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Markov-Rényi映射的
快速李雅普诺夫指数重分形分析

王郅超

（数学系 指导教师：张一威）

[ABSTRACT]: The concept of the Lyapunov exponent was first introduced
to quantify the rate at which the orbits diverge in a hyperbolic dynamical system,

and the systemswith countably (infinite)many branches and infinite topological

entropy draw much attention. In this case, it was shown that the Lyapunov

spectrum (i.e. the dimension function of the level sets of Lyapunov exponent)

has a non-compact support and a horizontal asymptotic. This leads to the finer

study of the behavior of Lyapunov exponent at infinity. In this paper, we will

determine the (upper and lower) fast Lyapunov spectrum independent of the

thermodynamic formalism for the Rényi map, which in particular has a neutral

fixed point, and it is closely related to the backward continued fractions. We

also prove that the Lyapunov spectrum is continuous at infinity, and calculate

the set of number whose partial quotient tends to infinity. The main technique

established to prove the results above is the existence of calculable cantor-like

subsets in the level sets of the fast Lyapunov exponent.

[Key words]: Fast Lyapunov spectrum, Hausdorff dimension, Backward

continued fractions
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1. Introduction
1.1 Backgrounds

Dynamical systems exhibiting strong hyperbolicity inherently produce a significant de-

gree of mixing. In such scenarios, the orbit structure becomes highly intricate, making it

particularly important to quantify the rate at which orbits diverge.

Lyapunov exponents serve as an important tool for this purpose, describing the exponen-

tial rate at which infinitesimally close orbits of a dynamical system diverge. For a piecewise

differentiable interval map T : I → I , where I is an at most countably many union of closed

intervals, the Lyapunov exponent of the map T at the point x ∈ I is defined as

ε(x) := lim
n→∞

1

n
log |(T n)′(x)|, (1.1)

whenever the limit exists.

According to Birkhoff’s ergodic theorem, for any ergodic T -invariant measure µ such

that
∫
log |T ′|dµ is finite, the Lyapunov exponentε(x) equals

∫
log |T ′|dµ forµ-almost every

x ∈ I . However, the Lyapunov exponent can attain a continuous range of values, forming

an entire interval. This observation naturally motivates the investigation of the complexity

of the level sets of the Lyapunov exponent.

For any α ∈ R ∪ {±∞}, we define the level set of the Lyapunov exponent ε(x) as

J(α) := {x ∈ I : ε(x) = α} . (1.2)

The Lyapunov spectrum is the function that describes how the Hausdorff dimension of J(α)

varies with α, namely,

L(α) := dimH J(α), (1.3)

where dimH denotes the Hausdorff dimension (see Section 2.3 for definition and[1] for more

information).

The Lyapunov spectrum has been extensively studied for several important classes of
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piecewise differentiable maps. The pioneering work is due to Weiss[2]. He relates the Lya-

punov exponent with the pointwise dimension of a Gibbs measure and based on the dis-

cussion on the multifractal analysis of the pointwise dimension from Pesin and Weiss[3],

he proved that for conformal expanding maps with finitely many branches 1, the Lyapunov

spectrum has a bounded domain, is real analytic, and is concave in the domain.

Inspired by Weiss’ result, two directions of generalizations have been performed in the

context of non-uniformly hyperbolic piecewise differentiable interval maps, and different

phenomenon on the Lyapunov spectrum has been observed.

On the one hand, Pollicott and Weiss[4], and Nakaish[5] (see also the works of Takens

and Verbitskiy[6], and Pfister and Sullivan[7]) studied the Lyapunov spectrum in the case of

the Manneville–Pomeau map, which is an interval map with two branches and a parabolic

fixed point at zero. In this case, the Lyapunov spectrum has a bounded domain, but it can

have points where it is not analytic. Later, Gelfert and Rams[8] considered a broader class of

such systems and described the Lyapunov spectrum.

On the other hand, Pollicott and Weiss[4] (see also the work of Kesseböhmer and Strat-

mann[9]) studied for the Lyapunov spectrum for the Gauss map, which is an expanding map

with countably many branches, and infinite topological entropy. They showed that the Lya-

punov spectrum (see Figure 1) is real analytic, but it has an unbounded domain [0,∞) and

no longer concave on the domain. In particular limα→∞ L(α) = 1/2.

Figure 1

1Weiss’ results are also valid for Axiom A surface diffeomorphisms.
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In 2010, Iommi[10] build upon the results mentioned above, and considered a model

so called Markov-Rényi map, which is a map with both a parabolic fixed point at zero and

infinite topological entropy. Such map might have no absolutely continuous invariant proba-

bility measure with respect to Lebesgue measure, and it is closely related to the backward (or

regular) continued fractions, and is also related to the geodesic flow on the modular surface.

It turns out to that the Lyapunov spectrum (see Figure 2) has an unbounded domain [0,∞)

and there might exist non-differentiable point in the domain. Moreover, as in the case of

Gauss map, L(α) has a horizontal asymptote.

Figure 2

Based on above discussions, two natural questions arise regarding to the Lyapunov spec-

trum at point ‘∞’.

(Q1) What is the value of L(∞)? Whether the Lyapunov spectrum L is continuous or not

at∞?

(Q2) Can we have further refined the spectrum on the Lyapunov exponent at∞? If so, what

is the differences between this spectrum and the Lyapunov spectrum?

In the current paper, we are aiming to answer these two questions by studying the so

called fast Lyapunov spectrum in the context of the Rényi map (see (1.4)).

Our main results in the present paper will develop a unified approach (independent of

the thermodynamic formalism) to estimate both (upper and lower) fast Lyapunov spectrum
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for the Rényi map. It is worth to remark that the fast Lyapunov spectrum was previously

studied by Fan, Liao, Wang and Wu[11-12], in the setting of the Gauss map, 2 which is a model

with absence of any parabolic fixed point. On the other hand, to the best of our knowledge,

the upper and lower fast Lyapunov spectrum results are still missing other than the Gauss

map.

1.2 The Rényi map

As a typical interval map with countably many branches having parabolic fixed points,

the Rényi map (or backward continued fractions map) has received much attention. Let

R : [0, 1) → [0, 1) be the Rényi map defined by

R(x) :=
1

1− x
−
⌊

1

1− x

⌋
, ∀x ∈ [0, 1), (1.4)

where '·( denotes the integer part of a number. The ergodic properties of the Rényi map

have been investigated by Adler and Flatto[14], and Rényi[15]. The Rényi map is also closely

related to the backward continued fractions algorithm[16-18]. Actually, every x ∈ [0, 1) admits

a backward continued fractions expansion (BCF) of the form

x = 1− 1

b1(x)−
1

b2(x)−
1

b3(x)−
. . .

, (1.5)

where the (nth) partial quotient bn(x) ∈ N≥2 is given by

bn(x) =

⌊
1

1−Rn−1(x)

⌋
+ 1, ∀n ⇒ 1. (1.6)

1.3 Statement of the main theorems

Let ψ : N → R+ be a function satisfying ψ(n)/n → ∞ as n → ∞. Analogous to

(1.1), (1.2) and (1.3), we define the fast Lyapunov exponent of R (with respect to ψ) at point
2Fan, Liao,Wang andWu[11-12] also studied the so called fast Khintchine spectrum. Later, the upper and lowerKhintchine

spectrum was studied by Liao and Rams[13].
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x ∈ (0, 1)\Q as

εψ(x) := lim
n→∞

1

ψ(n)
log |(Rn)′(x)|, (1.7)

whenever the limit exists. For anyα ∈ R+∪{∞}, let Jψ(α) := {x ∈ (0, 1)\Q : εψ(x) = α},

and define the fast Lyapunov spectrum (with respect to ψ) as

Fψ(α) := dimH Jψ(α). (1.8)

Let β := βψ and B := Bψ be given by

β = lim sup
n→∞

ψ(n+ 1)

ψ(n)
and B = lim sup

n→∞

n
√
ψ(n), (1.9)

respectively.

We say that two functions f, g : N → R+ are equivalent if f(n)
g(n) → 1 as n → ∞. The

fast Lyapunov spectrum is described as follows.

TheoremA (Fast Lyapunov spectrum). Let ψ : N → R+ be a function satisfying ψ(n)/n →

∞ as n → ∞. For any 0 < α ≤ ∞, the level set Jψ(α) is nonempty if and only if ψ is

equivalent to an increasing function. Moreover, if ψ is equivalent to an increasing function,

then, for 0 < α < ∞,

Fψ(α) =
1

β + 1
, (1.10)

and

Fψ(0) = 1, Fψ(∞) =
1

B + 1
. (1.11)

Next, we study the upper and lower fast Lyapunov spectra of R. For any x ∈ (0, 1)\Q,

let

εψ(x) := lim sup
n→∞

1

ψ(n)
log |(Rn)′(x)|, (1.12)

and let εψ(x) be defined analogously by replacing the limit superior in (1.12) with the limit

inferior.
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For any α ∈ R+ ∪ {±∞}, we call

Fψ(α) := dimH

{
x ∈ (0, 1)\Q : λψ(x) = α

}
and Fψ(α) := dimH

{
x ∈ (0, 1)\Q : λψ(x) = α

}

(1.13)

the upper and lower fast Lyapunov spectra, respectively.

Let b := bψ be given by

b = lim inf
n→∞

n
√
ψ(n). (1.14)

Theorem B (Upper and lower fast Lyapunov spectra). Let ψ : N → R+ be a function

satisfying ψ(n)/n → ∞ as n → ∞. For any 0 < α ≤ ∞, we have

Fψ(α) =
1

b+ 1
and Fψ(α) =

1

B + 1
. (1.15)

In the view of (1.11) and (1.15), Fψ(α) (resp.Fψ(α)) are discontinuous at α = 0,

whenever b += 0 (resp. B += 0). Additionally, it also follows from (1.15) that Fψ(α) and

Fψ(α) are continuous at infinity and that

Fψ(∞) = Fψ(∞) =
1

B + 1
.

2. Preliminary
2.1 Notation

We follow the following conventions:

• N = {1, 2, 3, . . .} denotes the set of natural numbers (or positive integers);

• Q represents the set of rational numbers;

• R signifies the set of real numbers;

• R+ := {x ∈ R : x > 0} indicates the set of positive real numbers.

We use '·( to denote the integer part of a real number.

For a subset A ⊂ R, we denote:

• |A| or diamA as the diameter of A;
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• #A as the cardinality of A;

• int(A) as the interior of A;

• A or cl(A) as the closure of A.

For a function f : A → R, a subset B of A, an element x ∈ A, and n ∈ N, we denote:

• f |B as the restriction of f to B;

• f ′(x) as the derivative of f at x ∈ A;

• f 0(x) := x as the identity function;

• fn(x) := f(f(· · · f︸ ︷︷ ︸
n

(x)) as the n-th iterate of f .

2.2 BCF and Cylinder Sets

For n ⇒ 1, denote

[[b1, b2, · · · , bn]] := 1− 1

b1 − 1

b2−
. . .− 1

bn

(2.1)

the (nth) convergent. Now use the notation

[[b1, b2, · · · ]] = 1− 1

b1 − 1

b2−
. . .

(2.2)

for

lim
n→∞

[[b1, b2, · · · , bn]], (2.3)

a limit which always exists. Call [[b1, b2, · · · ]] the (infinite) backward continued fraction

(BCF) expansion, and [[b1, b2, · · · , bn]] the (nth) finite backward continued fraction (BCF)

expansion with respect to {bn}n≥1. Let x ∈ [0, 1) be a real number, bn = bn(x) defined in

(1.6) be the partial quotient, and [[b1, b2, · · · , bn]] defined in (2.1) be the convergent. It follows

from (2.1) that

[[b1, b2, · · · , bn+1]] = 1− 1

bn+1 − 1 + [[b1, b2, · · · , bn]]
. (2.4)
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The formula above gives a inductive relation of convergent. Define two natural numbers

pn, qn with (pn, qn) = 1 by

pn
qn

:= [[b1, b2, · · · , bn]], for every n ⇒ 1. (2.5)

These two numbers pn, qn are obtained recursively from the following relation

(
pn −pn−1

qn −qn−1

)
=

(
b1 −1
1 0

)
· · ·

(
bn −1
1 0

)
, for every n ⇒ 1. (2.6)

In other words

pn+1 = bn+1pn − pn−1, qn+1 = bn+1qn − qn−1, for every n ⇒ 1 (2.7)

with a convention

p0 = 0, q0 = 1, p1 = 1, q1 = b1. (2.8)

By (1.6), (2.7) and induction, {qn}n≥1 is strictly increasing: q1 = b1 ⇒ 2 > 1 = q0 and

qn+1 ⇒ 2qn − qn−1 > 2qn − qn = qn, for every n ⇒ 1. (2.9)

Taking determinant of the matrices on both side of (2.6) yields:

pnqn−1 − pn−1qn = −1,
pn
qn

=
pn−1

qn−1
− 1

qn−1qn
, for every n ⇒ 1. (2.10)

For x ∈ [0, 1), x is rational if and only if x admits a BCF expansion

x = [[b1(x), b2(x), · · · , bn(x), 2, 2, · · · ]] (2.11)

for some n ∈ N. The values of two BCF expansions can be ordered in the sense of

[[b1, b2, · · · ]] < [[c1, c2, · · · ]] if and only if bm < cm, m = min{j ∈ N : bj += cj}. (2.12)

Next define the cylinder sets of BCF. Given a natural number n and the ordered indices

8



(σ1, · · · ,σn) ∈ Nn
≥2, call

In(σ1, · · · ,σn) := {x ∈ [0, 1) : bi(x) = σi, for all i ≤ n} (2.13)

a cylinder set of order n (associated with (σ1, · · · ,σn)), or equivalently

In(σ1, · · · ,σn) =
n⋂

j=1

R−j+1Iσj , (2.14)

where Ik = [1 − 1/(k − 1), 1 − 1/k) for k ⇒ 2. Each cylinder set In(σ1, · · · ,σn) is a (left

closed and right open) interval. Namely,

In(σ1, · · · ,σn) =
[
[[σ1,σ2, · · · ,σn − 1]], [[σ1,σ2, · · · ,σn]]

)
=

[ p̂n − p̂n−1

q̂n − q̂n−1
,
p̂n
q̂n

)
, (2.15)

where p̂n, q̂n ∈ N with (p̂n, q̂n) = 1 are given by

p̂n
q̂n

= [[σ1,σ2, · · · ,σn]] = 1− 1

σ1 − 1
σ2−···− 1

σn

. (2.16)

Based on (2.10) and (2.15), it follows that

|In(σ1, · · · ,σn)| =
1

q̂n(q̂n − q̂n−1)
. (2.17)

The main proposition in this subsection is about the approximation of the length of

cylinder sets and is stated as follows. As we didn’t find the literature, we provide the details

for the convenience of the reader.

Lemma 2.1. Let {bn}n≥1 be a sequence with each bn ∈ N≥2. Define {qn}n≥0 inductively by

(2.7) and (2.8). For each integer n ⇒ 1, the following assertions hold.

i). qn ⇒ bnqn−1/2.

ii). qn ⇒ (1 + 1/n)qn−1.

iii).
∏n

k=1 bk/2
n ≤ qn ≤

∏n
k=1 bk.

9



iv).

1

(b1b2 · · · bn)2
≤ 1

q2n
≤ 1

qn(qn − qn−1)
≤ n+ 1

q2n
≤ (n+ 1)22n

(b1b2 · · · bn)2
≤ 23n

(b1b2 · · · bn)2
.

As a corollary of Lemma 2.1, we have

Proposition 2.2. For any natural number n and all (σ1, · · · ,σn) ∈ Nn
≥2

1

(σ1σ2 · · · σn)2
≤ |In(σ1, · · · ,σn)| ≤

23n

(σ1σ2 · · · σn)2
.

Proof of Lemma 2.1. We proceed the proof of Lemma 2.1 item by item.

For item i), when n = 1, it directly follows from (2.8). For the case n ⇒ 2, it follows from

(2.7), (2.9) and (1.6) that

qn = bnqn−1 − qn−2 ⇒ bnqn−1 − qn−1 ⇒
bn
2
qn−1,

as we want.

For item ii), note that for each n ∈ N,

[[2, 2, · · · , 2︸ ︷︷ ︸
n

]] =
1

n+ 1
. (2.18)

The proof of this equality is by induction on n. For the case n = 1, it follows from

[[2]] = 1− 1

2
.

Suppose the case for n is true, it follows from (2.4) that

[[2, 2, · · · , 2︸ ︷︷ ︸
n+1

]] = 1− 1

2− 1 + [[2, 2, · · · , 2︸ ︷︷ ︸
n

]]
= 1− 1

2− 1 + 1
n+1

=
1

n+ 2
.

This yields the case n+ 1, and the induction is completed. Also, note that

1− qn−1

qn
= [[bn, bn−1, · · · , b1]] (2.19)
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The proof of this equality is also by induction on n. For the case n = 1, it follows from

1− q0
q1

= 1− 1

b1
= [[b1]].

Suppose the case for n is true, then

1− qn
qn+1

=1− qn
bn+1qn − qn−1

(by (2.7))

=1− 1

bn+1 − qn−1

qn

=1− 1

bn+1 − 1 + [[bn, bn−1, · · · , b1]]
(by induction hypothesis)

=[[bn+1, bn, · · · , b1]]. (by (2.4))

Thus the case for n+ 1 is also true. It follows from (2.19), (2.12) and (2.18) that

1− qn−1

qn
= [[bn, bn−1, · · · , b1]] ⇒ [[2, 2, · · · , 2︸ ︷︷ ︸

n

]] =
1

n+ 1
.

In other words

qn ⇒ (1 +
1

n
)qn−1.

as we want.

For item iii), use item i) and (2.7):

bk
2
qk−1 ≤ qk ≤ bkqk−1 for k = 1, · · · , n. (2.20)

Note that by (2.8) q0 = 1, taking product of each term in (2.20) from k = 1 to n yields

∏n
k=1 bk
2n

=
n∏

k=1

bk
2
qk−1 ≤

n∏

k=1

qk ≤
n∏

k=1

bkqk−1 =
n∏

k=1

bk, (2.21)

as we want.

For item iv), the inequalities are directly derived from item ii) and item iii). Therefore, the

proof of all assertions is completed.
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2.3 Hausdorff dimension

First we recall some useful properties of Hausdorff dimension, then we introduce the

main propositions calculating Hausdorff dimension for the lower bound: Proposition 3.1.

For a subset E of R, denote

Hα
δ (E) := inf{

∑

k

(diamFk)
α : E ⊂

⋃

k

Fk, Fk ⊂ R, diamFk ≤ δ for all k}, (2.22)

and such a cover
⋃

k Fk is called a δ-cover of E. Denote the exterior α-dimensional Haus-

dorff measure of E by

Hα(E) := lim
δ→0

Hα
δ (E). (2.23)

Call

dimH(E) := inf{α : Hα(E) = 0}, (2.24)

the Hausdorff dimension of E.

Hausdorff dimension satisfies monotonicity

A ⊆ B implies dimH(A) ≤ dimH(B), (2.25)

and countable stability

dimH(
⋃

n≥1

En) = sup
n≥1

{dimH(En)}. (2.26)

Upper bound of Hausdorff dimension can be detected by in the sense thatHα(E)

dimH(E) ≤ α if and only ifHα(E) < ∞. (2.27)

Let us recall two useful lemmas from[1] calculating lower bound and upper bound of Haus-

dorff dimension.

Lemma 2.3 ([[1], Example 4.6: Lower bound]). Let [0, 1] = E0 ⊃ E1 ⊃ · · · be a decreasing

sequence of sets and E =
⋂

n≥0 En. Assume that each En is a union of finite number of

disjoint closed intervals (called basic intervals of order n) and each basic interval in En−1

12



contains mn intervals of En which are seperated by gaps of length at least φn. If mn ⇒ 2

and φn−1 > φn > 0, then

dimH E ⇒ lim inf
n→∞

log(m1m2 · · ·mn−1)

− log(mnφn)
.

Lemma 2.4 ([[1], Proposition 4.1: Upper bound]). Suppose F can be coverd by Nn sets of

diameter at most δn with δn → 0 as n → ∞. Then

dimH F ≤ lim inf
n→∞

logNn

− log δn
.

3. The distribution of the digits
Now we introduce the main Proposition calculating lower bound of Hausdorff dimen-

sion. Let {sn}n≥1 and {tn}n≥1 be two sequences of reals numbers with sn, tn ⇒ 2 for every

n ⇒ 1. Moreover, throughout this section, assume

lim
n→∞

∑n
k=1 log sk

n
= ∞, (3.1)

inf
n≥1

sn
tn

> c > 0. (3.2)

Write

E({sn}{tn}) := {x ∈ [0, 1) : sn < bn(x) ≤ sn + tn, ∀n ⇒ 1}. (3.3)

Proposition 3.1 (Hausdorff dimension of E({sn}{tn})). Assume that {sn}n≥1 and {tn}n≥1

satisfies (3.1) and (3.2) above. Then

dimH E({sn}{tn}) = lim inf
n→∞

∑n
k=1 log tk

2
∑n+1

k=1 log sk − log tn+1

.

Remark. Proposition 3.1 will be used repeatedly since E({sn}{tn}) is a very common type

of subset of several sets which we are interested in.

The proof of Proposition 3.1 is divided into two parts: the lower bound and the up-

per bound of dimH E({sn}{tn}). With Lemma 2.3 and Lemma 2.4, we are ready to prove

Proposition 3.1.
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Proof of Proposition 3.1. Let

Cn := {(σ1, · · · ,σn) ∈ Nn
≥2 : sj < σj ≤ sj + tj, ∀1 ≤ j ≤ n}. (3.4)

For (σ1, · · · ,σn) ∈ Cn, define the basic interval of order n as

Jn(σ1, · · · ,σn) :=
⋃

sn+1<k≤sn+1+tn+1

cl(I(σ1, · · · ,σn, k)), (3.5)

where cl(·) denotes the closure of a set. Write

Fn :=
⋃

(σ1,··· ,σn)∈Cn

Jn(σ1, · · · ,σn). (3.6)

Then E({sn}{tn}) =
⋂∞

n=1 Fn.

For the lower bound of dimH E({sn}{tn}), by the structure of basic intervals in (3.5),

we deduce that each basic interval of order n− 1 contains

tn
2

< 'tn( ≤ mn := 'sn + tn( − 'sn( < tn + 1 < 2tn (3.7)

basic intervals of order n. Note that Jn(σ1, · · · ,σn) is a refinement of In(σ1, · · · ,σn) so

that two different basic intervals has a non-trivial gap. We make it explicit by estimating

the gaps between two basic intervals with the same order. Assume that Jn(σ1, · · · ,σn) and

Jn(σ∗
1, · · · ,σ∗

n) are two basic intervals in Fn. Then they are separated by the cylinder of

order n+ 1:

In+1(σ1, · · · ,σn, 2) or In+1(σ
∗
1, · · · ,σ∗

n, 2)

by (2.12). Wemay assume Jn(σ1, · · · ,σn) and Jn(σ∗
1, · · · ,σ∗

n) is seperated by In+1(σ1, · · · ,σn, 2).

The gap between these two basic intervals is at least

|In+1(σ1, · · · ,σn, 2)|

⇒ 1

(σ1 · · · σn2)2
(
by Proposition 2.2

)

⇒ 1

4((1 + 1
c )s1 · (1 +

1
c )s2 · · · (1 +

1
c )sn)

2

(
by (3.4) and (3.2)

)

14



=
1

4(1 + 1
c )

2n(s1s2 · · · sn)2
=: φn. (3.8)

It follows that

dimH E({sn}{tn})

⇒ lim inf
n→∞

log(m1m2 · · ·mn)

− log(mn+1φn+1)

(
by Lemma (2.3)

)

⇒ lim inf
n→∞

log(t1t2 · · · tn)− n log 2
2 log(s1s2 · · · snsn+1)− log tn+1 + 3 log 2 + 2(n+ 1) log(1 + 1

c )

(
by (3.7) and (3.8)

)

= lim inf
n→∞

log(t1t2 · · · tn)
2 log(s1s2 · · · snsn+1)− log tn+1

.
(
by (3.1)

)

For the upper bound of dimH E({sn}{tn}), we see that for eachn ∈ N, dimH E({sn}{tn})

is covered by Fn, i.e., Nn := card Cn basic intervals of order n. Note that

Nn < 2t1 · 2t2 · · · 2tn = 2nt1t2 · · · tn (3.9)

and

|Jn(σ1, · · · ,σn)|

≤ 23(n+1)

(σ1 · · · σn)2
∑

sn+1<k≤sn+1+tn+1

1

k2

(
by Proposition 2.2 and (3.5)

)

≤ 23(n+1)

(σ1 · · · σn)2
∑

sn+1<k≤sn+1+tn+1

1

k(k − 1)

=
23(n+1)

(σ1 · · · σn)2
( 1

sn+1
− 1

sn+1 + tn+1

)

<
23(n+1)

(s1 · · · sn)2
( 1

sn+1
− 1

sn+1 + tn+1

) (
by (3.4)

)

≤ 23(n+1)tn+1

(s1 · · · snsn+1)2
=: δn (3.10)

It follows that

dimH E({sn}{tn})

≤ lim inf
n→∞

logNn

− log δn
(
by Lemma 2.4

)

≤ lim inf
n→∞

n log 2 + log(t1t2 · · · tn)
2 log(s1s2 · · · snsn+1)− log tn+1 − (3n+ 3) log 2

(
by (3.9) and (3.10)

)
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≤ lim inf
n→∞

log(t1t2 · · · tn)
2 log(s1s2 · · · snsn+1)− log tn+1

.
(
by (3.1)

)

And the proof of Proposition 3.1 is completed.

Write

E({en}, {en}) = {x ∈ Λ : en < an(x) ≤ 2en, ∀n ⇒ 1}. (3.11)

As a consequence of Proposition 3.1, we are able to determine its Hausdorff dimension.

Corollary 3.2.

dimH E({en}, {en}) =
1

2
.

We end this section by providing the Hausdorff dimension of the following set

Lemma 3.3. Write

Π∞ := {x ∈ [0, 1) : lim sup
n→∞

log b1(x) + · · ·+ log bn(x)
n

= ∞}.

Then

dimHΠ∞ =
1

2
.

Proof of Lemma 3.3. For the lower bound, since E({en}, {en}) ⊂ Π∞ (defined in (3.11)

dimHΠ∞ ⇒ dimH E({en}, {en}) =
1

2
.

For the upper bound, let 0 < ε < 1
2 and s :=

1
2+ε. Choosing a sufficiently large number

K > 1 such that

Kε > 16Jε andK > 4 (3.12)

where

Jε :=
∞∑

n=2

1

n1+ε
< ∞. (3.13)

Observe that ∀N ∈ N, Π∞ is covered by

∞⋃

n=N

⋃

(σ1,··· ,σn)∈Cn(K)

In(σ1, · · · ,σn), (3.14)
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where Cn(K) is given by

Cn(K) := {(σ1, · · · ,σn) ∈ Nn : σ1 · · · σn ⇒ Kn} (3.15)

For any δ > 0, by Proposition 2.2 and (3.12), there existsM = 'log2 1
δ(+ 1 > 0, such

that for all n > M

|In(σ1, · · · σn)| ≤
23n

(σ1σ2 · · · σn)2
=

23n

K2n
≤ (

1

2
)n ≤ (

1

2
)M ≤ δ, (3.16)

so when N > M , (3.14) is a δ-cover of Π∞, and we estimate:

Hs
δ(Π∞)

≤ lim inf
N→∞

∞∑

n=N

∑

(σ1,··· ,σn)∈Cn(K)

|In(σ1, · · · σn)|s
(
by (3.16)

)

≤ lim inf
N→∞

∞∑

n=N

∑

(σ1,··· ,σn)∈Cn(K)

23n

(σ1 · · · σn)1+2ε

(
by Proposition 2.2

)

≤ lim inf
N→∞

∞∑

n=N

23n

Kεn

∑

(σ1,··· ,σn)∈Cn(K)

1

(σ1 · · · σn)1+ε
(
by (3.15)

)

≤ lim inf
N→∞

∞∑

n=N

(
8Jε
Kε

)n
(
by (3.13)

)

≤ lim inf
N→∞

∞∑

n=N

1

2n
= 0.

(
by (3.12)

)

Let δ → 0+, there is Hs(E) = 0, it follows from (2.27) that dimH(Π∞) ≤ s. Since ε is

arbitrary, we obtain dimH(Π∞) ≤ 1
2 . The proof is completed.

4. Transformation
Let ψ : N → R+ be a function satisfies ψ(n)/n → ∞ as n → ∞, let α be a real

number, recall

Jψ(α) := {x ∈ (0, 1)\Q : lim
n→∞

log |(Rn)′(x)|
ψ(n)

= α},

To prove Theorem 2.2, first reformulate Jψ(α). Set

Eψ(α) = {x ∈ (0, 1)\Q : lim
n→∞

∑n
k=1 log bk(x)
ψ(n)

=
α

2
} (4.1)

17



Denote

J :=
∞⋃

n=1

{x ∈ [0, 1) : (Rn)′(x) does not exist} (4.2)

then x ∈ [0, 1)\J if and only if for any n ⇒ 1, (Rn)′(x) exists.

Lemma 4.1. J = Q ∩ (0, 1) and for x ∈ [0, 1)\J ,

0 ≤ 2
n∑

k=1

log bk(x)− log |(Rn)′(x)| ≤ 2n log 2, (4.3)

Proof of Lemma 4.1. First note that R′(x) dose not exist if and only if x ∈ {k/(k + 1)}k≥1.

Let n be a natural number, by chain rule

(Rn)′(x) = R′(Rn−1(x))R′(Rn−2(x)) · · ·R′(x), (4.4)

it follows that (Rn)′(x) does not exists if and only if

{x,R(x), · · · , Rn−1(x)}
⋂{ k

k + 1

}

k≥1
+= ∅. (4.5)

Since R([0, 1)\Q) ⊂ [0, 1)\Q, it follows from (4.5) that J ⊂ Q ∩ (0, 1). On the other hand,

{ k

k + 1

}

k≥1
⊂ J,

and
{2k − 1

2k + 1

}

k≥1
⊂ R−1(

1

2
) ⊂ {x ∈ [0, 1) : (R)′(x) does not exist} ⊂ J

So similarly

{3k − 2

3k + 1

}

k≥1
⊂ R−1(

1

3
) ⊂ R−2(

1

2
) ⊂ {x ∈ [0, 1) : (R2)′(x) does not exist} ⊂ J

It follows from

Q ∩ (0, 1) =
⋃{ k

k + 1

}

k≥1

⋃{2k − 1

2k + 1

}

k≥1

⋃
· · · (4.6)

that Q ∩ (0, 1) ⊂ J , so J = Q ∩ (0, 1).
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For x ∈ [0, 1)\J and k ⇒ 1,

1

1−Rk−1(x)
< bk(x) = ' 1

1−Rk−1(x)
(+ 1 ≤ 1

1−Rk−1(x)
+ 1 ≤ 2

1−Rk−1(x)
. (4.7)

Taking logarithm of each term in (4.7) yields

log bk(x)− log 2 ≤ − log(1−Rk−1(x)) ≤ log bk(x). (4.8)

Calculation yields

R′(x) =
1

(1− x)2
, R′(Rk(x)) =

1

(1−Rk(x))2
, (4.9)

and then by (4.4)

log |(Rn)′(x)| = −2
n∑

k=1

log(1−Rk−1(x)). (4.10)

By (4.8)

0 ≤ 2
n∑

k=1

log bk(x)− log |(Rn)′(x)| ≤ 2n log 2, (4.11)

and the proof is completed.

Corollary 4.2. For all α ∈ R, Jψ(α) = Eψ(α), and if α < 0 Eψ(α) and Jψ(α) are both

empty.

Proof of Corollary 4.2. By (4.11), for x ∈ [0, 1)\J

2 lim
n→∞

∑n
k=1 log bk(x)
ψ(n)

= lim
n→∞

log |(Rn)′(x)|
ψ(n)

(4.12)

Then Jψ(α) = Eψ(α).

Since for every n ∈ N, bn ⇒ 2, then for every x ∈ [0, 1)

lim
n→∞

∑n
k=1 log bk(x)
ψ(n)

⇒ 0.

Lemma 4.3. Assume α > 0, thenEψ(α) = Fψ(α) is non-empty if and only if ψ is equivalent
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to an increasing function.

Proof of Lemma 4.3. For the “only if” part, we assume that Eψ(α) is non-empty. Then we

can take x ∈ Eψ(α) and define ϕ : N → R+ as ϕ(n) := log b1(x)+···+log bn(x)
α Hence ϕ(n+1) >

ϕ(n) and

lim
n→∞

ϕ(x)

ψ(n)
= lim

n→∞

log b1(x) + · · ·+ log bn(x)
αψ(n)

= 1

which means that ψ is equivalent to the increasing function ϕ.

For the “if” part, we suppose that ψ is equivalent to an increasing function ϕ̂. Then

lim
n→∞

ϕ̂(n)

n
= lim

n→∞

ψ(n)

n
lim
n→∞

ϕ̂(n)

ψ(n)
= ∞

Put

x̂ = [[b̂1, b̂2, · · · ]] = 1− 1

b̂1 −
1

b̂2 − · · ·

where b̂n = bn(x̂) := 'eα(ϕ̂(n)−ϕ̂(n−1))+1(. We deduce that b̂n ⇒ 2 and

eα(ϕ̂(n)−ϕ̂(n−1)) ≤ 'eα(ϕ̂(n)−ϕ̂(n−1))+1( = bn(x̂) ≤ eα(ϕ̂(n)−ϕ̂(n−1))+1 (4.13)

for all n ⇒ 1, since α ⇒ 0. Hence by (4.13)

ϕ̂(n)− ϕ̂(0)

ϕ̂(n)
α ≤ log b1(x̂) + · · ·+ log bn(x̂)

ϕ̂(n)
≤ ϕ̂(n)− ϕ̂(0) + n

ϕ̂(n)
α,

and

lim
n→∞

log b1(x̂) + · · ·+ log bn(x̂)
ψ(n)

= lim
n→∞

log b1(x̂) + · · ·+ log bn(x̂)
ϕ̂(n)

= α

which implies that x̂ ∈ Eψ(α) and Eψ(α) is non-empty.

We also have the following corollary for regular Lyapunov spectrum at∞.

Corollary 4.4.

J(∞) =
{
x ∈ [0, 1) : lim

n→∞

∑n
k=1 log bk(x)

n
= ∞

}
,

with L(∞) = 1/2, so L(α) is continuous at ∞.
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Proof of Corollary 4.4. By Lemma 4.1, for x ∈ [0, 1)\J , there is

0 ≤ 2
∑n

k=1 log bk(x)− log |(Rn)′(x)|
n

≤ 2 log 2.

By (2.11), for every x ∈ J

lim
n→∞

∑n
k=1 log bk(x)

n
+= ∞.

Thus

J(∞) =
{
x ∈ [0, 1) : lim

n→∞

∑n
k=1 log bk(x)

n
= ∞

}
.

Since E({en}, {en}) ⊂ J(∞) ⊂ Π∞, by Lemma 3.3,

1

2
≤ dimH E({en}, {en}) ≤ L(∞) ≤ dimHΠ∞ ≤ 1

2
.

Then L(∞) = 1/2.

5. Proof of Theorem A
For the case α = 0 , since

{x ∈ (0, 1)\Q : lim
n→∞

∑n
k=1 log bk(x)

n
= log 2} ⊂ {x ∈ (0, 1)\Q : lim

n→∞

∑n
k=1 log bk(x)
ψ(n)

= 0},

(5.1)

we deduce from[19] that Eψ(0) is of full Lebesgue and by Corollary 4.2 Fψ(0) = 1.

Deducing from Corollary 4.2 and Lemma 4.3, since the case α = 0 is clear, without

loss of generality from now on, we assume that α > 0 and ψ is increasing.

5.1 Lower bound

For α ∈ (0,∞), the control of lower bound of dimHEψ(α) is an application of Propo-

sition 3.1. Let s1 = t1 = eαψ(1)+1 and sn = tn = eα(ψ(n)−ψ(n−1))+1 for every n ⇒ 2. Since ψ

is increasing, we see that for all n ⇒ 1, sn = tn ⇒ 2, the limit in (3.1) and (3.2) holds and

ϕ̂(n) + n

ϕ̂(n)
α ≤ log b1(x̂) + · · ·+ log bn(x̂)

ϕ̂(n)
≤ ϕ̂(n) + n(1 + log 2)

ϕ̂(n)
α,
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then E({sn}{tn}) is a subset of Eψ(α), and

dimHEψ(α)

⇒ dimH E({sn}{tn})

= lim inf
n→∞

∑n
k=1 log tk

2
∑n+1

k=1 log sk − log tn+1

(
by Proposition 3.1

)

= lim inf
n→∞

n+ αψ(n)

α(ψ(n+ 1) + ψ(n)) + 2n+ 1

=
1

lim supn→∞
ψ(n+1)
ψ(n) + 1

=
1

β + 1

(
by (3.5)

)
(5.2)

5.2 Upper bound

First enlarge Eψ(α) to a set whose Hausdorff dimension can be estimated easier.

For x ∈ Eψ(α)

lim sup
n→∞

log b1(x) + · · ·+ log bn(x) + log bn+1(x)

log b1(x) + · · ·+ log bn(x)
= lim sup

n→∞

ψ(n+ 1)

ψ(n)
= β,

which is equivalent to

τ(x) := lim sup
n→∞

log bn+1(x)

log b1(x) + · · ·+ log bn(x)
= β − 1 = γ. (5.3)

Besides, we also deduce that

k(x) = lim
n→∞

log b1(x) + · · ·+ log bn(x)
n

= ∞ (5.4)

since limn→∞
ψ(n)
n = ∞.

In fact, it follows that the Hausdorff dimension of

{x ∈ (0, 1)\Q : τ(x) = β − 1}
⋂

{x ∈ (0, 1)\Q : k(x) = ∞}

approximates the desired upper bound of dimHEψ(α).
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Lemma 5.1. For 0 ≤ γ ≤ ∞, let

Γ∞(γ) := {x ∈ (0, 1)\Q : τ(x) = γ, k(x) = ∞}. (5.5)

and

Γ̂∞(γ) := {x ∈ (0, 1)\Q : τ(x) ⇒ γ, k(x) = ∞}. (5.6)

Then

dimH Γ∞(γ) = dimH Γ̂∞(γ) =
1

γ + 2
.

Proof of Lemma 5.1. We only need to approximate the lower bound of dimH Γ∞(γ) and the

upper bound for dimH Γ̂∞(γ) since Γ∞(γ) ⊂ Γ̂∞(γ). The proof is divided into three cases:

γ = 0, 0 < γ < ∞ and γ = ∞.

Case I : γ = 0. In this case, for the upper bound it follows from Lemma 3.3 that

dimH Γ̂∞(γ) ≤ dimH{x ∈ (0, 1)\Q : lim sup
n→∞

log b1(x) + · · ·+ log bn(x)
n

= ∞} = dimHΠ∞ =
1

2
.

(5.7)

For the lower bound, by Proposition 3.1, we see

dimH Γ∞(γ) ⇒ dimH{x ∈ (0, 1)\Q : en < bn(x) < 2en, ∀n ⇒ 1} =
1

2
.

as the limits in (3.1) (3.2) (5.3) and (5.4) holds.

Case II : 0 < γ < ∞.We use Proposition 3.1 again to control the lower bound.

dimH Γ∞(γ) ⇒ dimH{x ∈ (0, 1)\Q : e(φ+1)n < bn(x) < 2e(φ+1)n , ∀n ⇒ 1} =
1

γ + 2
.

For the upper bound of dimH Γ̂∞(γ), we put the following covering argument. Let 0 < ε < φ
2

and s := 1+ε
φ−2ε+2 . ChooseM ⇒ 2 sufficiently large such that

Jε(
64

M ε
)s ≤ 1

2
, andM ε > 64, (5.8)
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where Jε :=
∑∞

n=2
1

n1+ε < ∞. Observe that

Γ̂∞(γ) ⊂
∞⋂

N=1

∞⋃

n=N

Bn(ε,M), (5.9)

where the set Bn(ε,M) is given by

Bn(ε,M) :=
{
x ∈ (0, 1)\Q : dn+1 >

( n∏

k=1

dk(x)
)φ−ε

,
n∏

k=1

dk(x) ⇒ m
}
. (5.10)

Let Dn(M) := {(σ1, · · · ,σn) ∈ Nn
≥2 : σ1 · · · σn ⇒ Mn}. For (σ1, · · · ,σn) ∈ Dn(M), put

Jn(σ1, · · · ,σn) :=
⋃

k>(σ1···σn)γ−ε
In+1(σ1, · · · ,σn, k). (5.11)

Then Bn(ε,M) can be rewritten as

Bn(ε,M) =
⋃

(σ1,··· ,σn)∈Dn(M)

Jn(σ1, · · · ,σn). (5.12)

Combining this with (5.9), we see that for any N ⇒ 1, the set Γ̂∞(γ) is covered by

{Jn(σ1, · · · ,σn) : n ⇒ N, (σ1, · · · ,σn) ∈ Dn(M)}.

By Proposition 2.2, we deduce that

|Jn(σ1, · · · ,σn)|

=
∑

k>(σ1···σn)γ−ε
In+1(σ1, · · · ,σn, k) =

23(n+1)

(σ1 · · · σn)2
∑

k>(σ1···σn)γ−ε

1

k2

≤ 26n

(σ1 · · · σn)φ−ε+2
≤ (

64

M ε
)n

1

(σ1 · · · σn)φ−2ε+2
.

Now for any δ > 0, there exists d such that for all n > d

|Jn(σ1, · · · ,σn)| ≤ (
64

M ε
)n

1

(σ1 · · · σn)φ−2ε+2
<

1

(σ1 · · · σn)φ−2ε+2
< δ.

by (5.8). We conclude that

Hs
δ(Γ̂∞(γ))
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≤ lim inf
N→∞

∞∑

n=N

∑

(σ1,··· ,σn)∈Dn(M)

|Jn(σ1, · · · ,σn)|s

≤ lim inf
N→∞

∞∑

n=N

∑

(σ1,··· ,σn)∈Dn(M)

(
64

M ε
)ns

1

(σ1 · · · σn)s(φ−2ε+2)

≤ lim inf
N→∞

∞∑

n=N

(
64

M ε
)ns

∑

(σ1,··· ,σn)∈Nn
≥2

1

(σ1 · · · σn)s(φ−2ε+2)

= lim inf
N→∞

∞∑

n=N

(
Jε(

64

M ε
)s
)n

≤ lim inf
N→∞

∞∑

n=N

1

2n
= 0,

which yields that

dimH Γ̂∞(γ) ≤ s =
1 + ε

γ − 2ε+ 2
.

Letting ε→ 0+, we obtain that dimH Γ̂∞(γ) ≤ s = 1
φ+2 , as we want.

Case III : γ = ∞. In this case, we will show that dimH Γ̂∞(∞) = 0. In fact, for

0 < ε < 1, let B > 1 large enough such that

Pε :=
∞∑

j=2

1

j(B+2)ε
<

1

27ε+1
. (5.13)

Note that

Γ̂∞(∞) ⊂
∞⋂

N=1

∞⋃

n=N

⋃

(σ1,··· ,σn)∈Nn
≥2

J ′
n(σ1, · · · ,σn), (5.14)

where J ′
n(σ1, · · · ,σn) is defined as

J ′
n(σ1, · · · ,σn) :=

⋃

k>(σ1···σn)B
In+1(σ1, · · · ,σn, k). (5.15)

Then

|J ′
n(σ1, · · · ,σn)| =

∑

k>(σ1···σn)B
|In(σ1, · · · ,σn, k)| ≤

23n+4

(σ1 · · · σn)B+2
,

and also

|J ′
n(σ1, · · · ,σn)| ≤

1

2n(B−1)−4
.
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By (5.14), we see that for any δ > 0

Hε
δ(Γ̂∞(∞))

≤ lim inf
N→∞

∞∑

n=N

∑

(σ1,··· ,σn)∈Nn
≥2

|J ′
n(σ1, · · · ,σn)|ε

≤ lim inf
N→∞

∞∑

n=N

27nε
∑

(σ1,··· ,σn)∈Nn
≥2

1

(σ1 · · · σn)(B+2)ε

= lim inf
N→∞

∞∑

n=N

(27εPε)
n

≤ lim inf
N→∞

∞∑

n=N

1

2n
= 0,

which implies that dimH Γ̂∞(∞) ≤ ε. Due to arbitrariness of ε, dimH Γ̂∞(∞) = dimH Γ∞(∞) =

0.

Lemma 5.1 has the following corollary. Consider the set of all real numbers x in [0, 1)

whose partial quotients {bn(x)}n≥1 tends to infinity as n tends to infinity:

{x ∈ (0, 1)\Q : lim
n→∞

bn(x) = ∞}. (5.16)

Corollary 5.2.

dimH{x ∈ (0, 1)\Q : lim
n→∞

bn(x) = ∞} =
1

2
.

Proof of Corollary 5.2. By setting γ = 0 in Lemma 5.1, it follows that

dimH{x ∈ (0, 1)\Q : lim
n→∞

bn(x) = ∞} ≤ dimH Γ∞(γ) =
1

2
.

Consider the set E({en}, {en}) in (3.11) then

dimH{x ∈ (0, 1)\Q : lim
n→∞

bn(x) = ∞} ⇒ dimH E({en}, {en}) =
1

2
.
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By Lemma 5.1, we obtain

dimHEψ(α) ≤ dimH Γ∞(β − 1) =
1

β + 1
. (5.17)

With the desired lower bounded in (5.2) and (5.17), the proof of Theorem A is completed.

We have the following corollary as a consequence of Theorem A, which gives a full

description for the growth rate of digits of the BCF expansion.

Corollary 5.3 (Growth of digits in BCF expansion). Let φ : N → R+ be a function such

that limn→∞ φ(n) = ∞. Then

dimH{x ∈ (0, 1)\Q : lim
n→∞

log bn
φ(n)

= 1} =
1

2 + ξ
,

where ξ is defined as

ξ := lim sup
n→∞

φ(n+ 1)

φ(1) + · · ·+ φ(n)
.

Proof of Corollary 5.3. The lower bound is obtained by letting sn = tn = 2eφ(n) in Proposi-

tion 3.1. For the upper bound, let ψ̂(n) :=
∑n

k=1 φ(k). Then ψ̂ is increasing and ψ̂(n)/n →

∞ as n → ∞. Moreover,

lim
n→∞

log bn(x)
φ(n)

= 1 =∞ lim
n→∞

log b1(x) + · · ·+ log bn(x)
ψ̂(n)

= 1.

Hence

dimH

{
x ∈ (0, 1)\Q : lim

n→∞

log bn(x)
φ(n)

= 1
}
≤ dimHEψ̂(1) =

1

β̂ + 1
,

where β̂ is given by

β̂ = lim sup
n→∞

ψ̂(n+ 1)

ψ̂(n)
= 1 + lim sup

n→∞

φ(n+ 1)

φ(1) + · · ·φ(n) = 1 + ξ.

Therefore, the desired upper bound follows.
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6. Proof of Theorem B
Before proving Theorem B, we first give several useful lemmas. Write Πn(x) :=

b1(x) · · · bn(x), let a, c ∈ (1,∞). Set

D(a, c) := {x ∈ [0, 1) : Πn(x) ⇒ ac
n for i.m. n ⇒ 1}

and

D(a, c) := {x ∈ [0, 1) : Πn(x) ⇒ ac
n for all n ∈ 1},

where “i.m.” denotes “infinitely many”.

Lemma 6.1. For any d ∈ (1, c), if x ∈ D(a, c), then

Πn+1(x) > max{(Πn(x))
d, ad

n+1} for i.m. n ⇒ 1. (6.1)

Proof of Lemma 6.1. Given any m ∈ N, since d < c and x ∈ D(a, c), we can find k > m

such that

Πm(x) < ac
kdm−k and Πk(x) > ac

k
.

Define f(n) := ac
kdn−k , then

Πm(x) < f(m), Πk(X) > ac
k
= f(k).

Choose the largestn such thatm ≤ n < k andΠn(x) < f(n). There are two cases: n = k−1

if Πi(x) < f(i), for all i withm ≤ i < k, or n < k − 1 otherwise. In either case, we have

Πn+1(x) ⇒ f(n+ 1) = (f(n))d > max{(Πn(x))
d, ad

n+1}.

Lemma 6.2.

dimHD(a, c) = dimHD(a, c) =
1

c+ 1
.

Proof of Lemma 6.2. The lower bound of dimHD(a, c) is obtain by setting sn = tn = ac
n in
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Proposition 3.1:

dimHD(a, c) ⇒ lim inf
n→∞

∑n
k=1 log tk

2
∑n+1

k=1 log sk − log tn+1

=
1

c+ 1
.

As for the upper bound, we put here an covering argument. Fix d ∈ (1, c) and s ∈ (0, 1), for

any x ∈ D(a, c), and for i.m. n ⇒ 1, by Lemma 6.1

Πn+1(x) ⇒ max{(Πn(x))
d, ad

n+1} ⇒ (Πn(x))
sdc(1−s)dn+1

.

Then D(a, c) is covered by the limsup set

D(a, c) ⊂
∞⋂

N=1

∞⋃

n=N

{
x ∈ [0, 1) : bn+1(x) ⇒ (Πn(x))

sd−1c(1−s)dn+1
}

(6.2)

Write

Jn(σ1, · · · ,σn) =
⋃

j≥(σ1···σn)sd−1c(1−s)dn+1

In+1(σ1, · · · ,σn, j)

Then

D(a, c) ⊂
∞⋂

N=1

∞⋃

n=N

∞⋃

(σ1,··· ,σn)∈Nn

Jn(σ1, · · · ,σn)

which means that for every N ⇒ 1, D(a, c) is covered by

{Jn(σ1, · · · ,σn) : (σ1, · · · ,σn) ∈ Nn, n ⇒ N}.

Note that

|Jn(σ1, · · · ,σn)|

=
∑

j≥(σ1···σn)sd−1c(1−s)dn+1

|In+1(σ1, · · · ,σn, j)|

≤
∑

j≥(σ1···σn)sd−1c(1−s)dn+1

23(n+1)

(σ1 · · · σn)2
1

j2

≤ 23(n+1)

(σ1 · · · σn)2
2

(σ1 · · · σn)sd−1c(1−s)dn+1 =
23n+4

(σ1 · · · σn)sd+1c(1−s)dn+1 .

Now for any ε < 1 sufficiently small, take t = 1+ε
sd+1 > 0, then for any δ > 0, there exists
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M ⇒ 1 such that

|Jn(σ1, · · · ,σn)| < δ for all n > M and (σ1, · · · ,σn) ∈ Nn.

We estimate:

Ht
δ(D(a, c))

≤ lim inf
n→∞

∞∑

n=N

∑

(σ1,··· ,σn)∈Nn,n≥N

|Jn(σ1, · · · ,σn)|t

≤ lim inf
n→∞

∞∑

n=N

∑

(σ1,··· ,σn)∈Nn,n≥N

2(3n+4)t

(σ1 · · · σn)(sd+1)tc(1−s)tdn+1

= lim inf
n→∞

∞∑

n=N

Jn
ε 2

(3n+4)t

c(1−s)tdn+1 = 0

Let δ → 0+, it follows that Ht(D(a, c)) = 0, then dimHD(a, c) ≤ t = 1+ε
sd+1 . Next let ε →

0+, s → 1−, then dimHD(a, c) ≤ 1
d+1 . Finally let d → c−, then dimHD(a, c) ≤ 1

c+1 .

Remark. Together with Lemma 6.2, since

{x ∈ [0, 1) : bn(x) ⇒ ac
n

for i.m. n ⇒ 1} ⊂ {x ∈ [0, 1) : Πn(x) ⇒ ac
n

for i.m. n ⇒ 1},

we also deduced:

dimH{x ∈ [0, 1) : bn(x) ⇒ ac
n

for alln ⇒ 1} = dimH{x ∈ [0, 1) : bn(x) ⇒ ac
n

for i.m. n ⇒ 1} =
1

c+ 1
.

Now let us prove Theorem B. When α = 0, since

Eψ(α) ⊂ Eψ(α) ⊂ Eψ(α),

and (5.1), it follows that

Fψ(0) = Fψ(0) = 1.

Now assume 0 < α ≤ ∞. Also since log b = lim infn→∞ logψ(n)/n ⇒ 0, we may assume

b ⇒ 1.

6.1 Hausdorff dimension of Fψ(α)
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6.1.1 Upper bound

For x ∈ Eψ(α), when α ∈ (0,∞), we see that Πn(x) ⇒ eαψ(n)/3 holds for infinitely

many n; when α = ∞, we see that Πn(x) ⇒ eαψ(n) holds for infinitely many n. So

Eψ(α) ⊂ {x ∈ [0, 1) : Πn(x) ⇒ Aψ(n) for i.m. n ⇒ 1} (6.3)

for some A > 1. This leads to study the Hausdorff dimension of the limsup set.

Lemma 6.3. Let A ∈ (1,∞). Write

F (ψ) := {x ∈ [0, 1) : Πn(x) ⇒ Aψ(n) for i.m. n ⇒ 1}. (6.4)

Then

dimH F (ψ) =
1

b+ 1
,

where b ∈ [1,∞] is defined as in Theorem B.

Proof of Lemma 6.3. The proof is divided into three parts: b = 1, 1 < b < ∞, b = ∞.

For the case b = 1, since ψ(n)/n → ∞ as n → ∞, we get that F (ψ) is a subset of Π∞.

By Lemma 3.3,

dimH F (ψ) ≤ dimHΠ∞ =
1

2
=

1

b+ 1
.

For any ε > 0, by definition of b, we obtain ψ(n) ≤ (1 + ε)n for infinitely many n, and so

D(A, 1 + ε) ⊂ F (ψ).

It follows from Lemma 6.2 that dimH F (ψ) ⇒ 1
2+ε . Letting ε→ 0+, we get the desired lower

bound.

For the case 1 < b < ∞, let 0 < ε < b− 1. By definition of b, we have:

i). ψ(n) ≤ (b+ ε)n for infinitely many n,

ii). ψ(n) ⇒ (b− ε)n for sufficiently large n.
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Then

D(A, b+ ε) ⊂ F (ψ) ⊂ D(A, b− ε).

Applying Lemma 6.2, we see that

1

b+ ε+ 1
≤ dimH F (ψ) ≤ 1

b− ε+ 1
.

Since ε is arbitrary, we obtain dimH F (ψ) = 1
1+b .

For the case b = ∞, let C > 1 be large, we have ψ(n) > Cn for sufficiently large n,

and so

F (ψ) ⊂ D(A,C).

It follows fromLemma 6.2 that dimH F (ψ) ≤ 1
1+C . LettingC → ∞, we get that dimH F (ψ) =

0.

Combining (6.3) and Lemma 6.3, we deduce that

dimHEψ(α) ≤
1

b+ 1
.

6.1.2 Lower bound

For the lower bound, when α < ∞, we construct a subset E({sn}{tn}) of Eψ(α), and

use Proposition 3.1. More precisely, we need to construct for each ε > 0 a sequence {sn}n≥1

satisfying the following conditions:

a).

lim sup
n→∞

log s1 + · · ·+ log sn
ψ(n)

= α (6.5)

b).

lim
n→∞

log s1 + · · ·+ log sn
n

= ∞ (6.6)

c).

lim sup
n→∞

log sn+1

log s1 + · · ·+ log sn
≤ b+ ε− 1 (6.7)
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Then set tn = sn for each n ⇒ 1, it follows that

dimHEψ(α) ⇒ dimH E({sn}{tn})

= lim inf
n→∞

∑n
k=1 log sk

2
∑n+1

k=1 log sk − log sn+1

=(2 + lim sup
n→∞

log sn+1

log s1 + · · ·+ log sn
)−1 ⇒ 1

B + 1 + ε
.

To show this, first set

cj,k :=

{
eαψ(k)(b+ε)

j−k
1 ≤ k ≤ j

eαψ(k) k ⇒ j + 1
(6.8)

for each j, k ∈ N. Set

bj := inf
k≥1

{cj,k} = inf{eαψ(1)(b+ε)j−1
, eαψ(2)(b+ε)

j−2
, · · · , eαψ(j−1)(b+ε), eαψ(j), eαψ(j+1), · · · }.

(6.9)

Since ψ(k)
k → ∞, ψ(k) → ∞ and eαψ(k) → ∞ as k → ∞, the infimum in (6.9) is obtained,

and denote tj the smallest index the infimum in infk≥1{cj,k} is obtained:

tj := min{k ⇒ 1 : cj,k = bj}. (6.10)

Claim. For all j, k ⇒ 1,

i). cj,k ≤ cj+1,k ≤ cb+εj,k and bj ≤ bj+1 ≤ bb+εj ,

ii). tj+1 ⇒ tj and tj → ∞ as j → ∞,

iii). bj ≤ eαψ(j) and btj = eαψ(tj),

iv). log bj
j → ∞ as j → ∞.

Now we prove the claim item by item. For i), fix j ⇒ 1, when 1 ≤ k ≤ j

eαψ(k)(b+ε)
j−k ≤ eαψ(k)(b+ε)

j−k+1 ≤ eαψ(k)(b+ε)
j−k+1

,

and when k ⇒ j + 1

eαψ(k) ≤ eαψ(k+1) ≤ eαψ(k+1)(b+ε).
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The quantities in the inequalities correspond the expression of cj,k, so cj,k ≤ cj+1,k ≤ cb+εj,k ,

and their infimums satisfy the same relation: bj ≤ bj+1 ≤ bb+εj , as we want.

For ii), fix j ⇒ 1, when tj = 1, tj+1 ⇒ 1 = tj . When 2 ≤ tj ≤ j, note that i = tj if and

only if

cj,i < cj,k ∀k < tj and cj,i ≤ cj,k ∀k > tj. (6.11)

So

eαψ(k)(b+ε)
j−k

< eαψ(tj)(b+ε)
j−tj ∀k < tj.

implies

eαψ(k)(b+ε)
j+1−k

= (eαψ(k)(b+ε)
j−k

)b+ε < (eαψ(tj)(b+ε)
j−tj

)b+ε = eαψ(tj)(b+ε)
j+1−tj ∀k < tj

since b+ ε ⇒ 1 + ε > 1. It follows that tj+1 ⇒ tj.When tj ⇒ j + 1, ∀k < tj

cj+1,tj = cj,tj < cj,k ≤ cj+1,k.

there is tj+1 ⇒ tj. If limj→∞ tj += ∞, since {tj}j≥1 is increasing, there is tj = N, ∀j ∈ 1,

for some N ∈ N. Then when j > N

eαψ(j) = cj,j ⇒ cj,tj = cj,N = eαψ(N)(b+ε)j−N
.

It follows that for all j > N

logψ(N)−N log(b+ ε)

j
+ log(b+ ε) ≤ logψ(j)

j
. (6.12)

Letting j → ∞ in (6.12) yields lim infj→∞
logψ(j)

j ⇒ log(b + ε) > log b, a contradiction to

the definition of b. So tj → ∞ as j → ∞, as we want.

For iii), for all j ⇒ 1, there is bj = infk≥1{cj,k} =≤ cj,j = eαψ(j). Note that cj,k ⇒

1, ∀j, k ⇒ 1. If tj < j, for all 1 ≤ k < tj

ctj ,k = eαψ(k)(b+ε)
tj−k

= (eαψ(k)(b+ε)
j−k

)(b+ε)
tj−j

= (cj,k)
(b+ε)tj−j

> (cj,tj)
(b+ε)tj−j

= ctj ,tj ,
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for all tj < k ≤ j

ctj ,k = (cj,k)
(b+ε)k−j ⇒ (cj,tj)

(b+ε)k−j
= (ctj ,tj)

(b+ε)k−tj
> ctj ,tj ,

and for all k > j

ctj ,k = cj,k ⇒ cj,tj = (ctj ,tj)
(b+ε)j−tj

> ctj ,tj .

It follows from (6.11) that ttj = tj and btj = eαψ(tj), and in fact:

ttj = ttj+1 = · · · = tj.

If tj = j, then

btj = bj = cj,tj = cj,j = eαψ(j) = eαψ(tj).

If tj > j, then for all 1 ≤ k ≤ j

ctj ,k = eαψ(k)(b+ε)
tj−k

⇒ eαψ(k)(b+ε)
j−k

= cj,k > cj,tj = ctj ,tj ,

for all j < k < tj

ctj ,k = eαψ(k)(b+ε)
tj−k

⇒ eαψ(k) = cj,k > cj,tj = ctj ,tj ,

and for all k > tj

ctj ,k = eαψ(k) = cj,k ⇒ cj,tj = ctj ,tj .

Thus btj = eαψ(tj), and in fact

tj = tj+1 = · · · = ttj ,

as we want.

For iv), use the fact

If
aj
j

→ ∞,
bj
j
→ ∞, then cj := min

1≤k≤j
{akbj−k

j
} → ∞, (6.13)
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as j → ∞. Note that

log bj
j

= inf
k≥1

{ log cj,k
j

} = α inf{ψ(1)(b+ ε)j−1

j
, · · · , ψ(j − 1)(b+ ε)

j
,
ψ(j)

j
,
ψ(j + 1)

j
, · · · }.

tends to infinity if log cj,k
j ⇒ ∞ ∀k ⇒ 1 uniformly, as j → ∞. Set aj = ψ(j), bj = (b + ε)j

in (6.13),there is

log bj
j

= α inf{cj,
ψ(j)

j
,
ψ(j + 1)

j
, · · · } ⇒ α inf{cj,

ψ(j)

j
,
ψ(j + 1)

j + 1
, · · · }

Given M > 0, by (6.13) and ψ(j)
j → ∞ as j → ∞, can choose N ∈ N such that for all

j > N , there is cj > M and ψ(j)
j > M , also since j + k > j > N ∀k ⇒ 1,

ψ(j + 1)

j + 1
> M,

ψ(j + 2)

j + 2
> M, · · · , (6.14)

and thus log bj
j ⇒ M

α , So
log bj
j → ∞, as j → ∞, and the proof of the claim is completed.

Finally, set sn = bn
bn−1

for n ⇒ 2 and s1 = b1. Claim ii) and iii) imply condition a) (6.5),

Claim iv) implies condition b) (6.6) and Claim i) implies condition c) (6.7). It follows that

dimHEψ(α) ⇒ dimH E({sn}{tn}) ⇒
1

B + 1 + ε
,

and since ε is arbitrary,

dimHEψ(α) ⇒
1

B + 1
,

the desired lower bound.

6.2 Hausdorff dimension of Eψ(α)

For x ∈ Eψ(α), when α ∈ (0,∞), we see that Πn(x) ⇒ e
αψ(n)

3 holds for n sufficiently

large; when α = ∞, we see that Πn(x) ⇒ eαψ(n) holds for n sufficiently large. So

Eψ(α) ⊂ {x ∈ [0, 1) : Πn(x) ⇒ Aψ(n) for all n ∈ 1} (6.15)

for some A > 1. This leads to study the Hausdorff dimension of the liminf set.
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Lemma 6.4. Let A ∈ (1,∞). Write

F (ψ) := {x ∈ [0, 1) : Πn(x) ⇒ Aψ(n) for all n ∈ 1}. (6.16)

Then

dimH F (ψ) =
1

B + 1
,

where B ∈ [1,∞] is defined as in Theorem B.

Proof of Lemma 6.4. The proof is divided into three parts: B = 1, 1 < B < ∞, B = ∞.

For the case B = 1, since ψ(n)/n → ∞ as n → ∞, we get that F (ψ) is a subset of

Π∞. By Lemma 3.3,

dimH F (ψ) ≤ dimHΠ∞ =
1

2
=

1

B + 1
.

For any ε > 0, by definition of B, we obtain ψ(n) ≤ (1 + ε)n for all n ∈ 1, and so

D(A, 1 + ε) ⊂ F (ψ).

It follows from Lemma 6.2 that dimH F (ψ) ⇒ 1
2+ε . Letting ε→ 0+, we get the desired lower

bound.

For the case 1 < B < ∞, let 0 < ε < B − 1. By definition of B, we have:

i). ψ(n) ≤ (B + ε)n for sufficiently large n,

ii). ψ(n) ⇒ (B − ε)n for infinitely many n.

Then

D(A,B + ε) ⊂ F (ψ) ⊂ D(A,B − ε).

Applying Lemma 6.2, we see that

1

B + ε+ 1
≤ dimH F (ψ) ≤ 1

B − ε+ 1
.

Since ε is arbitrary, we obtain dimH F (ψ) = 1
1+B .
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For the case B = ∞, let C > 1 be large, we have ψ(n) > Cn for infinitely many n,

and so

F (ψ) ⊂ D(A,C).

It follows fromLemma 6.2 that dimH F (ψ) ≤ 1
1+C . LettingC → ∞, we get that dimH F (ψ) =

0.

Combining (6.15) and Lemma 6.4, we deduce that

dimHEψ(α) ≤
1

B + 1
.

References

[1] FALCONER K. Fractal Geometry: Mathematical Foundations and Applications[M]. Chichester:
John Wiley & Sons, 1990.

[2] WEISS H. The Lyapunov spectrum for conformal expanding maps and axiom-A surface diffeo-
morphisms[J]. J. Statist. Phys., 1999, 95: 615-632.

[3] PESIN Y, WEISS H. A multifractal analysis of equilibrium measures for conformal expanding
maps and Moran-like geometric constructions[J]. J. Stat. Phys., 1997, 86(1–2): 233-275.

[4] POLLICOTTM,WEISS H.Multifractal analysis of Lyapunov exponent for continued fraction and
Manneville-Pomeau transformations and applications to Diophantine approximation[J]. Comm.
Math. Phys., 1999, 207: 145-171.

[5] NAKAISHI K. Multifractal formalism for some parabolic maps[J]. Ergod. Th. & Dynam. Sys.,
2000, 20(3): 843-857.

[6] TAKENS F, VERBITSKIY E. On the variational principle for the topological entropy of certain
noncompact sets[J]. Ergod. Th. & Dynam. Sys., 2003, 23(1): 317-348.

[7] PFISTER C E, SULLIVAN W G. On the topological entropy of saturated sets[J]. Ergod. Th. &
Dynam. Sys., 2007, 27(3): 929-956.

[8] GELFERT K, RAMS M. The Lyapunov spectrum of some parabolic systems[J]. Ergodic Theory
Dynam. Systems, 2009, 29: 919-940.

[9] KESSEBÖHMER M, STRATMANN B. A multifractal analysis for Stern-Brocot intervals, con-
tinued fractions and Diophantine growth rates[J]. J. Reine Angew. Math., 2007, 605: 133-163.

[10] IOMMI G. Multifractal analysis of the Lyapunov exponent for the backward continued fraction
map[J]. Ergodic Theory Dynam. Systems, 2010, 30: 211-232.

[11] FAN A, LIAO L, WANG B, et al. On Khintchine exponents and Lyapunov exponents of continued
fractions[J]. Ergod. Theor. Dyn. Syst., 2009, 29: 73-109.

38



[12] FAN A, LIAO L, WANG B, et al. On the fast Khintchine spectrum in continued fractions[J].
Monatsh. Math., 2013, 171: 329-340.

[13] LIAO L, RAMS M. Upper and lower fast Khintchine spectra in continued fractions[J]. Monatsh
Math, 2016, 180: 65-81.

[14] ADLER R, FLATTO L. The backward continued fraction map and geodesic flow[J]. Ergodic The-
ory Dynam. Systems, 1984, 4: 487-492.

[15] RÉNYI A. On algorithms for the generation of real numbers[J]. Magyar Tud. Akad. Mat. Fiz. Oszt.
Közl., 1957, 7: 265-293.

[16] DUKE W, IMAMOGLU Ö, TÓTH Á. Geometric invariants for real quadratic fields[J]. Ann. of
Math. (2), 2016, 184: 949-990.

[17] KATOK S, UGARCOVICI I. Applications of (a, b)-continued fraction transformations[J]. Ergodic
Theory Dynam. Systems, 2012, 32: 755-777.

[18] PINNERC.More on inhomogeneous Diophantine approximation[J]. J. Théor. Nombres Bordeaux,
2001, 13: 539-557.

[19] DAJANI K, KRAAIKAMP C. The mother of all continued fractions[J]. Colloquium Mathe-
maticum, 2000, 84/85.

39



Appendix

For a function ψ : N → R>0 that meets the following criteria:

lim
n→∞

ψ(n)

n
= ∞ (.17)

and

lim inf
n→∞

logψ(n)
n

= log b ∈ [0,∞] (.18)

and so b ∈ [1,∞]. We aim to construct a function that fulfills conditions iii)’, which is

stronger version of iii) in Section 6.1.2, and is of independent interest.

Proposition .5. Assume ψ : N → R>0 satisfies the above conditions (.17) and (.18) with

b ∈ [1,∞], then there exists a non-decreasing function gψ : N → R>0 that simultaneously

satisfies the following three properties:

i).

lim sup
n→∞

gψ(n)

ψ(n)
= 1, (.19)

ii).

lim
n→∞

gψ(n)

n
= ∞, (.20)

iii)’.

lim
n→∞

gψ(n+ 1)

gψ(n)
= b. (.21)

Remark. In fact, the function gψ(n) we construct in the proof of Proposition .5 satisfies

gψ(n) ≤ ψ(n), for all n ⇒ 1.

Before we proceed with the proof of Proposition .5, let us state two useful lemmas.

Lemma .6. Suppose ψ : N → R>0 satisfies the conditions (.17) and (.18) with 1 < b < ∞,

then for every M ∈ N, 0 < ε < b − 1, there exists an integer m∗ = m∗(M, ε) > M that

simultaneously satisfies the following two properties:
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i).

ψ(m∗ + n) > (b− ε)nψ(m∗), for all n ⇒ 1; (.22)

ii).

ψ(m∗ − n) > (b+ ε)−nψ(m∗), for all 1 ≤ n ≤ m∗. (.23)

Proof of Lemma .6. Set a real number cψ := minn≥1{ψ(n)}, then it follows follows from

(.17) that cψ is well-defined. Since ψ(n) > 0 for all n ⇒ 1, we have cψ > 0. Fix M ∈

N, 0 < ε < b− 1 as in the hypothesis, by (.18), we can choose an integerm0 > M such that

the following three properties are satisfied:

ψ(m0) < cψ(b+ ε/2)m0 , (.24)

and

(1 +
ε

2(b+ ε/2)
)m0−M > (b+ ε/2)M , (.25)

(in other words, (.25) means (b− ε)M−m0 < (b+ ε/2)−m0), and also for all n > m0

ψ(n) > (b− ε/2)n. (.26)

Meanwhile, we further take an integer N > m0 with

ψ(m0)(b− ε)N−m0 < (b− ε/2)N (.27)

holds.

Let us now proceed with the proof of Lemma .6 by contradiction. Suppose, in contrast,

that there is no suchm∗ > M satisfying the properties (.22) and (.23) simultaneously, then in

the rest of the proof, we recursively construct a sequence of integers {mj}j≥0 withmj > M

for every j ⇒ 0.

Starting fromm0 and assume by induction for each j ⇒ 0, integersm0 > M, · · · ,mj >

M are already defined, the integermj+1 is defined by:
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i). If there exists some n̂ ⇒ 1 such that ψ(mj + n̂) ≤ (b− ε)n̂ψ(mj), then definemj+1 :=

mj + nj where nj ⇒ 1 is the minimal positive integer such that

ψ(mj + nj) ≤ (b− ε)njψ(mj). (.28)

ii). Else if for all n ⇒ 1, ψ(mj + n) > (b − ε)nψ(mj). Due to our assumption, (.22)

and (.23) can not satisfy simultaneously for mj , but mj already satisfies (.22), so mj

dissatisfies (.23). Then definemj+1 := mj + nj , where 1 ≤ −nj ≤ mj is the minimal

positive integer such that

ψ(mj + nj) ≤ (b+ ε)njψ(mj). (.29)

Claim (A). Letmj+1 be the integer defined in either item i) or item ii) above, then

M < mj+1 < N, (.30)

recall N was defined in (.27).

Once Claim (A) is proved, one can apply it recursively so that the sequence {mj}j≥0 is

defined, andM < mj < N for every j ⇒ 0.

We proceed the proof by contradiction. Suppose on the contrary that mj+1 ≤ M , by

our constructionm0 > M, · · · ,mj > M . Set

R :=
∑

i<j,ni>0

ni and S := −
∑

i<j,ni<0

ni, (.31)

then mj+1 = m0 + R − S ≤ M with convention that R = 0 if {i ⇒ 0 : i < j, ni > 0} is

empty (similar for S). It follows that

ψ(mj+1) ≤ ψ(m0)(b− ε)R(b+ ε)−S
(
by (.28), (.29) and (.31)

)

≤ ψ(m0)(b− ε)R−S
(
since b− ε > 1

)

= ψ(m0)(b− ε)mj+1−m0 . (.32)
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And

ψ(m0)(b− ε)mj+1−m0

≤ ψ(m0)(b− ε)M−m0

< ψ(m0)(b+ ε/2)−m0
(
by (.25)

)

< cψ.
(
by (.24)

)

This is obvious a contradiction to the minimality of cψ.

Next we proceed by contradiction the proof of the other half of Claim (A):mj+1 < N .

Suppose otherwisemj+1 ⇒ N , then it follows that

ψ(mj+1) ≤ ψ(m0)(b− ε)mj+1−m0
(
by (.32)

)

= ψ(m0)(b− ε)mj+1−N(b− ε)N−m0

≤ ψ(m0)(b− ε)mj+1−N (b− ε/2)N

ψ(m0)

(
by (.27)

)

≤ (b− ε/2)mj+1 ,
(
sincemj+1 ⇒ N

)

This is a obvious contradiction to (.26) and we thus obtain (.30), and completes the proof of

Claim (A).

Due to (.30) in Claim (A), there is M < mj < N for every j ⇒ 0 and {mj}j≥1 is a

bounded infinite sequence taking value in N, then by the pigeonhole principle, the sequence

{mj}j≥1 must take repeated value for different indices, say there exist 0 ≤ i∗ < j∗ such that

m∗
i = m∗

j . Set

R̃ :=
∑

i∗≤t<j∗,nt>0

nt and S̃ := −
∑

i∗≤t<j∗,nt<0

nt, (.33)

thenmi∗ = mj∗ = mi∗ + R̃− S̃ and thus R̃ = S̃ > 0. However it follows that

ψ(mi∗) = ψ(mj∗)

≤ ψ(mi∗)(b− ε)R̃(b+ ε)−S̃
(
by (.28), (.29) and (.33)

)

= ψ(mi∗)(
b− ε

b+ ε
)R̃

(
since R̃ = S̃

)

< ψ(mi∗).
(
since R̃ > 0

)

This is absurd, consequently there is some integer m∗ = m∗(M, ε) satisfying the properties

(.22) and (.23) simultaneously, as we want.
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Analogous to Lemma .6

Lemma .7. Suppose ψ : N → R>0 satisfies (.17) and (.18) with b = 1, then for every

M ∈ N, ε > 0, there exists an integer m∗ = m∗(M, ε) > M satisfying the following two

properties simultaneously:

i).

ψ(m∗ + n) >
m∗ + n

m
ψ(m∗) for all n ⇒ 1; (.34)

ii).

ψ(m∗ − n) > (1 + ε)−nψ(m∗) for all 1 ≤ n ≤ m∗. (.35)

Proof of Lemma .7. Set cψ := minn≥1{ψ(n)} > 0. Fix ε > 0 as in the hypothesis and

without loss of generality we can fix M ∈ N, with M > 2/ε. By (.18), we can choose an

integerm0 > M such that the following two properties are satisfied

(1 +
ε

2(1 + ε/2)
)m0−M > (1 + ε/2)M (.36)

and

ψ(m0) < cψ(1 + ε/2)m0 . (.37)

Meanwhile, by (.17), one can further take an integer N > m0 such that

ψ(n)

n
>
ψ(m0)

m0
for all n > N. (.38)

Let us now proceed the proof of Lemma .7 by contradiction. Suppose in contrast that

there is no such m∗ > M satisfying the properties (.34) and (.35) simultaneously, then we

will recursively construct a sequence of integers {mj}j≥0. The sequence of integers {mj}j≥0

we construct satisfies the following 3 properties:

Claim (B). For each j ⇒ 0,

1). Ifmj ≤ m0, then

ψ(mj) ≤ (1 + ε)mj−m0ψ(m0); (.39)
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2). Ifmj ⇒ m0, then

ψ(mj) ≤
mj

m0
ψ(m0); (.40)

3).

M < mj < N. (.41)

Recall that N was defined in (.38).

Let us begin the construction {mj}j≥0: we start from the integer m0 defined above,

then properties (.39) and (.40) in Claim (B) are trivially true form0, and by our construction

of m0, (.41) is also true. In particular, m0 > M , and we construct m1 using this property.

If there exists some n̂ ⇒ 1 such that (.42) holds for mj = m0, we use item i) below to

definem1, otherwise if no such n̂ exists, sincem0 > M , then by our assumption, there is no

m∗ > M satisfying the properties (.34) and (.35) simultaneously, we can definem1 by item

ii) below.

Next, we prove Claim (B) form1 using the fact Claim (B) is true form0 (the details in

this step will be given in the following paragraphs). In particular, m1 > M , then again in

the same manner we can definem2, and prove Claim (B) form2 using the fact Claim (B) is

true form1. We repeat this process to constructmj for each j ⇒ 0.

To be more precise, assume that we have already defined integersm0, · · · ,mj , and we

have also verified Claim (B) form0, · · · ,mj , in particularmj > M . Then we define mj+1,

and verify Claim (B) formj+1.

i). If there exists some n̂ ⇒ 1 such that ψ(mj + n̂) ≤ mj+n̂
mj

ψ(mj), then define mj+1 :=

mj + nj where nj ⇒ 1 is the minimal positive integer such that

ψ(mj + nj) ≤
mj + nj

mj
ψ(mj). (.42)

ii). Else if for all n ⇒ 1, ψ(mj +n) > mj+n
mj

ψ(mj). Due to our assumption, (.34) and (.35)

do not satisfy simultaneously for mj , but mj already satisfies (.34), so mj dissatisfies

(.35). Then define mj+1 := mj + nj , where 1 ≤ −nj ≤ mj is the minimal positive
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integer such that

ψ(mj + nj) ≤ (1 + ε)njψ(mj). (.43)

We use item i) or item ii) definesmj+1. Let us proceed the proof of Claim (B) formj+1

item by item, using the fact Claim (B) is true formj .

Step I We prove (.39) for mj+1. One key observation used in the following proof is

when mj ≤ m0, since Claim (B) is true for mj , in particular, (.39) holds for mj . Also as

mj+1 ≤ m0 and nj += 0, we distinguish the following 3 cases:

Case I.1: (mj ≤ m0 and nj < 0). In this case, mj+1 = mj + nj < mj ≤ m0, since

(.39) in Claim (B) holds formj , it follows that

ψ(mj+1) ≤ (1 + ε)njψ(mj)
(
since nj < 0, and using (.43)

)

≤ (1 + ε)nj(1 + ε)mj−m0ψ(m0)
(
since (.39) holds formj

)

= (1 + ε)mj+1−m0ψ(m0),

so item 1) (.39) in Claim (B) holds formj+1, as we want.

Case I.2: (mj ≤ m0 and 0 < nj ≤ m0 − mj). In this case, mj+1 = mj + nj ≤

mj +m0 −mj = m0, since (.39) and (.41) holds for mj , in particular mj > M , it follows

from Bernoulli’s inequality3

ψ(mj+1) ≤
mj + nj

mj
ψ(mj)

(
since nj > 0, and using (.42)

)

≤ (1 + 1/mj)
njψ(mj)

(
using Bernoulli’s inequality

)

≤ (1 + ε)njψ(mj)
(
sincemj > M > 2/ε

)

≤ (1 + ε)nj(1 + ε)mj−m0ψ(m0)
(
since (.39) holds formj

)

= (1 + ε)mj+1−m0ψ(m0),

so item 1) (.39) in Claim (B) holds formj+1, as we want.

Case I.3: (mj > m0 and nj < m0 − mj < 0). In this case, mj+1 = mj + nj <

3Bernoulli’s inequality: for real numbers x > −1, a ≥ 1

(1 + x)a ≥ 1 + ax. (.44)
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mj +m0 −mj = m0, since (.40) holds formj , it follows that

ψ(mj+1) ≤ (1 + ε)njψ(mj)
(
since nj < 0, and using (.43)

)

≤ (1 + ε)nj+mj−m0(1 + ε/2)m0−mjψ(mj)
(
sincem0 −mj < 0

)

≤ (1 + ε)nj+mj−m0(1 + 1/m0)
−(mj−m0)ψ(mj)

(
sincem0 > M > 2/ε

)

≤ (1 + ε)nj+mj−m0
m0

mj
ψ(mj)

(
using Bernoulli’s inequality

)

≤ (1 + ε)nj+mj−m0ψ(m0),
(
since (.40) holds formj

)

so item 1) (.39) in Claim (B) holds for mj+1, as we want. Thus Step I: the proof of item i)

in (.39) formj+1 is completed.

Step II Next we prove item 2) (.40) formj+1. By hypothesis, we always havemj+1 ⇒

m0 when proving item 2). As nj += 0, we also distinguish the following 3 cases:

Case II.1: (mj ⇒ m0 and nj > 0). In this case, mj+1 = mj + nj > mj ⇒ m0, since

item 2) (.40) in Claim (B) holds formj , it follows that

ψ(mj+1) ≤
mj + nj

mj
ψ(mj)

(
since nj > 0, and using (.42)

)

≤ mj + nj

mj

mj

m0
ψ(m0)

(
since (.40) holds formj

)

=
mj+1

m0
ψ(m0),

so item 2) (.40) in Claim (B) holds formj+1, as we want.

Case II.2: (mj ⇒ m0 and m0 − mj ≤ nj < 0). In this case, mj+1 = mj + nj ⇒

mj +m0 −mj = m0, since item 2) (.40) in Claim (B) holds formj , it follows that

ψ(mj+1) ≤ (1 + ε)njψ(mj)
(
since nj < 0, and using (.43)

)

≤ (1 + ε/2)njψ(mj)
(
since nj < 0

)

≤ (1 + 1/mj+1)
njψ(mj)

(
sincemj+1 ⇒ m0 > M > 2/ε

)

≤ (1− nj

mj+1
)−1ψ(mj)

(
using Bernoulli’s inequality

)

≤ mj+1

m0
ψ(m0).

(
since (.40) holds formj

)

so item 2) (.40) in Claim (B) holds formj+1, as we want.

Case III.3: (mj ≤ m0 and nj > m0−mj). In this case,mj+1 = mj+nj > mj+m0−
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mj = m0, since item 1) (.39) and 3) (.41) in Claim (B) holds formj , in particularmj > M ,

it follows that

ψ(mj+1) ≤
mj + nj

mj
ψ(mj)

(
since nj > 0, and using (.42)

)

≤ mj + nj

m0
(1 + 1/mj)

m0−mjψ(mj)
(
using Bernoulli’s inequality

)

≤ mj + nj

m0
(1 + ε)m0−mjψ(mj)

(
sincemj > M > 2/ε

)

≤ mj + nj

m0
(1 + ε)m0−mj(1 + ε)mj−m0ψ(m0)

(
since (.39) holds formj

)

=
mj+1

m0
ψ(m0),

so item 2) (.40) in Claim (B) holds formj+1, as we want. Thus Step II: the proof of item 2)

in (.40) formj+1 is completed.

Step IIIWe prove item 3) (.39) formj+1, using what we have just proven in Step I and

Step II , that is, item 1) (.39) and item 2) (.40) holds formj+1.

First we show mj+1 > M , and the proof is by contradiction: suppose otherwise if

mj+1 ≤ M < m0, it follows that

ψ(mj+1) ≤ (1 + ε)mj+1−m0ψ(m0)
(
sincemj+1 < m0 and by (.39) formj+1

)

≤ (1 + ε)M−m0ψ(m0)
(
sincemj+1 ≤ M

)

< (1 + ε/2)M−m0(1 + ε/2)−Mψ(m0)
(
by (.36)

)

= (1 + ε/2)−m0ψ(m0)

< cψ,
(
by (.37)

)

a obvious contradiction to the minimality of cψ.

Finally we show mj+1 < N , and the proof is also by contradiction: suppose otherwise

ifmj+1 ⇒ N > m0, it follows from (.40) formj+1 that

ψ(mj+1) ≤
mj+1

m0
ψ(m0),

this is a obvious contradiction to ψ(n)/n > ψ(m0)/m0 for all n ⇒ N , thusmj+1 < N . And

we have completed the proof of Claim (B) formj+1.

Therefore by (.41), the sequence {mj}j≥1 is bounded with infinite many terms and takes
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value inN, then by the pigeonhole principle, the sequence {mj}j≥1 must take repeated value

for different indices. Say there exists 0 ≤ i∗ < j∗ suchm∗
i = m∗

j . Set

R :=
∑

i∗≤t<j∗,nt>0

nt and S := −
∑

i∗≤t<j∗,nt<0

nt, (.45)

and it follows fromm∗
i = m∗

j = m∗
i +R− S that R = S > 0. In fact for index t ⇒ 0, when

nt > 0, it follows from (.42), Bernoulli’s inequality and the factmt > M that

ψ(mt + nt) ≤
mt + nt

mt
ψ(mt)

(
by (.42)

)

< (1 + 1/mt)
ntψ(mt)

(
Bernoulli’s inequality

)

< (1 + ε/2)ntψ(mt).
(
sincemt > M > 2/ε

)
(.46)

Then analogous to Lemma .6, it follows from (.43), (.46) and (.45) that

ψ(m∗
i ) = ψ(m∗

j)

≤ ψ(m∗
i )(1 + ε/2)R(1 + ε)−S

(
by (.43), (.46) and (.45)

)

= ψ(m∗
i )
(1 + ε/2

1 + ε

)R (
since R = S

)

< ψ(m∗
i ),

(
since R > 0

)

which is absurd. So there is an integer m∗ = m∗(M, ε) > M satisfying the properties (.34)

and (.35) simultaneously, and proof of Lemma .7 is completed.

Based on Lemma .6 and .7, we are now ready to prove Proposition .5.

Proof of Proposition .5. The main part of the proof is to construct a non-decreasing function

g : N → R. We will divide its construction into three different cases, namely, b = ∞, 1 <

b < ∞ and b = 1. We verify each case individually. To achieve this, we divide the construc-

tion into three cases: b = ∞, 1 < b < ∞ and b = 1. The first case is easy, and the rest two

are more difficult but shares a common pattern.

Case I(b = ∞): In this case there is

lim
n→∞

logψ(n)
n

= ∞. (.47)
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We first construct interleave sequences of indices {ñj}j≥1, {nj}j≥1 inductively satisfying

nj+1 ⇒ ñj+1 > nj ⇒ ñj for all j ⇒ 1. More precisely, {nj}j≥1 is a modification of {ñj}j≥1.

By (.47), choose ñ1 ∈ N such that logψ(n)/n > 1 for all n > ñ1, then we further take n1

such that
logψ(n1)

n1
= min

n≥ñ1

{ logψ(n)
n

}
:= α1 ⇒ 1,

Next assume by induction that for j > 1, ñ1, n1, · · · , ñj−1, nj−1 are already defined (but ñj

and nj are not), then ñj and nj are defined as follows: by (.47) choose ñj > nj−1 such that

for all n ⇒ ñj , we have logψ(n)/n ⇒ j. Choose nj ⇒ ñj such that

logψ(nj)

nj
= min

n≥ñj

{ logψ(n)
n

}
:= αj ⇒ j.

Take

gψ(n) := eαjn (.48)

for nj ≤ n < nj+1. If n1 = 1, we have defined gψ(n) for all n ⇒ 1. If n1 > 1, we

choose appropriate value for gψ(n) such that gψ(n) < ψ(n) and gψ(n) is non-decreasing

when 1 ≤ n < n1. For example, we can take

gψ(n) = min
1≤j<n1

{ψ(j)},

for 1 ≤ n < n1. This completes the definition of gψ.

Let us verify that g constructed in (.48) satisfies the properties (.19), (.20) and (.21) in

Proposition .5. The sequence {ñj}j≥1 is non-decreasing, so {αj}j≥1 is non-decreasing and

thus gψ is non-decreasing. For any n ⇒ 1, if n < n1, then gψ(n) = min1≤j<n1{ψ(j)} ≤

ψ(n); otherwise n ⇒ n1, then there exists some j ⇒ 1, such that nj ≤ n < nj+1, then it

follows from the definition of gψ (.48) that

gψ(n) = eαjn ≤ en
ψ(n)
n = ψ(n).

Therefore for all n ⇒ 1, gψ(n) ≤ ψ(n). Also it directly follows from the definition of αj

50



that g(nj) = ψ(nj). We conclude that (.19) in Proposition .5 is verified.

For j ⇒ 1 and nj ≤ n < nj+1, there is

gψ(n+ 1)

gψ(n)
⇒ eαj ⇒ ej,

and consequently (.21) is true. For all n ⇒ n1, gψ(n) ⇒ en, which proves (.20). Therefore,

we obtain Proposition .5 in Case I.

Case II(1 < b < ∞): Let us briefly state the outline of the proof. The construction of

g consists of two parts and corresponds two types of indices that need to to be determined.

In Part 1, we determine the boundary indices nj: we use Lemma .6 to construct recur-

sively a strictly increasing sequence of integers {nj}j≥0 and interpolate g(nj) = ψ(nj) for

all j ⇒ 1.

In Part 2, we fix a positive integer j and then fill the remaining values of gψ(n) inside

[nj, nj+1]. Determine the first internal index r1 by (.53) as a minimizer: n = r1 minimize

(ψ(nj + n)

ψ(nj)

)1/n

(.49)

when n varies in [nj, nj+1]. Then define g by (.54), a geometric progression starting from

g(nj) with common ratio (.49). If nj + r1 reaches nj+1, we stop, otherwise we can similarly

find r2, · · · , finitely many internal indices and define g in each interval determine by adjacent

inter indices as a geometric progression with proper common ratio. Let us proceed the proof

of the construction.

Part 1 In this part, we define the boundary indices {nj}j≥1. Let n0 ⇒ 1 be a positive

integer such that ψ(n0) = minn≥1{ψ(n)} and choose a constant A > 1/(b − 1). Starting

from n0, assume by induction that for j ⇒ 1, n0, · · · , nj−1 are already defined, then nj is

defined as follows: takeMj = nj−1 and εj = 1/jA in Lemma .6, define nj = m∗(Mj, εj) =

m∗(nj−1, 1/Aj). Since nj = mj > Mj = nj−1, we deduce that {nj}j≥0 is strictly increas-

ing. The construction of boundary indices is completed.

Define gψ(n) = ψ(n0) for 1 ≤ n < n1 and gψ(nj) = ψ(nj) for all j ⇒ 1. Up till now,
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we still need to define gψ(n) for nj < n < nj+1, for all j ⇒ 1.

Part 2To this end, we further define the internal indices r1, · · · and the remaining values

of gψ in this part. They are defined as follows: fix each integer j, note that properties (.22)

withm∗ = nj and (.23) withm∗ = nj+1 in Lemma .6 are satisfied, more explicitly:

i). For all n ⇒ 1,

ψ(nj + n) >
(
b− 1

jA

)n

ψ(nj); (.50)

ii). For all 1 ≤ n ≤ nj+1,

ψ(nj+1 − n) >
(
b+

1

(j + 1)A

)−n

ψ(nj+1). (.51)

We use these two properties (.50) and (.51) to construct s1, and define the value of gψ for n

between nj + 1 and nj + s1 as follows. It follows from (.50) and the mean value theorem

that for each 0 ≤ n ≤ nj+1 − nj , there exists a unique real number t1(n) ⇒ −1 such that

ψ(nj + n) =
(
b+

t1(n)

jA

)n

ψ(nj), (.52)

and by (.51) t1(nj+1 − nj) ≤ 1. Choose

t1 := min
1≤n≤nj+1−nj

{t1(n)} ∈ [−1, 1] (.53)

with

ψ(nj + r1) =
(
b+

t1
jA

)r1
ψ(nj)

for some 1 ≤ r1 ≤ nj+1 − nj. Define

gψ(n) :=
(
b+

t1
jA

)n−nj

ψ(nj) (.54)

for nj < n ≤ nj + r1. If nj + r1 = nj+1, we stop, otherwise we continue the construction.

In the latter case, by (.52) and (.53)

ψ(nj + r1 + n) =
(
b+

t1(r1 + n)

jA

)r1+n

ψ(nj)
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⇒
(
b+

t1
jA

)r1+n

ψ(nj)

=
(
b+

t1
jA

)n

ψ(nj + r1)

for all 0 ≤ n ≤ nj+1 − nj − r1, and thus for such n, there exists a unique real number

t2(n) ⇒ t1 such that

ψ(nj + r1 + n) =
(
b+

t2(n)

jA

)n

ψ(nj + r1),

and by (.51) t2(nj+1 − nj + r1) ≤ 1. Choose again

t2 := min
1≤n≤nj+1−nj+r1

{t2(n)} ∈ [t1, 1]

with

ψ(nj + r1 + r2) =
(
b+

t2
jA

)r2
ψ(nj + r1)

for some 1 ≤ r2 ≤ nj+1 − nj + r1. Define

gψ(n) :=
(
b+

t2
jA

)n−nj−r1
ψ(nj + r1)

for nj + r1 < n ≤ nj + r1 + r2.

We repeat this process until nj+1 = nj + r1 + · · ·+ rs for some s ⇒ 1, and the process

ends in finite step since for each k ⇒ 1, rk ⇒ 1. The construction is completed with g(nj+1)

in the end coinciding the original definition g(nj+1) = ψ(nj+1).

Now we verify {gψ(n)}n≥1 satisfies the properties in Proposition .5: gψ(n) is non-

decreasing as b−1/A > 1 and tr ⇒ · · · ⇒ t1 ⇒ −1. Set r0 = 0 for simplicity, then for every

nj ≤ n ≤ nj+1, there is some 1 ≤ k ≤ s such that nj+r0+· · · rk−1 ≤ n < nj+r0+· · ·+rk,

then by minimality of tk

gψ(n) =
(
b+

tk
jA

)n−nj−r1−···−rk−1

ψ(nj + r1 + · · ·+ rk−1)

≤
(
b+

tk(n− nj + r1 + · · ·+ rk−1)

jA

)n−nj−r1−···−rk−1

ψ(nj + r1 + · · ·+ rk−1)

= ψ(n).
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Since {nj}j≥1 is strictly increasing and g(nj) = ψ(nj) for all j ⇒ 1, property (.19) in

Proposition .5 is proved. It follows from −1 ≤ t1 ≤ · · · ≤ tr ≤ 1 that

b− 1

jA
≤ gψ(n+ 1)

gψ(n)
≤ b+

1

jA

for all nj ≤ n < nj+1 and j ⇒ 1. So gψ(n + 1)/gψ(n) → b, and gψ(n) eventually grows

exponentially fast so gψ(n)/n → ∞, which proves properties (.20) and (.21).

Case III(b = 1): The idea of the construction of g is analogous to the case 1 < b < ∞.

The reason we divide Case II and Case III into different cases is that when b = 1, no matter

how small ε is, b − ε is no longer larger than 1, in which case the construction of g in Case

II is invalid since g in (.54) is decreasing. We make a correction to g by multiplying a linear

term n/nj in the expression of g in (.59). The rest of the construction is similar to Case II.

Let us proceed the proof of the construction.

Part 1 In this part, we define the boundary indices {nj}j≥1. Let n0 ⇒ 1 be such that

ψ(n0) = minn≥1{ψ(n)}. Starting from n0, assume by induction that for j ⇒ 1, n0, · · · , nj−1

are already defined, then nj is defined as follows: take Mj = nj−1 and εj = 1/j in Lemma

.7, define nj = m∗(Mj, εj) = m∗(nj−1, 1/j). since nj = mj > Mj = nj−1, we deduce that

{nj}j≥0 is strictly increasing.

Define gψ(n) = ψ(n0) for 1 ≤ n < n1 and gψ(nj) = ψ(nj) for all j ⇒ 1, and we still

need to define gψ(n) for nj < n < nj+1, for all j ⇒ 1.

Part 2To this end, we further define the internal indices r1, · · · and the remaining values

of gψ in this part. Fix j, properties (.34) withm∗ = nj and (.35) withm∗ = nj+1 in Lemma

.7 are satisfied:

i). For all n ⇒ 1,

ψ(nj + n) >
nj + n

nj
ψ(nj); (.55)

ii). for 1 ≤ n ≤ nj+1,

ψ(nj+1 − n) >
(
1 +

1

j + 1

)−n

ψ(nj+1). (.56)
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It follows from (.55) that for each 0 ≤ n ≤ nj+1 − nj , there exists a unique real number

t1(n) ⇒ 0 such that

ψ(nj + n) =
(
1 +

t1(n)

j + 1

)nnj + n

nj
ψ(nj), (.57)

and by (.56) t1(nj+1 − nj) ≤ 1. Choose

t1 := min
1≤n≤nj+1−nj

{t1(n)} ∈ [0, 1] (.58)

with

ψ(nj + r1) =
(
1 +

t1
j + 1

)r1 nj + r1
nj

ψ(nj),

for some 1 ≤ r1 ≤ nj+1 − nj. Define

gψ(n) :=
(
1 +

t1
j + 1

)n−nj n

nj
ψ(nj) (.59)

for nj < n ≤ nj + r1. If nj + r1 = nj+1, we stop, otherwise we continue the construction.

In the latter case by (.57) and (.58)

ψ(nj + r1 + n) =
(
1 +

t1(r1 + n)

j + 1

)r1+nnj + r1 + n

nj
ψ(nj)

⇒
(
1 +

t1
j + 1

)r1+nnj + r1 + n

nj
ψ(nj)

=
(
1 +

t1
j + 1

)nnj + r1 + n

nj + r1
ψ(nj + r1),

for all 0 ≤ n ≤ nj+1 − nj − r1, and thus for such n, there exists a unique real number

t2(n) ⇒ t1 such that

ψ(nj + r1 + n) =
(
1 +

t2(n)

j + 1

)nnj + r1 + n

nj + r1
ψ(nj + r1),

and by (.56) t2(nj+1 − nj + r1) ≤ 1. Choose again

t2 := min
1≤n≤nj+1−nj+r1

{t2(n)} ∈ [t1, 1],
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with

ψ(nj + r1 + r2) =
(
1 +

t2
j + 1

)r2 nj + r1 + r2
nj + r1

ψ(nj + r1)

for some 1 ≤ r2 ≤ nj+1 − nj + r1. Define

gψ(n) :=
(
1 +

t2
j + 1

)n−nj−r1 n

nj + r1
ψ(nj + r1)

for nj + r1 < n ≤ nj + r1 + r2.

We repeat this process until nj+1 = nj + r1 + · · ·+ rs for some s ⇒ 1, and the process

ends in finite steps since for each 1 ≤ k ≤ r, rk ⇒ 1. The construction is completed with

g(nj+1) coinciding the original definition g(nj+1) = ψ(nj+1).

Now we verify {gψ(n)}n≥1 satisfies the properties in Proposition .5: By minimality of

{tj}j≥1, gψ(n) ≤ ψ(n) for all n ⇒ 1, and it follows from g(nj) = ψ(nj) for all j ⇒ 1

that property (.19) in Proposition .5 is true. By construction gψ(n)/n ⇒ ψ(nj)/nj for all

nj ≤ n < nj+1, and thus property (.20) is true. Finally it follows from for all n ⇒ 1 and for

some j ⇒ 0, k ⇒ 1 and tk ⇒ 0

1 ≤
(
1 +

tk
j + 1

)n+ 1

n
=

gψ(n+ 1)

gψ(n)
≤

(
1 +

1

j + 1

)n+ 1

n

that gψ(n) is non-decreasing and property (.21) is true, and the proof of Proposition .5 is

completed.
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