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[ABSTRACT)]: This article gives an introduction to the work of R.S
Hamiton [7] in 1982. In [7], Hamilton built the foundation of Ricci flow.
With Ricci flow, Hamilton shows that every closed smooth 3-manifold with
strictly positive Ricci curvature could be endowed with a constant posi-
tive sectional curvature. This theorem is a special case of 3-dimensional
Poincare conjecture. Meanwhile, the Ricci flow is the main tool to prove

3-dimensional Poincare conjecture.

[Keywords]: Ricci flow, Ricci curvature, Poincare conjecture
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Preface

This article is a note about Hamilton’s 1982 paper [7]. The writer chose this as his
undergraduate thesis. The main body generally follows the structure of [7]. T show
how the metric on initial manifold varies under the Ricci curvature so that it flows to
an Einstein metric. Some proof are not the same as the initial one because some better
methods appear in other references. In Appendix A, I show the Sobolev’s inequality in
manifold version, which plays an important role in estimating the convergence speed
of metric. The Appendix B is a brief survey about the history, tools and conclusions
about the Poincare conjecture. The latter one is an important motivation to develop
the Ricci flow theory. It could help ones realize the whole math story.



L.

Introduction

It is known that if a topological manifold M can be equipped with a smooth structure,
there is a smooth Riemannian metric associated to this smooth structure such that M
is a Riemannian manifold. On the other hand, the curvature tensor, which shows how
the manifold warps, is an intrinsic geometric property depending only on metric.

smooth structure = Riemannian metric = curvature.

Now one can ask: if one knows the curvature on a smooth manifold M, what we can
say about the smooth structure in M? This question has been responded in many
different aspects. The main body of this article is also aimed to give some answers to
this question. In fact we are going to show this Main Theorem:

Theorem (Main theorem). Let (M, g) be a closed Riemannian manifold of dimension
3 which admits a strictly positive Ricci curvature. Then (M, g) also admits a metric
of constant positive sectional curvature. In particular, when M is simply connected,
M s diffeomorphic to a 3-sphere.

According to the knowledge of space form, we know the universal covering space of
(M, g) is diffeomorphic to S*. That is why we deduce the particular case. The proof
is mainly related to the Ricci flow equation:

9,
8_? = —2Re, ¢(0) = initial metric on M. (1)

We want to variate the metric on the contrary side of Ricci curvature, so that the
curvature could be close to each other and finally has a constant sectional curvature.
This idea is natural and we could show the short time existence via a method called
DeTurck trick. Many estimates about curvature as time flows could be done as well.
However, the solution of (1) always blow up in a finite time. This result pushes us to
consider another equation, the normalized Ricci flow:

0 2
500 = 79— 2R;;, ¢(0) = initial metric on M, (2)
n

where n = dim M. It could be shown that the solution of (1) and (2) can transform to
each other via a factor ¢(t). The estimates on curvature of (1) could be transformed
to (2) and finally prove the main theorem.

Preliminary

2.1 Riemannian manifold

This section is a review of knowledge about manifold, metric, connection and curvature.

Definition 2.1 (smooth manifold). A smooth manifold of dimension n is a set M and
a family of injective mappings x,: Uy, C R™ — M of open sets U, of R™ into M such
that:

(1) Una(Us) = M.



(2) for any pair o, B, with x,(Us) N 25(Us) = W # 0, the sets o (W) and mgl(W)

are open sets in R™ and the mappings :zzgl o x, are smooth.
(3) The family {(Uy, x,)} is mazimal relative to the conditions (1) and (2).

The pair (U,,X,) (or the mapping x,) with p € x,(U,) is called a parametriza-
tion (or system of coordinates) of M at p; x,(U,) is then called a coordinate
neighborhood at p. A family {(U,,x.)} satisfying (1) and (2) is called a smooth
structure on M.

Definition 2.2 (Riemannian metric). A Riemannian metric g on a differentiable
manifold M is a correspondence which associates to each point p of M an inner

product g,(—,—) (i.e. a symmetric bilinear, positive-definite form) on the tangent
space T,M, which varies smoothly in the following sense: If & : U C R* — M s
a system of coordinates around p, with (xy,xs,...,x,) = q € x(U) and %(q) =

dzy(0,...,1,...,0), then go(:2(q), 3= (q)) = gij(x1,...,2,) is a smooth function on
U.

Remark 2.3. The inner product at p could also be denoted by (—, —), or simply (—, —).

A manifold M equipped with a Riemannian metric g is called a Riemannian man-

ifold, denoted by (M, g).

Theorem 2.4 (Levi-Civita connection). On a Riemannian (M,gq), there exists a
unique connection on the tangent bundle T M such that:

(1) VyY — Vy X = [X,Y].
(2) Xg(Y,Z) = g(VxY,Z)+ g(Y,VxZ)

Jor VXY, Z € I(TM). Here I'(TM) denotes the set of smooth global section of the
tangent bundle TM (i.e. the smooth vector fields of M ). This connection is called the
Levi-Civita connection of M, which is defined as follows:

(VY Z) = %{)qz, Y) +Y(X, Z) — Z(X,Y)

_<[X7 Z]7Y> - <[Y7 Z]’X> + <[X7Y]’Z>}

Suppose that p € M, (U,x) be a local coordinate for p. Let {0; = % ", be the
associated basis of T, M. Let Ffj € R such that

Vo,0; = T';0k,
then we can deduce that
rk _1 kl{a, 1+ 0;0i — 019i}
ij 29 19l 1 il 19ij 5 »

where (g"/) is the inverse matrix of (g;;).



Definition 2.5 (curvature). The Riemannian curvature Rm of a Riemannian
manifold (M, qg) is a correspondence that associates to every pair X,Y € I'(M) a
mapping Rm(X,Y) : T(TM) — I'(TM) with

Rm(X, Y)Z = vayZ — VyVXZ — V[X,y}Z

forall Z e I(TM).

Let (U,x) be a local coordinate for p € M; let {0y = 8%1, ey O = %} denote the

associated basis of T, M. Then Rw w» Rijrs are tensors of M such that

(1) Rm(@z, 8])8k = Rﬁj,ﬁl
(2) Rijrs = (Rm(0;,0;)0k, 0s) = Ri;191s-
The notations defined above satisfy the following rules:

1) Rj, = oT%, — ol + T} 1%, — T T

ip~ jk Jp— ik

(1)
(2) Rijrs = Z]kgls§ Réjk = RijstSI-

(3) (first Bianchi identity) Rijks + Rjkis + Riijs = 0.
(4) R

4 ijks — Rjzk:s; Rijks = _Rijsk; Rijks = Rk:sij-

The Riemannian curvature Rm contains nearly all information about the shape
change of manifold. But even just a part of this information could have described the
shape change of manifold. Hence the Ricci tensor, which is defined as a trace of Rm,
could be helpful in our main theorem.

Definition 2.6 (Ricci tensor; Ricci curvature; scalar curvature). The Ricci curvature
Re:T(TM)xT'(TM) — R is :

(Y, Z) — trace of the map: X — Rm(X,Y)Z.

In local coordinate, R;; == Rc(0;,0;) =Y, Rfij = Ryijsg®.

Let v be a unit tangent vector on T,M, the Ricci curvature in the direction v is
defined as Ric,(v) := Re(v,v). Moreover, the scalar curvature R is defined to be
the trace of Re, i.e. g R;;.

Definition 2.7 (sectional curvature). Let o be a plane inT,M spanned by X,Y & T, M.
(Rm(X,Y)Y,X)

The sectional curvature K (o) := XAV 2

Definition 2.8 (Einstein manifold). A Riemannian manifold (M, g) is an Einstein
manifold if its Ricci curvature is a constant times its Riemannian metric. i.e. 3 a

constant X such that for all X, Y € I'(TM) we have Re(X,Y) = Ag(X,Y).

Proposition 2.9. If M is 3-dimensional Einstein manifold, then M has constant
sectional curvature.

Proof. In normal coordinate, we have

Ri1 = Rigo1 + Rigs1, Raoa = Rig91 + Razse, Raz = Rigs1 + Rasso



1 1
Rigo = 5(311 + Ry — R33) = 5)\7

In similar, Ri331 = Ro332 = %)\. Hence, M has constant sectional curvature. ]

Example 2.10. The unit n-sphere S™ has a natural smooth Riemannian metric g by
embedding it into R"*1:

g=dr' @dx' + - + dae" ® da"
The Riemannian curvature of S™ is
Rm(X,Y, 2, W) = (Y, Z)(X,W) — (X, Z)(Y, W), X,Y,Z,W € D(TS");

so the sectional curvature unit 3-sphere is 1. Let {X;}I, be a normal coordinate of
S,

Ry = Re(X;, X;) ZRmXZ,Xk,Xk,X)

= (X, X;) Xk,xk>—<xi,xk><xk,xj>]:<n—1)5ij:(n—1>gij.

This shows that S™ is an Einstein manifold. In particular, let n = 3 by Prop 2.9, the
sectional curvature is (3 — 1)/2 = 1, which corresponds to previous calculation.

2.2  Covariant derivative

Let I'(M) be the set of smooth functions of smooth manifold M; let 77 M denote the
vector bundle
TM=TM® - TMT"M®---T"M.

WV WV
r times s times

Definition 2.11 ((r,s) tensor field). A smooth (r,s) tensor field T is a smooth section
of the vector bundle T M :

TeT(TM)@ - @T(TM)T(T*M)® - @ T(T*M) .

J/ J/

Vv Vv
r times s times

It could be viewed as a I'(M)-multilinear function:

D(T*M) x -+ x T(T*M) x I(TM) x --- x T(TM) — T(M).

J/

Vo vV
r times s times

In local coordinate (U, x), T could be expressed as:

T|,=> T\ioe - ®0,ed'®- - @dx,

-----

where T """ " are all smooth functions of M. The inner product on T'M can be naturally



generalized to tensor field. For example, if T,U € T'(T2M), then
(T.U)p = 979""9"" Gungn T1i, Ty

Proposition 2.12 (covariant derivative). Let (M, g) be a Riemannian manifold, X €
L(TM), then there ezists a unique I'(M)-module homomorphism Vx : I'(TIM) —
L(TTM) for every r,s € Z=° such that:

(i) Vx(TRT)=(VxT)T' + T @ (VxT') for any T, T € T'(TTM).

(i) The contraction C commutes with Vx. i.e. for any T € I'(TIM), we have
C(VxT) = Vx(CT).

(iii) Vxf=Xf forevery f € T(M).

(iv) Vx : Ty (M) =TM — Tyg(M) = TM s the Levi-Civita connection associated to
(M, g).

The mapping satisfies these conditions is the covariant derivative on (M, g).

The formula of covariant derivative is: V o € I'(T7 M), X, Y1,...,Y; € I(TM),
01,...,05 € T(T*M), the covariant derivative V y« satisfies

(Vxa)(0y,...,0.,Y1,...,Ys) = X(a(by,...,0,,Y1,...,Ys))
=Y by, Vi 0 Y1, Y =) alby, .0, Y0, VYY),

=1 j=1

where Vx0, 0 € IT'(T*M) is
(Vx0)(Y) = X(0(Y)) = 0(VxY), Y eDl(I'M).
It is natural to define the so called covariant differential V which maps every

(r,s) tensor field T" to a (r, s+1) tensor field VT

VT : (X,wh, .., w" Xy, ., X)) = VT (W w0, X, X,

V 1-forms w’, V vector fields X ; and X.

The covariant differential of the metric ¢ is O:
V(X,Y,Z) = (Vxg)(Y: Z) = Vx(g(Y, 2)) - g(VxY, Z) — g(Y,VxZ) = 0
for every vector fields X, Y, Z € I'(TM).
In a local coordinate, V; := Vy,. For T' € I'(T] M) we have:
VIt = (VT (de® .. da*r, 0y, .., ;)

=C(VT®d"® - @d™®0, ® - ®07,)

8



=C(Vi(T®d" ® - @dif" @0, @ ®09,,)

DN Tod"® - @Vidh e - @d" 20, 00,
l
DN Ted"® - @d" 20,0 @V, ®0,)

= Vi(T(dx’“, ce ,dxk’“,ﬁjl, ce 78]‘3))
= T(dat, . Vida, L datr 0y, 0;)

m
s VTk?l ----- kr — aTkl ----- Ky _ I“p Tkl ----- ky + szTkl wki—1,qki41 5 ky
U G1sen]s v G1sends z : Uk ™ JlseosJk—1,D3Jk+15e-1Js z : UG~ J1sen]s
l m
This calculation implies the following properties:
Proposition 2.13.
k1, ko k1, I T 2 A PO kr ky k- kz 1,8k, ke
(1) VT ----- Js aT ----- J Zl K 91 Jk=15PJk415-]s Zm quTn -----

(2) ViRjk = 8@'Rjk - Ff'Rpk - kaij
(3) ViRl = O;R, — TV R — T8 R —

ij " “pkl

P pm m PP
jpl F Rjkp FZPRJM

(4) ViRjklm = aiRjklm - F%Rpklm - FZkajplm - Fflekpm - Fiijklp

The Riemannian curvature Rm could be viewed as a (1,3) or a (0,4) tensor field.
This viewpoint helps us to implies the second Bianchi identity:

Proposition 2.14 (second Bianchi identity). The curvature tensor Rm(X,Y)Z sat-
isfies
(VxBm)(Y, Z, W)+ (VyRm)(Z, X, W)+ (VzRm)(X,Y,W) =0

YV wvector fields X,Y, Z, W

i.e.

ViRjkim + Vi Riim + Vi Rijim = 0.

Proof. Tt suffices to prove it when X,Y, Z W are coordinate basis {0;} ;. For these
X, Y, Z, W we have
VxY =VyX (1)

Rm(X, Y)Z = VvaZ — VYVXZ (2)
View Rm as a (1,3) tensor field then

(VxRm)(Y, Z,W) = Vx(Rm(Y, Z)W) — Rm(VxY, Z)W
—Rm(Y,VxZ)W — Rm(Y, Z)VxW



(Vme)(}/, Z, W) = VvaVZW - VXVZVYW
—Rm(VxY, Z)W — Rm(Y,VxZ)W — Rm(Y, Z)VxW

(VyRm)(Z, X, W) = Vyv2VXW — VyVXvZW
—Rm(Vy Z, X)W — Rm(Z,Vy X)W — Rm(Z, X)VyW

(Vsz)(X, }/, W) = VZVXVYW — VszVXW
—Rm(VzX, Y)W — Rm(X, VY)W — Rm(X,Y)V W

Apply (1):

(VxRm)(Y, Z,W) + (VyRm)(Z, X, W) + (VzRm)(X,Y, W)
=VxVyVW = VxVVyW — Rm(Y, Z)V xW
+Vyvzvxw — VYVXVZW — Rm(Z,X)VyW
+VZVXVYW — VszVXW — Rm(X, Y)Vzw

Apply (2):

=VxVyV W = VxVzVyW — VyV VW + VVy VIV
+VyVVxW = VyVxV W =V VxVyW + VxV,Vy IV
+VVxVy W =V Vy VW = VxVy VIV 4+ VyVx VIV =0

Corollary 2.15 (second Bianchi identity — contract form 1).
gjlijlmki = ViRpm — ViR

Proof.
9"V i Riki = —¢"'ViRjtim — ¢ Vi Rijim = ViRim — Vi Rim

Corollary 2.16 (second Bianchi identity — contract form 2).
VjRij = %ViR where V7 = ¢V,
Proof. Prop 2.15 tells that
9" g (ViRjkim + Vj Riitm + ViRijim) = 0

Vk;R — glszka + gﬂijkl = QVIRM
Proposition 2.17 (Ricci identity). Let T' € I'(T7(M)) we have

r

(ViV; = V;VOTioy =Y R}

S
Uil =105 k4 155l Z P l,ele
,,,,, leAk1,~~~,ks Rijszkh--wszhP,sz
k=1 =1

Now consider the issue of higher derivatives.

10

.....



Consider the operators:
VF L T(TIM) — T(TL M)
defined for k > 1. U T € IN(TI'M) and X3, ..., Xy € I'(TM), then inductively define

Vl;(l x I = (Vlek_lT)(X27 e Xn).

-----

In this notation, Rm could be expressed as follows

(V2Z)(X,Y) = (V22)(Y. X) = (VxVZ)(Y) = (VyVZ)(X)
== VXVYZ — VvaZ — VYVXZ + nyXZ == Rm(X, Y)Z

for vector fields X,Y, Z € I'(TM).

The concepts of gradient, Hessian, divergence, and Laplacian can be generalized
to Riemannian manifold (M, g): Suppose f € I'(M), X € I'(T'M). Let o be a (0, p)
tensor field, and let 7" be a (r, s) tensor field.

(1) The gradient of f, Vf, is a vector field such that (Vf, X) = X(f). In local
coordinate V f* = ¢ 0;(f)

(2) The Hessian of f is V2f € I'(T*M ® T*M). Then in local coordinate
(3) The divergence of « is a (0,p — 1) tensor. In local coordinate

(le Oé)il ..... ip—1 - gjkvjak:,il,...,ip71
(4) The Laplacian of T, AT, is defined as ¢“V,;V,T

2.3 First-order differential operators on forms
Let M™ be a smooth manifold of dimension n. A p-form 6 is a smooth section of the
bundle A P(T*M), i.e.

p

6 € Q" (M) =T(/\(T"M)).

The exterior derivative is the family of operators

d=d,: Q'(M) — Q' (M)

11



defined for all p-forms 6 and vector fields Y;,...,Y), by

do(Yy, ..., Y,)

= (D)0, ..., Vi, Y, Y)
0<i<p

+ Z (_1)Z+J9<[K7}/3]a%a7&77}%7’}/;7)
0<i<j<p

Although df is independent of the Riemannian metric, the Levi-Civita metric could
help us compute df:

p

dO(Yo,....Y,) =Y _(=1)"(Vy.0)(Yo,....Yi,...,Y,).

=0

2.4 Lie derivative

Let X be a differentiable vector field on a smooth manifold M, i.e. a smooth section
in tangent bundle 7'M, and let p € M. Then there exists a neighbourhood U C M at
p, an interval (—d,0), 6 > 0, and a differentiable mapping ¢ : (—=4,d) x U — M such
that the curve t — (t,q), t € (=6,0), ¢ € U, is the unique curve which satisfies

%_f = X((,D(t, Q))v (,0(0, q) =q.

Let’s define the mapping ¢; : U — M by ¢i(q) = ¢(t,q). The map ¢, is called the
local flow of X. It is easy to see ¢y is a local diffeomorphism of M.

Proposition 2.18. Let XY be differentiable vector fields on a smooth manifold M,
let p e M, and let @, be the local flow of X in a neighbourhood U of p. Then the Lie
bracket satisfies

X Y)(p) = (XY — YX)(p) = lim o[V — (). Y]((p)) € T,M

t—0 ¢

Now we can generalize this property to define the Lie derivative of a tensor field.
Let a be a tensor field and X be a complete vector field which generates a global 1 -
parameter group of diffeomorphisms ¢;. The Lie derivative of o with respect to X is

defined by
!
Lxa = lim (o~ (¢).a)

In similar to the definition of covariant derivative, the Lie derivative, which measures
the infinestimal lack of diffeomorphism invariance of a tensor with respect to a 1-
parameter group of diffeomorphisms generated by a vector field, has the following
properties:

(1) If f is smooth function, then Lx f = X f.
(2) If Y is a vector field, then LxY = [X,Y].

(3) If «, 8 are tensor fields, then Lx(a® ) = Lxa® 4+ a @ Lx[.

12



4) Y ae(TIM), X,Y1,....Ys € I(TM), 6,,...,0, € I'(T*M), the covariant
derivative V x« satisfies

(Lxa)(0r,....0,,Y1,....Y)) = X(alby,...,0,,Y1,....Yy))

T S

—Za(@l,...,EXHZ-,...,QT,YL...,YS)—Za(é’l,...,ﬁth...,ﬁij 7}/5)

1=1 =1

:X(@(el,...,era}/i?"'a}/;))

<

r

=Y by, Lxbi 0, Y1, YY) =Y alby, 60, Y (XYY,

i=1 =1

vl

<

where Lx0, 6 € I'(T*M) means

(Lx0)(Y) = X(0(Y))

|
=
=
S
=

X
= dO(X,Y)+Y(0(X)), Y eTD(TM).

Even though the definition of Lie derivative is independent of the Riemannian metric,
the metric (and the Levi-Civita connection induced by this metric) could help us
compute the Lie derivative. This is because

LxY =[X,Y] = VxY — VyX.

Thus if « is a (0, 7)-tensor field, Y7, ..., Y, are vector fields, then

r

(Lxa)(Vi,. V) = X(a(Yi,....Y;) = > a(Vi,.. Vi, LxY;, Yigr, .. Yy)

i=1
= (Vxa)(Yi,....Y,) + > a(Vi,...,Yiq, Vv, X, Yig,....Y,).
i=1
In particular, if 8 is a covector field and X, Y are vector fields, the Lie derivative of #
is given by
(Lx0)(Y) = (VxO)(Y) + 0(Vy X)
Example. Let X,Y1,Y, € I'(TM). The Lie derivative of Riemannian metric g is

(‘CXg)(YhY?) = g(vYnX) +g(Y17VY2X)7

(EXg)ij = VZXJ + V]Xl
In particular, when X =V f, f e I'(M), (Lvrg)ij =2V,V,f.

2.5 Space form

There is a standard result about the classification of Riemannian manifold with con-
stant sectional curvature.

13



Theorem 2.19. Let M™ be a complete Riemannian manifold with constant sectional
curvature K. Then the universal covering M of M, with the covering metric, is
1sometric to:

(a) hyperbolic space H", if K = —1,
(b) Euclidean space R", if K =0,
(c) sphere S™, if K = 1.
Proof. See [6] Theorem 4.1 page 163. O

If M is a topological space, we say that the group G (of homeomorphisms of M)
acts in a totally discontinuous manner if every x € M has a neighborhood U such that
gU)NU =0, forall g € G, g #e.

Proposition 2.20. Let M be a complete Riemannian manifold with constant sectional
curvature K(1,0,—1). Then M is isometric to M/F where M is the universal covering
space of M, T'is a subgroup of the group of isometries of M which acts in a totally
discontinuous manner on M and the metric on M/F is induced from the covering
T M — M /L.

Proof. See [6] Prop 4.3 page 165. O

Evolution equations

In this section, let (M, g) be a compact Riemannian manifold of dimension n. The
Ricci flow means the following differential equation:

0

5% = ~2Ry (%)

Naturally, we should use the evolution equation (x) to find out evolution equations of
other variables in M. For convenience, consider the evolution equation

0

5% = hij (%)

where h is a symmetric (0,2) tensor. If we want to get the evolution equations for
Ricci flow, it suffices to substitute h for —2Rc. Furthermore, it is a trick to do the
calculation on a normal coordinate of p € M, where g = g;;dz’ ® dz? and

xl(p) =0, gij(p) =3dij, dgij(p) =0, FZ‘(I)) =0 Vi, j k.

That is because tensor field is invariant under coordinate transformation, the result
established at a normal coordinate also establishes at other coordinates.

The following results are the evolution equations originate from ().

Lemma 3.1.

0 ik gl
Jb— gt hi
8t g g Nk
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Proof.
o .. 0 0
=5 . Qs 0. g, =0 — — _gkp
9 g]l = = at Tgitg atggl 8?5 - gji g kl

: m . 0 iiom & im
Multiply ¢"™ on both sides: Eg 107 = —g kg b

Thus, let m = 7 we get the desired result. [

Lemma 3.2. 5 .
EF’“ = §gkl(vihjl + Vjhy — Vihy;)

Proof.
1
Il = 59" {0951 + 0190 — Orgis}
2["“ 1 a kl
ot Y 2825

In normal coordinate of p € M,

1
(091 + 0;9i1 — 01945) + 59“ - (Oihji + O;hit — Oyhij)

aigjl( ) =0, 8ihjl(p) = vihjl(p) Vi, j, k.

0 1
= EFZ (p) = §gkl(vihjl + V;hqy — Vihi;)(p)
The difference of two connection is a (1,2) tensor, so at point p, the above formula
establishes in every parametrization of p for any p € M. Hence, we get the desired
result:

0 1
aFk = §gkl(Vz-hjl + V,hi — Vihi;)
O
Lemma 3.3.
éRl.A _ lglp { ViVhi, + ViVih, — Vinhjk}
ot 27 | =V, Vil — Vi Vihiy + YV, Vohi
Proof.
Rl = 0%, — ;T + I, 1%, — I I,
In normal coordinate of p:
0 0 0
SRG) = ST () — O T )(0)
1
= 0:(59" (Oshup + Fhyp — Fphix)) ()
1
- 3]‘(59”’ (Oihp + Okhip — Ophir)) (p)
. 1 Ip 0¢8jhkp + 8iakhjp — 82-8phjk ( )
297\ —0,0ih1y — 0;06hiy + 00,
In normal coordinate V = 0 at p. It is done. [

15



Remark 3.4. Apply Ricci identity to above formula we get

0 Op 1glp ViVihj, +V;Vyhi, — ViVphj
ot k2 ~V;Vihiy = Rl hgy — RE g [
Lemma 3.5.
0 L o
aRjk = §g (Vquhkp + VVihi, =V Vohi, — Vjvkhqp)
Proof.
1 g ViVl + ViVih, — ViVphj
otk = (‘3tZR”k 29\ =V, Vihiy — V,Vih, AV S
JjVillkp i Vihip + vavphlk’
0 1
8153” (V V. hkp + V; th]p VZ-Vphjk — Vjvkhip),
because h is symmetric. O

Lemma 3.6. Let H := g'*hyy,

9 R~ _AH +V"Vhy, — (h, Re)

ot
Proof.
0 0 0
R - Jk Jk:
o= g0 Bw) = g0 Rox 97 5 B

L1
= " haRji + 7 59 (Vo iy + Vo Vihsy = VoVl = V;Vihgy)

—(h, Rc) + ¢"'V V' hj, — AH
—(h, Rc) + V*Vih,, — AH

Remark 3.7. Notice that
div(div h) = ¢"V,(div h); = g 9V:g"Vhy; = VIV hy,

— %R = —AH + div(div h) — (h, Rc).

Lemma 3.8. Let du = \/det g;;dz* A --- A dz™ be the volume form. Its evolution
equation is 2-dp = Ldu, where H = g hy;.

Proof.
9 —— ; H
6t ,LL - 2 g a g’L] det gz]dx - ]hU d/,L = —d/,[/ ]

Corollary 3.9. If (M,g) is a closed Riemannian n-mamfold then

d 1
d — [ (:RH -
dt/MRd,u /M(QR (h, Rc))dp

16



Proof.

0 0 0
E(Rd#) =B dp+ Ra(dﬂ)

H
= (—AH +div(div h) — (h, Re))du + REd,u

The divergence theorem tells that
/ div(div h)dp =0
M
/ AH:/ div - VHdpu =0
M M
4 [y —/Q(Rd )—/(ERH—UL Re))d 0
at ] T e T N e

4.  Short time existence

In this section, let (M, g) be a closed Riemannian manifold with dimension n. This
section is aim to show the equation of Ricci flow has a short time a unique solution on
M.

4.1 Linearization of Ricci flow

Notice that

Rij = Rij = O — 0T + T}, 1% — T3, T,

1 . 1 .
= 31[59"’{83'9@ + OkGjp — Opgjn}] — 3j[§92p{3i9kp + Ok9ip — OpGir }|

+ terms of first derivatives of g + terms of g;;

1 .
= 59”’{@3169]';0 — 0i0p9jk — 0;0kGip + 0;0,9ik }

+ terms of first derivatives of g + terms of g;;

Hence the Ricci flow could be expressed as

0 )
agij = ¢P{—0,0kg;p + 0:0p9;i, + 0;OkGip — 0;0p9:r } + lower order terms,

so it is a system of nonlinear parabolic differential equation of g. A useful method
to see whether a short time solution exists is to see its parabolicity, which would be
defined later.

4.1.1 The symbol of a nonlinear differential operator

Let &£, F be smooth vector bundles over M. A linear differential operator L of order &
is a morphism between vector bundles:

L:T(€)—TI(F),

17



written as L(E) = Y L,0°E

| <k

where L, € Hom(&, F) is a bundle homomorphism for each multi-index «. For exam-
ple, if L is with order 2, let {2'} be a local parametrization of p € U; let {e;}, {f;} be
basis for £, F in local coordinate, then for u = we; € I'(E)

k 82ul 8

u
' 9o T (i)} Ipi L 0Fu) fr,

Lu = {(\ij)

where (\;;)F, (n:)F, 0 are all independent of w.

A total symbol of L in the direction & € I'(T* M), denoted as o[L](§), is a bundle
morphism such that

=Y L.(I;¢YE), VEE€eT(E).

|| <K

A principle symbol of L in the direction £ € T'(T*M), denoted as [L](€), is a bundle
morphism such that

ILIE)(E) = Y La(lEWE), VE eL(E).

|a|=k
In previous example
a[L)(€)(u) = {(Nij)[&&yw + () €0w + 0w} fi
GILY(E) (u) = (Nj)i&&junfr, Vu € T(E).
Suppose M is another linear differential operator, by the rule of derivative, we have
o[M o L|(§) = g[M](§) o 7[L](&)-

Let SyT* M be vector bundle of symmetric (0,2) tensor; let Sy T*M be a subbundle
of SoT*M which is positive-definite. In the situation of Ricci flow, we know Rc :
L(SyT*M) — T'(SoT*M) is not a linear differential operator. But taking derivative
gives a way to linearize Rc at metric g € I'(S; T*M). The linearization D(Rc,) :
[(SeT*M) — T'(SeT*M) is D(Rey)(h) = %L:Og, where ¢(t) := g + th, for any
h € T'(SoT*M). It is easy to check D(Rc,)(h) is a linear differential operator over h.
Specifically, by Lemma 3.5 we have

1
[D(Rcg)(h)]ji = §gpq(qujhkp + VoVihjp = VoVphjr — V;Vihe).

The principle symbol in the direction & of the linear partial differential operator D(Rc,)
is the bundle homomorphism

G[D(Re)|(€) : SaT*M — SyT*M

18



BID(REE) ()i = 50 (& + Eihsy — Gt — Eiihar)

A linear partial differential operator L : I'(€) — I'(F) is side to be elliptic if its
principal symbol o[L](§) is an isomorphism whenever ¢ # 0. A nonlinear operator
N : (&) — I['(F) is said to be elliptic if its linearization D[N] is elliptic. A short
remark is that for a linear operator L:

D[L,|(h) = %\SO(Z Lod%g(s)) =Y Loﬁ"‘(%‘sog) =Y Lo0%h = Lh,

so D[L,] = L and two definitions about ellipticity coincide. There is a conclusion
which states that if Rc is elliptic, then the Ricci flow equation has a short time unique
solution. However, it would be shown in next subsection that the kernel of D[Rc,] is
not trivial.

4.1.2 The principal symbol of the differential operator Rc

This subsection is going to show Rc is not elliptic. We will construct a linear partial
differential operator ¢; with nontrivial image such that D(Rc,) o d; is a zero map. In
this way, we know D(Rc,) has a nontrivial kernel, hence not elliptic.

Let 6, = —div, : I'(SoT*M) — I'(T* M) such that
(6gh)jk = —gijVihjk Vh € F(SQT*M)

Let ¢, be the formal adjoint of d, with respect to the L? inner product

(VW) = /M VW) dp,

for any VW € T(T" M), Vr, s € Z=°.

Lemma 4.1. The partial differential operator 6; : T'(T*M) — T'(S;T*M) is a map
(59(X>>Jk = §(V]Xk + ka]) = §(£X#g)jk VX e F(T M)
Proof. Let X €e I'(T*M) and h € T'(S;T*M)
(0,X,h) = / (5;X)jkhilgijgkldp
M
(02X, h) = (X,8,h) = / (X, 0gh)dp = / — X197V hjeg™dp
M M
= / {=9"9"Vi(Xihji) + " 9" hj Vi X }dp
M

. 1 1
_/ gmglk(éhg‘k + §hkj)Vind/i
M

19



For every X, h we have this equation, so

(0; X)whag? g™ = (ViX1)g"” g™ (hji, + hus) /2
= (V;X1)g"' 6" hia /2 + (Vi X;)g" " har /2
1
According to Lemma 4.1, ¢; is a linear differential operator. Its principal symbol

ﬂﬁ@%T%ﬁ%&TM\XHG%NQ@Nﬂ:;g&+@&)

g

As a result, if £ # 0, then dim im 7[0}](&) = n.
Now consider the differential operator D(Rc,) o d;

D(T* M) 225 (8,7 M) "5 (5,7 M)
56

Proposition 4.2.
1
(D(Rcy) 06,)(X) = EEX#ch where X € I'(T*M)

Proof. Let ¢, be the family of diffeomorphisms generated by the vector field X7#.

Re(prg) = ¢i(Rey)
Take the derivative of t at ¢ = 0 on both sides we have

D(Rcg)(Lx#g) = Lx#Rey,
x 1 1
(D(Reg) 06;)(X) = D(ch)(§£X#g) = EEX#RCQ O

Observe that Lx#Rc, just consists of first derivative of X, so o[D(Rc,) o 6;](§),
the components of third derivative of X, is a zero map.

0 = o[D(Rey) 0 6,](€) = T[D(Rcy)](€) o a[0,](8)

im 5(53)(6) € ker 51D (Re,)(€)

Thus, if £ # 0, 0[D(Rcy)](§) has at least an n dimensional kernel in each n(n + 1)/2-
dimensional fibre SoT*M. As a result, the differential operator Rc is not elliptic.

4.2 The Ricci-Deturck flow and its parabolicity

As shown in last subsection, the nonlinear differential operator Rc is not elliptic, so we
cannot immediately apply standard theory to conclude there exists a unique solution
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of the Ricci flow for a short time. However, the Ricci flow still has short time existence
and uniqueness.

Theorem 4.3. If (M, go) is a closed Riemannian manifold, there exists a unique
solution g(t) to the Ricci flow defined on some positive time interval [0, €) such that

9(0) = Yo-

This theorem would be proven with help of Ricci DeTurck flow, which would be
defined soon. . ) 3
Let I be a fixed torsion-free connection, i.e. I'j; = ', Let W = W(g,T') denote a
vector field
k_ k Tk
Wh = gpq(qu o qu)‘

The Ricci DeTurck flow is a differential equation

8tg QRCg + VZW] + VJVVZ

()—90

We shall show N := —2Rc + Ly : T(SyT*M) — T'(SeT*M) : g — —2Rc, + Lwg is a
elliptic differential operator of degree 2. At first, we shall linearize N. Let H := gPh,,.
Ricci identity states that

2[D(ch)<h)] = —gqu V. hkp pqqukh]‘p -+ gqu Vphjk + gquijhqp
= —g"V;V hug + gMR. Ty + PR g

— gqukV h]p + g R h + gp R h]l + Ah]k + V]VkH

qkp
1
= Ahj = V(g™ Vghpr — QVkH) = Vilg"'Vohy; — 5V, H)

4 lower derivative of h

and

9 0 .
a‘tZOWk - a(gkrgth(FT - qu))

= gkrg” at‘t oL pg T terms of h

1
=g" gkr 9" (Vpha + Vehy — Vihy,) + terms of h
=g —(V hai + Vghpr — Vihyg) + terms of h

= g"IV jhpi — §VkH + terms of h

0

0 0 0
a{t:()

0
a Wk jkVVl) 0; Wk Jkatvvl 8tF§kVVl

VWi = at( Tot
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— W) + lower derivative of h

[D((Lw)g)(M)]j1 = 5\ oLw (g +th) VWi + VW)

0 0

1
= Vi(g"'Vhp — VkH) + V(g7 Vohy — 5ViH)

SRR

=V,(= Wj) + lower derivative of h

+ lower derivative of h

Thus,
[D(Ng)(h)]j1 = =2[D(Reg)(h)]j1 + [D((Lw)g) (h)]j
= Ahjj + lower derivative of h

G[D(Ng)(€)(h)] = |&[*h

Then we know N is elliptic, because o[D(N,)(£)(h)] is an isomorphism whenever £ # 0.
It is a standard result that, for any smooth initial metric gq, there exists ¢ > 0 and
a smooth function g(t) defined at M x [0, €) such that g is a unique solution to the
Ricci-DeTurck flow for a short time 0 < ¢ < e.

Let ¢, : M — M be a one-parameter family of maps such that

%%@I—WMWM@)VWﬂGMXMQ

po(p) =p Vpe M
If M is compact, then all ¢, exist and remain diffeomorphisms for as long as the

solution of the Ricci-DeTurck flow, g(t), exists. In fact, there is a general result about
the existence of this kind of one-parameter family.

Lemma 4.4. If {X;|0 < t < T < oo} is a continuous time-dependent family of
vector fields on a compact manifold M, then there exists a one-parameter family of
diffeomorphisms {oy : M — M|0 <t < T < oo} such that

9 ip) = Xulpup) ¥ip,t) € M x [0.7)

D Vpe M

vo(p)

Proof. We may assume that there is ¢, € [0,T) such that ¢4(g) exists for all (¢, s) €
M x [0,to]. Let t1 € (to, T) be given. If we could show ¢, exists for all ¢ € [ty, ;] then
we imply the lemma. Given any py € M, choose local coordinate (U, x) and (V, y)
such that py € U and ¢y, (po) € V. Aslong as p € U and ¢(p) € V, the equation of
@y is equivalent to

0

O yopox () = y. (2 (x )

=y, [Xioy yopiox'(z)]

for any z € x(U) such that op;(x7*(p)) € V. Setting 2z, = yo ¢, 0ox ! and F;, =
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Y. (Xioy ™), we get

0
azt Ft(Zt)

where z; and F} are time-dependent maps between subsets of R™. Locally, the equation
in lemma 4.4 is equivalent to a nonlinear ODE in R". The Picard’s ODE theorem tells
that 3! solution for a short time t € [to,to + €). Because M is compact, there is a
uniform € > 0 such that the solution ¢;(p) exists for ¢ € [to, to + €].

On tj = to + €, apply the same argument again, then there exists a covering of
M x [to,t1] by {M x [ti,t + €/]}. Since M x [tg,t1] is compact, there exists a finite
subcover of M X [to,t1] and that we can glue finitely many short time solutions to get
©r ON te [to,tl]. O

A key method to construct a solution to the Ricci flow is to pull-back the solution
of Ricci-DeTurck flow by ¢;: one defines

g(t) =¢ig(t) 0<t<e
Then one observes that

930 = oig) = | (ot + )

= G| ot +5) + ] (eiraate)

= G (-2Relglt)) + Lwia®) + | (67" 0 pre) eio(r)
= —2Rc[pig(t)] + &} (Ewu)g( ) — £<¢;1>*w<t)sotg(t)
= —2Rc[pig(t)] + Lorwnypig(t) — Lorwwwrg(t)
= —2RC[902‘9( )]
§(0) = ¢59(0) = idag(0) = go

Based on the computation, we know g(t) = ¢;g(t) is a solution of the Ricci flow for
t € [0,€). The proof of uniqueness would be proved later with the help of the harmonic
map heat flow.

4.3 'The harmonic map heat flow

Let (M™,g), (N™, h) be two Riemannian manifolds and let f : M™ — N" be a smooth
map between M and N. The derivative of f is

df = f. e T(T*M™ @ f*TN"™)

where f*T'N is the pullback bundle over M. Let {z'} be the local coordinate of M,
{y*} be the local coordinate of N. Let I'; (or I'(g)) be the Levi-Civita connection of
g, and let I';, (or I'(h)) be the Levi-Civita connection of h. Then

afe L0
) = G )

df = (df )3 (dz
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The map f induces a connection f*I'" in the following way:
V:INT"M™® f*'TN") - T'(T"M"™ @ T*"M™ ® f*T'N")

0 0 0

Va/axif*a—yﬁ = f*(vf*(a/(’)xi)a_yﬁ) = f*Vaaj;?Mia(a—yﬁ)
_px* afa 5] _ f% afa v a
- f (axl (Va/axaa/ay )) - f (81” (Fh)a,ﬁa_yfy)
O D
= %(Fh o f)aﬁf 8_y’77

Vojoui f o (fT)isf o

so we define oo
(f*r);yﬁ = oxi (Fh o f)gﬁ

Hence V(df) = (Vdf)3da’ @ da? @ 52 and

(Vdf)i; = Vildf)§

— 9 afa o l % * «a %
- axz(am]) ( g)ij 8xl + (f Fh)i'y ax]’
o of | O 0f° af

= 200 gw) ~ Wlsgm + 57 (Mo M55

The harmonic map Laplacian with respect to the domain metric g and codomain
metric h is the trace of V:

. 0
Bgnf = try ¥ (df) = g7Vildf) 5

and

i O°F L O y Of?0f7
(Agnf)' = gIVi(df)] = g J[E)xiaxﬂ' — <F9)“W + (Thof)is O @].

Given fy: M — N, the harmonic map flow with respect to fj is

0
a_]; = Ag,h.fa
f(0) = fo

The principal symbol of A, in the direction £ € I'(T*M) is
T8 (&)(N)] = gV&&;f = €L S,

so the harmonic map flow is a parabolic equation and there exists a unique short time
solution.

Theorem 4.5. If o : (M",g) — (N", h) is a diffeomorphism of Riemannian manifolds,
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we have
(Ag ) () = (™) gl (=T (™) 9)hs + T(h)1p) (0 ()

Proof. Let {x'}, {y®} be a local coordinate of M, N respectively. Let k be a metric
in N. Pullback x to M, the Levi-Civita connection induced by ¢*k satisfies

) 9
k * - * R * -
Lo r) gz =V R) o o5 =9 <V(H)¢*(£i)¢* (&cﬂ'))
. 9¢® 0
=¢ (W(%ﬁ?@sa) (a_a_yﬂ»

. A’ 0
B (W)(%z?asa) (a_a_yﬂ)>

0%0% 0 9P 0> 0
_ -1 v
=) (ﬁxiﬁxj oyP * Jzd Ox? F(K)O‘B(?gﬂ)
(P A F(k)? D 9P (= )F\ 0
~ \riori ayP Mo ori 9ri By ) Ouk

Then

Y (oK)

" [ PP A ") () A 0p” D™ )*\ 9
oxk — \0zidxi  Oyp B Oxi 9w Oyn Oxk
PPy L 0™ 0P
= goiow T T We g 50

(1)

Notice that 5 5 5
K = k(dy®, dy”) = (¢"k) (¢ dy", " dy")

« 08 90 9P 5

Oxt 7 O dxt Qad’
so multiply (¢*%)% on both sides of (1), we get

op7 ij P

(p"R) T3 R) 5 = (@7R)7 5o 4 D) en™”
Ay P L A N B
Take k = (p~1)*g, p*k = g on equation (2) and (3), we get
9" aig;j - 9“%(9)% = —Tl(e™")gllsl(e™ ") g]*” (3)
#2800 (g @)
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Finally, we get
ij aQ‘PAY ; Op? ij v D a‘PB
(Ag,hgp),y =g j[al'ial’j - (Fg)zJW] +g j(rh © 90)04,8 O’ %
= T ) gllsl(e™") 9] + (Tho )25l ") 9]
=[(e™)*g* (-Tl(¢™")glls + Thow)ls)

Hence we get the theorem. [

Corollary 4.6. Let M = N and ¢ be the identity, then

(Agnid) = g*" (=T(9)l5 + T(h)1,)

4.4  An approach to uniqueness of Ricci flow

This subsection aims to prove the uniqueness of Ricci flow. Let (M, go) be a closed
Riemannian manifold; g be a fixed background metric on M; I" be the Levi-Civita
connection associated to §. If g(t) is a solution of the Ricci flow:

0 _
B —2Rc(g)

9(0) = go

then by the ellipticity of harmonic map Laplacian, there exists diffeomorphisms ¢, :
(M,g(t)) — (M, g) to be the unique solution of the harmonic map heat flow as long
as g(t) exists:
0
5Pt = Do)t
w0 = idy

By Thm 4.5,

where

Let g(t) = (p4)«g(t) then g(t) is a solution of the Ricci-DeTurck flow:

%g = —2Rc(g) + Lwyg
9(0) = g0
It is because
9 0(0) = (2030 = S| ((pe)-glt +5)
= (00 (] gt +9) + 5] _ a0
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= (0. (~2Re(@) + (g0 | (e 0050
= —2Rc[(1).g] + (£0)u L) w3 (1)
= —2Rc(g) + Lwwg(t)

According to the parabolicity of —2Rc + L, if §1(t), g2(t) are both solutions of Ricci
flow, then the corresponding ¢;(t) = ¢2(t). It also deduces that

WE =g (Do), —Th,) . i=12
is uniquely determined, so the corresponding (¢;); is unique. Hence

91(t) = (1)ig = (p2)ig = Ga(t)

and we prove the uniqueness of the Ricci flow.

Estimate of curvature

After showing short-time existence of Ricci flow, it is time to discuss the evolution
of curvature. The estimate based on the evolution equations would help us approach
the main theorem. In this section, we assume that (M, g) is a closed Riemannian
3-manifold with a strictly positive Ricci curvature.

5.1 Evolution of curvature

In this subsection, we will replace the symmetric (0,2) tensor h as —2Rc so that we
get the evolutions equation of Ricci flow. The estimate of curvature starts from these
evolution equations.

Theorem 5.1.

0
&Rijks = Vi ViRj, + V;ViRis — ViV Rjs — ViV Rj, — ¢" RijipRys + 97 RijspRig

Proof.

0 0 0 a
= —ViViRj = V;V.Ri + ViVaRyy + VViRi, + R Ry + RS, Riy — 2R R

= ViViRj, + V;ViRis — ViV Rjs — V;V Ry, — Rl Ry + R Ry

ik

= Vivstk + Vjkais - Vinst - VjVstk - gquijkqus =+ gquijskaq

Introduce a new tensor B:

mn
Bijri = 979" Rpijm Rqkin
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It satisfies the symmetries:
Bijki = Bjik = B

Lemma 5.2.

ARijks = vivstk + VijRis - Vikajs - VjVSRik
+ gmnRianjks - gmnRjaniks
— 2(Bijsk + Bisji — Bijks — Bijs)

Proof. The second Bianchi identity states:
ViRjkim + Vi Riitm + Vi Rijim = 0

ARijkl = gpqvpvqujks - gpqvijqu’ks
Consider the first term, g??V,V,;Ry;rs. Apply Ricci identity,

9"V ViRyjks — 9" ViV Ryjis
= _gpq{Rm ijks + o quks + RZ;qujms + o qukm}

Diq pij pis

= _gpqgmn{Rpianmjks + Rpijanmks + Rpikanjms + Rpisanjkm}
Its first term contracts to ¢"" R, Ry jks; its second term:

_gpqgmanijanmks = gpqgmanijn(Rmkqs + qums)
= gpqgmanijn<_Rqskm + qusm) - _Bijsk + Bz’jks;

the last two terms are Bj;s — Bisji. By contracted second Bianchi identity
gpqvaqjks - Vstk - Vkst
Thus

G"'V ) ViRyjks = ViV Ry — ViViRjs + ¢"" Rin Rpnjis
— (Bijsk + Bisjk — Bijks — Bikjs)

Intertwine 1, j,

ARjjis = ViV R, + V; Vi Riyg — ViV Rjs — V;V Ry,
+ gmnRianjks - gmnRjaniks
— 2(Bijsk + Bisjk — Bijks — Bikjs)

Then we have
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Corollary 5.3.

0
—Rijks = ARyjis + 2(Bijsk + Bisjk — Bijks — Bikjs)

ot
- gpq(Rpjk‘qui + Ripks Ryj + Rijps R + RijkquS)

Theorem 5.4.

0

&Rjk = AR]k + 2gpqgrqujksR7"p - QQPqukaq

Proof. Use lemma 3.5 and Ricci identity:

0 1 1
=2 Rjx = Ahj — Vi (g"V jhpr — gka) — V(9" V gy — §VjH)

ot
+ 9" Rojuhip + 9" Ryjphia + 9" Royhip + 97 R b

Take h = —2Rc; apply second Bianchi identity:

0
—ZaRjk = —2ARjk - 4gpqngqjksRTp + 4gqujPqu

Divide —2 on both sides, we get the formula.

Theorem 5.5.

%R:4M$+@%WRW&F:AR+2m42

Proof. Apply lemma 3.6:

)
5= —AH + V'V, — (b Re)

= 2AR — 2VPV'R,, + 2|Re)* = AR + 2|Rc|?

Corollary 5.6. If R > 0 att =0, then it remains so whenever t > 0.

Proof. Suppose the Ricci flow has solution at ¢ € [0,7). Notice that

)
—R— AR =2|Rc|* >0
ot

and M has no boundary, so

min R= min R>0
M x[0,T] Mx{0}
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The Weyl conformal curvature tensor W on n-dimensional (n > 3) manifold M is

defined as: )
Wijti = Riji — p—
1

R(GiGir — Gings
+ n—D)(n—2) (9agjx — girgjt)

Lemma 5.7. W is a trace-free tensor with many symmetries.

(1) Wijtw = —Wiite = —Wijie = Wiie = Wiai;

(2) Wijki + Wikt + Wiz =0

(3) §"Wijk =0

This lemma’s proof derives from direct calculation. Then we could show W vanishes

when n = 3:

Use normal coordinate here. In dimension three, the index repeats at least once,
so we can classify two situations as follows:

(Rugix + Rikgi — Rirgj — Rjgir)

(1) Wiiji or Wik Lemma 5.7(1) states that these components vanish.
(2) Wijki with @ # j, ¢ # k, j # k. In dimension 3, {i,j,k} transverse all index, so
lemma 5.7(3) states that:
0= Wijki + Wjjkj + ijkk = V[/mkz

Hence we have:
Theorem 5.8. When M is of dimension 3,

1
Riji = Ragji + Rjkgn — Rivgj — Rjugin — iR(gilgjk — Girg;j1)

Because g and Rc are both symmetric real matrix at every point p € M, we
can take normal coordinate at first, then diagonalize Rc at p. After two coordinate
transformations, ¢ is in normal coordinate and Rc has been diagonal at p. Suppose
that at point p

A0 0 100
Re=11 0 p O g=10 10
0 0 v 0 01

In dimension 3, the index of Rm repeats at least once, use symmetry of Rm, R;ji # 0
only if ¢ # j and k # [. Under this condition, it remains two cases:

j=kand1#I:

1
Rijji = Rugj; + Rjjga — Rijg — Rjgij — §R(gilgjj — ij951) = 0

j=kandi=1:
1
Rijji = Riigj; + Rjj9i — Rijgi — Rjigij — §R(giigjj — 9ij9ji)
1
— Ri+ Ry — 5
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Thus, we get

Corollary 5.9. R;ji; of the form Rig is the only possible nonzero component where

1
Ryg01 = 5()\ + p—v).
Now define
Sil = Rijgijkla S = gilSil; irzn = RijgijklglmRmna T = ng‘z

According to theorem 5.4, we have

a T
ERjk = AR]k =+ 29p qg le’jk‘erp - 2gquijkq
= ARji + 26" ¢" R,p(Rugix + Rjrgin — Rixgji — Rjgir)
1
- §R(gilgjk — Gikgjt) — 25k

= ARjk; + 3RRjk — 4Sj]€ + (25 — Rz)gjk — QSjk
= ARjj — (6555 — 3RR;; + (R* — 25)g;s)

so we simplify the evolution equation of Rc as follows:

Theorem 5.10. When dim M = 3,

0

aRjk = ARj, — Qi

where Q;; = 65, — 3RR;j; + (R* — 25) gk

Given the local coordinate

A0 O A0 0 X0 0
Rij = 0 % 0 Sij 0 ,u2 0 T’U = 0 MS 0
0 0 v 0 0 2 0 0 3
R=\+p+wv, S =N+ p? + 0% T=X+p’+°
Then
Qu 0 0
Qz] = 0 QQZ 0
0 0 Qs3
where

Qu =2\ — > — v = A — v+ 2w
Qo = 21> — N — 0% — )\ — pv + 2\
Q33 =207 — A2 — 2 — v\ —op+ 2\

Theorem 5.11. Let T' be the mazimum ezistence interval of the Ricci flow. If M is
a Riemannian 3-manifold and R > p >0 at t =0, then T' < 3/2p.
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Proof. Because |Rel* — $R* = 1/3((A — p)*> + (A — v)? + (. — v)?) > 0, by Theorem
5.5, we know % > AR+ %RQ. Now consider f = f(t)

df 2

%_gﬂ with f = patt =0,

O(R—1) 2 MR= )+ 2R+ (R~ )

with R — f > 0 at t = 0. The maximum principle tells that R — f > 0 at [0,7)).
Meanwhile, solve the ordinary differential equation of f, we get

3p
/= .
3 — 2pt
Because f — oo as t — 3/2p, we know T' < 3/2p. 0

5.2 Preserving Positive Ricci Curvature

In this subsection, a maximum principle to tensor would be proven at first. With this
principle, some estimate about curvature would be given. In this subsection, A;;, B;;
are symmetric tensors on M; we call a tensor A;; > 0 if A;;0'v? > 0 for all vectors v';
u¥ is a vector field in M. B = p(4,g) is a polynomial in A;;, with coefficient T'(M),
formed by contracting products of A;; with itself using the metric g. Moreover, the
polynomial satisfies null-eigenvector condition: whenever v’ is a null-eigenvector
of Aij (16 Aijl)i = 0, \V/j), we have BijUin > 0. Here7 Aw’, Bij7 uk, g;; may all depend
on time ¢.

Theorem 5.12. Let M™ be a closed manifold. Suppose the following equation

0
has solution when 0 < t < T. At t € [0,T], B;; = p(Aij,gi;) satisfies the null-
eigenvector condition. Then if A;; > 0 at t =0, then it remains so on 0 <t <T.

Proof. 1t is going to show there exists 6 > 0 such that A;; > 0 on 0 <t <4, where
5 i g 99

is a constant depending on maxysxjo,r) |As|, maxarxjor) |5 The theorem follows
because we can cover [0,7] in finite steps. Let § chosen later. For every € > 0, define
a new (0,2) tensor A(e):

It suffices to show that there exists a constant ¢ > 0 such that A(e);; >0on 0 <t <¢
for any € > 0. Then A;; > 0 follows as ¢ — 0. If there does not exist such 4, then
V§ > 0, 3 some small € > 0 such that at a first time 6 with 0 < § < ¢ where A(e);;
acquires a null-eigenvector v* of unit length under the metric g;;(f) at some point

zo € M. If B(e);; = p(A(€)ij, gij) then B(e);; > 0 at (o, ). Moreover,

|B(€)i; — Bij| = [p(A(€)ij, 9i5) — p(Aij, gi5)| < C|A(€)i; — Ayl
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where C' is a constant depending only on maxpsxjo71(|A(€)i;| + |Ay]). If we keep
€,0 < 1, then maxysyjo,r7 |A(€)ij| depends only on maxys o7 |Asj|. Therefore,

Bij'v (xo,0) = (B(e)ij — C|A(€)ij — Ay|)v'v! = —Ce(d + 0)[v]* > —Ced

where C' depends on max s xjo,r1 | Mi;)-
We can parallel translate v* w.r.t g;;(f) to get a vector field in a neighbourhood of
x such that V,v'(z) = 0 with v* independent of ¢. Let f.(z,t) = A(€);jv'v?. We have

Ofc _ 0Aiy i 5 _ Oy 5 g LN
at _( at )'UU _( at )UU + Egl]+€<5+t)(atg2]) v

kas = (va(E)ij)'Ui'Uj = (VkAij)Uin
Afe = AA(e)jjv'v? = AA v
The evolution equation tells that

(%Aij) vl = (AAij)vivj + (ukaAij)vivj + Bijvivj

of. ) . .
/ —q€gij +e(d+t)(5gij) p V') =Afe+ ukV i f. + B;jv"v’
ot ot
Specifically,
£>0m0<t<OVeeM
Do) <0 w0 =0

vk:fe(‘r(h 9) - 07 Afe(x(b 0) 2 0.
Hence 9
Bij’lJin<IEO, 9) S — {692']' + 6(5 + 9)(@(92))} Ui'Uj
0 o
Ced > {69@'(9) + 6(5 + 9)(5%(9))} vi?

This requires

o 1+015950)] 1 .y
SO+ ’%Qij(g)’ O+ maxyrxo1] |%gij|

If we take 0 = § min{d, 1}, then A(e);; > 0 at [0, 6] for any € > 0 where 0 is independent
of €, a contradiction. The proof is done. ]

Remark 5.13. Suppose [0,Ty) is the mazimum existence interval, then above conclu-
sion keeps at [0,Ty). It is because we can use the theorem in every closed subinterval

Of [O, T()) .
It is known that the Ricci flow has a short time solution on [0, 7).

Corollary 5.14. Let M? be a closed manifold. If R;; > 0 at t = 0 then R;; > 0 on
[0,7).
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Proof. Apply Theorem 5.10 and Theorem 5.12, let A;; = Ry, Bij = —Qi, u* = 0
Now check Bj; satisfies null-eigenvector condition: if v* # 0 such that

A vl Aol
Ryv' = 1 v = w? | =0
v v3 vo?

If v! = 0 then By v'ot = 0; if v! # 0 then A = 0 and By, = p? +v? — 2uv > 0 then
Byv'v! > 0; so Bjju'v? = Byjv'o' + Bayv*v? + BazvPv? > 0. O

Lemma 5.15. Let M? be a closed 3 manifold. If R(t) # 0 on [0,T), then

— = A J = pq J o J J
7 () =2 (%) oo (5)

R R R2
Proof.
9, 8
Rij

Vil R2 (ViR;; - R — Ri;V|R);
9 (Ry 1 D p g g OB _ ARy RyAR RQy+ 25Ky
ot \ R g it )T R R Iz
A (RFEJ) — gklvlv <'-R§-7) — gklvl {EkaU R2 RZJVICR}

= gM (——lekaU +

1
= —vlkaij)

R
L 1
—g" {R4 [(ViRi; ViR + RUVszR)R2] [R4Rijka . 2RVZR}}

AR;; 2
_ Tj . R2ngVZRVkRU — R2 RUAR + — R Rijgklkale
AR; R ;AR 2 Ry
R 2 RY VRUVIR

Then we have

9 (R Ry;\ 2 R;\ RQi+2SR;
— 1, — A 1] = pqv Rv 1] _ 1] 1] D
6t(R> (R>+Rg P q<R) R

Theorem 5.16. Let M? be a closed Riemannian manifold with initial strictly positive
Ricci curvature, then R > 0 and R;; > €Rg;; for some constant 0 < e < % att = 0.
Moreover, under the variation of Ricci flows, both conditions continues to hold on
[0,T).

Proof. R > 0 follows from taking trace of Re. R;; > eRg;; follows from the compact-
ness of M?3; we easily know e < % by taking trace on both sides again. That R > 0
remains at ¢ € [0,7") has been shown at corollary 5.6. To show R;; > €Rg;;, we make

R;; 2
Aij = Rj — €34ij, ub = EQMVIR
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4+ 9SR..
P Ly

One could check that A
i R;;
AijU = < R

R BZ]7
- egij) v’ =0, WLOG assume v! # 0, we have

u® satisfy the evolution equation in theorem 5.12. When

1
A=eA+pu+v) = ,u+v=(g—1)/\22)\

R*By; = 2¢R*Ry; — RQ1y — 2SRy
=26 A+ p+ U)X — (A + p+0) (202 — g2 — v® — A — Ao+ 2uv) — 2(N + p? + v*)A
= 2N+ pu+v) = A+ p+v)2N = p? — v = A — Mo+ 2uv) — 2(A2 + 1% 4 v
= (A p+ o)A+ o)+ (p—v)%) =200 + p? + 0P\
=N (u4v) + AMp— 0+ AMp+v) + (g + o) (e —v)* = 2X° = 2X\(u® + v?)
= N(p+v =20+ (p+v)(p—v)*>0

Thus, B,;; satisfies null-eigenvector condition. The theorem follows by theorem 5.12.
O

Lemma 5.17. If M" is a Riemannian manifold with R;; > 0, we have R;; < Rg;;.

5.3 Pinching the eigenvalues

In this subsection, we shall prove the following theorem

Theorem 5.18. Let M3 be a closed 3-manifold, with strictly positive Ricci curvature.
Under the variation of Ricci flow, 3 constant 6 > 0 and € € R, both depending only
on the initial metric such that on 0 <t < T we have

S — %RQ < ER>.

Here S — £ R* is the * the distance of three eigenvalues:
1y 1 2 2 2
S—3R =gl =)+ —v)"+ (A= v)]

The proof of theorem follows from maximum principle in partial differential equa-
tion. Let v =2 — ¢ and

1
f=S/R" — §R2*7.
It needs to find the relations in

of

e ~ Af+uFVif 4 c(z)f for some vector u* and function ¢ € I'(M).

i.e. find the variation equation of S/RY, R?>~7 respectively.
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Lemma 5.19. For any constant 1 < v < 2

d 2—y __ 2—y 2(’.)/ — 1) pq 2—y
8tR = AR + I g""V,RV ,(R*7)
2—y)(y—1 _
_ ! R)W(H )R2|VZ-R]2 +2(2—~)R7S
Proof.
0 - 1 OR 1—
— =2—yRT7T—=2—-—vRT(AR+2S

AR*™ = ¢"V,V;R* = ¢"V,((2 — 7v)R'"V,R)
=(2—7)¢"{(1 -+)RV,;RV;R+ R'"V,V,;R}
= (2-7) (1 -7)R VR +(2-7)R"AR

0

S BT =ART 4 (2-9)(y = DRYIVIRP + (2 - 7)R'T - 28

Notice that

2(y - 1)

2(v—1
91,1V, (1) = 20 Vg, p (2 )RR
— 22— 4)(y - DRIV.RF

The lemma follows.

Lemma 5.20.

%s — AS — 2ViR2 + 4(T — O,

where

1, . 1
C = §g’kgﬂQij~Rkl = 5(33 —5RS +67)

= (N4 1 +0%) — (A + A%+ pA? + po? + o+ op®) + 3w
Proof.

%S = %gilgijikRj[ = 4gimglmRmngijikRﬂ + 29" 7" (AR — Qir) R
= 4T +2¢"¢"* ARy, - Rj — 4C
AS = gV V(9" g"" Ry Rim) = 979" 9" Vi[(V Ris) Rim + Ris(Vj Rim)]
= g7 g "™ (ViV;Ris - Rim + V;ResViRyy + ViRyV j Ry + RisViV Ry }

= 2gikgleRij . Rk:l —|— 2|ViRjk|2.

Thus, we get the desired result.
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Lemma 5.21. For any constant 1 < v < 2

2(3)-2(3) 255 ()

——|RV; Rjk V.R- Rl

AR(T — C) — 2752
R

R'y+2

R+2

S 1
7 (—) 777 (ViS - R— 7S5V, R)

S . S 1
A(ﬁ)— fvvjﬁ_gfv 771 (VS - R = 7SV, R)

= gV RM ———(ViRV;S = yV;SV;R — vSV,V,;R — (v + 1)V,;5V,R)

+ gzjﬁvivj's + gij RTFQV(’}/ + 1)SV]RV1R
1 vS
= e (V,R,V,S) — i +1 (V,R,V,S) — T AR
7+1 Yy +1)S 2
~ (ViR,V;S) + ﬁAS + W’V1R|
RAS —~vSAR  ~(v+1)S|V,RJ? 2y
- Ry+1 R1+2 T Rl (ViR, V:5)

o (S 1 [0S OR
ot (E) - R (atR_’VSaJ
1
= {R(AS = 2|V;Rj|* + 4T — C)) — vS(AR +25)}

RAS —~vSAR 1
- Ry+! + Ry+1 {a( _2’V1’Rﬂf|2 +4(T = C)) - 2¢5°}

N (ﬁ> RM 1 VR, V,S) — e

{R(=2|V;Rj|* + 4T — C)) — 2957}

R’y+1
S 1 , 1
—A (ﬁ) + o (AR(T = C) = 298%) + 5V

Notice that

<V1R, sz> = g”VZRVJS = gijViRVj(gm"ghthmRkn)
=29 g™ ¢"" VR - RV i Rin = 2(V;Rj1., ViR - Rj;.)

T,V (1)) = g ViR VS) -

SIViR? = ¢*¢"" Ryn Ring" ViRV ;R = |V, R - R|?

S|V;R|?
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v+ ==2(v-y-2-7(H—-1) -2

SO

R(V:R,V:S) — S|V;R[?> — R%|V:R|*
= 2RV R, ViR - Rj) — (ViR - Ry, ViR - Ry — (RV, Ry, RV:Rji)
— —|RV;Rj; — ViR Ry|?
V =2(y — DVR(V,R, V;S) + 2R(V;R, V,S)
— 20y =y + 2 =7y = 1) +2)S|ViR|* = 2R*|V, Ry |*
=2(y = DR((ViR,V;S) = vS|ViR[*) = (2 = 7)(y — 1)S|V:R[?
+2R(V,R, V,S) — 25|V R|* — 22|V Rji|*

= 2(’}/ — 1)RW+1<VZ'R, Vz <%)> — (2 — ’}/)(’7 — 1)S|VZR’2 — 2|szR]k — VIR . Rjk|2

Substitute V' into previous expression, the lemma follows directly. [

Lemma 5.22. For f = S/R" — 3R>, 1 <y <2

of 2y —1) 2
E = Af + gqupRqu — W|RVlR]k — VZR . Rjk|2
2-70-1) L 2
(S = RIIVE
1 2
+ =2 =)S(S — S R?) - 2P)

where P = S? + R(C —T)
Proof. Tt follows from Lemma 5.19 and Lemma 5.21. [

Lemma 5.23.
P=XA\=p)A =)+ 2 (p =N (g —v) +0*(v =X (v—p)
Proof.

P=S24+R(C-T)=\+p*>+1%)?
+ N+ 0) (= = 2? — p\? — po? — oA —op? + 3 )
=X 4t ot — a3 —on = B — o — 20 — o + N + NPo + Auo?
= M\ — g\ — X+ pv) + (1 — M — vp A+ ) + 020 — Ao — po + M)
The result follows. O
Lemma 5.24. If R > 0 and R;; > eRg;; then P > €2S(S — %R2).

Proof. LHS and RHS are both homogeneous polynomials of degree 4. We may assume
S = A + % + v? = 1 here, then it remains to show P > €*(S — %R2). Assume that
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P == )N\ —v)—p*(p—v)+v’(v—=A)(v—p)
= A= )N\ =) + X (= v) = g (1 — ) +v*(v = A) (v — )
= A=)V =)+ A+ p) A= p)(p—v)) +0v*(v = N)(v— p)
= A=)’V + A+ p)(p—v) + 0’ (v =N (v = p)
> (A= )N + 0% (p — v)?

Observe that
A+p+o)? >N+l +vP=1 = A+ptov>1

By Ri; > €Rgij, A\ > v > e(A+ pu+v) > e Thus, P> (A — p)* + (u—v)?).
On the other hand,

(A=) = (A= i+ = 0)* < 200 = 1) +2(u — v)?

§ = SR = (= 1 (A= o) + (0= 0)?) € (A= ) + (5= 0)?

Hence, P > €*(S — 3 R?). O

Lemma 5.25. If § > 0 is chosen so small that 6 < 262, then with v = 2 — 6 and
f=5S/R"— iR*7 we have
af

e <Af 4 uPVf.

where u* = Q(A’—R_UQMVZR.

Proof. When § < 2¢2
L, 2 .
(2—7)S(S—§R)—2P§(5—26)S(S—gR)SO

Substitute it into Lemma 5.22, the conclusion follows. [

Now we could prove Theorem 5.18:

Proof. By Theorem 5.16, there exists a constant ¢ > 0 such that R;; > eRg,; for all
t €[0,T). Let § < 2€2, then Lemma 5.25 gives that

0 1

a—{ <Af+ufVyf for  f=S/R*° - §R2—'Y
Because M3 is compact, 36 < oo, which just depends on the initial metric g(0) such

that f < % at t = 0. Then maximum principle tells that f < @ at t € [0,T), s
S — 3R* < €R* as desired.

<)

5.4 The gradient of the scalar curvature

In this subsection, the upper bound of |V;R| will be given as follows:

39



Theorem 5.26. Let M? be a closed Riemannian 3 manifold with positive Ricci cur-
vature. For every n > 0, 3 constant C = C(n, g(0)) depending only on n and the initial
value of the metric such that on 0 <t < T we have

The proof would be given in several steps. What we shall do is to find the variation

formula of F = |V;R]?/R —nR? + N(S — 3R?) with N € R.
Lemma 5.27.

Proof. |V;R|* = ¢“V,;RV,R

%|Vz‘|2 = 29ikgleklviRij + QQijvi(AR + 25) ’ VJR
= 2¢"* ¢ Ry VRV R + 2" (V;AR)V,;R + 49 V,;SV,R
A|ViR]? = ¢¥V.V,(¢" VRV ,R)

= 2"V ((V,ViR) - V;R)
=2¢"¢"V . V,V:R - V,;R + 2" ¢ (V,ViR) - (VV,R)
= 29" (AV,;R)V,R + 2|V, V;R|?

AV,R = V,AR+ R;;V,R = V;,AR+ ¢’*R;;V\R

a . .
5| Vil = AIVR[ = 29" ¢" RiaViRV;R
+2¢9(V,AR — AV,R)V,R + 49"V, SV, R — 2|V, V; R’
= Qg““gﬂRleZRV]R
— 29ijglkRileRVjR + 49ijViSVjR - 2|Viij|2
= 4¢V;SV,R — 2|V,;V,R|?

Lemma 5.28.

0 [|ViR|? IV.R2\ 25, _ ., 4 2 )
a =A — 53l Vi HAVilt, Vio) — —= i Vit — V; j
8t( = ) ( - | ViR + (ViR ViS) = 25| RV.V,R — V,RV, R

Proof.

8 (|ViR|? 1 , 1 s ,
ViR[? b ViR[? i 1 1

A (T =g Vle T =g Vk —ﬁle' ‘VZRP + EV;(’VZRF)

2 1

1
= M SVIRVIRIVR] = ' ViViRIViR = g VIRV ViR
1 1
_ gklﬁkaVﬂviR‘z + gkl}_%vkvlﬂvipb‘z)
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1
R2AR!V R]? - R2<

2(le VIIVR[?) + EA\VZ-RP

2
= R—]VR|2]V-R|2 VR, V|V,R[?)

R

Observe that: B B
V;|ViR\2 =V, (¢"V,RV;R) =2¢"V,V,R-V,R

(ViR,V||V,R|*) = ¢V R -2¢"V VR -V,;R = 2(V,V;R,V,R - V,R)
We have

Vi RP 2 2 1 2
|V R-V,R|” — |V R|* — —(VlV R, V|R-V,R) + EA|V1R|
0 JR|? |V R|? 2, 4(V;S,V;R) 2|ARJ?
— Al ——— | — 2— R —
ot ( R > < R IViBI™+ R R
2
— E|V¢R~V]R|2 R2<v V,;R,V,R-V;R)
2
; 2
:A<|V}f| ) S|VR|2 <VSVR>——|RVVR ViR- VR
]
Lemma 5.29. 5
aR? AR? — 2|V;R|* + 4RS
Proof.
0 OR
—R*=2R— =2R(AR+2S) =2RAR+4RS
ot ot
ARQ = gijViVjRQ = 2g”VZ(RV]R) = 2ngzRij + QQURVZVJR
= 2|V,;R|* + 2RAR
The lemma follows directly. ]
Lemma 5.30. Let U =T — %RS —C, then
9 s Lrey s as— LRy Co(wima2 — Livip) + a0
"~ 3 3 PR g
Proof. Tt follows from Lemma 5.20 and Lemma 5.29. Il

Lemma 5.31. U < R(S — 3 R?)

Proof. Recall that P = S?+ R(C' —T) > €2S(S —
5.24. Then

%R2) > 0 for some € > 0 by Lemma

1
RQ) < RZ(S — gRZ)
The lemma follows directly. ]
By V,R = gjsz-Rjk, in normal coordinate, V;R = V;R11 + V;Ros + V; R33; for any
1 we have

UR<P+UR=5(S—

W —

(Vz'R)Q = (ViR + V;Ra + ViR33)2 < 3((V2‘R11)2 + (ViR22)2 + (VZR33)2)7
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so |V;R|? < 3|V;R;x|* in arbitrary Riemannian 3 manifold. This estimate could be

optimized so we get:

Lemma 5.32. |V;R|* < 2|V, R|* in any Riemannian 3 manifold M, .

Proof. The second Bianchi identity tells that: ¢/ ViRji, = %VkR. Decompose V,; R, =
Eijk + Fijk where

3
ngV R

1
(gljka + gzkv R) 10

20
It shows that |Eyji|? = %\VZ-RP: let g;; = d;;, then

Eiji, =

Eijkzo iti£j,i+kandj#k
1
Eii = VR if i # j; Eiik:—VkR if i # k;

20 0
3
Eijj:EVjR lfl#.]7 Eiii = VR

| Eige|* = ZZZE%’C_ZZ W+ZZZ ijk

% j k#i
Z 1zz+zz Ul_'_ZZEik_'_ZZZ ijk
i JFi i k#i i jFi ki
_ZQ5VR +;;4OOVR +;§4OO (ViR) +;;100VR
_ZQ5VR +ZQOO +Z2OOVR +Z5OVR)
35
= 100 (V R)® :%WZRF

It shows that (Ejji, Fijx) = 0:

7
(Eiji, Fiji) = (Eiji, ViRjr — Eijk) = (Eijk, ViRjg) — 2—O|VZR|2

(Eije, ViRjx) = 9" ¢"" 4" Eiji, V1 R,
1 3
= gllg]mgk” 20 (gUVkR + glkv]R)VlRmn +g g]mg]m 1Ogng BV Ry

1 1 3

20 20 10
o 1 kn il 2
~ 569" ViRV, Ry > 9 ViRVIR = & |v R|

Thus,
7
ViRj|” = |Eyil” + [Figl* > | Eyil* = Q—O!VzRF

The conclusion follows.
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With this estimate we have:

B 1, 1 2
Z(S — = “A(S ——RY) = 9V RAIZLZIV.RIZ L 4
81%(5 3R ) (S 3R ) \ViRji|” + 3]V1R| +4U
40 1

< =2|ViRj” + ﬁijk\? +4R(S — §R2)

_ 2 2 1o

= 21|sz]k| +4R(S 3R )
Lemma 5.33. 2(S — 1R?) < A(S — 1R?) — Z|V,Rj|> + 4R(S — 1 R?)
Lemma 5.34. (V,R,V,S) < 4R|V,Rj|?
Proof. The Cauchy-Schwartz inequality states:

(ViR,V,;S) =2(V;Rji,, ViR - Rji) < 2|V, R||R;||ViRjk|.

Observe that |R;r|* = S < R?, so

(ViR,V;S) < 2V3R|V,;R;|> < 4R|V,Rj|*. -
Lemma 5.35. For 0 <n < 3
O (Bt R*) <A [ViRE _ R? | +16|V,R; |2—Z_l R
at R U - R n 1Lk 377

Proof. S —3R* > 0 = S/R? > 3, then combine Lemma 5.28 and Lemma 5.34 we
get the lemma. [

Lemma 5.36. Let F = |V;R]>/R —nR? + N(S — £ R*) where N € R. For N > 168,
there ezists a constant Coy = Co(n, g(0)) depending only on n and initial metric g(0)
such that

oF
e < AF +Co(n, 9(0))

Proof. If N > 168

OF 4 2 1
— — AF < 16|V;Rjx|* — =nR* — = N|ViR;i|* + 4RN(S — = R?
™ < 16|V, Rj;| Sl — o |ViRj|* + 4RN(S 3R)

1 4

By Theorem 5.18, we know 34, ¢ depending only on initial metric such that

%—f _ AF <4ANCR — %nm <G,

where Cy is the upper bound of RHS depending on (4, %, 7). i.e. Co depends only on
n and initial metric ¢(0). O

Now we could give a proof of Theorem 5.26. By previous lemma, take N = 168,

A(F — Cot)

< _
S < A(F = Cot)
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The maximum principle tells that

max F'— Cyt < max F
Mx{t} X x{0}

max ' < max F + Cypt
Mx{t} X x{0}

By Theorem 5.11, we know T is limited, so at M x [0,7)
|V1R‘2/R - T]R2 S F S Cl with Cl = max F +CQT
X x{0}
|V¢R[2 < nR3 +CiR< 217R3 + Cy for some constant C,.

Cy depends only on Cy, initial metric g(0). Hence we have proved the theorem when 7
is small. We can enlarge n so that the result keeps for arbitrary n > 0.

5.5 Controlling Ry,qz/Rmin

In this subsection, let M3 be a closed Riemannian 3 manifold with strictly positive

Ricci flow; Let Ryueq(t) := ]\I/[na{x} R; Rin(t) := A?iF} R.
xX{t x{t

Theorem 5.37. R0/ Rin — 1 ast — T.

Proof. Before prove this theorem, we first recall Myers theorem:

Theorem (Myers). Let M be a Riemannian manifold with dimension m. If R;; >
(m—1)Hg;; along a geodesic of length at least wH~'? then the geodesic has conjugate
point.

It is known that R;; > eRg;; under the variation of Ricci flow at any time for some

. L 2 . .
e > 0. Hence along a geodesic of length at least [ := TeFn® has a conjugate point

at any t € [0,7).
For every n > 0 and suitable constant C(n) = C(n, g(0))

1
ViR| < [70*R* + C2(n, g(ON]V2 < =n*R** + C(n).

N | —

Since Ryae — +o0 ast — T, 3 0 < T such that C(n) < %nZRE’,ﬁE for 0 <t <T.

Then |V;R| < n*Ralz, for t > 0. For any t € [0,T), fix a point € M such that
R(x,t) = Ryax(t). Then on any geodesic out of z of length at most s = 1

AV Rmuz(t) we
have R 2 Rma:c - anax = (1 - U)Rmawa S0

1 S v1—n
s = =
n Rmax(t) n Rmzn(t)

€2

when 7 € (0,3(—35 + /1= +45%)]. In conclusion, for such small n, 3 6 € (0,7T)
such that R, (t) > (1 —n)Rima(t) for all t € [0,T). O

Theorem 5.38. fOT Rpazdt = 00
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Proof. Let f(t):]0,T7) — R such that

df
— 2
dt Rmaa,’f

f(0) = Riaz (0)

As for R:

% =AR+2S < AR+ 2R R.

%(R— ) <AR = f) +2Rpa(R - f).

By maximum principle, R — f <0on0<t<T. Since R—+ococast—T, f - 400
too. On the other hand, % = 2R,4.dt gives that

t
lnf(t)/f(O):2/ Riyar(T)dT — 00 ast—T. O
0
Corollary 5.39. Let r = fﬁ;i“, then fOT rdt = oo
Proof. Because Rpue/Rmin — 1 and R > 0, fOT rdt and fOT Ryazdt have the same
convergence. [

Theorem 5.40. S/R?* — 3 — 0 ast — T for Vo € M?>.

Proof. By Theorem 5.18:

S/R* — % <ER,

and Ry, — 00 because R4, — 00 and Ryuas/ Riin — 1. O

Remark 5.41. Someone may think Theorem 5.11 has stated that R, — oo ast — T.
But it has not, because T may strictly smaller than 3/2p and R, may not have gone
to oo yet. Therefore, it is reasonable to estimate Ryuay/Rimin at first.

Long time existence

In Theorem 5.11, it has been known that the Ricci flow has finite maximum existence
interval because of the blow-up of scalar curvature. This section will give another
conclusion to describe the behavior of Rm when ¢ — T'. This conclusion is based on
the estimate to V" Rm. The required estimates, interpolation inequalities for tensors,
will be given at first subsection. The special case of Rm will be discussed in the second
subsection. After doing these estimates, the blow-up of Rm will be discussed.

6.1 Interpolation inequalities for tensors

Let M™ be a closed Riemannian manifold of dimension m; T;;  be any tensor on M™.

Theorem 6.1. Suppose % + % = % with r > 1. Then

{/WT'ZW}WS (2T—2+m>{/WQT!’)dﬂ}l/p{/iT\Qdu}l/q
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Proof. For simplicity we take T; = T;; .

/ VT |*dpu = / 9N TV TIVT)2"Ydp

== / TN,V TIVT*" Yy — / GITV,T - V| VT Ddp
Vi|VT|2(7"71) — Vi(gklvavlTyfl —_ 2(T . 1)gkIVZVkT . VIT . ‘VT‘Q(T,Q)
/ IVT[rdp = — / Tg'N,V,T|VT[*"Vay

- / TgIV VTV dy
—2(r—1) / (TV,NT,N,T - VT VTP Ddp

Because

I TIVViT| < m|T||V?T)|
(TV,NV;T,V,T-V,;T) <|T||V*T||VT|?

/|VT|2”d,u < /n]T||V2T||VT|2T‘2du+/2(r )T VATV T2

= (2r —2+m) / IT||V*T||VT|*2du

The Holder’s inequality w.r.t

11 r—1
+-+

gives

1/p 1/q 1-1/r
/]VT]Qrdu < (2r—2+m) (/ |V2T]pdu) </ ]T|qdu) (/ \VT|2Tdu)
Hence
1/r 1/p 1/q
{/|VT|2”du} < (2r—2+4m) {/|V2T]pdu} {/|T\‘1du} 0

Corollary 6.2. If p > 1, we have

1/p 1/p
{/|VT|2pdu} < (2p—2+m) {/|V2T|pd,u} mﬂ?x|T|.

Proof. Recall that for a LP(1 < p < 00) measurable function F' with compact support,
we have: lim ||F||, = || F||«- In this case, the corollary follows by taking ¢ = co. [
pP—00
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Lemma 6.3. Let [ be a function: NN [0,n] = R. If f(k) < 3[f(k—1)+ f(k+1)]
Vek=1,....,n—1, thenf(k:)g(l—%)f(

3+§f(n) Vk=0,1,...,n.
Proof. Let f(k) = f(k)—(1=%)f(0)~£ f(n), k

for 1 <k <mn. Then g(k+1) — g(k) = f(k +

some m € N;:

0,1,...,n:let g(k) = f(k)—f(k—1)

_1) + f(k—1) —2f(k) > 0. Then for

g(1) <---<glm) <0< glm+1) < < g(n)

S gk = Y {F(k) = Ftk = 1)} = f(m) - F(0) = 0
For any £ > 1, f(k) = ég(l) = - ‘:%19(1‘). When k& < m: ég(z) < 0; when k& > m:

n

— 2 9()) £0. = f(k) <0,k =0,1,...,n. Thus, f(k) < (1= 2)f(0)+ £f(n),
i=k+1

k=0,1,...,n. Il
Corollary 6.4. If

!

(k=D +fk+1)+C VI<k<n-1

N | —

f(k) <

for some constant C, then

Fk) < (1— %)f(o) + Sf(n) +Ck(n—k) Y0<Ek<n.

Proof. Consider h(k) = f(k) + Ck?, k=0,1,...,n. It is shown that h(k) < %(h(k —

1)+ h(k+1)), k=1,...,n— 1. By previous lemma, h(k) < (1 — £)r(0) + £h(n) =
FB) < (L= 5)(0) + = fn) + Chin — k) 0

Corollary 6.5. If
fk) <Cfk =)V f(k+ 1)V VI<E<n-1
then
F(k) < CHOTRF(0) 7 f ()M
Proof. Take h(k) =1n f(k), we get the conclusion. O

Let VT denote the tensor V;, ... V; T} i

Corollary 6.6. If T is any tensor and if 1 < i < n then 3 a constant C = C(n,m) de-
pending only on n and m = dim M and independent of the metric g;; or the connection
FZ such that

Proof. When 2 <i <n — 1, use Theorem 6.1 to tensor V=T we have:

1/r 1/p 1/q
{frwrpad <er—zem{ [ronrrad { [ rompa]
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Let

2n 2n n
)

2—|—1’q . , T .

P 1—1

i—1

N R | | o | | n
{/|VZT|2TL/Zdu} < (2?_2_}_”) {/|Vz+1T|2n/(l+1)dlL} {/|vz—1T|2n/(z—1)du}

When ¢ = 1, by Corollary 6.2:

1/n 1/n
{/ \VT|2”d,u} < (2p—2+m) HIAE}X|T‘ {/ \V2T|"d,u}

Let f(0) = max 7|, f(i) = ([ |ViT]2”/i)i/2n, 1 <i <n. Then 3 C; depending only on

n and m such that
f@) <Cuf(i+DY2f(i —1)Y? where 1 <i<n—1.
The previous lemma tells that
f(i) < Cof ()" f(n)/"  where 0 <i<n

where C, = max{C.""?|0 < i < n}. The conclusion follows. O

Corollary 6.7. If T is any tensor and if 0 < i < n then 3 a constant C = C(n,m) de-
pending only onn and m = dim M and independent of the metric g;; or the connection

Ffj such that
' i/n 1—i/n
[Tk <c { / |V“T|2du} { / |T|2du}

Proof. Applying Theorem 6.1 to Vi7'T withp=q¢=2,r=1:for1 <i<n -1

1/2 1/2
/ IVileduém{ / IV”1T|2du} { / rvi—lﬂ%m} |

Let f(0) = [|T)%dp, f(i) = [ |V'T|*du
FG) <Cfi+1)V2f6E—1)Y2
F) < CFO) = f(n)im

The corollary follows directly. ]

6.2 Higher derivatives of the Curvature

If A, B are two tensors. Let’s define A x B to be the linear combination of tensor
formed by contraction on A; ;B ; using g
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Lemma 6.8. Let M™ be a Riemannian manifold with dimension m. If A, B are
tensors satisfying the evolution equation

0
—A=AA+B
ot o
then P
aVA:AVAnLRm*VA—i—A*VRm-I—VB.
In particular, when m = 3 we have
0
aVA: AVA+ RexVA+ AxVRc+ VB.
Proof. Since V=0+T
0 0A O
— (VA = V— 4+ — % A.
VA=V T
Remind that %Fék = —¢{V;Ru + ViRji — V iR}, so
0 0A
E(V/D = VE +VRecx A=VAA+ VB + VRcx A.

Because

=Vi(V.VA+RmxA)+ Rmx VA
=AVA+VRmxA+ Rmx VA,
0

5 VA= AVAL Rm« VA+AxVERm + VB

Theorem 6.9. V"Rm satisfies

(9 n n 7 j
V" Bm = A(V"Rm) + ; ViRm % V' Rm
0<ij<n

Proof. If n =0, Corollary 5.3 tells that

0
Proceed by induction on n: let A = V"Rm, B = Y. V‘Rm x V/Rm. Suppose we
i+j=n
have 5
—A=AA+B
ot o
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then by Lemma 6.8

%V”“Rm = AV"™Rm + Rm + V"™ Rm + V"« VRm
+ > AV Rm * V/Rm + V'Rm = V7*'}
i+j=n
=AV"™Rm+ > V'Rm*V’/Rm
itj=n+1
0<1,j<n+1
O
Corollary 6.10. V n > 0, we have
0 A A
a\V”]~zm|2 = A|V"Rm[* = 2[V" "' Rm|” + Y V'Rmx V/Rm x V"Rm
i+j=n
Proof.
0 0
&|V"Rm|” = 2(V"Rm, EV”RT@ + Rm * V"Rm % V" Rm,
where the second term is from the derivative of g.
AIV"Rm|? = 2V (V" Rm, V;V"Rm)
=2(V"Rm,AV"Rm) + 2(V,;V"Rm,V;V"Rm)
= 2(V"Rm, AV"Rm) + 2|V" " Rm|?
a n 2 n 2 n a n n
§|V Rm|* = A|V"Rm|* + 2(V Rm,av Rm — AV"Rm)
—2IV"™ Rm|* + Rm x V"Rm x V"Rm
= A|V"Rm|? — 2|V Rm|* + Z V'Rm * VI Rm % V"Rm
i+j=n
O

Theorem 6.11. In any closed Riemannian manifold M™, for any n > 0 we have the
estimate

d
—/ |V”Rm|2du+2/ \V”HRm]Qd,ungaxmm]/ V" Rm|*du
dt Jur M M M

where C' is a constant independent of the metric, depending only on the number n of
derivatives and the dimension m of M.
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Proof.
d
—/ yv"Rm\2du+2/ |V Rm|?du

d
:/ (%/ |V”Rm|2du+2/ |V”+1Rm|2)d,u
M M M

/ (A|V"Rm|* — 2|V" " Rm|? + Z Vi Rm * VI Rm * V" Rm)dy
M

i+j=n

C’(n)/ |V Rm||V? Rm||V"Rm|du, for some constant C'(n)
M
Use Holder’s inequality twice:

/ V' Rm||V? Rm||V"™ Rm|dp
M

' ' 1/2 1/2
< (/ ]V’Rm[Q\VJRmIQdu) (/ ]V"Rm\%lu)
M M
' ‘ i/2n ' ‘ j/2n 1/2
< ( / !V’Rm|2”/ldu) ( / ]VJRm|2"/Jdu> ( / |V"Rm|2dﬂ)
M M M

Apply Corollary 6.6
A A i/2n A i/2n
(/ \VszP"/’du) < C(n,m) mj\z}x|Rm|1_’/" (/ \V"T|2d,u>

d
—/ |V"Rm|2du—|—2/ |V"+1Rm|2du§0max|Rm|/ V" Rm|*du
dt Ju M M M

where C' depends only on n, m. [

If the dimension of M is 3, then Rm could be replaced by Rc. Furthermore,
previous arguments set up by replacing Rm by Rc. Thus we have

Corollary 6.12. In any closed Riemannian manifold M of dimension 3, for anyn > 0
we have the estimate

d
—/ |V”Rc|2d,u+2/ V" Reldu < Cmax|Rc|/ V" Re|*du
dt Ju M M M

where C' is a constant independent of the metric, depending only on the number n of
derivatives.

6.3 Finite time blow-up

Let M™ be a closed Riemannian manifold of dimension m. We want to show:

Theorem 6.13. Suppose the Ricci flow has a unique solution on a mazimal time
interval 0 <t <T < oo. If T < 00, then max |Rijii| = 00 ast —T.
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Let’s prove by contradiction. Suppose |Rm| < C < oo as t — T. If we can show
g converges to a smooth metric as t — T, then by Theorem 4.3 the maximal time
interval will be larger then [0,7), a contradiction.

At first, observe that if Rm is uniformly bounded, then 3 constant C' such that

T T
/ max | g;;|dt < 2/ max |R;;|dt < C.
0 M 0 M

This is where we start our deduction.

Lemma 6.14. Let g;; be a time-dependent metric on M for 0 <t < T < oo. Suppose
T
/
/0 mj\z}x\giﬂdt <C< o0

Then the metrics g;;(t) for all different times are equivalent, and they converge as
t — T wuniformly to a positive-definite tensor g;;(T") which is continuous and also
equivalent to ¢;;(t) with 0 <t <T.

Proof. Fix a tangent vector v # 0 € T'M at a point x € M and let
[]f = gi;(t)v'v?

Then we take q
Lol = gy

and it follows by Cauchy-Schwartz inequality that

|97,;jvivj’ < |9£g||”|t2

= {%lnh’m < |g;j| Then for 0 <7 <6 < T we have

0
ol /o) < [ lghldt < C < o0 (%

The formula () could give several important conclusions:

(a) Ve>0,3 6 >0 independent to v € TM such that V 6, 7 € (T"— §,T) we have
|In|v|2/|v[?| < €. Then In |v|? converge uniformly as ¢t — T'. Let’s define

0|7 = exp(lim In |[v]?).
=T

Because |v|? V t € [0,T) are all norm function on T,M V x € M, |v|% is a norm
too. Then we get a limit metric g;;(7").
(b) e Cv2 < |z <2V 1,0 €0,T],VveTM. All metric g;;(t) for 0 <t <

T < oo are equivalent. Il
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Lemma 6.15. If |[Rm| < C on 0 <t < T < o0, then for any n we can find a constant
C,, such that for any t € [0,T] we have

/ V" Rm|*du < C,
M

Proof. Let f(t) = [,, |[V"Rm/|*du. Theorem 6.11 tells that 3 C'(n,m) such that

Z—‘i < C(n,m)Cf.

f(t) < f(0) exp{C(n, m)Ct}

We also know that f(0) is bounded because M is compact. Let C), :== f(0) exp{C(n,m)CT}.
The lemma follows. O

Lemma 6.16. Assume |Rm| < C on 0 <t < T < oo as before, for alln € N, 3 C,,
such that for any t € [0,T) we have

V" Rm||o < én

In particular, 3 l~)n B
[V"Relloo < Dy,

Proof. By Corollary 6.6, 3 constant B = B(N, m) such that V1 <n < N
/ V" Rm|*N/™dp < B max | Rm|?N/n=1) / VY Rm|?dp < BCCly
Take N = np for some m < p < oc:
/|V”Rm]2pdu < BCC,p =: Cpyp.
Take f = |[V"Rm|* € T(M):

/ {4 |V S]ydp < G,

Now by Sobolev’s inequality (see Appendix A), 3 constant C(t) depending on ¢ such
that

IV R = ||l < C(1) / (f + IV f}du < C(0)Co,

Here the constant C'(¢) depends on (w", t), hence depending on (g;;(t), du = v/det gdz, t).
Lemma 6.14 tells that g,;(¢) could be controlled by C. Finally, 3 unified constant C,
such that _

IV"Rm| < C,, VnéeN,

where C,, just depends on the initial value of the metric and the constant C which
bounds |[Rm| V 0 <t < T. In particular, because ¢(t) is equivalent as shown in 6.14,
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3 constant £ such that
V" Rel|oo < Cllg(0)]|o| V" Rm| =: D,

]

Lemma 6.17. Assume |[Rm| < C on 0 <t <T < oo as before, for alln € N, 3 C,
such that for any t € [0,T) we have

10"gllee < Con

Proof. Let C be a generic constant depending just on m,n,C, g(0),T.
Ifn=1:Vse[0,T)

o ( 0 0 0 0
g (a_mgij(s)) = a—uagij(s) = —Qa—mRn(S)

= —2(ViRy + TRy + T} Ra)

0

|§5’k9ij(8)| < 2|ViRyj| + 2|5 Ry| < 2|ViRi;| + 2m|D(s)||Ryj|

Notice that 5 .
&PZ‘ = —§gkl{viRﬂ + V,;Ry — ViR;;}

0
27 < R
|8t | < C|V;R;]

0 ~ ~ -
!aakgij(s)! < 2D, +2mCD,Dy, =: B
|0g(s)| < [109(0)[|los + BT =: C1
One could show the general case by induction. The reader can find the detail proof in
[4] The Ricci flow: An introduction pp206-207. O

Here is a complete proof of the Theorem 6.13. Assume |Rm/| is bounded by C.
Let C be a generic constant depending just on m,n,C, g(0),T. Fix a local coordinate
patch U around an arbitrary point € M™, and let 7 € (0,7) be arbitrary as well.
Then by Lemma 6.14, a continuous limit metric g;;(7) exists and is given as

T
Gij (x7 T) = Gij (xv T) - 2/ Rij (l‘, t)dt.

Let a = (ay,...,a,) be any multi-index with |a| = n € N. By Lemma 6.16 and Lemma

6.17, both gc—nagij and gc—naRij are uniformly bounded on U x [0,7"). Thus we can write

o o T o
(@QQ) (.Z',T) = <%g’l]) (.Z',’T) — 2/7— (%Rm) (.Z',t)dt,

which shows that [0%¢(T")| < C for some positive constant C', hence that g;;(T) is a
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smooth metric, and also

| (%gzj) (z,T) - <%gz’j) (z,7)| <CO(T —7),

which shows that ¢g(7) — ¢(T") uniformly in any C™ norm as t — 7', and

om ) on
(%gij) (x,T) = th_{l% <%gzj) (w,t).

The smoothness of ¢(T') implies that [0,7") is not the maximal existence interval of
Ricci flow, a contradiction to the definition of T

Remark 6.18. Recall that Theorem 5.11 tells that T < oo for compact 3-manifold
with strictly positive Ricci curvature. Thus, the Rm in such M3 will blow up as the
variation of Ricci flow.

The normalized equation

As shown in previous section, the Ricci flow on closed M? with strictly positive Re
always blow-up, so we hope there exist some flows with better behaviors. Let’s consider
the normalized equation of Ricci flow on M™:

0 2
g% = 79— 2R;;

where r = [ Rdp/ [ du is the average of scalar curvature. It will be shown that such
flow owns better properties than the origin one.

7.1 Estimating the normalized equation

We will focus on the estimates of the normalized equation on M?3. Let

0

5% = ~2Ry ()
0 _ 2 -
—,vgij = —ng‘j — QRZ] (**)

ot 3

For convenience we let ¢, g;;, R;;, R, 7 denote the variables for the unnormalized equa-
tion () and ¢ gw,RZ], R, 7 the Correspondlng variables for the normalized equation

(%%). At first, for (s%) hy = 27 Gij — 2R;;, Lemma 3.8 gives

175

H = gijhij = 2(7 - R)

. a . N
du:/adu:/(r—R)duzo

Hence, an important observation is that the volume of M? is invariant under the
variation of g(t). On the other hand, let b = 9 (t) be the normalization factor such
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that g;;(t) = ¥(t)g;;(t) and [dip = 1. The geometry of g and § is connected by
following (under the same time scalar ¢):

Nk 1k Dl pl _
Fij - Fij Rijk - Rijk Rijkl - wRijkl

Rij=Ry; R=v¢'R F=v¢'r di=v¢" dy
Moreover we choose a new time scalar £ = [ (t)dL,
dt
= = (t).
Lo

Under the new time scalar ¢, one could show the normalized Ricci flow again:

0 . 2 -
8—7;9@‘ = ET.%' — 2Ry, (*%)

Let (*) have a solution on a maximal time interval 0 < ¢ < T and let (*) have a
corresponding solution on 0 <t < T as the transformation above.

Remark 7.1. In fact, we can discuss the geometry of g under old time scalart. Here
we use the new scalar t for several reasons. One is that the normalized Ricci flow has
invariant volume, a special invariant. Second, the normalized Ricci flow also obeys the
variation equations found in Section 3. Third, t follows the origin paper [H].

Lemma 7.2. Rmax(f)/]%mm(f) —~last—T.

Proof. Rmax and Rmin are dilated by a same constant, the ratio is unchanged with
respect to Theorem 5.37. O

Lemma 7.3. R;;(f) > eR(£)§;; () for some ¢ for any t € [0,T).

Proof. Theorem 5.16 and the transform laws in old time scalar ¢ give that: Rij (t) =
€R(t)§i;(t). Thus, under new time scalar ¢ the result remains. O

Recall the Bishop-Gunther-Cheeger-Gromov volume comparison theorem:

Theorem (Bishop-Gunther-Cheeger-Gromov). We denote by M a complete Rieman-
nian manifold of dimension n, and by M, the model space of constant curvature k.

Let By(r) (resp. Bj(r)) be a geodesic ball in M (resp. M,). i.e.
By(r) = {z = exp,(t0)|6 € S",0 <t <r} for p € M and arbitrary r
and let vol(B,(r)) be its Riemannian volume. Then if Rc > (n — 1)k, then

vol(By(r))

" ol(By(r)

is a non-increasing function, which tends to 1 asr goes to 0. In particular, vol(By(r)) <

vol(Bj(r)).

Proof. see [1] page 21, theorem 4.7 O
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This theorem is helpful to bound the scalar curvature R.
Lemma 7.4. ]?max(f) <C<ooon0<i<T

Proof. Let L(f) and V(f) denote the diameter and volume of () respectively. Since
Rc > 0, the Bishop-Gunther-Cheeger-Gromov volume comparison theorem implies
that

-1 .
1EV§67TL3.

On the other hand, Lemma 7.3 shows there is a positive constant S depending only on
go such that ) 3
Re Z 252Rmin§'

So by Theorem 5.5,
T

6 V Rmin

Since Rmax / Rmin —last— T, there exists a positive number A such that

L<

jav]l

max

Rmin

>

SN

Thus,

N N 2 2/3
Rmax S ARmin S A (L> S A (E) (E> O
BL

Lemma 7.5. T = oo

Proof. Since dt/dt = 1) and 7 = r we have

T R T
/ fdt:/ rdt = oo
0 0

by Corollary 5.39. While 7 < Rmax <, so T = . OJ
Lemma 7.6. S/R? —1 — 0 ast — <.
Proof. Apply Theorem 5.40 and the transform law between g and g. O

In normal coordinate ¢;, the section curvature in closed (M3, g(t))

Rm(e;,ej,¢e;,€;)

iG55 — 91-2]-

K(ej,ej) = = Rijji

is of the form (A + p — v) (see in Corollary 5.9). Transform it into normalized Ricci

flow, it becomes
N . 1~
K(ei ej) = Rijji = 5 (A + A = 0)
In each p € M3, X(p,t), u(p,t),v(p,t) approach each other as £ — oo by Lemma 7.6,

so K(p,t) can be controlled by half of the scalar curvature at R(p,t) as t — oo. In
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global, Rmax / émin — 1 tells that the control of sectional curvature is uniformly. Thus
Ve (0,1) 3C > 0 such that V¢ > C we have

0< (1= ) Kunax(t) < K(1) < Kpnaalt).

This formula may remind you the famous sphere theorem (see in [6] page 265):

Theorem (sphere theorem). Let M™ be a closed simply connected, Riemannian man-
ifold, whose sectional curvature K satisfies

0 < hKpax < K < Kpax.

Then if h =1/4, M is homeomorphic to a sphere.
Then we know

Theorem 7.7. Let (M,g) be a closed Riemannian manifold of dimension 8 which
admits a strictly positive Ricci curvature. Then ¥ € € (0,1) (M,g) also admits a
metric such that

0<(1—€Knx <K < Kz
In particular, when M is simply connected, M is homeomorphic to a 3-sphere.

This has been a very good result. But it could be optimized further as what the
Main Theorem said. To accomplish this point, one borrows the following lemma which
is not so strong compared with sphere theorem:

Lemma 7.8 (Klingenberg). Let M be a simply connected manifold of dimension 3.
The sectional curvature satisfies:

0< iKmax < K S Kmax-

Then the injectivity radius of M is at least 7//Kpax-
Proof. See [3] Theorem 5.10. O
Recall the Bonnet-Myers theorem:

Theorem. Let (M,g) be a complete Riemannian manifold with Re(g) > k > 0 for
some constant k > 0. Then M is compact and m (M) is finite.

Lemma 7.9. 3 € > 0 such that Rmm >eon0<t<oo.

Proof. Let T € (0,00) such that ¥V ¢ > T the sectional curvature is 1/4 pinched. For

t € [0,7], Ruin : [0, 7] — Ry is a continuous function with positive value. For this
reason, Ry, > € > 0 for some constant €;. As for t € [T, 00), let M be the universal

covering of M. Notice that M inherits the metric and curvature in M , SO its sectional
curvature is 1/4 pinched. Apply above lemma:

3
—~ ’ﬂ'
vol(M) > C | — for some constant C'
(M) > ( /—K>
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Since T is large enough, 3 C” such that K(t) < C'Ryn(t) for any t € [T, 00); so for
some other constant C'

vol(M) > CR2*(t) vVt € [T, 00).

min

—~

But we know vol(M) = |m(M)|vol(M) = |m(M)| (we assume vol(M) = 1 before).
We use Bonnet-Myers theorem to (M, §(0)), we know 71 (M) is finite (normalized Ricci
flow just changes metric but not topology). Hence

CRP(t) < |m(M)| < 0oVt € [T, 00).

Finally, we can find a constant € > 0 such that R,;, > ¢ > 0 for all 0 <t < oo. O

In conclusion, we know:

Theorem 7.10. The normalized Ricci flow has a solution on 0 < t < oo with
0 < €< Ruin(t) < Ruax(t) < C VYt €0, 00);
ERQU S Rij S Rf]” Vit S [0, OO)7

Rmax/}?minﬁl and g/RQ—é—HJ as t— oo

7.2 Exponential convergence

In this subsection, our goal is to show: §(#) will converge to a smooth metric with
constant positive curvature under the variation of normalized Ricci flow. If we can do
it, then the main theorem in Section 1 could have been proved. It is shown that the
method used here is similar to what we did in Section 6.3. The only difference is that
the estimates here are done in normalized Ricci flow. So we need some normalized
evolution equations at first. That is where we begins the proof.

Let € C has the same meaning as in Theorem 7.10. Let % be a generic constant
here.

Suppose M? is a closed Riemannian manifold. Let P and @ be two expressions
formed from the metric and curvature tensors under the flow

0

G = 2R
ot

ij
and let P and Q be the corresponding expressions under the normalized flow

0 2

g% = 379 ~ 2Ry;.

We say P has degree n if P = )" P under parameter t.
Lemma 7.11. Suppose P satisfies

orP
E_APJFQ
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for the unnormalized equation, and P has degree n. Then @) has degree n — 1 and for
the normalized equation

OP - 2 .
— = AP —7P.
5 +Q+ 37“

Proof. Slnce =1 and g;; = 1g;j, we have

and

A = ~ij@i@j = w’lgijvivj = ’(/}71A.
It has provide one 1 before unnormalized equation, so () has degree n — 1. Then
9 —np A (o),—T D —n+1
U P = bAWTP) +uTQ

oP
ot

¢

_nw n P_’_w n+1-" 2/} n+1AP—|—1/J n+1Q

o°P - - -
AP+ Q0 %P
ot Qs
Recall that 1 = [dji = ¢*? [ du. Differentiate both sides:

3 0
=502 [ au— v [ Ray

0= §¢1/23_¢ du—w?’/Qr/d,u

27 ot
1op _2r
ot 3

1oy 10y 2r1  2F

vot  Y2ot 3 3
This prove the lemma. Il

With this transform formula, it is not difficult to prove exponential convergence of
geometric qualities.

Lemma 7.12. 3 constants C < oo and 6 > 0 such that

S—-R? < Ce 0t

W —

Proof. Let f = S/R* — 3, f=S8/R?*— 5. Note that f has degree 0. By Lemma 5.22
with v = 2 we have

af .. 4P
i f+ p"VpRqu—ﬁ
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By Lemma 5.24 we have

8 1= 1oyay ~ 1
P>e5(S— R > - -
2 e5(5 - 2R 2 3

Thus we get

(%@f) <66 f + " (A + 8V, - o)
— edfﬁf—f—eéfﬂkka

= AT f) + @V (e f)
Then by maximum principle 3 4" € R such that A f < €. ie. f<Ee . Recall that
R has upper and positive lower bound, the lemma follows. Il

Corollary 7.13. |RU — %R@iﬂ < Ce . In particular, Re is uniformly bounded on
[0, 00).

Proof. Take eigenvalues A, fi, 0 of the Rij then

1

Ry = gRauP = (A= 04+ 0)) <2032+ (G- o

w

In comparison,

~ 1= 1 _ T L
§— SR = S — i + G )+ (i~ o))
The estimate follows by Lemma 7.12. 0

Lemma 7.14. 3 constant € < oo and 6 > 0 such that

Rmax - Rmin S (56_65‘

Proof. Let F = |V;R|*/R+168(S — $R?). Then F has degree —2. From Lemma 5.36
(and its proof) with n = 0 we get

0 1
—F < AF 2 — —R?
5L < + 672R(S 3R)

o -~ . - 1. 4 -
—F<AF 2 — —R?) — —FF
ot < +67T2R(S 3}2) o7

The estimates in Lemma 7.4, Lemma 7.9 and Lemma 7.12 tell that we can find some
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constant C' < oo, 6 > 0 and € > 0 such that

9 APt Ced o

[Sa Y

o - L
5(6‘”1? — Ot) < A F - CY)
The maximum principle gives that 3 constant ¢ such that
SE—Ci<€ Vieln, )

F < (% +Che

The exponential function decays faster than linear function, so taking a slightly smaller
0 we have o )
|ViR]?/R < €e™.

R has upper bound: . B
|VZR| S %6_&

Recall Lemma 7.4: let 8 > 0 such that Re > 262Rming and 262 = ¢; L is the diameter
of M?3. Then in the proof of Lemma 7.4 we show

T w2
V Rmin N 262 7

L<
3

and

™2 g

|Riax — Buin] < [ViR|IL <€ e ]

257
Corollary 7.15. |R;; — $7Gi;| < Ce ot
Proof. There is
|Rij — %@zﬂ <|Rij - %Réiﬂ + |%R§ij - %fﬁiﬂ
= IRy — 5 Ri| + |R— 71/V3.
The proof follows by Corollary 7.13 and Lemma 7.14. O

Theorem 7.16. The metrics g;; (t) are all equivalent, and converge ast — oo uniformly
to a continuous positive-definite metric §(oo).

Proof. Observe that
00 ~ 0o B 1 _ 00 o
/0 max |Gi;1dt = 2/0 max |R;; — §f§|dt < 2/0 Ce Oldt = 2% /6 < oo,

so this theorem follows by Lemma 6.14. [
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The corollary 6.12 gives that
d
—/ ]V"Rc|2du+2/ ]V”HRc]Qdug%max\Rd/ V" Re|dp.
dt [y M M M
In the case of normalized Ricci flow, we have
d s 5 . 5 s
—/ |V"Rc|2d/1+2/ |v"+1Rc|2dgg<5max|Rc|/ V" Re|dji.
dt Jar M M o
Furthermore, since Rc is bounded:
d —n D275 —n+lp |12 7~ Tn |29
7 IV"Re|*dii+2 | |[V" ™ Rel*dp < €| | |V"Rc|*dj.
M M M

Let’s define a now tensor E:Eij by

~ ~ 1__
Eij = Rij = 573
An observation is that V n € Z-, we have
V"E = V"Re. (7 is a constant)

Apply Corollary 6.7 to the tensor E:Vne Lo

. 5 N n/(n+1) . 1/(n+1)
/\V”Rc|2d,a < %{/yv"HRcy?dg} {/\E\Qd/}}

Lemma 7.17. For every n, 3 a constant C,, such that
/ VRl < C,
M

Proof. Let A, = [ |V"Rc|>dji, B = [ |F|*dji. Then

d
—A, <24, +%FA,
g s +1

< 2An+1 + (gAZiln-i-l Bl/(n+1)

< 24,11 +CnAp + €0 "B, (Vn>0)

where the third inequality is because t* < "™ +1V > 0 and let t = nA,,1/B then
Vv n > 0 we have
Ay B < UAHJS +n "B

When 7 is so small that ¥n < 2, then

iAn <¥¢B
dt
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i.e.

d " . . _
d_f/ |V Re|?dji < %/ |E2dji < €e™ (for some 6 > 0)
Then the lemma follows. O]

Lemma 7.18. For every n,p € N, we have
/ V" Re|Pdiy < €e

for ¢ and 6 > 0 depending only on n and p.
Proof. By Corollary 6.6, 3 constant ¢ such that V1 <n < N

/ V" Re|*M/dj < ij\z}x | B2N/n=D) / VY Re|*dji
Take N = np:
/ V" Re|*dji < ij\f}x |21 / |V¥ Re|?dji.
The RHS converges exponentially as shown before. The lemma follows. [

Theorem 7.19. For every n € N, we have
IV Re(®)]|oo < G

for some constant € < oo, § > 0 depending on n.

Proof. The argument is similar to the proof in Lemma 6.16: let f = [V"Rc|*?, 3 <
p < 0o. The Sobolev’s inequality gives

rwwwgzwmms%®/hﬁ+wﬂw@

where € () is also uniformly bounded by Theorem 7.16. Thus ||V"Rc||» is exponen-
tially decreasing. [

Corollary 7.20. For every n € N, we have
IV"7(E)[|oo < G

for some constant € < oo, d > 0 depending on n.

Proof.
i< [ 19 R < [ 16O Ry i

Because §(f) is uniformly bounded,
IV"(f)] < €| Refloo < G
is exponentially convergent. [
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Corollary 7.21. For alln € N,
[0"3llee < €e

for some constant € < oo, § > 0 depending on n.
Proof. The proof is similar to that of Lemma 6.17. [

Theorem 7.22. As t — oo the metrics §;;(t) converge to the smooth limit metric

Gij(00) in C™-topology. In special, the curvature Ri;(t) converge to the curvature

Proof. By Weierstrass discriminance, V o = (ay, as, az) € N3,

Ooa‘a@j ~ - °°8‘“|Rij - g
/0 W (p, t)dt and /O W(p, t)dt

are uniformly convergent on p € M3. Thus V fixed 7 € [0, 00)

9915 47
Y

- gzg / { Tgl] 2RU}d£

Gij(00) = lim Gy (#) = §;5(7) +

is differentiable in M3, and

O gi;(c0)  01°1g;(7) +/ {2 _0llg; 3 R”}d

ox® ox® 3 Oz~
Hence 15, (00) 13, (7
9" gi; (o0 . 0%gy(t
Z 2O ljim — 29 ]
0% ihw 019
Remark 7.23. A family of smooth functions h(t) : M™ — R converges to h(T) : M —
R in C*®-topology as t — T means: ¥ o = (o, ..., a,) € N* we have

olh(t)  olln(T)
ox™ - ox™

uniformly w.r.t M ast — T.

Remark 7.24. In the proof of above theorem, we use the lemma citing from [11] &
3 20.17 page 359. It states that:

Yo R f Ao 2L AL (L,p) € [a,+00) x [0, 8] L#S:, Ry [ LD at £ o, ]
=80k, ARA o(p) = faoo f(t,p)dt & [o, 5] E¥TH#, WmEH

<0
@’(p):/ %dt, a<p<p.

Corollary 7.25. The limit metric §;;(c0) has constant positive curvature.

Proof. By Corollary 7.15:
. 1
~hIIl Rij - g?zgw =0

t—o00
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and 7(00) > Run(00) > € > 0. Thus

is a constant positive Ricci curvature. 0

Up to now, we show M?3 with strictly positive Ricci curvature could be equipped
with a Einstein metric such that Rc = %rg, r > 0. As shown in Proposition 2.9, M? has
constant sectional curvature %7“ > (. Theorem 2.19 shows that the universal covering
of M3 is S?, where the smooth structure on S* is inherited from the standard smooth
structure on Euclidean space R*. If M3 is simply-connected, then M? is diffeomorphic
to S® with canonical Riemannian metric. This finishes the proof of main theorem.
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Appendix

A Sobolev’s inequality

In this appendix, we will prove the Sobelev’s inequality of complete Riemannian man-
ifold M™. Let C§°(M) be the set of smooth function with compact support in M;
Whr(M) ={f € L, (M)|f, V[ are L? measurable}, 1 < p < oo. Let w" be the area

loc
of unit sphere S™.

Theorem. Let M™ be a complete Riemannian manifold with injectivity radius o9 > 0
and sectional curvature K satisfying the bound K < b?>. If p > m, there exists a
constant C(p) depending only on p such that for all f € C§°(M):

1l < COf i = CO)( / 1P+ [V P

Proof. Let ¢(p) € C*°(R) which satisfies: ¢(t) = 1 in a neighbourhood of 0; p(t) =0
for £ > 0, 6 < min{do, ;}. Let x be a given point of M then under normal polar
coordinate (r,0)

F(2) = £(0,0)0(0) — £(5,0)0(8) = - / 0,(f(r,0)p(r))dr

)
()] < / VL (. 8)p(r)]|dr

Let do = r™ ldrdf

W ()] < / VL 0 (r)] ' "do

Bs ()
1/p 1/q
<([ wismosepas) ([ )
Bs(z) Bs(z)
1 1
=: I, where —+-=1
p q

Ii: g =drdr + ggigid9'd9?, 2 < i < m. Because K < b,

sin br 2(m—1)

If r < 7/2b, then =& > 2

sinbr — 7

m—1 m—1 m—1
P drd) = - —d g( br ) < <Z> d

Vdet g a sin br 2
7\ (m=1)/p
I < (5) IVf o+ f Vol w)
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]QZ

1/q

4
I = (W)Y < / T(m—l)(l—q>dr)
0

1/q
_ (W (p - am)

p—m
Thus,
[f(@)] < C(w, bo, 0, Vo) fllwrr
where C' is a constant depending only on p finally. [

Poincare conjecture

The basic usage of Ricci flow is to solve three dimensional smooth Poincare conjecture:

Theorem B.1 (3-dimensional smooth Poincare conjecture). If ¥ is a simply-connected
closed smooth manifold of dimension 3, then ¥ and the 3-sphere S* are diffeomorphic.

This conjecture is solved in 2003 by Grigori Perelman. The main theorem of this
article is just a special case of the theorem.

Historically, Poincare first conjectured that if a 3-manifold > has the same homol-
ogy groups as S%, then ¥ and S® are homeomorphic. However, Poincare discovered an
example X p, called the Poincare homology sphere, such that Xp and S* are not home-
omorphic. Thus, Poincare added the requirement that > should be simple-connected.
The Whitehead theorem could be used to generalize this statement.

Theorem (Whitehead theorem). A map f : X — Y between simply-connected CW
complexes is a homotopy equivalence if f, : H,(X;Z) — H,(Y;Z) is an isomorphism
for each n.

Proposition B.2. Let X" be a simply-connected smooth manifold with the same ho-
mology group as S™, n > 2, then ¥ is homotopic to S™.

Proof. Since ¥" is smooth, by Morse’s function theorem, ¥™ has a CW-structure. Let
¥* be the k-skeleton of the CW-structure of ¥". Consider the homology sequence of
the cofibration

DI S S

we have isomorphism ¢, : H;(%;Z) — H;(S*;Z), Vi > 0. Hence, ¥ is homotopic to
S O

Thus, the key point here is homotopic-equivalence between X3 and S®. Many
different versions of Poincare conjecture is based on the assumption of homotopic-
equivalence:

Theorem B.3 (Higher dimensional n > 5). If ¥ (n > 5) is a smooth n-manifold
homotopic-equivalent to S™, then X" is homeomorphic to S™.

The higher dimensional Poincare conjecture is proved by Stephen Smale in 1961.
The basic tool is the h-cobordism theorem.
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Definition B.4. Let W™t be the cobordism of M™ and N™ where W, M, N are all
smooth manifolds. M and N 1is called a h-cobordism if W is homotoptic equivalent to
the trivial cobordism M x [0, 1].

Theorem B.5 (h-cobordism theorem). Let M™ and N™ be compact simply-connected
oriented smooth n-manifolds that are h-cobordant through the simply-connected (n+1)-
manifold W™, If n > 5, then there is a diffeomorphism

W = M x [0,1],

which can be chosen to be the identity from M C W to M x 0 C M x [0,1]. In
particular, M and N are diffeomorphic.

Furthermore, when n = 5,6, one can show " is diffeomorphic to S”. When
n = 7, Milnor’s exotic sphere shows that the homeomorphism could not be improved
to diffeomorphism.

Smale’s proof fails when n = 3,4 because it needs Whitney’s trick to cancel in-
tersection points. The Whitney’s trick requires us to find an embedding disk in the
manifolds M™. Also, the embedding map f : P™ — Q*"*! is dense in all differentiable
map from P to ). Thus this embedding is promised when n > 5 and it fails in lower
dimensions.

The story in dimension 3 has been claimed before.

In dimension 4, the topological Poincare conjecture is solved by proving a topo-
logical 4-dimensional h-cobordism theotrem. This work is done by Casson, Wall and
Freedman.

Theorem B.6 (Wall’'s Theorem on h-cobordisms). If M and N are smooth, simply-
connected, and have isomorphic intersection forms, then M and N must be h-cobordant.

Theorem B.7 (topological 4-dimensional h-cobordism theotrem). Let M* and N* be
compact simply-connected oriented smooth 4-manifolds that are h-cobordant through
the simply-connected 5-manifold W5. Then there is a homeomorphism

W= M x [0, 1],
which can be chosen to be the identity from M C W to M x 0 C M x [0,1]. In
particular, M and N are homeomorphic.

Theorem B.8 (topological 4-dimensional Poincare conjecture). If ¥* is a smooth
4-manifold homotopic-equivalent to S*, then X* is homeomorphic to S*.

Remark B.9. This result can be generalized to the case that X* is just a topological
4-manifold.

However, the smooth version of 4-dimensional Poincare conjecture is still open up
to now:

Conjecture B.10. If X% is a smooth 4-manifold homotopic-equivalent to S*, then 3%
is diffeomorphic to S*.
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