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A GENTLE INTRODUCTION TO FLOER HOMOLOGY THEORIES

Ruoyu Xu

Abstract

This is a reading report on Greene’s survey paper on Heegaard Floer homology. The aim of
this thesis is to present the elements that center around this active research topic in an expository
manner by following the development and evolution of Floer homology theories up to Heegaard
Floer homology.
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1 Introduction

Floer homology is an infinite-dimensional version of Morse homology first developed by Floer to
attack the Arnold conjecture in symplectic topology. The development of this tool is a long and
convoluted story with inspirations from symplectic topology to gauge theory, yielding numbers of
variant theories that provide rich applications in many different fields.

In section 2, we introduce the Morse homology, the finite-dimensional case. Many ideas here,
including the study of critical points, moduli spaces and compactification, will show up repeatedly in
the future.

Section 3 is an introduction to the original idea of Floer in his work on Arnold conjecture. Here
the Floer homology can be considered to be a Morse homology on the loop space of a symplectic
manifold. We will also introduce an important variant called Lagrangian Floer homology that would
eventually inspire Heegaar Floer homology.

Section 4 discusses another variant of Floer homology in gauge theory called instanton Floer
homology. It is a topological invariant of 3-manifolds built from information of certain SU(2)-
connections.

Section 5 introduces Heegaard Floer homology, which is an important invariant of 3-manifolds.
Its inspiration came from low-dimensional topology, symplectic topology and gauge theory.

In the last section, we discuss a variant of Heegaard Floer homology in knot theory, and mention
some of its properties.

2 A quick introduction to Morse homology

In this section, we briefly introduce the construction of Morse homology. Morse theory studies a
particular type of function on manifolds that reflexes the topological information of the space itself.
It has been the main inspiration for Floer homology theory, the latter can be seen as an infinite-
dimensional version of Morse homology.

We assume all functions in this section be smooth, and manifold M be compact. More detailed
information on classic Morse theory can be found on [13], and that of Morse homology can be found
on [1] and [2].

2.1 Morse functions

Let M™ be a manifold and let f : M — R be a smooth function on M, a point p € M is called a
critical point if df|, = 0. In a local coordinate (xy, -, 2,), this would mean

L A -
3:'!:1_ _Bm"_

Theorem 2.1.1. The Hessian of f at a critical point p, denoted by (d*f),, is a symmetric bilinear

functional on TM, given by formula (df),(V,W) =V . (‘-Wu - f)(p) ,where W denotes a vector field
extending W locally.

(d2f), is symmetric since V- (W - f)(p) =W - (V- £)(p) = ([V', W] - £)(p), where the right hand side
equals to 0, for p is a critical point of f. It is well defined because it is independent of the extension of
W, since (d*f)p(V, W) = (d*f)p(W,V) = W - (V - f)(p). Under a local coordinate system (Z15580),
this bilinear form can be represented by a symmetric matrix (%&)U.

We denote the set of critical points of f by Crit(f). A critical point p is called non-degenerate
if (d®f), is a non-degenerate form. This would mean (-5;%4;—1)@ is non-singular in local coordinate.
For those non-degenerate critical points, define their indez indy(p) to be the dimension of the largest
negatively defined subspace of (d*f),, and Crit;(f) = {p € Crit(f)|inds(p) = i}. The following is a
classic result of Morse theory.



Theorem 2.1.2 (Morse lemma). Let p be a non-degenerate critical point of the function f : M™ — R.

Then there is a local coordinate (U, z1,- -+ ,xy) around p such that
ind(p)
flxy,:+ yzn) = f(p) — Z z? + Z z3.
i= i=ind(p)+1

Definition 2.1.3. A Morse function is a smooth function that has all its critical points non-degenerate.

Notice that Crit(f) is therefore discrete for a Morse function f.

Morse functions turn out to be the object of interest in Morse theory. The chain complex in Morse
homology is in fact Crit(f) together with a suitable differential. The good news is, Morse functions
are dense in C*°(M), and it is fairly easy to construct some simple ones.

Proposition 2.1.4. Let M 4 be embedded in R™. For almost every point p € R™, the function
fpor M —R
z— ||z —p||?
is a Morse function.

Proof. The differential of f, at z is dfp.(v) = 2(z — p,v), so z is a critical point if and only if

2 — p is normal to T, M. Choose a local parametrization (u1,--- ,uq) — z(uy, -+ ,uq) around z, we
have
Ofp ox
—= =2
6ui (113 p) Bui
D21, ox Oz 0%z
) SO, 51 o i Yo .
Buidu; <8u,~ oy, TP auiauj)

So fp is a Morse function if and only if all those z € M with (z — p) L T, M have the matrix above
non-singular. Direct calculation shows that p € R™ satisfying this are exactly the critical values of
the map £ : NM — R", (z,v) — x + v, and therefore the proposition is proved by Sard’s theorem.
O

Another simple example of Morse function is the height function that measure the ”height” of the
points in a manifold embedded in R™.

2.2 The moduli spaces of flow lines

We mentioned earlier that the chain complex in Morse homology called the Morse chain complex is
Crit(f) together with a suitable differential. To be more precise, C; is exactly the free abelian group
generated by Crit;(f). For the differential, we need another ingredient, namely, the Riemannian
metric. We want to count the flow lines flowing from one critical point in C; to another one in C;_.

Given a Riemannian metric g = (-,-) and a function f on M, the gradient vector field of f is the
vector field grad f defined by (grad f,-) = df. The flow of gradient field is a family of diffeomorphism
{¢* : M — M}ser, with ¢° = idps and d¢;sp = —grad(f),. Notice that f o ¢*(z) is increasing in s,
and that ¢*(p) in constant for any p € Crit(f).

Definition 2.2.1. Let f be a Morse function on M, p € Crit(f), define its ascending and descending
manifolds to be

Alp) = {w € M| lim ¢*(z) = :D}

and

D) = {z & M| lm_¢#(2) =p}.



The names for the two manifold comes from the example of height functions, where points in the
ascending manifold flow to "higher” critical points, and points in the descending manifold do the
opposite.

Notice that flow lines would flow towards p in the directions of eigenvectors with negative eigen-
values, and flow away from p in the directions of other eigenvectors. This inspired the following
proposition.

Proposition 2.2.2. A(p) is diffeomorphic to an (n — ind(p))-dimensional disk, and D(p) is diffeo-
morphic to an ind(p)-dimensional disk.

The set of flow lines flowing away from p and towards g would be A(g) U D(p), which is a manifold
if the intersection is transverse.

Definition 2.2.3. For a Morse function f and o Riemannian melric g, the pair (f,g) is called
Morse-Smale if A(q) intersects D(p) transversely for every p,q € Crit(f).

We can perturb f or g to obtain a Morse-Smale pair.

Define the space of flow lines from p to g to be M(p,q) = A(g) U D(p), and the moduli space
to be L(p,q) = M(p,q)/ R, where R acts on A(g) U D(p) by the gradient flow. Under Morse-Samle
condition, £(p,q) would be a manifold of dimension ind(p) — ind(g) — 1. In this case, M(p, q) would
be 1-dimensional if ind(p) = ind(g) — 1, and we hope that it is a finite set so that we are able to count
its elements. This lead to the study of compactification L£(p, q) of L(p, gq).

Theorem 2.2.4. Let (f,g) be Morse-Smale, then for distinct p,q € Crit(f), the compactification
L(p,q) is a manifold with corners, and the k-dimensional corners are

L(p,q);, = U L(p,71) X L(r1,72) X - X L1k, q)

r1,0+ T ECrit(f)
ind(q)<ind(r;)<ind(p)

Immediately we have L(p,q) = L(p,q) if ind(p) = ind(q) + 1, so L(p,q) is a finite set of points.
We also hope to orient L(p, ¢) in order to count its points with sign. To do this, we fix an orientation
for every D(p) and descend it to M (p,q).

We are now ready to build the Morse complex.

2.3 Morse homology
Let (f, g) be Morse-Smale, C; = Z Crit;(f), and
ap)= >,  #Lpa) g
ind(g)=ind(p)—1
where #L(p, g) denote the signed count of its elements. Extend 8; linearly on C;.
Proposition 2.3.1. The Morse complez (C.,d) is a chain complez.

Proof. 1t suffices to verify that 808 = 0. For any p € C;,

dodp)= Y D> #L(p.7)#L(r,q) g

qeCi_a reCi_y

=Y #{ U cor)xLmng] - g

qeCi—2 reCi_y
= > #0L(p,q9) g
qeCi_2



We have used theorem 1.2.4 here. Since L(p,q) is a 1-dimensional manifold, the signed count of its
boundary is zero. Thus 0 o d(p) = 0. O

The homology of this chain complex is called the Morse homology, denoted by HM,(M;Z). The
modulo 2 homology HM,(M;Z/2) can be similarly defined, with the only difference being that the
orientation of moduli space becomes unnecessary. As an example, Figure 1 shows the flow lines of
a height function on a torus, where p € Critg, g, € Crit; and s € Crity. So its Morse homology is
HM, = 7,72,7, the same as the ordinary homology of a torus.

S zZ

Figure 1: [2] Gradient flow lines with sign of a height function on a torus.

Morse homology turns out to be independent of the choice of (f,g) and canonically isomorphic
to the singular homology of the manifold. For application, we prove a classic result with Morse
homology.

Proposition 2.3.2 (Morse inequalities). Let f be a Morse function on M. Define ci(f) to be the
number of its critical points of index k and let by, be the k-th Betti number of M, then

cx(f) = br
for all k > 0.
Proof. Take the Morse complex (C.,d) of M. We have

cx(f) =dim Cy
=dim ker 8y, + dimim 9y
>dimker 0y — dimim 941
=dimHMk(M) = bk.

3 Floer homology and the Arnold conjecture

In this section, we introduce the basic idea of Floer homology and Lagrangian Floer homology, the
latter would become a vital inspiration for Heegaard Floer homology. We will focus mainly on the
Floer homology. The two homologies were originally developed to attack the Arnold conjecture in
symplectic topology.

Symplectic topology was originally motivated by Hamiltonian mechanics, which is a transforma-
tion of Lagrangian mechanics which turns physic problems into a matter of finding solutions of a
Hamiltonian system with a time-dependent Hamiltonian. Since Floer’s work on his homology theory,
the study of Hamiltonian dynamics and J-holomorphic curves (see Appendix A) became a major
driving force in the subject.



This section is based on [1], [11] and [15]. Manifolds throughout this section will be assumed to
be smooth without boundary.

3.1 Symplectic systems and the Arnold conjecture
We first introduce some basic concepts in symplectic geometry.

Definition 3.1.1. A Symplectic structure on a manifold M is a closed 2-form w € Q?(M) that is
everywhere non-degenerate. A manifold with symplectic structure is called a symplectic manifold.

Notice that non-degeneracy force the manifold to be of even dimension. The easiest example of
symplectic manifold would be (R*",wq), where wy (z,y) = > (ziyi — yixwi), that is, wo = 3 dx; A dy;.
It is also called a symplectic vector space. A symplectic vector bundle would be a vector bundle
that has symplectic vector space as its fiber. All orientable surfaces are symplectic, since they have
non-vanishing volume forms as symplectic forms.

Definition 3.1.2. A symplectomorphism of a symplectic manifold (M,w) is a diffeomorphism v that
preserve the symplectic form, i.e. Y*w = w.

The set of all symplectomorphism is denoted by Symp(M,w) or simply Symp(M).

Definition 3.1.3. H : M — R is a smooth function on a symplectic manifold M. The vector field
Xy defined by
~u(Xp)w = w, (Y, Xgr) = (dH)o(Y) for every Y € T, (M)

is called the Hamiltonian vector field of the Hamiltonian H.

We want to study the dynamical system, or Hamiltonian system, associated to this vector field.
Xu generates a 1-parameter group of diffeomorphism {4}, with 9% = iday, called the Hamiltonian
flow. We will later show that each diffeomorphism in a Hamiltonian flow is a symplectomorphism.

We now consider the situation when the Hamiltonian is ”time-dependent”. In this case, the
Hamiltonian is H : R xM — R. For each ¢, the function H, := H(t,-) would similarly generate a
vector field X; := Xp,. As in the autonomous case, a time-dependent vector field also generates a
group of diffeomorphism {4}, such that

d
E’/’t = X, o and ¥° = idy,.

We also call it a Hamiltonian flow.

Definition 3.1.4. A diffeomorphism 1 is called a Hamiltonian symplectomorphism if there exist a
Hamiltonian flow " such that y¥' = 1. The set of all Hamiltonian symplectomorphism is denoted by
Ham(M,w) or Ham(M).

The following proposition justifies its name.
Proposition 3.1.5. Every diffeomorphism in a Hamiltonian flow is a symplectomorphism
Proof. Since ° = idyy, it suffice to show that (1!)*w is independent of ¢, so that (') *w =
(1) *w = w.
d 1y Ty *
o (¥")'w) = (') Lx,w
= (¥")"(dou(X)w)
= @")*(~dodH) = 0.

Here we used Cartan formula
Lxw=u(X)dw+doi(X)w

and the fact that w is a closed form. O



In Hamiltonian mechanics, periodic obits of Hamiltonian system are of great interest. In the
1960s, Arnold attempted to give the lower bound for the number of periodic solutions with his
Arnold conjecture. Some notations are needed before we present the conjecture.

Let M be a manifold, the minimum number of critical points of a function on M is denoted by
Crit(M), while the corresponding minimum for Morse functions is denoted by Crityorse(M).

Conjecture 3.1.6 (Arnold). For any Hamiltonian symplectomorphism v on a compact symplectic
manifold M, there is
# Fix(y) > Crit(M).

If the fized points are all non-degenerate, then
# Fix(1)) > Critpmorse(M).

A fixed point is called non-degenerate if no eigenvalue of dpy : T,M — T,M is equal to one.
Fixed points of a Hamiltonian symplectomorphism 1) are exactly the points of M that goes back to
its original location after time 1 in the symplectic system that generates 1. If the Hamiltonian H;
happens to be 1-periodic, then these fixed points correspond to 1-periodic orbits of the system. We
can in fact always assume H; to be 1-periodic. Take the Hamiltonian K; = o/(t)Hy ) for t € [0, 1], it
generates the flow 9*®). Let «(0) = 0, a(1) = 1 and &/(0) = o/(1) = 0, then 1*® = ! and K, can
be extended to a 1-periodic function. A periodic orbit is called non-degenerate if its corresponding
fixed point is non-degenerate.

Floer’s proved Arnold conjecture for monotone symplectic manifolds by developing a Morse ho-
mology on infinite-dimensional manifolds called Floer homology, which focuses on the periodic orbits
of Hamiltonian systems. It deals with a weaker version of the conjecture.

Theorem 3.1.7. For any 1-periodic Hamiltonian H on a compact symplectic manifold M, suppose
the 1-periodic orbits are all non-degenerate, then

dim M
#(1-periodic orbits) > Z b (M).
k=0

It is indeed weaker than the original conjecture due to the Morse inequalities. To simplify the
problem even more, we further assume manifold M satisfies the following properties.

1. For every smooth map w : S — M, there is

/ ww=20
S2

2. For every smooth map w : S? — M, the symplectic vector bundle w*TM is trivial.

To prove this theorem, we will construct the Floer homology. We start by considering the space
of all loops on the manifold, which is a Banach manifold, and then give it a suitable functional. The
critical points of it will be exactly the periodic orbit of a given Hamiltonian system. Similar to Morse
homology, in order to construct the chain complex, we need to define indices for these critical points,
and define the differential by counting some suitable gradient flows lines between critical points. The
homology of this chain complex is called Floer homology, which coincides with ordinary homology of
M. Theorem 3.1.7 will then be completely analogous to the Morse inequalities. Due to the complexity
of the matter, our construction will be mostly expository.

3.2 The loop space and the action functional

Let M be a compact symplectic manifold that satisfies the assumptions given before. Define the loop
space LM to be the space of contractible free loops on M. It contains all smooth maps z : S — M
that are contractible. The loop space, together with its C'*° topology, is in fact a Banach manifold.
We will not prove this statement but rather describe the space in a formal manner. To describe its



tangent space, consider a curve s — Z(s) on LM passing the loop = at s = 0. The curve # can be
seen as a map

F:RxS'— M
(s,t) — Z(s,t).

Differentiate with respect to s, we get a vector field on the loop 2. It is natural to see this vector
field as the tangent vector of Z at z.

Similar to the construction of Morse homology, a Riemannian structure is needed on £M. This is
achieved by fixing an almost complex structure J on M compatible with the symplectic form w (see
Appendix A). It induces a Riemannian metric g by

9(X,Y) = w(X, JY),

and therefore induces a metric on LM by

<xw=£9amxwm.

Given a l-periodic Hamiltonian H; on M, define the action functional to be

1
Ag(z) = —f u*w +/ H; o x(t)dt,
D 0
where u is an extension of = to a disk D. Such extension must exist since x is contractible. Ay is
well defined because of the assumption that [, w*w =0 for any w: 5% = M.

Proposition 3.2.1. The critical points of Ay is exactly the 1-periodic solution of the Hamiltonian
system of H.

Proof. We compute the differential of Ay at 2. Let Z, be a path on LM which passes z at s = 0
with tangent vector Y (¢t), then

d =
d: Ap(Y) = E;AH(%NFO-

To compute the derivative in the right hand side, we need to find a smooth map % : R x D — M such
that 4(z) extends &,(¢) to a disk D for every s € R. To achieve this, let & converge to a constant
path at —oo, and define 7, (e?™(+t)) = 2, (t) for I < 0. We also extend Y to the disk, that is,

Yilz)y= %g(ﬂ,z).

Now i
AH(E:s):—/ ﬁ;w+/ H; o &,(t)dt.
D 0

Differentiate the first term,
d
- [ (Grlleo = [ wtdouriv)
- —f z"(1(Y)w)
51
= [ wle' @,y

The derivative of the second term would be fol w(Y (t), X¢(z(t)))dt. So

1
dMMH=LwW@—&MJ@W,

10



So if z is a critical point, then apparently z’'(t) = X;(z), which is the desired result. O

With the explicit differential of Ag at hand, it is easy to calculate its gradient on LM,
(grad, Am)(t) = Ja'(t) + grad, ) H,

which is a vector field on 2. We take the negative gradient just like when constructing Morse homology.
A negative gradient flow u on LM is a solution of the following PDE
ou ou

35 + J(U)E + grad Hy(u) = 0.

This is called the Floer equation. We are only interested in all smooth contractible solutions of period
1

3.3 The outline of the construction

There are still many problems to deal with in order to construct Floer homology. Here we state the
outline the construction without proving. We will still assume M to be compact and satisfies the two
assumptions given before. We will also take coefficient Z/2 to avoid orientation problem.

The first problem is that in infinite-dimensional case, a trajectory may not connect two critical
points. So we focus ourselves to certain nice solutions with “finite energy”. The energy of a solution

is defined by
oo 1
—o0 JO

Proposition 3.3.1. Letu : R xS — M be a solution of Floer equation. Then u connects two critical
points in LM if and only if E(u) < co.

2

L TR

Os

We will therefore consider the solution space
M = {u:RxS8" = M | uis a contractible solution of Floer equation with finite energy}.

We use M(z,y) to denote the space of all solution in M that flows from z to y, and define the moduli
space L(z,y) = M(z,y)/R.

Every non-degenerate critical point = of Ay can be given an index p(z) called Maslov index. We
will assume all critical points to be non-degenerate from now. Just like in Morse theory, the study
on the compactification of the moduli space gives the following result.

Theorem 3.3.2. You can perturb the Hamiltonian H, without changing the critical points of Ay,
such that for any two critical points z,y of Am, if u(z) — p(y) = 1, then L(z,y) is a compact
0-dimensional manifold. If u(x) — p(y) = 2, then the compactification L(z,y) is a 1-dimensional
manifold with its boundary being

Lz, 2) X L(2;y)
wu(z)=p(z)+1

The Floer complex is constructed in exact same way as the Morse complex by letting CF; =

Z/2 Crit;(Ag) and
i)=Y,  #L®y) -y
w(y)=p(z)-1

The proof of & 0 = 0 is complete analogous to the one in the last section, and the homology of
this complex is called the Floer homology, denoted by HF.(M,J), where J is the almost complex
structure we chose for M. It in fact coincides with ordinary homology of M. This is proved by using
its independence of Hamiltonian. It is possible to choose a Hamiltonian H that is independent of
time, such that its 1-periodic orbits are all constant. In this case, the critical points of Ag will be
exactly the critical points of H. This is because 1!(z) = const if and only if X = 0, which happens if
and only if d, H = 0. So in this case, the Floer complex coincides with the Morse complex. Theorem
3.1.7 can then be proved in the same manner as the Morse inequality.

11



3.4 Arnold-Givental conjecture and Lagrangian Floer homology

In the 1980s, Arnold conjecture was further generalized by Arnold and Givental. We first introduce
the concept of Lagrangian submanifold.

Definition 3.4.1. A Lagrangian subspace L of a symplectic vector space V' is a mazimal isotopic
subspace, that is, a mazximal subspace where the symplectic form vanishes.

A Lagrangian subspace L is always of half the of the symplectic vector space it is in, since L = L+
and dim L + dim L+ = dim V.

Definition 3.4.2. A submanifold L of a symplectic manifold (M,w) is called Lagrangian if T, L is a
Lagrangian subspace of T, M for every x € L.

We then have dim L = %dim M or L. As a result, if two Lagrangian submanifold of M intersect
transversely, then the intersection would be a 0-dimensional manifold. For the last definition, we call
a diffeomorphism 7 : M — M on a symplectic manifold an anti-symplectic involution if 7o 7 = idyy
and 7*w = —w. Fix(7) is empty or a Lagrangian submanifold of M.

Conjecture 3.4.3 (Arnold-Givental). Let M be a closed symplectic manifold. Let L be the fived
point set of an anti-symplectic involution. Let 1) € Ham(M), then

#(LNy(L)) > Crit(L).
If the intersection is transverse, then

#(LN ¥(L)) = Critmorse(L)-

Since L and (L) is of half the dimension of the compact manifold M, their intersection is a finite
set. To see it indeed generalize Arnold conjecture, we look at the diagonal § = {(z,z) | z € M} in
(M x M, (—w) x w), which is the fixed point set of 7 : (z,y) — (y,z). For any ¥ € Ham(M), the
fixed points of ¥ is 6 N+/(8), where ¢ : (z,z) — (z,9(z)) is also a Hamiltonian symplectomorphism.

Floer developed another homology in his work on Arnold-Givental conjecture, called Lagrangian
Floer homology. Since (L) is also a Lagrange submanifold, which can be proved similar to proposi-
tion 3.1.5, Floer constructed the homology based on a pair of Lagrangian submanifold (L, L3), and
studied the space of smooth paths from L; to Lo,

P(L1,Lz) = {y:R — M |  is smooth and 4(0) € Ly, (1) € Ly}.

The constant paths in P(Ly, La) correspond to points in Ly N Lo. Ignoring all the technical issues,
Floer’s general idea is to find a suitable action functional on this space so that the critical points are
exactly those constant paths. Just like in Morse theory, CF(Ly, Ls) is freely generated by the critical
points, in other words, by L; N Ly. An almost complex structure is required to generate gradient
flow. In this case, a flow from one critical point to another would be a disk between L, and L, called
a J-holomorphic disk, and the differential is defined by counting J-holomorphic disks between the
two Lagrangian submanifolds. This would later become a major inspiration for the construction of
Heegaard Floer homology.

4 Floer homologies in gauge theory

Gauge theory studys the connections on principal bundles, which are often used to describe dynamics
of elementary particles in physics. In 1950s, Yang and Mills described the strong nuclear force in
terms of connections on principal SU(2)-bundle that satisfy Yang-Mills equations. In 4-dimensional
space, there are some special solutions of these equations called instanton that reflex the topology of
the space, which inspired the development in instanton Floer homology.

In this section, we provide some basic notion in gauge theory and give a very rough description of
instanton Floer homology. We will see at last how the study of gauge theory and 4-manifold would
eventually motivate Heegaard Floer homology. No proof will be given in this section. The notations
in this section are based on [19] and [8]. More on instanton Floer homology can be found on [17] and
[4].

12



4.1 Connections on G-bundles

Before we define connections, recall that a vector bundle E of rank k over m-manifold X is a (m+k)-
manifold together with a map p: E — X, so that each fiber is (linearly) isomorphic to R* and pis
locally a projection. So there is an atlas {U,} of X and a family of isomorphisms {¢, : p~1(U,) —
U, x R* }, where the composition of projection and ¢, is exactly p.

When U, and Up overlap, ¢, o ¢El defines a map gop : Uy N Ug — GL(k) by

$a o ¢El(x’w) = (xagaﬂ(x) : w)

The collection {Us, gas} is called a cocycle, and in fact determines the vector bundle. For an arbitrary
collection {Uy, gos} to be a cocycle, that is, to determine a vector bundle, it need to satisfy the cocycle
condition:

Goo =id, gap = gEolla 9ap © 98y = Gay-

The group G where g,p take values is called the structure group of E, and F is called a G-bundle.
What we have just defined is a GL(k)-bundle. It is sometimes possible to alter the cocycle for a
vector bundle to make g, take values in a subgroup of GL(k). For example, an orientable manifold
M™ have an oriented atlas, so the cocycle gos of TM take values in G = GL*(n), and it is therefore
a GL*(n)-bundle. Further more, the tangent bundle of a (oriented) Riemannian manifold has a
structure group O(n) (or SO(n)).

We start by defining a connection on a G-bundle E from the viewpoint of parallel transport. This
is to set a “standard” way to transport a vector from one point to another, and define connections
to detect how much a transportation differs from the standard one.

Definition 4.1.1. Let p: E — X be a G-bundle. A parallel transport T on E is an association for
each path c: [0,1] = X an isomorphism in G

Te : Beo) = Eeq1)s
such that Tewer = Ten 0 Tor, where ¢ x ¢ is the join of the two paths.

For example, for an O(n)-bundle, the parallel transport preserves metric , that is
(TC(U), TC(w)) = (Ua w)'

For a path ¢ that starts at = € X, given an element e € E,, 7 lift the path to a section 7, , (e)
of E defined on c¢. We call this section 7-parallel. Now given a random section o : X — E and a
tangent vector w € T, X, we can measure the infinitesimal deviation of o from being parallel.

(Vuo)(@) = 2730, (o))

The is called a covariant derivative of o in the direction of w, which produces a vector in E,. If
V is a vector field, Vyo € T'(E) is defined in a natural way. The covariant derivative is therefore a

map
V : I(TX) x [(E) — I'(E).

Since o is parallel on a path c¢ if and only if V $c0= 0, a covariant derivative determines the parallel
transport on E.

Definition 4.1.2. A covariant derivative is a map V : T'(TX) x I'(E) — I'(E) such that
1. V is R-bilinear
2. Vyyo = fVyo
3. Vv(fo)=df(V) o+ f-Vyo.
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A covariant derivative is equivalent to a map
dy :I'(E) = TI'(E®T*X)
called a connection on E, satisfying the Leibnitz property
dv(f-0)=f dv(o) +o®df.

This property implies that d' — d” is C°°(X) linear for any pair of connections d' and d”’, so
A=4d —d" e T'(End(E) ® T*X). Notice that A is in fact a 1-form whose values are endomor-
phisms of the fibers of E. When E is a G-bundle, the endomorphisms acts by the Lie algebra, which
means A € I'(g(E) @ T*X). In general, we denote the space of differential k-forms that take value
in vector bundle E by Q*(X, E). The concepts of parallel transport, covariant derivative, connection
and connection 1-form are often interchangeable, and are usually just called connection.

To define the curvature of a connection V, first extend dy to
d% : QF(X, B) — Q*(X,E)

by the Leibnitz property
dy(c®a) =dy(c) Aa+ o @ da,

then it is easy to show dy o dy is C°°(X) linear, which implies

Fg :=dy o dY € Q%(X,End(E)),
It is called the curvature 2-form of V. Again, Fy € Q%(X, g(E)) for a G-bundle.
Definition 4.1.3. A flat connection is a connection with zero curvature form.

For a trivial bundle X x R¥, we can define a flat connection by

daac(o) = (doy, -+ - , doy,).

4.2 Some basic concepts in gauge theory

We introduce some basic concepts we will need in the future.

Definition 4.2.1. A fiber bundle = : P — X is called a principal G-bundle, where G is a Lie group
called the structure group of P, if its fibers are G and

1. There is a smooth fiber-preserving action r : P x G — P such that
G— P
gr—re(p)=p-g
is a bijection for any x € X, p € P.
2. There is an atlas {U,, ¢o} of P such that

$a(p-9) = ¢a(p) - g
for any o, with ¢.(p) - g defined in the obvious way.

To define a connection on principal bundle P, we can take the analogous approach by defining
a parallel transport. The “differential form” version of connections is not obvious and will only be
stated. We denote the set of all k-forms on X with values in a vector space W by Q¥ (X, W). These
forms can be seen as taking value on the trivial bundle W x X, that is Q*(X, W) = QF(X, W x X).

Definition 4.2.2. A connection 1-form or a gauge field on a principal G-bundle is an element A in
QY(X, g), where g is the Lie algebra of G, satisfying
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1. rgA = Ady-1 oA where 1y is the pullback of differential form.

2. For every V € g and the associated fundamental vector field V on P, there is A(I~/) =V.

The fundamental vector field associated to V' € g describes infinitesimal behaviour of the G-action
on P, defined by
~ d
Vo= —

5| (rexp(tV)).

t=0

We define the curvature 2-form by
Fy=dA+ %[A/\A]

where

1
(fAg(Viyeee Vi) = T Z sgn(0) [f(Vayr s Vok))s 9(Vak+1) -+ 1 Vark))]-

A connection is called flat when if its curvature form vanish.

Definition 4.2.3. A gauge transformation f of principal bundle P is a bundle automorphism, that
is, it preserves the fibers and f(p-g) = f(p)-g for allp € P and g € G. The gauge group G(P) is
the group of all gauge transformations of P.

Gauge group acts on the space A of all connections by the rule g*A = g~ 'dg + g~ 1 Ag. We are
interested in the quotient space B = A /G. To make it a smooth Banach manifold, take its subset of
the orbits of all irreducible connections, which are the connections whose stabilisers are exactly the
center of G. This manifold is denoted by B*.

For another basic definition, we define the Hodge star operator on an oriented Riemannian mani-
fold X™. A Riemannian metric induces a metric for covectors which and can be generalize to k-form
by Gram determinant

(a1 A ANag,Br A+ A ,Bk) = det((ai, ﬁj)).;j.
The Hodge star operator * : Q¥(X) — Q™~*(X) is defined by the relation

aAxB = {a,p) - volx,

where voly is a fixed volume form on X. It can be proved that **> = (—1)F(4=*). This definition can
actually be generalized to vector bundle valued forms Q¥ (X, W)

When X is 4-dimensional, Hodge operator is a map from Q2(X, W) to itself, and *? = id. This
splits Q2(X, W) = Q2 (X, W) & Q% (X, W) into its eigenspaces with eigenvalues £1. These subspaces
are respectively the spaces of self-dual (SD) and anti-self-dual (ASD) forms.

Definition 4.2.4. Let A be a connection on a principal bundle 7 : P — X, where X an oriented
Riemannian 4-manifold. A is called an instanton or an ASD connection if

Fy+xFy =0.

Notice that all flat connections are instantons. The set of all instanton on P is invariant under
gauge group G, we can thus talk about its moduli space M and M* = M N B*. Donaldson showed
that the topology of the moduli space of instantons depends only on the topological information of
M, which inspired the development of Instanton Floer homology.

4.3 Instanton Floer homology
Let ¥ be a homology 3-sphere with a suitable Riemannian metric, and F = 3 x SU(2) be a trivial
SU (2)-bundle. Define the Chern-Simons functional ¢s : B*(E) - R /Z

2
alNda+ —aAala).

1
cs(e) = 2 z:tr( 3
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The critical points of this functional are those irreducible flat connections, which can be given
Zg valued indices p. The chain complex IC, is freely generated by these critical points and has a
Zg-grading. Again, to define the differential, we want to count the flow lines (moduli space) from one
critical to another. In order to do this, pull back E to a cylinder R x¥ and obtain another SU(2)-
bundle E’. We are interested in instantons on £’ that limits to two different flat connections at minus
and plus infinity respectively. In a sense, a moduli space of such instantons connects critical points
of ¢s. The moduli space connecting o and # is denoted by M(a, ). It was proved that M(a, 3) is
inside B*, implying that the construction is again a Morse homology on a Banach manifold.

Careful analysis on the moduli spaces shows that

dim M(a, B) = p(a) — p(B) mod 8

Quotient out the R-action on M(a, 3) defined by A(t) — A(t+T), T € R, we get a compact manifold
M. The differential is then given by

da= > #Ml(a,B).

w(B)y=p(a)—1

(IC.,d) is a (circular) chain complex. The homology of this complex is called instanton Floer ho-
mology. It depends only on the diffeomorphism type of ¥, and is denoted by I.(X)

Given a pair of homology 3-sphere (£, ¥2) and a smooth compact oriented cobordism W such
that OW = —X; U By, view W as an open manifold with two tubular neighbourhoods, there is a
homomorphism W, : IC.(X,) — IC.(X2) defined by

W(a) = > # My (o, B),

u(B)=p(a)+3(br—b3 ) (W)

with Mw (a,8) the moduli space of finite Yan-Mills action connecting o and 8. W* is a chain
homomorphism whose induced map W, : I.(X;) — I.(X2) only depends on the cobordism W. We in
fact created a TQFT with instanton Floer homology.

4.4 Atiyah-Floer conjecture

There seem to be a connection instanton Floer homology and Lagrangian Floer homology which
would became a key inspiration for Heegaard Floer homology. Before presenting the connection, we
need to define an object called SU(2)-character variety. A group is called finitely presented if it is
generated by finitely many elements and relations.

Definition 4.4.1. The SU(2)-representation space of a finitely presented group 7 is the space R(x) :=
Hom(r, SU(2)) with compact open topology, where © is endowed with discrete topology.

SU(2) acts on R(x) by conjugation, and the quotient R(x) := R(w)/SU(2) is a real compact
algebraic variety called the SU(2)-character variety of w.

SU(2) can be viewed as a unit sphere in R*, and R(r) can be viewed as an algebraic variety
by representing each generator by a unit vector. The relations on 7 will then define a polynomial
equation for these vectors. We use R(X) to denote the SU(2)-character variety of 7 (X ), where X is
a compact manifold of dimension less than or equal to 3. m(X) is always finitely presented since X
is homeomorphic to a finite simplicial complex. There is a canonical symplectic structure on R(X).

SU(2)-character variety played an important part in the development of instanton Floer homology.
Atiyah-Floer conjecture asserts that, when splitting a homology sphere Y “properly” into U UV, the
Lagrangian Floer homology HF(R(U), R(V)) will coincide with the instanton Floer homology I(Y).
We present the simplified version of this conjecture.

Conjecture 4.4.2. (Atiyah-Floer, simplified) Given a Heegaard splitting of a homology sphere Y =
UUYV, the two Lagrangian submanifolds R(U) and R(V) in R(Y) induces a Lagrangian Floer ho-
mology isomorphic to the instanton homology of Y, that is

HE.(R(U),R(V)) = L(Y).

16



We will define Heegaard splitting in the next section.

In 1990s, Seiberg—Witten monopole equations became a new popular object in studying 4-manifolds.
The moduli spaces of monopole, the solutions of Seiberg~Witten equations, can also reflex topological
information of manifolds. Feehan and Leness proved that monopole equations contain the same in-
formation as the instanton equations. A (3 + 1)-dimensional TQFT corresponding to instanton Floer
homology was then constructed, called the monopole Floer homology. Inspired by the Atiyah-Floer
conjecture, there should be an instance of Lagrangian Floer homology that coincides with monopole
Floer homology. It turned out that there is indeed a homology theory very similar to Lagrangian
Floer homology that coincides with it, called Heegaard Floer homology.

5 Heegaard Floer homology

In this section, we outline the construction of hat version of Heegaard Floer complex 5?‘(’}{) from a
given pointed Heegaard diagram H = (3, o, 3, z) and a complex structure on X. Ozsvath and Szabd
(14] followed the framework of Lagrangian Floer homology by splitting a 3-manifold and produces a

new space with two submanifolds within. 5?‘(7{) will be freely generated by their intersection points
and the differential is defined by directly counting holomorphic disks between the two manifolds.

More about Heegaard Floer homology can be found on [6]. Throughout this section, ¥ denotes a
closed and oriented 3-manifold.

5.1 Heegaard diagrams
We first define Heegaard diagrams for given 3 manifold. Detailed proofs can be found on [18].
Definition 5.1.1. A Heegaard splitting of Y is a decomposition

Y=UU;V,

where U and V are handlebodies of genus g and f : OU — 8V is a diffeomorphism, which can also
be seen as an automorphism of the surface ¥4 of genus g.

A Heegaard splitting used data of lower dimension to describe a 3-manifold. For example, S3 can
be split into two balls with f = id. For another splitting of S$3, consider two solid tori glued in the

way shown below.

[
(2
AN

Figure 2: [18] Genus 1 Heegaard splitting of 5.

Here we see S3 as R®* U{oco}. D and D’ are section of one of the solid torus. Each arc that connect
D and D’ represents a section of the handle of another torus.

The good news is, every closed oriented 3-manifold admits a Heegaard splitting. To prove this,
choose a triangulation for the manifold. The normal neighbourhood of its 1-dimensional skeleton and
its complement will form a Heegaard splitting. We distinguish Heegaard splittings up to homeomor-
phism.

Definition 5.1.2. Two Heegaard splittingY = UU; V =U'Uy V' are called homeomorphic if there
exists a automorphism of Y that takes U to U’ and V to V'
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Another way to understand Heegaard splitting is to imagine gluing two handlebodies U,V to a
surface X, one glued from “outside” and another one from “inside”. We attach a set of circles to
each handle of U and V. To be precise, an attaching circle is a circle in ¥ that bound a disk in the
handlebody. We then map these attaching circles to ¥ through the gluing, we now have a good way
to represent a Heegaard splitting.

Definition 5.1.3. A Heegaard diagram compatible with Y = U Us V is a triple H = (X,, o, 3) where

E=0U =09V and a = {1, - ,ay} and B = {B1,--- ,B,} are the attaching circles for U and V'
that are mapped into X.

Figure 3 shows the Heegaard diagram for the Heegaard splitting in Figure 2.

Figure 3: Heegaard diagram for §°.

A Heegaard diagram completely determines Y, so we also say H is a Heegaard diagram for Y.
However, Y can have different Heegaard diagrams. We are interested in the operations on A that
do not change the space it represents, which are called Heegaard moves. They consist of isotopies,
handleslides, stabilizations and destabilizations. The first move, isotopic, is done by simply moving
around the attaching circles in a smooth manner. Handlesliding is to connect one attaching circle to
a parallel copy of another one, shown in Figure 4. Stabilizations add extra handles to both U and V
and glue them in a trivial way, as shown in Figure 5, and destabilizations reverse the process.

Figure 4: [9] Handlesliding.

p B1

)

Figure 5: [9] Stabilization.

2

Theorem 5.1.4. Every two Heegaard diagrams represent homeomorphic Heegaard splitting after
applying finitely many Heegaard moves.

A variation of Heegaard diagram is used to represent knots in 3-manifolds. We focus on knots in
S3 for simplicity.
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Definition 5.1.5. A doubly-pointed Heegaard diagram for a knot K C S% is a tuple (2, @, B,w, )
such that w,z € £ — aUB and (X, o, B) is a Heegaard diagram for S®, with which we are able to
construct K by the following procedure.

Find a arc in ¥ connecting w and z that does not intersect with o, and push it slightly into U.

Then find another similar arc that does not intersect with 3, and push it slightly into V. The union
of the two arcs will be a knot in S°.

Figure 6: [7] A doubly-pointed Heegaard diagram of trefoil.

Every knot in S admits a doubly-pointed Heegaard diagram. Figure 7 gives a way to generate a
doubly-pointed Heegaard diagram from a given knot.

Figure 7: [9] Generating a doubly-pointed Heegaard diagram.

There are similarly pointed Heegaard diagrams with only one basepoint on %, which will be used
when constructing Heegaard Floer homology. When applying Heegaard moves on pointed or double-
pointed diagrams, we do not want o and 3 to touch the basepoints. Theorem 5.1.4 still holds in
either cases fortunately.

5.2 Symmetric products

We now want to define and study our ambient space in the construction of Heegaard Floer homology.
We will start from a pointed Heegaard diagram H = (24, o, B, z), where z € ¥ is a basepoint outside
of &N B, and consider the symmetric product Sym?(X). The basepoint is essential. In fact, without
the basepoint, the homology constructed will simply be the ordinary homology of V.

Definition 5.2.1. Let M be a manifold, define its k-symmetric product to be

k
Sym*(M) = (H M) /S,
where Sy acts on the space by permutations.

Symk(M ) can be seen as the space of all unordered k-tuples of points of M. It is not necessarily a
manifold since Sy, does not act freely in general. However, the ambient space Sym?(X,) we are going
to use is indeed a manifold.
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Proposition 5.2.2. Let £, be an oriented surface of genus g, then Sym® (X) is a 2k-dimensional
manifold.

Proof. Choose any point z = (wy,-- ,wi, Wy, -+ ,wa,ws,---) in Sym*(2), where all w; are
distinet points in ¥ appear /; times in z. Take a sufficient small neighbourhood of z so that the
corresponding neighbourhoods for w; do not intersect with each other. This neighbourhood will then
look like

Sym!! (R?) x Sym'2(R?) x - - .

Now it suffices to show Sym'(R?) ~ Sym!(C) is a manifold. In fact, Sym’ (C) ~ C'. To construct the
diffeomorphism ® : SymI(C) — C!, see C' as the space of monic polynomials with complex coefficients
with degrees < [, and the desired diffeomorphism will be

@;{zl,---,z;}HH(Z—Za‘)

&1 : f+— roots of f with multiplicity.
O

The fact that Sym’(C) ~ C' also implies that we can pass a complex structure from X to Sym?(T).
However, the fact that ¥ is a symplectic manifold requires some works.

Proposition 5.2.3. Sym*(X) is a symplectic manifold.

We will not prove this proposition. The idea is to consider the thick diagonal
A ={{z1, -, 2} | 2; = z; for some i # j}.

Sym*(Z) — A is a part of the product [1Z%, so the product form of a symplectic form on ¥, which
must exist, would become a symplectic form on Sym*(X) — A. It is proved that this form can be
extended to A.

Following the idea of Lagrangian Floer homology, we focus on two subspaces in the space Sym?(%).
Given a pointed Heegaar diagram H = (X, o, 3, z), define T, to be the image of a in Sym?(%), and
T4 be that of B. Since the attaching circles of the same handlebody do not intersect with each other,
To and Ty are in fact tori in [] %, and are both g-dimensional manifolds. By making a and 3 to
intersect transversely in ¥, T, and Tg will intersect transversely in Sym?(%). In this case, since the
two tori are of half the dimension of Sym?(X), they intersect at finitely many points. The Heegaard
Floer complex Z’qﬁ‘(?{) is then freely generated by T, NTg. Since Sym?(X) is symplectic, we might
expect a construction completely analogous to Lagrangian Floer homology, but it turns out that T,
and Tp are not Lagrangian. In this case, a different procedure is required.

We need a lemma before heading on to the construction.

Lemma 5.2.4.
Hy(Sym®(Z) H,(5)

Hl(Tﬂ) ®H1(Tﬁ) > [al]a"' ’[agla[ﬁ1]>"' ;[ﬁg

Proof. The last isomorphism is a direct result of Mayer-Vietoris sequence, so the only problem is
to prove H;(Sym?(X)) ~ H;(X). Fix a basepoint z € ¥, set i : £ — Sym?(X) defined by

] =~ Hi(Y).

irz— {z,-- 2,2}

This induces a isomorphism i, on the first homology. For the inverse j., consider a path  in Sym? ()
that represent an element [y] € H;(Sym?(X)), move it by a homotopy so that it does not touch the
thick diagonal A and still represent the same element. In this way, it becomes a path in [1Z and
therefore represents a collection of paths in ¥. This collection of paths will be the image of [y] under
j w0 D
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5.3 The outline of the construction

We will state without proving the construction of hat version of Heegaard Floer homology for H =
(34,0, B, 2) where g > 2, as construction will be more difficult when g = 2 and impossible when
g < 2. We will give ¥ a suitable complex structure and pass it to Sym?(X), then count the moduli
space of holomorphic representatives ma(z,y) defined as followed.

Definition 5.3.1. Let z,y € T, NTg. A Whitney disk connecting x and y is a continuous map
¢: D — Sym?(X)

with qb(—z'). =z and ¢(i) =y, and the two sides of the dick are mapped to T, and Tg respectively,
as shown in Figure 8. Denote the set of homotopy classes of Whitney disks connecting x and y by
2 (.'IJ, y) .

Figure 8: (7] A Whitney disk from z to y.

Let M(¢) denote the moduli space of holomorphic representatives of ¢ € ma(z,y). For each
¢ € ma(z,y) we can associate a Maslov index p(@), which will be exactly the dimension of M(9p)
under suitable complex structures. M(¢) also admits an R-action given by the 1-parameter family
of automorphisms of disk which fix %i. Let M(¢) = M(¢)/R. When pu(¢) = 1, it will be a compact
oriented zero dimensional manifold under suitable complex structures.

Let CF(H) = Z(T,NTp), to define a grading on CF(H), we need two more functions.

Definition 5.3.2. Let 2,y € ToNTs. Define n, : ma(zx,y) — Z by sending ¢ to its algebraic
intersection number with V, := {z} x Sym?”}(Z).

This is well-defined since z is outside of o and 3.

Definition 5.3.3. Let z,y € To NTg. Choose a pair of paths a : [0,1] = Tq, b: [0,1] = Tp from x
toy, then a—b is a loop in Sym?(). Let €(z,y) denote the image of [a—b] in Hi(Y') under the map
in Lemma 5.2.4. Tt is a well defined map independent of the choice of a and b. ma(x,y) is non-empty
if and only if e(z,y) = 0.

We then define a relative grading on 5?‘(7{) by
gr(z) — gr(y) = () — 2n2(4),

where ¢ € ma(x,y). This however, is well defined only when e(z,y) = 0, so we need to partition
51?'(7-[) into some classes where we are able to grade elements from the same class. A natural way to
do this is to use the relation ¢(z,y) = 0. In reality, we use a more refined partition given by a map
s, : ToNTz — Spin®(Y’), where each class in CF(H) is the preimage of a Spin® structure s of Y,
denoted by CF(H,s). We can now define the differential 0 : CF(H,s) - CF(H,s) by

or = Z Z #//\\4(@ Y.

YyETa NTp peEm2(2,y)
w(#)=1, nz(¢)=0

Intuitively, it counts all the holomorphic disks representing those ¢ which do not intersect V. (al-
gebraically) and only have finitely many holomorphic representatives. Since e(z,y) = 0 for every
y ¢ CF(H,s), there is ma(z,y) = @, and thus dz € 6’?’(?{,5). Analysis on the moduli space shows
that (6‘?’(7—[,5), d) is a chain complex.
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Theorem 5.3.4. Fiz a Spin® structure on Y. Given two pointed Heegaard diagrams H,H', there is
HF(H,s) ~ HF(H',s)

This was proved by showing Heegaard moves produce chain homotopy equivalent complexes and
then using Theorem 5.1.4. It make sense now to write HF(Y,s) for HF(H,s). The Heegaard Floer
homology of Y is defined by

HF(Y)= (P HF(,s)
sE€Spin(Y)

Theorem 5.3.5 (Ozsvith, Szabd). I?-F'(Y) is a invariant of 3-manifold Y.

With great efforts, the analogue to the Atiyah-Floer conjecture was proved by Colin, Ghiggini,
Honda, Kutluhan, Li, and Taubes.

Theorem 5.3.6. The monopole Floer homology and the corresponding Heegaard Floer homology are
womorphic for every closed, oriented 3-manifold.

6 Knot Floer homology

Knot Floer homology is an invariant of knots and links in three-manifolds and an important variants
of Heegaard Floer homology, developed independently by Ozsvath-Szabé and Rasmussen. In this
section, we will construct this homology and mention some of its properties.

6.1 Preliminaries in knot theory

We first have a quick review of some basic concepts in knot theory and introduce two classical
invariants for knots and links: Jones polynomial and Alexander polynomial. All notations here are
based on [10].

Definition 6.1.1. A oriented link L of m components is a subset of S® consisting of m piecewise
linear, simple oriented closed curves. A link of 1 component is called a knot. Two links are equiv-
alent if there is a orientation-preserving piecewise linear homeomorphism of S® that restricts to a
homeomorphism between the two links.

5% is often considered as R® U{oo}. A link can be projected to R%. By perturbing the link, we can
make sure the intersections in image of the projection are all transverse intersections of 2 curves. The
image together with the crossing information (see Figure 9) is called the link diagram of the given
link. A link diagram determines the link itself, and we say two diagrams are equivalent if the links
are equivalent. Equivalent diagrams are related by a finite sequence of Reidemeister moves shown in
Figure 10.

+1 \/\' X-l

Figure 9: [10] Two types of crossing.

o = = R~ 2%

Type | Type Il Type IT1
Figure 10: [10] Reidemeister moves.

Here is a useful tool in knot theory.
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Deﬁniti‘on 6.1.2. A Seifert surface for an oriented link L is a compact,connected and oriented
surface in S* with L being its oriented boundary.

Proposition 6.1.3. Every oriented link has a Seifert surface.

Proof. Denote the diagram of L by D and resolve every crossing in the way shown in Figure
7?7, we get a diagram D which consists of finitely many oriented circles and is thus the boundary
of a collection of disks. To alter this collection of disks into a Seifert surface, Join them together
at each crossing with half-twisted strips. Apply connected sum if the surface we get is not connected.]

K= (=X

Figure 11: [10] Resolving crossings.

Definition 6.1.4. The genus of a knot K is defined by
9(K) = min{g(F) | F is a Seifert surface of K}.

We now head on to define Jones polynomial.

Definition 6.1.5. The Kauffman bracket (D) of a given link diagram D is a polynomial in Z[A7Y A
characterised by

1. (O)=1
2. (DUQ) = (-A47% - 4?)(D)

3. (X)=A40Q +A7(X)

Here () denotes an unknot, a curve that bounds a disk in $3. Kauffman bracket is invariant under
the second and third type of Reidemeister moves. However, when performing an first type move, an
extra factor —AT3 will appears, where the sign depends on the orientation. To make it an invariant
of links, denote w(D) the sum of the signs (see Figure 9) of the crossings in D, then

Proposition 6.1.6. (—A)~3*(P)(D) is an invariant of oriented links.
The proof is done by direct calculation.

Definition 6.1.7. Given an oriented link L, its Jones polynomial is defined by

V() = (D),

By induction on number of crossings in the diagram, it is easy to show V(L) € Z[t‘%,t%].

Alexander polynomial on the other hands is much harder to construct. To sketch the construction,
remove a regular neighbourhood of the link L from 53 to get a new manifold X, then remove a regular
neighbourhood of the Seifert surface F' of L from X, getting another manifold Y. There are two copies
of F in the boundary of Y, denoted by Fy and F_. Now take countable family of copies of Y, denoted
by {Yi}, each with a homeomorphism h; : Y; = Y. Glue each h;F_ to hit1Fy, we form a space Xeo-
The process is illustrated in Figure 12.

There is a countable family of homeomorphism by “shifting”, generated by t : X — Xoo, tly, =
hit1h;t. (t) acts on the homology group Hi(Xo0;Z), and thus making H;(Xe;Z) an Zt~, t)-
module. The Alexander polynomial Az (t) is the smallest principal ideal of Z[t™1,t] that contains the
first elementary ideal of this module. Here the r-th elementary ideal is the ideal generated by all the
(m —r+ 1) x (m — 7 + 1) minors of the presentation matrix of Hy(Xeo;Z), defined as followed.
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K F, hF hF, hF.

h“‘f-‘* hj o:F-

Figure 12: Gluing copies of Y.

Definition 6.1.8. A finite representation of an R-module M is an exact sequence
F—FE—M-—70

where E, F are free R-modules. The matriz of the first homomorphism is called the representation
matriz of M.

Alexander polynomial is much harder to compute, but it gives an important lower bound for genus
of knots with the inequality deg A(L) < g(L).

6.2 Construction and properties

We will construct the hat version of knot Floer homology. It is a bi-graded abelian group HF K (K)
associated to an oriented knot K. Start from a doubly-pointed Heegaard diagram H(%9, ., B, w, 2)
of the given knot, the construction is almost completely analogous to Heegaar Floer homology.

Define Sym?(X), T, Tgs, w2(z,y) and M(¢p) the same way as in the last section. ﬁf{(%) is
again freely generated by the intersection points of T, NTs. In Heegaard Floer homology, a function
n. counting algebraic intersections is was used in order to define the differential. Here we will need
n. together with a similarly defined n,,. The differential in knot Floer homology is given by

dr= Y > #M(9) - y.

YETA NTy pema(z,y)
f-‘((b):ls Nz (¢)=nw(¢)=0

Here we have M(¢) = M(¢)/R and p the Maslov index. The homology of the chain complex
(éﬁ(ﬂ), 0) is the knot Floer homology, which is invariant of K denoted by HFK (H) or HFE (K).
Notice that we get EF’(S3) if the second basepoint w is dropped.

CFE(H) is equipped with 2 grading, induced by

M(z) — M(y) = u(¢) — 2ny ()
A(:E) = A(y) = nz(¢) — nuw(¢).

The two gradings are called Maslov and Alexander grading respectively. We denote M (z) = m,

A(x) = a. Notice that Maslov grading is exactly the same grading in 6‘?‘(’}{). The differential
satisfies o o
0:CFK,,(H,a) — CFK,,_1(H,a),

so the two grading descends to homology
HFR(H) = @ HFR n(#,a).

Theorem 6.2.1. Let K be an oriented knot.
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1. Knot Floer homology categorifies Alexander polynomial by graded Euler characteristic, that is

A(K) =Y (-1)"rank HF K, (K, a) - t*.

m,a
2. Knot Floer homology detects the genus of the knot
9(K) = max{a : HFK(K,a) # 0}.

The Alexander grading also gives rise a spectral sequence. All terms in this spectral sequence are
invariant of the knot K and it converges to Z.

Definition 6/2\2 Define 7(K) be the Alezander grading of the surviving copy of Z in the spectral
sequence of HF K (K)

Knot Floer homology is not the only homology theory that categorifies knot polynomial. Prior
to this, Khovanov find a homology theory called Khovanov homology that categorifies Jones polyno-
mial. The two homology theories share some common properties while being significantly different
in construction. Some of the connections can be explained by spectral sequences. For example,

Theorem 6.2.3. For any knot K in 83, there is a spectral sequence from reduced Khovanov homology
of K to §-graded knot Floer homology of the mirror image of K. The coefficient for both homology is
Q.

The theorem accounts for the so called property FK found on many knots (see [16] and [5]).

A Almost complex structures

We introduce some basic concepts related to almost complex structure here. More information can
be found on [12], [11] and [3].

Definition A.0.1. A (linear) complez structure on vector space V over R is an automorphism
J:V =V such that J? = —id.

Computing determinant on both side of J? = —id, we know immediately that only even dimen-
sional vector spaces can have a complex structure. A real vector space with a complex structure can
be seen as a complex vector space, with the scalar multiplication given by

(a + bi,v) — av + bJv.

Definition A.0.2. An almost complex structure J on a smooth manifold M is an automorphism of
its tangent bundle, such that J2 = —id. In other words, J, is a linear complez structure on Ty M for
every x € M. We call the pair (M, J) an almost complez manifold.

A bundle automorphism is a smooth map from bundle to itself that fixes the base space and
preserves the structure of each fiber. Only even dimensional manifolds can be endowed with an
almost complex structure.

Let (M,w) be a symplectic manifold, an almost complex structure J on M is called w-tame if
w(v, Ju) is positive for every v, and is called w-compatible if at the same time w(Jv, Jw) = w(v,w)
for every v and w, we also call the triple (w, J,g) to be compatible in this case. It is easy to show
that g(v,w) := w(v, Jw) is a Riemannian metric on M if and only if J is compatible with w.

The simplest example of an (almost) complex structure would be R?" with the standard basis
{z1,*** yTn,Y1-* ,Yn} and the symplectic form

w(zi,y;) = 8ijy (@i, ;) = w(vi ¥;) = 0.
Here Jy is given by the matrix
0 -I
T 200 )

It is easy to verity Jo is compatible with w. Jo is called the standard complex structure. In fact,
tangent spaces of an almost complex manifold are all isomorphic to (IR2", Jo).
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Proposition A.0.3. Let V be a 2n-dimensional vector space with a linear complex structure J.
There ezists a linear isomorphism ® : R®*™ — V such that J = ®Jyd~!.

Proof. Since there is a complex basis (v1,- - ,vy,) for V, there is also a real basis
(T)]_, JUl) trr,Un, J'Un)-

Set
B(p1,+ \Prsts e 5 n) = Y _(Pivi + 0 Jvi),

and we obtained the desired isomorphism. O

We now show that every symplectic manifold has at least one compatible almost complex structure.

Proposition A.0.4. For any symplectic manifold (M,w) with a Riemannian metric g, there is a
canonical almost complex structure J so that w and J are compatible.

Proof. We start by proving the proposition for symplectic vector spaces V. Since w and g are
non-degenerate, there is a unique isomorphism A : V' — V such that w(u,v) = g(Au,v), notice that
A is anti-self-adjoint. Perform polar decomposition to A so that A = P.J, where P is positive definite
and self-adjoint and J is orthogonal, that is, JJ* = id. This is done by setting P = (AA*)%. Using
the anti-self-adjointness of A, we can prove that it commutes with P, so it is easy to show J commutes
with A, and that

J=A P =—AP =P A=

So J is an almost complex structure on V. It is compatible to w since
w(Jv, Jw) = g(AJv, Jw) = g(Av, J*Jw) = w(v,w),
w(v, Jv) = g(Av, Jv) = g(J* Av,v) = g(Pv,v) > 0.
This is a canonical construction that depends smoothly on g and w, so we can find a suitable .J,,

for every x in a C'™ way, which gives a canonical compatible almost complex structure J on (M, w).
However, (w, J, g) might not be compatible. O

Gromov’s theory of .J-holomorphic curve played a great part in Floer’s original work on Arnold
conjecture. Before we define it, recall that a function f : C — C is holomorphic if and only if it
satisfies the Cauchy-Riemann equations

du  Ov
8z~ oy
ou v
dy o

We translate this condition to real vector spaces with complex structures. A smooth map f : (R?, j) —
(R?,J), where j = J = J,, is “holomorphic” if and only if

g_u_@ Qv 4 Bu

S ] d a Lo

d+Todfoj= (% % BT o) 0,
Ay ar By Oz

or equivalently,
df o j = Jodf.

This condition does not depend on local coordinate, thus can be easily generalized to almost
complex manifolds.

Definition A.0.5. A smooth map ¢ : M — N between two almost complex manifolds (M, j) and
(N, J) is called (J, J')-holomorphic if

dypoj=Jodrd
for every x € M.
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Another way to express the condition is to define the holomorphic and antiholomorphic derivatives
by

1 :
o;f = §(df— J o df o j)
= 1
05f = 5(df +Jodf o),
then a map is holomorphic if and only if 9;f = 0. Notice that 8; +d; = d. J-holomorphic curves

would be defined in an obvious way.

Definition A.0.6. A J-holomorphic curve on M is a (j, J)-holomorphic map from a Riemann surface
(2,5) to (M, J).

We can similarly define .J-holomorphics to be holomorphic maps from D to M. The study of
moduli space of J-holomorphic maps turned out to be crucial for dealing with technical problems
presented in the construction of many versions of Floer homology.
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