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关于 Ricci 流的简短论述：
有严格正的里奇曲率的三维闭流形

余景浩

（数学系 指导教师：黄少创）

[摘要]：这篇文章是对 R.S Hamiton于 1982年发表的文章 [7]的简介。在
这篇文章 [7], Hamilton 建立了 Ricci 流的数学基础。以 Ricci 流为基本
工具证明了：假如一个闭的三维光滑黎曼流形有严格正的 Ricci曲率，那
么这个流形可以被赋予一个严格正的常值截面曲率。这个定理是三维庞

加莱猜想的一个特殊情况，而 Ricci 流是 Perelman 证明三维庞加莱猜想
的基本工具。

[关键词]：里奇流，里奇曲率，庞加莱猜想



[ABSTRACT]: This article gives an introduction to the work of R.S
Hamiton [7] in 1982. In [7], Hamilton built the foundation of Ricci flow.
With Ricci flow, Hamilton shows that every closed smooth 3-manifold with
strictly positive Ricci curvature could be endowed with a constant posi-
tive sectional curvature. This theorem is a special case of 3-dimensional
Poincare conjecture. Meanwhile, the Ricci flow is the main tool to prove
3-dimensional Poincare conjecture.

[Keywords]: Ricci flow, Ricci curvature, Poincare conjecture
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Preface
This article is a note about Hamilton’s 1982 paper [7]. The writer chose this as his
undergraduate thesis. The main body generally follows the structure of [7]. I show
how the metric on initial manifold varies under the Ricci curvature so that it flows to
an Einstein metric. Some proof are not the same as the initial one because some better
methods appear in other references. In Appendix A, I show the Sobolev’s inequality in
manifold version, which plays an important role in estimating the convergence speed
of metric. The Appendix B is a brief survey about the history, tools and conclusions
about the Poincare conjecture. The latter one is an important motivation to develop
the Ricci flow theory. It could help ones realize the whole math story.
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1. Introduction
It is known that if a topological manifold M can be equipped with a smooth structure,
there is a smooth Riemannian metric associated to this smooth structure such that M
is a Riemannian manifold. On the other hand, the curvature tensor, which shows how
the manifold warps, is an intrinsic geometric property depending only on metric.

smooth structure =⇒ Riemannian metric =⇒ curvature.

Now one can ask: if one knows the curvature on a smooth manifold M , what we can
say about the smooth structure in M? This question has been responded in many
different aspects. The main body of this article is also aimed to give some answers to
this question. In fact we are going to show this Main Theorem:

Theorem (Main theorem). Let (M, g) be a closed Riemannian manifold of dimension
3 which admits a strictly positive Ricci curvature. Then (M, g) also admits a metric
of constant positive sectional curvature. In particular, when M is simply connected,
M is diffeomorphic to a 3-sphere.

According to the knowledge of space form, we know the universal covering space of
(M, g) is diffeomorphic to S3. That is why we deduce the particular case. The proof
is mainly related to the Ricci flow equation:

∂g

∂t
= −2Rc, g(0) = initial metric on M. (1)

We want to variate the metric on the contrary side of Ricci curvature, so that the
curvature could be close to each other and finally has a constant sectional curvature.
This idea is natural and we could show the short time existence via a method called
DeTurck trick. Many estimates about curvature as time flows could be done as well.
However, the solution of (1) always blow up in a finite time. This result pushes us to
consider another equation, the normalized Ricci flow:

∂

∂t
gij =

2

n
rgij − 2Rij, g(0) = initial metric on M, (2)

where n = dimM . It could be shown that the solution of (1) and (2) can transform to
each other via a factor φ(t). The estimates on curvature of (1) could be transformed
to (2) and finally prove the main theorem.

2. Preliminary

2.1 Riemannian manifold
This section is a review of knowledge about manifold, metric, connection and curvature.

Definition 2.1 (smooth manifold). A smooth manifold of dimension n is a set M and
a family of injective mappings xα: Uα ⊂ Rn →M of open sets Uα of Rn into M such
that:

(1) ∪αxα(Uα) =M .
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(2) for any pair α, β, with xα(Uα) ∩ xβ(Uβ) = W 6= ∅, the sets x−1
α (W ) and x−1

β (W )

are open sets in Rn and the mappings x−1
β ◦ xα are smooth.

(3) The family {(Uα,xα)} is maximal relative to the conditions (1) and (2).

The pair (Uα,xα) (or the mapping xα) with p ∈ xα(Uα) is called a parametriza-
tion (or system of coordinates) of M at p; xα(Uα) is then called a coordinate
neighborhood at p. A family {(Uα,xα)} satisfying (1) and (2) is called a smooth
structure on M .

Definition 2.2 (Riemannian metric). A Riemannian metric g on a differentiable
manifold M is a correspondence which associates to each point p of M an inner
product gp(−,−) (i.e. a symmetric bilinear, positive-definite form) on the tangent
space TpM , which varies smoothly in the following sense: If x : U ⊂ Rn → M is
a system of coordinates around p, with x(x1, x2, . . . , xn) = q ∈ x(U) and ∂

∂xi
(q) =

dxq(0, . . . , 1, . . . , 0), then gq(
∂
∂xi

(q), ∂
∂xj

(q)) = gij(x1, . . . , xn) is a smooth function on
U .

Remark 2.3. The inner product at p could also be denoted by 〈−,−〉p or simply 〈−,−〉.

A manifold M equipped with a Riemannian metric g is called a Riemannian man-
ifold, denoted by (M, g).

Theorem 2.4 (Levi-Civita connection). On a Riemannian (M, g), there exists a
unique connection on the tangent bundle TM such that:

(1) ∇XY −∇YX = [X,Y ].

(2) Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

for ∀X,Y, Z ∈ Γ(TM). Here Γ(TM) denotes the set of smooth global section of the
tangent bundle TM (i.e. the smooth vector fields of M). This connection is called the
Levi-Civita connection of M , which is defined as follows:

〈∇XY, Z〉 =
1

2
{X〈Z, Y 〉+ Y 〈X,Z〉 − Z〈X,Y 〉

−〈[X,Z], Y 〉 − 〈[Y, Z], X〉+ 〈[X,Y ], Z〉}.

Suppose that p ∈ M , (U,x) be a local coordinate for p. Let {∂i = ∂
∂xi

}ni=1 be the
associated basis of TpM . Let Γk

ij ∈ R such that

∇∂i∂j = Γk
ij∂k,

then we can deduce that

Γk
ij =

1

2
gkl{∂igjl + ∂jgil − ∂lgij},

where (gij) is the inverse matrix of (gij).
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Definition 2.5 (curvature). The Riemannian curvature Rm of a Riemannian
manifold (M, g) is a correspondence that associates to every pair X,Y ∈ Γ(M) a
mapping Rm(X,Y ) : Γ(TM) → Γ(TM) with

Rm(X,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

for all Z ∈ Γ(TM).

Let (U,x) be a local coordinate for p ∈M ; let {∂1 = ∂
∂x1
, . . . , ∂n = ∂

∂xn
} denote the

associated basis of TpM . Then Rl
ijk, Rijks are tensors of M such that

(1) Rm(∂i, ∂j)∂k = Rl
ijk∂l.

(2) Rijks = 〈Rm(∂i, ∂j)∂k, ∂s〉 = Rl
ijkgls.

The notations defined above satisfy the following rules:

(1) Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γl

ipΓ
p
jk − Γl

jpΓ
p
ik.

(2) Rijks = Rl
ijkgls; Rl

ijk = Rijksg
sl.

(3) (first Bianchi identity) Rijks +Rjkis +Rkijs = 0.

(4) Rijks = −Rjiks; Rijks = −Rijsk; Rijks = Rksij.

The Riemannian curvature Rm contains nearly all information about the shape
change of manifold. But even just a part of this information could have described the
shape change of manifold. Hence the Ricci tensor, which is defined as a trace of Rm,
could be helpful in our main theorem.

Definition 2.6 (Ricci tensor; Ricci curvature; scalar curvature). The Ricci curvature
Rc : Γ(TM)× Γ(TM) → R is :

(Y, Z) 7→ trace of the map: X → Rm(X,Y )Z.

In local coordinate, Rij := Rc(∂i, ∂j) =
∑

lR
l
lij = Rlijsg

sl.
Let v be a unit tangent vector on TpM , the Ricci curvature in the direction v is

defined as Ricp(v) := Rc(v, v). Moreover, the scalar curvature R is defined to be
the trace of Rc, i.e. gijRij.

Definition 2.7 (sectional curvature). Let σ be a plane in TpM spanned by X,Y ∈ TpM .
The sectional curvature K(σ) := ⟨Rm(X,Y )Y,X⟩

|X∧Y |2 .

Definition 2.8 (Einstein manifold). A Riemannian manifold (M, g) is an Einstein
manifold if its Ricci curvature is a constant times its Riemannian metric. i.e. ∃ a
constant λ such that for all X, Y ∈ Γ(TM) we have Rc(X,Y ) = λg(X,Y ).

Proposition 2.9. If M is 3-dimensional Einstein manifold, then M has constant
sectional curvature.

Proof. In normal coordinate, we have

R11 = R1221 +R1331, R22 = R1221 +R2332, R33 = R1331 +R2332
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R1221 =
1

2
(R11 +R22 −R33) =

1

2
λ,

In similar, R1331 = R2332 =
1
2
λ. Hence, M has constant sectional curvature.

Example 2.10. The unit n-sphere Sn has a natural smooth Riemannian metric g by
embedding it into Rn+1:

g = dx1 ⊗ dx1 + · · ·+ dxn+1 ⊗ dxn+1.

The Riemannian curvature of Sn is

Rm(X,Y, Z,W ) = 〈Y, Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉, X, Y, Z,W ∈ Γ(TSn);

so the sectional curvature unit 3-sphere is 1. Let {Xi}ni=1 be a normal coordinate of
Sn,

Rij = Rc(Xi, Xj) =
∑
k

Rm(Xi, Xk, Xk, Xj)

=
∑
k

[〈Xi, Xj〉〈Xk, Xk〉 − 〈Xi, Xk〉〈Xk, Xj〉] = (n− 1)δij = (n− 1)gij.

This shows that Sn is an Einstein manifold. In particular, let n = 3 by Prop 2.9, the
sectional curvature is (3− 1)/2 = 1, which corresponds to previous calculation.

2.2 Covariant derivative
Let Γ(M) be the set of smooth functions of smooth manifold M ; let T r

sM denote the
vector bundle

T r
sM = TM ⊗ · · · ⊗ TM︸ ︷︷ ︸

r times

⊗T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
s times

.

Definition 2.11 ((r,s) tensor field). A smooth (r, s) tensor field T is a smooth section
of the vector bundle T r

sM :

T ∈ Γ(TM)⊗ · · · ⊗ Γ(TM)︸ ︷︷ ︸
r times

⊗Γ(T ∗M)⊗ · · · ⊗ Γ(T ∗M)︸ ︷︷ ︸
s times

.

It could be viewed as a Γ(M)-multilinear function:

Γ(T ∗M)× · · · × Γ(T ∗M)︸ ︷︷ ︸
r times

×Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸
s times

→ Γ(M).

In local coordinate (U,x), T could be expressed as:

T
∣∣
U
=

∑
i,j

T 1,...,r
1,...,s ∂1 ⊗ · · · ⊗ ∂r ⊗ dx1 ⊗ · · · ⊗ dxs,

where T 1,...,r
1,...,s are all smooth functions of M . The inner product on TM can be naturally
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generalized to tensor field. For example, if T, U ∈ Γ(T 2
3M), then

〈T, U〉P := gipgjqgkmglmghtT
lh
ijkT

nt
pqm.

Proposition 2.12 (covariant derivative). Let (M, g) be a Riemannian manifold, X ∈
Γ(TM), then there exists a unique Γ(M)-module homomorphism ∇X : Γ(T r

sM) →
Γ(T r

sM) for every r, s ∈ Z≥0 such that:

(i) ∇X(T ⊗ T ′) = (∇XT )⊗ T ′ + T ⊗ (∇XT
′) for any T, T ′ ∈ Γ(T r

sM).

(ii) The contraction C commutes with ∇X . i.e. for any T ∈ Γ(T r
sM), we have

C(∇XT ) = ∇X(CT ).

(iii) ∇Xf = Xf for every f ∈ Γ(M).

(iv) ∇X : T 1
0 (M) = TM → T 1

0 (M) = TM is the Levi-Civita connection associated to
(M, g).

The mapping satisfies these conditions is the covariant derivative on (M, g).

The formula of covariant derivative is: ∀ α ∈ Γ(T r
sM), X,Y1, . . . , Ys ∈ Γ(TM),

θ1, . . . , θs ∈ Γ(T ∗M), the covariant derivative ∇Xα satisfies

(∇Xα)(θ1, . . . , θr, Y1, . . . , Ys) = X(α(θ1, . . . , θr, Y1, . . . , Ys))

−
r∑

i=1

α(θ1, . . . ,∇Xθi, . . . , θr, Y1, . . . , Ys)−
s∑

j=1

α(θ1, . . . , θr, Y1, . . . ,∇XYj, . . . , Ys),

where ∇Xθ, θ ∈ Γ(T ∗M) is

(∇Xθ)(Y ) = X(θ(Y ))− θ(∇XY ), Y ∈ Γ(TM).

It is natural to define the so called covariant differential ∇ which maps every
(r,s) tensor field T to a (r, s+1) tensor field ∇T :

∇T : (X,ω1, . . . , ωr, X1, . . . , Xs) 7→ ∇XT (ω
1, . . . , ωr, X1, . . . , Xs),

∀ 1-forms ωi, ∀ vector fields Xj and X.

The covariant differential of the metric g is 0:

∇g(X,Y, Z) = (∇Xg)(Y, Z) = ∇X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ) = 0

for every vector fields X,Y, Z ∈ Γ(TM).

In a local coordinate, ∇i := ∇∂i . For T ∈ Γ(T r
sM) we have:

∇iT
k1,...,kr
j1,...,js

= (∇iT )(dx
k1 , . . . , dxkr , ∂j1 , . . . , ∂js)

= C(∇iT ⊗ dxk1 ⊗ · · · ⊗ dxkr ⊗ ∂j1 ⊗ · · · ⊗ ∂js)
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= C(∇i(T ⊗ dxk1 ⊗ · · · ⊗ dxkr ⊗ ∂j1 ⊗ · · · ⊗ ∂js)

−
∑
l

T ⊗ dxk1 ⊗ · · · ⊗ ∇idx
kl ⊗ · · · ⊗ dxkr ⊗ ∂j1 ⊗ · · · ⊗ ∂js

−
∑
m

T ⊗ dxk1 ⊗ · · · ⊗ dxkr ⊗ ∂j1 ⊗ · · · ⊗ ∇i∂jm ⊗ · · · ⊗ ∂js)

= ∇i(T (dx
k1 , . . . , dxkr , ∂j1 , . . . , ∂js))

−
∑
l

T (dxk1 , . . . ,∇idx
kl , . . . , dxkr , ∂j1 , . . . , ∂js)

−
∑
m

T (dxk1 , . . . , dxkr , ∂j1 , . . . ,∇i∂jm , . . . , ∂js)

=⇒ ∇iT
k1,...,kr
j1,...,js

= ∂iT
k1,...,kr
j1,...,js

−
∑
l

Γp
ijk
T k1,...,kr
j1,...,jk−1,p,jk+1,...,js

+
∑
m

Γkl
iqT

k1,...,kl−1,q,kl+1,...,kr
j1,...,js

This calculation implies the following properties:

Proposition 2.13.

(1) ∇iT
k1,...,kr
j1,...,js

= ∂iT
k1,...,kr
j1,...,js

−
∑

l Γ
p
ijk
T k1,...,kr
j1,...,jk−1,p,jk+1,...,js

+
∑

m Γkl
iqT

k1,...,kl−1,q,kl+1,...,kr
j1,...,js

(2) ∇iRjk = ∂iRjk − Γp
ijRpk − Γp

ikRjp

(3) ∇iR
m
jkl = ∂iR

m
jkl − Γp

ijR
m
pkl − Γp

ikR
m
jpl − Γp

ilR
m
jkp + Γm

ipR
p
jkl

(4) ∇iRjklm = ∂iRjklm − Γp
ijRpklm − Γp

ikRjplm − Γp
ilRjkpm − Γp

imRjklp

The Riemannian curvature Rm could be viewed as a (1,3) or a (0,4) tensor field.
This viewpoint helps us to implies the second Bianchi identity:

Proposition 2.14 (second Bianchi identity). The curvature tensor Rm(X,Y )Z sat-
isfies

(∇XRm)(Y, Z,W ) + (∇YRm)(Z,X,W ) + (∇ZRm)(X,Y,W ) = 0

∀ vector fields X,Y, Z,W

i.e.
∇iRjklm +∇jRkilm +∇kRijlm = 0.

Proof. It suffices to prove it when X,Y, Z,W are coordinate basis {∂i}ni=1. For these
X,Y, Z,W we have

∇XY = ∇YX (1)

Rm(X,Y )Z = ∇X∇YZ −∇Y∇XZ (2)

View Rm as a (1, 3) tensor field then

(∇XRm)(Y, Z,W ) = ∇X(Rm(Y, Z)W )−Rm(∇XY, Z)W
−Rm(Y,∇XZ)W −Rm(Y, Z)∇XW
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=⇒
(∇XRm)(Y, Z,W ) = ∇X∇Y∇ZW −∇X∇Z∇YW

−Rm(∇XY, Z)W −Rm(Y,∇XZ)W −Rm(Y, Z)∇XW

(∇YRm)(Z,X,W ) = ∇Y∇Z∇XW −∇Y∇X∇ZW
−Rm(∇YZ,X)W −Rm(Z,∇YX)W −Rm(Z,X)∇YW

(∇ZRm)(X,Y,W ) = ∇Z∇X∇YW −∇Z∇T∇XW
−Rm(∇ZX,Y )W −Rm(X,∇ZY )W −Rm(X,Y )∇ZW

Apply (1):

(∇XRm)(Y, Z,W ) + (∇YRm)(Z,X,W ) + (∇ZRm)(X,Y,W )
= ∇X∇Y∇ZW −∇X∇Z∇YW −Rm(Y, Z)∇XW
+∇Y∇Z∇XW −∇Y∇X∇ZW −Rm(Z,X)∇YW
+∇Z∇X∇YW −∇Z∇T∇XW −Rm(X,Y )∇ZW

Apply (2):

= ∇X∇Y∇ZW −∇X∇Z∇YW −∇Y∇Z∇XW +∇Z∇Y∇XW
+∇Y∇Z∇XW −∇Y∇X∇ZW −∇Z∇X∇YW +∇X∇Z∇YW

+∇Z∇X∇YW −∇Z∇Y∇XW −∇X∇Y∇ZW +∇Y∇X∇ZW = 0

Corollary 2.15 (second Bianchi identity – contract form 1).

gjl∇jRlmki = ∇iRkm −∇kRim

Proof.
gjl∇jRlmki = −gjl∇iRjklm − gjl∇kRijlm = ∇iRkm −∇kRim

Corollary 2.16 (second Bianchi identity – contract form 2).

∇jRij =
1

2
∇iR where ∇j := gij∇i

Proof. Prop 2.15 tells that

gimgjl(∇iRjklm +∇jRkilm +∇kRijlm) = 0

∇kR = gim∇iRkm + gjl∇jRkl = 2∇lRkl

Proposition 2.17 (Ricci identity). Let T ∈ Γ(T r
s (M)) we have

(∇i∇j −∇j∇i)T
l1,...,lr
k1,...,ks

=
r∑

k=1

Rlk
ijpA

l1,...,lk−1,p,lk+1,...,lr
k1,...,ks

−
s∑

l=1

Rp
ijkl
Al1,...,lr

k1,...,kl−1,p,kl+1,...,ks

Now consider the issue of higher derivatives.
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Consider the operators:

∇k : Γ(T r
sM) → Γ(T r

s+kM)

defined for k ≥ 1. If T ∈ Γ(T r
sM) and X1, . . . , Xk ∈ Γ(TM), then inductively define

∇k
X1,...,Xk

T := (∇X1∇k−1T )(X2, . . . , Xn).

In this notation, Rm could be expressed as follows

(∇2Z)(X,Y )− (∇2Z)(Y,X) = (∇X∇Z)(Y )− (∇Y∇Z)(X)

= ∇X∇YZ −∇∇XYZ −∇Y∇XZ +∇∇Y XZ = Rm(X,Y )Z

for vector fields X,Y, Z ∈ Γ(TM).

The concepts of gradient, Hessian, divergence, and Laplacian can be generalized
to Riemannian manifold (M, g): Suppose f ∈ Γ(M), X ∈ Γ(TM). Let α be a (0, p)
tensor field, and let T be a (r, s) tensor field.

(1) The gradient of f , ∇f , is a vector field such that 〈∇f,X〉 = X(f). In local
coordinate ∇f i = gij∂i(f)

(2) The Hessian of f is ∇2f ∈ Γ(T ∗M ⊗ T ∗M). Then in local coordinate

∇2f ij = ∂i∂jf − Γk
ij∂kf

(3) The divergence of α is a (0, p− 1) tensor. In local coordinate

(div α)i1,...,ip−1 = gjk∇jαk,i1,...,ip−1

(4) The Laplacian of T, ∆T , is defined as gij∇i∇jT

2.3 First-order differential operators on forms
Let Mn be a smooth manifold of dimension n. A p-form θ is a smooth section of the
bundle

∧ p(T ∗M), i.e.

θ ∈ Ωp(M) = Γ(

p∧
(T ∗M)).

The exterior derivative is the family of operators

d ≡ dp : Ω
p(M) → Ωp+1(M)

11



defined for all p-forms θ and vector fields Y1, . . . , Yp by

dθ(Y0, . . . , Yp)

:=
∑
0≤i≤p

(−1)iYi(θ(Y0, . . . , Yi−1, Ŷi, . . . , Yp))

+
∑

0≤i<j≤p

(−1)i+jθ([Yi, Yj], Y0, . . . , Ŷi, . . . , Ŷj, . . . , Yp).

Although dθ is independent of the Riemannian metric, the Levi-Civita metric could
help us compute dθ:

dθ(Y0, . . . , Yp) =

p∑
i=0

(−1)i(∇Yi
θ)(Y0, . . . , Ŷi, . . . , Yp).

2.4 Lie derivative
Let X be a differentiable vector field on a smooth manifold M , i.e. a smooth section
in tangent bundle TM , and let p ∈M . Then there exists a neighbourhood U ⊂M at
p, an interval (−δ, δ), δ > 0, and a differentiable mapping φ : (−δ, δ) × U → M such
that the curve t 7→ φ(t, q), t ∈ (−δ, δ), q ∈ U , is the unique curve which satisfies

∂φ

∂t
= X(φ(t, q)), φ(0, q) = q.

Let’s define the mapping φt : U → M by φt(q) = φ(t, q). The map φt is called the
local flow of X. It is easy to see φt is a local diffeomorphism of M .

Proposition 2.18. Let X,Y be differentiable vector fields on a smooth manifold M ,
let p ∈ M , and let φt be the local flow of X in a neighbourhood U of p. Then the Lie
bracket satisfies

[X,Y ](p) := (XY − Y X)(p) = lim
t→0

1

t
[Y − (φt)∗Y ](φt(p)) ∈ TpM

Now we can generalize this property to define the Lie derivative of a tensor field.
Let α be a tensor field and X be a complete vector field which generates a global 1 -
parameter group of diffeomorphisms φt. The Lie derivative of α with respect to X is
defined by

LXα := lim
t→0

1

t
(α− (φt)∗α)

In similar to the definition of covariant derivative, the Lie derivative, which measures
the infinestimal lack of diffeomorphism invariance of a tensor with respect to a 1-
parameter group of diffeomorphisms generated by a vector field, has the following
properties:

(1) If f is smooth function, then LXf = Xf .

(2) If Y is a vector field, then LXY = [X,Y ].

(3) If α, β are tensor fields, then LX(α⊗ β) = LXα⊗ β + α⊗ LXβ.

12



(4) ∀ α ∈ Γ(T r
sM), X,Y1, . . . , Ys ∈ Γ(TM), θ1, . . . , θs ∈ Γ(T ∗M), the covariant

derivative ∇Xα satisfies

(LXα)(θ1, . . . , θr, Y1, . . . , Ys) = X(α(θ1, . . . , θr, Y1, . . . , Ys))

−
r∑

i=1

α(θ1, . . . ,LXθi, . . . , θr, Y1, . . . , Ys)−
s∑

j=1

α(θ1, . . . , θr, Y1, . . . ,LXYj, . . . , Ys)

= X(α(θ1, . . . , θr, Y1, . . . , Ys))

−
r∑

i=1

α(θ1, . . . ,LXθi, . . . , θr, Y1, . . . , Ys)−
s∑

j=1

α(θ1, . . . , θr, Y1, . . . , [X,Yj], . . . , Ys),

where LXθ, θ ∈ Γ(T ∗M) means

(LXθ)(Y ) = X(θ(Y ))− θ(LXY )

= X(θ(Y ))− θ([X,Y ])

= dθ(X,Y ) + Y (θ(X)), Y ∈ Γ(TM).

Even though the definition of Lie derivative is independent of the Riemannian metric,
the metric (and the Levi-Civita connection induced by this metric) could help us
compute the Lie derivative. This is because

LXY = [X,Y ] = ∇XY −∇YX.

Thus if α is a (0, r)-tensor field, Y1, . . . , Yr are vector fields, then

(LXα)(Y1, . . . , Yr) = X(α(Y1, . . . , Yr))−
r∑

i=1

α(Y1, . . . , Yi−1,LXYi, Yi+1, . . . , Yr)

= (∇Xα)(Y1, . . . , Yr) +
r∑

i=1

α(Y1, . . . , Yi−1,∇Yi
X,Yi+1, . . . , Yr).

In particular, if θ is a covector field and X,Y are vector fields, the Lie derivative of θ
is given by

(LXθ)(Y ) = (∇Xθ)(Y ) + θ(∇YX)

Example. Let X,Y1, Y2 ∈ Γ(TM). The Lie derivative of Riemannian metric g is

(LXg)(Y1, Y2) = g(∇Y1 , X) + g(Y1,∇Y2X),

(LXg)ij = ∇iXj +∇jXi.

In particular, when X = ∇f , f ∈ Γ(M), (L∇fg)ij = 2∇i∇jf .

2.5 Space form
There is a standard result about the classification of Riemannian manifold with con-
stant sectional curvature.
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Theorem 2.19. Let Mn be a complete Riemannian manifold with constant sectional
curvature K. Then the universal covering M̃ of M , with the covering metric, is
isometric to:

(a) hyperbolic space Hn, if K = −1,

(b) Euclidean space Rn, if K = 0,

(c) sphere Sn, if K = 1.

Proof. See [6] Theorem 4.1 page 163.

If M is a topological space, we say that the group G (of homeomorphisms of M)
acts in a totally discontinuous manner if every x ∈M has a neighborhood U such that
g(U) ∩ U = ∅, for all g ∈ G, g 6= e.

Proposition 2.20. Let M be a complete Riemannian manifold with constant sectional
curvature K(1, 0,−1). Then M is isometric to M̃/Γ, where M̃ is the universal covering
space of M , Γ is a subgroup of the group of isometries of M̃ which acts in a totally
discontinuous manner on M̃ and the metric on M̃/Γ is induced from the covering
π : M̃ −→ M̃/Γ.

Proof. See [6] Prop 4.3 page 165.

3. Evolution equations
In this section, let (M, g) be a compact Riemannian manifold of dimension n. The
Ricci flow means the following differential equation:

∂

∂t
gij = −2Rij (∗)

Naturally, we should use the evolution equation (∗) to find out evolution equations of
other variables in M . For convenience, consider the evolution equation

∂

∂t
gij = hij (⋆)

where h is a symmetric (0,2) tensor. If we want to get the evolution equations for
Ricci flow, it suffices to substitute h for −2Rc. Furthermore, it is a trick to do the
calculation on a normal coordinate of p ∈M , where g = gijdx

i ⊗ dxj and

xi(p) = 0, gij(p) = δij, dgij(p) = 0, Γk
ij(p) = 0 ∀i, j, k.

That is because tensor field is invariant under coordinate transformation, the result
established at a normal coordinate also establishes at other coordinates.

The following results are the evolution equations originate from (⋆).

Lemma 3.1.
∂

∂t
gij = −gikgjlhkl
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Proof.

gijgjl = δil =⇒
∂

∂t
gij · gjl + gij · ∂

∂t
gjl = 0 =⇒ ∂

∂t
gij · gjl = −gikhkl

Multiply glm on both sides: ∂

∂t
gijδmj = −gikglmhkl

Thus, let m = j we get the desired result.

Lemma 3.2.
∂

∂t
Γk
ij =

1

2
gkl(∇ihjl +∇jhil −∇lhij)

Proof.
Γk
ij =

1

2
gkl{∂igjl + ∂jgil − ∂lgij}

=⇒ ∂

∂t
Γk
ij =

1

2

∂

∂t
gkl · (∂igjl + ∂jgil − ∂lgij) +

1

2
gkl · (∂ihjl + ∂jhil − ∂lhij)

In normal coordinate of p ∈M ,

∂igjl(p) = 0, ∂ihjl(p) = ∇ihjl(p) ∀i, j, k.

=⇒ ∂

∂t
Γk
ij(p) =

1

2
gkl(∇ihjl +∇jhil −∇lhij)(p)

The difference of two connection is a (1,2) tensor, so at point p, the above formula
establishes in every parametrization of p for any p ∈ M . Hence, we get the desired
result:

∂

∂t
Γk
ij =

1

2
gkl(∇ihjl +∇jhil −∇lhij)

Lemma 3.3.

∂

∂t
Rl

ijk =
1

2
glp

{ ∇i∇jhkp +∇i∇khjp −∇i∇phjk

−∇j∇ihkp −∇j∇khip +∇j∇phik

}
Proof.

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γl

ipΓ
p
jk − Γl

jpΓ
p
ik

In normal coordinate of p:

∂

∂t
Rl

ijk(p) = ∂i(
∂

∂t
Γl
jk)(p)− ∂j(

∂

∂t
Γl
ik)(p)

= ∂i(
1

2
glp(∂jhkp + ∂khjp − ∂phjk))(p)

− ∂j(
1

2
glp(∂ihkp + ∂khip − ∂phik))(p)

=
1

2
glp

{
∂i∂jhkp + ∂i∂khjp − ∂i∂phjk

−∂j∂ihkp − ∂j∂khip + ∂j∂phik

}
(p)

In normal coordinate ∇ = ∂ at p. It is done.
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Remark 3.4. Apply Ricci identity to above formula we get

∂

∂t
Rl

ijk =
1

2
glp

{
∇i∇khjp +∇j∇phik −∇i∇phjk

−∇j∇khip −Rq
ijkhqp −Rq

ijphkq

}
.

Lemma 3.5.

∂

∂t
Rjk =

1

2
gpq(∇q∇jhkp +∇q∇khjp −∇q∇phjk −∇j∇khqp)

Proof.

∂

∂t
Rjk =

∂

∂t

∑
i

Ri
ijk =

1

2
gip

{ ∇i∇jhkp +∇i∇khjp −∇i∇phjk

−∇j∇ihkp −∇j∇khip +∇j∇phik

}

∂

∂t
Rjk =

1

2
gip(∇i∇jhkp +∇i∇khjp −∇i∇phjk −∇j∇khip),

because h is symmetric.
Lemma 3.6. Let H := gjkhjk

∂

∂t
R = −∆H +∇p∇qhpq − 〈h,Rc〉

Proof.

∂

∂t
R =

∂

∂t
(gjkRjk) =

∂

∂t
gjk ·Rjk + gjk

∂

∂t
Rjk

= −gjigklhilRjk + gjk
1

2
gpq(∇q∇jhkp +∇q∇khjp −∇q∇phjk −∇j∇khqp)

= −〈h,Rc〉+ gpq∇q∇jhjp −∆H

= −〈h,Rc〉+∇p∇qhpq −∆H

Remark 3.7. Notice that

div(div h) = gij∇i(div h)j = gij∇ig
kl∇khlj = ∇j∇lhlj,

=⇒ ∂

∂t
R = −∆H + div(div h)− 〈h,Rc〉.

Lemma 3.8. Let dµ =
√

det gijdx1 ∧ · · · ∧ dxn be the volume form. Its evolution
equation is ∂

∂t
dµ = H

2
dµ, where H = gijhij.

Proof.
∂

∂t
dµ =

1

2
(gij

∂

∂t
gij)

√
det gijdx =

1

2
(gijhij)dµ =

H

2
dµ.

Corollary 3.9. If (M, g) is a closed Riemannian n-manifold then

d

dt

∫
M

Rdµ =

∫
M

(
1

2
RH − 〈h,Rc〉)dµ
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Proof.
∂

∂t
(Rdµ) =

∂

∂
R · dµ+R

∂

∂t
(dµ)

= (−∆H + div(div h)− 〈h,Rc〉)dµ+R
H

2
dµ

The divergence theorem tells that
∫
M

div(div h)dµ = 0∫
M

∆H =

∫
M

div · ∇Hdµ = 0

=⇒ d

dt

∫
Rdµ =

∫
∂

∂t
(Rdµ) =

∫
(
1

2
RH − 〈h,Rc〉)dµ

4. Short time existence
In this section, let (M, g) be a closed Riemannian manifold with dimension n. This
section is aim to show the equation of Ricci flow has a short time a unique solution on
M .

4.1 Linearization of Ricci flow
Notice that

Rij = Ri
ijk = ∂iΓ

i
jk − ∂jΓ

i
ik + Γi

ipΓ
p
jk − Γi

jpΓ
p
ik

= ∂i[
1

2
gip{∂jgkp + ∂kgjp − ∂pgjk}]− ∂j[

1

2
gip{∂igkp + ∂kgip − ∂pgik}]

+ terms of first derivatives of g + terms of gij

=
1

2
gip{∂i∂kgjp − ∂i∂pgjk − ∂j∂kgip + ∂j∂pgik}

+ terms of first derivatives of g + terms of gij

Hence the Ricci flow could be expressed as

∂

∂t
gij = gip{−∂i∂kgjp + ∂i∂pgjk + ∂j∂kgip − ∂j∂pgik}+ lower order terms,

so it is a system of nonlinear parabolic differential equation of g. A useful method
to see whether a short time solution exists is to see its parabolicity, which would be
defined later.

4.1.1 The symbol of a nonlinear differential operator

Let E ,F be smooth vector bundles over M . A linear differential operator L of order k
is a morphism between vector bundles:

L : Γ(E) → Γ(F),
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written as L(E) =
∑
|α|≤k

Lα∂
αE,

where Lα ∈ Hom(E ,F) is a bundle homomorphism for each multi-index α. For exam-
ple, if L is with order 2, let {xi} be a local parametrization of p ∈ U ; let {ei}, {fj} be
basis for E ,F in local coordinate, then for u = ulel ∈ Γ(E)

Lu = {(λij)kl
∂2ul
∂xi∂xj

+ (ηi)
k
l

∂ul
∂xi

+ θkl ul}fk,

where (λij)
k
l , (ηi)

k
l , θ

k
l are all independent of u.

A total symbol of L in the direction ξ ∈ Γ(T ∗M), denoted as σ[L](ξ), is a bundle
morphism such that

σ[L](ξ)(E) =
∑
|α|≤k

Lα(Πjξ
αjE), ∀E ∈ Γ(E).

A principle symbol of L in the direction ξ ∈ Γ(T ∗M), denoted as σ̂[L](ξ), is a bundle
morphism such that

σ̂[L](ξ)(E) =
∑
|α|=k

Lα(Πjξ
αjE), ∀E ∈ Γ(E).

In previous example

σ[L](ξ)(u) = {(λij)kl ξiξjul + (ηi)
k
l ξi∂ul + θkl ul}fk

σ̂[L](ξ)(u) = (λij)
k
l ξiξjulfk, ∀u ∈ Γ(E).

Suppose M is another linear differential operator, by the rule of derivative, we have

σ̂[M ◦ L](ξ) = σ̂[M ](ξ) ◦ σ̂[L](ξ).

Let S2T
∗M be vector bundle of symmetric (0,2) tensor; let S+

2 T
∗M be a subbundle

of S2T
∗M which is positive-definite. In the situation of Ricci flow, we know Rc :

Γ(S+
2 T

∗M) → Γ(S2T
∗M) is not a linear differential operator. But taking derivative

gives a way to linearize Rc at metric g ∈ Γ(S+
2 T

∗M). The linearization D(Rcg) :
Γ(S2T

∗M) → Γ(S2T
∗M) is D(Rcg)(h) := ∂

∂t

∣∣
s=0
g, where g(t) := g + th, for any

h ∈ Γ(S2T
∗M). It is easy to check D(Rcg)(h) is a linear differential operator over h.

Specifically, by Lemma 3.5 we have

[D(Rcg)(h)]jk =
1

2
gpq(∇q∇jhkp +∇q∇khjp −∇q∇phjk −∇j∇khqp).

The principle symbol in the direction ξ of the linear partial differential operator D(Rcg)
is the bundle homomorphism

σ̂[D(Rcg)](ξ) : S2T
∗M → S2T

∗M
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[σ̂[D(Rcg)](ξ)(h)]jk =
1

2
gpq {ξqξjhkp + ξqξkhjp − ξqξphjk − ξjξkhqp}

A linear partial differential operator L : Γ(E) → Γ(F) is side to be elliptic if its
principal symbol σ̂[L](ξ) is an isomorphism whenever ξ 6= 0. A nonlinear operator
N : Γ(E) → Γ(F) is said to be elliptic if its linearization D[N ] is elliptic. A short
remark is that for a linear operator L:

D[Lg](h) =
∂

∂s

∣∣
s=0

(
∑

Lα∂
αg(s)) =

∑
Lα∂

α(
∂

∂s

∣∣
s=0
g) =

∑
Lα∂

αh = Lh,

so D[Lg] = L and two definitions about ellipticity coincide. There is a conclusion
which states that if Rc is elliptic, then the Ricci flow equation has a short time unique
solution. However, it would be shown in next subsection that the kernel of D[Rcg] is
not trivial.

4.1.2 The principal symbol of the differential operator Rc

This subsection is going to show Rc is not elliptic. We will construct a linear partial
differential operator δ∗g with nontrivial image such that D(Rcg) ◦ δ∗g is a zero map. In
this way, we know D(Rcg) has a nontrivial kernel, hence not elliptic.

Let δg = −divg : Γ(S2T
∗M) → Γ(T ∗M) such that

(δgh)jk = −gij∇ihjk ∀h ∈ Γ(S2T
∗M).

Let δ∗g be the formal adjoint of δg with respect to the L2 inner product

(V,W ) =

∫
M

〈V,W 〉dµg

for any V,W ∈ Γ(T r
sM), ∀r, s ∈ Z≥0.

Lemma 4.1. The partial differential operator δ∗g : Γ(T ∗M) → Γ(S2T
∗M) is a map

(δ∗g(X))jk =
1

2
(∇jXk +∇kXj) =

1

2
(LX#g)jk ∀X ∈ Γ(T ∗M).

Proof. Let X ∈ Γ(T ∗M) and h ∈ Γ(S2T
∗M)

(δ∗gX, h) =

∫
M

(δ∗gX)jkhilg
ijgkldµ

(δ∗gX, h) = (X, δgh) =

∫
M

〈X, δgh〉dµ =

∫
M

−Xlg
ij∇ihjkg

lkdµ

=

∫
M

{−gijglk∇i(Xlhjk) + gijglkhjk∇iXl}dµ

=

∫
M

gijglk(
1

2
hjk +

1

2
hkj)∇iXldµ
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For every X, h we have this equation, so

(δ∗gX)jkhilg
ijgkl = (∇iXl)g

ijglk(hjk + hkj)/2

= (∇jXk)g
jigklhil/2 + (∇kXj)g

klgjihil/2

(δ∗gX)jk =
1

2
(∇jXk +∇kXj) ∈ Γ(S2T

∗M)

According to Lemma 4.1, δ∗g is a linear differential operator. Its principal symbol
is

σ̂[δ∗g ](ξ) : T
∗M → S2T

∗M : X 7→ (σ̂[δ∗g ](ξ)(X))jk =
1

2
(ξjXk + ξkXj).

As a result, if ξ 6= 0, then dim im σ̂[δ∗g ](ξ) = n.
Now consider the differential operator D(Rcg) ◦ δ∗g

Γ(T ∗M)
δ∗g−→ Γ(S2T

∗M)
D(Rcg)−→ Γ(S2T

∗M)

T ∗M
σ̂[δ∗g ](ξ)−→ S2T

∗M
σ̂[D(Rcg)](ξ)−→ S2T

∗M

Proposition 4.2.

(D(Rcg) ◦ δ∗g)(X) =
1

2
LX#Rcg where X ∈ Γ(T ∗M)

Proof. Let φt be the family of diffeomorphisms generated by the vector field X#.

Rc(φ∗
tg) = φ∗

t (Rcg)

Take the derivative of t at t = 0 on both sides we have

D(Rcg)(LX#g) = LX#Rcg,

(D(Rcg) ◦ δ∗g)(X) = D(Rcg)(
1

2
LX#g) =

1

2
LX#Rcg

Observe that LX#Rcg just consists of first derivative of X, so σ̂[D(Rcg) ◦ δ∗g ](ξ),
the components of third derivative of X, is a zero map.

0 = σ̂[D(Rcg) ◦ δ∗g ](ξ) = σ̂[D(Rcg)](ξ) ◦ σ̂[δ∗g ](ξ)

im σ̂[δ∗g ](ξ) ⊆ ker σ̂[D(Rcg)](ξ)

Thus, if ξ 6= 0, σ̂[D(Rcg)](ξ) has at least an n dimensional kernel in each n(n + 1)/2-
dimensional fibre S2T

∗M . As a result, the differential operator Rc is not elliptic.

4.2 The Ricci-Deturck flow and its parabolicity
As shown in last subsection, the nonlinear differential operator Rc is not elliptic, so we
cannot immediately apply standard theory to conclude there exists a unique solution
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of the Ricci flow for a short time. However, the Ricci flow still has short time existence
and uniqueness.

Theorem 4.3. If (M, g0) is a closed Riemannian manifold, there exists a unique
solution g(t) to the Ricci flow defined on some positive time interval [0, ϵ) such that
g(0) = g0.

This theorem would be proven with help of Ricci DeTurck flow, which would be
defined soon.

Let Γ̃ be a fixed torsion-free connection, i.e. Γ̃k
ij = Γ̃k

ji. Let W = W (g, Γ̃) denote a
vector field

W k = gpq(Γk
pq − Γ̃k

pq).

The Ricci DeTurck flow is a differential equation
∂

∂t
g = −2Rcg +∇iWj +∇jWi

g(0) = g0

We shall show N := −2Rc+ LW : Γ(S+
2 T

∗M) → Γ(S2T
∗M) : g → −2Rcg + LWg is a

elliptic differential operator of degree 2. At first, we shall linearize N . Let H := gpqhqp.
Ricci identity states that

−2[D(Rcg)(h)]jk = −gpq∇q∇jhkp − gpq∇q∇khjp + gpq∇q∇phjk + gpq∇j∇khqp

= −gpq∇j∇qhkp + gpqRl
qjkhlp + gpqRl

qjphkl

− gpq∇k∇qhjp + gpqRl
qkjhlp + gpqRl

qkphjl +∆hjk +∇j∇kH

= ∆hjk −∇j(g
pq∇qhpk −

1

2
∇kH)−∇k(g

pq∇qhpj −
1

2
∇jH)

+ lower derivative of h

and
∂

∂t

∣∣
t=0
Wk =

∂

∂t
(gkrg

pq(Γr
pq − Γ̃r

pq))

= gkrg
pq ∂

∂t

∣∣
t=0

Γr
pq + terms of h

= gpqgkr
1

2
grl(∇phql +∇qhpl −∇lhpq) + terms of h

= gpq
1

2
(∇phqk +∇qhpk −∇khpq) + terms of h

= gpq∇qhpk −
1

2
∇kH + terms of h

∂

∂t

∣∣
t=0

∇jWk =
∂

∂t
(∂jWk − Γl

jkWl) = ∂j
∂

∂t
Wk − Γl

jk

∂

∂t
Wl −

∂

∂t
Γl
jkWl
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= ∇j(
∂

∂t
Wk) + lower derivative of h

[D((LW )g)(h)]jk =
∂

∂t

∣∣
t=0

LW (g + th) =
∂

∂t

∣∣
t=0

(∇jWk +∇kWj)

= ∇j(
∂

∂t
Wk) +∇k(

∂

∂t
Wj) + lower derivative of h

= ∇j(g
pq∇qhpk −

1

2
∇kH) +∇j(g

pq∇qhpj −
1

2
∇jH)

+ lower derivative of h

Thus,
[D(Ng)(h)]jk = −2[D(Rcg)(h)]jk + [D((LW )g)(h)]jk

= ∆hjk + lower derivative of h
σ̂[D(Ng)(ξ)(h)] = |ξ|2h

Then we know N is elliptic, because σ̂[D(Ng)(ξ)(h)] is an isomorphism whenever ξ 6= 0.
It is a standard result that, for any smooth initial metric g0, there exists ϵ > 0 and
a smooth function g(t) defined at M × [0, ϵ) such that g is a unique solution to the
Ricci-DeTurck flow for a short time 0 ≤ t < ϵ.

Let φt :M →M be a one-parameter family of maps such that

∂

∂t
φt(p) = −W (φt(p), g(t)) ∀(p, t) ∈M × [0, ϵ)

φ0(p) = p ∀p ∈M

If M is compact, then all φt exist and remain diffeomorphisms for as long as the
solution of the Ricci-DeTurck flow, g(t), exists. In fact, there is a general result about
the existence of this kind of one-parameter family.

Lemma 4.4. If {Xt|0 ≤ t < T ≤ ∞} is a continuous time-dependent family of
vector fields on a compact manifold M , then there exists a one-parameter family of
diffeomorphisms {φt :M →M |0 ≤ t < T ≤ ∞} such that

∂

∂t
φt(p) = Xt(φt(p)) ∀(p, t) ∈M × [0, T )

φ0(p) = p ∀p ∈M

Proof. We may assume that there is t0 ∈ [0, T ) such that φs(q) exists for all (q, s) ∈
M × [0, t0]. Let t1 ∈ (t0, T ) be given. If we could show φt exists for all t ∈ [t0, t1] then
we imply the lemma. Given any p0 ∈ M , choose local coordinate (U, x) and (V, y)
such that p0 ∈ U and φt0(p0) ∈ V . As long as p ∈ U and φt(p) ∈ V , the equation of
φt is equivalent to

∂

∂t
y ◦ φt ◦ x−1(x) = y∗(

∂φt

∂t
(x−1(x)))

= y∗[Xt ◦ y−1(y ◦ φt ◦ x−1(x)]

for any x ∈ x(U) such that φt(x−1(p)) ∈ V . Setting zt = y ◦ φt ◦ x−1 and Ft =
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y∗(Xt ◦ y−1), we get
∂

∂t
zt = Ft(zt)

where zt and Ft are time-dependent maps between subsets of Rn. Locally, the equation
in lemma 4.4 is equivalent to a nonlinear ODE in Rn. The Picard’s ODE theorem tells
that ∃! solution for a short time t ∈ [t0, t0 + ϵ). Because M is compact, there is a
uniform ϵ > 0 such that the solution φt(p) exists for t ∈ [t0, t0 + ϵ].

On t′0 = t0 + ϵ, apply the same argument again, then there exists a covering of
M × [t0, t1] by {M × [t′0, t

′
0 + ϵ′]}. Since M × [t0, t1] is compact, there exists a finite

subcover of M × [t0, t1] and that we can glue finitely many short time solutions to get
φt on t ∈ [t0, t1].

A key method to construct a solution to the Ricci flow is to pull-back the solution
of Ricci-DeTurck flow by φt: one defines

ḡ(t) = φ∗
tg(t) 0 ≤ t < ϵ.

Then one observes that

∂

∂t
ḡ(t) =

∂

∂t
φ∗
tg(t) =

∂

∂s

∣∣∣
0
(φ∗

t+sg(t+ s))

= φ∗
t (
∂

∂s

∣∣∣
0
g(t+ s)) +

∂

∂s

∣∣∣
0
(φ∗

t+sg(t))

= φ∗
t (−2Rc(g(t)) + LW (t)g(t)) +

∂

∂s

∣∣∣
0
[(φ−1

t ◦ φt+s)
∗φ∗

tg(t)]

= −2Rc[φ∗
tg(t)] + φ∗

t (LW (t)g(t))− L(φ−1
t )∗W (t)φ

∗
tg(t)

= −2Rc[φ∗
tg(t)] + Lφ∗

tW (t)φ
∗
tg(t)− Lφ∗

tW (t)φ
∗
tg(t)

= −2Rc[φ∗
tg(t)]

ḡ(0) = φ∗
0g(0) = idMg(0) = g0

Based on the computation, we know ḡ(t) = φ∗
tg(t) is a solution of the Ricci flow for

t ∈ [0, ϵ). The proof of uniqueness would be proved later with the help of the harmonic
map heat flow.

4.3 The harmonic map heat flow
Let (Mm, g), (Nn, h) be two Riemannian manifolds and let f :Mm → Nn be a smooth
map between M and N . The derivative of f is

df ≡ f∗ ∈ Γ(T ∗Mm ⊗ f ∗TNn)

where f ∗TN is the pullback bundle over M . Let {xi} be the local coordinate of M ,
{yα} be the local coordinate of N . Let Γg (or Γ(g)) be the Levi-Civita connection of
g, and let Γh (or Γ(h)) be the Levi-Civita connection of h. Then

df = (df)αj (dx
j ⊗ f ∗ ∂

∂yα
) ≡ ∂fα

∂xj
(dxj ⊗ f ∗ ∂

∂yα
)
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The map f induces a connection f ∗Γ in the following way:

∇ : Γ(T ∗Mm ⊗ f ∗TNn) → Γ(T ∗Mm ⊗ T ∗Mm ⊗ f ∗TNn)

∇∂/∂xif ∗ ∂

∂yβ
= f ∗(∇f∗(∂/∂xi)

∂

∂yβ
) = f ∗∇ ∂fα

∂xi
∂

∂xα
(
∂

∂yβ
)

= f ∗(
∂fα

∂xi
(∇∂/∂xα∂/∂yβ)) = f ∗(

∂fα

∂xi
(Γh)

γ
αβ

∂

∂yγ
)

=
∂fα

∂xi
(Γh ◦ f)γαβf

∗ ∂

∂yγ
,

∇∂/∂xif ∗ ∂

∂yβ
:= (f ∗Γ)γiβf

∗ ∂

∂yγ
,

so we define
(f ∗Γ)γiβ =

∂fα

∂xi
(Γh ◦ f)γαβ.

Hence ∇(df) = (∇df)αijdxi ⊗ dxj ⊗ ∂
∂yα

and

(∇df)αij = ∇i(df)
α
j

=
∂

∂xi
(
∂fα

∂xj
)− (Γg)

l
ij

∂fα

∂xl
+ (f ∗Γh)

α
iγ

∂fγ

∂xj

=
∂

∂xi
(
∂fα

∂xj
)− (Γg)

l
ij

∂fα

∂xl
+
∂fβ

∂xi
(Γh ◦ f)αβγ

∂fγ

∂xj

The harmonic map Laplacian with respect to the domain metric g and codomain
metric h is the trace of ∇:

∆g,hf = trg∇(df) = gij∇i(df)
γ
j

∂

∂yγ

and

(∆g,hf)
γ = gij∇i(df)

γ
j = gij[

∂2fγ

∂xi∂xj
− (Γg)

l
ij

∂fγ

∂xl
+ (Γh ◦ f)γαβ

∂fα

∂xi
∂fβ

∂xj
].

Given f0 :M → N , the harmonic map flow with respect to f0 is

∂f

∂t
= ∆g,hf,

f(0) = f0

The principal symbol of ∆g,h in the direction ξ ∈ Γ(T ∗M) is

σ̂[∆g,h(ξ)(f)] = gijξiξjf = |ξ|2f,

so the harmonic map flow is a parabolic equation and there exists a unique short time
solution.

Theorem 4.5. If φ : (Mn, g) → (Nn, h) is a diffeomorphism of Riemannian manifolds,
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we have
(∆g,hφ)

γ(x) = [(φ−1)∗g]αβ(−Γ((φ−1)∗g)γαβ + Γ(h)γαβ)(φ(x))

Proof. Let {xi}, {yα} be a local coordinate of M , N respectively. Let κ be a metric
in N . Pullback κ to M , the Levi-Civita connection induced by φ∗κ satisfies

Γk
ij(φ

∗κ)
∂

∂xk
= ∇(φ∗κ) ∂

∂xi

∂

∂xj
= φ∗

(
∇(κ)φ∗( ∂

∂xi
)φ∗

(
∂

∂xj

))
= φ∗

(
∇(κ)( ∂φα

∂xi
∂

∂yα )

(
∂φβ

∂xj
∂

∂yβ

))

= φ∗
(
∇(κ)( ∂φα

∂xi
∂

∂yα )

(
∂φβ

∂xj
∂

∂yβ

))
= (φ−1)∗

(
∂2φβ

∂xi∂xj
∂

∂yβ
+
∂φβ

∂xj
∂φα

∂xi
Γ(κ)γαβ

∂

∂yγ

)
=

(
∂2φβ

∂xi∂xj
∂(φ−1)k

∂yβ
+ Γ(κ)γαβ

∂φα

∂xi
∂φβ

∂xj
∂(φ−1)k

∂yγ

)
∂

∂xk

Then

Γk
ij(φ

∗κ)
∂φγ

∂xk
=

(
∂2φβ

∂xi∂xj
∂(φ−1)k

∂yβ
+ Γ(κ)ηαβ

∂φα

∂xi
∂φβ

∂xj
∂(φ−1)k

∂yη

)
∂φγ

∂xk

=
∂2φγ

∂xi∂xj
+ Γ(κ)γαβ

∂φα

∂xi
∂φβ

∂xj

(1)

Notice that
καβ = κ(dyα, dyβ) = (φ∗κ)(φ∗dyα, φ∗dyβ)

= (φ∗κ)

(
∂φα

∂xi
dxi,

∂φβ

∂xj
dxj

)
= (φ∗κ)ij

∂φα

∂xi
∂φβ

∂xj
,

(2)

so multiply (φ∗κ)ij on both sides of (1), we get

(φ∗κ)ijΓk
ij(φ

∗κ)
∂φγ

∂xk
= (φ∗κ)ij

∂2φγ

∂xi∂xj
+ Γ(κ)γαβκ

αβ

(φ∗κ)ij
∂2φγ

∂xi∂xj
− (φ∗κ)ijΓk

ij(φ
∗κ)

∂φγ

∂xk
= −Γ(κ)γαβκ

αβ (3)

Take κ = (φ−1)∗g, φ∗κ = g on equation (2) and (3), we get

gij
∂2φγ

∂xi∂xj
− gijΓk

ij(g)
∂φγ

∂xk
= −Γ[(φ−1)∗g]γαβ[(φ

−1)∗g]αβ (3’)

gij
∂φα

∂xi
∂φβ

∂xj
= [(φ−1)∗g]αβ (2’)
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Finally, we get

(∆g,hφ)
γ = gij[

∂2φγ

∂xi∂xj
− (Γg)

l
ij

∂φγ

∂xl
] + gij(Γh ◦ φ)γαβ

∂φα

∂xi
∂φβ

∂xj

= −Γ[(φ−1)∗g]γαβ[(φ
−1)∗g]αβ + (Γh ◦ φ)γαβ[(φ

−1)∗g]αβ

= [(φ−1)∗g]αβ
(
−Γ[(φ−1)∗g]γαβ + (Γh ◦ φ)γαβ

)
Hence we get the theorem.

Corollary 4.6. Let M = N and φ be the identity, then

(∆g,hid)
γ = gαβ

(
−Γ(g)γαβ + Γ(h)γαβ

)
4.4 An approach to uniqueness of Ricci flow
This subsection aims to prove the uniqueness of Ricci flow. Let (M, g0) be a closed
Riemannian manifold; g̃ be a fixed background metric on M ; Γ̃ be the Levi-Civita
connection associated to g̃. If ḡ(t) is a solution of the Ricci flow:

∂

∂t
ḡ = −2Rc(ḡ)

ḡ(0) = g0

then by the ellipticity of harmonic map Laplacian, there exists diffeomorphisms φt :
(M, ḡ(t)) → (M, g̃) to be the unique solution of the harmonic map heat flow as long
as ḡ(t) exists: 

∂

∂t
φt = ∆g(t),g̃φt

φ0 = idM

By Thm 4.5,
∂

∂t
φt = −W ◦ φt

where
W (t) = [(φ−1

t )∗ḡ]pq
(
Γ[(φ−1

t )∗ḡ(t)]kpq − Γ̃k
pq

)
.

Let g(t) = (φt)∗ḡ(t) then g(t) is a solution of the Ricci-DeTurck flow:
∂

∂t
g = −2Rc(g) + LWg

g(0) = g0

It is because

∂

∂t
g(t) =

∂

∂t
((φt)∗ḡ(t)) =

∂

∂s

∣∣∣
s=0

((φt+s)∗ḡ(t+ s))

= (φt)∗

(
∂

∂s

∣∣∣
s=0
ḡ(t+ s)

)
+

∂

∂s

∣∣∣
s=0

(φt+s)∗ḡ(t)
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= (φt)∗ (−2Rc(ḡ)) + (φt)∗
∂

∂s

∣∣∣
s=0

(φ−1
t ◦ φt−s)

∗ḡ(t)

= −2Rc[(φt)∗ḡ] + (φt)∗L(φ−1
t )∗W (t)ḡ(t)

= −2Rc(g) + LW (t)g(t)

According to the parabolicity of −2Rc + L, if ḡ1(t), ḡ2(t) are both solutions of Ricci
flow, then the corresponding g1(t) = g2(t). It also deduces that

W k
i = gpqi

(
Γ(gi)

k
pq − Γ̃k

pq

)
, i = 1, 2

is uniquely determined, so the corresponding (φi)t is unique. Hence

ḡ1(t) = (φ1)
∗
tg = (φ2)

∗
tg = ḡ2(t)

and we prove the uniqueness of the Ricci flow.

5. Estimate of curvature
After showing short-time existence of Ricci flow, it is time to discuss the evolution
of curvature. The estimate based on the evolution equations would help us approach
the main theorem. In this section, we assume that (M, g) is a closed Riemannian
3-manifold with a strictly positive Ricci curvature.

5.1 Evolution of curvature
In this subsection, we will replace the symmetric (0,2) tensor h as −2Rc so that we
get the evolutions equation of Ricci flow. The estimate of curvature starts from these
evolution equations.

Theorem 5.1.

∂

∂t
Rijks = ∇i∇sRjk +∇j∇kRis −∇i∇kRjs −∇j∇sRjk − gpqRijkpRqs + gpqRijspRkq

Proof.

∂

∂t
Rijks =

∂

∂t
(Rl

ijkgsl) = (
∂

∂t
Rl

ijk)gsl +Rl
ijk

∂

∂t
hsl

= −∇i∇kRjs −∇j∇sRik +∇i∇sRjk +∇j∇kRis +Rq
ijkRqs +Rq

ijsRkq − 2Rl
ijkRsl

= ∇i∇sRjk +∇j∇kRis −∇i∇kRjs −∇j∇sRik −Rq
ijkRqs +Rq

ijsRkq

= ∇i∇sRjk +∇j∇kRis −∇i∇kRjs −∇j∇sRjk − gpqRijkpRqs + gpqRijspRkq

Introduce a new tensor B:

Bijkl = gpqgmnRpijmRqkln
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It satisfies the symmetries:
Bijkl = Bjilk = Bklij

Lemma 5.2.

∆Rijks = ∇i∇sRjk +∇j∇kRis −∇i∇kRjs −∇j∇sRik

+ gmnRinRmjks − gmnRjnRmiks

− 2(Bijsk +Bisjk − Bijks − Bikjs)

Proof. The second Bianchi identity states:

∇iRjklm +∇jRkilm +∇kRijlm = 0

∆Rijkl = gpq∇p∇iRqjks − gpq∇p∇jRqiks

Consider the first term, gpq∇p∇iRqjks. Apply Ricci identity,

gpq∇p∇iRqjks − gpq∇i∇pRqjks

= −gpq{Rm
piqRmjks +Rm

pijRqmks +Rm
pikRqjms +Rm

pisRqjkm}
= −gpqgmn{RpiqnRmjks +RpijnRqmks +RpiknRqjms +RpisnRqjkm}

Its first term contracts to gmnRinRmjks; its second term:

−gpqgmnRpijnRqmks = gpqgmnRpijn(Rmkqs +Rkqms)

= gpqgmnRpijn(−Rqskm +Rqksm) = −Bijsk +Bijks;

the last two terms are Bikjs − Bisjk. By contracted second Bianchi identity

gpq∇pRqjks = ∇sRjk −∇kRjs

Thus

gpq∇p∇iRqjks = ∇i∇sRjk −∇i∇kRjs + gmnRinRmjks

− (Bijsk +Bisjk − Bijks − Bikjs)

Intertwine i, j,

∆Rijks = ∇i∇sRjk +∇j∇kRis −∇i∇kRjs −∇j∇sRik

+ gmnRinRmjks − gmnRjnRmiks

− 2(Bijsk +Bisjk − Bijks − Bikjs)

Then we have
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Corollary 5.3.

∂

∂t
Rijks = ∆Rijks + 2(Bijsk +Bisjk − Bijks − Bikjs)

− gpq(RpjksRqi +RipksRqj +RijpsRqk +RijkpRqs)

Theorem 5.4.

∂

∂t
Rjk = ∆Rjk + 2gpqgrsRqjksRrp − 2gpqRjpRkq

Proof. Use lemma 3.5 and Ricci identity:

−2
∂

∂t
Rjk = ∆hjk −∇j(g

pq∇qhpk −
1

2
∇kH)−∇k(g

pq∇qhpj −
1

2
∇jH)

+ gpqRl
qjkhlp + gpqRl

qjphkl + gpqRl
qkjhlp + gpqRl

qkphjl

Take h = −2Rc; apply second Bianchi identity:

−2
∂

∂t
Rjk = −2∆Rjk − 4gpqgrsRqjksRrp + 4gpqRjpRkq

Divide −2 on both sides, we get the formula.

Theorem 5.5.
∂

∂t
R = ∆R + 2gijgklRikRjl = ∆R + 2|Rc|2

Proof. Apply lemma 3.6:

∂

∂t
R = −∆H +∇p∇qhpq − 〈h,Rc〉

= 2∆R− 2∇p∇qRpq + 2|Rc|2 = ∆R + 2|Rc|2

Corollary 5.6. If R > 0 at t = 0, then it remains so whenever t > 0.

Proof. Suppose the Ricci flow has solution at t ∈ [0, T ). Notice that

∂

∂t
R−∆R = 2|Rc|2 > 0

and M has no boundary, so

min
M×[0,T ]

R = min
M×{0}

R > 0
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The Weyl conformal curvature tensor W on n-dimensional (n ≥ 3) manifold M is
defined as:

Wijkl = Rijkl −
1

n− 2
(Rilgjk +Rjkgil −Rikgjl −Rjlgik)

+
1

(n− 1)(n− 2)
R(gilgjk − gikgjl)

Lemma 5.7. W is a trace-free tensor with many symmetries.
(1) Wijkl = −Wjikl = −Wijlk = Wjilk = Wklij

(2) Wijkl +Wjkil +Wkijl = 0

(3) gilWijkl = 0

This lemma’s proof derives from direct calculation. Then we could showW vanishes
when n = 3:

Use normal coordinate here. In dimension three, the index repeats at least once,
so we can classify two situations as follows:

(1) Wiijk or Wijkk: Lemma 5.7(1) states that these components vanish.

(2) Wijki with i 6= j, i 6= k, j 6= k. In dimension 3, {i,j,k} transverse all index, so
lemma 5.7(3) states that:

0 = Wijki +Wjjkj +Wkjkk = Wijki

Hence we have:
Theorem 5.8. When M is of dimension 3,

Rijkl = Rilgjk +Rjkgil −Rikgjl −Rjlgik −
1

2
R(gilgjk − gikgjl)

Because g and Rc are both symmetric real matrix at every point p ∈ M , we
can take normal coordinate at first, then diagonalize Rc at p. After two coordinate
transformations, g is in normal coordinate and Rc has been diagonal at p. Suppose
that at point p

Rc =

 λ 0 0
0 µ 0
0 0 υ

 g =

 1 0 0
0 1 0
0 0 1


In dimension 3, the index of Rm repeats at least once, use symmetry of Rm, Rijkl 6= 0
only if i 6= j and k 6= l. Under this condition, it remains two cases:

j = k and i 6= l:

Rijjl = Rilgjj +Rjjgil −Rijgjl −Rjlgij −
1

2
R(gilgjj − gijgjl) = 0

j = k and i = l:

Rijji = Riigjj +Rjjgii −Rijgji −Rjigij −
1

2
R(giigjj − gijgji)

= Rii +Rjj −
1

2
R
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Thus, we get

Corollary 5.9. Rijkl of the form R1221 is the only possible nonzero component where

R1221 =
1

2
(λ+ µ− υ).

Now define

Sil = Rijg
jkRkl, S = gilSil;Tin = Rijg

jkRklg
lmRmn, T = ginTin

According to theorem 5.4, we have

∂

∂t
Rjk = ∆Rjk + 2gpigrlRijklRrp − 2gpqRjpRkq

= ∆Rjk + 2gpigrlRrp(Rilgjk +Rjkgil −Rikgjl −Rjlgik)

− 1

2
R(gilgjk − gikgjl)− 2Sjk

= ∆Rjk + 3RRjk − 4Sjk + (2S −R2)gjk − 2Sjk

= ∆Rjk − (6Sjk − 3RRjk + (R2 − 2S)gjk)

so we simplify the evolution equation of Rc as follows:

Theorem 5.10. When dimM = 3,

∂

∂t
Rjk = ∆Rjk −Qij

where Qij = 6Sjk − 3RRjk + (R2 − 2S)gjk

Given the local coordinate

Rij =

 λ 0 0
0 µ 0
0 0 υ

 Sij =

 λ2 0 0
0 µ2 0
0 0 υ2

 Tij =

 λ3 0 0
0 µ3 0
0 0 υ3


R = λ+ µ+ υ, S = λ2 + µ2 + υ2, T = λ3 + µ3 + υ3

Then

Qij =

 Q11 0 0
0 Q22 0
0 0 Q33


where

Q11 = 2λ2 − µ2 − υ2 − λµ− λυ + 2µυ

Q22 = 2µ2 − λ2 − υ2 − µλ− µυ + 2λυ

Q33 = 2υ2 − λ2 − µ2 − υλ− υµ+ 2λµ

Theorem 5.11. Let T be the maximum existence interval of the Ricci flow. If M is
a Riemannian 3-manifold and R ≥ ρ > 0 at t = 0, then T ≤ 3/2ρ.
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Proof. Because |Rc|2 − 1
3
R2 = 1/3((λ − µ)2 + (λ − υ)2 + (µ − υ)2) ≥ 0, by Theorem

5.5, we know ∂R
∂t

≥ ∆R + 2
3
R2. Now consider f = f(t)

df

dt
=

2

3
f 2 with f = ρ at t = 0,

∂

∂t
(R− f) ≥ ∆(R− f) +

2

3
(R + f)(R− f)

with R − f ≥ 0 at t = 0. The maximum principle tells that R − f ≥ 0 at [0, T ).
Meanwhile, solve the ordinary differential equation of f , we get

f =
3ρ

3− 2ρt
.

Because f → ∞ as t→ 3/2ρ, we know T ≤ 3/2ρ.

5.2 Preserving Positive Ricci Curvature
In this subsection, a maximum principle to tensor would be proven at first. With this
principle, some estimate about curvature would be given. In this subsection, Aij, Bij

are symmetric tensors on M ; we call a tensor Aij ≥ 0 if Aijv
ivj ≥ 0 for all vectors vi;

uk is a vector field in M . B = p(A, g) is a polynomial in Aij, with coefficient Γ(M),
formed by contracting products of Aij with itself using the metric g. Moreover, the
polynomial satisfies null-eigenvector condition: whenever vi is a null-eigenvector
of Aij (i.e. Aijv

i = 0, ∀j), we have Bijv
ivj ≥ 0. Here, Aij, Bij, uk, gij may all depend

on time t.

Theorem 5.12. Let Mn be a closed manifold. Suppose the following equation

∂

∂t
Aij = ∆Aij + uk∇kAij +Bij

has solution when 0 ≤ t ≤ T . At t ∈ [0, T ], Bij = p(Aij, gij) satisfies the null-
eigenvector condition. Then if Aij ≥ 0 at t = 0, then it remains so on 0 ≤ t ≤ T .

Proof. It is going to show there exists δ > 0 such that Aij ≥ 0 on 0 ≤ t ≤ δ, where
δ is a constant depending on maxM×[0,T ] |Aij|, maxM×[0,T ] |∂g∂t |. The theorem follows
because we can cover [0, T ] in finite steps. Let δ chosen later. For every ϵ > 0, define
a new (0,2) tensor A(ϵ):

A(ϵ)ij(x, t) = Aij(x, t) + ϵ(δ + t)gij.

It suffices to show that there exists a constant δ > 0 such that A(ϵ)ij > 0 on 0 ≤ t ≤ δ
for any ϵ > 0. Then Aij ≥ 0 follows as ϵ → 0. If there does not exist such δ, then
∀δ > 0, ∃ some small ϵ > 0 such that at a first time θ with 0 < θ ≤ δ where A(ϵ)ij
acquires a null-eigenvector vi of unit length under the metric gij(θ) at some point
x0 ∈M . If B(ϵ)ij = p(A(ϵ)ij, gij) then B(ϵ)ij ≥ 0 at (x0, θ). Moreover,

|B(ϵ)ij − Bij| = |p(A(ϵ)ij, gij)− p(Aij, gij)| ≤ C|A(ϵ)ij − Aij|
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where C is a constant depending only on maxM×[0,T ](|A(ϵ)ij| + |Aij|). If we keep
ϵ, δ ≤ 1, then maxM×[0,T ] |A(ϵ)ij| depends only on maxM×[0,T ] |Aij|. Therefore,

Bijv
ivj(x0, θ) ≥ (B(ϵ)ij − C|A(ϵ)ij − Aij|)vivj ≥ −Cϵ(δ + θ)|v|2 ≥ −Cϵδ

where C depends on maxM×[0,T ] |Mij|.
We can parallel translate vi w.r.t gij(θ) to get a vector field in a neighbourhood of

x such that ∇jv
i(x) = 0 with vi independent of t. Let fϵ(x, t) = A(ϵ)ijv

ivj. We have

∂fϵ
∂t

= (
∂A(ϵ)ij
∂t

)vivj = (
∂Aij

∂t
)vivj +

{
ϵgij + ϵ(δ + t)(

∂

∂t
gij)

}
vivj

∇kfϵ = (∇kA(ϵ)ij)v
ivj = (∇kAij)v

ivj

∆fϵ = ∆A(ϵ)ijv
ivj = ∆Aijv

ivj

The evolution equation tells that(
∂

∂t
Aij

)
vivj = (∆Aij)v

ivj + (uk∇kAij)v
ivj +Bijv

ivj

∂fϵ
∂t

−
{
ϵgij + ϵ(δ + t)(

∂

∂t
gij)

}
vivj = ∆fϵ + uk∇kfϵ +Bijv

ivj

Specifically,
fϵ ≥ 0 on 0 ≤ t ≤ θ, ∀x ∈M

∂fϵ
∂t

(x0, θ) ≤ 0; fϵ(x0, θ) = 0;

∇kfϵ(x0, θ) = 0; ∆fϵ(x0, θ) ≥ 0.

Hence
Bijv

ivj(x0, θ) ≤ −
{
ϵgij + ϵ(δ + θ)(

∂

∂t
gij)

}
vivj

Cϵδ ≥
{
ϵgij(θ) + ϵ(δ + θ)(

∂

∂t
gij(θ))

}
vivj

This requires

δ ≥
1 + θ| ∂

∂t
gij(θ)|

C + | ∂
∂t
gij(θ)|

≥ 1

C + maxM×[0,T ] | ∂∂tgij|
=: d

If we take δ = 1
2

min{d, 1}, then A(ϵ)ij > 0 at [0, δ] for any ϵ > 0 where δ is independent
of ϵ, a contradiction. The proof is done.

Remark 5.13. Suppose [0, T0) is the maximum existence interval, then above conclu-
sion keeps at [0, T0). It is because we can use the theorem in every closed subinterval
of [0, T0).

It is known that the Ricci flow has a short time solution on [0, T ).

Corollary 5.14. Let M3 be a closed manifold. If Rij ≥ 0 at t = 0 then Rij ≥ 0 on
[0, T ).
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Proof. Apply Theorem 5.10 and Theorem 5.12, let Aij = Rij, Bij = −Qij, uk = 0.
Now check Bij satisfies null-eigenvector condition: if vi 6= 0 such that

Rijv
i =

 λ
µ

υ

 v1

v2

v3

 =

 λv1

µv2

υv3

 = 0

If v1 = 0 then B11v
1v1 = 0; if v1 6= 0 then λ = 0 and B11 = µ2 + υ2 − 2µυ ≥ 0 then

B11v
1v1 ≥ 0; so Bijv

ivj = B11v
1v1 +B22v

2v2 +B33v
3v3 ≥ 0.

Lemma 5.15. Let M3 be a closed 3 manifold. If R(t) 6= 0 on [0, T ), then

∂

∂t

(
Rij

R

)
= ∆

(
Rij

R

)
+

2

R
gpq∇pR∇q

(
Rij

R

)
− RQij + 2SRij

R2

Proof.
∂

∂t
Rij = ∆Rij −Qij;

∂

∂t
R = ∆R + 2S;

∇l

(
Rij

R

)
=

1

R2
(∇lRij ·R−Rij∇lR) ;

∂

∂t

(
Rij

R

)
=

1

R2

(
∂

∂t
Rij ·R−Rij

∂R

∂t

)
=

∆Rij

R
− Rij∆R

R2
− RQij + 2SRij

R2
;

∆

(
Rij

R

)
= gkl∇l∇k

(
Rij

R

)
= gkl∇l

{
1

R
∇kRij −

1

R2
Rij∇kR

}
= gkl

(
− 1

R2
∇lR∇kRij +

1

R
∇l∇kRij

)
− gkl

{
1

R4
[(∇lRij∇kR +Rij∇l∇kR)R

2]− [
1

R4
Rij∇kR · 2R∇lR]

}
=

∆Rij

R
− 2

R2
gkl∇lR∇kRij −

1

R2
Rij∆R +

2

R3
Rijg

kl∇kR∇lR

=
∆Rij

R
− Rij∆R

R2
− 2

R
gkl∇kR∇l

(
Rij

R

)
Then we have

∂

∂t

(
Rij

R

)
= ∆

(
Rij

R

)
+

2

R
gpq∇pR∇q

(
Rij

R

)
− RQij + 2SRij

R2

Theorem 5.16. Let M3 be a closed Riemannian manifold with initial strictly positive
Ricci curvature, then R > 0 and Rij ≥ ϵRgij for some constant 0 < ϵ ≤ 1

3
at t = 0.

Moreover, under the variation of Ricci flows, both conditions continues to hold on
[0, T ).

Proof. R ≥ 0 follows from taking trace of Rc. Rij ≥ ϵRgij follows from the compact-
ness of M3; we easily know ϵ ≤ 1

3
by taking trace on both sides again. That R > 0

remains at t ∈ [0, T ) has been shown at corollary 5.6. To show Rij ≥ ϵRgij, we make

Aij =
Rij

R
− ϵgij, uk =

2

R
gkl∇lR
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Bij = 2ϵRij −
(
RQij + 2SRij

R2

)
One could check that Aij, Bij, uk satisfy the evolution equation in theorem 5.12. When
Aijv

i =
(

Rij

R
− ϵgij

)
vi = 0, WLOG assume v1 6= 0, we have

λ = ϵ(λ+ µ+ υ) =⇒ µ+ υ = (
1

ϵ
− 1)λ ≥ 2λ

R2B11 = 2ϵR2R11 −RQ11 − 2SR11

= 2ϵ(λ+ µ+ υ)2λ− (λ+ µ+ υ)(2λ2 − µ2 − υ2 − λµ− λυ + 2µυ)− 2(λ2 + µ2 + υ2)λ

= 2λ2(λ+ µ+ υ)− (λ+ µ+ υ)(2λ2 − µ2 − υ2 − λµ− λυ + 2µυ)− 2(λ2 + µ2 + υ2)λ

= (λ+ µ+ υ)(λ(µ+ υ) + (µ− υ)2)− 2(λ2 + µ2 + υ2)λ

= λ2(µ+ υ) + λ(µ− υ)2 + λ(µ+ υ)2 + (µ+ υ)(µ− υ)2 − 2λ3 − 2λ(µ2 + υ2)

= λ2(µ+ υ − 2λ) + (µ+ υ)(µ− υ)2 ≥ 0

Thus, Bij satisfies null-eigenvector condition. The theorem follows by theorem 5.12.

Lemma 5.17. If Mn is a Riemannian manifold with Rij ≥ 0, we have Rij ≤ Rgij.

5.3 Pinching the eigenvalues
In this subsection, we shall prove the following theorem

Theorem 5.18. Let M3 be a closed 3-manifold, with strictly positive Ricci curvature.
Under the variation of Ricci flow, ∃ constant δ > 0 and C ∈ R+ both depending only
on the initial metric such that on 0 ≤ t < T we have

S − 1

3
R2 ≤ CR2−δ.

Here S − 1
3
R2 is the l2 the distance of three eigenvalues:

S − 1

3
R2 =

1

3
[(λ− µ)2 + (µ− υ)2 + (λ− υ)2]

The proof of theorem follows from maximum principle in partial differential equa-
tion. Let γ = 2− δ and

f = S/Rγ − 1

3
R2−γ.

It needs to find the relations in

∂f

∂t
∼ ∆f + uk∇kf + c(x)f for some vector uk and function c ∈ Γ(M).

i.e. find the variation equation of S/Rγ, R2−γ respectively.
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Lemma 5.19. For any constant 1 < γ ≤ 2

∂

∂t
R2−γ = ∆R2−γ +

2(γ − 1)

R
gpq∇pR∇q(R

2−γ)

− (2− γ)(γ − 1)

Rγ+2
R2|∇iR|2 + 2(2− γ)R1−γS

Proof.

∂

∂t
R2−γ = (2− γ)R1−γ ∂R

∂t
= (2− γ)R1−γ(∆R + 2S)

∆R2−γ = gij∇i∇jR
2−γ = gij∇i((2− γ)R1−γ∇jR)

= (2− γ)gij{(1− γ)R−γ∇iR∇jR +R1−γ∇i∇jR}
= (2− γ)(1− γ)R−γ|∇iR|2 + (2− γ)R1−γ∆R

∂

∂t
R2−γ = ∆R2−γ + (2− γ)(γ − 1)R−γ|∇iR|2 + (2− γ)R1−γ · 2S

Notice that

2(γ − 1)

R
gpq∇pR∇q(R

2−γ) =
2(γ − 1)

R
gpq∇pR · (2− γ)R1−γ∇qR

= 2(2− γ)(γ − 1)R−γ|∇iR|2

The lemma follows.

Lemma 5.20.
∂

∂t
S = ∆S − 2|∇iRjk|2 + 4(T − C),

where

C =
1

2
gikgjlQijRkl =

1

2
(R3 − 5RS + 6T )

= (λ3 + µ3 + υ3)− (λµ2 + λυ2 + µλ2 + µυ2 + υλ2 + υµ2) + 3λµυ

Proof.

∂

∂t
S =

∂

∂t
gilgjkRikRjl = 4gimglmRmng

jkRikRjl + 2gilgjk(∆Rik −Qik)Rjl

= 4T + 2gilgjk∆Rik ·Rjl − 4C

∆S = gij∇i∇j(g
tlgsmRtsRlm) = gijgtlgsm∇i[(∇jRts)Rlm +Rts(∇jRlm)]

= gijgtlgsm{∇i∇jRts ·Rlm +∇jRts∇iRlm +∇iRts∇jRtm +Rts∇i∇jRlm}
= 2gikgjl∆Rij ·Rkl + 2|∇iRjk|2.

Thus, we get the desired result.
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Lemma 5.21. For any constant 1 < γ ≤ 2

∂

∂t

(
S

Rγ

)
= ∆

(
S

Rγ

)
+

2(γ − 1)

R
gpq∇pR∇q

(
S

Rγ

)
− 2

Rγ+2
|R∇iRjk −∇iR ·Rjk|2

− (2− γ)(γ − 1)

Rγ+2
S|∇iR|2 +

4R(T − C)− 2γS2

Rγ+1

Proof.

∇j

(
S

Rγ

)
=

1

Rγ+1
(∇jS ·R− γS∇jR)

∆

(
S

Rγ

)
= gij∇i∇j

S

Rγ
= gij∇i

[
1

Rγ+1
(∇jS ·R− γS∇jR)

]
= gij

1

Rγ+1
(∇iR∇jS − γ∇iS∇jR− γS∇i∇jR− (γ + 1)∇jS∇iR)

+ gij
1

Rγ
∇i∇jS + gij

1

Rγ+2
γ(γ + 1)S∇jR∇iR

=
1

Rγ+1
〈∇iR,∇iS〉 −

γ

Rγ+1
〈∇iR,∇iS〉 −

γS

Rγ+1
∆R

− γ + 1

Rγ+1
〈∇iR,∇iS〉+

1

Rγ
∆S +

γ(γ + 1)S

Rγ+2
|∇iR|2

=
R∆S − γS∆R

Rγ+1
+
γ(γ + 1)S|∇iR|2

Rγ+2
− 2γ

Rγ+1
〈∇iR,∇iS〉

∂

∂t

(
S

Rγ

)
=

1

Rγ+1

(
∂S

∂t
R− γS

∂R

∂t

)
=

1

Rγ+1

{
R(∆S − 2|∇iRjk|2 + 4(T − C))− γS(∆R + 2S)

}
=
R∆S − γS∆R

Rγ+1
+

1

Rγ+1

{
R(−2|∇iRjk|2 + 4(T − C))− 2γS2

}
= ∆

(
S

Rγ

)
+

2γ

Rγ+1
〈∇iR,∇iS〉 −

γ(γ + 1)S|∇iR|2

Rγ+2

+
1

Rγ+1

{
R(−2|∇iRjk|2 + 4(T − C))− 2γS2

}
= ∆

(
S

Rγ

)
+

1

Rγ+1
(4R(T − C)− 2γS2) +

1

Rγ+2
V

where V := 2γR〈∇iR,∇iS〉 − γ(γ + 1)S|∇iR|2 − 2R2|∇iRjk|2.
Notice that

〈∇iR,∇iS〉 = gij∇iR∇jS = gij∇iR∇j(g
mnghkRhmRkn)

= 2gijgmnghk∇iR ·Rhm∇jRkn = 2〈∇iRjk,∇iR ·Rjk〉

〈∇iR,∇i

(
S

Rγ

)
〉 = 1

Rγ
〈∇iR,∇iS〉 −

γ

Rγ+1
S|∇iR|2

S|∇iR|2 = gklgmnRkmRlng
ij∇iR∇jR = |∇iR ·Rjk|2
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−γ(γ + 1) = −2(γ − 1)γ − (2− γ)(γ − 1)− 2

so
R〈∇iR,∇iS〉 − S|∇iR|2 −R2|∇iRjk|2

= 2〈R∇iRjk,∇iR ·Rjk〉 − 〈∇iR ·Rjk,∇iR ·Rjk〉 − 〈R∇iRjk, R∇iRjk〉
= −|R∇iRjk −∇iR ·Rjk|2

V = 2(γ − 1)R〈∇iR,∇iS〉+ 2R〈∇iR,∇iS〉
− (2(γ − 1)γ + (2− γ)(γ − 1) + 2)S|∇iR|2 − 2R2|∇iRjk|2

= 2(γ − 1)R(〈∇iR,∇iS〉 − γS|∇iR|2)− (2− γ)(γ − 1)S|∇iR|2

+ 2R〈∇iR,∇iS〉 − 2S|∇iR|2 − 2R2|∇iRjk|2

= 2(γ − 1)Rγ+1〈∇iR,∇i

(
S

Rγ

)
〉 − (2− γ)(γ − 1)S|∇iR|2 − 2|R∇iRjk −∇iR ·Rjk|2

Substitute V into previous expression, the lemma follows directly.

Lemma 5.22. For f = S/Rγ − 1
3
R2−γ, 1 < γ ≤ 2

∂f

∂t
= ∆f +

2(γ − 1)

R
gpq∇pR∇qf − 2

Rγ+2
|R∇iRjk −∇iR ·Rjk|2

− (2− γ)(γ − 1)

Rγ+2
(S − 1

3
R2)|∇iR|2

+
2

Rγ+1
[(2− γ)S(S − 1

3
R2)− 2P ]

where P = S2 +R(C − T )

Proof. It follows from Lemma 5.19 and Lemma 5.21.

Lemma 5.23.

P = λ2(λ− µ)(λ− υ) + µ2(µ− λ)(µ− υ) + υ2(υ − λ)(υ − µ)

Proof.

P = S2 +R(C − T ) = (λ2 + µ2 + υ2)2

+ (λ+ µ+ υ)(−λµ2 − λυ2 − µλ2 − µυ2 − υλ2 − υµ2 + 3λµυ)

= λ4 + µ4 + υ4 − µλ3 − υλ3 − λµ3 − υµ3 − λυ3 − µυ3 + λ2µυ + λµ2υ + λµυ2

= λ2(λ2 − µλ− υλ+ µυ) + µ2(µ2 − λµ− υµ+ λυ) + υ2(υ2 − λυ − µυ + λµ)

The result follows.

Lemma 5.24. If R > 0 and Rij ≥ ϵRgij then P ≥ ϵ2S(S − 1
3
R2).

Proof. LHS and RHS are both homogeneous polynomials of degree 4. We may assume
S = λ2 + µ2 + υ2 = 1 here, then it remains to show P ≥ ϵ2(S − 1

3
R2). Assume that
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λ ≥ µ ≥ υ > 0.

P = (λ− µ)(λ2(λ− υ)− µ2(µ− υ)) + υ2(υ − λ)(υ − µ)

= (λ− µ)(λ2(λ− µ) + λ2(µ− υ)− µ2(µ− υ)) + υ2(υ − λ)(υ − µ)

= (λ− µ)(λ2(λ− µ) + (λ+ µ)(λ− µ)(µ− υ)) + υ2(υ − λ)(υ − µ)

= (λ− µ)2(λ2 + (λ+ µ)(µ− υ)) + υ2(υ − λ)(υ − µ)

≥ (λ− µ)2λ2 + υ2(µ− υ)2

Observe that

(λ+ µ+ υ)2 ≥ λ2 + µ2 + υ2 = 1 =⇒ λ+ µ+ υ ≥ 1

By Rij ≥ ϵRgij, λ ≥ υ ≥ ϵ(λ+ µ+ υ) ≥ ϵ. Thus, P ≥ ϵ2((λ− µ)2 + (µ− υ)2).
On the other hand,

(λ− υ)2 = (λ− µ+ µ− υ)2 ≤ 2(λ− µ)2 + 2(µ− υ)2

S − 1

3
R2 =

1

3
((λ− µ)2 + (λ− υ)2) + (µ− υ)2) ≤ (λ− µ)2 + (µ− υ)2

Hence, P ≥ ϵ2(S − 1
3
R2).

Lemma 5.25. If δ > 0 is chosen so small that δ ≤ 2ϵ2, then with γ = 2 − δ and
f = S/Rγ − 1

3
R2−γ we have

∂f

∂t
≤ ∆f + uk∇kf.

where uk = 2(γ−1)
R

gkl∇lR.

Proof. When δ ≤ 2ϵ2

(2− γ)S(S − 1

3
R2)− 2P ≤ (δ − 2ϵ2)S(S − 1

3
R2) ≤ 0

Substitute it into Lemma 5.22, the conclusion follows.

Now we could prove Theorem 5.18:

Proof. By Theorem 5.16, there exists a constant ϵ ≥ 0 such that Rij ≥ ϵRgij for all
t ∈ [0, T ). Let δ ≤ 2ϵ2, then Lemma 5.25 gives that

∂f

∂t
≤ ∆f + uk∇kf for f = S/R2−δ − 1

3
R2−γ

Because M3 is compact, ∃C < ∞, which just depends on the initial metric g(0) such
that f ≤ C at t = 0. Then maximum principle tells that f ≤ C at t ∈ [0, T ), so
S − 1

3
R2 ≤ CR2−δ as desired.

5.4 The gradient of the scalar curvature
In this subsection, the upper bound of |∇iR| will be given as follows:
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Theorem 5.26. Let M3 be a closed Riemannian 3 manifold with positive Ricci cur-
vature. For every η > 0, ∃ constant C = C(η, g(0)) depending only on η and the initial
value of the metric such that on 0 ≤ t < T we have

|∇iR|2 ≤ ηR3 + C

The proof would be given in several steps. What we shall do is to find the variation
formula of F = |∇iR|2/R− ηR2 +N(S − 1

3
R2) with N ∈ R.

Lemma 5.27.

∂

∂t
|∇iR|2 = ∆|∇iR|2 + 4gij∇iS∇jR− 2|∇i∇jR|2

Proof. |∇iR|2 = gij∇iR∇jR

∂

∂t
|∇i|2 = 2gikgjlRkl∇iR∇jR + 2gij∇i(∆R + 2S) · ∇jR

= 2gikgjlRkl∇iR∇jR + 2gij(∇i∆R)∇jR + 4gij∇iS∇jR

∆|∇iR|2 = gkl∇k∇l(g
ij∇iR∇jR)

= 2gklgij∇k((∇l∇iR) · ∇jR)

= 2gklgij∇k∇l∇iR · ∇jR + 2gklgij(∇l∇iR) · (∇k∇jR)

= 2gij(∆∇iR)∇jR + 2|∇i∇jR|2

∆∇iR = ∇i∆R +Rij∇jR = ∇i∆R + gjkRij∇kR

∂

∂t
|∇i|2 −∆|∇iR|2 = 2gikgjlRkl∇iR∇jR

+ 2gij(∇i∆R−∆∇iR)∇jR + 4gij∇iS∇jR− 2|∇i∇jR|2

= 2gikgjlRkl∇iR∇jR

− 2gijglkRil∇kR∇jR + 4gij∇iS∇jR− 2|∇i∇jR|2

= 4gij∇iS∇jR− 2|∇i∇jR|2

Lemma 5.28.

∂

∂t

(
|∇iR|2

R

)
= ∆

(
|∇iR|2

R

)
− 2S

R2
|∇iR|2 +

4

R
〈∇iR,∇iS〉 −

2

R3
|R∇i∇jR−∇iR∇jR|2

Proof.

∂

∂t

(
|∇iR|2

R

)
= − 1

R2
(∆R + 2S)|∇iR|2 +

1

R
(∆|∇iR|2 + 4gij∇iS∇jR− 2|∇i∇jR|2)

∆

(
|∇iR|2

R

)
= gkl∇k∇l

(
|∇iR|2

R

)
= gkl∇k

{
− 1

R2
∇lR · |∇iR|2 +

1

R
∇l(|∇iR|2)

}
= gkl

2

R3
∇kR∇lR|∇iR|2 − gkl

1

R2
∇k∇lR|∇iR|2 − gkl

1

R2
∇lR∇k|∇iR|2

− gkl
1

R2
∇kR∇l|∇iR|2 + gkl

1

R
∇k∇l(|∇iR|2)
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=
2

R3
|∇iR|2|∇jR|2 −

1

R2
∆R|∇iR|2 −

1

R2
〈∇lR,∇l|∇iR|2〉

− 1

R2
〈∇lR,∇l|∇iR|2〉+

1

R
∆|∇iR|2

Observe that:
∇l|∇iR|2 = ∇l(g

ij∇iR∇jR) = 2gij∇l∇iR · ∇jR

〈∇lR,∇l|∇iR|2〉 = gkl∇kR · 2gij∇l∇iR · ∇jR = 2〈∇l∇iR,∇lR · ∇iR〉

We have

∆

(
|∇iR|2

R

)
=

2

R3
|∇iR · ∇jR|2 −

∆R

R2
|∇iR|2 −

4

R2
〈∇l∇iR,∇lR · ∇iR〉+

1

R
∆|∇iR|2

∂

∂t

(
|∇iR|2

R

)
= ∆

(
|∇iR|2

R

)
− 2

S

R2
|∇iR|2 +

4〈∇iS,∇iR〉
R

− 2|∆R|2

R

− 2

R3
|∇iR · ∇jR|2 +

4

R2
〈∇i∇jR,∇iR · ∇jR〉

= ∆

(
|∇iR|2

R

)
− 2S

R2
|∇iR|2 +

4

R
〈∇iS,∇iR〉 −

2

R3
|R∇i∇jR−∇iR · ∇jR|2

Lemma 5.29.
∂

∂t
R2 = ∆R2 − 2|∇iR|2 + 4RS

Proof.
∂

∂t
R2 = 2R

∂R

∂t
= 2R(∆R + 2S) = 2R∆R + 4RS

∆R2 = gij∇i∇jR
2 = 2gij∇i(R∇jR) = 2gij∇iR∇jR + 2gijR∇i∇jR

= 2|∇iR|2 + 2R∆R

The lemma follows directly.
Lemma 5.30. Let U = T − 1

3
RS − C, then

∂

∂t
(S − 1

3
R2) = ∆(S − 1

3
R2)− 2(|∇iRjk|2 −

1

3
|∇iR|2) + 4U

Proof. It follows from Lemma 5.20 and Lemma 5.29.
Lemma 5.31. U ≤ R(S − 1

3
R2)

Proof. Recall that P = S2 +R(C − T ) ≥ ϵ2S(S − 1
3
R2) ≥ 0 for some ϵ > 0 by Lemma

5.24. Then
UR ≤ P + UR = S(S − 1

3
R2) ≤ R2(S − 1

3
R2)

The lemma follows directly.

By ∇iR = gjk∇iRjk, in normal coordinate, ∇iR = ∇iR11+∇iR22+∇iR33; for any
i we have

(∇iR)
2 = (∇iR11 +∇iR22 +∇iR33)

2 ≤ 3((∇iR11)
2 + (∇iR22)

2 + (∇iR33)
2),
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so |∇iR|2 ≤ 3|∇iRjk|2 in arbitrary Riemannian 3 manifold. This estimate could be
optimized so we get:

Lemma 5.32. |∇iR|2 ≤ 20
7
|∇iRjk|2 in any Riemannian 3 manifold M , .

Proof. The second Bianchi identity tells that: gij∇iRjk =
1
2
∇kR. Decompose ∇iRjk =

Eijk + Fijk where
Eijk =

1

20
(gij∇kR + gik∇jR) +

3

10
gjk∇iR

It shows that |Eijk|2 = 7
20
|∇iR|2: let gij = δij, then

Eijk = 0 if i 6= j, i 6= k and j 6= k;

Eiji =
1

20
∇jR if i 6= j; Eiik =

1

20
∇kR if i 6= k;

Eijj =
3

10
∇jR if i 6= j; Eiii =

2

5
∇iR

|Eijk|2 =
∑
i

∑
j

∑
k

E2
ijk =

∑
i

∑
j

E2
iji +

∑
i

∑
j

∑
k ̸=i

E2
ijk

=
∑
i

E2
iii +

∑
i

∑
j ̸=i

E2
iji +

∑
i

∑
k ̸=i

E2
iik +

∑
i

∑
j ̸=i

∑
k ̸=i

E2
ijk

=
∑
i

4

25
(∇iR)

2 +
∑
i

∑
j ̸=i

1

400
(∇jR)

2 +
∑
i

∑
k ̸=i

1

400
(∇kR)

2 +
∑
i

∑
j ̸=i

9

100
(∇jR)

2

=
∑
i

4

25
(∇iR)

2 +
∑
i

1

200
(∇iR)

2 +
∑
i

1

200
(∇iR)

2 +
∑
i

9

50
(∇iR)

2

=
35

100

∑
i

(∇iR)
2 =

7

20
|∇iR|2

It shows that 〈Eijk, Fijk〉 = 0:

〈Eijk, Fijk〉 = 〈Eijk,∇iRjk − Eijk〉 = 〈Eijk,∇iRjk〉 −
7

20
|∇iR|2

〈Eijk,∇iRjk〉 = gilgjmgknEijk∇lRmn

= gilgjmgkn
1

20
(gij∇kR + gik∇jR)∇lRmn + gilgjmgkn

3

10
gjk∇iR∇lRmn

=
1

20
gjmgkn∇kR∇jRmn +

1

20
gjmgkn∇kRmn∇jR +

3

10
gilgkn∇iR∇lRkn

=
1

20
gkn∇kR∇nR +

3

10
gil∇iR∇lR =

7

20
|∇iR|2

Thus,
|∇iRjk|2 = |Eijk|2 + |Fijk|2 ≥ |Eijk|2 =

7

20
|∇iR|2

The conclusion follows.
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With this estimate we have:

∂

∂t
(S − 1

3
R2)−∆(S − 1

3
R2) = −2|∇iRjk|2 +

2

3
|∇iR|2 + 4U

≤ −2|∇iRjk|2 +
40

21
|∇iRjk|2 + 4R(S − 1

3
R2)

= − 2

21
|∇iRjk|2 + 4R(S − 1

3
R2)

Lemma 5.33. ∂
∂t
(S − 1

3
R2) ≤ ∆(S − 1

3
R2)− 2

21
|∇iRjk|2 + 4R(S − 1

3
R2)

Lemma 5.34. 〈∇iR,∇iS〉 ≤ 4R|∇iRjk|2

Proof. The Cauchy-Schwartz inequality states:

〈∇iR,∇iS〉 = 2〈∇iRjk,∇iR ·Rjk〉 ≤ 2|∇iR||Rjk||∇iRjk|.

Observe that |Rjk|2 = S ≤ R2, so

〈∇iR,∇iS〉 ≤ 2
√
3R|∇iRjk|2 ≤ 4R|∇iRjk|2.

Lemma 5.35. For 0 ≤ η ≤ 1
3

∂

∂t

(
|∇iR|2

R
− ηR2

)
≤ ∆

(
|∇iR|2

R
− ηR2

)
+ 16|∇iRjk|2 −

4

3
ηR3

Proof. S − 1
3
R2 ≥ 0 =⇒ S/R2 ≥ 1

3
, then combine Lemma 5.28 and Lemma 5.34 we

get the lemma.
Lemma 5.36. Let F = |∇iR|2/R − ηR2 +N(S − 1

3
R2) where N ∈ R. For N ≥ 168,

there exists a constant C0 = C0(η, g(0)) depending only on η and initial metric g(0)
such that

∂F

∂t
≤ ∆F + C0(η, g(0))

Proof. If N ≥ 168

∂F

∂t
−∆F ≤ 16|∇iRjk|2 −

4

3
ηR3 − 2

21
N |∇iRjk|2 + 4RN(S − 1

3
R2)

≤ 4RN(S − 1

3
R2)− 4

3
ηR3

By Theorem 5.18, we know ∃δ,C depending only on initial metric such that

∂F

∂t
−∆F ≤ 4NCR3−δ − 4

3
ηR3 ≤ C0,

where C0 is the upper bound of RHS depending on (δ,C , η). i.e. C0 depends only on
η and initial metric g(0).

Now we could give a proof of Theorem 5.26. By previous lemma, take N = 168,

∂(F − C0t)
∂t

≤ ∆(F − C0t)
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The maximum principle tells that

max
M×{t}

F − C0t ≤ max
X×{0}

F

max
M×{t}

F ≤ max
X×{0}

F + C0t

By Theorem 5.11, we know T is limited, so at M × [0, T )

|∇iR|2/R− ηR2 ≤ F ≤ C1 with C1 = max
X×{0}

F + C0T .

|∇iR|2 ≤ ηR3 + C1R ≤ 2ηR3 + C2 for some constant C2.

C2 depends only on C0, initial metric g(0). Hence we have proved the theorem when η
is small. We can enlarge η so that the result keeps for arbitrary η > 0.

5.5 Controlling Rmax/Rmin

In this subsection, let M3 be a closed Riemannian 3 manifold with strictly positive
Ricci flow; Let Rmax(t) := max

M×{t}
R; Rmin(t) := min

M×{t}
R.

Theorem 5.37. Rmax/Rmin → 1 as t→ T .

Proof. Before prove this theorem, we first recall Myers theorem:
Theorem (Myers). Let M be a Riemannian manifold with dimension m. If Rij ≥
(m− 1)Hgij along a geodesic of length at least πH−1/2 then the geodesic has conjugate
point.

It is known that Rij ≥ ϵRgij under the variation of Ricci flow at any time for some
ϵ > 0. Hence along a geodesic of length at least l := π

√
2√

ϵRmin(t)
has a conjugate point

at any t ∈ [0, T ).
For every η > 0 and suitable constant C(η) = C(η, g(0))

|∇iR| ≤ [
1

4
η4R3 + C2(η, g(0))]1/2 ≤ 1

2
η2R3/2 + C(η).

Since Rmax → +∞ as t → T , ∃ θ < T such that C(η) ≤ 1
2
η2R

3/2
max for θ ≤ t < T .

Then |∇iR| ≤ η2R
3/2
max for t ≥ θ. For any t ∈ [θ, T ), fix a point x ∈ M such that

R(x, t) = Rmax(t). Then on any geodesic out of x of length at most s = 1

η
√

Rmax(t)
we

have R ≥ Rmax − ηRmax = (1− η)Rmax, so

s =
1

η
√
Rmax(t)

≥
√
1− η

η
√
Rmin(t)

≥ l

when η ∈ (0, 1
2
(− ϵ

2π2 +
√

ϵ2

4π4 + 4 ϵ
2π2 )]. In conclusion, for such small η, ∃ θ ∈ (0, T )

such that Rmin(t) ≥ (1− η)Rmax(t) for all t ∈ [θ, T ).

Theorem 5.38.
∫ T

0
Rmaxdt = ∞
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Proof. Let f(t) : [0, T ) → R such that
df

dt
= 2Rmaxf

f(0) = Rmax(0)

As for R:
∂R

∂t
= ∆R + 2S ≤ ∆R + 2RmaxR.

∂

∂t
(R− f) ≤ ∆(R− f) + 2Rmax(R− f).

By maximum principle, R − f ≤ 0 on 0 ≤ t < T . Since R → ∞ as t → T , f → +∞
too. On the other hand, df

f
= 2Rmaxdt gives that

ln f(t)/f(0) = 2

∫ t

0

Rmax(τ)dτ → ∞ as t→ T .

Corollary 5.39. Let r =
∫
Rdµ∫
dµ

, then
∫ T

0
rdt = ∞

Proof. Because Rmax/Rmin → 1 and R ≥ 0,
∫ T

0
rdt and

∫ T

0
Rmaxdt have the same

convergence.
Theorem 5.40. S/R2 − 1

3
→ 0 as t→ T for ∀x ∈M3.

Proof. By Theorem 5.18:
S/R2 − 1

3
≤ CR−δ,

and Rmin → ∞ because Rmax → ∞ and Rmax/Rmin → 1.
Remark 5.41. Someone may think Theorem 5.11 has stated that Rmin → ∞ as t→ T .
But it has not, because T may strictly smaller than 3/2ρ and Rmin may not have gone
to ∞ yet. Therefore, it is reasonable to estimate Rmax/Rmin at first.

6. Long time existence
In Theorem 5.11, it has been known that the Ricci flow has finite maximum existence
interval because of the blow-up of scalar curvature. This section will give another
conclusion to describe the behavior of Rm when t → T . This conclusion is based on
the estimate to ∇nRm. The required estimates, interpolation inequalities for tensors,
will be given at first subsection. The special case of Rm will be discussed in the second
subsection. After doing these estimates, the blow-up of Rm will be discussed.

6.1 Interpolation inequalities for tensors
Let Mm be a closed Riemannian manifold of dimension m; Tij...k be any tensor on Mm.
Theorem 6.1. Suppose 1

p
+ 1

q
= 1

r
with r ≥ 1. Then

{∫
|∇T |2rdµ

}1/r

≤ (2r − 2 +m)

{∫
|∇2T |pdµ

}1/p {∫
|T |qdµ

}1/q
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Proof. For simplicity we take TJ = Tij...k.∫
|∇T |2rdµ =

∫
gij∇iT∇kT |∇T |2(r−1)dµ

= −
∫
Tgij∇i∇jT |∇T |2(r−1)dµ−

∫
gijT∇jT · ∇i|∇T |2(r−1)dµ

∇i|∇T |2(r−1) = ∇i(g
kl∇kT∇lT )

r−1 = 2(r − 1)gkl∇i∇kT · ∇lT · |∇T |2(r−2)∫
|∇T |2rdµ = −

∫
Tgij∇i∇jT |∇T |2(r−1)dµ

− 2(r − 1)

∫
gijT∇jT · gkl∇i∇kT · ∇lT · |∇T |2(r−2)dµ

= −
∫
Tgij∇i∇jT |∇T |2(r−1)dµ

− 2(r − 1)

∫
〈T∇i∇jT,∇iT · ∇jT 〉|∇T |2(r−2)dµ

Because
|TJ∇i∇kT | ≤ m|T ||∇2T |

〈T∇i∇jT,∇iT · ∇jT 〉 ≤ |T ||∇2T ||∇T |2

∫
|∇T |2rdµ ≤

∫
n|T ||∇2T ||∇T |2r−2dµ+

∫
2(r − 1)|T ||∇2T ||∇T |2r−2dµ

= (2r − 2 +m)

∫
|T ||∇2T ||∇T |2r−2dµ

The Holder’s inequality w.r.t

1

p
+

1

q
+
r − 1

r
= 1

gives∫
|∇T |2rdµ ≤ (2r − 2 +m)

(∫
|∇2T |pdµ

)1/p (∫
|T |qdµ

)1/q (∫
|∇T |2rdµ

)1−1/r

Hence {∫
|∇T |2rdµ

}1/r

≤ (2r − 2 +m)

{∫
|∇2T |pdµ

}1/p {∫
|T |qdµ

}1/q

Corollary 6.2. If p ≥ 1, we have{∫
|∇T |2pdµ

}1/p

≤ (2p− 2 +m)

{∫
|∇2T |pdµ

}1/p

max
M

|T |.

Proof. Recall that for a Lp(1 ≤ p ≤ ∞) measurable function F with compact support,
we have: lim

p→∞
‖F‖p = ‖F‖∞. In this case, the corollary follows by taking q = ∞.
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Lemma 6.3. Let f be a function: N ∩ [0, n] → R. If f(k) ≤ 1
2
[f(k − 1) + f(k + 1)]

∀k = 1, . . . , n− 1, then f(k) ≤ (1− k
n
)f(0) + k

n
f(n) ∀k = 0, 1, . . . , n.

Proof. Let f̃(k) = f(k)−(1− k
n
)f(0)− k

n
f(n), k = 0, 1, . . . , n; let g(k) = f̃(k)−f̃(k−1)

for 1 ≤ k ≤ n. Then g(k + 1) − g(k) = f̃(k + 1) + f̃(k − 1) − 2f̃(k) ≥ 0. Then for
some m ∈ N+:

g(1) ≤ · · · ≤ g(m) ≤ 0 ≤ g(m+ 1) ≤ · · · ≤ g(n)

n∑
k=1

g(k) =
n∑

k=1

{f̃(k)− f̃(k − 1)} = f̃(n)− f̃(0) = 0

For any k ≥ 1, f̃(k) =
k∑

i=1

g(i) = −
n∑

i=k+1

g(i). When k ≤ m:
k∑

i=1

g(i) ≤ 0; when k ≥ m:

−
n∑

i=k+1

g(i) ≤ 0. =⇒ f̃(k) ≤ 0, k = 0, 1, . . . , n. Thus, f(k) ≤ (1 − k
n
)f(0) + k

n
f(n),

k = 0, 1, . . . , n.
Corollary 6.4. If

f(k) ≤ 1

2
(f(k − 1) + f(k + 1)) + C ∀1 ≤ k ≤ n− 1

for some constant C, then

f(k) ≤ (1− k

n
)f(0) +

k

n
f(n) + Ck(n− k) ∀0 ≤ k ≤ n.

Proof. Consider h(k) = f(k) + Ck2, k = 0, 1, . . . , n. It is shown that h(k) ≤ 1
2
(h(k −

1) + h(k + 1)), k = 1, . . . , n− 1. By previous lemma, h(k) ≤ (1− k
n
)h(0) + k

n
h(n) =⇒

f(k) ≤ (1− k

n
)f(0) +

k

n
f(n) + Ck(n− k)

Corollary 6.5. If

f(k) ≤ Cf(k − 1)1/2f(k + 1)1/2 ∀1 ≤ k ≤ n− 1

then
f(k) ≤ Ck(n−k)f(0)1−k/nf(n)k/n

Proof. Take h(k) = ln f(k), we get the conclusion.

Let ∇nT denote the tensor ∇i1 . . .∇inTj...k

Corollary 6.6. If T is any tensor and if 1 ≤ i ≤ n then ∃ a constant C = C(n,m) de-
pending only on n and m = dimM and independent of the metric gij or the connection
Γk
ij such that ∫

|∇iT |2n/idµ ≤ C max
M

|T |2(n/i−1)

∫
|∇nT |2dµ

Proof. When 2 ≤ i ≤ n− 1, use Theorem 6.1 to tensor ∇i−1T we have:{∫
|∇iT |2rdµ

}1/r

≤ (2r − 2 +m)

{∫
|∇i+1T |pdµ

}1/p {∫
|∇i−1T |qdµ

}1/q
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Let
p =

2n

i+ 1
, q =

2n

i− 1
, r =

n

i
> 1

{∫
|∇iT |2n/idµ

}i/n

≤ (2
n

i
−2+n)

{∫
|∇i+1T |2n/(i+1)dµ

} i+1
2n

{∫
|∇i−1T |2n/(i−1)dµ

} i−1
2n

When i = 1, by Corollary 6.2:{∫
|∇T |2ndµ

}1/n

≤ (2p− 2 +m)max
M

|T |
{∫

|∇2T |ndµ
}1/n

Let f(0) = max
M

|T |, f(i) =
(∫

|∇iT |2n/i
)i/2n, 1 ≤ i ≤ n. Then ∃ C1 depending only on

n and m such that

f(i) ≤ C1f(i+ 1)1/2f(i− 1)1/2 where 1 ≤ i ≤ n− 1.

The previous lemma tells that

f(i) ≤ C2f(0)1−i/nf(n)i/n where 0 ≤ i ≤ n

where C2 = max{C i(n−i)
1 |0 ≤ i ≤ n}. The conclusion follows.

Corollary 6.7. If T is any tensor and if 0 ≤ i ≤ n then ∃ a constant C = C(n,m) de-
pending only on n and m = dimM and independent of the metric gij or the connection
Γk
ij such that

∫
|∇iT |2dµ ≤ C

{∫
|∇nT |2dµ

}i/n {∫
|T |2dµ

}1−i/n

Proof. Applying Theorem 6.1 to ∇i−1T with p = q = 2, r = 1: for 1 ≤ i ≤ n− 1∫
|∇iT |2dµ ≤ m

{∫
|∇i+1T |2dµ

}1/2 {∫
|∇i−1T |2dµ

}1/2

,

Let f(0) =
∫
|T |2dµ, f(i) =

∫
|∇iT |2dµ

f(i) ≤ Cf(i+ 1)1/2f(i− 1)1/2

f(i) ≤ C ′f(0)1−i/nf(n)i/n

The corollary follows directly.

6.2 Higher derivatives of the Curvature
If A, B are two tensors. Let’s define A ∗ B to be the linear combination of tensor
formed by contraction on Ai...jBk...l using gik.
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Lemma 6.8. Let Mm be a Riemannian manifold with dimension m. If A, B are
tensors satisfying the evolution equation

∂

∂t
A = ∆A+B,

then
∂

∂t
∇A = ∆∇A+Rm ∗ ∇A+ A ∗ ∇Rm+∇B.

In particular, when m = 3 we have

∂

∂t
∇A = ∆∇A+Rc ∗ ∇A+ A ∗ ∇Rc+∇B.

Proof. Since ∇ = ∂ + Γ
∂

∂t
(∇A) = ∇∂A

∂t
+
∂Γ

∂t
∗ A.

Remind that ∂
∂t
Γi
jk = −gil{∇jRkl +∇kRjl −∇lRjk}, so

∂

∂t
(∇A) = ∇∂A

∂t
+∇Rc ∗ A = ∇∆A+∇B +∇Rc ∗ A.

Because

∇∆A = ∇∇i∇iA = ∇i∇∇iA+Rm ∗ ∇A
= ∇i(∇i∇A+Rm ∗ A) + Rm ∗ ∇A
= ∆∇A+∇Rm ∗ A+Rm ∗ ∇A,

∂

∂t
∇A = ∆∇A+Rm ∗ ∇A+ A ∗ ∇Rm+∇B

Theorem 6.9. ∇nRm satisfies

∂

∂t
∇nRm = ∆(∇nRm) +

∑
i+j=n
0≤i,j≤n

∇iRm ∗ ∇jRm

Proof. If n = 0, Corollary 5.3 tells that

∂

∂t
Rijkl = ∆Rm+Rm ∗Rm

Proceed by induction on n: let A = ∇nRm, B =
∑

i+j=n

∇iRm ∗ ∇jRm. Suppose we

have
∂

∂t
A = ∆A+B,
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then by Lemma 6.8

∂

∂t
∇n+1Rm = ∆∇n+1Rm+Rm ∗ ∇n+1Rm+∇n ∗ ∇Rm

+
∑
i+j=n

{∇i+1Rm ∗ ∇jRm+∇iRm ∗ ∇j+1}

= ∆∇n+1Rm+
∑

i+j=n+1
0≤i,j≤n+1

∇iRm ∗ ∇jRm

Corollary 6.10. ∀ n ≥ 0, we have

∂

∂t
|∇nRm|2 = ∆|∇nRm|2 − 2|∇n+1Rm|2 +

∑
i+j=n

∇iRm ∗ ∇jRm ∗ ∇nRm

Proof.
∂

∂t
|∇nRm|n = 2〈∇nRm,

∂

∂t
∇nRm〉+Rm ∗ ∇nRm ∗ ∇nRm,

where the second term is from the derivative of g.

∆|∇nRm|2 = 2∇i〈∇nRm,∇i∇nRm〉
= 2〈∇nRm,∆∇nRm〉+ 2〈∇i∇nRm,∇i∇nRm〉
= 2〈∇nRm,∆∇nRm〉+ 2|∇n+1Rm|2

∂

∂t
|∇nRm|2 = ∆|∇nRm|2 + 2〈∇nRm,

∂

∂t
∇nRm−∆∇nRm〉

− 2|∇n+1Rm|2 +Rm ∗ ∇nRm ∗ ∇nRm

= ∆|∇nRm|2 − 2|∇n+1Rm|2 +
∑
i+j=n

∇iRm ∗ ∇jRm ∗ ∇nRm

Theorem 6.11. In any closed Riemannian manifold Mm, for any n ≥ 0 we have the
estimate

d

dt

∫
M

|∇nRm|2dµ+ 2

∫
M

|∇n+1Rm|2dµ ≤ C max
M

|Rm|
∫
M

|∇nRm|2dµ

where C is a constant independent of the metric, depending only on the number n of
derivatives and the dimension m of M .
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Proof.

d

dt

∫
M

|∇nRm|2dµ+ 2

∫
M

|∇n+1Rm|2dµ

=

∫
M

(
d

dt

∫
M

|∇nRm|2dµ+ 2

∫
M

|∇n+1Rm|2)dµ

=

∫
M

(∆|∇nRm|2 − 2|∇n+1Rm|2 +
∑
i+j=n

∇iRm ∗ ∇jRm ∗ ∇nRm)dµ

= C(n)

∫
M

|∇iRm||∇jRm||∇nRm|dµ, for some constant C(n)

Use Holder’s inequality twice:∫
M

|∇iRm||∇jRm||∇nRm|dµ

≤
(∫

M

|∇iRm|2|∇jRm|2dµ
)1/2 (∫

M

|∇nRm|2dµ
)1/2

≤
(∫

M

|∇iRm|2n/idµ
)i/2n (∫

M

|∇jRm|2n/jdµ
)j/2n (∫

M

|∇nRm|2dµ
)1/2

Apply Corollary 6.6(∫
|∇iRm|2n/idµ

)i/2n

≤ C(n,m)max
M

|Rm|1−i/n

(∫
|∇nT |2dµ

)i/2n

d

dt

∫
M

|∇nRm|2dµ+ 2

∫
M

|∇n+1Rm|2dµ ≤ C max
M

|Rm|
∫
M

|∇nRm|2dµ

where C depends only on n, m.

If the dimension of M is 3, then Rm could be replaced by Rc. Furthermore,
previous arguments set up by replacing Rm by Rc. Thus we have

Corollary 6.12. In any closed Riemannian manifold M of dimension 3, for any n ≥ 0
we have the estimate

d

dt

∫
M

|∇nRc|2dµ+ 2

∫
M

|∇n+1Rc|2dµ ≤ C max
M

|Rc|
∫
M

|∇nRc|2dµ

where C is a constant independent of the metric, depending only on the number n of
derivatives.

6.3 Finite time blow-up
Let Mm be a closed Riemannian manifold of dimension m. We want to show:

Theorem 6.13. Suppose the Ricci flow has a unique solution on a maximal time
interval 0 ≤ t < T ≤ ∞. If T <∞, then max

M
|Rijkl| → ∞ as t→ T .
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Let’s prove by contradiction. Suppose |Rm| ≤ C < ∞ as t → T . If we can show
g converges to a smooth metric as t → T , then by Theorem 4.3 the maximal time
interval will be larger then [0, T ), a contradiction.

At first, observe that if Rm is uniformly bounded, then ∃ constant C such that∫ T

0

max
M

|g′ij|dt ≤ 2

∫ T

0

max
M

|Rij|dt ≤ C.

This is where we start our deduction.

Lemma 6.14. Let gij be a time-dependent metric on M for 0 ≤ t < T ≤ ∞. Suppose∫ T

0

max
M

|g′ij|dt ≤ C <∞

Then the metrics gij(t) for all different times are equivalent, and they converge as
t → T uniformly to a positive-definite tensor gij(T ) which is continuous and also
equivalent to gij(t) with 0 ≤ t < T .

Proof. Fix a tangent vector v 6= 0 ∈ TM at a point x ∈M and let

|v|2t = gij(t)v
ivj

Then we take
d

dt
|v|2t = g′ijv

ivj

and it follows by Cauchy-Schwartz inequality that

|g′ijvivj| ≤ |g′ij||v|2t

d

dt
ln |v|2t =

1

|v|2t
d

dt
|v|2t =

1

|v|2t
· g′ijvivj

=⇒
∣∣ d
dt

ln |v|2t
∣∣ ≤ |g′ij|. Then for 0 ≤ τ ≤ θ < T we have

| ln |v|2θ/|v|2τ | ≤
∫ θ

τ

|g′ij|dt ≤ C <∞ (⋆)

The formula (⋆) could give several important conclusions:

(a) ∀ ϵ > 0, ∃ δ > 0 independent to v ∈ TM such that ∀ θ, τ ∈ (T − δ, T ) we have
| ln |v|2θ/|v|2τ | < ϵ. Then ln |v|2t converge uniformly as t→ T . Let’s define

|v|2T := exp(lim
t→T

ln |v|2t ).

Because |v|2t ∀ t ∈ [0, T ) are all norm function on TxM ∀ x ∈ M , |v|2T is a norm
too. Then we get a limit metric gij(T ).

(b) e−C |v|2τ ≤ |v|2θ ≤ eC |v|2τ ∀ τ , θ ∈ [0, T ], ∀ v ∈ TM . All metric gij(t) for 0 ≤ t <
T ≤ ∞ are equivalent.
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Lemma 6.15. If |Rm| ≤ C on 0 ≤ t < T <∞, then for any n we can find a constant
Cn such that for any t ∈ [0, T ] we have∫

M

|∇nRm|2dµ ≤ Cn

Proof. Let f(t) =
∫
M
|∇nRm|2dµ. Theorem 6.11 tells that ∃ C(n,m) such that

df

dt
≤ C(n,m)Cf.

f(t) ≤ f(0) exp{C(n,m)Ct}

We also know that f(0) is bounded becauseM is compact. Let Cn := f(0) exp{C(n,m)CT}.
The lemma follows.

Lemma 6.16. Assume |Rm| ≤ C on 0 ≤ t < T < ∞ as before, for all n ∈ N, ∃ C̃n

such that for any t ∈ [0, T ) we have

‖∇nRm‖∞ ≤ C̃n

In particular, ∃ D̃n

‖∇nRc‖∞ ≤ D̃n

Proof. By Corollary 6.6, ∃ constant B = B(N,m) such that ∀ 1 ≤ n ≤ N∫
|∇nRm|2N/ndµ ≤ B max

M
|Rm|2(N/n−1)

∫
|∇NRm|2dµ ≤ BCCN

Take N = np for some m < p <∞:∫
|∇nRm|2pdµ ≤ BCCnp =: Cn,p.

Take f = |∇nRm|2p ∈ Γ(M): ∫
{f + |∇f |}dµ ≤ C̃n,p

Now by Sobolev’s inequality (see Appendix A), ∃ constant C(t) depending on t such
that

‖∇nRm‖2p∞ = ‖f‖∞ ≤ C(t)

∫
{f + |∇f |}dµ ≤ C(t)C̃n,p,

Here the constant C(t) depends on (ωn, t), hence depending on (gij(t), dµ =
√

det gdx, t).
Lemma 6.14 tells that gij(t) could be controlled by C. Finally, ∃ unified constant C̃n

such that
|∇nRm| ≤ C̃n, ∀n ∈ N,

where C̃n just depends on the initial value of the metric and the constant C which
bounds |Rm| ∀ 0 ≤ t < T . In particular, because g(t) is equivalent as shown in 6.14,
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∃ constant E such that

‖∇nRc‖∞ ≤ C‖g(0)‖∞|∇nRm| =: D̃n

Lemma 6.17. Assume |Rm| ≤ C on 0 ≤ t < T < ∞ as before, for all n ∈ N, ∃ Cn

such that for any t ∈ [0, T ) we have

‖∂ng‖∞ ≤ Cn

Proof. Let C be a generic constant depending just on m,n, C, g(0), T .
If n = 1: ∀s ∈ [0, T )

∂

∂t

(
∂

∂xk
gij(s)

)
=

∂

∂xk

∂

∂t
gij(s) = −2

∂

∂xk
Rij(s)

= −2(∇kRij + Γl
kiRlj + Γl

kjRil)

| ∂
∂t
∂kgij(s)| ≤ 2|∇kRij|+ 2|Γl

kiRlj| ≤ 2|∇kRij|+ 2m|Γ(s)||Rij|

Notice that
∂

∂t
Γk
ij = −1

2
gkl{∇iRjl +∇jRil −∇lRij}

| ∂
∂t

Γ| ≤ C|∇iRij|

| ∂
∂t
∂kgij(s)| ≤ 2D̃1 + 2mCD̃1D̃0 =: B

|∂g(s)| ≤ ‖∂g(0)‖∞ +BT =: C1

One could show the general case by induction. The reader can find the detail proof in
[4] The Ricci flow: An introduction pp206-207.

Here is a complete proof of the Theorem 6.13. Assume |Rm| is bounded by C.
Let C be a generic constant depending just on m,n, C, g(0), T . Fix a local coordinate
patch U around an arbitrary point x ∈ Mm, and let τ ∈ (0, T ) be arbitrary as well.
Then by Lemma 6.14, a continuous limit metric gij(T ) exists and is given as

gij(x, T ) = gij(x, τ)− 2

∫ T

τ

Rij(x, t)dt.

Let α = (a1, . . . , ar) be any multi-index with |α| = n ∈ N. By Lemma 6.16 and Lemma
6.17, both ∂n

∂xα gij and ∂n

∂xαRij are uniformly bounded on U × [0, T ). Thus we can write(
∂n

∂xα
gij

)
(x, T ) =

(
∂n

∂xα
gij

)
(x, τ)− 2

∫ T

τ

(
∂n

∂xα
Rij

)
(x, t)dt,

which shows that |∂αg(T )| ≤ C for some positive constant C, hence that gij(T ) is a
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smooth metric, and also

∣∣ ( ∂n

∂xα
gij

)
(x, T )−

(
∂n

∂xα
gij

)
(x, τ)

∣∣ ≤ C(T − τ),

which shows that g(τ) → g(T ) uniformly in any Cn norm as t→ T , and(
∂n

∂xα
gij

)
(x, T ) = lim

t→T

(
∂n

∂xα
gij

)
(x, t).

The smoothness of g(T ) implies that [0, T ) is not the maximal existence interval of
Ricci flow, a contradiction to the definition of T .

Remark 6.18. Recall that Theorem 5.11 tells that T < ∞ for compact 3-manifold
with strictly positive Ricci curvature. Thus, the Rm in such M3 will blow up as the
variation of Ricci flow.

7. The normalized equation
As shown in previous section, the Ricci flow on closed M3 with strictly positive Rc
always blow-up, so we hope there exist some flows with better behaviors. Let’s consider
the normalized equation of Ricci flow on Mn:

∂

∂t
gij =

2

n
rgij − 2Rij

where r =
∫
Rdµ/

∫
dµ is the average of scalar curvature. It will be shown that such

flow owns better properties than the origin one.

7.1 Estimating the normalized equation
We will focus on the estimates of the normalized equation on M3. Let

∂

∂t
gij = −2Rij (∗)

∂

∂t̃
g̃ij =

2

3
r̃g̃ij − 2R̃ij (∗∗)

For convenience we let t, gij, Rij, R, r denote the variables for the unnormalized equa-
tion (∗) and t̃, g̃ij, R̃ij, R̃, r̃ the corresponding variables for the normalized equation
(∗∗). At first, for (∗∗) h̃ij = 2

3
r̃g̃ij − 2R̃ij, Lemma 3.8 gives

H̃ = g̃ijh̃ij = 2(r̃ − R̃)

d

dt̃

∫
dµ̃ =

∫
∂

∂t
dµ̃ =

∫
(r̃ − R̃)dµ̃ = 0

Hence, an important observation is that the volume of M3 is invariant under the
variation of g̃(t). On the other hand, let ψ = ψ(t) be the normalization factor such

55



that g̃ij(t) = ψ(t)gij(t) and
∫
dµ̃ = 1. The geometry of g and g̃ is connected by

following (under the same time scalar t):

Γ̃k
ij = Γk

ij R̃l
ijk = Rl

ijk R̃ijkl = ψRijkl

R̃ij = Rij R̃ = ψ−1R r̃ = ψ−1r dµ̃ = ψn/2dµ

Moreover we choose a new time scalar t̃ =
∫
ψ(t)dt,

dt̃

dt
= ψ(t).

Under the new time scalar t̃, one could show the normalized Ricci flow again:

∂

∂t̃
g̃ij =

2

n
r̃g̃ij − 2R̃ij (∗∗)

Let (∗) have a solution on a maximal time interval 0 ≤ t < T and let (∗∗) have a
corresponding solution on 0 ≤ t̃ < T̃ as the transformation above.

Remark 7.1. In fact, we can discuss the geometry of g̃ under old time scalar t. Here
we use the new scalar t̃ for several reasons. One is that the normalized Ricci flow has
invariant volume, a special invariant. Second, the normalized Ricci flow also obeys the
variation equations found in Section 3. Third, t̃ follows the origin paper [H].

Lemma 7.2. R̃max(t̃)/R̃min(t̃) → 1 as t̃→ T̃ .

Proof. R̃max and R̃min are dilated by a same constant, the ratio is unchanged with
respect to Theorem 5.37.

Lemma 7.3. R̃ij(t̃) ≥ ϵR̃(t̃)g̃ij(t̃) for some ϵ for any t̃ ∈ [0, T̃ ).

Proof. Theorem 5.16 and the transform laws in old time scalar t give that: R̃ij(t) =
ϵR̃(t)g̃ij(t). Thus, under new time scalar t̃ the result remains.

Recall the Bishop-Gunther-Cheeger-Gromov volume comparison theorem:

Theorem (Bishop-Gunther-Cheeger-Gromov). We denote by M a complete Rieman-
nian manifold of dimension n, and by Mκ the model space of constant curvature κ.
Let Bp(r) (resp. Bκ

p (r)) be a geodesic ball in M (resp. Mκ). i.e.

Bp(r) = {x = expp(tθ)|θ ∈ Sn−1, 0 ≤ t ≤ r} for p ∈M and arbitrary r

and let vol(Bp(r)) be its Riemannian volume. Then if Rc ≥ (n− 1)κ, then

r → vol(Bp(r))

vol(Bκ
p (r))

is a non-increasing function, which tends to 1 as r goes to 0. In particular, vol(Bp(r)) ≤
vol(Bκ

p (r)).

Proof. see [1] page 21, theorem 4.7
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This theorem is helpful to bound the scalar curvature R̃.

Lemma 7.4. R̃max(t̃) ≤ C <∞ on 0 ≤ t̃ < T̃

Proof. Let L̃(t̃) and Ṽ (t̃) denote the diameter and volume of g̃(t̃) respectively. Since
R̃c > 0, the Bishop-Gunther-Cheeger-Gromov volume comparison theorem implies
that

1 ≡ Ṽ ≤ 1

6
πL̃3.

On the other hand, Lemma 7.3 shows there is a positive constant β depending only on
g0 such that

R̃c ≥ 2β2R̃ming̃.

So by Theorem 5.5,
L̃ ≤ π

β
√
R̃min

Since R̃max/R̃min → 1 as t̃→ T̃ , there exists a positive number A such that

R̃max

R̃min
≥ 1

A
.

Thus,

R̃max ≤ AR̃min ≤ A

(
π

βL̃

)2

≤ A

(
π

β

)(π
6

)2/3

Lemma 7.5. T̃ = ∞

Proof. Since dt̃/dt = ψ and ψr̃ = r we have

∫ T̃

0

r̃dt̃ =

∫ T

0

rdt = ∞

by Corollary 5.39. While r̃ ≤ R̃max ≤ C, so T̃ = ∞.

Lemma 7.6. S̃/R̃2 − 1
3
→ 0 as t̃→ ∞.

Proof. Apply Theorem 5.40 and the transform law between g and g̃.

In normal coordinate ei, the section curvature in closed (M3, g(t))

K(ei, ej) =
Rm(ei, ej, ej, ei)

giigjj − g2ij
= Rijji

is of the form 1
2
(λ+ µ− υ) (see in Corollary 5.9). Transform it into normalized Ricci

flow, it becomes
K̃(ei, ej) = R̃ijji =

1

2
(λ̃+ µ̃− υ̃)

In each p ∈ M3, λ(p, t̃), µ(p, t̃), υ(p, t̃) approach each other as t̃ → ∞ by Lemma 7.6,
so K(p, t̃) can be controlled by half of the scalar curvature at R(p, t̃) as t̃ → ∞. In
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global, R̃max/R̃min → 1 tells that the control of sectional curvature is uniformly. Thus
∀ δ ∈ (0, 1) ∃ C > 0 such that ∀ t ≥ C we have

0 ≤ (1− δ)Kmax(t) < K(t) ≤ Kmax(t).

This formula may remind you the famous sphere theorem (see in [6] page 265):

Theorem (sphere theorem). Let Mn be a closed simply connected, Riemannian man-
ifold, whose sectional curvature K satisfies

0 < hKmax < K ≤ Kmax.

Then if h = 1/4, M is homeomorphic to a sphere.

Then we know

Theorem 7.7. Let (M, g) be a closed Riemannian manifold of dimension 3 which
admits a strictly positive Ricci curvature. Then ∀ ϵ ∈ (0, 1) (M, g) also admits a
metric such that

0 ≤ (1− ϵ)Kmax < K ≤ Kmax.

In particular, when M is simply connected, M is homeomorphic to a 3-sphere.

This has been a very good result. But it could be optimized further as what the
Main Theorem said. To accomplish this point, one borrows the following lemma which
is not so strong compared with sphere theorem:

Lemma 7.8 (Klingenberg). Let M̃ be a simply connected manifold of dimension 3.
The sectional curvature satisfies:

0 <
1

4
Kmax < K ≤ Kmax.

Then the injectivity radius of M is at least π/
√
Kmax.

Proof. See [3] Theorem 5.10.

Recall the Bonnet-Myers theorem:

Theorem. Let (M, g) be a complete Riemannian manifold with Rc(g) ≥ k > 0 for
some constant k > 0. Then M is compact and π1(M) is finite.

Lemma 7.9. ∃ ϵ > 0 such that R̃min ≥ ϵ on 0 ≤ t̃ <∞.

Proof. Let T ∈ (0,∞) such that ∀ t ≥ T the sectional curvature is 1/4 pinched. For
t ∈ [0, T ], R̃min : [0, T ] → R+ is a continuous function with positive value. For this
reason, R̃min ≥ ϵ1 > 0 for some constant ϵ1. As for t ∈ [T,∞), let M̃ be the universal
covering of M . Notice that M̃ inherits the metric and curvature in M , so its sectional
curvature is 1/4 pinched. Apply above lemma:

vol(M̃) ≥ C

(
π√
K

)3

for some constant C
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Since T is large enough, ∃ C ′ such that K(t) ≤ C ′Rmin(t) for any t ∈ [T,∞); so for
some other constant C

vol(M̃) ≥ CR̃
−3/2
min (t) ∀t ∈ [T,∞).

But we know vol(M̃) = |π1(M)|vol(M) = |π1(M)| (we assume vol(M) = 1 before).
We use Bonnet-Myers theorem to (M, g̃(0)), we know π1(M) is finite (normalized Ricci
flow just changes metric but not topology). Hence

CR̃
−3/2
min (t) ≤ |π1(M)| <∞ ∀t ∈ [T,∞).

Finally, we can find a constant ϵ > 0 such that Rmin ≥ ϵ > 0 for all 0 ≤ t <∞.

In conclusion, we know:
Theorem 7.10. The normalized Ricci flow has a solution on 0 ≤ t <∞ with

0 < ϵ ≤ R̃min(t) ≤ R̃max(t) ≤ C ∀t ∈ [0,∞);

ϵR̃g̃ij ≤ R̃ij ≤ R̃g̃ij ∀t ∈ [0,∞);

R̃max/R̃min → 1 and S̃/R̃2 − 1

3
→ 0 as t→ ∞

7.2 Exponential convergence
In this subsection, our goal is to show: g̃(t̃) will converge to a smooth metric with
constant positive curvature under the variation of normalized Ricci flow. If we can do
it, then the main theorem in Section 1 could have been proved. It is shown that the
method used here is similar to what we did in Section 6.3. The only difference is that
the estimates here are done in normalized Ricci flow. So we need some normalized
evolution equations at first. That is where we begins the proof.

Let ϵ C has the same meaning as in Theorem 7.10. Let C be a generic constant
here.

Suppose M3 is a closed Riemannian manifold. Let P and Q be two expressions
formed from the metric and curvature tensors under the flow

∂

∂t
gij = −2Rij;

and let P̃ and Q̃ be the corresponding expressions under the normalized flow

∂

∂t
gij =

2

3
rgij − 2Rij.

We say P has degree n if P̃ = ψnP under parameter t.
Lemma 7.11. Suppose P satisfies

∂P

∂t
= ∆P +Q
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for the unnormalized equation, and P has degree n. Then Q has degree n− 1 and for
the normalized equation

∂P̃

∂t̃
= ∆̃P̃ + Q̃+

2

3
r̃P̃ .

Proof. Since dt̃
dt
= ψ and g̃ij = ψgij, we have

∂

∂t
= ψ

∂

∂t̃

and
∆̃ = g̃ij∇̃i∇̃j = ψ−1gij∇i∇j = ψ−1∆.

It has provide one ψ before unnormalized equation, so Q has degree n− 1. Then

ψ
∂

∂t̃
ψ−nP̃ = ψ∆̃(ψ−nP̃ ) + ψ−n+1Q̃

−nψ−n∂ψ

∂t̃
P̃ + ψ−n+1∂P̃

∂t̃
= ψ−n+1∆̃P̃ + ψ−n+1Q̃

∂P̃

∂t̃
= ∆̃P̃ + Q̃+ n

1

ψ

∂ψ

∂t̃
P̃

Recall that 1 =
∫
dµ̃ = ψ3/2

∫
dµ. Differentiate both sides:

0 =
3

2
ψ1/2∂ψ

∂t

∫
dµ− ψ3/2

∫
Rdµ

0 =
3

2
ψ1/2∂ψ

∂t

∫
dµ− ψ3/2r

∫
dµ

1

ψ

∂ψ

∂t
=

2r

3

1

ψ

∂ψ

∂t̃
=

1

ψ2

∂ψ

∂t
=

2r

3

1

ψ
=

2r̃

3

This prove the lemma.

With this transform formula, it is not difficult to prove exponential convergence of
geometric qualities.

Lemma 7.12. ∃ constants C <∞ and δ > 0 such that

S̃ − 1

3
R̃2 ≤ C e−δt̃

Proof. Let f = S/R2 − 1
3
, f̃ = S̃/R̃2 − 1

3
. Note that f has degree 0. By Lemma 5.22

with γ = 2 we have
∂f̃

∂t̃
= ∆̃f̃ +

2

R̃
g̃pq∇pR̃∇qf̃ − 4P̃

R̃3
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By Lemma 5.24 we have

P̃ ≥ ϵ2S̃(S̃ − 1

3
R̃2) ≥ 1

3
ϵ2R̃2(S̃ − 1

3
R̃2)

4P̃

R̃3
≥ 4

3
ϵ3f

Now let δ = 4
3
ϵ3, ũq = 2g̃pq∇qR̃/R̃ we have

∂f̃

∂t̃
≤ ∆̃f̃ + ũk∇kf̃ − δf̃

Thus we get

∂

∂t̃
(eδt̃f̃) ≤ δeδt̃f̃ + eδt̃

(
∆̃f̃ + ũk∇kf̃ − δf̃

)
= eδt̃∆̃f̃ + eδt̃ũk∇kf̃

= ∆̃(eδt̃f̃) + ũk∇k(e
δt̃f̃)

Then by maximum principle ∃ C ∈ R such that eδt̃f̃ ≤ C . i.e. f̃ ≤ C e−δt̃. Recall that
R̃ has upper and positive lower bound, the lemma follows.

Corollary 7.13. |R̃ij − 1
3
R̃g̃ij| ≤ C e−δt̃. In particular, R̃c is uniformly bounded on

[0,∞).

Proof. Take eigenvalues λ̃, µ̃, υ̃ of the R̃ij then

|R̃ij −
1

3
R̃g̃ij|2 =

(
λ̃− 1

3
(λ̃+ µ̃+ υ̃)

)2

≤ 2

9
[(λ̃− µ̃)2 + (λ̃− υ̃)2].

In comparison,
S̃ − 1

3
R̃2 =

1

3
[(λ̃− µ̃)2 + (λ̃− υ̃)2 + (µ̃− υ̃)2]

The estimate follows by Lemma 7.12.

Lemma 7.14. ∃ constant C <∞ and δ > 0 such that

R̃max − R̃min ≤ C e−δt̃.

Proof. Let F = |∇iR|2/R+168(S − 1
3
R2). Then F has degree −2. From Lemma 5.36

(and its proof) with η = 0 we get

∂

∂t
F ≤ ∆F + 672R(S − 1

3
R2)

∂

∂t̃
F̃ ≤ ∆̃F̃ + 672R̃(S̃ − 1

3
R̃2)− 4

3
r̃F̃

The estimates in Lemma 7.4, Lemma 7.9 and Lemma 7.12 tell that we can find some
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constant C <∞, δ > 0 and ϵ > 0 such that

∂

∂t̃
≤ ∆̃F̃ + Ce−δt̃ − ϵF̃

∂

∂t̃
(eδt̃F̃ − Ct̃) ≤ ∆̃(eδt̃F̃ − Ct̃).

The maximum principle gives that ∃ constant C such that

eδt̃F̃ − Ct̃ ≤ C ∀t̃ ∈ [0,∞)

F̃ ≤ (C + Ct̃)e−δt̃.

The exponential function decays faster than linear function, so taking a slightly smaller
δ we have

|∇iR̃|2/R̃ ≤ C e−δt̃.

R̃ has upper bound:
|∇iR̃| ≤ C e−δt̃

Recall Lemma 7.4: let β > 0 such that R̃c ≥ 2β2R̃ming̃ and 2β2 = ϵ; L̃ is the diameter
of M3. Then in the proof of Lemma 7.4 we show

L̃ ≤ π

β
√
R̃min

=
π
√
2

2β2
,

and
|R̃max − R̃min| ≤ |∇iR̃|L̃ ≤ C

π
√
2

2β2
e−δt̃

Corollary 7.15. |R̃ij − 1
3
r̃g̃ij| ≤ C e−δt̃

Proof. There is

|R̃ij −
1

3
r̃g̃ij| ≤ |R̃ij −

1

3
R̃g̃ij|+ |1

3
R̃g̃ij −

1

3
r̃g̃ij|

= |R̃ij −
1

3
R̃g̃ij|+ |R̃− r̃|/

√
3.

The proof follows by Corollary 7.13 and Lemma 7.14.

Theorem 7.16. The metrics g̃ij(t̃) are all equivalent, and converge as t̃→ ∞ uniformly
to a continuous positive-definite metric g̃(∞).

Proof. Observe that∫ ∞

0

max
M

|g̃′ij|dt̃ = 2

∫ ∞

0

max
M

|R̃ij −
1

3
r̃g̃|dt̃ ≤ 2

∫ ∞

0

C e−δt̃dt̃ = 2C /δ <∞,

so this theorem follows by Lemma 6.14.
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The corollary 6.12 gives that

d

dt

∫
M

|∇nRc|2dµ+ 2

∫
M

|∇n+1Rc|2dµ ≤ C max
M

|Rc|
∫
M

|∇nRc|2dµ.

In the case of normalized Ricci flow, we have

d

dt

∫
M

|∇̃nR̃c|2dµ̃+ 2

∫
M

|∇̃n+1R̃c|2dµ̃ ≤ C max
M

|R̃c|
∫
M

|∇̃nR̃c|2dµ̃.

Furthermore, since Rc is bounded:

d

dt

∫
M

|∇̃nR̃c|2dµ̃+ 2

∫
M

|∇̃n+1R̃c|2dµ̃ ≤ C |
∫
M

|∇̃nR̃c|2dµ̃.

Let’s define a now tensor Ẽ=Ẽij by

Ẽij = R̃ij −
1

3
r̃g̃ij.

An observation is that ∀ n ∈ Z>0 we have

∇̃nẼ = ∇̃nR̃c. (r̃ is a constant)

Apply Corollary 6.7 to the tensor Ẽ: ∀ n ∈ Z>0∫
|∇̃nR̃c|2dµ̃ ≤ C

{∫
|∇̃n+1R̃c|2dµ̃

}n/(n+1) {∫
|Ẽ|2dµ̃

}1/(n+1)

Lemma 7.17. For every n, ∃ a constant Cn such that∫
M

|∇̃nR̃c|2dµ̃ ≤ Cn

Proof. Let An =
∫
|∇̃nR̃c|2dµ̃, B =

∫
|Ẽ|2dµ̃. Then

d

dt̃
An ≤ −2An+1 + CAn

≤ −2An+1 + CAn/(n+1)
n+1 B1/(n+1)

≤ −2An+1 + C ηAn+1 + C η−nB, (∀ η > 0)

where the third inequality is because tn ≤ tn+1 + 1 ∀ η ≥ 0 and let t = ηAn+1/B then
∀ η > 0 we have

An
n+1B ≤ ηAn+1

n+1 + η−nB

When η is so small that C η ≤ 2, then

d

dt̃
An ≤ CB

63



i.e.
d

dt̃

∫
|∇̃nR̃c|2dµ̃ ≤ C

∫
|Ẽ|2dµ̃ ≤ C e−δt̃ (for some δ > 0)

Then the lemma follows.

Lemma 7.18. For every n, p ∈ N+ we have∫
|∇̃nR̃c|pdµ̃ ≤ C e−δt̃

for C and δ > 0 depending only on n and p.

Proof. By Corollary 6.6, ∃ constant C such that ∀ 1 ≤ n ≤ N∫
|∇̃nR̃c|2N/ndµ̃ ≤ C max

M
|Ẽ|2(N/n−1)

∫
|∇̃N R̃c|2dµ̃

Take N = np: ∫
|∇̃nR̃c|2pdµ̃ ≤ C max

M
|Ẽ|2(p−1)

∫
|∇̃N R̃c|2dµ̃.

The RHS converges exponentially as shown before. The lemma follows.

Theorem 7.19. For every n ∈ N+ we have

‖∇̃nR̃c(t̃)‖∞ ≤ C e−δt̃

for some constant C <∞, δ > 0 depending on n.

Proof. The argument is similar to the proof in Lemma 6.16: let f̃ = |∇̃nR̃c|2p, 3 <
p <∞. The Sobolev’s inequality gives

‖∇̃nR̃c‖2p∞ = ‖f̃‖∞ ≤ C (t̃)

∫
{|f̃ |+ |∇f̃ |}dµ̃,

where C (t̃) is also uniformly bounded by Theorem 7.16. Thus ‖∇̃nR̃c‖∞ is exponen-
tially decreasing.

Corollary 7.20. For every n ∈ N+ we have

‖∇̃nr̃(t̃)‖∞ ≤ C e−δt̃

for some constant C <∞, δ > 0 depending on n.

Proof.
|∇̃nr̃(t̃)| ≤

∫
|∇̃nR̃(t̃)|dµ̃ ≤

∫
|g̃ij(t̃)|‖∇̃nR̃ij(t̃)‖∞dµ̃

Because g̃(t̃) is uniformly bounded,

|∇̃nr̃(t̃)| ≤ C ‖Rc‖∞ ≤ C e−δt̃

is exponentially convergent.
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Corollary 7.21. For all n ∈ N+,

‖∂ng̃‖∞ ≤ C e−δt̃

for some constant C <∞, δ > 0 depending on n.

Proof. The proof is similar to that of Lemma 6.17.

Theorem 7.22. As t̃ → ∞ the metrics g̃ij(t̃) converge to the smooth limit metric
g̃ij(∞) in C∞-topology. In special, the curvature R̃ij(t̃) converge to the curvature
R̃ij(∞).

Proof. By Weierstrass discriminance, ∀ α = (α1, α2, α3) ∈ N3,∫ ∞

0

∂|α|g̃ij
∂xα

(p, t̃)dt̃ and
∫ ∞

0

∂|α|R̃ij

∂xα
(p, t̃)dt̃

are uniformly convergent on p ∈M3. Thus ∀ fixed τ̃ ∈ [0,∞)

g̃ij(∞) := lim
t̃→∞

g̃ij(t̃) = g̃ij(τ̃) +

∫ ∞

τ̃

∂g̃ij

∂t̃
dt̃

= g̃ij(τ̃) +

∫ ∞

τ̃

{2
3
r̃g̃ij − 2R̃ij}dt̃

is differentiable in M3, and

∂|α|g̃ij(∞)

∂xα
=
∂|α|g̃ij(τ̃)

∂xα
+

∫ ∞

τ̃

{2
3
r̃
∂|α|g̃ij
∂xα

− 2
∂|α|R̃ij

∂xα
}dt̃.

Hence
∂|α|g̃ij(∞)

∂xα
= lim

t̃→∞

∂|α|g̃ij(t̃)

∂xα

Remark 7.23. A family of smooth functions h(t) :Mn → R converges to h(T ) :M →
R in C∞-topology as t→ T means: ∀ α = (α1, . . . , αn) ∈ Nn we have

∂|α|h(t)

∂xα
→ ∂|α|h(T )

∂xα
uniformly w.r.t M as t→ T .

Remark 7.24. In the proof of above theorem, we use the lemma citing from [11] 定
理 20.17 page 359. It states that:
如果函数 f 和 ∂f

∂u
都在 (t, p) ∈ [a,+∞)× [α, β] 上连续，积分

∫∞
a

∂f(t,p)
∂p

dt 在 [α, β]

上一致收敛，那么 φ(p) =
∫∞
a
f(t, p)dt 在 [α, β] 上可微，而且

φ′(p) =

∫ ∞

a

∂f(t, p)

∂p
dt, α ≤ p ≤ β.

Corollary 7.25. The limit metric g̃ij(∞) has constant positive curvature.

Proof. By Corollary 7.15:
lim
t̃→∞

R̃ij −
1

3
r̃g̃ij = 0
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and r̃(∞) ≥ R̃min(∞) ≥ ϵ > 0. Thus

R̃c(∞) =
1

3
r̃(∞)g̃(∞)

is a constant positive Ricci curvature.

Up to now, we show M3 with strictly positive Ricci curvature could be equipped
with a Einstein metric such that Rc = 1

3
rg, r > 0. As shown in Proposition 2.9, M3 has

constant sectional curvature 1
6
r > 0. Theorem 2.19 shows that the universal covering

of M3 is S3, where the smooth structure on S3 is inherited from the standard smooth
structure on Euclidean space R4. If M3 is simply-connected, then M3 is diffeomorphic
to S3 with canonical Riemannian metric. This finishes the proof of main theorem.
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Appendix

A Sobolev’s inequality
In this appendix, we will prove the Sobelev’s inequality of complete Riemannian man-
ifold Mm. Let C∞

0 (M) be the set of smooth function with compact support in M ;
W 1,p(M) = {f ∈ L1

loc(M)|f , ∇f are Lp measurable}, 1 ≤ p ≤ ∞. Let ωn be the area
of unit sphere Sn.

Theorem. Let Mm be a complete Riemannian manifold with injectivity radius δ0 > 0
and sectional curvature K satisfying the bound K ≤ b2. If p > m, there exists a
constant C(p) depending only on p such that for all f ∈ C∞

0 (M):

‖f‖∞ ≤ C(p)‖f‖W 1,p = C(p)(

∫
|f |p + |∇f |pdµ)1/p

Proof. Let φ(p) ∈ C∞(R) which satisfies: φ(t) = 1 in a neighbourhood of 0; φ(t) = 0
for t ≥ δ, δ ≤ min{δ0, π

2b
}. Let x be a given point of M then under normal polar

coordinate (r, θ)

f(x) = f(0, θ)φ(0)− f(δ, θ)φ(δ) = −
∫ δ

0

∂r(f(r, θ)φ(r))dr

|f(x)| ≤
∫ δ

0

|∇[f(r, θ)φ(r)]|dr

Let dσ = rm−1drdθ

ωm−1|f(x)| ≤
∫
Bδ(x)

|∇[f(r, θ)φ(r)]|r1−mdσ

≤
(∫

Bδ(x)

|∇[f(r, θ)φ(r)]|pdσ
)1/p (∫

Bδ(x)

r(1−m)qdσ

)1/q

=: I1I2 where 1

p
+

1

q
= 1

I1: g = drdr + gθiθidθ
idθi, 2 ≤ i ≤ m. Because K ≤ b2,

det g =
∏

gθiθi ≥
(

sin br
b

)2(m−1)

.

If r ≤ π/2b, then br
sin br

≥ 2
π

rm−1drdθ =
rm−1

√
det g

dµ ≤
(

br

sin br

)m−1

dµ ≤
(π
2

)m−1

dµ

I1 ≤
(π
2

)(m−1)/p

‖∇f · φ+ f · ∇φ‖Lp(Bδ(x))

68



I2:

I2 = (ωm−1)1/q
(∫ δ

0

r(m−1)(1−q)dr

)1/q

= (ωm−1)1/q
(
p− 1

p−m
δ

p−m
p−1

)1/q

Thus,
|f(x)| ≤ C(ω, δ0, φ,∇φ)‖f‖W 1,p

where C is a constant depending only on p finally.

B Poincare conjecture
The basic usage of Ricci flow is to solve three dimensional smooth Poincare conjecture:

Theorem B.1 (3-dimensional smooth Poincare conjecture). If Σ is a simply-connected
closed smooth manifold of dimension 3, then Σ and the 3-sphere S3 are diffeomorphic.

This conjecture is solved in 2003 by Grigori Perelman. The main theorem of this
article is just a special case of the theorem.

Historically, Poincare first conjectured that if a 3-manifold Σ has the same homol-
ogy groups as S3, then Σ and S3 are homeomorphic. However, Poincare discovered an
example ΣP , called the Poincare homology sphere, such that ΣP and S3 are not home-
omorphic. Thus, Poincare added the requirement that Σ should be simple-connected.
The Whitehead theorem could be used to generalize this statement.

Theorem (Whitehead theorem). A map f : X → Y between simply-connected CW
complexes is a homotopy equivalence if f∗ : Hn(X;Z) → Hn(Y ;Z) is an isomorphism
for each n.

Proposition B.2. Let Σn be a simply-connected smooth manifold with the same ho-
mology group as Sn, n ≥ 2, then Σ is homotopic to Sn.

Proof. Since Σn is smooth, by Morse’s function theorem, Σn has a CW-structure. Let
Σk be the k-skeleton of the CW-structure of Σn. Consider the homology sequence of
the cofibration

Σn−1 → Σn → Sn,

we have isomorphism q∗ : Hi(Σ;Z) → Hi(Sn;Z), ∀i ≥ 0. Hence, Σ is homotopic to
Sn.

Thus, the key point here is homotopic-equivalence between Σ3 and S3. Many
different versions of Poincare conjecture is based on the assumption of homotopic-
equivalence:

Theorem B.3 (Higher dimensional n ≥ 5). If Σn (n ≥ 5) is a smooth n-manifold
homotopic-equivalent to Sn, then Σn is homeomorphic to Sn.

The higher dimensional Poincare conjecture is proved by Stephen Smale in 1961.
The basic tool is the h-cobordism theorem.
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Definition B.4. Let W n+1 be the cobordism of Mn and Nn where W,M,N are all
smooth manifolds. M and N is called a h-cobordism if W is homotoptic equivalent to
the trivial cobordism M × [0, 1].

Theorem B.5 (h-cobordism theorem). Let Mm and Nm be compact simply-connected
oriented smooth n-manifolds that are h-cobordant through the simply-connected (n+1)-
manifold W n+1. If n ≥ 5, then there is a diffeomorphism

W ∼= M × [0, 1],

which can be chosen to be the identity from M ⊂ W to M × 0 ⊂ M × [0, 1]. In
particular, M and N are diffeomorphic.

Furthermore, when n = 5, 6, one can show Σn is diffeomorphic to Sn. When
n = 7, Milnor’s exotic sphere shows that the homeomorphism could not be improved
to diffeomorphism.

Smale’s proof fails when n = 3, 4 because it needs Whitney’s trick to cancel in-
tersection points. The Whitney’s trick requires us to find an embedding disk in the
manifolds Mn. Also, the embedding map f : Pm → Q2m+1 is dense in all differentiable
map from P to Q. Thus this embedding is promised when n ≥ 5 and it fails in lower
dimensions.

The story in dimension 3 has been claimed before.

In dimension 4, the topological Poincare conjecture is solved by proving a topo-
logical 4-dimensional h-cobordism theotrem. This work is done by Casson, Wall and
Freedman.

Theorem B.6 (Wall’s Theorem on h-cobordisms). If M and N are smooth, simply-
connected, and have isomorphic intersection forms, then M and N must be h-cobordant.

Theorem B.7 (topological 4-dimensional h-cobordism theotrem). Let M4 and N4 be
compact simply-connected oriented smooth 4-manifolds that are h-cobordant through
the simply-connected 5-manifold W 5. Then there is a homeomorphism

W ∼= M × [0, 1],

which can be chosen to be the identity from M ⊂ W to M × 0 ⊂ M × [0, 1]. In
particular, M and N are homeomorphic.

Theorem B.8 (topological 4-dimensional Poincare conjecture). If Σ4 is a smooth
4-manifold homotopic-equivalent to S4, then Σ4 is homeomorphic to S4.

Remark B.9. This result can be generalized to the case that Σ4 is just a topological
4-manifold.

However, the smooth version of 4-dimensional Poincare conjecture is still open up
to now:

Conjecture B.10. If Σ4 is a smooth 4-manifold homotopic-equivalent to S4, then Σ4

is diffeomorphic to S4.
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