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A reading report on Riemann--Hilbert correspondence

[Abstract] The early version of Riemann--Hilbert correspondence was
first stated in Hilbert’s 21st problem, which was solved and generalized
by Deligne. Later, Kashiwara gave a vast generalization of the work of
Deligne. Now the Riemann--Hilbert correspondence has become a crucial
tool in algebraic geometry, arithmetic geometry, and number theory. This
thesis aims to review the different versions of the Riemann--Hilbert
correspondence and the basic concepts behind them and also expand
some details in Deligne’s proof of a relative version of Riemann--Hilbert
correspondence
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1 Introduction

The Riemann—Hilbert correspondence was first stated for Riemann surfaces. Let X be
a compact Riemann surface. Let U be an open subset on X such that X \ U consists of
finitely many points z1, ..., z,,. We consider a differential equation locally of the following

form:
((dii)“ + Zan_k@)(d%)"—'f) fz) =0 ()

where each ag(z) is holomorphic.

For convenience, we consider X to be the unit disk D in C, and U to be the punctured
unit disk. Also, we assume (1) is defined globally on U. When each a,_x(z) has at most

a pole of order k at 0, we say the equation has a regular singularity at 0.

Let’s consider the solutions u; (t), ... , u,(t) of (1) . Due to the non-trivial fundamental
group of U, these solutions may not be well defined on the whole punctured disk. However,
we can consider the polar coordinate z = €*™ around 0 and the universal covering of U
parameterized by t. Then we can consider the lift of solutions denoted by w;(t), ... , un(t)

on the universal covering. Let @(t) be the complex vector (ug(t))k=1.. n-

Considering the uniqueness of solutions, there exists a matrix M € GL(n,C) such
that
u(t+1) = Mu(t)

for each t.

The matrix M is usually called the matrix of monodromy. It gives a complex repre-

sentation of m (U).

This example inspires us to relate the representations of 1 (U) with differential equa-
tions with regular singularities on X (In fact there is some ambiguity in this description).
Hilbert’s 215! problem asks if we can obtain all finite dimensional complex representations

of m1(U) from the monodromies of differential equations with regular singularities.

There is also another view of the representations of 71 (X ), that is, the locally constant



sheaves, in other words, local systems on X. In fact, we have the following theorem from
[1:

Theorem 1.1. Let X be a connected and locally simply connected topological space, and
let x be a point in x. The category of locally constant sheaves of sets on x is equivalent to

the category of sets endowed with a left action of m (X, x).

Here, we consider the equivalence between the category of locally constant sheaves of

finite dimensional complex vector spaces and complex representations of m (X, z).

On the other hand, differential equations can be obtained from holomorphic connec-
tions on complex vector bundles of X. This will be explained in the following sections of

this thesis.

So, we can roughly talk about the Riemann—Hilbert correspondence. A classical and
easier version of Riemann-Hilbert correspondence refers to the equivalence between the
category of integrable connections and the locally constant sheaf of complex vector spaces
on a complex manifold. The definition of an integrable connection will be given in the
next sections. Deligne related the regularity of differential equations mentioned earlier
in the introduction of this thesis and integrable connections in his famous work[2]. The
definition of a connection with regular singularities for varieties may be due to Deligne.
Roughly speaking Deligne’s Riemann—Hilbert correspondence is the equivalence between
integrable connections with regular singularities along a divisor on a smooth algebraic va-
riety and local systems on the complement open subvariety. Deligne also showed that
a holomorphic integrable connection must be regular under his settings. Later general-
izations replaced integrable connections with regular holonomic D-modules and locally

constant sheaves with perverse sheaves.

This thesis mainly provides a review of some basic concepts for the Riemann-Hilbert
correspondence, a proof of the relative Riemann—Hilbert correspondence without singu-
larities, and a little introduction to Deligne’s Riemann-Hilbert correspondence for reg-
ular singularities and kashiwara’s Riemann-Hilbert singularities for regular holonomic

D-modules.



2 Basic concepts

2.1 Analytic space and sheaves

Definition 2.1 (local model space). A local model space X is the vanishing set of some
analytic functions fi1,..., fm, on an open set V of C™ for some n € Z, which the structure
sheaf ©,/9d; where O, is the sheaf of holomorphic functions on V' and 9z is the ideal

sheaf generated by fi,..., fm.

Definition 2.2 (complex analytic space). A complez analytic space X is a locally ringed
space (X, ©,) such that for each x € X, there is an open neighborhood U of x which is

1somorphic to a local model space as locally ringed C-space.

Definition 2.3. A morphism between analytic varieties is a morphism between them as

locally C ringed space.

Complex analytic spaces, also called complex analytic varieties in some texts, are

generalizations to complex manifolds allowing the existence of singularities.

Definition 2.4 (quasi-coherent sheaf). A quasi-coherent sheaf F on a ringed space (X, Ox)
15 an Ox-module such that for each x € X, there is an open neighborhood U around X

such that F|y is isomorphic to the co-kernel of map of free Ox-modules.

Definition 2.5. For a ringed space (X,Ox), an Ox-module of finite type is an Ox-
module such that for each © € X, there is an open neighborhood U around X such that

Flu can be generated by finitely many global sections.

Definition 2.6 (coherent sheaf). A coherent sheaf F on a ringed space is an O x-module
of finite type satisfying the additional condition that for any open set U € X and a
morphism O’ ER F, the kernel is of finite type.

Remark 2.1. A coherent sheaf F on a separable analytic space, is endowed with a nat-
ural Fréchet topology depending on the uniformly converging of analytic functions on a

compact subset.

Definition 2.7. For a ringed space (X, Ox), we say Ox is a coherent sheaf of rings if it

is a coherent sheaf as a module over itself.



The following lemmas are useful in Deligne’s proof of the relative version of the classical

Riemann—Hilbert correspondence.
Lemma 2.2 (Oka’s lemma). The sheaf of analytic functions on C™ is coherent.

Lemma 2.3 (syzygy). For a coherent sheaf F on a complex manifold M, F locally admits

a free resolution.

Proof. Since this is local on M, WLOG M is an open subset of C" for some n. For each

x € X, there is an open neighborhood U such that there are morphism off sheaves
©Fm 1y @m0 1y

such that 7 is surjective and the sequence is exact in the middle.

By Oka’s lemma, ©®™ and ©%™ are also coherent. So one can continue this process
by shrinking U and adding is,...,ig,... It is also known that the local ring of germs at
x is regular. By Hilbert’s syzygy, the stalk of keri, at X will finally become free. It is
known that a coherent analytic sheaf with a free stalk at a point x is free in an open

neighborhood of x. Thus & admits a free resolution in a neighborhood of . O]

Lemma 2.4 (generalized Oka’s lemma). The structure sheaf ©Ox of any complex analytic

space (X,Ox) is coherent.

For morphisms of analytic spaces, there are operations or formally named functors for

sheaves and coherent sheaves on the spaces.

Definition 2.8 (direct image sheaf). For a continuous map X Iy of topology spaces.
The direct image sheaf f.F of a sheaf F on X is a sheaf on'Y defined by f.F(U) =
F(f~HU)) for any open set U on'Y.

Definition 2.9 (sheaf theoretic inverse image). For a continuous map X Ly of topology

spaces. The sheaf theoretic inverse image of a sheaf F on'Y is a sheaf on X associated

to a presheaf G on X defined by G(U) = ligf(U)Cfo(V)

Definition 2.10 (pullback). For a morphism X Ly of ringed spaces, and a Oy -module
F onY. Note that f*F is a f~! Oy-module and there exists a morphism f~! Oy — Ox.
So we define the pullback of F to be [*F = Ox Qp-10, [ 'F
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There is another functor that is less common but very important in the study of

perverse sheaves.

Definition 2.11 (direct image with proper support). For a continuous map X Iy of
locally compact Hausdorff topology spaces which is either an open inclusion or a closed
inclusion. For a sheaf F on X, define the direct image sheaf of F with proper support to
be

KFU) ={s € F(f7(U))| f|supp. is proper}

The so-called GAGA[3] is an important work of J.P.Serre. It compares algebraic
varieties over C with analytic varieties and allows us to use techniques in complex analysis

to study algebraic geometry.

Definition 2.12. For a C-scheme X of finite type, we define X to be the associated
analytic space of X in the following way: Assume X = U;crSpecY; be an open covering
of X . Each'Y; is a finite type C-algebra. Assume Y; = [x1, ..., 2,/ (f1, ..., fm) for somen
and fi,..., fm. Therefore one has the local model space (SpecY;), associated with Y;. Then
one glues the (SpecY;)ys, in the same way, gluing SpecY;s(It is clear how we translate the
morphism between quasi-affine complex varieties into holomorphic maps(thus morphism
between analytic varieties) between analytic varieties) to a space Xy. It follows that X,

does not depend on the choice of the covering.

The associated analytic space of a C-scheme of finite type can be understood as a
functor (—)*" from the category of C-schemes of finite type to the category of complex

analytic spaces. Many important properties are preserved by this functor.

For example, regularity, normality, being irreducible, being connected, and dimension
are all preserved. All finite limits are preserved. Many common properties of morphisms

are also preserved.

2.2 Connections

Definition 2.13. For a locally ringed space X, we called a locally free ©x-module of finite

rank a vector bundle on X.



Definition 2.14. For a morphism of locally ringed space X ER S, a relative local system
on X is a sheaf of = Og-modules which is locally isomorphic to the sheaf-theoretic inverse

1mmage of a coherent sheaf on S.

Remark 2.5. A complex analytic space X is considered as a morphism X ER SpecC.
Therefore a local system on X always refers to a locally constant sheaf of finite-dimensional

C-vector spaces on X.

Remark 2.6. Note that for a locally constant sheave of C-vector spaces on an analytic

space X, by tensoring with Ox one gets a vector bundle on X.

Also, note that for a vector bundle & on an analytic space X and a point v € X, we
can consider the fibre of & at x to be &, = &) @ @(x)/mx, where 8,y is the localization
of & at X, O, is the local ring at X, and m, is the mazimal ideal of O.

Definition 2.15. Let X be a complex analytic space. Consider the diagonal A in the
product X x X. Then A is a locally closed subspace of X x X. Let § be the sheaf of ideal
of A in X x X. By abuse of notations, let A be the diagonal morphism for X to X x X.
The sheaf of differentials, also called the sheaf of differential forms of first-order Q2x on
X is defined to be A*(J/G?).

For complex manifold X of dimension n, {2y is locally free of rank n and is isomorphic

to the sheaf of holomorphic 1-from on X.

The definition of the sheaf of differentials can also be given in a relative context. For
morphism X Ly of analytic spaces, one can define the sheave of relative differentials

Qx/y on X.

Definition 2.16 (derivation). Let X 1Y bea morphism of complex analytic spaces. A
f~1 Oy -derivation of Ox is a Oy -linear map:

Ox 4m

that satisfies the Leibniz rule where 1M1 is a coherent sheaf on X.

Lemma 2.7. There is a derivation d from Oxy to Qx which is given by f € Ox(U)
1 f—f®1ed/J*>(U xU). And d is initial among all derivations.

8



Definition 2.17. For a morphism X EN Y, the tangent bundle Tx,y is defined to be the
sheaf #Hom(Qx/y, Ox).

Lemma 2.8. For each open setU on X, Txy is canonical isomorphic to Der -1 o, |, (Ou, Op).

A morphism X Ly of complex analytic spaces gives a homomorphism f*Q2y — Qx.
Y/ X/

Also, for a commutative diagram of morphisms of analytic spaces: |q4 A

Y —— X
There is a canonical ©y,-homomorphism

g*QY/X — Qxr/y

induced by

L® g~ (dx/y(s)) = dxyy(1® g7 (s))
Moreover, if this is a pull-back diagram, then g * {dy/x — €y, x/ is an isomorphism. By
the adjoint property of ¢* and g,, one also knows that for a pull-back diagram, there is a

canonical isomorphism €y, x — ¢.£dy//x» when the diagram is a pull-back diagram.

Definition 2.18. A smooth morphism of relative dimension n of analytic spaces is a
morphism X s v such that:
For each x € X, there is a open neighborhood U such that the restriction of f on U 1is

1somorphic to a projection D" XY — Y.

Lemma 2.9. For a smooth morphism X ENS of relative dimension n, x5 is locally

free of dimension n.

Definition 2.19. For a complex analytic space X, and a vector bundle & on it, a con-

nection on & is a C-linear map:
Vi€ — Qx ®o, €
that satisfies the Leibniz rule:
V(fs)=df ® S+ f-V(s)
for each section f of Ox and each section s of & on a open set.

9



One should note that the definition of a connection only requires & to be a coherent
sheaf. However, it is a nontrivial fact that a coherent sheaf on a smooth analytic space
equipped with an integrable must be locally free. For the definition in the relative context,
i.e., for a morphism X ENFS , we only require & to be a coherent sheaf on X.

There are operations on connections. For connections (&, V) and (&2, V3), we can

deﬁne(& @D 52, Vl D VQ) by

isomorphism

81 ® & — (Qx Rox 61) D (x Roy 62) Qx ®oy (61 ® &)
and define (& ® &, V1 ® V3) by
51 ® 89 Vi(s1) ® 82 4+ Va(s2) ® s1
We can also define dual connections. For a connection (&, V), we define (8", V") by

V() =dol—1®10oV

For an © x-homomorphism & Iy & of vector bundles on X with connections V and
V’'. We say f is horizontal if
Viof=foV

Definition 2.20 (homomorphism between connections). A homomorphism between con-

nections (8,V) and (§',V') is a horizontal © x-homomorphism between them.

By some computations, one can show that the kernels and cokernels of a homomor-

phism between connections still form connections.

The connections on an analytic space X form an abelian category, denoted by MC'(X).

The relative connections on X %5V forms an abelian category denoted by MC(X/Y).

There are also pull-backs for connections. For a commutative diagram of analytic

spaces:

vy — L x

Y —— X

10



And a relative connection (€, V) on Y, ¢* & is equipped with a connection ¢*V given by

the composition of maps:
* Vv * T *
9 € = §"(Qa)y Rooy €) = Qx1)y' Ro,, §* 6
Where 7 is induced by the Oy-homomorphisms g*€2,,y — Qx//y-.

Definition 2.21 (De Rham complex). For a complex analytic space X, define Q§ =
NPQx, the p™ exterior power of Qx. We can extend the derivation d : Ox 4, Qx to
C-linear maps from QX to Q?“l for each non-negative integer p by a unique way such
that

d(fw)=df N\w+ (=1)Pf - dw

where f is a local section of Ox and w is a local section of Q%. Then all Q% s together

with d 1s called the de Rham complex of X .
As for the cotangent bundle, pull-back also works for De-Rham complexes.

Definition 2.22. Let & be a vector bundle on a complex analytic manifold X. Define
Q% (8) = NPQx ®o, €. We can define a C-linear morphisms

V5 (8) — Q&)

by letting
V(w,s) =dw® s+ (—1)P’wAs

where w is a local section of Q% and s is a local section of &.

Definition 2.23. The curvature R of the connection (8,V) is defined to be the composi-
tion

V28— Q3 (8)
Definition 2.24. A connection is said to be integrable if its curvature is 0.
Lemma 2.10. The pull-back of an integrable connection is integrable.

If X is smooth, then an equivalence condition for a connection (&, V) to be integrable

is that V is a Lie-algebra homomorphism from Jx to énd &.

11



Note that if a connection is integrable, V* = 0 so that Q% (&) forms a differential

complex.

We see in dimension 1, that a holomorphic connection is automatically integrable,

since A?Qx = 0.

Definition 2.25. Let (8,V) be a connection on X, Ker(V) is said to be the sub-sheaf of

horizontal sections of (&, V).

One should take care that Ker(V) is only a sheaf of C-vector space but not a coherent

sheaf on X since V is not a homomorphism of ©x-modules.

2.3 D-modules

Definition 2.26. Let X be a complex manifold of dimension n. The sheaf Dx of the

algebra of differential operators is defined by

Dx(U) =/ Z f)\Hﬁiﬂ each fy is holomorphic in U} (2)

AEZso"  i=1

The multiplication is given by PQ(h) = P(Q(h)) for P, Q € Dx(U) and h € Oy

Remark 2.11. For an algebraic version of D-modules, one can still use a local coordinate

system instead of a holomorphic chart in the definition.
Another definition that does not rely on the coordinate is as follows.

Definition 2.27. The sheaf of holomorphic vector fields on a complex manifold is defined

as:

Ox = {0 € éndcy (Ox) | 0(fg) = 0(f)g + f0(9)} (3)

Here Cx just stands for the constant sheaf of C on X.

And Dx is defined as the subring of Endc, generated by Ox and Ox.

Since generally the @D x does not commute, it is necessary to distinguish left and right

0 x-modules.

12



Lemma 2.12. For a vector bundle & on X, giving a @D-module structure on & is the same

as gwing a Ox-linear homomorphism:
V: @X — 812(?0)( &

such that
Vo(fv) =0(f)Ve(v)

for each sections 0, f, andv, and

V[Glﬂﬂ (U> = [V917 Vﬁb](v)

for each sections 01,05 and v.

Lemma 2.13. When & is a free(or locally free) Dx-module of finite rank, the map V in
the previous lemma is equivalent to a connection defined in previous sections for a complex

manifold, and it is integrable.

Lemma 2.14. For a vector bundle & on X with integrable connection V, consider the
left action of Dx on it by

§-v=<Vgv>

for sections & and v of 0 and &, then & is given a @D x-module structure.

Definition 2.28. A coherent @D x-module is a D x-module locally isomorphic to the cok-

ernel of free @ x-modules.

The sheaf @ x is equipped with a natural filtralization F’ from the order of differential
operators. Consider grf’ @y := ®i>oF; Dx /Fiy1ddx which is a sheaf of commutative

rings generated by differential operators.

Let X be a smooth complex algebraic variety. Then the cotangent sheaf (2x is locally
free, thus giving rise to a complex algebraic vector bundle 7*X = X. And 7, Op.x is a
sheaf of Oy algebra generated by Qx, which is naturally isomorphic to grf @ x. Let M
be a coherent @ x-module with a good filtration F. Then grf M is a coherent 7, Op-x

module. So Op«x @, -1y, 7 Ltgrf’ M is a coherent sheaf on T*X.

Orxx
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Definition 2.29. The characteristic variety of M is defined to be
Ch(M) = supp O« x ®@p—tr, 0pu 7 gr M
which 1s a closed subvariety of T*X.
It turns out that C'h(M) does not rely on the filtration.

Definition 2.30 (holonomic D-module). A nonzero coherent @ x-module is said to be

holonomic if dimCh(M) = dimX.

2.4 Intersection homology and perverse sheaves
2.4.1 Introduction

Perverse sheaves are generalizations of locally constant sheaves. It comes from the study
of the homology of spaces with singularities. For manifolds, there are good results for
its homology groups, such as the Poincare duality. However, these fail for varieties with
singularities. In the intersection homology and cohomology theory, a good homology for
varieties with singularities is constructed. And later this is described with the language of
derived categories and perverse sheaves. This section aims to provide some basic concepts

and results of this theory organized according to the historical order, mainly following [4].

In this section, we only consider reasonable topological spaces and sheaves in Sh(X, K)
(sheaves of K-modules on a reasonable topological space X) where K is a commutative

Noetherian ring.

2.4.2 Stratifications and intersection chain complexes

Definition 2.31 (topological pseudo manifolds). A topological manifold is a topological
stratified space
XDanQQXTLfZSQ---QXOQX—l:@

Such that X \ X,,_o is dense in X.

To discuss intersection homology, we restrict to the case X is a PL pseudo manifold.
In this case, the intersection chains are all PL chains and their intersection with strata is

easy to discuss.

14



Definition 2.32 (perversity). A perversity p is a sequence p(2),...,p(n) such that p(2) = 0
and p(k) < p(k+1) < p(k)+1 for all k.

Definition 2.33 (p-allowable chains). A PL chain £ of dimension i is said to be p-
allowable if for all k > 2

dim(€ N Xy) < p(k) +i — k

dim(0EN Xg) <pk)+i—k—1

Now we define the intersection homology groups THP(X) of a PL pseudo manifold
w.r.t a perversity p to be the homology groups given by the chain complex consisting of

p-allowable chains.

2.4.3 Deligne’s construction of intersection cohomology

Let D°(X,K) be the bounded full subcategory of derived category of Sh(X,K) derived
category of the category of complexes of sheaves on X. It turns out that D(X,K) is no

longer an abelian category, instead it is a triangulated category.

Definition 2.34 (constructible sheaves). Let S be a stratification of X, with strata {X; LN
X}.

We say F € Sh(X,K) is constructible w.r.t. S if each h;*F is a locally constant sheaf
of finitely generated K-modules.

We say F° € D*(X,K) is constructible if each #?(F*) is constructible w.r.t. S.

For 7* € D*(X,K), we say in is constructible on X if it is constructible w.r.t. some
stratification S.

Denote the above 3 categories by Shs(X,K), D%(X,K), and D%(X,K).

Definition 2.35 (Shriek pull-back of sheaves). Let X %Y be a locally closed inclusion
of topological spaces. For a sheaf F on'Y, we define the Shriek pull-back of F , h'F to
be the sheafification of the presheaf

Q(U) = thOYZU{S € g(V) ’ Supp(s) € U}
Remark 2.15. If h is open, the h' = h™!.

15



Lemma 2.16. Let X %Y be a locally closed inclusion of topological spaces. Then h' is

a right adjoint to h;.

Remark 2.17. For arbitrary continuous maps between topological spaces, it is not able
to define a right adjoint of the pushforward-with-proper-support functor for the categories

of sheaves. One has instead to work in derived categories.

Deligne constructed an intersection cohomology complex in DE(X, K), whose hyper-

cohomology computes the intersection homology of X.

Definition 2.36. Deligne’s truncation functor For k € Z, the truncation of F* €
DY(X,K) is given by:

)
Fi 1<k-—1
(<t F*) = kerd' i=k

0 1>k

\

Let X be a topological pseudo manifold with filtration
XDOX, 22X, 32...2X02X =0
Let Uy = X \ X,—k-
Let & be a locally constant sheaf on the regular part Us. Let p be a perversity. Then
one can define a sheaf on X inductively by ; be the complex containing only & in degree

0 on U, let
5 =55 nl

and for each k£ > 2, set

*71:+1 = Tﬁp(k‘)—ni*gk.

Definition 2.37. Deligne complex Following the above construction, we define
ICH(F) =T

Especially, we define IC3 to be IC5(K) , where K is the constant sheaf with coefficient
K.

16



Remark 2.18. The construction of the Deligne complex is due to Deligne, while Goresky
and MacPherson developed a set of Axioms for the intersection cohomology complex to

prove that its hypercohomology computes the intersection homology groups. To be explicit,

H™(ICp) = IPMHY(X)

Remark 2.19. It is further shown that the intersection cohomology groups do not depend
on the choice of stratification.

2.4.4 Perverse sheaves

From now on we on consider complex algebraic or analytic varieties with strata being
constructible subsets. As the middle perversity behaves well under duality, from now on

we restrict our discussion to the middle perversity.

Perverse sheaves are not sheaves, instead, they form an abelian subcategory of the the

derived category of complexes of sheaves on a complex algebraic or analytic variety.

Definition 2.38 (Perverse t-structure). The Perverse t-structure on D%(X,K) of a com-

plex algebraic or analytic variety x is given by:

DY(X)=Y = { F* € D"(X,K) | dimgsupp™ (F*) < j, foranyj € Z}
DY(X,K)=% .= { F* € D"(X,K) | dimccosupp™ (F*) < j, foranyj € Z}

where

supp? i=={x € X | irF* # 0}

cosupp™? = {z € X | iLF* # 0}
Definition 2.39 (Perverse sheaves). With the above definition, we set
Per(X,K) = *DP(X,K)=" N *DP(X,K)~"

Definition 2.40 (The topological Deligne complex). Following the previous section, we
set the topological Deligne complex IC’ﬁ?p of a complex algebraic or analytic variety of pure

dimension n to be IC% of X. And we define ICx to be IC'[—n).

Lemma 2.20. With the condition in the above definition, IC'yx is a perverse sheaf.

17



Remark 2.21. Perverse sheaves satisfy good gluing properties like sheaves. This is a

reason why they are called “perverse sheaves”.

Let X, N Xo be an inclusion of an open constructible subset of analytic spaces with
Xo \ X; closed, and a perverse sheaf F* on Xj, one can use an intermediate extension to

extend F* to a perverse sheaf on Xj.

Definition 2.41. Let U be an open constructible subset of a complex algebraic or analytic
variety X. Let i be the inclusion map. A sheaf compler G* in Db(X) is said to be a
extension of F* in D°(U), if

iflgo o~ ’9_«’0
Definition 2.42 (intermediate extension). The intermediate extension i;,F* of F* €

Per(U) is the image of the natural morphism 1;F°* — iyF* in Per(X)

Remark 2.22. The intermediate extension is between the minimal extension v and the

“largest” extension i,.

Remark 2.23. [t can be shown that for a complex algebraic(or analytic) variety X with
an abritrary open subvariety U AN X, the intermediate extension of the IC' sheaf on U is

isomorphic to that of X. i, ICy = I[Cx.

3 Classical Riemann—Hilbert correspondences

A classical version of Riemann-Hilbert correspondence states that the integrable holo-
morphic connections on a complex manifold and locally constant sheaves of finite dimen-
sional complex vector spaces can be identified. The proof requires the Cauchy-Kowalevski

theorem from PDE theory.

4 The relative Riemann—Hilbert correspondence for
analytic manifolds by Deligne

Deligne also gave a beautiful but brief proof in[2] for Riemann—Hilbert correspondence
in the relative context. In this section, I will state the relative version of the Riemann—

Hilbert correspondence and expand some of the details of Deligne’s proof in[2].
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First, we give the formal statement of this version of Riemann—Hilbert correspondence:

Theorem 4.1. Let X L5 S be a smooth morphism of complex analytic spaces. There
exist functors I from the category of relative systems on X to the category of integrable
relative connections on X and G from the category of relative integrable connections on
X to the category of local relative systems on X such that the following holds:

(a)For every local relative system V on X, F(V) = (V ®;-1(0,) Ox, V) such that V is a
relative integrable connection with ker(V) =V

(b)For every relative integrable connection (8,V) on X, G(V) = ker(V)

(¢c)The functors F and G are quasi-inverse to each other. So give an equivalence of
categories.

(d)The complex
Qx/s(8):0 —V — (F(V)) — Qxs(F(V)) — ... — Q‘;’(/S(F(V)) — ...
s a resolution of V.

This is rephrased from [2], page 15, theorem 2.23, while still confusing and to be

modified in the final submission.

The proof of this consists of several parts. First, prove that F' gives integrable connec-
tions and F' is fully faithful. Next, prove (d) which shows that GF' is naturally isomorphic

to id. Then it remains to prove that F'is dense.

Proof: First, construct F'. For a local relative system V', define

V:V @ f-1(0,) Ox — QX/S(V Qf-1(0g) @X)
by V(fs) = df ®s. Then it follows that V is an integrable relative connection. Next, prove
part(d). Since f is smooth, it is locally isomorphic to a projection pry : D" x S — S.

First, consider the special case where S = D", X = D™ x D™, f is the projection pro
and V is simply f~!(©Og). Then one can show the complex

0= I(f7H(Og)) = I'(Ox) = I'(2x/s) — ...
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is acyclic by constructing the following homotopy functor H:
(1) H:T(Ox) = T'(f'Og) = T'(Og, S) is given by the zero section of f.

(2) Each element w of I'(Q% /) can be expressed into a unique converging series:

I ng ng
E E ay, (Nierz;" dx;) H z;"
IC[1,m] neNm+n 1€[1,m+n\I
[|=p

and set

ni+1
Z Z Z SZgnI £</\Z7€£§x dml;;—l) H x?z

IC[l,m] j€l neNm+tn t€[l,m+n]\I

, where sign;(j) refers to the signature of j in I, to be explicit, if j is the r'h element of
I (the same order with that appears in the wedge product), then sign(j) = (—1)""!. In
the following equations, if j ¢ I, then sign(j) refers to the signature of j in I U {j}.

There is a grading of the complex. For a relative monomial p-form w = [] ke[1m] " Nier
dx;, we define its degree to be p + [{k € [1,m| \ I|ny # 0}|. It follows that both d and H
preserve this degree. To avoid misreads with the degree of polynomials or dimension of

chain complexes, I will call this degree the skew degree in the following paragraphs.

First, consider the subcomplex of skew degree 0, which only intersects

I'(f4Og),X) =T(Og,S) and T'(O,). And it is direct to check this sub complex is exact.

Next, our computation will show that for the subcomplex of skew degree ¢ > 1. The
['(Og)-linear map H o d + d o H equals the multiplication by q map. Then for each
positive integer ¢ the subcomplex of skew degree  is exact. If w is a form in kerd,
then consider w = >~ wg. It follows that wy € kerd for each k. Then it follows that
w = d( et H(w’“) + w0> Note that the coefficients of > /7, H(;”’“) is well controlled

by the coefficients of w, so >, H—w’f) is also converging. Therefore this will prove the

exactness of the complex.

Now we begin our calculation. We only need to show the result for monomials.
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Assume f=]]L, 2" € ['(Ox). Then H(f) =0, and

=11
q
d(f) = Znix’?i_l H )’
i=0

J€[Lq]
J#i
So
(Hod+do H)(f) = H(d(f))
q
= H(Z ngal ! H )
i=1 JE€[L,q]
J#i
a q
- S [e=0s
i=1 i=1
Assume

w = (Nierx; dz;) H z;"

i€[l,m~+n]\I

is a p-form of skew degree ¢, where p > 1.

Note that
1€[1,m+n]
= Z njm?jfl H x| dxy A (Nerdx;)
JE[1,m]\I 1€[1,m+n]
i#j
And
(Hod)w = Z y’ H x| Ner dz;
Je1,m]\I 1€[1l,m+n]
n;#0 i#j
£ et I e | dea ZMA-M@«
. 7 . ‘ ! Nk+1 ;ik '
JEL,m]\I 1€[1,m+n] kel
i#£]

R T S P | B TR Pl AL LN
. . 7 . ! g Ng+1 Zik ‘
JE[L,m\I JE[1,m]\I i€[1,m+n] kel
n;#0 i#j
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While

SZgTL[UC)CCk n;

(o Hw—d [ 3590 T
kel e+ 1 ik i€[l,m+n]

(8)

szgnl (k)xy, Z ng

= Z —_ n;;’ dxj (Nierdx;) H x"
kel e+ 1 j€lLm] ik ie[l',;l&n}

i#j

Then equation (7)+(8) shows that
(Hod+do H)(w) = qu
Now we have proved the result we want in this step.
The same construction works on smaller poly-cylinders of D™*", the complex of sec-

tions on which is also exact. Since smaller polydiscs form a base of the polydisc, the

complex of sheaf is exact on stalks. Thus the complex of sheaves in (d) is exact.

Remark 4.2. This is a relative version of the holomorphic Poincare lemma.

For an exact sequence of coherent sheaves on .S:
0=V -V =SV"=0

, since f is smooth and Q% /g 18 flat over Og for each p, the sequence of differential

complexes
0= Qx5 Do, [V = Qx), Qo, [TV = Q) ®o, [TV =0
is exact in each dimension. So the snake lemma shows that if (d) holds for two of V', V"’

and V", it holds for the third.

By the syzygy lemma, any coherent sheaf on D" locally has a finite free resolution.

Therefore (d) holds for the case where S = D".

For the general case, it still suffices only to consider the situation where X = .5 x D™,
f is the projection pry, and the local system is the sheaf-theoretic inverse image of a

coherent sheaf F on S.
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Since (d) is local on S, one can assume S is a closed analytic subset of D™ with
inclusion ¢. For a coherent sheaf & on S, consider the direct image sheaf ,F, then i,F

is also a coherent sheaf on D™. Also, note that the push-forward of the complex
0= [T'F = [ F = ffF0x5 — ...
onto D™ x D™ is just the complex
0— prli,F — pr*i,F — prri,F ® Qpmypnjpn = ...

where pr is the projection from D™ x D™ to D". It follows from the special case that this

complex is exact.

Now we have proved (d). This directly implies (a), which means G o F = Id. It
remains to show that for every integrable relative connection (8, A), (8, A) = F(V) for

some local relative system V. This is again local on both X and S.

The last part is proved by induction on relative dimensions of f and reduction to the

case where X = D" x D', S = D", f = prq, and the bundle is free.

If X =D"x D' S=D" f=pr,and § = OF. Then finding a horizontal section s
of OF is such that s|oxs = so for a given sy € OF is solving a series differential equation
on D! of order n with initial value parameterized holomorphically by D". Therefore each
equation in the holomorphic series has a unique global solution. Moreover, the solutions

form a global section of f~'©g. Therefore the horizontal sections € & forms a free

['(Og, S) module of rank m.

If X =D"x D' S=D" f=pry, and & is an arbitrary coherent sheaf on X. By

shrinking S and X, we can assume that & has a finite representation
o B
& — 80 = &
We shall show the existence of an open neighborhood of 0 where &, and &, admit integrable
connections Vi and Vy compatible with o and S.
Let (e;) be a basis of global sections of &;. First, consider (g;) = (8(e;)) which generates

&. We can let g; # g; when we construct §,. To be accurate, choose an open neighborhood
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of 0 where & can be generated by global sections and let & be a free sheaf generated by
these global sections. Consider V(8(e;)) = f;. There exists an open neighborhood U
of 0 such that each f;|y is expressed in the form Zj w; ® g; where w; € Qx,5(U) and
g; € {9:}. Then let Vo(fi) = >_;w; ® f;. This defines a connection on & in U. Since
X L5 S is smooth of dimension 1, Vj is automatically integrable. And we can do the

same procedure to &;.

Then shrink X and S and by the previous conclusion we may assume (&g, Vo) = F(V})
and (&1, V) = F(V}) for relative local systems (in fact free I'(©Qg) modules) V and V.
Then & = BV) ®o, Ox , and 5V consists of only horizontal sections of V. By (d) pV;
consists of all horizontal sections of V. Therefore (8, V) = F(8V;). The conclusion holds.

Now consider the case that X %5 S is of relative dimension 1. Again it suffices to

consider S is a closed analytic subset of D", X = D! x S, and f = prs.

DxS—" s DxD"
Again we consider the diagram: pro pro
S - > D"

It follows that local S-relative systems(resp. coherent sheaves with integrable S-relative
connections) on D x S are identified with local D™-relative systems(resp. coherent sheaves
with D"-relative connections) on D x D" that are annihilated by the inverse image of the

ideal sheaf of S. So the conclusion follows from the previous case.

For the general case, induct on the relative dimension n of X Iy S. The case n = 0
is trivial since f is locally isomorphism, 2x,¢ = 0, and each coherent sheaf on X is a
relative local system. And the case n = 1 is proved. Assume the conclusion holds for n,

for n + 1, again WLOG X = S x D" x D! with f = pr;. Consider the section i at 0:

Xo=SxD"% S x D"x D!

Note that i*(8,V) is a connection on Xj,. By inductive hypothesis (i* §,7*V) =

Fx,/s(Vo) for some local S-relative system Vj on X,. Consider the projection
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X x,

The relative connection V also induces a S-relative connection V for pr. Then by the

case n = 1, (,V) = Fx,x,(V') for some Xy-relative system V' on X. Also, note that

Elx, =V'|x, =1 6. And 8 |gxox0 = V'|sx0x0 = i* & |sx0 = Vo|sxo is a coherent sheaf F

on S. And & = pr{'F Qpr-10s Ox.
It remains to show sections of pr;'F are horizontal with respect to V.

We can consider the tangent sheaf T'x/s with the basis 0,,, 0,,,..., 0,,. For a section

s of pri'%F, Va,,(s) =0, and V|, (s|x,) = 0.

Since V is integrable [Vo, , Vo, | = Vs, a,.] = 0. Therefore Vy, V0,,(s) = Vo, VO, (s)

0. Consider then section Vj, (s), it is zero at X, and horizontal along w,,. Therefore

Va,.(s) = 0, which shows s is horizontal. Q.E.D.

5 Degline’s Riemann—Hilbert correspondence for reg-
ular singularities

Discussing the relationship between regular singularities and integrable connections is very
complicated. Deligne used too many techniques from analysis and algebraic geometry in
[2] to be included in this short thesis. Therefore I will only give a brief introduction to

this topic.

5.1 Dimension one

According to the former sections, we know that in dimension 1 any holomorphic connec-
tion is integrable. Meanwhile, a connection may give an irregular differential equation.

However, after a suitable coordinate change on the bundle, it could still give rise to a

regular differential equation. First, we look at this easy example:
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Consider U = C! \ 0. Consider a connection V on O given by
f—=df —z%fdz

The V gives a irregular(recall introduction) differential equation:

i f

dz 22
The global solution of the equation exists and is of the form f(z) = ¢- e~=. We can apply
a base change to Oy by f +— f

Then after the base change, the connection becomes the trivial connection on ©y. This

explains why the equation would have global solutions.

Assume X is a Riemann surface and ¥ is a finite set of points on X. Let X* = X \ o
and let 7 : X* — X be the open immersion. Now we define a connection with regular

singularities along >::

Definition 5.1 (holomorphic connections with regular singularities). For a connection
(é,V) on X*, we say this connection has reqular singularity along % if, for any o € ¥,
there exists a punctured neighborhood of o such that V has meromorphic coefficients with

at most only simple poles at o for some base.
Theorem 5.1. Fach holomorphic connection on X* has regqular singularity along 3.

Proof. One can construct a vector bundle on X with a meromorphic connection whose
restriction on X* is regular and has the same monodromy as the original connection.

Then we are done with the Riemann—Hilbert correspondence. O

Remark 5.2. Consider the corresponding algebraic varieties for X and X*, denoted by
Xag and X;,.  Let (8,V) be an algebraic variety on X*. Then after analytification,
(8ans Van) on X* should be regular. However (8,V) itself may not be 'reqular’ since
the isomorphism between analytic vector bundles with connections might not be algebraic.

This leads us to find a definition of reqular algebraic connections.
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5.2 Higher dimensions

Let’s introduce the definition of an algebraic connection with regular singularities in higher
dimensions.
First, define an algebraic version of regular connections for curves, the following defi-

nitions are taken from [5]

Definition 5.2. Let (C, K) be an abstract nonsingular curve over C. Let p be a closed
point on C. Denote the quotient field of Oc¢,, by K¢ p. A meromorphic connection (M, V)

is a finite-dimensional K¢, vector space M with a C-linear map: M Y, Qcp @ Oc,, M

Definition 5.3. An algebraic connection (M,V) is called reqular if there is a finitely
generated Oc, ,-submodule of M such that M = K¢ L and V(L) C Q¢ Qo,, L for

some local parameter x at p.

Definition 5.4. Let X be a smooth algebraic variety. An integrable connection (&,V) on
X is said to be reqular if for any morphism C =N e from a smooth algebraic curve C

ie € 1s reqular.
There is another definition :

Definition 5.5 (log sheaves). Let X be a proper, smooth C-scheme. Let D = UD; be
the union of finitely many connected smooth divisors in X with normal crossings. Let
Derp(X/SpecC) be the sheaf on X of derivations which preserves the ideal sheaf of each
branch of D. The sheaf of differentials on X with logarithmic singularities along D is
defined by

Qx(log D) := #Fome, (Der(S/SpecC), Ox)

Definition 5.6 (Regular connections). Let U = X \ D as above with U % X. For an
algebraic connection (8, V) on U, if & is a union of Derp-stable coherent submodules, the

& 1s said to be regular along D.

Deligne showed the equivalence of regular algebraic integrable connections and analytic

integrable connections in [2], theorem 5.9.
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6 Kashiwara’s Riemann—Hilbert correspondence

Now we consider derived categories D%(X) and D,h®(Dx)

There are two functors defined as follows

DR : D% (Dx)”* — D(X)

m* — Rhomg , (N°,Ox)

and

SOL: DY, (Dx) — D°(X)

G'HQX®@X9'

Kashiwara’s Riemann—Hilbert correspondence says that the above two functors map

Db (D x)% and DY, (Dx) into Perv(X) an induces equivalences of categories.

7 Concluding remarks

In this thesis, we expand on some details of Deligne’s proof of a relative version of
Riemann-Hilbert correspondence for smooth morphisms of analytic varieties and give a
little introduction to the theory of connections with regular singularities and Kashiwara’s
work for regular holonomic D-modules. The Riemann-Hilbert correspondence is also an
important foundation of the nonabelian Hodge theory. It might be considered a non-
abelian analog of the Derham-constant comparison. This topic is still very active. Now
there are many new processes in this topic. For example Kashiwara’s work for irregular
holonomic D-modules and generalizations for varieties over fields of positive characteris-
tics. Meanwhile the Riemann—Hilbert correspondence also has applications in integrable
systems and other fields. To make a conclusion, the Riemann—Hilbert correspondence is

a very interesting and active topic that is worth further investigation.
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