→ Hk+n(−;F2).

ii. Sq0 = id, Sq1 = β4.

iii. Restricted degree n, Sqn is the squaring map x #→ x2 and if n > |x|, then Sqnx

vanishes.

iv. The total Steenrod square Sq := 1 + Sq1 + Sq2 + · · · is a ring homomorphism, or

equivalently,

Sqn(xy) =
∑

i+j=n

Sqi(x)Sqj(y), (6)

which is called the Cartan formula.
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v. The Steenrod squares have the Adem relations

SqiSqj =
→i/2"∑

k=0

(
j − k − 1

i− 2k

)
Sqi+j−kSqk

plays an important role in the theory of characterisitc classes.

Recall that the classical theorem of Poincaré duality says for any closed n-manifoldM ,

Hk(M ;Z/2)⊗Hn−k(M ;Z/2) !−→ Hn(M ;Z/2)
ε[M ]−−−→

∼
Z/2

is a nondegenerate pairing. In particular, Hk(M ;Z/2) ∼= (Hn−k(M ;Z/2))∗ and Sqk :

Hn−k(M ;Z/2)→ Hn(M ;Z/2) is such a linear functional. Therefore, we can use Poincaré

duality to turn the Steenrod squares into characteristic classes, theWu classes.

Definition A.1.13. (Wu classes)

The kth Wu class vk ofM is the Poincaré dual of kth Steenrod square, i.e. vk ∈ Hk(M ;Z/2) :

vk ⌣ x = Sqk(x). Similarly, the total Wu class is v := 1 + v1 + v2 + · · · . The total Wu

class satisfies

⟨v ⌣ x, [M ]⟩ = ⟨Sqx, [M ]⟩

for all x ∈ H∗(M ;Z/2).

Theorem A.1.14. (Wu formula)

Sq(v) = w. (7)

Using the Ádem relations, we get

Sqiwk =
i∑

j=0

(
k + j − i− 1

j

)
wi−jwk+j.

The Wu classes are very useful in computation. Here are some examples

Proposition A.1.15. If M is a closed 2- or 3-manifold, w1(M)2 = w2(M).
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Proof. Looking at homogeneous terms and using Wu formula (7),

w1 = Sq1v0 + Sq0v1 = v1

w2 = Sq2v0 + Sq1v1 + Sq0v2 = v21 + v2 = w2
1

Moreover, we deduce that orientable manifolds are also spin in low dimensions.

Example A.1.16. (Wu manifold)

The Wu manifold W := SU3/SO3 is a five-dimensional manifold with mod 2 coho-

mology being H→(W ;Z/2) ∼= F2[z2, z3]/(z22 , z
2
3), and the A -action being Sq1z2 = z3 and

Sq2z3 = z5. Hence v(W ) = 1 + v2 and only w2 and w3 can be nonzero,

w2(W ) = Sq2v0 + Sq1v1 + Sq0v2 = v2 = z2

w3(W ) = Sq3v0 + Sq2v1 + Sq1v2 + v3 = Sq1z2 = z3

so w(W ) = 1 + z2 + z3 and Stiefel-Whitney number w2,3 = ⟨w2(W )w3(W ), [W ]⟩ = 1.

Thus, !O
5
∼= Z/2 hasW as a generator.

Definition A.1.17. The kth integral Stiefel-Whitney classWn(V ) of V is defined as

β0wn−1(V ) ∈ Hn(M ;Z).

The Lie group Spincn is the quotient

Spincn := (Spinn × U1)/(Z/2) (8)

where Z/2 acts as -1 on both components. Therefore, just as the Spin-structures, we could

talk about Spinc-structures and Pinc-structures by replacing Spinn with Pin
+
n or Pin−n in (8).

Like Theorem A.1.10, these structures are also obstructed by certain characteristic classes.

Proposition A.1.18. Let M be a manifold.

• M has a Spinc-structure if and only if w1(M) = 0 and W3(M) = 0.

• M has a Pinc-structure if and only if W3(M) = 0.
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A.1.4 Chern classes and Pontrjagin classes

A natural question to ask is whether Chern classes have the similar connection to cobor-

dism rings and as obstructions to topological structures. We can generally define Chern

classes and Chern numbers similarly for stably almost complex manifolds, which means we

have complex structure on TM ⊕ Rk for some k.

We can define it for stably almost complex manifolds, which is called the complex

cobordism ring and denoted as!U
→ . As we have seen many times, it is a general phenomenon

that the cohomology rings of classifying space encode characteristic classes which classify

manifolds up to cobordism through characteristic numbers, determining the structure of the

cobordism rings.

Theorem A.1.19 (Milnor, Novikov). As graded rings,

!U
→
∼= Z[x1, x2, . . .]

where |xk| = 2k. Rationally, !U
→ ⊗ Q is generated by the complex projective spaces CPi for

i ≥ 1.

Moreover, two stably almost complex manifolds are cobordant if and only if they have

the same Chern numbers.

Anecessary condition for possessing stably almost complex structures is the vanishment

of w2k+1 andW2k+1 for all k.

We have already introduced the Stiefel-Whitney class related to the real vector bun-

dles and orthogonal group On and the Chern classes related to complex vector bundles and

the unitary groups Un, what about oriented real bundles? They should be related to special

orthogonal groups SOn according to our previous discussions. The corresponding character-

istic classes are called Pontrjagin classes.

The maximal torus Tn of SOn consists of the diagonal matrices in U[n/2] ⊂ SOn. Ac-

cording to the splitting principle, it suffices to define it on line bundles L → X . We define
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the total Pontrjagin class p(L) = 1 + p1(L) and p1(L) = c1(L)2 ∈ H4(X;Z).If V is an

oriented real vector bundle, then after pulling back.

Theorem A.1.20 (Thom, Wall). i. As graded rings,

!SO
→ ⊗ Q ∼= Q[x1, x2, . . . , ]

where |xk| = 4k, and xk = [CP2k].

ii. Two oriented n-manifolds are oriented cobordant if and only if they have the same

Pontrjagin and Stiefel-Whitney numbers.

Since Spinn → SOn is a double cover, the forgetful map!Spin
→ → !SO

→ is an isomorphism

rationally. In particular,!Spin
→ ⊗Q ∼= Q[x̃1, x̃2, . . .]with |x̃k| = 4k but they are not represented

by CP4k anymore. The characteristic numbers that classify spin cobordism classes are KO-

characteristic classes, the KO-theory is a generalized cohomology theory.

A.1.5 Characteristic classes for generalized cohomology theory

Ẽn(M) = lim
k→∞

πn+k(M ∧ Ek),

Ẽn(M) = lim
k→∞

[ΣkM,En+k].

In this subsection, we require our spectrumE to possess a graded commutative ring structure

Ei(X)×Ej(X)→ Ei+j(X), dubbed a ring spectrum. Theories represented by ring spectra

are named multiplicative cohomology theories.

Example A.1.21 (K-theory).

Theorem A.1.22. (Bott periodicity). K0(Σ2X) ∼= K0(X).

Wecan generalize construction of the cobordism group to any stable tangential structure.

Cobordism between closed n-manifolds with ξ-structure is an equivalence relation, and

the equivalence classes in dimension n form an abelian group denoted ξ
n , under disjoint

union. As before, we can define abelian groups ξn(X). The functors!ξ
→ is also an generalized
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homology theory, and the Pontryagin-Thom construction shows they are represented by the

Thom spectra whose n-th space is the Thom space MV for some vector bundle V → M

which is defined as the unit disc bundle modulo the unit sphere bundle D(V )/S(V ).. Let

τk → BOk denote the tautological bundle, and Vk → ξk denote its pullback across ξk → BOk.

Theorem A.1.23 (Pontrjagin-Thom). Pontrjagin-Thom collapse map defines a bijection:

!ξ
n

→=→ [Sm, ξVm−n
m−n ] = πm(ξ

Vm−n
m−n )

Define the Thom spectrum Mξ to have nth space ξVn
n whose structrue map is

ΣξVn
n
∼= ξVn⊕R

n → ξVn+1
n+1

then we get an isomorphism between ξ-bordism group and πn(Mξ).

Proof. For large m, the classifying map of the normal bundle φ : νm → Vn−m extends to a

map Sm → ξVm−n
m−n via Pontrjagin-Thom collapse as follows.Choose a basepoint on Sm\ν,

then we can acquire a map Sm → ξVm−n
m−n . Conversely, given a map Sm → D(Vm−n) sending

the basepoint to S(Vm−n), by transversality, the preimage of a regular value is what we want.

This is an isomorphism up to homotopy by transversality.

Moreover, we get the oriented cobordismM SO, spin cobordismM Spin, and complex

cobordismMU by the stable tangentialG-structure where ξ’s could also be BSpinc, BPin±.

Remark A.1.24. Not all tangentialG-structures are stable, and in general, we do NOT always

get a ring structure on!ξ
∗. For example, this happens for Pin

+ and Pin− structure. Their spec-

tra are modules overMSpin. Moreover, the Pontrjagin-Thom theorem only works for stable

normal structures, which again in most cases are equivalent to stable tangential structures,

except for those module spectra, likeMPin±.

Generalized orientations and characteristic classes for generalized cohomology
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Definition A.1.25. Let E be a multiplicative cohomology theory. A characteristic classes

c for generalized cohomology simply takes values in E→(X) that is natural in the sense of

Definition A.1.1.

Definition A.1.26. Let V → X be a topological vector bundle of rank k. Then an E-

orientation orE-Thom class on V is an element of degree k uV ∈ Ẽk(Th(V )) in the reduced

E-cohomology of the Thom space of V , such that for every point x ∈ X there exist a map

ϕx : Rn → Vx makes the composite

Ẽk(Th(V ))→ Ẽk(Th(Vx))
ϕ∗
x→ Ẽk(Sk) ∼= E0(•)

map the element uV to the unit in E0(•).

Theorem A.1.27. Let π : V → X be a E-oriented vector bundle of rank k. We have the

Thom isomorphisms

E→(X)
εuV−−−→ Ẽ→+k(Th(V )).

The pushforward map π! : E→(V )→ E→−k(X) is given by the composite

E→(V )
εu−−→∼= Ẽ→+n−k(Th(νnV ))

PT∗
−→ Ẽ→+n−k(!nX+) ∼= Ẽ→−k(X)

where νnE is the normal bundle of V ↪→ Rn, u is the Thom class for this bundle. PT stands

for Pontrjagin-Thom collapse map.

A.1.6 Characteristic series: complex orientation, formal group law and genera

Definition A.1.28. A complex orientation ofE is anE-orientation for each rank-n universal

complex vector bundle O(n)→ BUn:

un ∈ Ẽk(Th(O(n)))

such that these are compatible in that
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i. for any n, we have un = ϕ→
nun+1, where

un ∈ Ẽk(Th(O(n))) ∼= Ẽk+1(Th(R⊕O(n)))

and where ϕn : R⊕O(n)→ O(n+ 1).

ii. for any n1, n2, we have un1 · un2 = un1+n2 .

Constructed from pulling back along its classifying map. Moreover, this collection is

compatible with pullback (between complex vector bundles) and direct sum (multiplicativ-

ity).

Fromour previous discussions on bordism theory, we know that the sequence {Th(O(n))}

is basically the Thom spectra which represents the complex cobordism theory MU and a

complex orientation basically assigns a natural collection of classes in Ẽ→(MU), such as-

signment together with the conditions above actually give what is called a map between ring

spectraMU → E.

RemarkA.1.29. The above definition can be further generalized to any tangentialG-structure,

by simply replacing O(n) with rank n the universal vector bundle with G-structure. When

G = U , we recover our original definition.

The generalization bears the name a universal E-orientation for vector bundles withG-

structure and it is a big theorem that it is equivalent to a homomorphism of E∞-ring spectra

u : MG −→ E

Quillen’s theorem implies there is a one-to-one correspondence between formal group

laws overR and a ring homomorphismMU→ → R. Over a Q-algebra, any formal group law

is isomorphic to the additive formal group law F+.

F
logF
!
expF

F+ (9)
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The isomorphism logF is given by

logF (x) = f(x) =

∫ x

0

dt
∂F
∂x2

(t, 0)
. (10)

Example A.1.30. Rationally, the universal formal group law FMU has the logarithm using

(10) as

logFMU
(x) =

∑

n→0

[CPn]

n+ 1
xn

Remark A.1.31. OverFp, there is exactly one formal group law for each n ∈ N, called height.

This is really the pillar of modern chromatic homotopy theory.

Definition A.1.32. (Genus)

An genus is a ring homomorphism

ϕ : MSO∗ → R,

where R is a Q-algebra. And a complex genus is a ring homomorphism

ϕ : MU∗ → R.

Therefore, any complex genus ϕ : MU∗ → R has a logarithm

logε(x) =
∑

n→0

ϕ([CPn])

n+ 1
xn

Genera can be completely described by its charactersitic series according to the splitting

principle. We can associate the characteristic class for any complex vector bundles to a

genus ϕ : MU∗ → R

qε(V →M) ∈ H∗(M ;R),

which is given entirely in terms of the characteristic series

qε(x) = qε(O(1)→ CP∞) ∈ H∗(CP∞;R) ∼= R[x], (11)

where x = c1(O(1)) the usual first Chern class. Conversely, starting from the characteristic
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series, we can define a genus for any stably almost complex manifoldM ,

ϕ(M) = ⟨qϕ(TM), [M ]⟩.

Proposition A.1.33 (Hirzebruch). (Hirzebruch)

For R a Q-algebra, there are bijections

{q(x) = 1 + a1x+ a2x
2 + · · · ∈ R!x"}←→ {ϕ : MU→ → R}

{q(x) = 1 + a2x
2 + a4x

4 + · · · ∈ R!x" | aodd = 0}←→ {ϕ : M SO→ → R}

Proof. Dissecting formula (11), the isomorphism on the right hand side is really induced

by the usual first Chern class c1, and according to Theorem ?? this comes from a complex

orientation yielding the additive formal group law F+ over R. What really associated to the

complex genus ϕ : MU→ → R really is another formal group law F overR and the universal

first Chern class

cϕ1 ∈ H→(BU(1);R) ∼= R[cϕ1 ],

where the isomorphism is induced by it. The characteristic class qϕ(V → X) is constructed

from this first Chern class according to the splitting principle. Therefore, the characteristic

series is basically an automorphism of H→(BU(1);R) which maps c1 to cϕ1 .

According to (9) and since cϕ1 = F (x, 0) we have

qϕ(x) = F (x, 0) = expϕ F+(logϕ(x), logϕ(1))
= x

expϕ(x)
,

where expϕ(x) is the inverse to logϕ(x).

Example A.1.34. From (10), the logarithm for F×(x1, x2) = x1 + x2 − x1x2 is

log×(x) =
∫ x

0

dt

1− t
= − log(1− x)

Therefore,

exp×(x) = 1− e−x
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q→(x) =
x

exp→(x)
=

x

1− e−x
= 1 +

x

2
+

x2

12
− x4

720
+ · · · ∈ Q!x"

generates the Todd genus td.

Example A.1.35. Here are some important characteristic classes in topology given in terms

of their characteristic seris:

• Chern character ch(V ) corresponds to q(x) = ex. The Chern character has this special

properties as being a ring homomorphism

ch : K0(M) −→ Heven(M ;Q), [V ] $→ ch(V )

which is not possessed by other genera.

• A roof genus Â(V ) corresponds to q(x) = x/2
sinh(x/2)=1 −

x2

24 + 7x4

5760 + · · · , we could

expand it:

Â(X) = 1− 1

24
p1(X) +

7p1(X)2 − 4p2(X)

5760
+ · · ·

• L-genus L(V ) corresponds to q(x) = x
tanh(x) .

Genera have a geometric (or analytic) interpretation and lift to integral invariants, whose

explanation for the integrality is given by the index theory.

Theorem A.1.36. (Hirzebruch-Riemann-Roch)

Let M be a projective complex manifold and let V → M be a holomorphic vector

bundle. Then

χ(M,V ) = ⟨td(M)ch(V ), [M ]⟩ ∈ Z. (12)

The left hand side of (12) also equals to the index of the operator ∂+ ∂̄ which is defined

to be an integer. Hirzebruch’s signature theorem, a step in the proof of Theorem A.1.36 is

another example.

Theorem A.1.37. (Hirzebruch Signature Theorem)
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The signature of a closed oriented smooth manifold X is

σ(M) = ⟨L(M), [M ]⟩, (13)

where σ(M) is the signature of the intersection form, which is a prior an integer.

In fact, the signature can also be interpreted as an Fredholm index of certain operator,

i.e. σ(M) = ind(d+ d→).

A.1.7 Geometry of characteristic classes: index theory

The index theory relates, on one side, analytic index of Fredholm operators between

vector bundles on M and, on the other side, some topological invariants of M typically

involving characteristic classes defined above, usually dubbed the topological index.

Let’s set up the index problem on a closed oriented n-manifoldM . Let V, U → M be

two vector bundles overM , and suppose P : !(V )→ !(U) is a linear differential operator

of orderm. Locally, P can be written as:

Pu(x) =
∑

|α|≤m

aα(x)(
∂

∂x1
)α1 · · · ( ∂

∂xn
)αnu(x)

where u is a smooth section of V , aα is a smooth bundle map between V and U . The symbol

of this differential operator σ(P ) is the highest order term, which gives a bundle map

σ(P ) : Symm(T →X)⊗ V → U

The differential operatorP is elliptic if its symbol is invertible. It follows from elliptic theory

that P has finite dimensional kernel and cokernel. The Fredholm index of P is

indP = dim kerP − dim cokerP.

In fact, the Fredholm index is a complete deformation invariant in the space of Fredholm op-

erators. The principal symbol is a bundlemap and hence define a classσ(D) ∈ K0(T →M,T →M0).

From elliptic theory, we know that the index of the operator depends only on the relativeK-
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class [σ(D)]. Therefore, the Fredholm index can be interpretted as the so-called analytic

index

inda : K0(T →M,T →M0) −→ Z, [σ(P )] #→ indP

The Atiyah-Singer index theorem

Theorem A.1.38. (Atiyah-Singer)

Let M be a closed oriented manifold, and P : !(V ) → !(U) is an elliptic operator,

then

indP = ⟨td(TMC) · φ−1 ch(σ(P )), [M ]⟩

where φ is the Thom isomorphism in ordinary cohomology theory. Moreover, we can inter-

pret the right hand side as an topological index indt : K0(T →M,T →M0) → Z using Thom

isomorphism φ and cobordism theory purely topologically. Therefore the Atiyah-Singer in-

dex theorem basically says

inda = indt,

as maps between K0(T →M,T →M0) and Z.

When M is a even dimensional closed spin manifold, one has the Thom class in K-

theory since a spin manifold has a canonicalK-orientation τ ∈ K0(T →M,T →M0) gives rise

to the isomorphism

K0(M)
∼=−→ K0(T →M,T →M0), [V ] #→ τ · π→V (14)

The corresponding operator D of the class τ is the so-called Dirac operator D : !(S+) →

!(S−), where S± are spinor bundles associated to the spin structure onM . General classes

on the right hand side of (14) corresponds to the twisted Dirac operators DV . In this case,

according Theorem A.1.27 , we have topological pushforwards inK-theory along p : M →

•, and composite with the inverse of Thom isomorphism (14) we get

indt : K0(T →M,T →M0)
∼=−→ K0(M)

p!−→ K0(•) ∼= Z

55



This turns out to be equal to Thom’s construction on topological index in this special case.

Theorem A.1.39. (The “famous” Atiyah-Singer Index Theorem)

Let M be an even dimensional closed spin manifold and V → M a complexvector

bundle, then

indDV = ⟨Â(M) ch(V ), [M ]⟩

An application of Atiyah-Singer index theorem is the explanation for the integrality

of Â-genus on spin manifolds. This is evident from the special case where we take V to

be trivial in Theorem A.1.39. Moreover, along the same line of thoughts, one can prove

variants of index theorems like above, for example, the equivariant index theorem considers

manifolds with G-action, when G is abelian, indG lives in the equivariant K-theory KG(•)

which is exactly the character of the groupG. Another example if the family index theorem,

which generalize to a family of spin manifoldsM → S, we can then define the family index

Â(M) ∈ KO→n(S). In the language of homotopy theory, all of these stories are encoded in

a map of ring spectra called the ABS orientation MSpin → KO. We can generalize to the

cases of E-oriented manifolds where the family genus defines a class φ(M) ∈ E∗(S), the

key is to define certain analytic index which also lives in this group, where it is the map of

ring spectra φ : MG→ E relates two sides of the story.

A.1.8 Elliptic genera and elliptic cohomology

Definition A.1.40. (Elliptic genus)

An genus ϕ : !SO
∗ −→ R (R is a Q-algebra.) is elliptic if its logarithm

g(x) =
∑

n≥0

ϕ(CP2n)

2n+ 1
x2n+1

is an elliptic integral

g(x) =

∫ x

0

dt√
R(t)

with R(t) = 1− 2δt2 + ϵt4 (δ, ϵ ∈ R).
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The formal group law of elliptic genus comes from the group structure of the Jacobi

quartic elliptic curve. Assume δ, ϵ ∈ C and the discriminant! = ϵ(δ2 − ϵ)2 ̸= 0. We define

logJ(x) :=
∫ x

0

dt√
1− 2δt2 + ϵt4

=

∫ x

0

dt√
R(t)

Theorem A.1.41.

FJ(x1, x2) =
x1

√
R(x2) + x2

√
R(x1)

1− ϵx2
1x

2
2

.

Genesis of elliptic genera vaishes. Moreover, As graded rings,

ΩSO
→ ⊗ Q ∼= Q[x4, x8, x12, x16, · · · ].

with generators x4 = [CP2], x8 = [HP2], x4i = [CP2i], i > 2. Obviously (x12, x16, . . .) ⊂ I→.

Conjecture A.1.42. I→ = (x12, x16, . . .) under the above isomorphism.

One has

ϕ(P(V 2m)) = 0,

Since ϕ(CP2) = δ and ϕ(HP2) = ϵ for any elliptic genus, it follows that I→ = (x12, x16, . . .).

In fact, an equivalent definition of elliptic genus is the requirements on vanishment of any

CP(V 2m).

For an oriented manifoldM with a complex vector bundle V →M , build

Sq(V ) =
∑

n≥0

Sn(V )qn ∈ K(X)!t", Λq(V ) =
∑

n≥0

Λn(V )qn ∈ K(X)!t".

from the symmetric and exterior powers of T , and then write

R(V ) :=
∞⊗

l=1

Sql(V )⊗
∞⊗

l=1

Λql(V ) =:
∑

k≥0

Rk(V )qk.

Then one finds that
R0 = 1 R2 = Λ2T + T
R1 = −T R3 = −(Λ3T + T ⊗ T )
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In fact, the characteristics appeared earlier that vanish on CP(V 2m) are exactly

Â(Mn)ch(Rk(TM
C − Cn)) =: ρk(M

n).

Indeed, we get the so-called universal elliptic genus

ϕLS : !SO
→ −→ Q!q", [M ] #→

∑

k≥0

⟨ρk(M), [M ]⟩qk.

It bears the name since the its formal group law is the one given by Euler in Theorem A.1.41.

Similarily, we can define the following genus which is not elliptic, now known as the

Witten genus

ϕW (M) :=

〈
Â(M)ch

(
∞⊗

l=1

Sql(TM
C − Cn)

))
, [Mn]

〉
∈ Q!q".

Integrality, modularity and index theory

Theorem A.1.43. (Chudnovsky, Zagier)

The universal elliptic genus ϕLS maps to modular form for

Γ0(2) =

{(
a b
c d

)
∈ SL2 Z

∣∣∣∣ ceven
}

WhenM is a spin manifold, then ϕLS(M) and ϕW (M) both have integer coefficients.

This can be deduced from their definitions as power series with coefficients equal to the

indices of twisted Dirac operators. But, where does the modularity come from? Index the-

ory again, but this time as equivariant index theorem. When M is a spin manifold, Witten

formally defined the signature operator on the free loop space LM , and he showed its S1-

equivariant index equals ϕLS . The modularity of it can be physically deduced as being the

index of signature operator.

Theorem A.1.44. When M is a string manifold, ϕLS maps to integral modular form, i.e.

ϕW (M) ∈ MF→ .
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in general, ϕW (M) lives in the ring of almost modular forms

M̂F→ = Q[G2, G4, G6] ⊃ MF→ .

The characteristic series associated to the Witten genus

qW (x, τ) = exp

(
2
∑

k≥2

G2k(τ)
x2k

(2k)!

)

This is also qW (x) = x/σ(x), where σ(x, τ) is the Weierstrass σ-function. The full modu-

larity of Witten genus of string manifolds and almost modularity in the general case can be

explained via characteristic series. Let q = e2πiε and u = ex, the characteristic series has the

product expansion

qW (u, q) =
x/2

sinh(x/2)
∏

n≥1

(1− qn)2

(1− qnu)(1− qnu−1)
e−G2(ε)x2

.

The last term contributes nothing exactly when (p1/2)(M) = 0 and the rest is exactly the

characteristic series of a twisted Â-genus that have integer coefficients according to the index

theorem.

Elliptic cohomology and orientation As we have already seen, the integrality of Â-genus

of spin manifolds through Atiyah-Singer index theorem can be encoded in the orientation

mapMU → K between spectra. It is the natural to ask whether there is also an orientation

map in the case of elliptic genera, in particular ϕLS , and the Witten genus ϕW ? The answer

is yes, the target spectra are elliptic cohomology and topological modular form respectively.

Let’s first focus on elliptic genera and elliptic cohomologies.

Theorem A.1.45. (Conner-Floyd)

K→(M) ∼= MU→(M)⊗MU∗ Z!β, β−1".
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A.1.9 Chern-Weil theory and differential cohomology

In this section, we introduce the general Chern-Weil theory. Let’s now consider a prin-

cipal G-bundle π : P →M with connection∇ and curvature 2-form F→ ∈ !2
M(g). Choose

a g-invariant polynomial g of degree k: g ∈ Symk(g∨)G. We can construct a 2k-form out

of this polynomial as follows. First, we pullback the curvature 2-form to the total bundle P ,

then apply g on its k-power, i.e. g((π∗F→)∧k) ∈ !2k
P (R). Since g is an invariant polynomial,

it descends to a 2k-form g(F→) ∈ !2k
M(R) on the base space which we call the Chern-Weil

form. Similar to the trace powers, it is a closed form according to the Bianchi identity. In

fact, more is true.

Theorem A.1.46. (Chern-Weil)

• g(F→) is closed and its de Rham class [g(F→)] ∈ H2k
dR(M) is independent of ∇,

• The Chern-Weil map cw: Symk(g∗)G → H2k
dR(M) is a functorial ring homomorphism.

Example A.1.47. (Chern classes)

For complex vector bundles, we have previously seen that the total Chern class is given

by

c(F ) = det
(
1− iF

2π

)
∈ H2∗(M ;Z).

Expand this we get the following

c1(F ) = tr(F )
2πi ,

c2(F ) = − 1
8π2 (trF ∧ trF − tr(F ∧ F )),

cn(F ) =
(

1
2πi

)k detF.

Example A.1.48. (Pontrjagin classes)

For real vector bundles V →M , the total Pontrjagin class is the total Chern class of its

complexification, equivalently, we can define

p(F ) = det
(
1− F

2π

)
∈ H4∗(M ;Z).
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Some lower degree examples are

p1(F ) = − 1
8π2 tr(F ∧ F ),

p2(F ) = 1
128π4 (tr(F ∧ F )2 − 2 tr(F 4)).

Example A.1.49. (Chern character)

The chern character is also defined by

ch(F ) = tr exp
(

F

2πi

)
=
∑

k

1

k!
tr
(

F

2πi

)k

∈ H2→(M ;Q).

The k-th Chern character chk(F ) is the degree 2k component 1
k! tr

(
F
2πi

)k.

Chern-Simons invariant

Theorem A.1.50. (Gauss-Bonnet-Chern)

Let M2n be a closed Riemannian manifold with curvature F . Then we have

∫

M

pε(F, . . . , F ) = χ(M),

where pε is the Pfaffian polynomial.

Proof. Choose an arbitrary unit vector field v with isolated zeros on M . We can naturally

construct a connection 1-form A locally which satisfies

∫
{Smi}

1
2πA = indmi(v),

where Smi is the unit sphere surrounding a zeromi. Here the index is defined as the degree of

the map u : ∂D→ Sn−1 given by u(z) = v(z)/∥v(z)∥. It is a classical theorem of Poincar�

and Hopf that
∑

i

indmi(v) = χ(M).

Moreover, from unit vector field v, we have the associated sphere bundle π : S(M) → M

with fibers S2n−1. One can show that there is a (2n− 1)-form Tpε(F,A) on S(M) such that

• π→pε(F, . . . , F ) = dTpε(F,A),
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•
∫
S2n−1 Tpχ(F,A) = 1.

Tpχ(F,A) is called the trangression of pχ. We can then easily deduce the theorem:
∫
M pχ(F ) = limt→0

∫
M−{Dt

mi
} pχ(F ) = limt→0

∫
v∗(M−{Dt

mi
}) π

∗pχ(F )

= limt→0

∫
v∗(M−{Dt

mi
}) dTpχ(F,A)

= limt→0

∫
! deg(mi)St

mi

Tpχ(F,A)

=
∑

i indmi(v)

and by Poincar�-Hopf Theorem we get desired formula.

Trangression can generally be obtained by considering tautological pullback, sinceπ∗P →

P is trivial

π∗(g(FA)) = dTg(F,A).

The closed (2k − 1) -form on P is given by

Tg(A) =

∫

[0,1]

g(A,ϕk−1
t )dt,

where ϕt = tFA + (t2 − t)A ∧ A.

Example A.1.51. (Chern-Simons invariant)

Taking G = SO(3), M3 oriented, and g = p1. Then p1(FA) = 0, i.e. dTp1(A) = 0.

Consider the frame bundle F (M) → M which is trivializable, take a global section s, the

integral

CS(M) :=

∫

M

s∗Tp1(A) modZ

is a conformal invariant of the manifold called the Chern-Simons invariant. Moreover, the

necessary condition forM3 being able to be conformally immersed into R4 is

CS(M) = 0.

Chern-Simons invariant is a case of secondary characteristic class in the sense that it distin-

guishes manifolds even if the primary invariant, i.e. p1 vanishes.

When not working on the total bundle, such global formula does not exist anymore.
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In the spirit of the trangression form, we have a generally the Chern-Simons form which is

defined only locally. Consider two connections A1 and A2 on P . The Chern-Simons form is

CSg(A1, A2) =

∫

[0,1]

g(A,F k→1
t )dt,

where Ft = dAt + At ∧ At, At = tA1 + (1− t)A2. We get the trangression formula:

g(FA1)− g(FA2) = dCSg(A1, A2).

Different choice of the conections only differs by an exact term. Therefore, we take its class

in !2k→1(M)/ im(d) and abuse the same notation CSg(A1, A2) also referring to this class. In

particular, we can take (A1, A2) to be (A, 0) and denote it by CSg(A).

ExampleA.1.52. Let’s take g to be the k-th Chern character chk and denote its Chern-Simons

form as CS2k→1. Then we have

CS1(A) = i
2π trA,

CS3(A) = − 1
8π2 tr

(
AdA+ 2

3A
3
)
,

CS5(A) = − i
48π3 tr

(
A(dA)2 + 3

2A
3dA+ 3

5A
5
)
.

The second one is the most familiar Chern-Simons form in the literature.

Differential cohomology So far, we have seen many examples of the Chern-Weil form

coming from integral descent of certain charactersitic classes, is there a general story? Re-

call that a cohomology class c ∈ H2k(BG;Z) determines a characteristic class. There-

fore, we try to do the Chern-Weil construction on the classifying space, we get an isomor-

phism

Symk(g∗)G ∼= H2k(BG;R),

compatible with the graded ring structrue on H∗(BG;R). However, the Chern-Weil con-

struction involves the choice of a connection ∇. This suggest we need to consider the clas-

sifying stack B∇G of principle G-bundles with connection.

Now let cR be the image of c inH2k(BG;R), which is isomorphic to say f : M → B∇G
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gives our principle G-bundle P with connection ∇, then Chern-Weil theorem says

f →cR = g(F∇).

This suggests a more refined cohomology which is notH2k(B∇G;Z) ∼= H2k(BG;Z) as the

pullback. This is the differential cohomology. And the full statement goes like this: there is a

unique class ĉ ∈ Ĥ2k(B∇G;Z) that gives f →c ∈ H2k(M ;Z)which lifts the Chern-Weil form

g(F∇) ∈ !2k
cl (M) and complement the Chern-Simons formCSg(A) ∈ !2k−1(M)/ im(d), i.e.

[f →c]R = [g(F∇)] ∈ H2k(M ;R). In the case of g = p1, we also have secondary characteristic

classes - Chern-Simons invariant CS(M) ∈ H2k−1(M ;R/Z) which is more refined than the

usual characteristic classes discussed in previous sections. All of these indicates we are

seeking for Ĥ2k(M ;Z) such that

H2k−1(M ;R/Z) H2k(M ;Z)

H2k−1(M ;Z) H2k(M ;Z) H2k(M ;R)

!2k−1(X)/Im(d) !2k
cl (X)Z

ICS

RCS

⊗R

dR

Bock

d

aCS

! !

the digram is commutative and diagonal sequences are exact. We call Ĥ2k(M ;Z) sat-

isfies these a differential cohomology. Here is a model of ordinary differential cohomology.

Definition A.1.53. Differential Characters (Cheeger-Simons)

For n " 0, the group of differential characters Ĥn
CS(X;Z) on X is the abelian group

consisting of pairs (ω, k), where

• A closed differential form ω ∈ !n
clo(X),

• A group homomorphism ϕ : Z∞,n−1(X;Z)→ R/Z,
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such that for any c ∈ C→,n(X;Z) we have

ϕ(∂c) =

∫

c

ω modZ

Here C→,n(X;Z) and Z→,n−1(X;Z) denote the smooth singular chains and cycles with

integer coefficients and automatically implies ω ∈ !n
cl(X)Z.

Theorem A.1.54. We have homomorphisms

RCS : Ĥn
CS(X;Z)→ !n

cl(X), (ω,ϕ) #→ ω,
aCS : !n−1(X)/Im(d)→ Ĥn

CS(X;Z), α #→ (dα,
∫
α modZ),

ICS : Ĥn
CS(X;Z)→ Ĥn

CS(X;Z)/Im(aCS) ≃ Hn(X;Z), (ω,ϕ) #→ [ω − ϕR ◦ ∂].

such that the the following digram is commutative and diagonal sequences are exact.

Hn−1(X;R/Z) Hn(X;Z)

Hn−1(X;Z) Ĥn(X;Z) Hn(X;R)

!n−1(X)/Im(d) !n
cl(X)Z

ICS

RCS

⊗R

dR

Bock

d

aCS

! !

Example A.1.55. An example of differential character is constructed from Chern-Simons

invariants. The basic setting is let (E,∇)→ X be a hermitian vector bundle with connection.

For f : M3 → X withM closed oriented, set

CS(E,∇)(f : M → X) := CS(f ∗E, f ∗∇)
=

∫
M f ∗ Tr(dA ∧ A+ 2

3A ∧ A ∧ A)(modZ).

The second Chern character form is

ch2(FA) = Tr((dA ∧ A+ A ∧ A)2) ∈ !4
cl(X).

We get

(ch2(FA),CS(E,A)) ∈ Ĥ4(X;Z).

Actually, the definition of the Chern-Simons invariants uses ĤZ
∗
s
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LetMn→1 closed oriented (n− 1)-manifold. We have differential extension integration

maps denoted by
∫
M ,

∫

M

: Ĥn(M ;Z)→ Ĥ1(M ;Z) ∼= R/Z, (ω,ϕ) $→ ϕ(1M)

Generally, for fiber bundle p : N → X with oriented fibers, we have

∫

N/X

: Ĥn(N ;Z)→ Ĥn→r(X;Z),

where r = dimN − dimX . Differential integration is a refinement of integrations in HZ∗

and !∗.

Proposition A.1.56. Suppose (W 2n, ∂W ) is a compact oriented manifold, for any x̂ ∈

Ĥn(W ;Z), we have
∫

∂W

x̂ |∂W≡
∫

W

R(x̂) modZ
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