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表示论视角下模空间的同调稳定性

文子杰

（数学系 指导教师：朱一飞）

[摘要]：在本读书报告中，我们系统地介绍模空间的同调稳定性问题，并
揭示其与表示论之间的深刻联系。首先，我们阐述模空间的基本理论框

架及其与常见数学概念的关联。进一步的，基于群 (上)同调理论及谱序

列的计算方法，我们通过跟随 Quillen的经典证明，对辫群情形给出完整

的同调稳定性证明。进一步的，当考虑具有紧性质的更一般的模空间 (如

流形M 的无序构型空间 Cn(M))时，Quillen提出的拓扑稳定性理论出现

局限。为此，我们引入表示稳定性，借助 FI-模范畴 (主要突出‘单射’和

‘有限’的代数结构的范畴)这一强大的工具，证明有序构型空间同调群

H∗(Fn(M);Q)和上同调群 H∗(Fn(M);Q)具有 FI-模结构。在此基础之上，

我们通过推导特征多项式存在性及维数多项式增长性等关键性质，最终

给出构型空间同调的表示稳定性定理。

[关键词]：同调稳定性； 表示论
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[ABSTRACT]: In this reading report, we systematically introduce the ho-

mological stability problem of moduli spaces revealing a profound connection

with representation theory. Firstly, we outline the basic theoretical framework

of moduli spaces and their relationship with common mathematical concepts.

Furthermore, based on the theory of group (co)homology and the computational

method of spectral sequences, we follow Quillen's classical proof to provide a

complete proof of homological stability for the case of braid groups. Further-

more, when considering more general moduli spaces with compact property

(such as the unorder configuration space Cn(M) of fixed n points on a man-

ifold M ), Quillen's topological stability theory encounters limitations. To ad-

dress this, we introduce representation stability and, with the powerful tool of

the FI-module category (a category focus on ‘injective’ and ‘finite’), prove that

the homology groups H∗(Fn(M);Q) and cohomology groups H∗(Fn(M);Q)

of ordered configuration spaces possess FI-module structures. On this basis,

by deriving key properties such as the existence of characteristic polynomials

and the growth of dimension polynomials, we ultimately characterize the rep-

resentation stability theorem for the homology of configuration spaces.

[Key words]: homological stability; representation theory
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1. Introduction
Moduli spaces are an important type of research object in mathematics such as algebraic

geometry, topology, and mathematical physics. What they contain is the parameterization

of geometric objects, that is, how to consider a family of geometric objects with the same

structure as a whole according to some primary rules. The homological stability of moduli

Spaces, that is, the asymptotic behavior of the homology groups of some specific moduli

space families with the change of indicators, is a key issue for studying their structures,

classifications, and connections with other branches of mathematics.

1.1 Background and motivation

At the end of the 20th century, mathematicians began to notice that the configuration

spaces of certain geometric objects exhibited the phenomenon of homological stability. In

the 1970s, Quillen took out the concept of “homological stability”[1]. Sooner, McDuff[2]

proved the homological stability of {Cn(M)}n and Segal gave explicit stable ranges[3].

Theorem 1 LetM be the interior of a compact connectedmanifold with nonempty boundary.

For each k ≥ 0 the maps (sn)∗ : Hk(Cn(M);Z) → Hk(Cn+1(M);Z) are isomorphisms for

n ≥ 2k.

And, Quillen provided a proof of homology stability in the manifold configuration

space. We called it “Quillen's argument”, as Quillen 's argument.

In 2012, Thomas Church published the research on “homological stability of manifold

configuration spaces”[4]. Specifically, for a closed manifold M, when the number of con-

figuration points tends to infinity, the homology group of its configuration space exhibits a

stable pattern.

In 2013, Church and Benson Farb formally proposed the concept of stability[5].

In 2014, Church, Ellenberg and Farb further studied the representation stability of alge-

braic varieties over finite fields[6].

In 2018, Galatius, Kupers and Randal-Williams proposed a new stability on the ho-

mology of linear groups and mapping groups, which was called “secondary homological
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stability”[7].

In 2024, Sierra and Wahl utilized the arc complex to reveal the homological stability of

the symplectic group[8].

1.2 Outline

In this reading report[9], I will present it in the following order:

1. Basic Notions and Tools: In this part, we will induce some tools, such as spectral se-

quence, to compute the cohomology and category to describe the patten of homological

stability and reprersentation stability.

2. Topological Homological Stability: In this part, we will describe the Quillen's argu-

ment and give out a brief proof.

3. Representation Stability: In this part, we find out the limitations of the homological

stability. Then, we will using the tools in representation theory to describe the repre-

sentation stability.
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2. Basic notions and tools
2.1 Moduli space

In mathematics, a very important question is how to classify. Or, how to use it to express

the equivalence and differences between mathematical objects.

Moduli spaces serve as geometric solutions to classification problems in mathematics,

providing a structured way to parameterize equivalence classes of objects such as Riemann

surfaces, vector bundles, and algebraic varieties.

These spaces arise naturally in algebraic geometry, differential geometry, and topology,

offering deep insights into both the objects being classified and the geometric structure of the

moduli space itself. By transforming abstract equivalences into geometric structures, they

offer deep insights into the objects being classified and their variations.

2.1.1 Some Examples of Moduli Spaces

Lines in the Plane without paralleling to the y-axis

These kinds of lines can be written as y = kx+b. Each line is one-to-one corresponding

to a unique binary array (k, b). Thus, the moduli space of line with finite slope on R is

{y = kx+ b|k, b ∈ R}

Lines in the Plane

The moduli space of lines passing through the origin in R2 is the real projective line

RP1, which is topologically a circle. Each line is represented by an angle θ ∈ [0, π), with the

endpoints 0 and π identified to reflect the continuity of lines. This space captures the idea of

continuous families of lines through maps from a parameter space X to RP1.

3



PL

PL

Elliptic Curves

An elliptic curve is a genus-1 Riemann surface with a marked point, often described as

the quotient C/Λ for a lattice Λ ⊂ C. The Teichmüller space T1,1, modeled by the upper

half-plane H, parametrizes marked elliptic curves via the modular parameter τ . The coarse

moduli spaceM1,1 = H/PSL2(Z) is isomorphic to C.

2.1.2 Applications and Connections

Number Theory

Modular forms, which are functions on moduli spaces like H/PSL2(Z), play a central

role in the Langlands program. This program connects number theory to harmonic analysis

and has led to significant breakthroughs, such as Wiles’ proof of Fermat’s Last Theorem

through the modularity of elliptic curves.

Characteristic Classes

Families of vector bundles over a spaceX induce cohomology classes (e.g., Euler class)

via pullback to moduli spaces. These invariants measure topological twisting in parameter-

ized families and provide tools for understanding the global structure of moduli spaces.

2.2 Braid group

The Braid group is a concept in mathematics. Compared with permutation groups, it

pays more attention to the process of permutation. It extends the concept of discrete sym-

metric operations to continuous “paths” and characterizes the path of permutation between

points.

More information on the relationship between braid group and moduli space will be

4



used in the rest of this article.

2.2.1 As the trace of permutation

To figure out the first definition of braid group, imagine hanging several strings verti-

cally, allowing them to crisscross through space without being cut or overlapping.

Definition 1 (First definition of (pure) braid group)

For fixed n points, let p1, . . . , pn be n distinct points in C. Let (f1, . . . , fn) be a n-tuple

of continuous functions,

fi : [0, 1] → C

such that

fi(0) = pi, fi(1) = pj for some j

and

{t|fi(t) = fj(t)} = ∅ for any i 6= j

under compounding action, these n-tuples form a group, called braid group, denoted as Bn.

Furthermore, if we require fi(1) = pi, then we get another group called pure braid

group, denoted as Pn, which is the action permutate n points and required n points fixed

after permutation.

In this way, an element of the braid group can be represented as the figure below.

2.2.2 As the fundamental group of a manifold

Because the story we want to make will be closely related to module space, we need

another definition, one that comes from module space.
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Definition 2 (ordered Configuration Spaces)

Let M be a topological space. The configuration space is

Fn(M) := {(p1, . . . , pn)|pi 6= pj if i 6= j} ⊂ Mn

For example,

• F0(M) is a singular point,

• F1(M) is the topological spaceM itself,

• F1(C) consists of two distinguish triangle.

Definition 3 (unordered Configuration Spaces)

Let M be a topological space. The configuration space is

Cn(M) := {{p1, . . . , pn}|pi 6= pj if i 6= j} ⊂ Mn/Sn

Or, more simply, Cn(M) = Fn(M)/Sn.

Definition 4 (Second definition of (pure) braid group)

π1(Cn(C)) called braid group. π1(Fn(C)) called pure braid group.

Actually, the two different definitions of (pure) braid group are equivalent, since the

loop on Cn(C) is one-to-one corresponding to one method to permutate n points.

2.3 Group homology and group cohomology

Imagine a topological space where the fundamental group captures information about

“loops” within the space, while the homology groups describe the dimensions and the quan-

tity of “holes” present in the space. As the group representation theory uses the characteristics

of a group mapping the properties of the group, group homology adopts the concept of treat-

ing abstract groups G as an “algebraic shadow of a space”, constructed in such a way that G

reflects a virtual “shape” which gives out its homology groups.
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Definition 5 (acts freely)

Say that G acts freely on a space X if the map G×X → X ×X , (g, x) 7→ (x, gx), is

a homeomorphism from G×X onto its image.

If we get such a topological space, we can consider the quotient space X/G. Through

covering space theory in algebraic topology, the fundamental group of the quotient satisfies

π1(X/G) ∼= G. In this way, we can consider the group G as an “algebraic shadow of a

space” as the foundamantal group of a algebraic topological space.

Definition 6 (the classifying space)

For a group G,

• The group homology of G with coefficients in an abelian group A is defined as:

H∗(G;A) := H∗(BG;A)

• The group cohomology of G with coefficients in an abelian group A is defined as:

H∗(G;A) := H∗(BG;A)

Here, EG is a contractible space on which G acts freely, and BG = EG/G is the

classifying space of G.

By this definition, BG is unique up to (weak) homotopy equivalence.

Furthermore, if G is a discrete group, then BG is precisely an Eilenberg-MacLane space

K(G, 1).

For example,

Consider the additive action of Z on R; the classifying space BZ is a circle.

Consider the action of Z2 on S∞ sending a point to its opposition; the classifying space

BZ2 is RP∞
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2.4 Spectral sequence

Spectral sequence is a tool to calculate some homology groups which is difficult to

calculate directly. The core idea is to transform high-dimensional or complex homology

calculations into a series of low-dimensional approximation problems by layer by layer de-

composition and recursion.

For a fix H∗ where H∗ is a graded R-module or a graded k-vector space or a graded

k-algebra or…

Consider the filtered:

H∗ ⊃ · · · ⊃ F nH∗ ⊃ F n+1H∗ ⊃ · · · ⊃ · · · ⊃ {0}

In actual calculations, it is always difficult for us to calculate the homology group. The

spectral sequence mainly separates the homology group differentials how the operator kills

things at each page. As we turn the pages from 1 to infity, we approach the relationship

between homology groups bit by bit.

A filtration ofH∗, say F ∗, can be collapsed into another graded vector apace called the

associated graded vector space and defined by Ep
0(H

∗) = F pH∗/F p+1H∗.

If H∗ is locally finite graded vector space, then we have H∗ ∼=
⊕∞

p=0 E
p
0(H

∗)

Ep,q
0 = F pHp+q/F p+1Hp+q

The index q is called the complementary degree

The index p is called the filtration.

Definition 7 (a sketch definition of spectral sequence)[10]

A (first quadrant, cohomological) spectral sequence is a sequence of differential bi-

graded vector spaces, that is, for r = 1, 2, 3, . . .,and for p and q ≥ 0,we have a vector space

Ep,q
r . Furthermore, each bi-graded vector space,E ,

r,is equipped with a linear mapping
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dr : E
,
r −→ E ,

r,which is a differential, dr ◦ dr = 0, of bidegree(r, 1− r),

dr : E
p,q
r −→ Ep+r,q−r+1

r .

Finally, for all r ≥ 1, E∗,∗
r+1

∼= H(E∗,∗
r , dr), that is,

Ep,q
r+1 =

ker dr : Ep,q
r → Ep+r,q−r+1

r

dr : E
p−r,q+r−1
r → Ep,q

r

2.4.1 Serre spectral sequence

There is a useful theorem called ’Serre spectral sequence theorem’

Theorem 2 Let F → X → B be a fibration with B path-connected. If π1(B) acts trivially

on H∗(F ;G), then there is a spectral sequence {Ep,q
r , dr} with:

1. dr : E
p,q
r → Ep−r,q+r−1

r and Ep,q
r+1 = ker dr/ Im dr at Ep,q

r .

2. Stable terms Ep,n−p
∞ isomorphic to the successive quotients F p

n/F
p−1
n in a filtration

0 ⊂ F n
0 ⊂ · · · ⊂ F n

n = Hn(X;G) of Hn(X;G).

3. Ep,q
2

∼= Hp(B;Hq(F ;G)).

2.5 Category

A category is a kind of algebra structure which only focus on the object itself and ho-

momorphism between objects.

Definition 8 (category)

Category is a langurage to describe the mathmatics and their relations. A category C

consists of the following parts:

• ObjectsOb(C) Some mathematic objects, such as sets, groups,R-modules or topology

space.

9



• homomorphismHomC(X,Y ) themapping between objects which preserve some struc-

ture.

• composition ◦：satisfying (f ◦ g) ◦ h = f ◦ (g ◦ h)；

• Identity idX ∈ HomC(X,X)：for any f : X → Y，we have f ◦ idX = f and

idY ◦ f = f。

For example, we give out some familiar category

• Sets: objects are sets, homomorphisms are mapping

• Gp: objects are groups, homomorphisms are group homomorphism

• Top: objects are topological space, homomorphisms are continuous functions.

In the following statements, we will use categories to represent some special patterns,

such as FI-module.

2.6 Simplex

In geometry and algebraic topology, the simplex serves as the fundamental building

block for constructing more complex geometric structures. It is intrinsically a convex set

generated by convex combinations of affinely independent points. Formally, given n +

1 affinely independent points v0, v1, . . . , vn in Rm-space (m ≥ n), the corresponding n-

dimensional simplex is defined as:

∆n =

{
n∑

i=0

λivi

∣∣∣∣λi ≥ 0,
n∑

i=0

λi = 1

}
,

.

For example:

• A 0-simplex is a point

• A 1-simplex forms a line segment

10



• A 2-simplex corresponds to a triangle

• A 3-simplex represents a tetrahedron

The combinatorial structure of a simplex is characterized through its faces–every k-

dimensional face (k ≤ n) is generated by any subset of k + 1 vertices from the original set.

This property endows simplices with a hierarchical recursive framework, establishing their

foundational role in simplicial complexes.

11



3. Topological homological stability
3.1 Calculation of the group cohomology of braid groups

Consider small n, we have

F1(C) ∼= C, F2(C) ∼= S1, F3(C) ∼= C× C \ {0} × C \ {0, 1}

.

When n is small, we can know what the manifolds corresponding to the braid group are,

so we can use our algebraic topological methods to calculate the cohomology groups.

The following are some calculation results on the homology group of braid groups in

small n.[11]
n\k 0 1 2 3 4 5
0 Z
1 Z
2 Z Z
3 Z Z
4 Z Z Z2

5 Z Z Z2

6 Z Z Z2 Z2 Z3

7 Z Z Z2 Z2 Z3

8 Z Z Z2 Z2 Z6 Z3

9 Z Z Z2 Z2 Z6 Z3

Therefore, around 1970, Arnol'd proposed the representational stability of braid groups.

Theorem 3 [11]

Let M be the interior of a compact connected manifold with nonempty boundary. For

each k ≥ 0, the induced map

(sn)∗ : Hk(Bn;Z) → Hk(Bn+1;Z)

is an isomorphism for n ≥ 2k.

3.2 Quillen's argument

Theorem 4 [12] Thm. Quillen's argument for homological stability

Let 0 → G1 → G2 → G3 → · · · → Gn → · · · be a sequence of discrete groups.

12



For each n, let Wn be a simplicial complex with a simplicial action of Gn with

1. Wn is
(
n−2
2

)
-connected.

2. ∀p > 0, Gn act transitively on the set of p-simplices.

3. ∀σp in Wn, we have {g ∈ Gn : g|σp = Idσp} := stab(σp) := {g ∈ Gn : gσp = σp}.

4. ∃h ∈ Gn s.t. h−1 stab(σp)h = Gn−p−1.

5. ∀ edge [v0, v1] in Wn, there exist g ∈ G s.t. gv0 = v1 and for all h ∈ G if h|[v0,v1] =

Id[v0,v1] then gh = hg.

Then, the sequence {Gn}n is homologically stable.

Specifically, Hk(Gn) → Hk(Gn+1) is an isomorphism for n ≤ 2k + 1 and a surjection

for n = 2k + 1.

Proof.

To connect that BGn−p to BGn for each n we obtain a homology spectral sequence by

usingWn ×Gn EGn to build an approximation to BGn from the spaces BGn−p for p > 0.

SinceWn is (n−2
2
)-connected, we have Hn(Wn ×Gn EGn) = 0 for n ≤ n−1

2
.

By Shapiro's lemma[13], we get a spectral sequence:

E1
p,q =

⊕
orbits

Hq(stab(σp),Z) = Hq(Gn−p−1,Z) ⇒ E∞
p,q = Hp+q(Wn ×Gn EGn)

Thus, we have E∞
p,q = 0 for p+ q ≤ n−1

2
.

Now, to finish the proof, we want to show that

d1 : E1
0,i = Hi(Gn) → E−1

−1,i = Hi(Gn+1)

is sur when n ≥ 2i and inj when n ≥ 2i+ 1.

Then, we prove by induction on i, case i = 0 is trivial.
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For the surjection of d1 : E1
0,i = Hi(Gn) → E−1

−1,i = Hi(Gn+1), we only need to check.

(1) E∞
−1,i = 0;

(2) E2
p,q = 0 for p+ q = i with q < i.

As E∞
p,q = 0 when p+ q ≤ n−1

2
and i− 1 ≤ n−1

2
when 2i ≤ n

when q < i, we claim that

E1
p,q = ⊕orbitsHq(St(σp),Z)

∼=→ ⊕orbitsHq(Gn+1,Z)

is an iso when p+ q ≤ i and is a sur when p+ q = i+ 1.

For a p-simplex σp, st(σp) is conjugate to Gn−p−1.

denote di as the boundary operator of σp and ch as the induced map by conjugate action.
Hq(St(σp),Z) Hq(St(diσp),Z) Hq(St(σp−1),Z)

Hq(Gn+1,Z) Hq(Gn+1,Z)

di ch

id

commute because ch acts as identity on Hq(Gn+1,Z). Thus, we get a map from the

q-line of E1-page to the chain complex ofWn+1/Gn+1. And this map is iso when p+ q ≤ i

and sur when p+ q = i+ 1.

Because of H∗(Wn+1/Gn+1) is trivial when ∗ < n− 1 by condition 2 and condition 5,

we have proved E2
p,q = 0 for p + q = i with q < i for i since i < n − 1 when 2i ≤ n and

i ≥ 1.

For the injection of d1 : E1
0,i = Hi(Gn) → E−1

−1,i = Hi(Gn+1), we can translate

the injection of d1 : E1
0,i = Hi(Gn) → E−1

−1,i = Hi(Gn+1) to three conditions on spectral

sequence when n > 2i+ 1.

(1) E∞
0,i = 0;

(2) E2
p,q = 0 for p+ q = i+ 1 with q < i;

(3) d1 : E1
1,i → E0,i is the 0-map.

For (1), we need i ≤ n−1
2

, which is equivalent to n ≥ 2i+ 1.

For (2), it is similar to (2) for surjection.

For (3), the boundary map is d1 = d11−d10 on each orbit σ1 with d1i = chi
◦ di for some

14



h0, h1 ∈ Gn+1. Never loss of generality, we can assume that h0 = id.

Furthermore, by condition 5, we can assume that h1 taking one vertex of σ1 to the other.

And, we have h1 commuting with every element in st(σ1) On the group level, we have
st(σ1) h1st(σ0)h

−1
1

st(σ1) st(σ0)

d1

ch0=id ch1

d0

Hence, we have d10 = d11 implies d1 = 0.

We finish the proof.

□

3.3 Examples

Now, we use Quillen's argument to prove the homology stability of the braid group.

To use the Quillen's argument, we need to construct a sequence of complexWn satisfy-

ing the condition of Quillen's argument.

Consider the construction given by Hatcher and Waul called arc complex.

Let D2 be the closed disk. Fix n points {v1, . . . , vn} in its interior and a distinguished

point ∗ on its boundary. Define the vertices of Wn as the isotopy class of D2 \ {v1, . . . , vn}

joining ∗ with one of the marked points vi. The vertices ofWn form a p-simplex if and only

if the corresponding isotopy classes can be described as arcs that do not intersect.

Hetcher and Waul prove the high connectedness ofWn.

Lemma 1 If S has at least one pure boundary, then F(S; ∆0,Λn) is contractible for all

n ≥ 1.

Proof. The general idea of the proof is to consider an arc with one end on ∂0S (this has a

point in the simplex).

Consider < I0, . . . , Ip > as one of the simplices, P =
∑

j tjIj as one of the points, and

consider the representation with the least intersection. Let θ =
∑

j ajtj where aj = |Ij ∩ I|

(thickness). Then prove that the entire simplicial complex can be deformed into < I >,

which is a star-shaped domain with I as the center point.

15



□

Actually, Bn givess out the action on S, that is said, Bn gives out a simplicial group

action on S.

Consider a fixed p-simplex and fixed a representation by describing the corresponding

isotopy classes as some arcs with points {pi1 , . . . , pir}. denote the arcs as fij : I → D2 with

fij(0) = ∗, fij(x) 6∈ ∂D2 for i ∈ (0, 1] and fij(1) = pij .

Choose another point a0 different from ∗ on the boundary of D2.

Lemma 2 for condiction 2, Bn act transitively on p-simplices.

Proof.

First, consider the point pi1 . We observe that after removing all arcs, the remaining

part of the disk D2 is a simply connected component. Consequently, there must exist a path

connecting a0 to pi1 that is disjoint from all other arcs and the points {pij}. Furthermore,

by the Jordan curve theorem, this path will divide the disk D into two simply connected

components. And, the point ∗ and a0 must be contained in the boundary of these components.

Next, we consider each point pij individually, which must be in some connected branch

that was previously divided. So think of this connected branch as aD2 with fewer points. We

can again construct a path connecting a0 to pij that is disjoint from all other arcs and another

point {pi}. This operation still divides the connected branch into two new simply connected

branches.

Then, we get a partition that gives a coincidence trace variation of g ∈ G such that g∆p

can be represented as connected ∗ to each point using straight arcs.

Consider the conjunctive transformation h ∈ G to transform all connected points to the

left and all unconnected points to the right, and we get the following figure1.

That is, for every∆p, there exists h ∈ G such that g∆p can be represented as above, so

Bn acts transitively on p-simplices.

□

16



Figure 1 normal form

Following the step of 2, we called “normalform” the∆p ⊂ Wn which can be represented

as connected ∗ to each point using straight arcs.

For the condition 3 and 4, every p-simplex in Wn can be transformed into a normal

form. This implies that the stabilizer subgroup of a p-simplex in Bn consists precisely of

those elements that act trivially on individual points. Formally, for any σp ∈ Wn, we have:

{
g ∈ Bn

∣∣ g|σp = idσp

}
= stab(σp) :=

{
g ∈ Bn

∣∣ g · σp = σp

}
.

and

∃h ∈ Gn s.t. h−1stab(σp)h = Gn−p−1

For 5, we consider the normal form of 2-simplex. Let g ∈ Bn be the action that trans-

forms the two leftmost points counterclockwise. If h|[v0,v1] = Id[v0,v1], then h will act on

p0, p1 trivially. By the figure2, gh = hg is clear.

To summarize, we have checked every condition of Quillen's argument. Then, the se-

quence {Bn}n is homologically stable.

Corollary 1 [11]

Let M be the interior of a compact connected manifold with nonempty boundary. For

17



Figure 2 gh = hg

each k ≥ 0, the induced map

(sn)∗ : Hk(Bn(M);Z) → Hk(Bn+1(M);Z)

is an isomorphism for n ≥ 2k.

Similarly, we have

Corollary 2 Let M be the interior of a compact connected manifold with nonempty bound-

ary. For each k ≥ 0 the maps

(sn)∗ : Hk(Cn(M);Z) → Hk(Cn+ 1(M);Z)

are isomorphisms for n ≥ 2k.
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4. Representation stability
4.1 Caculation of the group cohomology of pure braid group

However, the condition of Quillen’s arguement seems to be a little too strong, if it is

also for some very characteristic modular Spaces, such as Fn(M), the theorem will not be

hold.

Consider Pab
n

∼= Z(
n
2
) as an abelianization group of Pn , we get an abelian group con-

sisting of the image αij of the generators Tij as figure 3.

Thus, we have H1(Fn(M);Z) ∼ n2 as n → ∞.

Clearly, Homological stability fails.

But, from the view point of representation theory, we found more stability called rep-

resentation stability.

Church and Farb, proposed a new paradigm for stability in spaces like the ordered con-

figuration spaces Fn(M)of a manifold M . Because (co)homology is functorial, the Sn-

action on Fn(M) induces an action of Sn on the (co)homology groups. Even though the

(co)homology does not stabilize as a sequence of abelian groups, they proposed, it does sta-

bilize as a sequence of Sn-representations.

Figure 3 Artin’s generator Tij
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Figure 4 Fn(M)representation

4.2 Sn-representations

In order to better characterize this representation stability, we only need to consider the

irreducible Sn-representations, since Sn is finite group implies V is semi-simple.

4.2.1 Young graph

The representation theory give out away to corresponding every irreducibleSn-representation

to a Young graph one-to-one.

Theorem 5 (Young’s Correspondence Theorem) The representation theory of Sn estab-

lishes a canonical bijection:

{Irreducible Sn-representations} ↔
{
λ ` n

∣∣ Young diagram λ
}

where λ ` n denotes a partition of n. The irreducible representation Vλ corresponding to λ

is uniquely determined by the Specht module construction.

Consider the action of Sn on Fn(C), we can induce the action of Sn onHk(Fn(C);Q).[9]

When n ≥ 4k, theHn−1 toHn no longer increases with new parts, but continues to add a

square to the right side of the first row of the Young graph of each part. Subsequently, Church
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proved that Hk(Fn(M);Q) also has a similar property, and it is not necessarily limited to

Fn(M); a series of other spaces also exhibit similar properties and stability.

Thus, there is a impotent question: Are there any hidden patterns between these

changes in representation?

Church, Ellenberg, Farb, Nagpal, Putman answer this question and proposed represen-

tation stability.

4.3 FI-module

In order to accurately and reasonably characterize the mathematical properties of homo-

topy stability, describe how other parts change at the same time when n approaches infinity.

We firstly describe the process of n increasing as a category.

4.3.1 A general introduction of FI-module

FI-module V over R

we want to use FI-module to describe the “embedding” and the “automorphism” in-

duced by Sn.

Definition 9 (FI-module V over R)

Let FI be the category whose objects are finite sets (including∅), and whose morphisms

are all injective maps. Given a commutative ringR (typically Z orQ), an FI-module V over

R is a functor from FI to the category of R-modules.

For example,

• Vn = Q the trivial Sn -representations, ιn the identity maps.

• Vn = Qn, Sn permutes the standard basis, ιn : Qn ∼= (Qn × 0) ↪→ Qn+1.

• Vn = Q[x1, . . . , xn] the polynomial algebra with Sn permuting the variables, ιn the

inclusion.

are FI-modules.
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Although this is essentially a concept on category, because of its special structure, we

can also define its generated set like a “module” and then consider a “finitely-generated”

FI-module

Definition 10 (finitely generated FI-module)

Let V be an FI-module. A subset S ⊆
⋃

n≥0 Vn is said to generate V if either of the

following equivalent conditions holds:

1. The images of S under all FI-morphisms span Vn for every n ≥ 0;

2. The smallest FI-submodule of V containing S is V itself.

We say V is finitely generated in degree ≤ d if there exists a finite set of elements S ⊆⋃
n≤d Vn that generates V .

For example, consider the FI-module V over a commucative ring R such that Vn =

R[x1, . . . , xn](2) is the submodule containing all degree-2 homogeneous polynomial inR[x1, . . . , xn],

and ln : Vn−1 → Vn is the inclusionmap. Then, letS = {x2
1, x1x2}which x2

1 ∈ V1, x1x2 ∈ V2

1. V1 =< x1 >

2. V2 =< x2
1, x1x2, x

2
2 >

3. V3 =< x2
1, x

2
2, x

2
3, x1x2, x2x3, x1x3 >

4. Vn =< x2
1 . . . , x

2
n, x1x2, . . . , x1xn, . . . , xn−1xn >

Clearly, S span every Vn. Hence, V is a finite generated FI-module.

4.4 the (co)homology group of Fn(M) is FI-module

So, what is the relationship between FI-module and representation stability? Then a

very important point worthy of our attention is that the cohomology and homology of Fn(M)

are a FI-module.

Consider a point in Fn(M) as an index embedding ρ : [n] → M
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Figure 5 f◦ defined using bourdary

For any FI-morphism f : [n] → [m], we can define that

f ′ : Fm(M) → Fn(M); ρ → ρ ◦ f

the we get a covariant functor on cohomology groups given by f ′.

But, in this way, we can only get a contravariant functor on the homology groups. That

goes against the direction we need to go in.

So we need to try to induce a covariant functor on Fn using Sn. That is why we need to

further assume that dimM ≥ 2 also has at least one non-empty boundary.

Then, we can define f◦ as follows: For any x = (x1, . . . , xn) ∈ Fn(M), f1(x) =

(xf(1), . . . , xf(n), yn+1, . . . , ym), where we relabel the indices of xi using f and add some

points yn+1, . . . , ym at infinity using the non-empty boundary.

For example, if f : [3] → [4] = {a, b, c, d}, then we can figure it out as figure5.

That is a covariant functor from FI-category to the category of homology groups.

4.5 Representation stability

Church–Ellenberg–Farb and(independently) Snowden proved that FI-modules over Q

satisfy a Noetherian property:

Lemma 3 submodules of finitely generated modules are themselves always finitely gener-

ated.

then, we can claim the representation stability as below,

23



Definition 11 (Representation stability[14]) Let V be an FI-module over Q, finitely gener-

ated in degree ≤ d. The following hold.

• Finite generation. For n ≥ d,

Sn+1 · in(Vn) spans Vn+1.

• Polynomial growth. There is a polynomial in n of degree ≤ d that agrees with the

dimension dimQ(Vn) for all n sufficiently large.

• Multiplicity stability. For all n ≥ 2d the decomposition of Vn into irreducible con-

stituents stabilizes.

• Character polynomials. The character of Vn is independent of n for all n ≥ 2d.

The characters of V are in fact eventually equal to a character polynomial, independent

of n.

For the first item, it is relatively obvious. The third rule is a clear definition of the rule

we observed before.

So, we will now focus on explaining second rule and forth rule.

4.5.1 Characteristic polynomial

To explain representation stability, we have to define the ‘character polynomial’ as fol-

low,

Definition 12 (character polynomial)

For all i > 0, consider Xi : Sn → N defined by

Xi(σ) := number of i-cycles in σ.

Polynomials in Q[X1, X2, . . . ] are called caracter polynomial. Any character polyno-

mial P ∈ Q[X1, X2, . . . ] also define a mapping from Sn to Q for all n ≥ 1.
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The degree of a character polynomial is defined by setting deg(Xi) = i.

For example, σ = (123) ∈ S4, then X1(σ) = 1, X2(σ) = 0, x3(σ) = 1.

If P = X2
1 +X2

2 , then P (σ) = 12 + 02 = 1 and deg(P ) = max{1 · 2, 2 · 2} = 4

Based on this concept, we can redefine rule 2 and 4 more mathematically. we denote

that weight(V ) as the minimal number of element that can generate the FI-module V .

we using stab-deg(V )[14] to describe where the FI-module stable. Ifstab-deg(V ) = s,

then whenn ≥ s, FI-moduleV no longer loses information when splicing new elements (by

mappingT ), and the old and new structures are completely compatible.

Theorem 6 [14]

let V a finite generated FI-module over a field R with characteristic 0.

There exist a polynomial PV ∈ Q[X1, X2, . . . ] with degPV ≤ weight(V ) such that for

all n ≥ stab-deg(V ) + weigh(V ) and all σ ∈ Sn,

XVn(σ) = PV (σ).

For example, If we define aFI-module V with Vn = Q[x1, . . . , xn] and natural inclusion

mapping ln : Vn−1 → Vn. Then, we have PV (σ) = X1 + X2. (For every σ ∈ Sn, we only

need to find the number of fix points on the basis < x2
1, . . . , x

2
n, x1x2, . . . , xn−1xn >.)

4.5.2 Why does the polynomial stability appear after 2d?

The proof is a bit long, we will sketch the proof[14].

Firstly, we consider a special FI-module,

Definition 13 The FI-module M(W )

We define the functor M(−) : FB-Mod → FI-Mod as the left adjoint of π : FI-Mod →

FB-Mod. Explicitly, if W is an FB-module, then the FI-module M(W ) satisfies

M(W )S = colim(T∈FB,f :T ↪→S) WT

⊕
T⊆S

WT ,
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with the map f : M(W )S → M(W )S′ induced by f : S ↪→ S ′ being the sum of (fT ) : WT →

Wf(T ).

Definition 14 The irreducible representation V (λ)n

Given a partition λ, for any n ≥ λ1 we define the padded partition

λ[n] := (n− λ, λ1, . . . , λ`).

For n ≥ λ1, we define V (λ)n to be the irreducible Sn-representation

V (λ)n := Vλ[n].

Definition 15 The FI-module M(λ)

When k is a field of characteristic 0, given a partition λ we write M(λ) for the FI-

module M(λ) : M(Vλ).

Lemma 4 For any partition λ , the FI-module M(λ) over a field of characteristic 0 has

stab-deg((M(λ)) = λ1).

This is very important because soon we will know that in fact most of the FI-module

we care about can be decomposed into these basis parts.

And, for each finite-generated FI-module, we have a classification theorem.

Theorem 7 Every finite generated FI-module is form of the

V =
⊕
λ

M(λ)⊕cλ .

Then, we have

stab-deg(M(λ)) = λ1 ≤ |λ| = weight(M(λ)).

To sum up,

stab-deg(V ) ≤ weight(V ).

26



That is why the representation stability appeared when i ≥ 2d = d+ d.
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5. Conclusion
In this thesis, we study the homology stability of moduli spaces from the perspective of

representation theory and conducts an in-depth analysis taking braid groups as an example.

By introducing tools such as the FI-module and characteristic of polynomials, we revealed

the essential characteristics represention stability and proved the representation stability of

the braid groups. Compared with the traditional homological stability, representation stabil-

ity provides richer information and a deeper understanding, offering a new perspective for

us to study the properties and behaviors of moduli spaces.

This topic is still very active. Now, there are many new developments in this topic,

such as secondary homological stability, which was introduced by Galatius–Kupers–Randal-

Williams in 2018.
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