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[ABSTRACT]: The concept of the Lyapunov exponent was first introduced
to quantify the rate at which the orbits diverge in a hyperbolic dynamical system,
and the systems with countably (infinite) many branches and infinite topological
entropy draw much attention. In this case, it was shown that the Lyapunov
spectrum (i.e. the dimension function of the level sets of Lyapunov exponent)
has a non-compact support and a horizontal asymptotic. This leads to the finer
study of the behavior of Lyapunov exponent at infinity. In this paper, we will
determine the (upper and lower) fast Lyapunov spectrum independent of the
thermodynamic formalism for the Rény1 map, which in particular has a neutral
fixed point, and it is closely related to the backward continued fractions. We
also prove that the Lyapunov spectrum is continuous at infinity, and calculate
the set of number whose partial quotient tends to infinity. The main technique
established to prove the results above is the existence of calculable cantor-like

subsets in the level sets of the fast Lyapunov exponent.

[Key words]: Fast Lyapunov spectrum, Hausdorff dimension, Backward

continued fractions
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1. Introduction
1.1 Backgrounds

Dynamical systems exhibiting strong hyperbolicity inherently produce a significant de-
gree of mixing. In such scenarios, the orbit structure becomes highly intricate, making it
particularly important to quantify the rate at which orbits diverge.

Lyapunov exponents serve as an important tool for this purpose, describing the exponen-
tial rate at which infinitesimally close orbits of a dynamical system diverge. For a piecewise
differentiable interval map 7" : I — I, where [ is an at most countably many union of closed
intervals, the Lyapunov exponent of the map I" at the point x € [ is defined as

M) = lim ~ log|(T") ()], (1.1)

n—oo M

whenever the limit exists.

According to Birkhoff’s ergodic theorem, for any ergodic 7-invariant measure p such
that | log |T”|dy. is finite, the Lyapunov exponent \(z) equals [ log|T”|du for p-almost every
x € I. However, the Lyapunov exponent can attain a continuous range of values, forming
an entire interval. This observation naturally motivates the investigation of the complexity
of the level sets of the Lyapunov exponent.

For any o € R U {+£o00}, we define the level set of the Lyapunov exponent \(x) as
J(a):={zxel: ANx)=a}. (1.2)

The Lyapunov spectrum is the function that describes how the Hausdorff dimension of .J(«)

varies with o, namely,

L(e) = dimy J (), (1.3)

where dimy; denotes the Hausdorff dimension (see Section 2.3 for definition and!! for more
information).

The Lyapunov spectrum has been extensively studied for several important classes of



piecewise differentiable maps. The pioneering work is due to Weiss'?!. He relates the Lya-
punov exponent with the pointwise dimension of a Gibbs measure and based on the dis-
cussion on the multifractal analysis of the pointwise dimension from Pesin and Weiss!,
he proved that for conformal expanding maps with finitely many branches !, the Lyapunov
spectrum has a bounded domain, is real analytic, and is concave in the domain.

Inspired by Weiss’ result, two directions of generalizations have been performed in the
context of non-uniformly hyperbolic piecewise differentiable interval maps, and different
phenomenon on the Lyapunov spectrum has been observed.

On the one hand, Pollicott and Weiss!*!, and Nakaish®! (see also the works of Takens
and Verbitskiy!®, and Pfister and Sullivan(”!) studied the Lyapunov spectrum in the case of
the Manneville-Pomeau map, which is an interval map with two branches and a parabolic
fixed point at zero. In this case, the Lyapunov spectrum has a bounded domain, but it can
have points where it is not analytic. Later, Gelfert and Rams!®! considered a broader class of
such systems and described the Lyapunov spectrum.

On the other hand, Pollicott and Weiss[*! (see also the work of Kessebohmer and Strat-
mann®)) studied for the Lyapunov spectrum for the Gauss map, which is an expanding map
with countably many branches, and infinite topological entropy. They showed that the Lya-
punov spectrum (see Figure 1) is real analytic, but it has an unbounded domain [0, c0) and

no longer concave on the domain. In particular lim,_,, L(a) = 1/2.

L(@)

1

N =

Figure 1

"Weiss’ results are also valid for Axiom A surface diffeomorphisms.



In 2010, Iommi!'” build upon the results mentioned above, and considered a model
so called Markov-Rényi map, which is a map with both a parabolic fixed point at zero and
infinite topological entropy. Such map might have no absolutely continuous invariant proba-
bility measure with respect to Lebesgue measure, and it is closely related to the backward (or
regular) continued fractions, and is also related to the geodesic flow on the modular surface.
It turns out to that the Lyapunov spectrum (see Figure 2) has an unbounded domain [0, 00)
and there might exist non-differentiable point in the domain. Moreover, as in the case of

Gauss map, L(«) has a horizontal asymptote.

L(a)

1

N =

Figure 2

Based on above discussions, two natural questions arise regarding to the Lyapunov spec-

trum at point ‘co’.

(Q1) What is the value of L(c0)? Whether the Lyapunov spectrum L is continuous or not

at co?

(Q2) Can we have further refined the spectrum on the Lyapunov exponent at co? If so, what

1s the differences between this spectrum and the Lyapunov spectrum?

In the current paper, we are aiming to answer these two questions by studying the so
called fast Lyapunov spectrum in the context of the Rényi map (see (1.4)).
Our main results in the present paper will develop a unified approach (independent of

the thermodynamic formalism) to estimate both (upper and lower) fast Lyapunov spectrum



for the Rény1 map. It is worth to remark that the fast Lyapunov spectrum was previously
studied by Fan, Liao, Wang and Wul'!"!?] in the setting of the Gauss map, > which is a model
with absence of any parabolic fixed point. On the other hand, to the best of our knowledge,
the upper and lower fast Lyapunov spectrum results are still missing other than the Gauss
map.
1.2 The Rényi map

As a typical interval map with countably many branches having parabolic fixed points,
the Rényi map (or backward continued fractions map) has received much attention. Let
R:[0,1) — [0,1) be the Rényi map defined by

1

R(z) = T2

1
- L—wJ Yz € [0,1), (1.4)

where |-| denotes the integer part of a number. The ergodic properties of the Rényi map
have been investigated by Adler and Flatto!!#!, and Rényil'>). The Rényi map is also closely
related to the backward continued fractions algorithm!!®!31. Actually, every z € [0, 1) admits

a backward continued fractions expansion (BCF) of the form

r=1-— , (1.5)
bl(x) - 1

where the (nth) partial quotient b, (x) € N>, is given by

1

1.3 Statement of the main theorems

Let ¢ : N — R, be a function satisfying ¢)(n)/n — oo as n — oo. Analogous to

(1.1), (1.2) and (1.3), we define the fast Lyapunov exponent of R (with respect to /) at point

?Fan, Liao, Wang and Wul''"'? also studied the so called fast Khintchine spectrum. Later, the upper and lower Khintchine

spectrum was studied by Liao and Rams!"*.



x € (0,1)\Qas
Mo(z) = lim —— log |(R")(x)|, (1.7)

nsoo ()
whenever the limit exists. Forany e € RyU{oo}, let J,(a) := {z € (0,1)\Q : A\y(z) = a},

and define the fast Lyapunov spectrum (with respect to 1)) as
F¢(CY) = dlmH JQZJ(O(). (18)

Let 8 := By and B := By, be given by

= timsup LY and B = timsup W00, (1.9)

n—o0o (n) n—00

respectively.
We say that two functions f,g : N — R, are equivalent if % — lasn — oco. The

fast Lyapunov spectrum is described as follows.

Theorem A (Fast Lyapunov spectrum). Let ¢ : N — R, be a function satisfying )(n)/n —
oo asn — oo. Forany 0 < a < oo, the level set J, () is nonempty if and only if ¢ is
equivalent to an increasing function. Moreover, if 1) is equivalent to an increasing function,

then, for 0 < o < o0,

1
Fw(a)z—ﬁﬂ, (1.10)
and
1

Next, we study the upper and lower fast Lyapunov spectra of R. For any = € (0, 1)\Q,

let

Ay (z) := lim sup log |(R™)'(z)], (1.12)

1
n—00 Q/’(”)

and let A\, () be defined analogously by replacing the limit superior in (1.12) with the limit

inferior.



Forany o € R, U {£o0}, we call

Fy(a) :=dimy {z € (0,1)\Q: A\y(z) =a} and F,(a):=dimy {z e (0,1)\Q: A, (z) =a}
(1.13)

the upper and lower fast Lyapunov spectra, respectively.
Let b := by, be given by

b = liminf {/4(n). (1.14)

n— oo
Theorem B (Upper and lower fast Lyapunov spectra). Let ¢/ : N — R, be a function

satisfying ¢(n)/n — oo as n — oo. Forany 0 < a < oo, we have

— 1 1

In the view of (1.11) and (1.15), Fy(a) (resp.F,,(c)) are discontinuous at @ = 0,
whenever b # 0 (resp. B # 0). Additionally, it also follows from (1.15) that F'y(c) and

F () are continuous at infinity and that

Fy(00) = Ey(00) = 5=

2. Preliminary
2.1 Notation

We follow the following conventions:

N = {1,2,3,...} denotes the set of natural numbers (or positive integers);
* Q represents the set of rational numbers;

* R signifies the set of real numbers;

* R, = {x € R: z > 0} indicates the set of positive real numbers.

We use |- | to denote the integer part of a real number.

For a subset A C R, we denote:

* |A| or diam A as the diameter of A;



» #A as the cardinality of A;
« int(A) as the interior of A;

« Aorcl(A) as the closure of A.

For a function f : A — R, a subset B of A, an element z € A, and n € N, we denote:

* f|p as the restriction of f to B;

* f'(z) as the derivative of f atx € A;

e f°(z) := x as the identity function;

o fM(x) = f(f(--- f(z)) as the n-th iterate of f.

2.2 BCF and Cylinder Sets

For n > 1, denote

1
[b1,b2, -+ b =1 = g
by — ——
br— "o
the (nth) convergent. Now use the notation
1
[[bh b27 ’ ]] =1- 1

for

lim Hb17b27 T 7bn]]7

n—0o0

2.1)

(2.2)

(2.3)

a limit which always exists. Call [by, by, - -] the (infinite) backward continued fraction

(BCF) expansion, and [by, by, -+ ,b,] the (nth) finite backward continued fraction (BCF)

expansion with respect to {b, },>1. Let x € [0,1) be a real number, b,, = b, () defined in

(1.6) be the partial quotient, and [by, bo, - - - , b,] defined in (2.1) be the convergent. It follows

from (2.1) that

1

[[bhb?a'“ 7bn+1]] =1-

7

bn+1_1+[[b17b27"' 7bnﬂ

(2.4)



The formula above gives a inductive relation of convergent. Define two natural numbers

Pns Qn with (pm Qn) =1 by

Pn_ [b1, b9, - ,b,], foreveryn > 1. (2.5)

an

These two numbers p,,, ¢, are obtained recursively from the following relation

Pn —Pn-1 by —1 b, —1
= . o o >
( Gn  —n-1 ) ( 1 0 ) < 1 o ) foreveryn >1. (2.6)
In other words

Pn+1 = bn—l—lpn — Pn—1y Q4n+1 = bn+1Qn — Qn—1, for every n Z 1 (27)
with a convention
po=0,90=1,p1 =1,q1 = b1. (2.8)

By (1.6), (2.7) and induction, {¢, },>1 is strictly increasing: ¢; = b; > 2 > 1 = ¢ and
Gn+1 = 2¢n — Gn-1 > 2qn — @ = G, for every n > L. (29)

Taking determinant of the matrices on both side of (2.6) yields:

n n— 1
Pn _ Pn-1 , forevery n > 1. (2.10)

An Gn—1 Gn—14n

Prnldn—-1 — Pn—-14n = _17

For x € [0, 1), x is rational if and only if x admits a BCF expansion

x = [bi(z),ba(x), - ,by(2),2,2,---] (2.11)

for some n € N. The values of two BCF expansions can be ordered in the sense of

[[bhbg, . ]] < [[01,027 . ]] if and Ol’lly if b, < ¢y, m = mln{j eN: bj 7é Cj}. (2.12)

Next define the cylinder sets of BCF. Given a natural number n and the ordered indices



(o1, -+ ,0n) € NL,, call

Loy, ,0,) ={x€]0,1): bj(x) = oy, forall i <n} (2.13)
a cylinder set of order n (associated with (o4, -- - , 0,,)), or equivalently
Loy, on) = | R, (2.14)
j=1

where I, = [1 — 1/(k —1),1 — 1/k) for k > 2. Each cylinder set I,,(oq, -+ ,0,) is a (left

closed and right open) interval. Namely,

In(017 e 7Un) = |:[[0-17O-27 5, 0n — 1]]7 [[017027 e 7Un]]> = [M, &); (215)
n — dn-1 Gn
where p,, ¢, € N with (p,,, ¢,) = 1 are given by
Pn 1
— =[o1,00,- -+ ,0,] =1 - ———. (2.16)
dn e
Based on (2.10) and (2.15), it follows that
1
[ (o1, ,00)] = =————— (2.17)

a\n(a\n - Z]\nfl) ‘
The main proposition in this subsection is about the approximation of the length of

cylinder sets and is stated as follows. As we didn’t find the literature, we provide the details

for the convenience of the reader.

Lemma 2.1. Let {b, },>1 be a sequence with each b,, € Nxo. Define {q,}n>0 inductively by

(2.7) and (2.8). For each integer n > 1, the following assertions hold.
). Gn > bpGn_1/2.
i). ¢ > (14+1/n)g, 1.

iii). [Taey bk/2" < g < Tljey r-



2n 3n
1 PR 1 _ntl_ (nt1)2 __ 2

(b1bo-++b,)* = @2 7 Gulgn — 1) T an T (bibae - bn)?
As a corollary of Lemma 2.1, we have

Proposition 2.2. For any natural number n and all (o4, --- ,0,) € NZ,

1 23n
2 S ‘In<0—17 70—11)’ S

(0'10'2 e UTL) 2"

(0'10'2 . e O'n>

Proof of Lemma 2.1. We proceed the proof of Lemma 2.1 item by item.

(bibs - - - by)?”

For item ¢), when n = 1, it directly follows from (2.8). For the case n > 2, it follows from

(2.7), (2.9) and (1.6) that

bn,
qn = ann—l — Qn—2 > ann—l — Qn-1 > 5%@—17

as we want.

For item i), note that for each n € N,

1 1 1

2,2, ,2]=1— —1— _ _

ﬂ;,_’/]] 2-1+[2,2,-,2] 2-1+-L  n+2
——

n

This yields the case n + 1, and the induction is completed. Also, note that

qn—1
an

1— :[[bn>bn717"' 761]]

10

(2.18)

(2.19)



The proof of this equality is also by induction on n. For the case n = 1, it follows from

qo
1—-—=1-—— b
q1 b1 [[ 1]]
Suppose the case for n is true, then
L n
dn+1
qn
L S— (by (2.7))
n+1qn — qn—1
bt = 5
1
=1- by induction hypothesis
bn+1_1+[[bnabn—l7"' 7b1]] ( Y P )
:[[bn+1, bn7 T bl]] (by (24))

Thus the case for n + 1 is also true. It follows from (2.19), (2.12) and (2.18) that

— 1
In-1 _ [[bn7bn—1,~-- 751]] > [[2,27... ,2]] _

1-— .
dn — n+1

In other words

1
n

as we want.

For item i7i), use item i) and (2.7):

b
qu,l < qp < bpqe_y fork =1,--- n. (2.20)

Note that by (2.8) gy = 1, taking product of each term in (2.20) from k£ = 1 to n yields

k1 Dk _ n b_qu ﬁ ﬁ bei 1:ﬁbk (2.21)
2n 2 B ’ '

=1 k=1 k=1 k=1

as we want.

For item iv), the inequalities are directly derived from item i7) and item i7i). Therefore, the

proof of all assertions is completed. ]

11



2.3 Hausdorff dimension

First we recall some useful properties of Hausdorff dimension, then we introduce the
main propositions calculating Hausdorff dimension for the lower bound: Proposition 3.1.

For a subset E of R, denote
H3(E) = inf{) (diam F})* : E C | J Fy, Fr CR, diamF, <4 forall k},  (2.22)
k k

and such a cover | J, Fj, is called a 6-cover of E. Denote the exterior a-dimensional Haus-

dorff measure of E by
HYE) = (lsin% HE(E). (2.23)
Call
dimy(F) = inf{a : H*(F) = 0}, (2.24)

the Hausdorff dimension of E.

Hausdorff dimension satisfies monotonicity

A C B implies dimy(A) < dimy(B), (2.25)
and countable stability
dimy (| J E,) = sup{dimy(E,)}. (2.26)
n>1 n=1

Upper bound of Hausdorff dimension can be detected by in the sense that H(F))
dimy(F) < «avif and only if H*(E) < oo. (2.27)

Let us recall two useful lemmas from!!! calculating lower bound and upper bound of Haus-

dorff dimension.

Lemma 2.3 ([[], Example 4.6: Lower bound]). Let [0,1] = Ey D E; O - - - be a decreasing
sequence of sets and E = nnZO E,. Assume that each E, is a union of finite number of

disjoint closed intervals (called basic intervals of order n) and each basic interval in E,,_,

12



contains m,, intervals of |E,, which are seperated by gaps of length at least €,,. If m,, > 2

and e,_1 > &, > 0, then

(m1m2 - 'mnfl)

1
dimy E > lim inf —&
n—0o —log(myue,)

Lemma 2.4 ([Y, Proposition 4.1: Upper bound]). Suppose F can be coverd by N,, sets of

diameter at most 9,, with 9,, — 0 as n — oo. Then

1 n
dimy F < lim inf ogNn
n—oo — logd,

3. The distribution of the digits
Now we introduce the main Proposition calculating lower bound of Hausdorff dimen-
sion. Let {s,,},>1 and {¢, },>1 be two sequences of reals numbers with s,,, t,, > 2 for every

n > 1. Moreover, throughout this section, assume

|
lim M = 00, (3.1)
n—oo n
. ~Sn
inf —>c¢>0. (3.2)
n>1 tn
Write
E({s Htn}) ={x €[0,1) : s, < bp(2) < 85 + 1, Vn > 1}. (3.3)

Proposition 3.1 (Hausdorff dimension of E({s,, }{t,.})). Assume that {s,},>1 and {t,}n>1

satisfies (3.1) and (3.2) above. Then

" logt
iy B({5, }{t,}) = lim inf — 2xt=1108%
n—oo 2% 07 log sy — log it

Remark. Proposition 3.1 will be used repeatedly since E({s, }{t,}) is a very common type

of subset of several sets which we are interested in.

The proof of Proposition 3.1 is divided into two parts: the lower bound and the up-
per bound of dimy E({s,, }{t,}). With Lemma 2.3 and Lemma 2.4, we are ready to prove

Proposition 3.1.

13



Proof of Proposition 3.1. Let

Cn={(on,---,00) ENL, 155 <05 <55 +1;,VI < j <n}. (3.4)
For (o1, -+ ,0,) € C,, define the basic interval of order n as
Ju(o1, -+ 0,) = U A(I(oy,-- ,0m, k), (3.5)
Sn+1<k<spi1+tni1

where cl(-) denotes the closure of a set. Write
Foi= |J  Jalon---00). (3.6)

Then E({s,}{t}) = (2., Fa.
For the lower bound of dimy E({s,, }{t,}), by the structure of basic intervals in (3.5),

we deduce that each basic interval of order n — 1 contains

ln
b < |tn] <mp = [sp+tn] — |sn] <tn +1<2t, (3.7)
basic intervals of order n. Note that J,(oq,- -+ ,0,) is a refinement of I,,(cy, -+ ,0,) so

that two different basic intervals has a non-trivial gap. We make it explicit by estimating

the gaps between two basic intervals with the same order. Assume that .J,,(oy,--- ,0,) and
Jn (o3, -+ ,or) are two basic intervals in F,,. Then they are separated by the cylinder of
order n + 1:

Lnsi(o1,-+,00,2) or Inga(of,---,0,,2)

by (2.12). We may assume J,,(01, -+ ,0,)and J,, (o7, -+ ,07) isseperated by I,, 1 (01, -+ ,0p,2).

ren

The gap between these two basic intervals is at least

|]n+1(017 T, 0n, 2)'
1
> o o) (by Proposition 2.2)
0-1 . .. O'n
1

>
_4((1 + %)51 . (1 + %)32...(1 + %)511)2

(by (3.4) and (3.2))

14



1
A(14 1) (5155 -+ 5p)? © S

It follows that

dimy E({sn }{tn})

1 emy,
> fim jnf 080T 1)
n—oo  —log(Myi1€n41)

(by Lemma (2.3))

.. IOg(tth s tn) — n10g2
> lim inf T
n—oo 210g(s182 - - SpSpt1) — logtny + 3log2 + 2(n+ 1) log(1 + 1)
— lim inf log(titz-- - tn) .
n—oo 210g(s182 - SpSnr1) — logt, i1

(by (3.7) and (3.8))

(by (3.1))

For the upper bound of dimy E({s,, }{t,}), we see that foreachn € N, dimy E({s, }{t.})

is covered by F,,, i.e., N, := card C,, basic intervals of order n. Note that
N, <2t -2ty---2t, = 2"t 1ty - t, (3.9)

and

|Jn(017 e 7Jn)|

23(n+1) 1

m zs: E (by Proposition 2.2 and (35))

Sn41<k<sn41+tn+1

1
(o1 0p)? Z k(k—1)

Sn+1<k<spti1t+tnti1

B 23(n+1) ( 1 1 >
(01 0n)? \Spp1 Spy1 +tnp
23(n+1) < 1 1 )

(51 - Sn)2
23(n+1)

< (by (3.4))

Spt1 Spg1 Tl

i1 _ 5 (3.10)

T (s17 8n8nt1)?

It follows that

dimy E({s, }H{tn})

< liminf log V.
n—,soo — Og(sn

(by Lemma 2.4)

<lim inf
n—oo 21og(s182 - SpSnt1) — logt, 1 — (3n + 3) log2

(by (3.9) and (3.10))

15



log(tity - - - ty)

<liminf . by (3.1
= ne 2log(s152 - SpSny1) — logtnia (by 3.1)
And the proof of Proposition 3.1 is completed. ]
Write
E({e"},{e"}) ={z € A:e" < a,(x) <2",Vn > 1}. (3.11)

As a consequence of Proposition 3.1, we are able to determine its Hausdorft dimension.

Corollary 3.2.
. 1
dimy E({e"},{e"}) = 3
We end this section by providing the Hausdorff dimension of the following set

Lemma 3.3. Write

logb -+ logb,
I ={z €]0,1) : limsup ogbi(x) + -+ log bu(x) = 00}.

n—00 n

Then

dimH Hoo = =
Proof of Lemma 3.3. For the lower bound, since E({e"}, {e"}) C Il (defined in (3.11)

1
dimy [L., > dimy E({e"} {e"}) = 5.

For the upper bound, let 0 < € < % and s == %—F €. Choosing a sufficiently large number
K > 1 such that

K> 16J. and K > 4 (3.12)

where

— 1
Jo=) = <00 (3.13)

n=2

Observe that VN € N, I1, is covered by

U U Ln(o1, -+ 0n), (3.14)

n=N (o1, ,0n)ECR(K)



where C,,(K) is given by
Cn<K) = {(017"' 70n)€Nn:0—1"'0nZKn} (315)

For any § > 0, by Proposition 2.2 and (3.12), there exists M = |log, %J + 1> 0, such

that for all n > M

23n 23n 1 . 1
|]n(017 o Un)| < (010_2 - 'Un)2 = K 2n < (5) < (§)M < 57 (316)

so when N > M, (3.14) is a )-cover of I, and we estimate:

Hi(1leo)
<lminfd > > |L(o,---on)l (by(3.16))
n=N (o1, ,0n)ECH(K)
o o 23n .
< lim inf S D e (by Proposition 2.2)
n=N (0'1,~-',0'n)€cn(K) ! "
o > 93n 1
Shminf 3 2o Y e (yGa9)
n=N (01, ,0n)ECK(K) ! "
. . = 8J€ n
< lim inf ) (=) (by (3.13))
<liminf L =0. (by 3.12))
~ N—oo 2n

Let 0 — 0T, there is H*(E) = 0, it follows from (2.27) that dimy(I1,,) < s. Since € is

arbitrary, we obtain dimy(I1.,) < % The proof is completed. O

4. Transformation
Let vy : N — R, be a function satisfies ¢)(n)/n — oo as n — o0, let « be a real

number, recall
log |(R")' ()|

oy b

Jy(a) ={z € (0,1)\Q: lim
To prove Theorem 2.2, first reformulate .J,(cv). Set

_ o Siloghi() _a
Ey(a) = {z € (0,1\Q: lim =* w<n>k =3} (4.1)

17



Denote

J = U{:c €10,1) : (R™) () does not exist} 4.2)
n=1
then = € [0,1)\J if and only if for any n > 1, (R")'(x) exists.

Lemma4.1. J =QnN(0,1) and for x € [0,1)\J,

0<2 " loghy(x) - log|(R") ()] < 2nlog2, (4.3)
k=1

Proof of Lemma 4.1. First note that R'(x) dose not exist if and only if z € {k/(k + 1) }x>1.

Let n be a natural number, by chain rule
(R")(z) = R(R"(2)) R (R"(x)) - R/ (), (4.4)
it follows that (R™)'(x) does not exists if and only if

{2, R(z), -, R" (@)} ) {kiH} £0. 4.5)

k>1

Since R([0,1)\Q) C [0,1)\Q, it follows from (4.5) that J C QN (0, 1). On the other hand,

{k:i—kl}kg o

and

{2k—1

1
(= 1): ! i
ST }kzl CR (2) C {x €[0,1) : (R)'(x) does not exist} C .J

So similarly

{3k—2

1 o1 (P2 -
3k+1}k21CR (3)CR (2)C{x€[0,1).(R)(m)doesnotemst}CJ

It follows from

eno.n-U{) UG, U @6)

that @ N (0,1) C J,s0J =QnN(0,1).

18



Forxz € [0,1)\J and k& > 1,

1 1

1 2
T]H(m)<bk(I)ZLT]H(x)J+1S—+1<— (47)

1 — Rk-1(2) 1 - RI(2)
Taking logarithm of each term in (4.7) yields

log b () — log2 < —log(1 — RF"!(x)) < logby(x). (4.8)

Calculation yields

/ _ 1 / k _ 1
and then by (4.4)
log |(R")'(x)| = —QZlog — R(x)). (4.10)
By (4.8)
0<2) logh(x) — log|(R") (z)| < 2nlog?2, (4.11)
and the proof is completed. ]

Corollary 4.2. For all « € R, Jy(a) = Ey(«), and if o < 0 Ey(a) and Jy() are both

emptiy.

Proof of Corollary 4.2. By (4.11), for z € [0,1)\J

i Sicilogbi(e) _ (o log | (R7)'(2)
e R S “12)

Then Jy (o) = Ey(a).

Since for every n € N, b,, > 2, then for every x € [0, 1)

llm Zk:l logbk(x) >

]

Lemma 4.3. Assume o > 0, then E,(a) = Fyy(«) is non-empty if and only if i is equivalent
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to an increasing function.

Proof of Lemma 4.3. For the “only if” part, we assume that £, («) is non-empty. Then we

__ logbi (x)+--+logbn (x)
a

cantake r € Fy(«)anddefinep : N — R as¢(n) : Hence p(n+1) >

¢(n) and
1 b R 1 b
lim ——= (z) = lim —2 1) 08 bn (@)

woe g(n)  none ot (n)

which means that ¢/ is equivalent to the increasing function (.

=1

For the “if” part, we suppose that ¢ is equivalent to an increasing function . Then

lim 27 _ ji Y0 gy 200

n—o0 n n—oo n n1—>ngo w<n) -
Put
~ o~ 1
T =[bi,by, -] =1——
by — =
by — - -

where b, = b, (%) = | (@M -2(n=1)+1| We deduce that b, > 2 and
(@) —2(n—1)) < Lea(sﬁ(n)*ﬁ(nfl)HlJ =b,(2) < e(@(n)=g(n—1))+1 (4.13)

for all n > 1, since « > 0. Hence by (4.13)

p(n) —(0) ~_ logh(z) + -~ +1ogh(x) _ #(n) — (0) +n

= < = < = a,
p(n) ¢(n) p(n)
and
lim logby(Z) + - - - + log b, (7) — lim log b, (7) ~|—A-- -+ log b, () .
n—00 w(n) n—o0 gp(n)
which implies that ¥ € E;(«) and Ey () is non-empty. O

We also have the following corollary for regular Lyapunov spectrum at co.

Corollary 4.4.

J(oo) = {z€[0.1) lim 2iz loghi(®) _ o}

n—oo n

with L(co) = 1/2, so L(«) is continuous at cc.
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Proof of Corollary 4.4. By Lemma 4.1, for x € [0, 1)\ J, there is

23 iy log bi(z) —log |(R")'(x)]

0<

< 2log2.

By (2.11), forevery x € J

n—00 n

# 00

Thus

J(o0) = {x €[0,1): lim

n—oo n

Since E({e"},{e"}) C J(o0) C Il, by Lemma 3.3,

N | —

Then L(o0) = 1/2.

5. Proof of Theorem A

For the case o = 0, since

{z€(0,)\Q: lim P lngk(g;)

1
— 00

=log2} C {z € (0,1)\Q: li_>m

Tiniloghe) _ }

1
< dimy B({"}, {e"}) < L(oo) < dimy T < 3.

0
Zn:1 log by () o
om0
(5.1)

we deduce from!™! that £,(0) is of full Lebesgue and by Corollary 4.2 F;(0) = 1.

Deducing from Corollary 4.2 and Lemma 4.3, since the case a = 0 is clear, without

loss of generality from now on, we assume that & > 0 and ¢ is increasing.

5.1 Lower bound

For a € (0, 00), the control of lower bound of dimy £ («) is an application of Propo-

sition 3.1. Let s; = t; = e*¥W+land s, = t,, = W) =¥(=)+1 for every n > 2. Since 1

is increasing, we see that foralln > 1, s,, = t,, > 2, the limit in (3.1) and (3.2) holds and

~

o(n) + na < logby(Z) + - - - + log b, () < o(n) +n(l+

log2)

pln) p(n) N p(n)

21
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then E({s,, }{t.}) is a subset of F;(«), and

dimy Ey(a)
no
~liminf —2k=1 108
n—oo 2% 07 log sy — logt, 1
— liminf n+ av(n)
noo ath(n+ 1) +¥(n)) +2n +1
1

~ limsup, %"(’l')l) +1
1

=55 (by 3.5)) (5.2)

(by Proposition 3.1)

5.2 Upper bound

First enlarge £, () to a set whose Hausdorff dimension can be estimated easier.

Forz € Ey(w)

logh(x) + -+ logba(e) +loghua(x) . wb(n+1)
lim su = limsup ————— = 3,
which is equivalent to
: log b, 41 ()
= 1 - - 1 =Y. 5.3
() lflsjjp logby(x) + - - + log b, () P 7 (53)
Besides, we also deduce that
1 R |
k() = lim ogbi(x) +-- -+ loghu(x) _ - (5.4)

n—00 n

¥(n)

since lim,, o, =~ = o0.

In fact, it follows that the Hausdorff dimension of

{z € (0,)\Q: 7(z) = 5= 1} {z € (0,)\Q: k(x) = o0}

approximates the desired upper bound of dimy £ (c).
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Lemma 5.1. For (0 < v < oo, let

Foo() = {2 € (0,1\Q: 7(z) = 7,k(z) = oo} (5.5)
and
Too(7) = {z € (0, )\Q: 7(x) > 7,k(z) = 00}. (5.6)
Then
. LR 1
dimy I () = dimy Lo () = o

Proof of Lemma 5.1. We only need to approximate the lower bound of dimy '« (7y) and the
upper bound for dimy Lo (7) since T'og(7) € Lo (7). The proof is divided into three cases:
v=0,0<7vy < ooandy = oo.

Casel:~ = 0. In this case, for the upper bound it follows from Lemma 3.3 that

~ logb -+ +logb, _ 1
dimy ' (7) < dimg{z € (0,1)\Q : limsup 0gbi(x) + - + log bu(x) = oo} = dimy Il = 5
Nn—00 n

(5.7)
For the lower bound, by Proposition 3.1, we see
1
dimy ' () > dimg{z € (0,1)\Q : €" < b,(x) < 2e",¥Vn > 1} = 5
as the limits in (3.1) (3.2) (5.3) and (5.4) holds.
Casell : 0 < v < oco. We use Proposition 3.1 again to control the lower bound.
n n 1
dimy Doo (7) > dimp{z € (0,1)\Q : 0" < b, (2) < 20HD" vn > 1} = —
Y

For the upper bound of dimy foo (7), we put the following covering argument. Let0 < ¢ < 3

and s := 5. Choose M > 2 sufficiently large such that

64
Me

J(=—)* < =, and M* > 64, (5.8)

1
_27
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where J, =Y, == < oc. Observe that

oo o0

Too(y) € () U Bule. M), (5.9)

N=1n=N

where the set B, (¢, M) is given by

B, (e, M) := {x € (0,)\Q: dpy1 > (Hdk(x))v_e,Hdk(x) > m}. (5.10)

Let D, (M) = {(o1, -+ ,00) ENLy: 01+ 0, > M"}. For (01, -+ ,0,) € D(M), put
Tulon, o) = | Lualon,- o0 k). (5.11)
Then B, (e, M) can be rewritten as

B, (e, M) = U Jo(oy, - o). (5.12)
(o1, ,0n)EDR(M)

Combining this with (5.9), we see that for any N > 1, the set foo () is covered by
{Jn(o1,-++ ,0,) :n >N, (01, ,0,) € D(M)}.

By Proposition 2.2, we deduce that

|Jn(017 o >0n)|
23(n+1)

1
= Z [n+1<0-17"' 7Un7k):m Z p

k>(o1-on)Y7¢

20m < 64 1

- (0—1 e O'n)"/7€+2 - (%) (0—1 e O'n)"/72€+2 ’

Now for any 6 > 0, there exists d such that for all n > d

64, 1 ; 1 s
M€ (0—1 e O'n)7726+2 (0‘1 e O'n)’772€+2 :

|Jn(017"' >Un)| S (

by (5.8). We conclude that

H3 (7))
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Shmintd> Y alon o

e 64 1
< ns
- I}angcl,fz Z <M€) (0-1 - O'n)S("/—QE'f‘Z)

.. 64 1
< ns
>~ lﬂl(gf (ME) E : (O.l . O.n)s('y—25+2)
n= (o1, ,0n)EN
e 64 \n
=liminf > (Je(37)")
<liminf — =0,
N—oo 2

which yields that
1+e€

dimy Too(y) < s = ————.
miloe(7) € 8= 255

Letting ¢ — 0, we obtain that dimy foo(y) <s= +2, as we want.

Case Il : v = oo. In this case, we will show that dimy foo(oo)

0 <e<1,let B > 1 large enough such that

= 0. In fact, for

=1 1
Fe= Z j(B+2)e < Stert (5.13)
j=2
Note that
cNU U Ti(on, - om), (5.14)
N=1n=N (o1,,00)ENZ,
where J/ (o4, - -, 0,) is defined as
J (o1, ,04) = U Li(oy, - o0, k). (5.15)
k>(o1--0pn)B
Then
23n+4
|J7{L(O-17..‘ >Un)| = Z |In(0-1a"' agn7k)| S —B+2’
k>(o1-0n)B (01 O'n)
and also

1

| T (o1, o) < B
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By (5.14), we see that for any 6 > 0
H5(Loo(00))

< . . ! . €
_l}\rfllloréfz Z | (01,5 0n)|

n=N (o1, ,an)GNg2

> 1
. . Tne
Shpinf) I D, oy

(01,+,00)ENL,

o

=liminf » (27P.)"
N—o00
n=N
. 1
<liminf — =0,
N—o00 on

which implies that dimy foo (00) < e. Due to arbitrariness of e, dimy foo(oo) = dimy ', (c0) =
0.

]

Lemma 5.1 has the following corollary. Consider the set of all real numbers x in [0, 1)

whose partial quotients {b,,(x)},>; tends to infinity as n tends to infinity:

{z e (0,1)\Q: nthoiO by (z) = oo} (5.16)
Corollary 5.2.
dimpy{x € (0,1)\Q: li_)m by(r) = 00} = %

Proof of Corollary 5.2. By setting v = 0 in Lemma 5.1, it follows that
1
dimpg{z € (0,1)\Q: lim b,(x) = 0o} < dimy T (7) = 5
n—oo

Consider the set E({¢"}, {e¢"}) in (3.11) then

dim{ € (0.1\Q: lim b, (2) = o0} > dimy E({e"}. {"}) = %
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By Lemma 5.1, we obtain

1

(5.17)

With the desired lower bounded in (5.2) and (5.17), the proof of Theorem A is completed.
We have the following corollary as a consequence of Theorem A, which gives a full

description for the growth rate of digits of the BCF expansion.

Corollary 5.3 (Growth of digits in BCF expansion). Let ¢ : N — R be a function such

that lim,, o, ¢(n) = oco. Then

i o logb, 1
dimy{x € (0,1)\Q: nh—>r20 ke 1} = m7
where & is defined as
¢(n+1)

& == limsup

oo G(1) 4+ 6(n)

Proof of Corollary 5.3. The lower bound is obtained by letting s,, = t,, = 2¢®™ in Proposi-
tion 3.1. For the upper bound, let @(n) =3 1_, ¢(k). Then 1 is increasing and @(n)/n —

00 as n — oo. Moreover,

fim logby(x) _ | — lim log by () +/-\~~—|—logbn( ) _ L
Hence
1
dimy {x € (0,)\Q: 7}13)10%;()@ = 1} < dimy E5(1) = 3—11- L
where B is given by
T (R ) . on+1)
b= hgiilip—qz(n) =1 +1111111>s(,>13p S+ o) 1+¢.

Therefore, the desired upper bound follows.
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6. Proof of Theorem B

Before proving Theorem B, we first give several useful lemmas. Write II,,(x) =

bi(x)---by(z),leta,c € (1,00). Set
D(a,c) ={x €10,1) : T, (x) > a* forim.n > 1}

and

D(a,c) ={x €[0,1) : Il (x) > a* foralln > 1},
where “i.m.” denotes “infinitely many”.

Lemma 6.1. Forany d € (1,¢), ifr € D(a,c), then
I, 1 (2) > max{(IL,(z))% "} forim. n > 1. (6.1)

Proof of Lemma 6.1. Given any m € N, since d < cand z € D(a,c), we can find &k > m

such that

and Il (z) > a

ckdmfk

I, () <a

ckdn—k

Define f(n) = a , then

k

IL,(z) < f(m), IIx(X) > a® = f(k).

Choose the largest n such thatm < n < kandIl,(z) < f(n). There are two cases: n = k—1

if II;(x) < f(i), for all i withm < i < k, orn < k — 1 otherwise. In either case, we have

M1 () = f(n+1) = (f(n)* > max{(IL,(2))",a”""}.

Lemma 6.2.

— 1
dimy D(a, c) = dimyg D(a,c) = 1
c

Proof of Lemma 6.2. The lower bound of dimy D(a, ) is obtain by setting s, = t,, = a¢" in
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Proposition 3.1:

v, logt 1
dimy D(a, ¢) > liminf n+Zk 1208k = .
n—oo 2% 07 logsy —logt,y  c+1

As for the upper bound, we put here an covering argument. Fix d € (1,¢) and s € (0, 1), for

any x € D(a,c), and for i.m. n > 1, by Lemma 6.1
My (2) > max{(I, ()%, a™ "} > (T, ()=
Then D(a, c) is covered by the limsup set

D(a,c) C ﬂ U {x €10,1): bpya(z) > (Hn(x))‘gd_lc(l_s)dnﬂ} (6.2)

Write
Jn(O'l,-.. ,O'n>2 U In+1<0'17~.. 7Un,j)
j2(01-~~an)8dflc(1fs)dn+1
Then

“NU U Jul01-+100)

N=1n=N (o0 n)ENT

which means that for every N > 1, D(a, ) is covered by
{Jn(o1,-++ ,04): (01, ,0,) €EN" n> N}

Note that

|Jn<017 e ,O'n)|
= Z |]n+1(0-17"' 70n7j)|

jz(o-l...o-n)sd—lc(lfs)d”Jrl

23(n+1) 1

= 2 I

0,
j>(010p)sd=Lc(1=s)dnHt n) J
93(n+1) 2 93n+4

= (0'1 <o O'n)2 (0'1 s O'n)Sd_lc(l_S)dn+l - (0’1 .. O'n>3d+lc(1—s)d"+1 :

Now for any e < 1 sufficiently small, take ¢t = Sldfl > 0, then for any 6 > 0, there exists
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M > 1 such that

|Jn(01, -+ ,0,)| < d foralln > M and (04, -+ ,0,) € N".
We estimate:
5(D(a,c))

Shnrggvlfzz Z |Jn((717"' ’UN)|t

2(3n+4)t
<
limin Z ) P e T

N (o1, ,0n)EN?" n>N

~liminf > S =
N

Let 0 — 07, it follows that %'(D(a, c)) = 0, then dimy D(a,c) < t = +£<. Next let e —

0%, s — 17, then dimy D(a, c) < dL Finally let d — ¢, then dimy D(a, c) < cj+1 O

Remark. Together with Lemma 6.2, since
{x €[0,1) :by(z) > a forim.n>1} C {z €[0,1): 1L, (z) > " forim.n > 1},

we also deduced:

1
c+1

dimp{z € [0,1) : by(x) > a*" foralln > 1} = dimy{x € [0,1) : b, (x) > " forim.n > 1} =

Now let us prove Theorem B. When a = 0, since

Ey(a) C Ey(a) C Ey(a),

and (5.1), it follows that

Fw(U) = Ew(o) =L

Now assume 0 < o < oo. Also since logb = liminf,_, . log¢(n)/n > 0, we may assume

b>1.

6.1 Hausdorff dimension of F'(«)
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6.1.1 Upper bound

For z € Ey(a), when a € (0, 0), we see that I, (z) > e*¥(/3 holds for infinitely

many n; when o = oo, we see that IT,,(z) > ¢*¥(™ holds for infinitely many n. So
Eyla) c {zx €0,1): M,(x) > A¥™ forim.n > 1} (6.3)

for some A > 1. This leads to study the Hausdorff dimension of the limsup set.

Lemma 6.3. Let A € (1,00). Write

F(y) = {x €[0,1) : I, (x) > A¥™ forim.n > 1}. (6.4)
Then
dimy (1) = b%

where b € [1, 00| is defined as in Theorem B.

Proof of Lemma 6.3. The proof is divided into three parts: b = 1,1 < b < 00, b = 0.
For the case b = 1, since ¢(n)/n — 0o asn — oo, we get that F'(¢)) is a subset of 1.
By Lemma 3.3,

_ 1 1
imy F(¢) < dimg I = = = ——.
dimy F(¢)) < dimy [T S|

For any € > 0, by definition of b, we obtain ¥)(n) < (1 + €)™ for infinitely many n, and so
D(A,1+¢) C F(¥).

It follows from Lemma 6.2 that dimy F(¢)) > 2}%. Letting ¢ — 0T, we get the desired lower

bound.

For the case 1 < b < o0, let 0 < € < b — 1. By definition of b, we have:
). ¥(n) < (b+ €)" for infinitely many n,

ii). ¥(n) > (b — €)™ for sufficiently large n.

31



Then

D(Ab+¢€) C F(v) C D(A,b—e).
Applying Lemma 6.2, we see that

1

1 _
< dimy F S —
HMH (¢)_b—e+1

b+e+1—

Since € is arbitrary, we obtain dimy F' () = -
For the case b = oo, let C' > 1 be large, we have 1)(n) > C™ for sufficiently large n,
and so

F(y) c D(A,C).

It follows from Lemma 6.2 that dimy F(¢)) < 14%0 Letting C — oo, we get that dimy F(¢)) =

0. ]

Combining (6.3) and Lemma 6.3, we deduce that

1

dimy E <
M ”’(a>—b+1

6.1.2 Lower bound

For the lower bound, when o < oo, we construct a subset E({s, }{t,}) of E(c), and
use Proposition 3.1. More precisely, we need to construct for each € > 0 a sequence {s, }n>1

satisfying the following conditions:

a).
1 R |
lim sup ogsi - 08 _ (6.5)
n—00 ¢(n)
b).
1 S |
fim 285 08 (6.6)
n—oo n
c).
log s,
lim sup 08 Fnt1 <bte—1 (6.7)

nooo logsy+---+logs,
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Then set t,, = s,, for each n > 1, it follows that

dimy Ey(a) > dimy E({s, }{t,})

ol
liminf 2= 108 %
n—oo 2% 7 log s, — log s,i1
. log s,11 -1 1
=(2 + limsu .
2+ n_>oop10g51+---+10gsn) — B+1+¢
To show this, first set
e RO+ < | < (6.8)
Cip = .
7 e¥ (k) k>j7+1
for each j, k € N. Set
P ol — ayp(1)(b+e)7 1 Jap(2)(b+€) 2 Jap(i-1)(b+e) (i) Lav(i+1) |,
bj ég{{c]k} inf{e e Lo e e e o b
(6.9)
¥ (k)

Since — 00, ¥(k) — oo and e®¥®) — oo as k — oo, the infimum in (6.9) is obtained,

k

and denote ¢; the smallest index the infimum in infi>,{c; } is obtained:
t; =min{k > 1:¢;, =b,}. (6.10)

Claim. Forall 5,k > 1,
D). cjx < ¢ < 2 and by < by < BYT
). tj41 >t;andt; — oo as j — oo,

iii). b; < e™¥U) and by, = V(1)

g 5o as j — oQ.

Now we prove the claim item by item. For i), fix j > 1, when 1 < k < j

cOV(R) b+ ™F Lo (R)(be) R jonp(k) (bhe)T -+

—_ —_ Y

and when k > j + 1

eV (k) < ot (btl) < pap(kt1)(bte)
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cbte

The quantities in the inequalities correspond the expression of ¢;k, 0 ¢ x < ¢j16 < €15,

and their infimums satisfy the same relation: b; < b;; < b;’-“, as we want.

Forii), fix j > 1,whent; = 1,¢;1; > 1 =1t;. When 2 <t; < j, note that ¢ = ¢; if and

only if
Cji < Cjk Vk < t]’ and Cji < Cjk vk > tj. (611)
So
(HROHI b)Yy <y
implies

VRN bHITHITE _ (qab(R) b e - (av(t) (b T ore — cavt) 6T g <y
sinceb+e€>1+¢€> 1. It follows that ¢;,; > ¢;. Whent; > j + 1, Vk < {;

Cit1t; = Cit; < Cik < Cjylk

there is ¢;11 > t;. If lim;_, . t; # oo, since {t;};>; is increasing, there is t; = N,Vj > 1,

for some N € N. Then when 7 > N

) >y = gy = PR,
3] — sbj 5

It follows that for all j > N

logi)(N) — N log(b + €)
J

+log(b+¢€) < logji(j) (6.12)

Letting j — oo in (6.12) yields liminf;_, % > log(b + €) > logb, a contradiction to
the definition of b. So ¢; — oo as j — oo, as we want.
For iii), for all j > 1, there is b; = infy>1{c;1} =< ¢;; = e*¥Y). Note that ¢;;, >

1,Vy, k> 1. Ift; < j,foralll <k <t

o g = e (R)(b+0)T T _ (eaw(k)(b-l-e)j*k)(b-&-e)ti_j _ (cjk)(bJre)*rj > (ciy )(b+e)fa"j —
J ’ ’

= Ct; ;>

J
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forallt; <k <j

)(b+e)k—f > (b4-e)F b

i
= (Cj7tj )(b+6) ’

= (Ctjytj) > Ctjvtj’

Ct]'Ji‘ = (Cj,k‘

and for all £ > j

)(b+e)j -

j
Ctik = Cjk = Cjt; = (Ctj,tj > Cjt;e

It follows from (6.11) that ¢;, = ¢; and b;, = e®¥() and in fact:

by, =ty ==t

Ift; = j, then

by, = by =iy, = ;5 = eV(d) — pat(t;)
Ift; > j,thenforall1 <k <

ap(k)(b+)' " 5 jonp(k) (b+e)TH

Ctj bk = € = = Cjk > Cjit; = Ciyty
forall j <k <t

k) (b+e)'i Tk k
ey = eVWOTITT > VW) — o) > g

= Ct;t;>
and for all & > t;
Ctjﬂk = eaw(k) = Cj’k 2 ijt]' = Ct]"tj'
Thus b, = e*¥(%), and in fact
tj =141 = te,,
as we want.
For iv), use the fact
Q; bj . akbj,k
If = — 00, = — o0, then ¢; == min {——} — oo, (6.13)
J J Isksj~ ]
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as j — oo. Note that

o8, _ 1080y _ P02 9G04 $0) w4y

J =S J J J J

tends to infinity if Ogc’ £ = 0o Vk > 1 uniformly, as j — oo. Seta; = ¥(j),b; = (b+ €)?

in (6.13),there is

_ qinfle;, Y9 YUTD s g, Y0) U+
J J J Jj+1

logb;
089 )

Given M > 0, by (6.13) and M — o0 as j — 0o, can choose N € N such that for all

Jj >N, therelscj>Mand¢ > M,alsosince j +k>7> NVk > 1,

YUY L U+

) T M-, 6.14
J+1 J+2 ( )

and thus loib] > M S0 loib] — 00, as j — 00, and the proof of the claim is completed.

Finally, set s, = ; :’ - = b;. Claim ii) and iii) imply condition a) (6.5),

Claim iv) implies condition b) (6.6) and Claim 1) implies condition c) (6.7). It follows that

dimy Ey(a) > dimy E({sa Htn}) 2 g

and since e is arbitrary,
1
B+1’

dimy Ew(a) >

the desired lower bound.

6.2 Hausdorff dimension of £, ()

Forz € B, (a), when a € (0,00), we see that IT,,(z) > e

large; when o = 0o, we see that IT,,(x) > e*¥(™) holds for n sufficiently large. So
Ey() C{z€0,1): II,(z) > A¥"™ forall n > 1} (6.15)
for some A > 1. This leads to study the Hausdorff dimension of the liminf set.
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Lemma 6.4. Let A € (1,00). Write

F() = {z €[0,1) : I,(z) > A¥™ forall n > 1}. (6.16)
Then
: 1
dimy F(¢) = Bl

where B € [1, 00| is defined as in Theorem B.

Proof of Lemma 6.4. The proof is divided into three parts: B =1,1 < B < 00, B = 00.
For the case B = 1, since ¥(n)/n — oo as n — oo, we get that £'(¢)) is a subset of

IT.. By Lemma 3.3,
1 1

di F < di e ==-=—.
imy F(¢) < dimy 5= B11

For any € > 0, by definition of B, we obtain ¢)(n) < (1 + €)™ for all n > 1, and so
D(A,1+¢€) C F(¢).

It follows from Lemma 6.2 that dimy F'(¢)) > 5—. Letting e — 0T, we get the desired lower

1
24€
bound.

Forthe case 1 < B < oo, let 0 < € < B — 1. By definition of B, we have:
). ¥(n) < (B + €)" for sufficiently large n,
ii). ¥(n) > (B — €)" for infinitely many n.
Then
D(A,B+¢€) C F(v) C D(A, B —¢).

Applying Lemma 6.2, we see that

1
< dimy F

Breri s mEW)s

B—e+1

1

Since € is arbitrary, we obtain dimy F'(¢)) = 5
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For the case B = oo, let C' > 1 be large, we have ¢(n) > C™ for infinitely many n,

and so

EF(y) c D(A,C).

It follows from Lemma 6.2 that dimy F'(¢)) < —=. Letting C' — oo, we get that dimy F'(¢)) =

0.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

1+C~

O

Combining (6.15) and Lemma 6.4, we deduce that

1
B+1
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Appendix

For a function ¢ : N — R that meets the following criteria:

im Y0 _ o (17)
n—oo N
and
I
iminf €Y _ jogp € [0, 0] (.18)
n— oo n

and so b € [1,00]. We aim to construct a function that fulfills conditions iii)’, which is

stronger version of ii1) in Section 6.1.2, and is of independent interest.

Proposition .5. Assume v : N — Ry satisfies the above conditions (.17) and (.18) with
b € [1,00], then there exists a non-decreasing function g, : N — R that simultaneously

satisfies the following three properties:

0.
lim sup gw((g)) —1, (.19)

ii).
fim 221 = o 2

iii) .
lim 20D (21)

Remark. In fact, the function g,(n) we construct in the proof of Proposition .5 satisfies

gy(n) < (n), foralln > 1.
Before we proceed with the proof of Proposition .5, let us state two useful lemmas.

Lemma .6. Suppose v : N — R+ satisfies the conditions (.17) and (.18) with 1 < b < oo,
then for every M € N, 0 < € < b — 1, there exists an integer m* = m*(M,e) > M that

simultaneously satisfies the following two properties.
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Y(m* +n) > (b—e€)"p(m*), foralln > 1; (:22)

Pp(m* —n) > (b+€) "p(m"), forall 1 <n <m”. (:23)

Proof of Lemma .6. Set a real number ¢, = min,>;{¢)(n)}, then it follows follows from
(.17) that ¢, is well-defined. Since ¢(n) > 0 for all n > 1, we have ¢, > 0. Fix M €
N, 0 < € < b — 1 as in the hypothesis, by (.18), we can choose an integer my > M such that

the following three properties are satisfied:
P(mo) < cy(b+€/2)™, (.24)

and

(143 € _ymomM 5 (h 4 e/2)M, (25)

(b+¢/2)

(in other words, (.25) means (b — €)™~ < (b + ¢/2)7™0), and also for all n > my
P(n) > (b—€/2)". (:26)
Meanwhile, we further take an integer N > m with
Y(mo)(b— )" < (b—¢/2)" (:27)

holds.

Let us now proceed with the proof of Lemma .6 by contradiction. Suppose, in contrast,
that there is no such m* > M satistying the properties (.22) and (.23) simultaneously, then in
the rest of the proof, we recursively construct a sequence of integers {m; } ;>0 with m; > M
for every 7 > 0.

Starting from m and assume by induction for each j > 0, integers mg > M, --- ,m; >

M are already defined, the integer m; is defined by:
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i). If there exists some 7 > 1 such that ¢)(m; 4+ n) < (b — €)™ (m;), then define m;; ==

m; + n; where n; > 1 is the minimal positive integer such that

P(my +mn;) < (b—¢€)"P(my). (.28)

ii). Else if for all n > 1, ¢y(m; + n) > (b — €)"(m;). Due to our assumption, (.22)
and (.23) can not satisfy simultaneously for m;, but m; already satisfies (.22), so m;
dissatisfies (.23). Then define m;; := m; + n;, where 1 < —n; < m,; is the minimal

positive integer such that

Y(m; +1n5) < (b+ €)™ (my). (:29)

Claim (A). Let m;, be the integer defined in either item 1) or item ii) above, then
M < mijiq < N, (30)

recall N was defined in (.27).

Once Claim (A) is proved, one can apply it recursively so that the sequence {m;};>¢ is
defined, and M < m; < N for every j > 0.

We proceed the proof by contradiction. Suppose on the contrary that m;,; < M, by

our construction mg > M, --- ,m; > M. Set
R= > mandS:=— > n, (31)
1<j,m;>0 1<j,mi<0

then m; 1 = mo + R — S < M with convention that R = 0if {i > 0:4 < j,n; > 0} is

empty (similar for 5). It follows that

Y(mjyr) < (me)(b—€)F(b+e)™° (by (.28),(.29) and (.31))
< ah(mg) (b — €)= (since b — e > 1)
= 1h(mo) (b — €)™+ 7™ (32)
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And

Y(mo)(b = )™

< (mo) (b — €)™

< (mo)(b +¢€/2)7™ (by (:29))
< ¢y (by (:24))

This is obvious a contradiction to the minimality of c,.
Next we proceed by contradiction the proof of the other half of Claim (A): m;; < N.

Suppose otherwise m ;1 > N, then it follows that

(mj1) < p(mo)(b— €)™ (by (32))
= lmg)(b — €N (b )
— € mj+1—Nw
< %(mo)(b —¢) Tmo) (by (:27))
< (b—€/2)mit, (since mj41 > N)

This is a obvious contradiction to (.26) and we thus obtain (.30), and completes the proof of
Claim (A).

Due to (.30) in Claim (A), there is M < m; < N for every j > 0 and {m;};>; is a
bounded infinite sequence taking value in N, then by the pigeonhole principle, the sequence
{m;},;>1 must take repeated value for different indices, say there exist 0 < 7* < j* such that

* *
m; =mj. Set

R = Z ngand S == — Z ne, (.33)

i <t<j*mi>0 i+ <t<j*mi<0

then m« = mj« = m;» + R — S and thus R = S > 0. However it follows that

U(mg) = (my)
< p(mi)(b— (b + )5 (by (.28),(:29) and (.33))
= (my) b—e) (since R = S)
< h(myx). (since R > 0)

This is absurd, consequently there is some integer m* = m*(M, ¢) satisfying the properties

(.22) and (.23) simultaneously, as we want. O
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Analogous to Lemma .6

Lemma .7. Suppose v : N — Ry satisfies (.17) and (.18) with b = 1, then for every
M € N, € > 0, there exists an integer m* = m*(M,e) > M satisfying the following two
properties simultaneously:

i).

Y(m* +n) > m tn

w(m™) foralln > 1; (.34)

Y(m* —n) > (1+4+¢e) "p(m*) forall1 <n <m”. (.35)

Proof of Lemma .7. Set ¢, = min,>{¢)(n)} > 0. Fix e > 0 as in the hypothesis and
without loss of generality we can fix M € N, with M > 2/e. By (.18), we can choose an

integer mg > M such that the following two properties are satisfied

(143 € _ymoM 5 (14 ¢/2)M (.36)

(1+¢€¢/2)
and
P(mp) < cy(l+4€/2)™. (.37)

Meanwhile, by (.17), one can further take an integer N > m such that

eln)  00mo) goralin > N (.38)

n mo

Let us now proceed the proof of Lemma .7 by contradiction. Suppose in contrast that
there is no such m* > M satisfying the properties (.34) and (.35) simultaneously, then we
will recursively construct a sequence of integers {m; } ;>o. The sequence of integers {m; } ;>

we construct satisfies the following 3 properties:

Claim (B). For each j > 0,

1). If m; < my, then
P(my) < (1+ €)™ (mo); (:39)
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2). If m; > my, then

$(my) < —Lp(mo); (40)

0
3).

M <mj < N. (41)

Recall that N was defined in (.38).

Let us begin the construction {m,};>¢: we start from the integer m, defined above,
then properties (.39) and (.40) in Claim (B) are trivially true for m, and by our construction
of mg, (\41) is also true. In particular, my > M, and we construct m; using this property.
If there exists some 7 > 1 such that (.42) holds for m; = m, we use item 1) below to
define m, otherwise if no such n exists, since my > M, then by our assumption, there is no
m* > M satisfying the properties (.34) and (.35) simultaneously, we can define m, by item
i1) below.

Next, we prove Claim (B) for m; using the fact Claim (B) is true for m (the details in
this step will be given in the following paragraphs). In particular, m; > M, then again in
the same manner we can define ms, and prove Claim (B) for m, using the fact Claim (B) is
true for m;. We repeat this process to construct m; for each j > 0.

To be more precise, assume that we have already defined integers my, - - - ,m;, and we
have also verified Claim (B) for my, - - - , m;, in particular m; > M. Then we define m; .,

and verify Claim (B) for m, ;.

m;i+n

i). If there exists some 7 > 1 such that ¢)(m; +n) < =Z=1)(m;), then define m;;, =

m; 4+ n; where n; > 1 is the minimal positive integer such that

B(m +ny) < T ), (42)

m;

ii). Elseifforalln > 1, ¢ (m;+n) > m;—“%(mﬂ Due to our assumption, (.34) and (.35)
do not satisfy simultaneously for m;, but m; already satisfies (.34), so m; dissatisfies

(.35). Then define m;;; = m; + n;, where 1 < —n; < m; is the minimal positive

45



integer such that

Y(m; +ny) < (14 €)™ (m;). (:43)

We use item 1) or item ii) defines m,,. Let us proceed the proof of Claim (B) for m,4
item by item, using the fact Claim (B) is true for m;.

Step I We prove (.39) for m;;1. One key observation used in the following proof is
when m; < my, since Claim (B) is true for m;, in particular, (.39) holds for m;. Also as
mj+1 < mg and n; # 0, we distinguish the following 3 cases:

Case LI.1: (m; < mg and n; < 0). In this case, m;1; = m; +n; < m; < my, since
(.39) in Claim (B) holds for m;, it follows that

P(mjp) < (14 €)"p(m;) (since n; < 0, and using (.43))

<

(14 €)™ (14 €)™ ™0 (my) (since (.39) holds for m;)
= (14 €)™+ ")(my),

so item 1) (.39) in Claim (B) holds for m;;, as we want.
Case 1.2: (m; < mpand 0 < n; < my — m;). In this case, mj; 1 = m; +n; <
m; + moy — m; = my, since (.39) and (.41) holds for m, in particular m; > M, it follows

from Bernoulli’s inequality?

P(mjy1) < %w(mj) (since n; > 0, and using (.42))
J
< (14 1/mj)™p(m;) (using Bernoulli’s inequality)
< (1+¢)"p(my) (since m; > M > 2/e)
< (T4 €)™ (14 €)™ m0h(my) (since (.39) holds for m;)
= (14 €)™+ ")(my),

so item 1) (.39) in Claim (B) holds for m;;, as we want.

Case 1.3: (mj > mg and n; < mg—m; < O) In this case, mijy1 = my +n; <

*Bernoulli’s inequality: for real numbers = > —1,a > 1

1+2)">1+ax. (44)
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m; + mgy — m; = my, since (.40) holds for m, it follows that

P(mjrr) < (1+€)(m;) (since n; < 0, and using (.43))
< (14 e)mtmimmo(1 4 ¢/2)m0" mﬂzﬁ(m]) (since mo — m; < 0)
< (14 e)tmimmo(] 41 /myg) (M m;) (since mg > M > 2/e)
< (14¢€)m +mj_m0@@/}(mj) (using Bernoulli’s inequality)
J
< (14 €)™ tmi=m04)(my), (since (.40) holds for m;)

so item 1) (.39) in Claim (B) holds for m;, as we want. Thus Step I: the proof of item 1)
in (.39) for m;, is completed.

Step II Next we prove item 2) (.40) for m;;,. By hypothesis, we always have m;,; >
mo when proving item 2). As n; # 0, we also distinguish the following 3 cases:

Case IL.1: (m; > mg and n; > 0). In this case, m; 1 = m; +n; > m; > my, since

item 2) (.40) in Claim (B) holds for m, it follows that

P(mjpq) < Wzﬁ(mj) (since n; > 0, and using (.42))
J
< wﬁw(mo) (since (.40) holds for m;)
m; mo
= mj+1w<m0)7
mo

so item 2) (.40) in Claim (B) holds for m;;, as we want.
Case IL2: (m; > mgy and my — m; < n; < 0). In this case, mj; 1 = m; +n; >

mj + my — m; = my, since item 2) (.40) in Claim (B) holds for m;, it follows that

Y(mjyr) < (1+€)(my) (since n; < 0, and using (.43))
< (1+4¢€/2)"9( ]) (since n; < 0)
<(1+ l/m]+1 i) (smce mjs1 > mo > M > 2/6)
<(1—-—— (using Bernoulli’s inequality)
j+1
< mﬂi L(me). (since (.40) holds for m;)
0

so item 2) (.40) in Claim (B) holds for m;;, as we want.

Case IIL.3: (m; < mgand n; > mo—m;). In this case, m;, = m;+n; > m;+mo—
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m; = my, since item 1) (.39) and 3) (.41) in Claim (B) holds for m, in particular m; > M,

it follows that

since n; > 0, and using (.42))

Y(mjy1) <

< LI (14 1/my)"0 M (my) using Bernoulli’s inequality)

(
(

< LI (1 4 )Mo "ith(m;) (since m; > M > 2/e)
(

< m; +7’Lj
> Mo

- il 1/}(7710),
mo

(14 €)™ ™i (1 + €)™~ ™) (my) since (.39) holds for m;)

so item 2) (.40) in Claim (B) holds for 1,1, as we want. Thus Step II: the proof of item 2)
in (.40) for m;, 1s completed.

Step III We prove item 3) (.39) for m 11, using what we have just proven in Step I and
Step II, that is, item 1) (.39) and item 2) (.40) holds for m ;.

First we show m;,; > M, and the proof is by contradiction: suppose otherwise if
mjr1 < M < my, it follows that
1+ €)™t 09 (myg) (since m.1 < mg and by (.39) for m;)

<
< (14 e)M7m04)(my) (since mj 1 < M)

Y(mjsa) < (
(

< (L4 ¢/2)M7™(1 + €/2)" M (mo) (by (.36))
= (

14 ¢/2)74(my)
" (by (.37))

A\

a obvious contradiction to the minimality of c,.
Finally we show m;; < NN, and the proof is also by contradiction: suppose otherwise

ifmj 1 > N > my, it follows from (.40) for m;; that

¢(mj+1) < mT:LJ(Zl ¢(mo)>

this is a obvious contradiction to 1(n)/n > 1(my)/my forall n > N, thus m;; < N. And
we have completed the proof of Claim (B) for m ;.

Therefore by (.41), the sequence {m; };>1 is bounded with infinite many terms and takes
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value in N, then by the pigeonhole principle, the sequence {m; } ;~; must take repeated value

for different indices. Say there exists 0 < ¢* < j* such m; = mj. Set
R:= Z n;and S == — Z ny, (.45)
i* <t<j*,ne>0 i* <t<j*,ne <0
and it follows from m; = mj = m; + R — S that R = S > 0. In fact for index ¢ > 0, when

n; > 0, it follows from (.42), Bernoulli’s inequality and the fact m; > M that

mt+nt

Y(my +ny) < (my)  (by (42))

< (1 + 1/my)™1p(m,) (Bernoulli’s inequality)
< (1+€/2)"(my). (since my > M > 2/e) (.46)

Then analogous to Lemma .6, it follows from (.43), (.46) and (.45) that

¥(m;) = ¥(m])
< p(m})(1+€/2)%(1 + €)= (by (43), (46) and (.45))
:qp(mf)(lltf?)R (since R = 5)
< P(m)), (since R > 0)

which is absurd. So there is an integer m* = m*(M, €) > M satisfying the properties (.34)

and (.35) simultaneously, and proof of Lemma .7 is completed. O
Based on Lemma .6 and .7, we are now ready to prove Proposition .5.

Proof of Proposition .5. The main part of the proof is to construct a non-decreasing function
g : N — R. We will divide its construction into three different cases, namely, b = co,1 <
b < oo and b = 1. We verify each case individually. To achieve this, we divide the construc-
tion into three cases: b = 00,1 < b < oo and b = 1. The first case is easy, and the rest two
are more difficult but shares a common pattern.

Case I(b = 00): In this case there is

lim 108%™ _ (47)

n—00 n
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We first construct interleave sequences of indices {7, };>1, {n;};>1 inductively satisfying
njy1 > Njp > n; > njforall j > 1. More precisely, {n;};>1 is a modification of {7} j>1.

By (.47), choose n; € N such that log(n)/n > 1 for all n > ny, then we further take n,

such that
1 1
ogy(m) _ min{ ogw(n)} —
ny n>ny n
Next assume by induction that for j > 1, ny,ny,--- ,n,;_1,n,_; are already defined (but n;

and n; are not), then n; and n; are defined as follows: by (.47) choose n; > n;_; such that

for all n > n;, we have log(n)/n > j. Choose n; > n; such that

logy(ny) _ . {log@b(n)} —a >
n; n>n; n o=
Take
Gp(n) = e (.48)

forn; < n < njpi. Ifny = 1, we have defined g, (n) for alln > 1. If ny > 1, we
choose appropriate value for g,(n) such that g,(n) < 1 (n) and g,(n) is non-decreasing
when 1 < n < n;. For example, we can take

gu(n) = min {y(j)},

1<j<n

for 1 < n < n,. This completes the definition of g,.

Let us verify that g constructed in (.48) satisfies the properties (.19), (.20) and (.21) in
Proposition .5. The sequence {7, };>; is non-decreasing, so {«;};>1 is non-decreasing and
thus g, is non-decreasing. For any n > 1, if n < ny, then gy(n) = minj<;j,, {¥(j)} <
1 (n); otherwise n > ny, then there exists some j > 1, such that n; < n < n;i, then it

follows from the definition of g, (.48) that

Therefore for all n > 1, g, (n) < ¥(n). Also it directly follows from the definition of «;
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that g(n;) = 1(n;). We conclude that (.19) in Proposition .5 is verified.
For j > 1and n; < n < nj;i, there is

gy(n+1)
gy (n)

> e > el
and consequently (.21) is true. For all n > ny, g,(n) > €”, which proves (.20). Therefore,
we obtain Proposition .5 in Case 1.

Case II(1 < b < 00): Let us briefly state the outline of the proof. The construction of
g consists of two parts and corresponds two types of indices that need to to be determined.

In Part 1, we determine the boundary indices n;: we use Lemma .6 to construct recur-
sively a strictly increasing sequence of integers {n;};>( and interpolate g(n;) = 1(n;) for
all j > 1.

In Part 2, we fix a positive integer j and then fill the remaining values of g, (n) inside
[nj,n;+1]. Determine the first internal index r; by (.53) as a minimizer: n = r; minimize

(s <-49>

when n varies in [n;, n;41]. Then define g by (.54), a geometric progression starting from
g(n;) with common ratio (.49). If n; 4, reaches n;1, we stop, otherwise we can similarly
find ro, - - -, finitely many internal indices and define g in each interval determine by adjacent
inter indices as a geometric progression with proper common ratio. Let us proceed the proof
of the construction.

Part 1 In this part, we define the boundary indices {n;};>1. Let ng > 1 be a positive
integer such that ¢)(ng) = min,>;{¢(n)} and choose a constant A > 1/(b — 1). Starting
from ng, assume by induction that for j > 1, ng,--- ,n;_; are already defined, then n; is
defined as follows: take M/; = n,_; ande; = 1/jA in Lemma .6, define n; = m*(Mj, ¢;) =
m*(n;_1,1/Aj). Since n; = m; > M; = n;_,, we deduce that {n;},>¢ is strictly increas-
ing. The construction of boundary indices is completed.

Define gy (n) = ¢(ng) for 1 < n < ny and gy4(n;) = 1(n;) forall j > 1. Up till now,
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we still need to define g, (n) forn; < n < njyy, forall j > 1.
Part 2 To this end, we further define the internal indices r, - - - and the remaining values
of gy in this part. They are defined as follows: fix each integer j, note that properties (.22)

with m* = n; and (.23) with m* = n,; in Lemma .6 are satisfied, more explicitly:

1). Foralln > 1,

W(ng +n) > (b . jiA)"¢(nj); (.50)
ii). Forall1 <n <mnji4,
1 -n
Yy —n) > <b + m) Y(njt1)- (.51)

We use these two properties (.50) and (.51) to construct s;, and define the value of g, for n
between n; + 1 and n; + s; as follows. It follows from (.50) and the mean value theorem

that for each 0 < n < n;;; — nj, there exists a unique real number ¢;(n) > —1 such that

_ ti(n)\"
Yy ) = (b+ =37 ) 0lny), (52)
and by (.51) t1(nj11 —n;) < 1. Choose
ty = 1§n§rgjl_£11_nj{t1(n)} € [-1,1] (.53)
with
t1 \"
vy 1) = (b4 +5) ()
for some 1 < 7 < nj; — n;. Define
o t_l n—n; 4
guln) = (b+ )" o) (54)

forn; <n < nj;+r. If n; + 1 = n;;1, we stop, otherwise we continue the construction.

In the latter case, by (.52) and (.53)

e

’QD(TLj‘FTl—i‘n):(b—i‘ jA
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ty \"1tn
> (b+ j—A) v(ny)
t1\"
= (b + j_A) Y(n; + 1)
forall 0 < n < mj41 — n; — 1, and thus for such n, there exists a unique real number

to(n) > t; such that

tg(n)

w(nj +1ry + n) = (b —+ ]—A>nw(nj + 7”1),

and by (.51) t3(nj+1 —nj + 1) < 1. Choose again

ty = min {t2(n)} € [t1,1]

1<n<nji1—nj+m

with
Y(nj;+1r+re) = (b + %)T2¢(nj +71)
for some 1 < 7y < njy; —n; + 7. Define
ty \"ni T
gy(n) = (b + ]_A> Y(n; + 1)

forn; +r <n <n;+r +re.

We repeat this process until n; 1 = n; +r + - - -+ r, for some s > 1, and the process
ends in finite step since for each & > 1, 7, > 1. The construction is completed with g(7,41)
in the end coinciding the original definition g(n;11) = ¥(nj11).

Now we verify {g,(n)},>1 satisfies the properties in Proposition .5: g¢,(n) is non-
decreasingasb—1/A > landt, > --- > t; > —1. Setry = 0 for simplicity, then for every
n; <n < n;y,thereissome 1l < k < ssuchthatn;+ro+-- 1,1 <n < n;j+ro+---+r,
then by minimality of ¢

t n—m;j—ri——Tk_1
’“) ] Y+ i+ F i)

gu(n) = (b+ i
< (b n t(n —n; + 7“‘1 4+ 4 rk1)>nnjrl...rk1
JA

Y(nj+ri+ -+ rp-1)
=P (n).
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Since {n,};>1 is strictly increasing and g(n;) = 1 (n;) for all j > 1, property (.19) in

Proposition .5 is proved. It follows from —1 < ¢; < --- <. <1 that

po L gulntl 1

JAT  gy(n) T jA

foralln; <n < mnjyand j > 1. So gy(n + 1)/gp(n) — b, and g, (n) eventually grows
exponentially fast so g, (n)/n — oo, which proves properties (.20) and (.21).

Case III(b = 1): The idea of the construction of g is analogous to the case 1 < b < oo.
The reason we divide Case II and Case 111 into different cases is that when b = 1, no matter
how small € is, b — € is no longer larger than 1, in which case the construction of g in Case
II is invalid since g in (.54) is decreasing. We make a correction to g by multiplying a linear
term n/n; in the expression of g in (.59). The rest of the construction is similar to Case II.
Let us proceed the proof of the construction.

Part 1 In this part, we define the boundary indices {n,},>1. Let ny > 1 be such that
Y (np) = min,>1{1(n)}. Starting from ny, assume by induction that for j > 1, ng,--- ,n,_4
are already defined, then n; is defined as follows: take M; = n,_; and ¢; = 1/j in Lemma
.7, define n; = m*(M;,€;) = m*(n;_1,1/7). since n; = m; > M; = n;_, we deduce that
{n;};>0 is strictly increasing.

Define gy (n) = ¢(ng) for 1 < n < ny and g4 (n;) = ¢ (n;) forall j > 1, and we still
need to define g, (n) for n; < n < n;iq, forall j > 1.

Part 2 To this end, we further define the internal indices r, - - - and the remaining values
of g, in this part. Fix j, properties (.34) with m* = n; and (.35) with m* = n;; in Lemma

.7 are satisfied:

1). Foralln > 1,

U +m) > ), (.55)
11) for 1 S n S Njt1,
1 -n
wmﬁl—n>>(1+;;;) P(ngia). (.:56)
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It follows from (.55) that for each 0 < n < n;i; — nj, there exists a unique real number

t1(n) > 0 such that

Vlng+n) = (1+ j(ﬂ)”n* “ih(n;), (57)
and by (.56) t1(nj11 —n;) < 1. Choose
ty:=  min {t;(n)} €[0,1] (.58)

1<n<njy1—ny

with

131 >T1nj + 71

¢(nj+7“1)=<1+j+1

for some 1 <7 < nj; — n;. Define

t1 ) n—n; n

guln) = (1+ 7)) (:59)

forn; <n < n; +ri. If n; +r; = n;1, we stop, otherwise we continue the construction.

In the latter case by (.57) and (.58)

t1(7’1+n) 7"1+"le+7’1+n
n; 41 +n :<1+.—) S
w( J 1 ) i1 ;
<1+ .tl >T1+”n]’+T1+7’L
j+1 TL]'
:<1+ 'tl >nnj—|—r1—|—n
j+1 le+7’1

w(nj + Tl):

forall 0 < n < nj;1 — n; — 1, and thus for such n, there exists a unique real number

ta(n) > t; such that

t2(n)>nnj +ry + nw<nj —|—T’1>,

n;+ri+n :<1—|— .
w(] ! ) Jj+1 n; +r1

and by (.56) t2(n;+1 —nj +r1) < 1. Choose again

ty = min {t2(n)} € [t1,1],

1<n<njii1—nj+r
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with

to )7’27’Lj+7‘1+7“2

n;+ri+r :<1—|— .
w(J 1 2) ji+1 n; + 1

Y(n; + 1)

for some 1 < 7y < nj1 —n; + 7. Define

t2 > n—n;—ri n

J nj+7"1¢(nj+rl)

guln) = (1+

forn; +m <n <n;+r;+rs.

We repeat this process until n;; = n; +ry + - - -+, for some s > 1, and the process
ends in finite steps since for each 1 < k < r, r, > 1. The construction is completed with
g(nj11) coinciding the original definition g(n;11) = ¥(n41).

Now we verify {g,(n)},>1 satisfies the properties in Proposition .5: By minimality of
{t;};>1, gp(n) < 9(n) for all n > 1, and it follows from g(n;) = ¢ (n;) forall j > 1
that property (.19) in Proposition .5 is true. By construction gy (n)/n > (n;)/n; for all
n; < n < n;y1, and thus property (.20) is true. Finally it follows from for all n > 1 and for

some j >0,k >1andt, >0

1§<1+ tr )n+1:g¢(n+1)§<1jL 1 )n+1

j+1/ n gy(n) j+1/ n

that g, (n) is non-decreasing and property (.21) is true, and the proof of Proposition .5 is

completed. [
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