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Graphs of continuous but non-affine

functions are never self-similar

Jinghua Xi

(Department of Mathematics Thesis Advisor: Bochen Liu)

[ABSTRACT]: Bandt and Kravchenko [2] proved that if a self-similar set
spans R, then there is no tangent hyperplane at any point of the set. In partic-
ular, this indicates that a smooth planar curve is self-similar if and only if it is
a straight line. When restricting curves to graphs of continuous functions, we
can show that the graph of a continuous function is self-similar if and only if
the graph is a straight line, i.e., the underlying function is affine.

The proof can be summarized in the following three key steps:

Step 1: For any i € [k], the isometry O; associated with similitude S; belongs to

the group
cosf) sinf —cosf) —sinf
Hp = {[’ -1, (sin@ —cos@)’ (—sin@ cos9>}'

Step 2: The underlying function f of generator GG is proven to be Lipschitz con-

tinuous.

Step 3: f must be affine, i.c., there exist k, b € R such that

f(x) =kx +0.

[Key words]: self-similar sets, graphs of continuous functions, affine func-

tions.
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1. Introduction
A map S : R™ — R™ is said to be a (contracting) similitude (e.g., [4]) if S(z) =
rOx 4+ b, where r € (0,1), b € R™, and O is an orthogonal matrix. A compact set X' C R™

is self-similar if there are similitudes {S;}*_,, such that

K = JSi(K). (1.1)

The structure of a self-similar set becomes relatively well-understood when it satisfies
the open set condition (OSC) introduced by Hutchinson in [5]. Here, the OSC is satisfied if
there exists a nonempty open set V' C R™ such that | J{_, S;(V)) € V and S;(V) N S;(V) =
() for i # j. In this case, dimy K = s, where dimy; is the Hausdorff dimension and s is the
le r? = 1, with r; being the ratio of S;. Another characteristic of the

OSC can be found in [1] by Bandt and Graf.

unique solution of >

It 1s widely acknowledged that fractals are inherently non-smooth. Yet, there has been
limited exploration into geometric objects that exhibit both self-similarity and smoothness.
However, Bandt and colleagues have been pioneers in this field, achieving significant re-
sults. For instance, Bandt and Mubarak [3] established that any differentiable subcurve of
the classical Sierpinski carpet must be a line segment. It is worth pointing out that Bandt and
Kravchenko [2] demonstrated that a self-similar set spanning R™ cannot possess a tangent
hyperplane at any point within the set, a finding with broad applications. For example, it
suggests that a self-similar planar curve can only be a straight line if differentiable at some
point.

In the present study, we are concerned with a special class of curves: the graphs of

continuous functions, i.e.,
G={(z,y) eR*:y = f(x),x I},

where f is a continuous function on a compact interval /. Many continuous but nowhere
differentiable functions exhibit high “self-similarity” in their graphs. A notable example is
Takagi’s function (e.g., see [7]), as illustrated in Figure 1.1. However, because these func-
tions are not smooth, it’s hard to tell if they are self-similar by using existing results on

smooth self-similar sets given by Bandt and Kravchenko [2]. This complexity has spurred



our interest in exploring alternative approaches to address such questions.
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Figure 1.1: The graph of Takagi’s function

In this work, we are concerned with which geometric shapes can be realized as a self-
similar set. In particular, we propose the following problem for planar graphs associated with

one real variable continuous functions:
When is the planar graph of a continuous function self-similar?

Bandt and Kravchenko’s research reveals the absence of tangent spaces in self-similar curves
(see [2, Theorem 1]), suggesting the C'* regularity seems to be overly stringent for the graphs
of such functions.

In this article, we are aiming to give an affirmative and comprehensive answer to the

above question. To be more precise, our main result is stated as follows.

Theorem 1.1. Let I be a compact interval, f : I — R be a continuous function and G =

{(z, f(x)) : x € I}. Then the following two statements are equivalent:
* (G is a self-similar set;

* The underlying function f(x) = ax+b for some a,b € R. In other words, f is an affine

function on I.

It is worth remarking that due to the existence of continuous self-similar planar curves,
none of the hypotheses in Theorem 1.1 can be weakened. According to Theorem 1.1, graphs
of continuous functions that are non-affine are not self-similar. In particular, the graphs
of Weierstrass’s function, Takagi’s function, Cantor-Lebesgue’s function, etc., are not self-
similar.

The paper is organized as follows. In Section 2, we recall some notations and review

some preliminaries. In Section 3, we prove our main Theorem 1.1. In subsection 3.1, we



explain the strategy of the proof. The proof consists of three steps: occupy subsections 3.2,

3.3 and 3.4 respectively.

2. Notation and Preliminaries

For A is a subset of B, we denote by A° the complement of A in B, assuming B is
evident from the context. We use the convention that N := {1,2,3,...}, Ny := {0} UN,
Z the set of integers, and Q (resp. Q°) the set of all rational (resp. irrational) numbers.
For a compact interval I, the length of I is denoted by |I|. For each k& € N, define [k] :=
{1,...,k}. For each integer n € N, define

k" ={(x1,...,2) cx; € [K], i=1,...,n}.

For a continuous function f on a compact interval I, the graph of f, denoted as G, is
defined by
G={(z,f(x) eR*:z €I}

Let O(2) denote the orthogonal group of order 2, and SO(2) the special orthogonal
group of order 2.

Next, let us introduce some notations for self-similar sets on R?. We say a map S :
R? — R? is a (contracting) similitude if S(z) = rOx + b withr € (0,1),b € R? and
O € O(2). For a planar self-similar graph, (1.1) reduces to

where S;(v) := ;0,0 + b;. Moreover, forn € Nand a = (iy,...,14,) € [k]", put

In addition, denote by S := {(z,y) € R? : 2% + y? = 1} the unit circle centred at the
origin, endowed with the circle metric. Denote by A and S the points (0, 1) and (0, —1) on
S1, respectively. We say each connected open subset in S* an arc.

By a well-known result on the minimality for irrational rotation on S! (see e.g., [6,

Theorem 5.8]), we immediately have



Lemma 2.1. Suppose J is an arc in S* and % € Q°, then

o ) cosf sinf
Upé(]) = S°, where py = . (2.1)
i=0 sinf —cosf

3. Proof of Theorem 1.1
3.1. Strategy of the Proof

Let’s briefly outline the strategy of the proof of Theorem 1.1. The principal obstacle
is addressing the function’s lack of differentiability. Our argument steers clear of methods
reliant on curvature or other differentiable mechanisms.

Our proof can be summarized in the following three key steps:

Step 1: We demonstrate that the isometry O; associated with similitude S; for any i € [k] is one

of the elements in the group

10 -1 0 cosf sinf —cosf —sinf
H@ = { ) ) . ) .
0 1 0 -1 sinf —cosf —sinf  cos6

Step 2: We show that the underlying function f of GG is Lipschitz continuous.
Step 3: We prove that f must be affine, i.e., f(z) = kz + b for some k, b € R.

The proof of Theorem 1.1 is divided into three subsections (Subsections 3.2, 3.3, and
3.4), each subsection corresponds to the steps outlined above. The complete proof of Theo-
rem 1.1 is provided at the end of Subsection 3.4. Without loss of generality, we reduce the

hypothesis of Theorem 1.1 to the interval [0, 1].

3.2. Possible Isometries for Similitudes

In this subsection, we systematically analyze the permissible isometries in the iterated
function system generating a self-similar graph G.

First, consider similitudes with rotational isometries. By constructing an auxiliary func-
tion ® that maps points on G to directional vectors relative to the unique fixed point p* of
the similitude .S, we translate the geometric action of the similitude S into a dynamical sys-
tem on S! under rotation. Invariance properties of Im® impose strict constraints: irrational
rotations would densely cover S?, contradicting the exclusion of polar points A/, S; while

rational rotations generate forbidden directions via backward invariance, the contradiction in

4



the number of connected components forces py to be either identity or inversion (see Propo-
sition 3.1).

For similitudes involving reflections, observe that the compositions of two reflections
yield rotations. Apply Proposition 3.1 to composite similitudes restricts the angle between
any two reflection axes to 0 or 7, thereby enforcing all reflections to share a common axis
or to be mutually orthogonal. The synthesis of rotational and reflectional cases is unified in
Corollary 3.3, fully characterizing the isometric group admissible for self-similar graphs of

continuous functions.

Proposition 3.1. Let G be the graph of a continuous function f on [0,1], and S(x) =

cosf siné
rpe()+b be a strict contracting similitude wherer € (0,1),b € R?, and pp =
—sinf cosf
10 -1 0
with 0 € [0,27]. If S(G) C G, then py = or
0 1 0 -1
Since S is a (strict) contraction mapping from G to itself, it follows from the Banach
contraction principle, similitude S has a unique fixed point in G, which we denote by p*.
Next, define a function
p—p
.G\ {p} =S p— ="
lp =7
Given that G is the graph of a function, this ensures that the image of ® lies in the unit circle

S1, excluding the points A" and S, i.e.,
Im(®) C S\ {N,S}. (3.1)
Recall that the points N and S were given in Section 2. Moreover, by the definitions
of S and ® and the hypothesis that S(G) C G, we then have

_ S —p _ S)=S07) _pelo—p) o .
TS —pl TS =S p—p] O PEATE

o(S(p))

This means ®(S(p)) = pe(P(p)). It then yields that Im® is forward invariant under the

rotation py, i,e.,

po(Im®) C Im. (3.2)



Since G \ {p*} has at most two connected components, it is worth mentioning that the

continuity of ® implies that Im® also has at most two connected components.
Lemma 3.2. If G is not a straight line, then Im® contains an arc in S*.

Proof. We will prove Lemma 3.2 by contraposition. Suppose Im® doesn’t include any arc
in S'. We aim to demonstrate that G is a straight line.

Recall that Im® has at most two connected components; under our premise, each must
be a single point. We consider two cases:

Case 1: If Im® consists of a single point, then all directions from p* to any point in G
are constant, implying G is a straight line.

Case 2: If Im® consists of two points, these must be antipodal due to the invariance of
Im® under py. This implies all points in G are collinear, so (G is again a straight line.

Consequently, in either case, if Im® does not include any arc in S, it follows that G

must be a straight line, as we wanted.

With the aid of Lemma 3.2, we now proceed to the proof of Proposition 3.1.

Proof of Proposition 3.1. In fact, if G is already a straight line, then Proposition 3.1 trivially
holds. If not, we can further assume that the graph G of a continuous function is not a straight
line. Applying Lemma 3.2, then Im® must then contain an arc.

Choose such an arc J C Im® on S*. According to (3.2), we have pj(J) C Im® for any

1 € Np. Consequently,

n

U ph(J) C Im® forany n € N, (3.3)
i=0
and
U ri(J) € Imo. (3.4)
i=0

We now divide the remainder of the proof into two cases: when #/2r is irrational and
when /27 is rational.

Case 1: Suppose 0/27 € Q°. By Lemma 2.1, |J)-_, pi*(J) covers the entire circle S*.
Together with (3.4), this implies Im® = S*. However, this contradicts to the fact that N and
S are not in Im®. Hence, Case 1 is impossible.

Case 2: Now suppose /27 € Q. We can write §/27 = m/n for some m € Z,n € N,

with ged(m, n) = 1.



Forn > 3, denote by N; = p’ ,(N), S; = p'(S), and J; = pj(J) fori =0,...,n—1.
In this case, S* is partitioned into 2n segments by the 2n points Ny, ..., N;_1, S0, ..., Sp_1
if n 1s odd, and into n segments if n is even, with some points coinciding.

Regardless of n being odd or even, the intervals Jy, ..., J,,_; fall into n different seg-

ments, as illustrated in Figure 3.1.
“~ 8
& 8 / \
(0] (0] \ /
£3 /-The forward iterations of the arc 88

n=3 OThe backward iterations of ' " =4
8The backward iterations of S

Figure 3.1: The iterations of N, S and J on S*

Observe that the complement of Im® in S* is backward invariant under the rotation pyg,

1.e.,
p—o((Im®)°) C (ImP)°. (3.5)
Combining (3.1) with forward and backward invariance (3.2) and (3.5) imply that the
points N; and S;, fori = 0,...,n — 1, are not contained in Im®.

This fact together with (3.3) further implies that the number of connected components

of Im® exceeds two, which is obviously a contradiction. Therefore, we conclude that n < 2.
10
01

10 -1 0
When n = 2, we have § = mm, which means py = or
0 1 0 -1

When n = 1, we have § = 2m, which means py =

]

Corollary 3.3. Let G be the graph of continuous function f on [0, 1]. Suppose G is a self-

similar set with IFS {S;}¥_,. Then there exists a 0 € |0, 2r] such that for each similitude S;



in the IF'S of self-similar graph G, the associated isometric part

10 -1 0 cosf sind —cosf) —sind
Oi S H0 = { 5 5 )
01 0 -1 sinf —cos# —sinf  cosd
Proof. If O; € SO(2) for all i € [k], then the result follows immediately from Proposition
3.1.
Now suppose, without loss of generality, det O; = —1. For any other O; € O(2) \
SO(2), note that O10;, 0,0, € SO(2). We can apply Proposition 3.1 to the strictly contrac-

tive similitudes S; o .S; and S; o S; to obtain

10 -1 0
010;,0;,0, € { ) }
01 0 -1
If we write
cosf sinf cosf; sinb;
1= y Ui —
sinff —cos6 sinf; — cosb;
for some 6, 6, € [0, 27]. Then
cos(6 — 6, sin(6 — 6, cos(0; — 6 sin(@; — 0
0,0, — ( ) ( ) 0,0 = ( ) ( )
—sin(f — 6;) cos(f — 0;) —sin(6; — 0) cos(6; — 0)

Therefore, either 6; = 0 or |#; — | = 7. In both scenarios, we have O; € Hy for all i € [k].
]

3.3. Lipschitz Continuity

We prove the underlying function f is Lipschitz continuous when the isometric compo-
nents of the IFS lie in a finite subgroup Hy C O(2). Each self-similar copy of G is generated
by first applying an element in Hy to GG, followed by some contraction and translation. This
structure restricts the oscillation-to-length ratio % on the projected interval {/,} of any
copy S, (G) to at most two values: one for rotational isometry / and another for reflectional
one. If GG is not a straight line, then these ratios are bounded. To globalize this local reg-
ularity, we can cover arbitrary intervals [z, y| by projection intervals of self-similar copies

with lengths < |z — y|. A minimal cover argument, combined with the uniform ratio bound,



yields the Lipschitz condition.

Recall in the last section we denote by

10 -1 0 cosf sinf —cosf —sind
HG = { s ) )
0 1 0 -1 sinff —cosf —sinf cosf
Proposition 3.4. [f there exists a 0 € [0, 27| such that for each similitude S; in the IFS of
self-similar graph G, the associated isometric part O; € Hy then the underlying function f

is Lipschitz.

Proof. The key observation is that Hy forms a subgroup of O(2). Whence, it follows that
O, € Hyforall a € [k]",n € N.
Consider the height and width the image of G under O,,, O, (G). There are two cases:

10
O, €1 : },
0 1 0 -1

then the width and height of O, (G) are precisely 1 and w¢(][0, 1]) respectively. If
0. € { cosf sind | —cosf) —sinf N
sinf —cos0 —sinf cosf

then the width and height of O, (G) are a and b respectively for some a,b > 0. Since a = 0
implies G is already a straight line, we may further assume a > 0 by excluding the trivial
case where G is a straight line.

Let the interval I,, be the projection of S, on z-axis. Note that S, (G) C G is the graph
of f restricted on /,,. That is the width and height of S,,(G) are |1, | and w¢(/,) respectively.
Since S, (G) = r,04(G) + by, we have: If

10
Oa € { : 2
01 0
then |/, | and w¢(1,) are r, and r,w¢([0, 1]) respectively. If

cosf sind —cosf@ —sinf
Oq € { , I
sinf —cosf —sinf cosf

then |1, | and wy(I,,) are r,a and 7,0 respectively.

9



Consequently, we have

wf(]oz)
L]

< L = max{wy([0, 1]),2} (3.6)

forall o € [k]",n € N.

We aim to show that: For every ¢ > 0,

|f(z) — fy)| <4L|x -yl

for every x,y € [0, 1] with |x — y| = d. Since J, z, y are arbitrarily chosen, This directly
yields that f is a 4 L-Lipschitz function, and thus will complete the proof.
Since r1,...,7r, € (0,1), we have ry. == max{ry,...,r,} € (0,1). Thus, for each

d > 0, we can choose a ny := ng(d) € N with 70 - max{1,a} < J. This implies that for

max

any « € [k]|™, we have

|1,| < max{r,,roa} <rp% -max{l,a} <. (3.7)

max

The self-similarity of G indicates that

k

G=Jsi@) = |J s.6)

i=1 aclk]™o

Hence G is covered by {S,(R)}acikno. Consequently, the interval [0, 1] is covered by a
collection of compact intervals {1, }acpijno-
Due to the finiteness of the indices set [k|™°, we can select a finite indices subset A C

[k]™ that satisfies the following two conditions:

1. {I4}aen forms a cover for [z, y].

2. {I,}acn is minimal, in the sense that if any o € A is removed, then {I,, }aea\ oo} NO

longer forms a cover for [z, y|.

We arrange the set {I, },ca into an ordered sequence Iy, ..., I, based on the left end-
points, from left to right. According to Condition (2) in our construction, for every indices
J € [m — 2], the intervals I; and [; 5 are disjoint, i.e., I; N I; ;o = ). To see this, assume
for the sake of contradiction that there is an index jy in [m — 2] such that the intersection

I, N I, 42 1s non-empty. Given our ordering, this would suggest that [, is entirely con-

10



tained within the union of /;; and I, ». This implies that the set /1, ..., I,, excluding [;
would still provide a cover for the interval [z, y], contradicting Condition (2) as defined in
A.

Notice that the intervals ;, where j € [m]|\{1, m} and j is odd, are mutually disjoint

and their union is contained in [z, y]. Therefore,

Y. <yl =0

jelm\{1,m}
7 odd

Similarly, we also have

o<

jem\{1,m}
jeven

On the other hand, due to (3.7), |[1], |,»| < d. Hence the total length
> Il <46 (3.8)
j=1

Finally, we arbitrarily choose points z; € I; N I;;1,i € [m — 1]. Consider,

£(0) — S < 17) — S+ 3 1)~ Faa) + 1) ~ S
< wp(h) + 3 wpllier) + y(L)

m—2

= LIL|+ Y LIL| + L|L,| (by (3.6))
=1
< 45L. (by (3.8))
This proves that f is Lipschitz continuous. ]

3.4. Proof of Theorem 1.1
The aim of this subsection is to show that the underlying function of a self-similar graph
is affine.

To prove this, we demonstrate that any interval [a, b] within [0, 1] contains a subinter-

val [s, ] of comparable length to [a, b] satisfying the condition ZO=) — 7(1) — £(0) (see

t—s

Proposition 3.5). By repeatedly applying Proposition 3.5, we can construct a Cantor-like

11



subset within [a, b]. This construction, combined with the fact that f satisfies Lipschitz con-

tinuity (see Proposition 3.4), allows us to deduce that f is affine.

Proposition 3.5. Let G be the graph of a continuous function f on [0, 1]. If G is self-similar,
then there exists a constant ¢ € (0, 1/2) such that for any closed interval [a,b] C [0, 1], there

exists a closed subinterval [s, t| C [a, b] satisfying

Lcb—a)<t—s<i(b—a)

2. LO=IE) — (1) — £(0) := A

t—s

Proof. Let ry, == min{ry,...,rx} > 0, and define ¢ = % > 0. Fix an interval [a,b] C
0, 1]. By the self-similarity of G, for any integer n € N, there exists a € [k]" such that [,
contains the middle point 2. Let n* € N be the smallest integer for which |I,| < %52,
Case 1: O, € SO(2).
We claim the interval 1, := [s, t] satisfies both properties in the proposition.
Verification of Property (1):
Leta = (aq,...,a,) € [k]" and define o/ := (o, ..., ay-_1). By the minimality of

n*, we have
b—a
2

’Ia/‘ >
. Since |1,| = 7q,. - |1, it follows that

h—
|Ioc| > Tmin *© — 2_a > C(b — CL).
which establishes the first inequality. The second inequity holds by the construction of /,,.
Verification of Property (2):
0 -1 0

01) \o -1
Thus, S, maps 7 to either (ra + ba, 7o f(x) + by) OF (=702 + bo, =7 f(x) + by ). In both
6)), Sa(?)} equals the slope between {ﬁ, ?}

Let @ = (z, f(x)) € G forx € [0,1]. By Proposition3.1,0, € {

cases, the slope between {5, 7} = {Sa(
This confirms Property (2).

Case2: O, € O(2) \ SO(2).

If O, € O(2) \ SO(2), then there exists ¢ € [k] such that O,» € SO(2) where o' =
(a1, ..., e, 1) € [k]" L. We show that I, satisfies the required properties.

Verification of Property (1):

12



Verification of Property (2):
As O, € SO(2), the argument from Case 1 applies directly to /.
This completes the proof of Proposition 3.5. ]

Finally, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. *“ = : To show f is affine, it suffices to show that for any interval
[a,b] C [0,1], we have 0=/ — )

Given an arbitrary interval [a, b], we construct a Cantor-like subset of [a, b] inductively
in the following way.

For initial step, there exists a subinterval of [a, b], say [al, bl], satisfying two properties
in Proposition 3.5. We define C = [a, b]\ (a1, b1). This set is non-empty due to the first two
properties in Proposition 3.5.

Suppose we have defined C,. Notice there are 2" intervals in C,,. For stage n+1, we ap-
ply Proposition 3.5 on each of these 2" intervals, obtaining subintervals [a], b7], . . ., [ah., b%.] C

2"1
C,. We then define C,, 1 = C,\ U (a,b). This set is also non-empty by the first two
i=1

properties in Proposition 3.5.

-
? b
Us v% ------
O
L
A
- uz
ve
- 1 e
a
ut=a vZ ui V2 u? v2 u? vZ=b

Figure 3.2: Illustration of the set C

Each C), contains 2" intervals. We denote the right and left endpoints of the i-th inter-

13



val as u]' and v} respectively. Thus, the intervals in C,, can be sequentially represented as

[uf, vp], [ug, vy, ..., [uf., v5.], as depicted in Figure 3.37;

Next, we estimate the total length of C,,, |C,,| = > (v] — u}'). By invoking Property

(1) in Proposition 3.5, we deduce that |C,,1| < (1 — ¢)|C,,|. Combined this with the fact

that || < (1 — ¢)(b — a), it follows that
|Cn] < (1 =¢)"(b—a).
Meanwhile, by Proposition 3.4, there is a constant L, such that

|lf() — f(ul)| < Ljv} — u?|, foralln € Nji € [2"].

2

On the other hand, by Property (2) in Proposition 3.5, it follows that

fluly) — f(o]) = Aujyy — o), foralli € 2" —1].

Based on all the estimates, for every n € N, we have

|£(b) = f(a) = A(b = a)]

=3 ()~ f -+§j ui) = f(07)) = Alb = a)

2" —1

.
=D (f@p) — f +ZA ulyy — ) = A(b — a) (by (3.11))

<) = S+ b —a = [Col) = Ab - a)

<(L+[ADICa (by (3.10))
<L+ [ADA =) (b - a). (by (3.9))

Since ¢ = % > (0 and n is arbitrarily chosen, we conclude that f(b) — f(a) —

0 for any interval [a, b] C [0, 1]. Therefore, f is an affine function.

(X3

” : Conversely, suppose f is an affine function. Similitudes S;(v) =

27 2

14

(3.9)

(3.10)

(3.11)

AMb—a) =

Lo+(0, L)
and Sy(v) = v+ (3 Iy satisfies G = S1(G) U S5(G). Hence, G is self-similar.

2

]
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