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A reading report on Riemann--Hilbert correspondence

[Abstract] The early version of Riemann--Hilbert correspondence was

first stated in Hilbert’s 21st problem, which was solved and generalized

by Deligne. Later, Kashiwara gave a vast generalization of the work of

Deligne. Now the Riemann--Hilbert correspondence has become a crucial

tool in algebraic geometry, arithmetic geometry, and number theory. This

thesis aims to review the different versions of the Riemann--Hilbert

correspondence and the basic concepts behind them and also expand

some details in Deligne’s proof of a relative version of Riemann--Hilbert

correspondence

[摘要] 早期版本的黎曼--希尔伯特对应被陈述在希尔伯特第二十

一问题当中。德利涅解决了这个问题并且将其推广到更一般的形式。

后来 Kashiwara 给出了更加一般的推广。使得黎曼希尔伯特对应成为

了代数几何与数论当中的重要工具。本文主要介绍不同版本的黎曼--

希尔伯特对应并回顾其涉及到的基本概念，同时展开了德利涅的一个

证明的细节。

[关键词] 黎曼-希尔伯特对应，D模，全纯联络

[Key Words] Riemann--Hilbert-correspondence; D-module;

holomorphic connection
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1 Introduction

The Riemann–Hilbert correspondence was first stated for Riemann surfaces. Let X be

a compact Riemann surface. Let U be an open subset on X such that X \ U consists of

finitely many points z1, ..., zm. We consider a differential equation locally of the following

form: (
(
d

dz
)n +

n∑
k=1

an−k(z)(
d

dz
)n−k

)
f(z) = 0 (1)

where each ak(z) is holomorphic.

For convenience, we consider X to be the unit disk D in C, and U to be the punctured

unit disk. Also, we assume (1) is defined globally on U . When each an−k(z) has at most

a pole of order k at 0, we say the equation has a regular singularity at 0.

Let’s consider the solutions u1(t), ... , un(t) of (1) . Due to the non-trivial fundamental

group of U , these solutions may not be well defined on the whole punctured disk. However,

we can consider the polar coordinate z = e2πt around 0 and the universal covering of U

parameterized by t. Then we can consider the lift of solutions denoted by ũ1(t), ... , ũn(t)

on the universal covering. Let ũ(t) be the complex vector (ũk(t))k=1,...,n.

Considering the uniqueness of solutions, there exists a matrix M ∈ GL(n,C) such

that

ũ(t+ 1) = Mũ(t)

for each t.

The matrix M is usually called the matrix of monodromy. It gives a complex repre-

sentation of π1(U).

This example inspires us to relate the representations of π1(U) with differential equa-

tions with regular singularities on X(In fact there is some ambiguity in this description).

Hilbert’s 21st problem asks if we can obtain all finite dimensional complex representations

of π1(U) from the monodromies of differential equations with regular singularities.

There is also another view of the representations of π1(X), that is, the locally constant
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sheaves, in other words, local systems on X. In fact, we have the following theorem from

[1]:

Theorem 1.1. Let X be a connected and locally simply connected topological space, and

let x be a point in x. The category of locally constant sheaves of sets on x is equivalent to

the category of sets endowed with a left action of π1(X, x).

Here, we consider the equivalence between the category of locally constant sheaves of

finite dimensional complex vector spaces and complex representations of π1(X, x).

On the other hand, differential equations can be obtained from holomorphic connec-

tions on complex vector bundles of X. This will be explained in the following sections of

this thesis.

So, we can roughly talk about the Riemann–Hilbert correspondence. A classical and

easier version of Riemann-Hilbert correspondence refers to the equivalence between the

category of integrable connections and the locally constant sheaf of complex vector spaces

on a complex manifold. The definition of an integrable connection will be given in the

next sections. Deligne related the regularity of differential equations mentioned earlier

in the introduction of this thesis and integrable connections in his famous work[2]. The

definition of a connection with regular singularities for varieties may be due to Deligne.

Roughly speaking Deligne’s Riemann—Hilbert correspondence is the equivalence between

integrable connections with regular singularities along a divisor on a smooth algebraic va-

riety and local systems on the complement open subvariety. Deligne also showed that

a holomorphic integrable connection must be regular under his settings. Later general-

izations replaced integrable connections with regular holonomic D-modules and locally

constant sheaves with perverse sheaves.

This thesis mainly provides a review of some basic concepts for the Riemann-Hilbert

correspondence, a proof of the relative Riemann–Hilbert correspondence without singu-

larities, and a little introduction to Deligne’s Riemann–Hilbert correspondence for reg-

ular singularities and kashiwara’s Riemann–Hilbert singularities for regular holonomic

D-modules.

4



2 Basic concepts

2.1 Analytic space and sheaves

Definition 2.1 (local model space). A local model space X is the vanishing set of some

analytic functions f1,..., fm on an open set V of Cn for some n ∈ Z, which the structure

sheaf Ov/IZ where Ov is the sheaf of holomorphic functions on V and IZ is the ideal

sheaf generated by f1,..., fm.

Definition 2.2 (complex analytic space). A complex analytic space X is a locally ringed

space (X,Ox) such that for each x ∈ X, there is an open neighborhood U of x which is

isomorphic to a local model space as locally ringed C-space.

Definition 2.3. A morphism between analytic varieties is a morphism between them as

locally C ringed space.

Complex analytic spaces, also called complex analytic varieties in some texts, are

generalizations to complex manifolds allowing the existence of singularities.

Definition 2.4 (quasi-coherent sheaf). A quasi-coherent sheaf F on a ringed space (X,OX)

is an OX-module such that for each x ∈ X, there is an open neighborhood U around X

such that F|U is isomorphic to the co-kernel of map of free OX-modules.

Definition 2.5. For a ringed space (X,OX), an OX-module of finite type is an OX-

module such that for each x ∈ X, there is an open neighborhood U around X such that

F|U can be generated by finitely many global sections.

Definition 2.6 (coherent sheaf). A coherent sheaf F on a ringed space is an OX-module

of finite type satisfying the additional condition that for any open set U ∈ X and a

morphism On
X

f−→ F, the kernel is of finite type.

Remark 2.1. A coherent sheaf F on a separable analytic space, is endowed with a nat-

ural Fréchet topology depending on the uniformly converging of analytic functions on a

compact subset.

Definition 2.7. For a ringed space (X,OX), we say OX is a coherent sheaf of rings if it

is a coherent sheaf as a module over itself.
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The following lemmas are useful in Deligne’s proof of the relative version of the classical

Riemann–Hilbert correspondence.

Lemma 2.2 (Oka’s lemma). The sheaf of analytic functions on Cn is coherent.

Lemma 2.3 (syzygy). For a coherent sheaf F on a complex manifold M , F locally admits

a free resolution.

Proof. Since this is local on M , WLOG M is an open subset of Cn for some n. For each

x ∈ X, there is an open neighborhood U such that there are morphism off sheaves

O⊕m1
i1−→ O⊕m0

i0−→ F

such that i0 is surjective and the sequence is exact in the middle.

By Oka’s lemma, O⊕m1 and O⊕m0 are also coherent. So one can continue this process

by shrinking U and adding i2,...,ik,... It is also known that the local ring of germs at

x is regular. By Hilbert’s syzygy, the stalk of ker ik at X will finally become free. It is

known that a coherent analytic sheaf with a free stalk at a point x is free in an open

neighborhood of x. Thus F admits a free resolution in a neighborhood of x.

Lemma 2.4 (generalized Oka’s lemma). The structure sheaf OX of any complex analytic

space (X,OX) is coherent.

For morphisms of analytic spaces, there are operations or formally named functors for

sheaves and coherent sheaves on the spaces.

Definition 2.8 (direct image sheaf). For a continuous map X
f−→ Y of topology spaces.

The direct image sheaf f∗F of a sheaf F on X is a sheaf on Y defined by f∗F(U) =

F(f−1(U)) for any open set U on Y .

Definition 2.9 (sheaf theoretic inverse image). For a continuous map X
f−→ Y of topology

spaces. The sheaf theoretic inverse image of a sheaf F on Y is a sheaf on X associated

to a presheaf G on X defined by G(U) = lim−→f(U)⊂V
F(V )

Definition 2.10 (pullback). For a morphism X
f−→ Y of ringed spaces, and a OY -module

F on Y . Note that f−1F is a f−1OY -module and there exists a morphism f−1OY −→ OX .

So we define the pullback of F to be f ∗F = OX ⊗f−1 OY
f−1F
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There is another functor that is less common but very important in the study of

perverse sheaves.

Definition 2.11 (direct image with proper support). For a continuous map X
f−→ Y of

locally compact Hausdorff topology spaces which is either an open inclusion or a closed

inclusion. For a sheaf F on X, define the direct image sheaf of F with proper support to

be

f!F(U) = {s ∈ F(f−1(U))| f |Supps is proper}

.

The so-called GAGA[3] is an important work of J.P.Serre. It compares algebraic

varieties over C with analytic varieties and allows us to use techniques in complex analysis

to study algebraic geometry.

Definition 2.12. For a C-scheme X of finite type, we define Xh to be the associated

analytic space of X in the following way: Assume X = ∪i∈ISpecYi be an open covering

of X . Each Yi is a finite type C-algebra. Assume Yi = [x1, ..., xn]/(f1, ..., fm) for some n

and f1,..., fm. Therefore one has the local model space (SpecYi)h associated with Yi. Then

one glues the (SpecYi)hs, in the same way, gluing SpecYis(It is clear how we translate the

morphism between quasi-affine complex varieties into holomorphic maps(thus morphism

between analytic varieties) between analytic varieties) to a space Xh. It follows that Xh

does not depend on the choice of the covering.

The associated analytic space of a C-scheme of finite type can be understood as a

functor (−)an from the category of C-schemes of finite type to the category of complex

analytic spaces. Many important properties are preserved by this functor.

For example, regularity, normality, being irreducible, being connected, and dimension

are all preserved. All finite limits are preserved. Many common properties of morphisms

are also preserved.

2.2 Connections

Definition 2.13. For a locally ringed space X, we called a locally free OX-module of finite

rank a vector bundle on X.
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Definition 2.14. For a morphism of locally ringed space X
f−→ S, a relative local system

on X is a sheaf of f−1OS-modules which is locally isomorphic to the sheaf-theoretic inverse

image of a coherent sheaf on S.

Remark 2.5. A complex analytic space X is considered as a morphism X
f−→ SpecC.

Therefore a local system on X always refers to a locally constant sheaf of finite-dimensional

C-vector spaces on X.

Remark 2.6. Note that for a locally constant sheave of C-vector spaces on an analytic

space X, by tensoring with OX one gets a vector bundle on X.

Also, note that for a vector bundle E on an analytic space X and a point x ∈ X, we

can consider the fibre of E at x to be Ex = E(x) ⊗ O(x)/mx, where E(x) is the localization

of E at X, O(x) is the local ring at X, and mx is the maximal ideal of O(x).

Definition 2.15. Let X be a complex analytic space. Consider the diagonal ∆ in the

product X ×X. Then ∆ is a locally closed subspace of X ×X. Let J be the sheaf of ideal

of ∆ in X ×X. By abuse of notations, let ∆ be the diagonal morphism for X to X ×X.

The sheaf of differentials, also called the sheaf of differential forms of first-order ΩX on

X is defined to be ∆∗(J/J2).

For complex manifold X of dimension n, ΩX is locally free of rank n and is isomorphic

to the sheaf of holomorphic 1-from on X.

The definition of the sheaf of differentials can also be given in a relative context. For

morphism X
f−→ Y of analytic spaces, one can define the sheave of relative differentials

ΩX/Y on X.

Definition 2.16 (derivation). Let X
f−→ Y be a morphism of complex analytic spaces. A

f−1OY -derivation of OX is a OY -linear map:

OX
d−→ M

that satisfies the Leibniz rule where M is a coherent sheaf on X.

Lemma 2.7. There is a derivation d from OX/Y to ΩX which is given by f ∈ OX(U) 7→

1⊗ f − f ⊗ 1 ∈ J/J2(U × U). And d is initial among all derivations.
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Definition 2.17. For a morphism X
f−→ Y , the tangent bundle TX/Y is defined to be the

sheaf Hom(ΩX/Y ,OX).

Lemma 2.8. For each open set U on X, TX/Y is canonical isomorphic to Derf−1 OY |U (OU ,OU).

A morphism X
f−→ Y of complex analytic spaces gives a homomorphism f ∗ΩY −→ ΩX .

Also, for a commutative diagram of morphisms of analytic spaces:

Y ′ X ′

Y X

f ′

g h

f

There is a canonical OY ′-homomorphism

g∗ΩY/X −→ ΩX′/Y ′

induced by

1⊗ g−1(dX/Y (s)) 7→ dX′/Y ′(1⊗ g−1(s))

Moreover, if this is a pull-back diagram, then g ∗ ΩY/X −→ ΩY ′/X′ is an isomorphism. By

the adjoint property of g∗ and g∗, one also knows that for a pull-back diagram, there is a

canonical isomorphism ΩY/X −→ g∗ΩY ′/X′ when the diagram is a pull-back diagram.

Definition 2.18. A smooth morphism of relative dimension n of analytic spaces is a

morphism X
f−→ Y such that:

For each x ∈ X,there is a open neighborhood U such that the restriction of f on U is

isomorphic to a projection Dn × Y −→ Y .

Lemma 2.9. For a smooth morphism X
f−→ S of relative dimension n, ΩX/S is locally

free of dimension n.

Definition 2.19. For a complex analytic space X, and a vector bundle E on it, a con-

nection on E is a C-linear map:

∇ : E −→ ΩX ⊗OX
E

that satisfies the Leibniz rule:

∇(fs) = df ⊗ S + f · ∇(s)

for each section f of OX and each section s of E on a open set.
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One should note that the definition of a connection only requires E to be a coherent

sheaf. However, it is a nontrivial fact that a coherent sheaf on a smooth analytic space

equipped with an integrable must be locally free. For the definition in the relative context,

i.e., for a morphism X
f−→ S, we only require E to be a coherent sheaf on X.

There are operations on connections. For connections (E1,∇1) and (E2,∇2), we can

define(E1 ⊕ E2,∇1 ⊕∇2) by

E1 ⊕ E2 −→ (ΩX ⊗OX
E1)⊕ (ΩX ⊗OX

E2)
isomorphism−−−−−−−→ ΩX ⊗OX

(E1 ⊕ E2)

and define (E1 ⊗ E2,∇1 ⊗∇2) by

s1 ⊗ s2 7→ ∇1(s1)⊗ s2 +∇2(s2)⊗ s1

We can also define dual connections. For a connection (E,∇), we define (E∨,∇∨) by

∇∨(l) = d ◦ l − 1⊗ l ◦ ∇

For an OX-homomorphism E
f−→ E′ of vector bundles on X with connections ∇ and

∇′. We say f is horizontal if

∇′ ◦ f = f ◦ ∇

Definition 2.20 (homomorphism between connections). A homomorphism between con-

nections (E,∇) and (E′,∇′) is a horizontal OX-homomorphism between them.

By some computations, one can show that the kernels and cokernels of a homomor-

phism between connections still form connections.

The connections on an analytic spaceX form an abelian category, denoted byMC(X).

The relative connections on X
f−→ Y forms an abelian category denoted by MC(X/Y ).

There are also pull-backs for connections. For a commutative diagram of analytic

spaces:

Y ′ X ′

Y X

f ′

g h

f
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And a relative connection (E,∇) on Y , g∗ E is equipped with a connection g∗∇ given by

the composition of maps:

g∗ E
∇−→ g∗(Ωx/Y ⊗ooY E)

τ−→ ΩX′/Y ′ ⊗OY ′ g
∗ E

Where τ is induced by the OY -homomorphisms g∗Ωx/Y −→ ΩX′/Y ′ .

Definition 2.21 (De Rham complex). For a complex analytic space X, define ΩP
X =

∧pΩX , the pth exterior power of ΩX . We can extend the derivation d : OX
d−→ ΩX to

C-linear maps from ΩP
X to ΩP+1

X for each non-negative integer p by a unique way such

that

d(fω) = df ∧ ω + (−1)pf · dω

where f is a local section of OX and ω is a local section of ΩP
X . Then all ΩP

Xs together

with d is called the de Rham complex of X.

As for the cotangent bundle, pull-back also works for De-Rham complexes.

Definition 2.22. Let E be a vector bundle on a complex analytic manifold X. Define

Ωp
X(E) = ∧pΩX ⊗Ox E. We can define a C-linear morphisms

∇ : Ωp
X(E) 7→ Ωp+1

X (E)

by letting

∇(ω, s) = dω ⊗ s+ (−1)pω ∧ s

where ω is a local section of ΩP
X and s is a local section of E.

Definition 2.23. The curvature R of the connection (E,∇) is defined to be the composi-

tion

∇2 : E −→ Ω2
X(E)

Definition 2.24. A connection is said to be integrable if its curvature is 0.

Lemma 2.10. The pull-back of an integrable connection is integrable.

If X is smooth, then an equivalence condition for a connection (E,∇) to be integrable

is that ∇ is a Lie-algebra homomorphism from TX to End E.

11



Note that if a connection is integrable, ∇2 = 0 so that Ωp
X(E) forms a differential

complex.

We see in dimension 1, that a holomorphic connection is automatically integrable,

since ∧2ΩX = 0.

Definition 2.25. Let (E,∇) be a connection on X, Ker(∇) is said to be the sub-sheaf of

horizontal sections of (E,∇).

One should take care that Ker(∇) is only a sheaf of C-vector space but not a coherent

sheaf on X since ∇ is not a homomorphism of OX-modules.

2.3 D-modules

Definition 2.26. Let X be a complex manifold of dimension n. The sheaf DX of the

algebra of differential operators is defined by

DX(U) = {
∑

λ∈Z≥0
n

fλ

n∏
i=1

∂λi
xi
| each fλ is holomorphic in U} (2)

The multiplication is given by PQ(h) = P (Q(h)) for P , Q ∈ DX(U) and h ∈ OU

Remark 2.11. For an algebraic version of D-modules, one can still use a local coordinate

system instead of a holomorphic chart in the definition.

Another definition that does not rely on the coordinate is as follows.

Definition 2.27. The sheaf of holomorphic vector fields on a complex manifold is defined

as:

ΘX = {θ ∈ EndCX
(OX) | θ(fg) = θ(f)g + fθ(g)} (3)

Here CX just stands for the constant sheaf of C on X.

And DX is defined as the subring of EndCX
generated by OX and ΘX .

Since generally the DX does not commute, it is necessary to distinguish left and right

DX-modules.
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Lemma 2.12. For a vector bundle E on X, giving a D-module structure on E is the same

as giving a OX-linear homomorphism:

∇ : ΘX −→ EndCX
E

such that

∇θ(fv) = θ(f)∇θ(v)

for each sections θ, f , andv, and

∇[θ1,θ2](v) = [∇θ1 ,∇θ2 ](v)

for each sections θ1,θ2 and v.

Lemma 2.13. When E is a free(or locally free) DX-module of finite rank, the map ∇ in

the previous lemma is equivalent to a connection defined in previous sections for a complex

manifold, and it is integrable.

Lemma 2.14. For a vector bundle E on X with integrable connection ∇, consider the

left action of DX on it by

ξ · v =< ∇ξ, v >

for sections ξ and v of θ and E, then E is given a DX-module structure.

Definition 2.28. A coherent DX-module is a DX-module locally isomorphic to the cok-

ernel of free DX-modules.

The sheaf DX is equipped with a natural filtralization F from the order of differential

operators. Consider grF DX := ⊕i≥0Fi DX /Fi+1ddX which is a sheaf of commutative

rings generated by differential operators.

Let X be a smooth complex algebraic variety. Then the cotangent sheaf ΩX is locally

free, thus giving rise to a complex algebraic vector bundle T ∗X
π−→ X. And π∗OT ∗X is a

sheaf of OX algebra generated by ΩX , which is naturally isomorphic to grF DX . Let M

be a coherent DX-module with a good filtration F . Then grFM is a coherent π∗OT ∗X

module. So OT ∗X ⊗π−1π∗ OT∗Xπ
−1grFM is a coherent sheaf on T ∗X.

13



Definition 2.29. The characteristic variety of M is defined to be

Ch(M) = suppOT ∗X ⊗π−1π∗ OT∗Xπ
−1grFM

which is a closed subvariety of T ∗X.

It turns out that Ch(M) does not rely on the filtration.

Definition 2.30 (holonomic D-module). A nonzero coherent DX-module is said to be

holonomic if dimCh(M) = dimX.

2.4 Intersection homology and perverse sheaves

2.4.1 Introduction

Perverse sheaves are generalizations of locally constant sheaves. It comes from the study

of the homology of spaces with singularities. For manifolds, there are good results for

its homology groups, such as the Poincare duality. However, these fail for varieties with

singularities. In the intersection homology and cohomology theory, a good homology for

varieties with singularities is constructed. And later this is described with the language of

derived categories and perverse sheaves. This section aims to provide some basic concepts

and results of this theory organized according to the historical order, mainly following [4].

In this section, we only consider reasonable topological spaces and sheaves in Sh(X,K)

(sheaves of K-modules on a reasonable topological space X) where K is a commutative

Noetherian ring.

2.4.2 Stratifications and intersection chain complexes

Definition 2.31 (topological pseudo manifolds). A topological manifold is a topological

stratified space

X ⊃ Xn−2 ⊇ Xn−3 ⊇ ... ⊇ X0 ⊇ X−1 = ∅

Such that X \Xn−2 is dense in X.

To discuss intersection homology, we restrict to the case X is a PL pseudo manifold.

In this case, the intersection chains are all PL chains and their intersection with strata is

easy to discuss.
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Definition 2.32 (perversity). A perversity p̄ is a sequence p(2),...,p(n) such that p(2) = 0

and p(k) ≤ p(k + 1) ≤ p(k) + 1 for all k.

Definition 2.33 (p-allowable chains). A PL chain ξ of dimension i is said to be p̄-

allowable if for all k ≥ 2 dim(ξ ∩Xk) ≤ p(k) + i− k

dim(∂ξ ∩Xk) ≤ p(k) + i− k − 1

Now we define the intersection homology groups IHp̄
•(X) of a PL pseudo manifold

w.r.t a perversity p to be the homology groups given by the chain complex consisting of

p-allowable chains.

2.4.3 Deligne’s construction of intersection cohomology

Let Db(X,K) be the bounded full subcategory of derived category of Sh(X,K) derived

category of the category of complexes of sheaves on X. It turns out that Db(X,K) is no

longer an abelian category, instead it is a triangulated category.

Definition 2.34 (constructible sheaves). Let S be a stratification of X, with strata {Xi
hi−→

X}.

We say F ∈ Sh(X,K) is constructible w.r.t. S if each h−1
i F is a locally constant sheaf

of finitely generated K-modules.

We say F• ∈ Db(X,K) is constructible if each Hj(F•) is constructible w.r.t. S.

For F• ∈ Db(X,K), we say in is constructible on X if it is constructible w.r.t. some

stratification S.

Denote the above 3 categories by ShS(X,K), Db
S(X,K), and Db

c(X,K).

Definition 2.35 (Shriek pull-back of sheaves). Let X
h−→ Y be a locally closed inclusion

of topological spaces. For a sheaf F on Y , we define the Shriek pull-back of F , h!F to

be the sheafification of the presheaf

G(U) = lim−→V ∩X=U
{s ∈ F(V ) | supp(s) ∈ U}.

Remark 2.15. If h is open, the h! = h−1.
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Lemma 2.16. Let X
h−→ Y be a locally closed inclusion of topological spaces. Then h! is

a right adjoint to hi.

Remark 2.17. For arbitrary continuous maps between topological spaces, it is not able

to define a right adjoint of the pushforward-with-proper-support functor for the categories

of sheaves. One has instead to work in derived categories.

Deligne constructed an intersection cohomology complex in pDb
S(X,K), whose hyper-

cohomology computes the intersection homology of X.

Definition 2.36. Deligne’s truncation functor For k ∈ Z, the truncation of F• ∈

Db
c(X,K) is given by:

(τ≤kF
•)i =


Fi i ≤ k − 1

ker di i = k

0 i > k

Let X be a topological pseudo manifold with filtration

X ⊃ Xn−2 ⊇ Xn−3 ⊇ ... ⊇ X0 ⊇ X−1 = ∅

Let Uk = X \Xn−k.

Let F be a locally constant sheaf on the regular part U2. Let p be a perversity. Then

one can define a sheaf on X inductively by F•
0 be the complex containing only F in degree

0 on U , let

F•
2 = F•

0 [n]

and for each k ≥ 2, set

F•
k+1 = τ≤p(k)−ni∗F

•
k

.

Definition 2.37. Deligne complex Following the above construction, we define

IC•
p̄(F) = F•

n+1

Especially, we define IC•
p̄ to be IC•

p̄(K) , where K is the constant sheaf with coefficient

K.
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Remark 2.18. The construction of the Deligne complex is due to Deligne, while Goresky

and MacPherson developed a set of Axioms for the intersection cohomology complex to

prove that its hypercohomology computes the intersection homology groups. To be explicit,

H−i(IC•
p̄) = IBMHp̄

i (X)

Remark 2.19. It is further shown that the intersection cohomology groups do not depend

on the choice of stratification.

2.4.4 Perverse sheaves

From now on we on consider complex algebraic or analytic varieties with strata being

constructible subsets. As the middle perversity behaves well under duality, from now on

we restrict our discussion to the middle perversity.

Perverse sheaves are not sheaves, instead, they form an abelian subcategory of the the

derived category of complexes of sheaves on a complex algebraic or analytic variety.

Definition 2.38 (Perverse t-structure). The Perverse t-structure on Db
c(X,K) of a com-

plex algebraic or analytic variety x is given by:

Db
c(X)≤0 := { F• ∈ Db

c(X,K) | dimCsupp
−j(F•) ≤ j, for any j ∈ Z}

Db
c(X,K)≥0 := { F• ∈ Db

c(X,K) | dimCcosupp
−j(F•) ≤ j, for any j ∈ Z}

where

supp−j := {x ∈ X | i∗xF• ̸= 0}

cosupp−j := {x ∈ X | i!xF• ̸= 0}

Definition 2.39 (Perverse sheaves). With the above definition, we set

Per(X,K) = pDb
c (X,K)

≤0 ∩ pDb
c (X,K)

≥0

Definition 2.40 (The topological Deligne complex). Following the previous section, we

set the topological Deligne complex ICtop
X of a complex algebraic or analytic variety of pure

dimension n to be IC•
m̄ of X. And we define ICX to be ICtop

X [−n].

Lemma 2.20. With the condition in the above definition, ICX is a perverse sheaf.
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Remark 2.21. Perverse sheaves satisfy good gluing properties like sheaves. This is a

reason why they are called ”perverse sheaves”.

Let X1
i−→ X0 be an inclusion of an open constructible subset of analytic spaces with

X0 \X1 closed, and a perverse sheaf F• on X1, one can use an intermediate extension to

extend F• to a perverse sheaf on X0.

Definition 2.41. Let U be an open constructible subset of a complex algebraic or analytic

variety X. Let i be the inclusion map. A sheaf complex G• in Db
c(X) is said to be a

extension of F• in Db
c(U), if

i−1G• ∼= F•

Definition 2.42 (intermediate extension). The intermediate extension ii∗F
• of F• ∈

Per(U) is the image of the natural morphism iiF
• −→ i!F

• in Per(X)

Remark 2.22. The intermediate extension is between the minimal extension i! and the

”largest” extension i∗.

Remark 2.23. It can be shown that for a complex algebraic(or analytic) variety X with

an abritrary open subvariety U
i−→ X, the intermediate extension of the IC sheaf on U is

isomorphic to that of X. i!∗ICU
∼= ICX .

3 Classical Riemann–Hilbert correspondences

A classical version of Riemann-Hilbert correspondence states that the integrable holo-

morphic connections on a complex manifold and locally constant sheaves of finite dimen-

sional complex vector spaces can be identified. The proof requires the Cauchy-Kowalevski

theorem from PDE theory.

4 The relative Riemann–Hilbert correspondence for

analytic manifolds by Deligne

Deligne also gave a beautiful but brief proof in[2] for Riemann—Hilbert correspondence

in the relative context. In this section, I will state the relative version of the Riemann–

Hilbert correspondence and expand some of the details of Deligne’s proof in[2].

18



First, we give the formal statement of this version of Riemann–Hilbert correspondence:

Theorem 4.1. Let X
f−→ S be a smooth morphism of complex analytic spaces. There

exist functors F from the category of relative systems on X to the category of integrable

relative connections on X and G from the category of relative integrable connections on

X to the category of local relative systems on X such that the following holds:

(a)For every local relative system V on X, F (V ) = (V ⊗f−1(Os) OX ,∇) such that ∇ is a

relative integrable connection with ker(∇) = V

(b)For every relative integrable connection (E,∇) on X, G(∇) = ker(∇)

(c)The functors F and G are quasi-inverse to each other. So give an equivalence of

categories.

(d)The complex

ΩX/S(E) : 0 −→ V −→ (F (V )) −→ ΩX/S(F (V )) −→ ... −→ Ωp
X/S(F (V )) −→ ...

is a resolution of V .

This is rephrased from [2], page 15, theorem 2.23, while still confusing and to be

modified in the final submission.

The proof of this consists of several parts. First, prove that F gives integrable connec-

tions and F is fully faithful. Next, prove (d) which shows that GF is naturally isomorphic

to id. Then it remains to prove that F is dense.

Proof : First, construct F . For a local relative system V , define

∇ : V ⊗f−1(Os) OX −→ ΩX/S(V ⊗f−1(OS) OX)

by∇(fs) = df⊗s. Then it follows that∇ is an integrable relative connection. Next, prove

part(d). Since f is smooth, it is locally isomorphic to a projection pr2 : Dn × S −→ S.

First, consider the special case where S = Dn, X = Dn ×Dm, f is the projection pr2

and V is simply f−1(OS). Then one can show the complex

0 −→ Γ(f−1(OS)) −→ Γ(OX) −→ Γ(ΩX/S) −→ ...
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is acyclic by constructing the following homotopy functor H:

(1) H : Γ(OX) −→ Γ(f−1OS) = Γ(OS, S) is given by the zero section of f .

(2) Each element ω of Γ(Ωp
X/S) can be expressed into a unique converging series:

ω =
∑

I⊂[1,m]
|I|=p

∑
n∈Nm+n

aIn (∧i∈Ix
ni
i dxi)

 ∏
i∈[1,m+n]\I

xni
i


and set

H(ω) =
∑

I⊂[1,m]

∑
j∈I

∑
n∈Nm+n

signI(j)a
I
n

(
∧i∈I
i ̸=j

xni
i dxi

x
nj+1
j

nj + 1

) ∏
i∈[1,m+n]\I

xni
i


, where signI(j) refers to the signature of j in I, to be explicit, if j is the rth element of

I (the same order with that appears in the wedge product), then sign(j) = (−1)r−1. In

the following equations, if j /∈ I, then sign(j) refers to the signature of j in I ∪ {j}.

There is a grading of the complex. For a relative monomial p-form ω =
∏

k∈[1,m] x
nk
k ∧i∈I

dxi, we define its degree to be p+ |{k ∈ [1,m] \ I|nk ̸= 0}|. It follows that both d and H

preserve this degree. To avoid misreads with the degree of polynomials or dimension of

chain complexes, I will call this degree the skew degree in the following paragraphs.

First, consider the subcomplex of skew degree 0, which only intersects

Γ(f−1(OS), X) = Γ(OS, S) and Γ(Os). And it is direct to check this sub complex is exact.

Next, our computation will show that for the subcomplex of skew degree q ≥ 1. The

Γ(OS)-linear map H ◦ d + d ◦ H equals the multiplication by q map. Then for each

positive integer q the subcomplex of skew degree q is exact. If w is a form in ker d,

then consider w =
∑∞

k=0wk. It follows that wk ∈ ker d for each k. Then it follows that

w = d
(∑∞

k=1
H(wk)

k
+ w0

)
. Note that the coefficients of

∑∞
k=1

H(wk)
k

is well controlled

by the coefficients of w, so
∑∞

k=0
H(wk)

k
is also converging. Therefore this will prove the

exactness of the complex.

Now we begin our calculation. We only need to show the result for monomials.
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Assume f =
∏q

i=1 x
ni
i ∈ Γ(OX). Then H(f) = 0, and

d(f) =

q∑
i=0

nix
ni−1
i

∏
j∈[1,q]
j ̸=i

x
nj

j

So

(H ◦ d+ d ◦H)(f) = H(d(f))

= H(

q∑
i=1

nix
ni−1
i

∏
j∈[1,q]
j ̸=i

x
nj

j )

=

q∑
i=1

q∏
i=1

xni
i = qf

Assume

ω = (∧i∈Ix
ni
i dxi)

 ∏
i∈[1,m+n]\I

xni
i


is a p-form of skew degree q, where p ≥ 1.

Note that

dω = d

 ∏
i∈[1,m+n]

xni
i

 ∧ (∧i∈Idxi)

=
∑

j∈[1,m]\I

njx
nj−1
j

∏
i∈[1,m+n]

i ̸=j

xni
i

 dxj ∧ (∧i∈Idxi)

(4)

And

(H ◦ d)ω =
∑

j∈[1,m]\I
nj ̸=0

x
nj

j

∏
i∈[1,m+n]

i ̸=j

xni
i

 ∧i∈I dxi (5)

+
∑

j∈[1,m]\I

njx
nj−1
j

∏
i∈[1,m+n]

i ̸=j

xni
i

 dxj ∧

(∑
k∈I

−signI(k)xk

nk+1

∧i∈I
i ̸=k

dxi

)
(6)

=
∑

j∈[1,m]\I
nj ̸=0

ω +
∑

j∈[1,m]\I

njx
nj−1
j

∏
i∈[1,m+n]

i ̸=j

xni
i

 dxj ∧ (
∑
k∈I

−signI(k)xk

nk+1

∧i∈I
i ̸=k

dxi) (7)
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While

(d ◦H)ω = d

∑
k∈I

signI(k)xk

nk + 1
∧i∈I

i ̸=k
dxi

∏
i∈[1,m+n]

xni
i



=
∑
k∈I

ω +
signI(k)xk

nk + 1

∑
j∈[1,m]

njx
nj−1
j dxj ∧ (∧i∈I

i ̸=k
dxi)

∏
i∈[1,m+n]

i ̸=j

xni
i


(8)

Then equation (7)+(8) shows that

(H ◦ d+ d ◦H)(w) = qw

Now we have proved the result we want in this step.

The same construction works on smaller poly-cylinders of Dm+n, the complex of sec-

tions on which is also exact. Since smaller polydiscs form a base of the polydisc, the

complex of sheaf is exact on stalks. Thus the complex of sheaves in (d) is exact.

Remark 4.2. This is a relative version of the holomorphic Poincare lemma.

For an exact sequence of coherent sheaves on S:

0 −→ V −→ V ′ −→ V ′′ −→ 0

, since f is smooth and ΩP
X/S is flat over OS for each p, the sequence of differential

complexes

0 −→ Ω·
X/S ⊗Os f

−1V −→ Ω·
X/s ⊗Os f

−1V ′ −→ Ω·
X/s ⊗Os f

−1V ′′ −→ 0

is exact in each dimension. So the snake lemma shows that if (d) holds for two of V , V ′,

and V ′′, it holds for the third.

By the syzygy lemma, any coherent sheaf on Dn locally has a finite free resolution.

Therefore (d) holds for the case where S = Dn.

For the general case, it still suffices only to consider the situation where X = S×Dm,

f is the projection pr2, and the local system is the sheaf-theoretic inverse image of a

coherent sheaf F on S.
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Since (d) is local on S, one can assume S is a closed analytic subset of Dn with

inclusion i. For a coherent sheaf F on S, consider the direct image sheaf i∗F, then i∗F

is also a coherent sheaf on Dn. Also, note that the push-forward of the complex

0 −→ f−1F −→ f ∗F −→ f ∗F ⊗ ΩX/S −→ ...

onto Dm ×Dn is just the complex

0 −→ pr−1i∗F −→ pr∗i∗F −→ pr∗i∗F ⊗ ΩDm×Dn/Dn −→ ...

where pr is the projection from Dm×Dn to Dn. It follows from the special case that this

complex is exact.

Now we have proved (d). This directly implies (a), which means G ◦ F = Id. It

remains to show that for every integrable relative connection (E,∆), (E,∆) = F (V ) for

some local relative system V . This is again local on both X and S.

The last part is proved by induction on relative dimensions of f and reduction to the

case where X = Dn ×D1, S = Dn, f = pr1, and the bundle is free.

If X = Dn ×D1, S = Dn, f = pr1, and E = Om
X . Then finding a horizontal section s

of Om
X is such that s|0×S = s0 for a given s0 ∈ Om

S is solving a series differential equation

on D1 of order n with initial value parameterized holomorphically by Dn. Therefore each

equation in the holomorphic series has a unique global solution. Moreover, the solutions

form a global section of f−1OS. Therefore the horizontal sections ∈ E forms a free

Γ(OS, S) module of rank m.

If X = Dn × D1, S = Dn, f = pr1, and E is an arbitrary coherent sheaf on X. By

shrinking S and X, we can assume that E has a finite representation

E1
α−→ E0

β−→ E

We shall show the existence of an open neighborhood of 0 where E1 and E0 admit integrable

connections ∇1 and ∇0 compatible with α and β.

Let (ei) be a basis of global sections of E0. First, consider (gi) = (β(ei)) which generates

E. We can let gi ̸= gj when we construct E0. To be accurate, choose an open neighborhood
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of 0 where E can be generated by global sections and let E be a free sheaf generated by

these global sections. Consider ∇(β(ei)) = fi. There exists an open neighborhood U

of 0 such that each fi|U is expressed in the form
∑

j ωj ⊗ gj where ωj ∈ ΩX/S(U) and

gj ∈ {gi}. Then let ∇0(fi) =
∑

j ωj ⊗ fj. This defines a connection on E0 in U . Since

X
f−→ S is smooth of dimension 1, ∇0 is automatically integrable. And we can do the

same procedure to E1.

Then shrink X and S and by the previous conclusion we may assume (E0,∇0) = F (V0)

and (E1,∇1) = F (V1) for relative local systems (in fact free Γ(OS) modules) V0 and V1.

Then E = βV1 ⊗Os OX , and βV1 consists of only horizontal sections of ∇. By (d) βV1

consists of all horizontal sections of ∇. Therefore (E,∇) = F (βV1). The conclusion holds.

Now consider the case that X
f−→ S is of relative dimension 1. Again it suffices to

consider S is a closed analytic subset of Dn, X = D1 × S, and f = pr2.

Again we consider the diagram:

D × S D ×Dn

S Dn

i′

pr2 pr2

i

It follows that local S-relative systems(resp. coherent sheaves with integrable S-relative

connections) on D×S are identified with local Dn-relative systems(resp. coherent sheaves

with Dn-relative connections) on D×Dn that are annihilated by the inverse image of the

ideal sheaf of S. So the conclusion follows from the previous case.

For the general case, induct on the relative dimension n of X
f−→ S. The case n = 0

is trivial since f is locally isomorphism, ΩX/S = 0, and each coherent sheaf on X is a

relative local system. And the case n = 1 is proved. Assume the conclusion holds for n,

for n+ 1, again WLOG X = S ×Dn ×D1 with f = pr1. Consider the section i at 0:

X0 = S ×Dn i−→ S ×Dn ×D1

. Note that i∗(E,∇) is a connection on X0. By inductive hypothesis (i∗ E, i∗∇) =

FX0/S(V0) for some local S-relative system V0 on X0. Consider the projection
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X
pr−→ X0

The relative connection ∇ also induces a S-relative connection ∇̃ for pr. Then by the

case n = 1, (E,∇) = FX/X0(V
′) for some X0-relative system V on X. Also, note that

E |X0 = V ′|X0 = i∗ E. And E |S×0×0 = V ′|S×0×0 = i∗ E |S×0 = V0|S×0 is a coherent sheaf F

on S. And E = pr−1
1 F ⊗pr−1 OS

OX .

It remains to show sections of pr−1
1 F are horizontal with respect to ∇.

We can consider the tangent sheaf TX/S with the basis ∂x1 , ∂x2 ,..., ∂xn . For a section

s of pr−1
1 F, ∇∂xn (s) = 0, and ∇|x0∂xi

(s|X0) = 0.

Since∇ is integrable [∇∂xi
,∇∂xn ] = ∇[∂xi ,∂xn ]

= 0. Therefore∇∂xn∇∂xi
(s) = ∇∂xi

∇∂xn(s) =

0. Consider then section ∇∂xi
(s), it is zero at X0 and horizontal along xn. Therefore

∇∂xi
(s) = 0, which shows s is horizontal. Q.E.D.

5 Degline’s Riemann–Hilbert correspondence for reg-

ular singularities

Discussing the relationship between regular singularities and integrable connections is very

complicated. Deligne used too many techniques from analysis and algebraic geometry in

[2] to be included in this short thesis. Therefore I will only give a brief introduction to

this topic.

5.1 Dimension one

According to the former sections, we know that in dimension 1 any holomorphic connec-

tion is integrable. Meanwhile, a connection may give an irregular differential equation.

However, after a suitable coordinate change on the bundle, it could still give rise to a

regular differential equation. First, we look at this easy example:
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Consider U = C1 \ 0. Consider a connection ∇ on OU given by

f 7→ df − z−2fdz

The ∇ gives a irregular(recall introduction) differential equation:

df

dz
=

f

z2

The global solution of the equation exists and is of the form f(z) = c · e− 1
z . We can apply

a base change to OU by f 7→ f
z
.

Then after the base change, the connection becomes the trivial connection on OU . This

explains why the equation would have global solutions.

Assume X is a Riemann surface and Σ is a finite set of points on X. Let X∗ = X \ σ

and let j : X∗ −→ X be the open immersion. Now we define a connection with regular

singularities along Σ:

Definition 5.1 (holomorphic connections with regular singularities). For a connection

(Ẽ,∇) on X∗, we say this connection has regular singularity along Σ if, for any σ ∈ Σ,

there exists a punctured neighborhood of σ such that ∇ has meromorphic coefficients with

at most only simple poles at σ for some base.

Theorem 5.1. Each holomorphic connection on X∗ has regular singularity along Σ.

Proof. One can construct a vector bundle on X with a meromorphic connection whose

restriction on X∗ is regular and has the same monodromy as the original connection.

Then we are done with the Riemann–Hilbert correspondence.

Remark 5.2. Consider the corresponding algebraic varieties for X and X∗, denoted by

Xag and X∗
ag. Let (E,∇) be an algebraic variety on X∗. Then after analytification,

(Ean,∇an) on X∗ should be regular. However (E,∇) itself may not be ’regular’ since

the isomorphism between analytic vector bundles with connections might not be algebraic.

This leads us to find a definition of regular algebraic connections.

26



5.2 Higher dimensions

Let’s introduce the definition of an algebraic connection with regular singularities in higher

dimensions.

First, define an algebraic version of regular connections for curves, the following defi-

nitions are taken from [5]

Definition 5.2. Let (C, K) be an abstract nonsingular curve over C. Let p be a closed

point on C. Denote the quotient field of OC,p by KC,p. A meromorphic connection (M,∇)

is a finite-dimensional KC,p vector space M with a C-linear map: M
∇−→ ΩC,p ⊗OC, pM

Definition 5.3. An algebraic connection (M,∇) is called regular if there is a finitely

generated OC, p-submodule of M such that M = KC, pL and x∇(L) ⊂ ΩC, p ⊗OC,p
L for

some local parameter x at p.

Definition 5.4. Let X be a smooth algebraic variety. An integrable connection (E,∇) on

X is said to be regular if for any morphism C
iC−→ X from a smooth algebraic curve C

i∗C E is regular.

There is another definition :

Definition 5.5 (log sheaves). Let X be a proper, smooth C-scheme. Let D = ∪Di be

the union of finitely many connected smooth divisors in X with normal crossings. Let

DerD(X/SpecC) be the sheaf on X of derivations which preserves the ideal sheaf of each

branch of D. The sheaf of differentials on X with logarithmic singularities along D is

defined by

ΩX(log D) := HomOX
(Der(S/SpecC), OX)

Definition 5.6 (Regular connections). Let U = X \ D as above with U
i−→ X. For an

algebraic connection (E,∇) on U , if E is a union of DerD-stable coherent submodules, the

E is said to be regular along D.

Deligne showed the equivalence of regular algebraic integrable connections and analytic

integrable connections in [2], theorem 5.9.
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6 Kashiwara’s Riemann–Hilbert correspondence

Now we consider derived categories Db
c(X) and Drh

b(DX)

There are two functors defined as follows

DR : Db
rh(DX)

op −→ Db
c(X)

:

M• 7→ RhomDX
(M•,OX)

and

SOL : Db
rh(DX) −→ Db

c(X)

:

F• 7→ ΩX ⊗DX
F•

Kashiwara’s Riemann–Hilbert correspondence says that the above two functors map

Db
rh(DX)

op and Db
rh(DX) into Perv(X) an induces equivalences of categories.

7 Concluding remarks

In this thesis, we expand on some details of Deligne’s proof of a relative version of

Riemann-Hilbert correspondence for smooth morphisms of analytic varieties and give a

little introduction to the theory of connections with regular singularities and Kashiwara’s

work for regular holonomic D-modules. The Riemann–Hilbert correspondence is also an

important foundation of the nonabelian Hodge theory. It might be considered a non-

abelian analog of the Derham-constant comparison. This topic is still very active. Now

there are many new processes in this topic. For example Kashiwara’s work for irregular

holonomic D-modules and generalizations for varieties over fields of positive characteris-

tics. Meanwhile the Riemann—Hilbert correspondence also has applications in integrable

systems and other fields. To make a conclusion, the Riemann–Hilbert correspondence is

a very interesting and active topic that is worth further investigation.
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放而且我缺乏对于其背后的物理意义足够的了解以及物理上的直觉，一直不知道如何进行有

实际意义的研究，加上缺乏足够的交流以及我确实因为种种主观和客观的原因在这上面投入

的时间不够，以至于临近初稿截止日期还缺乏值得写入毕业论文的进展，只好匆忙换题，也

因此不得不推迟一点提交初稿（在这里我表示诚挚的道歉并感谢数学系的宽容）。原来的课

题在朱老师和其他同学手上目前有一些初步的进展。现在这篇毕设的来源，其实和原来的课

题还是有一些联系。朱老师找到了一篇和原来的课题存在联系的长篇论文，其中涉及到

Nonabelian Hodge 相关的一些东西，我看到之后产生了一些兴趣。由于我了解到黎曼-希尔

伯特对应是 Nonabelian Hodge 理论中的一个基础，遂最终选择它作为我毕设的主题。刚刚

换题的时候我想结合之前对于相交上同调的一些了解，写一份以介绍反常层和 regular

holonomic D 模的对应为主的报告。但是由于时间仓促进展不尽人意，最终只好写了一份介

绍性质为主加上对于较为简单的版本的证明的读书报告。尽管如此，这个过程还是让我学到

一些知识。在这里非常感谢 Hosgood 教授无私地将自己对 Deligne 的论文的几乎完全还原的

英语翻译公开在 Github 上，使得我免于阅读法语原文的困难。同时我也感谢我的电脑在这

段时间连续工作却没有出现任何严重的故障，避免了我初稿完成的时间进一步往后拖。我在

这篇毕设中完成的实际的内容尚且相当有限，所以在最终定稿之前我还有许多工作可以做，

比如对Deligne或者Kashiwara的工作给出更详细的介绍以及优化背景知识部分定义和结论

的铺陈。再次感谢朱一飞老师在这样危急的情况下仍然对我的毕设给予指导和支持。


