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拓扑数据分析和拓扑深度学习

在图像数据中的应用

张海宇

（数学系 指导教师：朱一飞）

[摘要]：拓扑数据分析是一种通过对数据构建单纯复合体并运用持续同
调方法来研究数据拓扑特征与结构的方法，近年来逐渐被应用于深度学

习领域。本文首先回顾了 2008年 Gunnar Carlsson等人运用拓扑数据分析

方法从自然图像局部区域像素空间中提取出具有克莱因瓶拓扑结构的子

流形的相关研究，同时复现了拓扑数据分析应用于分析训练自然图像数

据的卷积神经网络的权重空间的拓扑结构的相关工作。结果表明神经网

络的卷积层在训练图像数据的过程学到了一些简单拓扑结构（圆，克莱

因瓶等）并且该结构与自然图像像素空间的结构有一定相似性。这提高

了卷积神经网络的可解释性，同时也对神经网络的优化提供了思路：将

拓扑特征嵌入神经网络。本文解释了神经网络结构与数据特征分布的这

种相似性并介绍了 2023年 Ephy R. Love等人基于该思路提出的拓扑卷积

神经网络。本文从理论角度解释了拓扑卷积神经网络的构造原理，并从

训练效果和泛化性质两个角度结合实验结果将其与传统神经网络进行对

比，展示了拓扑卷积神经网络的优越性。

[关键词]：拓扑数据分析；持续同调；自然图像；卷积神经网络；可解
释性
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[ABSTRACT]: Topological data analysis is a method that studies the topo-
logical features and structures of data by constructing simplicial complexes and

applying persistent homology methods, which has been increasingly applied in

the field of deep learning in recent years. In this paper, we review the ground-

breaking work of topological data analysis applied on the space of natural im-

ages which extract a submanifold with topology of the Klein bottle by Gunnar

Carlsson et al. in 2008. Then we reproduce the analysis on weight space from

convolutional neural networks trained on image data. The results indicates that

while training, the weight space of convolutional neural network learns simple

structures (circle or Klein bottle) consistent with feature space of image data,

which enhance the interpretability of neural network and provide inspiration

that we can embed topological features to neural networks to improve it. We

interpret the consistence between structure of neural network and local patch

distribution of natural images and introduce the topological convolutional neu-

ral network proposed by Ephy R. Love et al. in 2023. The construction princi-

ples of the topological convolutional neural network are theoretically explained

in this paper, and its performance and generalization properties are compared

with traditional neural networks based on experimental results to show the su-

periority of topological convolutional neural networks.

[Key words]: Topological Data Analysis, Persistent Homology, Natural

Image, Convolutional Neural Network, Interpretability

II



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Theoretical Foundation and Techniques of TDA . . . . . . . . . . . . 2

2.1 Complexes for Point Cloud . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Process of Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 Parameters of Coverings, Lens and Clustering . . . . . . . . . . . . . 5

3. Algebraic Formalism of Neural Network Architectures . . . . . . . 6

4. Local Behavior of Feature Space in Natural Images . . . . . . . . . 10

4.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Three Circle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Klein Bottle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Theoretical Version of Klein Bottle in the Space of Polynomials . 14

4.3.2 Experimental Version of Klein Bottle in the Data . . . . . . . . . . . 16

4.3.3 Embedding the Theoretical Klein Bottle into the Data . . . . . . . . 17

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. Topological Analysis on Weight Space of Trained CNNs . . . . . . . 18

5.1 Experiments on Different Datasets . . . . . . . . . . . . . . . . . . . . . 19

5.1.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.2 CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

III



5.2 Correlation between the Feature Space of Natural Images and the

Weight Space of CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6. Topological Convolutional Neural Network . . . . . . . . . . . . . . . 22

6.1 Construction of TCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1.2 TwoNew Types of Convolutional Layers for 2D image Classification 23

6.2 Performance Test of TCNN . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2.1 Training Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2.2 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3 TCNN vs CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Research Contents and Results . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Prior Judgements and Posterior Analytics in the Research Process . 32

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

IV



1. Introduction
Topological data analysis (TDA) is a branch of geometric data analysis based on al-

gebraic topology for imposing and analyzing the geometric structure of data. Concepts in

algebraic topology, such as simplicial complex and homology, provide a theoretical foun-

dation for TDA. Combining with some statistical and algorithmic methods, TDA enables

remarkable progress in the field of geometric data analysis. The significant advantage of

TDA, compared with other statistical techniques, is that it could capture nonlinear structures

within the data using topological techniques. Currently, topological data analysis is being

applied in multiple specific fields such as neuroscience[1] and material science[2].

Deep learning is a broader field of artificial intelligence (AI), which involves the use of

neural networks to model and solve complex problems. These deep neural networks are in-

spired by the structure and function of the human brain, where connected neurons collaborate

to analyze information. Deep learning has shown remarkable success in various applications,

leading to breakthroughs in areas like computer vision[3], speech recognition, autonomous

vehicles, and many others.

Convolutional neural net work (CNNs) is a widely applied type of neural network char-

acterized by locality and weight sharing. Convolutional layers apply filters or kernels to in-

put data, capturing local patterns and features. However, the development of Convolutional

Neural Networks (CNNs) also faces some challenges. On one hand, the interpretability of

neural networks is relatively low and we do not have a clear understanding of how they work.

On the other hand, there is some technical challenges, for example, how to effectively con-

trol model complexity to prevent overfitting and to improve the training performance and

generalization of the model.

Rencently, there has been a trend to put TDA on datasets and embed these topological

structures into a deep learning scheme and include topological features in neural networks.

Specific work can be found in Zhao et al.[4] and Oballe et al.[5].

This paper reviews the ground-breaking work about local behavior of the space of nat-
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ural images[6] which apply topological data analysis on natural images and extract a high

density 2-dimensional Klein bottle from the space of high-contrast image patches.Then we

use persistent homology to reproduce the topological data analysis work[7] showing that CNN

learns simple structures while training on image data. Based on these discoveries, there is

an improvement on the structure of Convolutional Neural Networks (CNNs)[8] by redefining

the architecture of convolutional layers and the design of kernels which aims to enhance the

efficiency and effectiveness of feature extraction for image classification.

2. Theoretical Foundation and Techniques of TDA
In this chapter,Wewill review some basic definitions, models, theories[9] and techniques

in topological data analysis.

2.1 Complexes for Point Cloud

In algebraic topology, simplicial complexes is a kind of specialized class of complexes

consist of blocks called simplices.

Definition 2.1 (Simplex) Given k+1 distinct points {vi}ki=0 inRn, the set {vi}ki=0 is affinely

independent if the set {vi − v0}ki=1 is linearly independent. The simplex (plural:simplices)

spanned by the affinely independent set {vi}ki=0, denoted by [v0, ..., vk], is the set

[v0, ..., vk] =

{
k∑

i=0

tivi : ti ≥ 0 &
k∑

i=0

ti = 1

}

Definition 2.2 (Simplicial Complex) A simplicial complex is a locally finite collection K

of simplices satisfying that every face of one simplex is in K and the intersection of two

simplices is a face of each or empty.

Data sets can be represented by a set of points, located by the coordinates of different

features. The set of points is called a point cloud. The fundamental idea of TDA is to assign

a simplicial complex to the point cloud and study the topology of the simplicial complex.

However, we need to pay attention to the consistency that if the topological variants of the

point cloud agree with the simplicial complex with high possibility. The following are three
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natural methods to construct a simplicial complex inside a point cloud.

Definition 2.3 (Čech complex) Given a point cloud Z = {xα} ⊆ Rn, the Čech complex

Cϵ is the abstract simplicial complex consisting of k-simplices whose vertices are unordered

(k + 1)-tuples of points {xα}k0 if and only if the closed ε-ball neighborhoods of these points

have at least one point in common.

Definition 2.4 (Vietoris-Rips complex) Given a point cloud Z = {xα} ⊆ Rn, the Vietoris-

Rips complexRϵ is the abstract simplicial complex consisting of k-simplices whose vertices

are unordered (k + 1)-tuples of points {xα}k0 if and only if

d(zi, zj) ≤ ε

Definition 2.5 (Alpha complex) Given a point cloud Z = {xα} ⊆ Rn, the Voronoi cell of

xα is

V (xα) = {p ∈ Rn|d(p, xα) ≤ d(p, z), z ∈ Z}

the alpha complex Aϵ is the abstract simplicial complex consisting of k-simplices whose

vertices are unordered (k+1)-tuples of points {xα}k0 if and only if the intersection of closed

ε-ball neighborhood and closed Voronoi cell of these points have at least one point in com-

mon[10].

Definition 2.6 (Witness complex) Given a finite multiset (or bag) A of real numbers [see

Hein 2003, Section 1.2.4, or Monro 1987 for a discussion of multisets], a submultiset S ∈ A

is ε- minimizing in A if for all a ∈ A \ S, we have a+ ε ≥ s for all s ∈ S.

Given a point cloud L ⊆ Rn, the simplex σ = {l0, . . . , lk} exists if there is an x ∈ Rn

such that the set {d (l0, x) , . . . , d (lk, x)} is 0-minimizing in the set {d(l, x)}l∈L. Thewitness

complex consists of all the faces of these simplexes.

More generally, given ametric spaceX andL ⊆ X , for a submultisetσ = {li0 , . . . , lis} ⊆

L, an element x ∈ X is said to be an ε-witness for σ if {d (li0 , x) . . . , d (lis , x)} is ε-

minimizing in {d(l, x)}l∈L. The witness complex W∞(X,L, ε) is defined as the simplicial
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complex with vertex set L for which σ ⊆ L is a simplex if and only if σ and all its faces have

ε-witnesses.

Remark 2.7 Let X be a metric space. When we consider a subset Z ⊆ X and the Voronoi

cell of each poins in Z, Z is the ”landmark set” for building a simplicial complex that could

reflect the geometric information of X .

2.2 Persistent Homology

Definition 2.8 (Filtered Simplicial Complex) Let {Σϵ} be a family of simplicial complexes

with the parameter ε, for example, the Vietoris-Rips complex with distance parameter ε. Σϵ

is functorial since if ε < ε′ then Σϵ ⊆ Σϵ′ . Hence for some sufficiently dense set t1, ...tn of

parameters, a filtration of Σtn is given by the sequence ∅ ⊆ Σt1 ⊆ · · · ⊆ Σtn .

Definition 2.9 (Persistent Chain Complex) A persistence chain complex C is a sequence of

chain complexes C = (C i
∗) together with chain maps x : C i

∗ → C i+1
∗ .

Definition 2.10 (PersistentHomology) Given a sequence of filtered simplicial complex {Σti},

we can construct a persistent chain complex C∗(Σ∗) by setting C i
∗(Σ∗) = C∗(Σti) and the

chain map x : C i
∗(Σ∗) ↪→ C i+1

∗ (Σ∗). For i < j, the (i, j)-persistent homology of C, denoted

H i→j
∗ (C), is defined to be the image of the induced homomorphism x∗ : H∗(C

i
∗(Σ∗)) →

H∗(C
j
∗(Σ∗)).

Theorem 2.11 For a finite persistence module C with field F coefficients,

H∗(C;F ) ∼=
⊕
i

xi · F [x]⊕

(⊕
j

xrj · (F [x]/(xsj · F [x]))

)
.

Definition 2.12 (Betti Number) Given a topological space X , for a field F , the dimension

of Hk(X;F ), if it is finite, is defined as the k-th Betti number with coefficients in F , written

as βk(X,F ).

Definition 2.13 (Barcode) A barcode visually represents the persistent homology group

Hk(C;F ) as a set of horizontal line segments in a plane. In this representation, the horizon-

tal axis corresponds to the parameter, while the vertical axis signifies an arbitrary ordering
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of homology generators.The dimension of the persistent homology group H i→j
k (C;F ) cor-

responds to the count of intervals within the barcode of Hk(C;F ) that cover the parameter

range [i, j]. Specifically,H∗(C
i
∗;F ) equals the number of intervals that encompass the value

i.

2.3 Mapper

Mapper is a particular technique of TDA which aims to obtain higher level understand-

ing of data structures based on certain features and construct corresponding complex. It

combines dimensionality reduction, clustering and some graph networks techniuqes.

2.3.1 Process of Mapper

Given a datasets of points, the process of mapper contains four steps:

• Dimensionality Reduction: Use a filter function f based on PCA or other density-

based methods to map the data into a lower-dimensional space.

• Cover of Projected Space: Construct a cover (Ui)i∈I of the projected space which

satisfies that overlapping intervals have constant length.

•Clustering: For each interval Ui, cluster the points in f−1(Ui) into sets Si,1, . . .�Si,ki

• Graph Construction: Construct the graph whose vertices are the cluster sets and if

two clusters have some points in common, an edge between them exists.

2.3.2 Parameters of Coverings, Lens and Clustering

There are four core parameters during the construction of mapper complex.

The first two parameters are defined to construct the covering.

• Resolution: the number of open sets in the range.

• Gain: the amount of overlap of these intervals

• Lens: the filter function f for dimensionality reduction. There are many choices of

lenses from different perspective of data based on different purposes . We could use some

data driven features, statistics methods like mean, variance and density, geometry properties

like centrality and curvature and machine learning algorithm like PCA.
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• Clustering: The clustering algorithm depends on the metric of the data space. Com-

mon clustering methods include KNN clustering, DBSCAN clustering.

3. Algebraic Formalism of Neural Network Architectures
In this section, we introduce a mathematical formalism of neural network architectures

based on metric and graph information of the feature space of a data set which is set up by

Gunnar Carlsson[11]. It provides a interpretable, systematic and abstract way to describe and

construct various neural networks which include metric information about the feature space.

This section will provide corresponding examples for these concepts.

Definition 3.1 (Feed Forward System)

A Feed Forward System is represented as a directed graph Γ with a vertex set V (Γ). It

satisfies the following properties:

1. V (Γ) is decomposed into layers as the disjoint union

V (Γ) = V0(Γ) t V1(Γ) t · · · t Vr(Γ).

2. If v ∈ Vi(Γ), then every edge (v, w) in Γ leads to a vertex w ∈ Vi+1(Γ).

3. For any non-initial vertex w ∈ Vi(Γ) with i > 0, there exists at least one vertex

v ∈ Vi−1(Γ) such that (v, w) is an edge in Γ.

4. For each vertex v of Γ , denote the set of all vertices w of Γ such that (v, w) (respectively

(w, v)) is an edge of Γ by Γ(v) (respectively Γ−1(v)).

As for neural networks, the Feed Forward Neural Networks (FFNN) can be regarded as

a feed forward system above. The nodes in V (Γ) are collectively referred to as nodes. For

each index i, Vi(Γ) consists of the nodes in layer-i. The first layer V0(Γ) contains the input

nodes of the neural network. The final layer Vr(Γ) contains the output nodes.
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A correspondence between two sets X and Y , defined as a subset C ⊂ X × Y , de-

scribes the connections between elements in the two set with

C(x) := {y ∈ Y | (x, y) ∈ C} ⊂ Y,

C−1(y) := {x ∈ X | (x, y) ∈ C} ⊂ X.

Example 3.2 Given an FFNN represented by a directed acyclic graph Γ with vertex set

V (Γ), the correspondence in the FFNN is called the graphical correspondence, defined by

(v, v′) ∈ CΓ if (v, v′) is an edge in Γ.

Example 3.3 Given two setsX andY , the complete correspondence is defined byCc(X,Y ) =

X × Y . If X and Y are two consecutive layers in an FFNN, denoted by Vi and Vi+1, then

we call Vi+1 a fully connected layer.

Example 3.4 Given a map of two sets f : X → Y , the functional correspondence Cf :

X → Y attached to f is defined to be {(x, f(x))|x ∈ X}.

Example 3.5 Given a metric space X with the distance function d and a threshold r ≥ 0,

we define the metric correspondence with threshold r to be Cd(r) : X → X such that

Cd(r)(x) = {x′|d(x, x′) ≥ r}.

Definition 3.6 (Generator) Let Ir be the totally ordered set {0, 1,...,r} regarded as a cate-

gory. A generator for an r-layer feed-forward system is a functor F from the category Ir to

the category Cor of finite sets and the correspondences between them. The associated feed-

forward system has
⊔
F (i) as its set of vertices and there is a connection from v ∈ F (i) to

w ∈ F (i+ 1) if and only if (v, w) ∈ F (i → i+ 1).

Definition 3.7 (Activator) An activator is a triple (µ, S, f), where µ is a commutative semi-

group structure (binary operation which is commutative and associative) on R, S is a multi-

plicative semigroup of R and f is a function from R to R called cutoff function. For a feed

forward structure Γ, an activation system is a selection of an activator (µv, Sv, fv) for each

non-initial vertex v of Γ. A coefficient system for a feed-forward system Γ and activation

system (µv, Sv, fv) is a choice of an element λ(u,v) ∈ Sv for each edge (u, v) of Γ.
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An FFNN equipped with activation system is called a neural net. In an FFNN, the

semigroup structures µ is usually the additive structure which means that the value of one

node on a layer is the sum of values of connected nodes on the former layer. Other options

like the commutative operation (x, y) → max(x, y) can also be applied in some layers of

neural networks, for example, the pooling layer. The multiplicative semigroup S is a set

containing the weights in an FFNN and the cutoff function f maybe chosen to be identity,

but uasually is a continuous function like ReLU.

Now we can construct functions on the input data and consider about the choice of loss

function. Given an FFNN denoted by Γ, equipped with a coefficient system {λ(u, v)} and

an activation system (µv, Sv, fv). For 1 ≤ i ≤ r, letWi be the real vector space of functions

mapping Vi(Γ) to R. We regard the input data of a layer Vi−1 as a function g : Vi−1 → R.

Then we could define a function φi : Wi−1 → Wi by:

φi(g)(v) = fv

( ∑
u∈Γ−1(v)

λu,v · g(u)

)
.

Thus the function Φ from the input setW0 to the output setWr is defined by the composite

Φ = φr ◦ φr−1 ◦ . . . ◦ φ1

Deep learning aims to find a function f which best approximates the function Φ. If Φ can be

viewed as a continous function, then we could define the L2 distance of f from Φ to be the

loss function. If the output function is categorical, we could define a continous function on

the region of a simplex spanned by its vertices which represents the categories. A typical ex-

ample is predict probability by softmax function and measure the loss with the cross-entropy

loss.

Definition 3.8 (Convolutional Structure) Given a feed-forward system Γ and one layer

Vi(Γ), we define an equivalence relation by a pair (∼=, ϕ) where ∼= is defined on the set
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of vertices of layer Vi(Γ) and ϕ is a bijection for any v ∼= w in Vi(Γ):

ϕ(v,w) : Γ
−1(v) → Γ−1(w)

which satisfies ϕ(v,w) = ϕ−1
(w,v) and ϕ(w,v) = ϕ(w,u) ◦ ϕ(u,v). An activation system of Γ is

adapted to the convolutional structure on a layer Vi(Γ) if v ∼= w indicates that (µv, Sv, fv) =

(µw, Sw, fw). Similarly, a coefficient system λ(v,w) of a neural net (Γ,A) is adapted to the

convolutional structure if it satisfies the compatibility requirement that if v ∼= w, then

λ(u, v) = λ(φ(v,w)(u),w)

for all u ∈ Γ−1(v).

Example 3.9 Consider that a group G and the free group action on layer Vi−1(Γ) and

Vi−1(Γ) and suppose for any v ∈ Vi−1(Γ) and w ∈ Vi(Γ), (v, w) is an edge in Γ IFF for

all g ∈ G, (gv, gw) is an edge. We define an equivalence relation ∼= on Vi(Γ) by letting

v ∼= w IFF there exists an element g ∈ G such that gv = w. Since the group action is free,

v and w could determine a unique g. Also notice that the group preserves the structure in Γ,

g will carry Γ−1(v) to Γ−1(w). The structure defined above is called Cayley structures.

AConvolutional layer in an FFNN is a layer equipped with the convolutional structure

which means that the weights exhibits translational invariance.

In this article, the main subject of our study is image data. For digital images, we model

it as grids indexed by Z2. Then the grid of a grayscale image can be represented by triples

(x, y, i) : x, y ∈ Z and i ∈ [0, 1] is the intensity at the point (x, y). Equivalently, an image can

be specified by a mapZ2 → [0, 1]. For videos, we model it by grids indexed byZ3 = Z2×Z,

where the third dimension denotes time. Generally, grids are indexed by ZN for any positive

integer N .

In convolutional neural networks, the nodes are filters with kernels of the same size. Let

χ be a finite index set of the space of the filters in a convolutional layer and a grid denotes
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kernels in the filter. The space of the nodes in a convolutional layer (also in pooling layer)

is denoted by Vi = χ × ZN . To describe the layers in an FFNN in terms of generators, we

denote the functor by F = F c × F s where F c is a complete generater defined on the filter

space and F s is called a structural generator defined on the grids. For example, we can

construct a convolutional layer with notations as follows:

χ(1)× Z2 Cc×Cd(1)−−−−−→ χ(64)× Z2

where F c = Cc and F s = Cd(1) and the number of inputs channel is 1 and outputs channel

is 64.

Usually, we denote the pooling layer by a generator π2(m,n,N) where N is the stride

and n−m+ 1 is the width. Here is an example:

χ(64)× Z2 Cc×π2(0,1,2)−−−−−−−→ χ(64)× Z2

4. Local Behavior of Feature Space in Natural Images
Natural images statistics is a widely researched field which can be applied in many areas

such as computer vision and neuroscience. Features of natural images usually distribute on

high contrast patches. TDA can be appiled to analyze the local behavior of feature space of

natural images by searching for low-dimensional manifolds within the space of 3 by 3 high

contrast local patches[6]. We will introduce the work and findings in this section.

4.1 Data Processing

The dataset consisting of 4.2 × 106 3 by 3 high contrast local patches is described by

Lee Pederson and Mumford[12] which is obtained from a subset of the collection of still

images gathered by van Hateren and van der Schaaf[13].For each image, extract 5000 3 by 3

patches randomly from the image and regard them as 9-vectors. Then apply Discrete Cosine

Transform (DCT) to obtain patches with the top 20 percent contrast. The space of 9-vectors

obtained from the steps above is denoted byM.

10



Figure 1 Extrating the local patch from the natural images

4.2 Three Circle Model

To capture the significant topological features, first we need to find the high-density

regions, considered as the core set of the space. This technique is called density filtration.

Define the density function with a parameter k:

ρk(x) = d(x, xk)

where xk is the k-th nearest neighbor of x. Intuitively, Smaller values of k reflect local

density information (lower dimensional geometry), while larger k values reflect more global

information (higher dimensional geometry).

Firstly, consider a space of local patches of size 5× 104 denoted by X , which is much

smaller than M. 30 percent of densest points are chosen with smallest values of ρ15 from

X [14]. Denote the space by X(15, 30). By constructing witness complex and analyze the

persistent homology, it is observed that first Betti number b1 of the space equals 5 shown in

Fig.2.

A ”three circle” model was propose which satisfies b1 = 5, denoted by C3
[14]. The

data are clustered along the three circles in R8. In the following picture, Both the green and

yellow circles intersect the black circle at two points each, without intersecting each other.

To figure out the first betti number of C3 is exactly 5, we could consider C3 as a graph with

4 vertices, 8 edges and one connected component. Hence, using the formula we obtain b1 =

#(arcs) −#(vertices)+#(connected components) = 5.

Experiments were also conducted for the case of k=300[14]. The spaceX(300, 30) loses
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Figure 2 Barcode for X(15, 30)

a) Point cloud of X(15, 30) b) Abstract model

Figure 3 Three circle model
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two secondary circles as k becomes bigger. The results are shown in Fig.4.

Figure 4 Point cloud of X(300, 30)

There is an specific explanation for C3 and what the high-density local patches truely

looks like in[14]. We could combine the patches with a real-valued function of two variables

by applying it on nine grid points of the unit disc. As we can see in Fig.5, the primary circle

corresponds to linear gradients, parametrized by angle. These patches can be considered

as edge features in a picture. The secondary circles connect functions that increase along a

linear projection to quadratic functions known as ”bump functions,” which feature a local

maximum within the same linear projection. Note that the patches in DCT basis appears in

three circles, which indicates spatial relationship between them.

Figure 5 Data on the three circle

The results of X(15, 30) indicates that there are two competing preferences of local

behavior in natural images. One is a preference for linear intensity functions on local patches

(primary circle) and the other is for vertical and horizontal directions in the secondary circle.

If we put similar analysis on the local patches obtained from the images taken by the camera
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holding at 45◦, the linear gradients is also rotated by the same angle while the quadratic

gradients on secondary circles still have a strong bias in vertical and horizontal directions. It

can be interpreted in two aspects: One is the nature has the bias since objects are most stable

in horizontal and vertical positions. The other is the technology of camera makes the patches

in favor of vertical and horizontal directions[15].

4.3 Klein Bottle

The three circle model is a relatively sparse skeleton which indicates the preferences of

local behavior in natural images. To find a larger 2-dimensional manifold containing it with

substantial density, we consider a natural embedding from the three circles to the manifold.

Recall that the model embeds naturally in Klein bottle as shown in the following picture.

Figure 6 Three model embeds naturally in Klein bottle

The black horizontal segments represents the primary circle while the two vertical seg-

ments are secondary circles after identification. The embedding indicates the possibility that

a bigger space of high contrast patches after a more relaxed density filtration may be home-

omorphic to Klein bottle.

4.3.1 Theoretical Version of Klein Bottle in the Space of Polynomials

In this subsection, we show a theoretical proof of the existence of Klein bottle in the

space of local patches by combining 3 × 3 local patches with quadratic functions of two

variables[15].

Firstly, regard the 3 × 3 patches as the result vectors obtained by applying a smooth real-

valued function of two variables on nine grid points of the unit disc. Weierstrass’s theorem

tells us that polynomials are dense in the space of continuous functions. Hence we consider
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a subspace consists of all two variable polynomials of degree 2, denoted by Q, i.e.

Q =
{
f(x, y) = A+Bx+ Cy +Dx2 + Exy + Fy2

}
Obviously,Q is a 6-dimensional real vector space. Since the mean centering and normaliza-

tion has been applied to the data in practical operations, the function here should satisfy two

properties: ∫
D

f 2 = 1&
∫
D

f = 0

Denote the space of functions inQwith two restrictions above byP , which is a 4-dimensional

ellipsoid in R6.

Now we consider a subspace of the space of smooth real-valued function , the set of all

functions in the form

f(x, y) = q(λx+ µy)

where λ2 + µ2 = 1 and q is a quadratic function with single variable.

Let A be the space of single variable quadratic function q(t) = c0 + c1t+ c2t
2 with two

restrictions ∫ 1

−1

q(t) dt = 0&
∫ 1

−1

q(t)2 dt = 1

Simply the equations above we get ‘

c2 = −3c0 &
2

3
c21 +

8

5
c20 = 1, c0, c1, c2 ∈ R

It indicates that A is an ellipse which is homeomorphic to a circle.

For any q ∈ A and any unit vector ~v in R2, define qv⃗ : R2 → R by qv⃗ (~ω) = q(~v · ~ω)

where ~ω is a 2-dimensional variable. We have that

∫
D

qv⃗
2 6= 0&

∫
D

qv⃗ = 0
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Define a continuous map φ from A× S1 to P0 by the formula

(q, ~v) 7→ qv⃗
‖qv⃗‖2

Let (c0, c1) be the representative of q and it is easy to check that ((c0, c1)×~v) ∼ ((c0,−c1)×

(−~v)) in φ, i.e.

φ((c0, c1)× ~v)) = φ((c0,−c1)× (−~v)))

Notice that it is an 2-fold coveringmap and the orbit space is homeomorphic to a Klein bottle.

4.3.2 Experimental Version of Klein Bottle in the Data

The aforementioned theoretical proof can assist us in finding the Klein bottle (based on

the three circle model) in the data. In fact, some direct experiments like changing the density

threshold or enlarging the space will not generate the non-trivial second betti number b2

which is a characteristic of Klein bottle. The failure of the density function to cut out the 2-

dimensional manifold leads us to think about if there are some local patches that correspond

to certain points on the theoretical Klein bottle, but they occur with such low frequency (low

density) that are undetectable by the density threshold. Through the three circle model, we

know that there are preferences for the linear polynomials and local patches that are lined

up with horizontal and vertical directions. Hence, the least frequently appearing local patch

may be the non-horizontal and non-vertical pure quadratic gradients.

Let Q̄ be the set of patches with purely quadratic gradients corresponding to the poly-

nomials (ax+ by)2 or −(ax+ by)2 (a, b 6= 0). Then compute the distances betweenM and

30 points sampled from Q̄. For each point sampled from Q̄, choose the closest point ofM.

Denote the obtained set as Q.

As we have discussed in the part of density filtration, smaller k will exhibit more details

of data structure. Hence consider the space M(100, 10) ∪ Q ⊂ M. Note that k = 100 for

M corresponds to k = 1.25 for X . Construct the witness complex on it and the results of

persistent homology are as follows. Note that the coefficients of homology is in Z2.
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Figure 7 Barcode forM(100, 10) ∪Q

Actually, there are two 2-dimensional manifolds whoseZ2 homology group agrees with

above results: torus and Klein bottle. However, the results of Z3 homology group indicate

that the space is homeomorphic with Klein bottle.

In summary, the results in this subsection shows that as the density estimation parameter

(k) decreases, the space of high contrast local patches with high density gradually fills out a

2-dimensional manifold: firstly the primary circle of linear gradients and then two secondary

circles of quadratic gradients in horizontal and vertical directions. Finally, it contains poly-

nomials in all intermidiate directions except the purely quadratic gradients in non-horizontal

and non-vertical directions. This also indicates the importance of the choice of threshold in

density analysis since different density filtration will reveal different levels of topological

information and an appropriate threshold can help us exclude a few outliers and capture core

features.

4.3.3 Embedding the Theoretical Klein Bottle into the Data

To test that the space of high contrast patches with high density is consistent with the

theoretical Klein bottle defined by quadratic polynomials in a way, the author used the theo-

retical construction to embed the Klein bottle K0 into S7 and then move each point towards

closest and densest points of M while ensuring the topology of the new manifold remains

invariant[6].
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Here is a result showing the barcode of a subspace containing 60 percent of points of

M with a topology of Klein bottle[6]. The author also use Monte Carlo method and find out

the volume ofM is 84% while the volume of the subspace is only 21%. It indicates that the

subspace which is homeomorphic to the Klein bottle contains a dense cluster of points.

Figure 8 Barcode of a subspace containing 60 percent of points ofM

4.4 Summary

The study shows the topological structure of the high density space of high contrast

local patches (also known as features), which is homeomorphic to a Klein bottle. This result

can be applied in image compression by replacing the origin space with an embedded Klein

bottle. Besides, it can be applied to study the functioning mechanism of the primary visual

cortex and also provides guidance for research on bio-inspired neural networks. We will

introduce the latter in the next two sections.

5. Topological Analysis on Weight Space of Trained CNNs
In a CNN, the weights are the coefficients of the transition formula, which reflects the

relationship between adjacent layers. Like local patch in natural images, we could regard

a 3 × 3 kernel in a CNN as a 9-dimensional vector, which is called the weight vector. The

distribution space of weight vectors on a given convolutional layer is called the weight space.

The neurons within the primary visual cortex, as well as the filters in CNNs, reflects

functions or responses on image patches. Hence a natural idea is to explore the structure

of CNNs to see if it has any correspondence with the distribution characteristics of image
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patches. This section will focus on the reproduction of topological analysis on weight sapce

of CNNs[7].

5.1 Experiments on Different Datasets

We perform analyses on weight space of CNNs trained on MNIST and CIFAR-10 and

find some simple structures over the course of training.

5.1.1 MNIST

We first implement analysis on the dataset of handwritten digits. MNIST was divided

into two subsets with 60,000 training examples and 10,000 test examples. We train 100

CNNs with a batch size of 128 for 20 epochs (to a test accuracy about 0.99), obtaining 6400

9-dimensional vectors for the first layer filters. We use Cross Entropy as criterion andADAM

as optimizer. The detailed architecture of CNN is as follows:

χ(1)× Z2 Cc×Cd(1)−−−−−→
ReLU

χ(64)× Z2 Cc×π2(0,1,1)−−−−−−−→ χ(64)× Z2 Cc×Cd(1)−−−−−→
ReLU

χ(32)× Z2 Cc×π2(0,1,1)−−−−−−−→ χ(32)× Z2 Cc−→
ReLU

χ(64)× Z2 Cc−→
Dropout(0.5)

χ(10)

Then we standarize the weight vectors of the first layer and use KNN density filtra-

tion with k = 200 and p = 0.3 (choose the distance between one data point and the kth

nearest neighborhood as an indicator of density and take the top p fraction of the densest

points) to get 1920 points. Next, we apply Mapper with resolution = 30, gain=3 and lens=

PCA(components=2) to obtain a Mapper complex. The visualization and the persistence di-

agrams of the weight space during the training process are shown in Fig.9a to Fig.10c. Note

that the size of the point in the mapper complex represents the number of real data points

contained in it and the color is decided by the clustering. The ’birth’ ’death’ time in the

persistent diagram represent the maximum and minimum colors that form the topological

features which is different from ε− threshold persistence of VR complex.

Fig.9 reveals the learning process of the first layer in the CNN: At the beginning, the

distribution of the weight vector is scattered. Trained after 5 epochs, we can see a circular
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a) untrained weights b) 5-epochs trained weights c) 20-epochs trained weights

Figure 9 Visualization of mapper complex

a) untrained weights b) 5-epochs weights c) 20-epochs weights

Figure 10 Persistence diagrams of mapper complex

shape. The visualization of mapper complex is roughly consistent with the primary circle in

Fig.4 and the points on are filters parametrized by angle and used for edge detection. When

it is trained for 20 epochs, the primary circle still exists but the structure seems more diffuse.

The persistent diagram does not indicate the presence of a loop in that case. Specifically,

the kernels distributed on the circle are primarily edge detection kernels parametrized with

angle, and trained after 20 epochs, irregular kernels start to emerge in the central part of the

circle.

5.1.2 CIFAR-10

We conduct similar experiments on a more complex dataset, CIFAR-10, which is di-

vided into 50000 training examples and 10000 testing examples. Firstly, it is grayscaled

by the weights (0.2989,0.5870,0.1140) and put into the neural network we used in previous

section. We train 50 CNNs for 100 epochs and both the train accuracy and test accuracy
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reach 0.66 after 50 epochs. However, the train accuracy exceeds 0.7 at 100 epochs while the

test accuracy remains to be 0.65，indicating the occurrence of overfitting. We extract the

204800 weight vectors of second convolutional layer and use KNN density filtration with

k = 200 and p = 0.02. Then construct the mapper complex with resolution = 30, gain = 3

and lens=PCA (components=2).

a) 5-epochs trained weights b) 50-epochs trained weights c) 100-epochs trained
weights

Figure 11 Visualization of mapper complex

From fig.11 we can see that the undertrained weights has a scattered distribution and af-

ter 50 epochs, the well-trained weights exhibits a structure with a primary circle and two sec-

ondary circles inside. However, when the convolutional layer overfits at around 100 epochs,

the overtrained weights lose the structure of primary circle and become chaotic again. It

indicates that to some extent, the simple structure of the weight space reflects the training

performance of a neural network. Both underfitting and overfitting can cause the disappear-

ance of this simple structure.

5.2 Correlation between the Feature Space of Natural Images and the Weight
Space of CNN

The analysis on weight space shows that CNN learns simple structures during the train-

ing process and the core topological features of well-trained weight space is consistent with

the space of high contrast patches. Neural networks used to be regarded as a black box due

to the lack of interpretability. The visualization of weight space gives us an insight of ge-

ometric information of CNNs while training, which helps us better understand the working
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principles and learning process of neural networks.

What’s more, the consistency of topological persistent features between natural images

and CNNs indicates that we can view the mechanism of neural networks as the action on

input data. Here is an reasonable interpretation that the weight vector of a kernel act on

the vector of local patch as the inner product to extract the features. We know by previous

sections the high contrast features of natural images mainly distributes on a primary circle

and further the Klein bottle[6]. The weight vectors have similar distribution so that the result

of inner product is larger than that of low contrast patches, whichmakes high-contrast patches

have a greater impact in subsequent classification. This shows a concrete process of feature

extraction which is known as one of the main functions of neural networks.

6. Topological Convolutional Neural Network
6.1 Construction of TCNN

Topological convolutional nueral networks (TCNN) are defined with topological fea-

tures and put restrictions on convolutional layers based on topological embedding into image

space and weight space of NNs[8].

6.1.1 Motivations

In section 4, it was found that there is a large portion of the space of patches which

is topologically equivalent to the Klein bottle. Then section 5 shows that CNNs learn the

weights on filters and the trained weights observed are exactly corresponding to the high-

density image patches found in section 4 which distribute on the Klein bottle K. Thus, it

seems natural and reasonable that regarding the space of filters as discretizations of Klein

bottle embedded in the convolutional layer and the filters can be interpreted as points on the

Klein bottle. Notice that in section 4, there is a second embedded Klein bottleKalg based on

the theoretical proof of existence of Klein bottle in the space of local patches[15] andKalg has

simple algebraic description and lies close toK, TCNNs are constructed based on symmetric

properties of Kalg and paramatrized algebraically from Kalg.
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6.1.2 Two New Types of Convolutional Layers for 2D image Classification

In this section, we introduce two types of convolutional layers[8] which form TCNNs

for 2D image classification: M Filters Layer and M One Layer where M represents mani-

folds like circle and Klein bottle. The Circle Filters (CF) layer and Klein Filters (KF) layer

use normal architecture of convolutional layer but predefined filters on it. The Klein One

Layer (KOL) restricts connections between filters within a convolutional layer based on the

topological structure of the Klein bottle. Similarly, Circle One Layer (COL) is analogous

layers based on the topology of a circle. The precise definition are introduced below.

Firstly, we specify the convolutional layer with image data as inputs.

Definition 6.1 (NOL) Let Vi+1 be a layer in a FFNN. We call Vi+1 a convolutional layer

or a normal one layer (NOL) if Vi = χ × ZN and Vi+1 = χ′ × ZN for some finite sets χ

and χ′ and a positive integer N , and if for some fixed threshold s ≥ 0 the edge-defining

correspondence C ⊂ Vi × Vi+1 is of the form

C = Cc × Cd,N(s),

where Cc = χ × χ′ is the fully connected correspondence and Cd,N(s) ⊂ ZN × ZN is the

correspondence given by

Cd,N(s)
−1(x′) := {x ∈ ZN | dZN (x, x′) ≤ s}

for all x′ ∈ ZN . Here, dZN is the L∞-metric on ZN defined by

dZN (x, x′) = max{|x1 − x′
1|, . . . , |xN − x′

N |}.

Next, we introduce a layer which localizes weights on the Klein bottleK inspired by the

appearance of K in the weight space of CNNs observed in section 5. Recall the theoretical

version of K proved in section 4, the points in K have correspondence with functions in the
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following form

f(x, y) = q(λx+ µy)

where λ2 + µ2 = 1 and q is a quadratic function with single variable satisfying that the

quadratic coefficient is a multiple of the constant term. Thus, define FK to be an embedding

from K to the vector space of quadratic functions on the square [−1, 1]2:

FK(θ1, θ2)(x, y) = sin(θ2)(cos(θ1)x+ sin(θ1)y) + cos(θ2)Q(cos(θ1)x+ sin(θ1)y),

where Q(t) = 2t2 − 1. As given, FK is a function on the Klein bottle parameterized

by the two angles θ1 and θ2 since it satisfies FK(θ1, θ2) = FK(θ1 + 2kπ, θ2 + 2lπ) and

FK(θ1 + π,−θ2) = FK(θ1, θ2). The image space ”embedded Klein bottle” FK(θ1, θ2) con-

sists of quadratic functions mentioned above and has a natural ’orientation’ given by the

angle θ1.

To define FS1 , consider the composite of FK and the inclusion map from S1 toK which

maps θ to (θ, π/2):

FS1(θ)(x, y) := FK(θ, π/2)(x, y) = cos(θ)x+ sin(θ)y,

Circle Filters and Klein Filters are defined based on the function FS1 and FK, respec-

tively.

Definition 6.2 (MFilters (MF) Layer) LetM = S1 orK. Let χ ⊂ M be a finite subset and

Vi = Z2 and Vi+1 = X×Z2 be successive layers in a FFNN. Assume Vi+1 is a convolutional

layer with threshold s ≥ 0. Then Vi+1 is called a M Filters (MF) layer if the weights

λ−,(κ,−,−) are given for κ ∈ χ by a convolution over Vi of the filter of size (2s+1)× (2s+1)

with values

Filter(κ)(n,m) =

∫ −1+
2(m+1)
2s+1

−1+ 2m
2s+1

∫ −1+
2(n+1)
2s+1

−1+ 2n
2s+1

FM(κ)(x, y)dxdy

for integers 0 ≤ n,m ≤ 2s.
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Notice that according to the theoretical proof of Klein bottle, if the filter is on the Klein

bottle K paramatrized by (θ1, θ2), the values of the kernel should equal to the function value

of FK(θ1, θ2) at the grid points of the square [−1, 1]2. The integration can be interpreted as

dividing [−1, 1]2 into (2s+1)× (2s+1) smaller squares, where the value at each grid point

is the average of the function values within its corresponding small square.

Taking 3 × 3 kernels as an example, We can have a look at these predefined kernels.

The detailed equation of KF after integration is as follows:

Filter(κ)(n,m) =
8

27
(sin θ2)[(m− 1) cos θ1 + (n− 1) sin θ1] (1)

+
32

81
(cos θ2)[(m− 1) cos θ1 + (n− 1) sin θ1]2 (2)

−100

243
cos θ2 (3)

There are three parts in the equation corresponding to terms of different orders. The kernel

of part (1) is just CF since the primary circle S1 is embedded to the Klein bottleK by setting

θ2 = π/2. The simplified CF are as follows： cos θ − sin θ cos θ cos θ + sin θ
− sin θ 0 sin θ

− cos θ − sin θ − cos θ − cos θ + sin θ


=

 cos θ cos θ cos θ
0 0 0

− cos θ − cos θ − cos θ

+

− sin θ 0 sin θ
− sin θ 0 sin θ
− sin θ 0 sin θ


= cos θ

 1 1 1
0 0 0
−1 −1 −1

+ sin θ

−1 0 1
−1 0 1
−1 0 1


It can be seen that CF uses two kinds of Prewitt operator[16] (vertical and horizontal) as basis,

which is an one-order partial derivative operator to extract edge by linear gradient and the

angle θ represents the direction of edge extraction. [Ref]

The kernel of second-order term (2) is simplified below:(cos θ1 + sin θ1)2 sin2(θ1) (cos θ1 − sin θ1)2
cos2(θ1) 0 cos2(θ1)

(cos θ1 − sin θ1)2 sin2(θ1) (cos θ1 + sin θ1)2
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It is a Laplacian operator[16], which is an second-order partial derivative extracts texture by

computing second gradients.

a) Prewitt operator

b) Laplacian operator

Figure 12 First and second order operators

Next, we will introduce the other type of TCNN[8]: COL and KOL. These layers are

designed with the idea of locality in the connections between filters. Locality in NNs is

defined with a distance function as metric:

Definition 6.3 (Correspondence of Locality) M is a manifold and let χ, χ′ ⊂ M be two

discretizations ofM . Let Vi = χ×ZN and Vi+1 = χ′×ZN be successive layers in a FFNN.

Fix a threshold s ≥ 0. Let d be a metric onM . Define a correspondence C(s) ⊂ χ× χ′ by

C(s)−1(κ′) = {κ ∈ χ | d(κ, κ′) ≤ s}

for all κ′ ∈ χ′. Together with another threshold s′ ≥ 0, this defines a correspondence

C ⊂ Vi × Vi+1 by

C = C(s)× Cd,N(s
′),

where Cd,N(s
′) is the convolutional correspondence. This means that

C−1(κ′, x′) = C(s)−1(κ′)× Cd,N(s
′)−1(x′)

= {(κ, x) ∈ χ× ZN | d(κ, κ′) ≤ s and dZN (x, x′) ≤ s′}

for all (κ′, x′) ∈ χ′ × ZN .

In COL and KOL, topological structures are added into the convolutional layer with corre-
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sponding metric. In[8], the metric of S1 and K are defined as follows:

dS1(κ, κ′) = cos−1(κ · κ′) for κ, κ′ ∈ S1.

dK(κ, κ
′) =

(∫
[−1,1]2

(FK(κ)(x, y)− FK(κ
′)(x, y))

2
dxdy

) 1
2

It is easy to understand that we could measure distance in COL by the difference of angles.

As for dK(κ, κ′), we use the L2 norm of the difference of two functions as the metric in KOL.

Definition 6.4 (Circle One Layer (COL) and Klein One Layer (KOL)) Let M be S1 in

definition 5.2.2 and the circle correspondence CS(s) ⊂ χ× χ′ is defined by

CS1(s)−1(κ′) = {κ ∈ χ | dS1(κ, κ′) ≤ s}

for all κ′ ∈ χ′.

We call Vi+1 a circle one layer (COL) if, for some other threshold s′ ≥ 0, the edge-

defining correspondence C ⊂ Vi × Vi+1 is of the form

C = CS1(s)× Cd,2(s
′),

LetM be K and The Klein correspondence CK(s) ⊂ χ× χ′ is defined by

CK(s)
−1(κ′) = {κ ∈ χ | dK(κ, κ′) ≤ s}

for all κ′ ∈ χ′. We call Vi+1 a Klein one layer (KOL) if, for some other threshold s′ ≥ 0, the

edge-defining correspondence C ⊂ Vi × Vi+1 is of the form

C = CK(s)× Cd,2(s
′),

Here is an example of COL represented by a rectangle. The upper row represents an

input slice or channel portrayed by the filter aligned with a point on the circle, while the

left column mirrors an output slice similarly. Every input slice and output slice features the

associated trained filter in a COL，which is the intersubsection of row and column. Note

27



that the black block means there is no connection between the two indices.

Figure 13 The trained weights in a COL.

6.2 Performance Test of TCNN

We conducted several experiments on different datasets to compare TCNN and CNN in

two aspects: training performance and generalizability.

6.2.1 Training Performance

We train MNIST with similar neural networks architecture on CNN and TCNN. The

control group is a traditional CNN consisting of two convolutional layers and fully con-

nected layers. For the experimental group, we replaced the two convolutional layers with

combinations of CF, KF, COL, KOL and NOL.

We outline two approaches for incorporating KF (Klein Filter) and KOL (Klein Ori-

ented Learning) into neural networks: The first method involves uniformly distributing the

convolution kernels on the Klein bottle (θ1 and θ2 are uniformly sampled); the secondmethod

entails a density-based distribution of the convolution kernels on the Klein bottle. The the-

oretical analysis in Section 4 reveals that the points of highest density in the Klein bottle are

located on the three-circle model, whereas points of lowest density are generated by pure

quadratic functions on non-vertical and non-horizontal directions. Hence we simulate the

true Klein bottle distribution by placing a varying number of convolution kernels in different
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regions. We call the fomer ”KF” and ”KOL” as usual and the latter is ”KF optimized” and

”KOL optimized”.

To enhance model robustness and prevent overfitting, Gaussian noise is added into the

training set. We also add it to testing set to evaluate the generalizability of the model. The

left half of the figure14 illustrates the training performance with noise added to the training

set, while the right half shows the training performance with noise added to the test set.

Figure 14 Training performance of TCNN and CNN

From the figure above, we can see that compared with traditional CNN, TCNN has a

higher training accuracy when training for the same epoch and a faster training speed (the

curve flattens out sooner). Among all types of TCNN, CF performs the best; The perfor-

mance of KF optimized and KOL optimized is slightly better than that of KF and KOL.

6.2.2 Generalizability

MNIST and SVHN are two popular datasets which contain digits from 0 to 9. To com-

pare the generalizability of TCNN and CNN, we trained MNIST on NOL, CF+COL and

CF+NOL and test the model with SVHN. The test accuracy of each model are shown in the

following figure.The interval on the horizontal axis represents training for two epochs.

It can be seen that the test accuracy of TCNN on SVHN is higher than that of traditional
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Figure 15 Gerneralizability of NOL, CF+COL and CF+NOL

CNN. The decreasing trend of the test accuracy curve of NOL as the number of epochs in-

creases indicates that themodel has to some extent overfit the data. Hence the generalizability

of TCNN is better than traditional CNN.

6.3 TCNN vs CNN

In traditional CNN, the convolutional layer is a sparsification of a fully connected layer

which enforced locality with homogeneity in the grids ZN . The two key properties of CNNs

are locality and homogeneity (translation invariance), as discussed in[11], which originates

from the use of kernels.

Based on the above two properties, CNNs, compared to the original fully connected

neural networks, possess the characteristics of reducing model complexity and parameter

space. It can enhance the speed of model training and prevent overfitting.

Compared to CNNs, TCNNs endow the convolutional layers with a topological struc-

ture. In CF and KF, we initialize the network with fixed weights (gradient=0) instead of

forcing CNNs to learn these weights. This can bring the network high training efficiency

and high accuracy and prevent overfitting. These layer can be thought of as a pretrained

convolutional layer in CNNs. In COL and KOL, the filter space are parameterized by a

discretization of a circle or Klein Bottle and during the entire training process, any weights

connecting slices beyond a fixed threshold distance on the Klein bottle are maintained as

zero. The locality conditions promote the network to learn local features both within the raw
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pixels and in the tangential directions in the geometry of a circle or Klein bottle. There is an

interpretation that what is learned in COL and KOL is second order local information, fol-

lowed by the first order information obtained from the previous convolutional layer[8]. Also,

symmetries in circle and Klein bottle enforce rotational invariance of the features as well as

the invariance under black/white reversal.

Figure 16 A graphical depiction of neurons and weights in a KOL with a threshold of s = 2. Each
grid line intersubsection on the two Klein bottles represents a neuron. The non-zero weights asso-
ciated with the specified input neuron are illustrated by the red arrows.

Both of these new types of TCNN can be regarded as a rigorous form of regularization,

elucidating the TCNN’s capacity to generalize more effectively to new data.

7. Summary
7.1 Research Contents and Results

This article roughly reviews the applications of topological data analysis in image data

and the transition to topological deep learning, which begins with the analysis of geometric

structures of natural images and neural networks and then used the obtained information to

improve the architecture of neural networks. Some reproduced results are also presented

in the article. The results are mainly three aspects: The core space of high contrast local

patches of natural images has a topology of Klein bottle; CNNs trained on images learn

simple structures which is consistent with the distribution of features on the images; Adding

the topological information above to neural networks gains better training performance and
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better generalizability.

7.2 Prior Judgements and Posterior Analytics in the Research Process

Prior judgements and posterior analytics are well used in the research process. In the

study of feature space of natural images and weight space of CNNs, posterior analytics is

used to find out the learning process of neural networks and then we use the ”pretrained”

filters as a kind of prior judgements to improve the neural networks for image classification.

Specifically, in the field of deep learning for image processing as we discussed in this paper,

images and CNNs have an interactive relationship: the function of neural networks is to

extract image features for classification; Conversely, if we know some features of the images,

we can improve the neural network based on these features to enhance learning efficiency.

7.3 Future Work

Similar study using TDA can be conducted on other types of data, such as audio and

video. We could also implement experiments on pooling layers and other architecture of

neural networks to see the structures in it and use these geometric information to improve it.

Besides, inspired by the positive correlation between the persistence of topological fea-

tures of CNN and the generalizability[7] and the phenomenon of overfitting we discussed

in Section 5, we may consider the topological structures as a geometric feature of neural

networks and further explore the correlation between it and other attributes (training perfor-

mance, generalizability). This idea try to establish a connection between geometric prop-

erties and ”intrinsic” properties of neural networks, which makes the topological features a

criterion to measure the performance of neural networks.
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Appendix

Topological Data Analysis of Weight Space
weightsapceMNIST.py

1 import t o r c h
2 import t o r c h . nn as nn
3 import t o r c h . opt im as opt im
4 from t o r c h v i s i o n import d a t a s e t s , t r a n s f o rm s
5 from t o r c h . u t i l s . d a t a import DataLoader
6 import t o r c h . nn . f u n c t i o n a l a s F
7 import numpy as np
8 import ma t p l o t l i b . p y p l o t a s p l t
9 from s k l e a r n . n e i g h bo r s import Nea r e s tNe i ghbo r s
10 import gudh i a s gd
11 from gudh i . cover_complex import MapperComplex
12 from s k l e a r n . d e compos i t i o n import PCA
13 import ma t p l o t l i b . p y p l o t a s p l t
14 from s c i p y . s p a r s e . c s g r aph import d i j k s t r a ,

s h o r t e s t _ p a t h , connec t ed_componen t s
15 from s c i p y . s t a t s import ks_2samp
16

17

18 t r a n s f o rm = t r a n s f o rm s . Compose ( [
19 t r a n s f o rm s . ToTensor ( ) ,
20 t r a n s f o rm s . Normal i ze ( ( 0 . 5 , ) , ( 0 . 5 , ) )
21 ] )
22

23 # load t h e d a t a s e t
24 t r a i n _ d a t a s e t = d a t a s e t s .MNIST( r o o t = ’ . / d a t a ’ , t r a i n =

True , t r a n s f o rm= t r a n s f o rm , download=True )
25 t e s t _ d a t a s e t = d a t a s e t s .MNIST( r o o t = ’ . / d a t a ’ , t r a i n =

Fa l s e , t r a n s f o rm= t r a n s f o rm , download=True )
26

27 b a t c h _ s i z e = 128
28 t r a i n _ l o a d e r = t o r c h . u t i l s . d a t a . Da taLoader ( d a t a s e t =

t r a i n _ d a t a s e t , b a t c h _ s i z e = b a t c h _ s i z e , s h u f f l e =True )
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29 t e s t _ l o a d e r = t o r c h . u t i l s . d a t a . Da taLoader ( d a t a s e t =
t e s t _ d a t a s e t , b a t c h _ s i z e = b a t c h _ s i z e , s h u f f l e = F a l s e )

30

31 # De f i n e CNN a r c h i t e c t u r e
32 c l a s s CNN( nn . Module ) :
33 def _ _ i n i t _ _ ( s e l f ) :
34 super (CNN, s e l f ) . _ _ i n i t _ _ ( )
35 s e l f . n e t = nn . S e q u e n t i a l (
36 nn . Conv2d ( 1 , 64 , k e r n e l _ s i z e =3 , s t r i d e

=1 , padd ing =1) ,
37 nn . ReLU ( ) ,
38 nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =1) ,
39 nn . Conv2d (64 , 32 , k e r n e l _ s i z e =3 , s t r i d e

=1 , padd ing =1) ,
40 nn . ReLU ( ) ,
41 nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =1) ,
42 nn . F l a t t e n ( ) ,
43 nn . L i n e a r (32 * 26* 26 , 64) ,
44 nn . ReLU ( ) ,
45 nn . Dropout ( 0 . 5 ) ,
46 nn . L i n e a r ( 64 , 10)
47 )
48 def f o rwa rd ( s e l f , x ) :
49 ou t = s e l f . n e t ( x )
50 re turn ou t
51 # t r a i n t h e da ta t o t h e t e s t accuracy o f abou t 99%
52 def t r a i n ( model , t r a i n _ l o a d e r , t e s t _ l o a d e r , o p t im i z e r ,

c r i t e r i o n , epochs ) :
53 f o r epoch in range ( epochs ) :
54 model . t r a i n ( )
55 r u n n i n g _ l o s s = 0 . 0
56 c o r r e c t _ t r a i n = 0
57 t o t a l _ t r a i n = 0
58 f o r images , l a b e l s in t r a i n _ l o a d e r :
59 o p t im i z e r . z e r o_g r a d ( )
60 o u t p u t s = model ( images )
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61 l o s s = c r i t e r i o n ( ou t pu t s , l a b e l s )
62 # p r i n t ( l o s s )
63 l o s s . backward ( )
64

65 o p t im i z e r . s t e p ( )
66 r u n n i n g _ l o s s += l o s s . i t em ( )
67 _ , p r e d i c t e d = t o r c h .max ( o u t pu t s , 1 )
68 t o t a l _ t r a i n += l a b e l s . s i z e ( 0 )
69 c o r r e c t _ t r a i n += ( p r e d i c t e d == l a b e l s ) .

sum ( ) . i t em ( )
70

71 t r a i n _ a c c u r a c y = 100 * c o r r e c t _ t r a i n /
t o t a l _ t r a i n

72 t r a i n _ a c c u r a c y _ h i s t o r y . append (
t r a i n _ a c c u r a c y )

73

74 model . eva l ( )
75 c o r r e c t = 0
76 t o t a l = 0
77 wi th t o r c h . no_grad ( ) :
78 f o r images , l a b e l s in t e s t _ l o a d e r :
79 o u t p u t s = model ( images )
80 _ , p r e d i c t e d = t o r c h .max ( o u t p u t s .

da t a , 1 )
81 t o t a l += l a b e l s . s i z e ( 0 )
82 c o r r e c t += ( p r e d i c t e d == l a b e l s ) .

sum ( ) . i t em ( )
83

84 t e s t _ a c c u r a c y = 100* c o r r e c t / t o t a l
85 pr in t ( f ” Epoch␣{ epoch +1}: ␣Tr a i n ␣Accuracy␣=␣{

t r a i n _ a c c u r a c y : . 2 f }%,␣Tes t ␣Accuracy␣=␣{
t e s t _ a c c u r a c y : . 2 f}%” )

86

87 # save t h e we i gh t v e c t o r s
88 l = [ ]
89 epochs = 100
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90

91 f o r i in range ( 1 ) :
92 pr in t ( ’CNN’+ s t r ( i +1) )
93 cnn = CNN( )
94 c r i t e r i o n =nn . C ro s sEn t r opyLos s ( )
95 o p t im i z e r = t o r c h . opt im .SGD( cnn . p a r ame t e r s ( ) , l r =0 . 01 )
96 t r a i n _ a c c u r a c y _ h i s t o r y = [ ]
97 t e s t _ a c c u r a c y _ h i s t o r y = [ ]
98 t r a i n ( cnn , t r a i n _ l o a d e r , t e s t _ l o a d e r , o p t im i z e r ,

c r i t e r i o n , epochs )
99 we igh t s =cnn . n e t [ 0 ] . s t a t e _ d i c t ( )
100 numpy_weights = { key : v a l u e . numpy ( ) f o r key , v a l u e

in we igh t s . i t ems ( ) }
101 l . e x t end ( numpy_weights [ ’ we igh t ’ ] . t o l i s t ( ) )
102

103 w=np . a r r a y ( l )
104 np . s ave ( ’ w e i g h t _ v e c t o r s . npy ’ ,w)
105

106 # load t h e we i gh t v e c t o r s
107 f i l e _ p a t h = ’ w e i g h t _ v e c t o r s . npy ’
108 t ry :
109 w = np . l o ad ( f i l e _ p a t h )
110 excep t F i l eNo tFoundE r r o r :
111 pr in t ( f ” F i l e ␣ ’{ f i l e _ p a t h } ’␣ no t ␣ found . ” )
112 w = w. r e s h a p e ( −1 , w. shape [ 2 ] , w. shape [ 3 ] )
113 w = w. r e s h a p e (w. shape [ 0 ] , −1)
114 # p r i n t (w . shape )
115

116 # s t a n d a r i z e t h e da ta
117 b=np . mean (w, a x i s =1)
118 c=np . t r a n s p o s e ( b )
119 d=np . expand_dims ( c , a x i s =1)
120 w=w−np . t i l e ( d , ( 1 ,w. shape [ 1 ] ) )
121 w =w / np . l i n a l g . norm (w, a x i s =1 , keepdims=True )
122

123 # KNN d e n s i t y f i l t r a t i o n

38



124 r = [ ]
125 k=200
126 n=1920
127 n_ne i ghbo r s = k + 1
128 nb r s = Nea r e s tNe i ghbo r s ( n_ne i ghbo r s = n_ne i ghbo r s ) . f i t (w)
129 d i s t a n c e s , i n d i c e s = nb r s . k n e i g hbo r s (w)
130 r = d i s t a n c e s [ : , k ]
131 min_id = np . a r g s o r t ( r ) [ : n ]
132 w_f= w[ min_id ]
133

134 # c o n s t r u c t t h e mapper complex ( See h t t p s : / / gudh i . i n r i a
. f r / py thon / l a t e s t / c o v e r _ c omp l e x _ s k l e a r n _ i s k _ r e f . h tm l
)

135 ve r bo s e = F a l s e
136 cover_complex = MapperComplex (
137 i n p u t _ t y p e = ’ p o i n t ␣ c l oud ’ , m in_po i n t s _pe r_node =0 ,
138 c l u s t e r i n g =None , N=100 , b e t a =0 . , C=10 ,
139 f i l t e r _ b n d s =None , r e s o l u t i o n s =np . a r r a y ( [ 3 0 , 3 0 ] ) ,

g a i n s =np . a r r a y ( [ 2 / 3 , 2 / 3 ] ) ,
140 ve r bo s e = ve r bo s e )
141 pca = PCA( n_components =2)
142 l e n s = pca . f i t _ t r a n s f o r m ( w_f )
143 _ = cover_complex . f i t ( w_f , f i l t e r s = l en s , c o l o r s = l e n s )
144

145 # v i s u a l i z a t i o n o f mapper complex
146 # method 1
147 cover_complex . s a v e _ t o _ d o t ( f i l e _n ame=” we igh t ” ,

co lo r_name=” c o l o r ” )
148 cover_complex . r e n d e r ( ’ o u t p u t / we igh t ’ , format= ’ png ’ ,

wid th= ’ 800 ’ , h e i g h t = ’ 600 ’ )
149 # nea to −Tpdf we i gh t . do t −o we igh t . pd f
150

151 # method 2
152 cover_complex . s a v e_ t o_h tm l ( f i l e _n ame=” we igh t ” ,

da ta_name=” we igh t ” , cover_name=”PCA( compoments =2) ” ,
co lo r_name=” l e n s ” )
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153

154 # e x t r a c t t o p o l o g i c a l f e a t u r e s ( See h t t p s : / / g i t h u b . com /
GUDHI /TDA− t u t o r i a l / b lob / mas t e r / Tuto−GUDHI−cover −
complex . i p ynb )

155 dgm , bnd = c omp u t e _ t o p o l o g i c a l _ f e a t u r e s ( cover_complex ,
t h r e s h o l d =0 . )

156

157 # g en e r a t e t h e barcode and p e r s i s t e n c e diagram
158 # barcode
159 gd . p l o t _ p e r s i s t e n c e _ b a r c o d e ( p e r s i s t e n c e =dgm , a l ph a =0 . 6 ,

m a x _ i n t e r v a l s =20000 , i n f _ d e l t a =0 . 1 , l e g end=None ,
co lormap=None , axes=None , f o n t s i z e =16)

160

161 # P e r s i s t e n t diagram
162 gd . p l o t _ p e r s i s t e n c e _ d i a g r am ( p e r s i s t e n c e =dgm ,

p e r s i s t e n c e _ f i l e = ’ ’ , a l p h a =0 . 6 , band =0 . 0 ,
m a x _ i n t e r v a l s =1000000 , i n f _ d e l t a =0 . 1 , l e g end=None ,
co lormap=None , axes=None , f o n t s i z e =16 , g r e yb l o ck =
True )

Neural networks with CF and COL
TCNN.py

1 import numpy as np
2 import t o r c h
3 from s c i p y import i n t e g r a t e
4 from t o r c h import nn
5 import t o r c h . nn . f u n c t i o n a l a s F
6 import t o r c h . nn as nn
7 import t o r c h . nn . f u n c t i o n a l a s F
8 i
9 # d e f i n e c i r c l e f i l t e r
10 def i n i t i a l i z e _ c i r c l e _ f i l t e r s ( e t a , s ) :
11 f i l t e r s _ l i s t = [ ]
12
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13 f o r j in range ( e t a ) :
14 t h e t a = 2 * np . p i * j / e t a
15 f i l t e r _ j = t o r c h . z e r o s ( ( 2 * s + 1 , 2 * s + 1) )
16

17 f o r n in range (2 * s + 1) :
18 f o r m in range (2 * s + 1) :
19 x_lower = −1 + 2 * n / (2 * s + 1)
20 x_upper = −1 + 2 * ( n +1) / (2 * s + 1)
21 y_lower = −1 + 2 * m / (2 * s + 1)
22 y_upper = −1 + 2 * (m+1) / (2 * s + 1)
23 r e s u l t , e r r o r = i n t e g r a t e . db lquad (

lambda x , y : x*np . s i n ( t h e t a ) +y*np .
cos ( t h e t a ) , x_lower , x_upper ,
y_lower , y_upper )

24 f i l t e r _ j [ n , m] = r e s u l t
25

26 f i l t e r s _ l i s t . append ( f i l t e r _ j )
27

28 f i l t e r s = t o r c h . s t a c k ( f i l t e r s _ l i s t )
29 c i r c l e _ f i l t e r s = t o r c h . unsqueeze ( f i l t e r s , 1 ) #
30

31 re turn c i r c l e _ f i l t e r s
32

33 # d e f i n e c o n v o l u t i o n a l one l a y e r
34 def COL_ r e gu l a r i z a t i o n ( e t a1 , e t a2 , d , s ) :
35 mask = t o r c h . z e r o s ( ( e t a2 , e t a1 ,2* s +1 ,2* s +1) , d t ype=

t o r c h . f l o a t 3 2 )
36 f o r i in range ( e t a 1 ) :
37 f o r j in range ( e t a 2 ) :
38 i f abs ( i / e t a 1 − j / e t a 2 )* 2 * np . p i

< d or abs ( i / e t a 1 − j / e t a 2 )* 2 *
np . p i > 2 * np . p i − d :

39 mask [ j , i , : , : ] = t o r c h . ones ( (2* s
+1 ,2* s +1) , d t ype= t o r c h . f l o a t 3 2 )

40 re turn mask
41

41



42 # Con s t r u c t a n eu r a l ne twork
43 c l a s s CF_COL( nn . Module ) :
44 def _ _ i n i t _ _ ( s e l f , e t a1 , s1 , e t a2 , s2 , d ) :
45 super ( ) . _ _ i n i t _ _ ( )
46

47 s e l f . l a y e r 1 _we i g h t =
i n i t i a l i z e _ c i r c l e _ f i l t e r s ( e t a1 , s1 )

48 s e l f . l a y e r 1 = nn . Conv2d ( 1 , e t a1 ,
k e r n e l _ s i z e =2* s1 +1 , s t r i d e =1 , padd ing =1 ,
b i a s = F a l s e )

49 s e l f . l a y e r 1 . we igh t = nn . Pa r ame t e r ( s e l f .
l a y e r 1 _we i g h t )

50 s e l f . l a y e r 1 . we igh t . r e q u i r e s _ g r a d = F a l s e
51 s e l f . r e l u 1 = nn . ReLU ( )
52 s e l f . maxpool1 = nn . MaxPool2d ( k e r n e l _ s i z e =2 ,

s t r i d e =2)
53

54

55 s e l f . mask = COL_ r e gu l a r i z a t i o n ( e t a1 , e t a2 ,
d , s2 )

56 s e l f . l a y e r 2 = nn . Conv2d ( e t a1 , e t a2 ,
k e r n e l _ s i z e =2* s2 +1 , s t r i d e =1 , padd ing =1)

57

58 s e l f . l a y e r 2 . we igh t . d a t a = s e l f . l a y e r 2 .
we igh t . d a t a * s e l f . mask

59 s e l f . r e l u 2 = nn . ReLU ( )
60 s e l f . maxpool2 = nn . MaxPool2d ( k e r n e l _ s i z e =2 ,

s t r i d e =2)
61 s e l f . f c _ l a y e r s = nn . S e q u e n t i a l (
62 nn . F l a t t e n ( ) ,
63 nn . L i n e a r (64 * 7 * 7 , 128) ,
64 nn . ReLU ( ) ,
65 nn . L i n e a r ( 128 , 10)
66 )
67

68 def f o rwa rd ( s e l f , x ) :
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69 x = s e l f . l a y e r 1 ( x )
70 x = s e l f . r e l u 1 ( x )
71 x = s e l f . maxpool1 ( x )
72 x = s e l f . l a y e r 2 ( x )
73 x = s e l f . r e l u 2 ( x )
74 x = s e l f . maxpool2 ( x )
75 x = s e l f . f c _ l a y e r s ( x )
76 re turn x
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