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[ABSTRACT]

This thesis introduces a topological method of data analysis, called persistent homol-
ogy. Homology groups of a topological space contain geometric information: roughly speak-
ing, the rank of the n-dimensional homology group indicates the number of n-dimensional
“holes” in the space. The idea of persistent homology is to obtain topological features of the
underlying space of a point cloud sample, by calculating homology groups. More specifi-
cally, starting with discrete point cloud data, one chooses different radii, connects points with
distance less than each given radius to get a sequence of simplicial complexes, and calculates
their simplicial homology groups. Then one chooses the homology classes that persist the
longest to estimate the homology groups of the underlying space. This method resolves the
difficulty with choosing relative measures for data in different scales. Persistent homology
is widely used in areas such as biology, medical science, and image processing. It is stable
under permutation of data in a precise sense. We discuss this method in detail, including
theoretical and computational aspects. We give two applications, to the problems of wheeze

detection in medical science and of protein docking in biology.

|[Keywords]: persistent homology, time-delay embedding, wheeze detection, protein dock-

ing
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Notations

complex number field

real number field

rational number field

rational integer ring

the quotient ring Z/nZ

the n-dimensional sphere {(z,...,z,) € R*™ |22 + -+ + 22 =1}
the n-dimensional projective space of the field K, KP* = K" — {0}/
where z Az forallz € K" — {0} and A\ # 0 € K

The Cartisian product F x - - - IF of n copies of the field F

ViI
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Chapter 1 Introduction

There are many cases when we need to detect the “shape” of data points. For example,
taking 100 points on the unit circle randomly, one can recongnize the shape of circle by eyes.
In dynamical systems, circular attractors imply periodicity. What if the circle is embedded in
R* or higher dimensional Euclidean space? Or even worse, what if the data is taken from a
non-Euclidean topological space? This is when topological method being used. Recovering
the underlying space of discrete data points is what persistent homology do.

Chapter 2 provides basic knowledge of homology. Starting with singular homology,
which can be defined for all spaces, we introduce basic concepts and properties of it. We then
come to simplicial homology, which is defined only for spaces with A-complex structures but
easier to calculate. The conclusions are that these two homology theories are isomorphic, and
are both homotopic invariants. Homology groups are important in characterizing topological
spaces.

Chapter 3 discusses technical details of persistent homology. A sequence of nested
simplicial complexes indexed by integers, called a filtration, is constructed from a set of
discrete data points. As the index grows, homology classes appear and become trivial. We
track the birth and death for each homology classes and record them in the so-called persistent
diagram. The persistent diagram gives us information of the homology classes who persist
the longest, which are all we need to estimate the homology of the underlying space. The
persistent diagram is calculated by reducing the boundary matrix of the filtration.

Chapter 4 introduces a technique called sliding window embedding. Combined with
persistent homology, it can find the shape of times series data such as attractors of dynamical
systems, which contain important information. This is further applied to the problem of
wheeze detection, a medical problem related to lung diseases. Compared to other methods,
the topological one performs better.

Chapter 5 gives a little generalization of persistent homology, that is, the extended per-
sistence. The theory and computation of extended persistence is much like the ordinary per-
sistence. It also start with a filtration and obtain the persistent diagram by matrix reduction,
but requiring knowledge about the relative homology and Morse function, which we provide
at the beginning of the chapter. Then we illustrate how it be used to the protein docking
problem.

The final chapter concludes the article.
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Chapter 2 Preliminaries on Homology

To introduce the method of persistent homology, we need some basic knowledge of
homology. Readers are assumed to have basic knowledge of point-set topology, smooth
manifold, abstract algebra; otherwise they may refer tol'),[?l andP!. The main references for
this chapter are* and). The readers who are familiar with the notion of homology may skip
this chapter.

Homology is used to study invariant properties of geometric objects under continuous
deformations. Heuristically, it counts the holes of a space in all dimensions. For exam-
ple, a circle has a one-dimensional hole, a torus has two one-dimensional holes and a two-
dimensional hole and a 2-sphere S? contains a two-dimensional hole. Different behavior of

the holes yields to different homology groups.

2.1 Singular Homology

Definition 2.1.1 (Standard Simplex). A standard n-simplex is definedtobe A,, := {(zg,...,z,) €
R™ | zg,...,2, > 0, z; = 1}. Denote a standard n-simplex by [vy, . . ., v,], where v;

refers to the corner (0,...,0,1,...,0) of A, with the i-th coordinate being 1 and others

being 0.

For example, a standard (-simplex is a point; a standard 1 simplex is a line segment; a

standard 2-simplex is a triangle (with interior), and so on.

Definition 2.1.2 (Singular Simplex). Let X be a topological space, an n-dimensional sin-
gular simplex in X is a continuous map o : A,, — X.

2 I'.I i
Figure 2.1: A singular simplex

Definition 2.1.3 (Singular Chain). Let A be any abelian group. The n-dimensional singular
chain group with coefficients in A of X is defined to be C,,(X; A) := {>_ a,0 | oisan

finite
n-dimensional singualr complex in X and a, € A}. An element in C,(X; A) is called an
n-chain.

For example, if A = Z, C,,(X; A) is the free abelian group generated by all singular
n-simplexes. Cy(X,Z) has a basis consists of all points in X since a map Ay — X can be
identified as a point in X and C(X,Z) has a basis consists of all continuous paths in X.

When no ambiguity is caused, we omit the space X, the group A or both and simply write
Cn(X; A) as C,.

(98}
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Definition 2.1.4 (Boundary Map). Let A,, = [vg, vy, . . ., v, be a standard n-simplex. Define

n

the boundary of A, to be the formal sum dA,, := > (—1)*[vo,...,¥;,...,v,] where the
i=0
hat indicates that v; is deleted from the sequence v - - - v,, and each [vg, ..., 0;,...,v,] isa

standard n — 1 simplex.
Let 0 : A, — X be a singular simplex, define the boundary of ¢ to be do :=

Z (_ 1)71.0.' [0 sBiseees¥n) = Cn—l-
=0

Extend linearly, we get a boundary map

O : Cp = Cn1,0,(> Ja,0) =) _a,00

for each dimension.

Each 0, is of course a group homomorphism. Intuitively, the boundary of a triangle
consists of three edges without the interior, which all appear in the expression of the boundary
map. That is, O[vg, v1,va] = [v1,v2] — [vg, V3] + [vo,v1]. The signs indicate orientation, so
the three edges are consistently oriented, forming a cycle. Similar geometric explanations
hold for simplices in higher dimension.

We state without proving the following assertion, which can be checked by direct com-

putation:

Proposition 2.1.5. For all n, 0, 0 0,,,1 = 0.

The proposition can be understood as “the boundary has no boundary™.

If we let C,,(X) = 0 forn < 0 and 9,, = 0 for n < 0, we get a sequence of abelian
groups parametrized by Z

On On On—
5 Bl 08 B 5% By TS

and the connecting boundary homomorphisms 9, with d,, o 9,1 = 0. Such a structure is
called a chain complex. We usually omit the subscript 7 and write as 9% = 0.
Since 9, 0 3,41 = 0, imd, 4, (the image of 9,,,,) C ker 3, (the kernel of 9,,). Both of
them are subgroups of C,,, so we are able to do quotient.
Definition 2.1.6. Keep all the notions above. Let Z,(X;A) := kerd,, B,(X;A) =
imd,, 41, then Z,, C B,,. An element in Z,, is called an (n-dimensional) closed chain, or an
(n-dimensional) cycle, and an element in B, is called an (n-dimensional) boundary chain.
The n-dimensional singular homology group of X (with coefficientsin A)is H,(X; A) :=
Z,(X;A)/B,(X;A). The homology class ofa cycle z € Z,(X; A) is the equivalence class
(2] of z in H,(X; A). Two cycles 21,20 € Z,(X; A) are called homologous if [21] = (23],
that is, they differ by a boundary chain ¢ € C),1(X; A) such that z; — 2z, = Jc.

Homology groups are what we need to distinguish spaces. A cycle is a chain with no
boundary, hence is “closed”, representing a “hole” of the space; Two homologous cycles
represent the same “hole” of the space (see fig 2.2). Therefore, the homology group is the

group of all cycles modulo the homologous relation. Before moving to the useful properties,

we calculate some easy examples.
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Figure 2.2: The two 1-cycles (01234) and (1234) are homologous, which differ by the boundary of the
2-simplex (014). They represent the same 1-dimensional hole of the space.

Example 2.1.7. Let X = {*} = a singeleton. Then from every standard simplex A, there
is exactly one map o, onto X, thus C,,(X; A) = 0,,- A = Aforall n > 0. By the definition
of the boundary map, 9,0, = 0 if n is odd, and 0,,0,, = o, if n is even.

Ifnisodd, Z,(X; A) = B,(X;A) = Cp(X; A),so H,(X;A) =0.

If n # 0iseven, Z,(X;A) = B,(X;A) =0,s0 H,(X;A) =0.

Ifn= 0, 80 = 0, Z()(X; A) — C()(X; A) and B()(X, A) - 0, SO IIQ(X, A) = #A:

Therefore, the one-point space X has trivial homology group in all dimensions ex-
pect for 0, on which Hy(X) is isomorphic to the coefficient group A. That all positive-
dimensional homology groups vanish indicates that there is no “hole™ in a one-point set. The
0-dimensional homology group, which we will see soon, gives us information of the path
components of a space.

Proposition 2.1.8. Let X be a path-connected topological space, then Hy(X; A) = A.

Proof. Since 9y = 0, Zy(X; A) = Cy. Define € : Co(X; A) = A, Y a;z; — > a;. Clearly
¢ is a surjective group homomorphism. We claim that By(X; A) = kere = {c=>a, -z €
Co(X; A) | > a, = 0}. That is, the 0-dimensional boundary chain group consists of chains
whose coefficients add up to 0.

To see this, let v € C;(X; A) be a one-dimensional singular simplex, which can be
identified with a path v : [0,1] — X. Then 0y = (1) — v(0). Thus 9y € B’ and hence

Bo(X;A) C kere. Conversely, let ¢ = Z a; - ¢; € kere be an element in C; such that
i=0
k k

Za, = 0. Fix a point y € X. Then Za,n o Za zi — (D a))y = Y ai(z; —y). By

=0 1=0 1=0 i=0

the path-connectedness of X, there is a path (a 1-smgular simplex) 7; : [0, 1] — X such that
k

7 (0) = z;,%(1) = yfori = 0,1,..., k. Theneasy toseethat (> a;y;) = Z(Li(.L, y) =
=0

1 1=0
c. Thus ¢ € By(X; A) and kere C By(X; A). We have the claim.
By the claim, ker € = By(X; A). By the fundamental theorem of group homomorphism,

>

Co(X;A)/kere = Zp(X; A)/Bo(X; A) = Ho(X; A) = A. O
Corollary 2.1.9. If X = | | X, where the [_| " symbol denotes disjoint union and each X
AEA
is a path component of X, then Hy(X; A) = @ A.
AEA
Proof. Easy to see that C,,(X; A) = || Cn(Xy; A). By definition of H,, H,(X;A) =
AEA
@ H(X,; A). By 2.1.8, we have the result. O

A€EA

By 2.1.9, the rank of Hy(X) gives us the cardinality of path components of X.
Now we want to know more about the relations of maps between spaces and their ho-

mology groups.
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Let f : X — Y be a continuous map, then f induces a map C,(X) — C,(Y) by
mapping o to f o o. Denote this map still by f. One can easily check that f(Z,(X)) C
Z,(Y) and f(B,(X)) C B,(Y). Therefore, f induces a well-defined homomorphism f, :
H,(X) — H,(Y). Itis also not hard to check that (f o g), = f, o g, foreveryg: Y — Z.

For example, if f is a homeomorphism, then f, is an isomorphism, since (f,)™' =
(F ).

Intuitively, the R? plane and a point {*} both contain one path component and no non-
trivial higher dimension “holes”. They are of course not homeomorphic, since there is no
bijection between them; but we expect they have the same homology groups. To describe this
phenomenon in general, we need an equivalence relation among topological spaces weaker

than homeomorphic, called homotopic.

Definition 2.1.10 (Homotopy). (1) Let X,Y be topological spaces, f,g : X — Y be
continuous maps between them. A homotopy between f and g is a continuous map F' :
[0,1] x X — Y such that F(0,z) = f(z), F(1,z) = g(z).

If there is a homotopy between f, g, then f and g are called homotopic, denoted [ ~
g: X-Y.

2)Letf: X —-Y,h:Y — X. hiscalled a homotopic inverse of f if f o h ~ idy
and ho f ~ idx.

If there is a pair of homotopic inverses between X and Y, then X and Y are called
homotopic (or homotopic equivalent).

A homotopy can be thought of as “a continuous transformation between maps”. Two
spaces being homotopic means that they can be continuously deformed to each other. We

give some concrete examples.

Example 2.1.11. (1) If X is homeomorphic to Y, then X and Y are homotopic, since there
aremaps f: X - Yandg:Y — X suchthat fog=1idy and go f = idx.

(2) R™ is homotopic to a point. To see this, let i : {0} <> R" be the inclusion from the
origin to R™. Let r : R* — {0} be the only map from R”™ to {0}. Then r o i = id is the
identity map on {0}. Let F': [0,1] x R" — {0}, F(¢t,z) = (1 — t)x. Then F is continuous
and F(0,z) = z, F(1,2) = 0. Thus F' is a homotopy between idg and i o r, which maps
everything to {0}. 7 and r are homotopic inverses to each other.

Similarly, R is homotopic to the disc D,, := {(z1,...,2,) € R* | 3. z? < 1. Note
that none of these spaces are homeomorphic.

We admit without proving the following theorem, which tells us that homotopic spaces

do have same homology groups.

Theorem 2.1.12 (Homotopy Invariance of Homology). Let f ~ g : X — Y be homotopic
maps from X to Y, then f, = g, : H,(X) — H,(Y) for all n.

Corollary 2.1.13. If X and Y are homotopic, then H,,(X) = H,(Y) for all n.

Proof Letf : X — Y, g:Y — X be homotopic inverses to each other. Then by 2.1.12,
(fog). = (id), =1id = f. o g.. Thus f, and g, are group isomorphisms. |

6
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2.2 Simplicial Homology

The singular homology is defined for all topological spaces, so we can compute the
singular homology group for all kind of spaces, no matter how strange they are. However,
the computation is difficult even for simple geometric objects such as S™ and RIP". This is
not surprising given its tedious and abstract set-up. In this section, we introduce another kind
of homology theory, called simplicial homology, whose computation is much easier but can
only be defined for fewer spaces. This is actually the kind of homology that we will use in

the next chapter. We shall see that the two homology theories are in fact identical.
Definition 2.2.1. Let A,, be the standard n-simplex. The i-th face of A,, is an n — 1 simplex
[voy ..., Uiy...,v,] spanned by n — 1 corners in A,, with the original order. There is a canon-
ical homeomorphism d’, between A,,_; and [vg, ..., ¥;, ..., v, that preserves the order of
vertices, called the i-th face map.

Remark. As in 2.1.4, the boundary chain of A,, consists of all faces of A,, with alternative
signs.

The simplicial homology can only be computed for spaces that are “good enough”, that

is, spaces with a nice structure on it, called A-complex.
Definition 2.2.2 (A-complex). Let X be a topological space. A A-complex structure on X
is a collection of continuous maps f7 : A,, — X, where n depending on «, called an n-cell,

such that the following conditions hold: ) ‘
(1) For every o, n, f|x : An — X is injective, and X = | | f2(A,). Here A, :=
(a3

A, — 0A,, denotes the interior of A,,.

(2) For every o, m, 4, fhod!, = f},"l for some 3. In other words, the restriction of each
f to a face is one of the maps fg"l in the A-complex structure.

(3) Aset A C X is open if and only if (f7)~'(A) is open in A,, for each f".

A space that admits a A-complex structure is called triangulable. A space with a A-
complex structure is called a A-complex.

By (1) (2), one can construct a A-complex step by step. Start with a discrete set
{fa(Ao)} := Xq, then attach A, along its faces via the map f1od} (= fJ for some ) and get
the space X, and similarly attach A, and so on. Inductively, X; = (X, _; | [{fi(A;)})/ ~is
the quotient space where the equivalence relation identifies points mapped to the same point
in X. We have X = [J X,. By (3), the two spaces have the same topology. X; is called the
i-skeleton of X.

We also use the name “n-cell” to regard the image f7'(A,) of an n-cell f7. Then the

i-skeleton X;; is the union of all cells of X with dimension less than or equal to i.

Definition 2.2.3. Let X be a A-complex. A subcomplex Y of X is a closed subspace Y of
X that is a union of cells of X. Easy to verify that a subcomplex is itself a A-complex.

Example 2.2.4. (1) S™ can be thought of as (A,, LI A,)/ ~, where the two standard n-
simplexes are attached along their boudaries via the identity map.

(2) The projective plane RIP? can also be constructed by attaching two 2-simplices along
their boundaries, as in figure 2.3.
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RP°:

Figure 2.3: The A-complex structure of the projective plane. Arrows with same letters are identified in
the way indicated by the arrows. Cf.[4],

Definition 2.2.5 (Simplicial Homology). Let X be a A-complex and A an abelian group.
Define CS(X; A) == { Y asf | f equalsto some f7 : A, — X inthe A-complex structure

finite
of X,a; € A}. In particular, if A = Z, then C2(X; A) is the free abelian group generated
by all n-cells in the A-complex structure of X.
There is a boundary map 9, : C2(X; A) — C2_,(X; A) defined by 8,,(f7) := f"|sa,
and extend linearly. By 2.2.2 (2), the boundary map is well-defined. One can check that
0, 00,-1 =0,so0

Hn an 3n—
oy O Pl Bl L.,
is a chain complex (meaning that 9% = ().
We can define the notion of cycle, boundary chain and simplicial homology group as

in singular homology. Le., Z2(X; A) := kerd,, B2(X; A) := im0, and H>(X; A) :=
Zy (X5 A)[BR(X; A).

We omit the proof of the following important theorem, saying that computing the sin-
gular and simplicial homology will yield the same result.
Theorem 2.2.6. Let X be a A-complex, then H,(X; A) = H2(X; A) for all n > 0.

We have seen the definition, examples and basic properties of homology. Homology

groups give us the information about the homotopy class of a space. In the next chapter, we

will see how to analyze the shape of data using homology.
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Chapter 3 Persistence Homology

If we take 100 arbitrary points from a circle, we can recognize the shape of the circle by
our eyes, as in figure 3.1. If the points are taken from a torus in R?, we might still be able to
recover the shape of the torus in our mind. What if the points are taken from a Klein bottle or
a projective plane embedded in R?, or S™ that lies in R"*!? In many cases we have similar
problems, having to recover the original space (for example, an attractor of a dynamical
system) from which a discrete point cloud is taken out. One may think of calculating the
homology to find its homotopy type, but the topology on a finite set is discrete, giving almost
trivial homology. A strategy is to connect close points, fill in the blank spaces near each point
to get a non-discrete space and then calculate the homology of that space. This might work,
but the new question is the definition of “close”. If the points come from a large circle, we
may have to connect points whenever their distance is less than 100. But if they come from
a small torus with diameter 1, the parameter 100 will connect every two pints and simply
yield a contractible space. Similarly, if we let the threshold of closeness to be 1 for the large
circle, we would get nothing new but the discrete set again. Different parameters change the
homotopy type and homology groups, while it turns out that there is no systematic method
to choose the parameter. The solution of this problem is to try all parameters from small
to large and to calculate the homology groups for every parameter. After that, compare all
the homology groups and pick the homology classes that persist longer than others, which
are more possible to be the homology class of the original space, and regard them as the
homology classes for the real space. This is what persistent homology do. In this section,

we will talk about persistent homology in detail. The main reference of this chapter is!®!.

.°t o'- | P .
.o':ieto‘ : c.:...
." ’.“. P g
:J\-. 4 ....'(.." %
R SACEEIRR A RCE s L
L4 . . . . 9 e
- 0{&.. - ...-5&."" LA
o oo S e
“,* . es ®
"" . [ o.c ..
>, .- i A o o .o
. )
LI ., ot ®e ®
‘e ';;z . :‘.. ..
oo (L . Py .
¥y -~ .".t s .

50 25 00 25 50

Figure 3.1: A statistical circle
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3.1 Complex Constructions

The method to get a non-discrete space from a point cloud is to construct a complex
by joining certain points together. Here we introduce two kind of complexes: Vietoris-Rips

complex and Cech complex.

Definition 3.1.1 (Cech Complex). Let X = {;,...,z,} be a point cloud in a metric space
(M,d). The Cech complex at scale « is the set C,(X) := {¢ C X | N B(z,a) # 0},

reo

where B(z, «) is the ball centered at  with radius c.
C,(X) can be though of as a A-complex as follows: let |o| be the convex hull spanned

by all points of 0 = {zy,,..., 2, } Withky < --- < kp,, thatis, |o| := {D_ a;zy, | a; >

0,>" a; = 1}. Then identify o with the only linear map A,, — |o| that pre;::;ves the order
of the vertices.
Co(X)| := U |o] € RY is called the geometric realization of C,(X), whose A-
oeC

complex structure is given by maps in éa(X ). In this case, we call C»(X) an abstract
A-complex.

When no ambiguity is caused, we identify an abstract A-complex and its geometric
realization.

Remark. Once regarding . (X)asa A-comp!/ex, we can talk about its n-cycles, n-boundary
chains and homology groups. It is clear that C,(X) C Cy/(X) when a < /. So there is a

o w

natural inclusion C2(C, (X)) < C2(Cx(X)) for every a < o’ and n > 0.

Definition 3.1.2 (Vietoris-Rips Complex). Let X be the same as in 3.1.1. The Vietoris-Rips
complex at scale o (or simply Rips complex) is the set V,(X) := {o C X | B(z;,a) N
B(z;, &) #,Vz;, a5 € 0}

Va(X) can be thought of as a A-complex in the same way as C,(X). The homology
groups can still be computed and the natural inclusion for every a < o still exists.

Remark. The Rips Complex is a flag complex, or a full complex: That is, it is the maximal
element in all A-complexes with the given 1-skeleton. This is easy to check by the definition.
Therefore, the 0-skeleton (vertices) and 1-skeleton completely determine a Rips complex,
making the Rips complex less expensive than other complexes in computation.

For both Cech and Rips complex, if the parameter o is small enough, C\, (X ) and V. (X)
contain only discrete points; if « is larger than the diameter of X, then both C,(X) and
V,(X) contain the full complex spanned by points as vertices in X (that is, all subsets of
X are simplices in C,, (X ) and V,(X). For certain medium a, C, (X ) and V, (X ) may very
similar to the the space where X is taken from, topologically.

It is clear that for the same cale a, C,(X) € V,(X). Fig 3.2 illustrates a situation
when C,,(X) contains strictly less simplices than V,(X). Conversely, the Cech complex

also contains the Rips complex with smaller radius, as illustrated in proposition 3.1.3.

Proposition 3.1.3. For any point cloud X and o > 0, Vay2(X) C Co(X) C V,(X).
10
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Figure 3.2: Complex construction for the point cloud X = {z,y, z}. Each circle has radius 1. Then

Ci(X) = {{z}, {} {=}, {zv}, {22}, {y=}} and Vi(X) = {{z}, {v}, {2}, {aw}, {22}, {yz}, {zy2}}.
The shaded triangle is not contained in ', (X) but is in V; (X).

Proof. The second inclusion is obvious. For the first inclusion, suppose 0 = {zy,...,Z,,} €
Vas2(X), then B(z;, o) N B(zj, a) #,Va;, ¢; € o. Thatis, d(z;, z;) < o, Va;,z; € 0. Then
the diameter of the set o is less than a, so we can find a ball B(y, ) with radius «, centered
at some y € R?, such that ¢ C B(y, «). Then y is in the intersection of all B(z;, a), z; € 0.
Thus ¢ € V,(X). O

This proposition allows us to compare the homology computed using the two kind of

complexes.

3.2 Persistence

In this section we will deal with the varying scale, and extract important homology
classes from each H2(C\, (X)) and HA(V,(X)).

Definition 3.2.1. Let K be an abstract A-complex with geometric realization |K|. A filtra-
tion of K is a sequence of subcomplexes = Ko C K; C --- C K, = K.

A function f : K — R is called monotonic if (o) < f(7) whenever o is a face of 7.

Example 3.2.2. (1) A filtration can be generated using a monotonic function. Leta; < --- <
a, be the distinct function values of f and K, := f~!(—o0, a;]. By monotonicity of f, each
K;isasubcomplexof K and K, C K; C --- C K, = K.

In particular, one may have K; — K;_; = {o;} for some p-simplex o;. In this case, the
filtration illustrates the construction of K by adding one simplex at a time. See fig 3.3.

(2) If we take values 0 < a3 < --- < ay, Vthen the Vietoris-uRips complex or Cech
complex give a filtration V,, (X) C--- C V,, or Cy, (X) C -+ C C,, (X).

Let= Ky, C K; C --- C K,, = K be a filtration. For every i < j, we have K; —

K; the inclusion. This induces a map between homology groups, which we denoted by

11
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Figure 3.3: A filtration with K; = {0,,...,0;}. Here 0y,..., 04 are vertices, o5, ..., 0g are edges and
010, 011 are faces.

Figure 3.4: A homology class v born at K; and dies entering K;.

f;;j : Hy(K;) — H,(K;) for all dimension p. So we obtain a sequence of homology groups

connected by homomorphisms:
. —_ Hp(Ki—l) — Hp(Kz) — Hp(Ki+1) e A

where fg'k' o fil = [k for every i < j < k. We can actually define this structure more

generally, although this formal definition is not so important in this article:

Definition 3.2.3. A persistent vector space is a set of vector spaces {V, },cp indexed by a
total ordered set P together with linear maps f, o : Vo, — Vi for every o < o' such that
fa,a = idVO, Va and fa-’,a" o fa.a’ = frx,a” for every « < o < o,

Easy to see that a filtration induces a persistent vector space indexed by a finite set
11 A — ]

Definition 3.2.4. The p-th persistent homology group of the filtration } = Ky C K; C
--- C K, = K (with respect to ¢, j is Hy? := im(f}7) C H,(K;). The corresponding p-th
persistence betti number is ;7 := rank(H}7).

We say a homology class v € H,(K;) bornat K if v ¢ H,~'"; say -y dies entering K
if f297(y) ¢ Hy '~ but f37(v) € H; ', Define the persistence of -y to be pers(y) :=
j —i. If v is born at K; and never dies, set pers(y) = oco. See figure 3.4

From K; to K;, new cycles may be born (for example, when the simplex oy is added

in figure 3.3, creating new 1-cycle). Existing cycles may vanish, or become homologous

12
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to older cycles (for example, og, 017 kill 1-cycles in figure 3.3). The persistent homology
group H7 contains the homology classes in Kj; that are still alive independently in K;. The
betti number ﬁ;;j indicates the number of such classes. The persistent of a homology class
illustrates how long does this class exist. We should of course take the classes who persistent

longer into consideration. To visualize the persistence, we use the following diagram:

Definition 3.2.5. The p-th persistent diagram of the filtration ) = Ky C K; C --- C
K, = K is the multiset of points in the extended real plane R? := (R U {#+00})? such that
(4,7) appears pi7 times, where ;7 is the number of p-dimensional homology classes born
at K; and dying entering K.

If the filtration is given by a monotonic function f : K — R, then we denote its
persistent diagram by Dgm,(f).

Example 3.2.6. In figure 3.3, additions of 01, 09, 03 and 4 create new (-cycles, that is, new
connected components. 05, 0 and oy kill the components created by 05, 03 and o4 respec-
tively, making them homologous to the O-class [oy]. o7 creates a new 1-cycle (05040507).
og further creates another 1-cycle, making the second hole. oy kills the class generated by
09, making it homologous to the 1-cycle from og. Finally, oy, kills the remaining 1-cycle
from og. The persistent diagram of this filtration is shown in fig

x @)
11 @]
%10 @]
119 - :
g

77 O

g O

7y O

i

73

,,2(

| .

- 1 1 1 | B A —d.

Figure 3.5: The persistence diagram in example 3.2.6.

The next lemma tells us that the persistent diagram contains all the information about

the persistence homology groups, and vise versa:

Theorem 3.2.7 (Fundamental Lemma of Persistent Homology). Let = Ky C Ky C --- C
K, = K be a filtration. Then for every p > 0,

(1) il = (65! — gy — (Bt

@ B = 3 ¥ i

i<k j>1

13
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Proof. (1)Indeed, the difference in the first bracket is the number of independent classes born
at or before K; and dying entering K;; the difference in the second bracket is the number
of independent classes born at or before K;_; and dying entering K;. By definition, their
difference is ,u;';j, which is the number of independent classes that are born at K; and dies
entering K.

(2) B! is the number of independent classes in K; that are still alive in K;, which is
the number of independent classes that are born before K; and dies after K. So 85 is the
number of points (counted with multiplicity) in the left upper quadrant with corner point
(k,1). This is the summation in the right hand side. O

Now we proceed to the calculation of the persistent diagram. During the specific cal-
culation, we usually consider the homology with coefficient Z,, which is indeed a field. The
homology groups are therefore vector spaces over Z,. By choosing this coefficient group, we
can ignore the sign (orientation) of the chains and spaces. Moreover, since Zs, is the simplest

nontrivial group, the calculation is also easier.

Let) = Ko C K; C --- C K,, = K be afiltration. We assume K; — K;_, = {0;}.
Since each K is a simplicial complex, i < j whenever o, is a face of o;. Then we store all the
simplices and its boundary in a matrix 0, called the boudnary matrix of K where 0(, j) = 1
if o; is a codimension-1 face of o, and (i, j) = 0 otherwise. So d is a n x n strictly upper-

triangular 0 — 1 matrix, whose columns store the boundary chains of the simplices in K.

The information of the persistent diagram is hidden in the boudary matrix. To extract

it, we need to reduce this matrix.

Definition 3.2.8. Let R be ann x n 0 — 1 matrix. For 1 < j < n, define low(j) to be the
row index of the lowest 1 in column j. If the column j is zero, set low(j) undefined. We say
R is reduced if low(7) # low(j") whenever j # j" and low(j), low(j’) are defined.

Here is the pseudocode of an algorithm reducing 0:

Algorithme 1 An algorithm reducing 0
R=2@
for j=1 tondo do
while Jj, < j with low(jy) = low(j) do
add column j; to column j
end while
end for
return R

The output R is a reduced matrix.

Example 3.2.9. Let() = K, C --- C K,, = K be the same filtration as in example 3.2.6 and
figure 3.3. Then the boundary matrix in coefficient Z, and the reduced R by the algorithm

14



SUSTech’s Dissertation for Bachelor’s Degree

arc
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11 11
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Note that since 0 is upper-triangular and we are only allowing addtions from left to right,
R is also upper-triangular. By example 3.2.9 and 3.2.6, the pairs (j, low(j)) in the reduced
matrix R are precisely the finite points in the persistent diagram. The following theorem

states that this is not a coincidence.

Theorem 3.2.10. Let ) = K, C --- C K,, = K be a filtration such that K; — K;_; = {0;}
Jfor some simplex o;. Let O be its boundary matrix and R be the reduced matrix. Denote its
persistent diagram by D, then

(1) If the j-th column of R is 0, then B,(K;) = B,(K;_1). The addition of the p-simplex
aj creates a new cycle. In this case, we call o; positive;

(2) If the j-th column of R is nonzero, leti = low(7). Then the addition of the p-simplex
a; kills a (p — 1)-dimensional homology class ~y created by the addition of ¢;. In particular,
7 has persistence j — i and (i, j) € D. In this case, we call o; negative.

(3) The point (i,00) € D if and only if the i-th column of R is 0 and #j such that
low(j) = i.

Proof. (1) If the j-th column of R is 0, by the reduction algorithm, the j-th column of @ is
a linear combination of the previous 7 — 1 columns. Since the columns represent boundary
chains, that is, do; = ) doy, where each k < j. Then d(0; — > 0x) = 0,0; — Y o) isa
cycle. This cycle is not homologous to any existing cycles because it contain o;. Thus the
addition of o create the new cycle o; — > .

(2)If i = low(y) is defined, we claim that Jo; is a nontrivial cycle killed by the addition
of g;. doj is a cycle since d(do;) = 0. It is also obviously killed by o; since it is the
boundary. To see the cycle do; is created by the addition of ;, let ¢ be the chain in the j-th
column of R. By the algorithm, ¢ is a linear combination of the chains in the first j columns
of 0, that is, ¢ = Jo; + ) 0o, where each k < j. Then ¢ — do; = 0> 0 € By(K).
Therefore, ¢ and Jo; differ by a boundary, hence homologous. We denote this class by
v = [¢] = [00] € H,(K). Now c is clearly created by the addition of o;, since o; has the
largest index among all simplices in the chain ¢. Thus the whole homology class v = [Jo;]
is created by the addition of ¢;. This also implies that (i, j) € D.

(3) (i,00) € D if and only if o; creates a homology class that never dies. By (1) and
(2), the statement is obvious. O

There is an alternative representation of the persistent diagram, called the barcode.
Specifically, the barcode bed of a persistence diagram D is a multiset of intervals {[a;, a;] |

(a;,a;) € D}. The two things contain equivalent information, namely the birth and death of
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—

the homology classes. However, the barcode is more intuitive, since the length of the inter-
vals indicate the persistence of homology classes. We can visualize the persistence homology
by drawing the barcodes. We will see examples of barcodes in the next chapters.
Therefore, given a filtration, we can systematically reduce its boundary matrix and get
the persistent diagram or the barcode. We are done with the technical details of persistence
homology. In the next chapters, we will see how it combine with other techniques and apply

to real-world problems.
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Chapter 4 Sliding Window Persistence and its Application

In this chapter, we will introduce how to use persistent homology to detect the shape
of an attractor in a dynamical system. The tool translating an attractor to a point cloud in an
Euclidean space is sliding window embedding. Then we see how it being applied to wheeze
detection, which is an important medical problem. The main references of this chapter are!’]

and®,
4.1 Sliding Window Persistence

We first introduce some basic notions of dynamical systems.

Definition 4.1.1 (Dynamical system). A (global continuous time) dynamical system is a
pair (M, ®) where M is a topological space and ® : R x M — M is a continuous map, or a
flow, such that (0, p) = pand ®(t + s,p) = (s, P(¢,p)) forallp € M, t,s € R.

Remark. Alternatively, a flow can be thought of as an action of the additive group R to M.
The two requirements in the definition hold by the group law of (R, +).

Dynamical systems are mathematical abstraction for time-dependent physical processes.
Points in the space M (usually a manifold) flow with time, forming different orbits. For any
fixed p, we have a map @, : R — M, ®,(t) = ®(t, p). This map illustrates the motion of p
with time. For any fixed ¢ we also have map ®, : M — M, ®,(p) = @(¢,p). The image of
p € M is the position of p after ¢ time. Each ®, is a homeomorphism with inverse ¢ _;, and
is a diffeomorphism in the case M being a smooth manifold and ® being a smooth map.

The changing of weather in Shenzhen with time, the trajectory of a ball with initial
speed, the periodic moving of a pendulum... all form a dynamical system. Typical examples
are the solutions of differential equations.

Example 4.1.2 (Lorentz System). Let z,y, 2 be real-valued differentiable functions with
respect to ¢t and o, p, 8 € R be constants. Solving the system of equations

2(t) =o-(y—a)
y(@t) =z-(p—2)—y
2(t) =zy— Pz

yields a dynamical system (R?, @) where ® : R x R* — R3 is given by ®(t, (z,vy, 2)) =
(@(t), y(t), 2(t)).

This is indeed a chaotic system, that is, a system whose evolution is extremely sensitive
to initial conditions. The rigorous definition of chaotic system is complicated and not uni-
versally consistent, so we will not state here. To describe it more precisely, one can imagine
the “distance”™ between any two closed points grows exponentially with time. The orbits in
a chaotic system is wild and not bounded by initial states.

Some points of M tends to gather to certain subsets of M as time passes. These subsets

are like magnets attracting nearby points. We call them attractors.
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Figure 4.1: the butterfly attractor in the Lorentz system

Definition 4.1.3 (Attractor). An attractor of a dynamical system (M, ®) is a compact subset
A of M such that

(1) Ais invariant under . That is, if a € A, then ®(t,a) € A forall ¢t > 0.

(2) A has an open basin of attraction. That is, there is an open neighborhood B(A) of
A suchthat (" {®(¢,p) |p € B(A)} = A.

£>0
Condition (1) means that all points entering an attractor A is trapped forever. By con-

dition (2), points in the basin of attraction approach to A infinitely close as time goes by.

Attractors are of vital importance in the study of dynamical systems. In particular, the
shape of attractors give us much information about the dynamical system. For example,
attractors homeomorphic to S* imply periodicity, while a tori T" := S x --- x S! implies
quasiperiodicity; non-integral Hausdorff dimension (whose formal definition is not given
here) of an attractor implies chaotic behavior. Figure 4.1 shows a strange attractor with non-
integral Hausdorff dimension of the Lorentz system in example 4.1.2. Therefore, detecting
the shape of attractors is crucial. To do so, we would like to use the method of persistence

homology, with the help of another tool, called sliding window embedding.

In practice, the explicit information of each state p € M is usually unknown. Instead,
what we have is a measurement, that is, a continuous function F' : M — R, called the
observation function. Given a state p € M, let ¢, : R — R be the composite ¢,(t) =
F o ®(t,p). ¢, characterizes the change of the measurement of the point with time. Such
a one dimensional time series data seems to loss much information of the original space
(usually a higher dimensional manifold). Thanks to the Takens embedding theorem, from
almost all observation functions and almost all dynamical systems, we could recover our

orbit in the original space.

Let M, N be two smooth manifolds and C*(M, N) be the set of all maps from M to N
with continuous k-th partial derivatives. We can endow C*(M, N) with a topology, called
the Whitney topology, by which two functions are “close” if all their derivatives up to order
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k are close on compact subsets of M. The definition of Whitney topology is not state here,

since all we need is the fact that this makes C*(M, N) a topological space.

Theorem 4.1.4 (Taken’s Embedding Theorem). Lef M be a smooth, compact, Riemannian
manifold (a manifold with a metric) and ™ > 0 a real number. Let d > 2dim M be an
integer. Then the delay map ¢ : M — R o(p) = (¢,(0),0,(7), ..., 0,(d7)), where
op(t) = F o ®(t,p) is the composition, is an embedding for generic ® € C*(R x M, M)
and generic F € C*(M,R). That is, M is diffeomorphic to its image under .

Here “generic” implies that the set of all ® and F' making ¢ an embedding is open and
dense with respect to the Whitney topology. Although a proof of theorem 4.1.4 is not given
here, it is not so surprising considering all manifolds can be embedded into high dimensional
Euclidean spaces. Taken’s embedding theorem gives us a particular way to do this. In par-
ticular, every orbit is also embedded into R4*! with M. Motivated by this, we have the

following definition:

Definition 4.1.5. Let f : R — R be a real-valued function, 7 > 0 a real number and d > 0
an integer. The sliding window embedding with parameters 7 and d is the vector valued

function
SWarf: R — Re+1

t = (f(t), f{E+7), f(E+27),..., f(t+d7))
Here d+ 1 is the dimension of the Euclidean space, 7 is called the delay and dr is called
the window size.

Let 7' C R be a subset of the real numbers, the set
SWy, f :={SWa, f(t) |t € T} C R*!

is called the sliding point cloud associated to the sample set 7.

If f is one of the composite measurement maps ¢, in theorem 4.1.4, then SW, . f is
embedded into R*"! as a subset of ¢(M). Given a sample set TR, SW,; , ¢, recovers part of
the orbit of p € M in R**!. In other words, SW, , ¢, gives a topological copy of {® (%, p) |
teT}.

In practice, we usually use such sets to approximate attractors. Therefore, what we
should do is choosing an appropriate observation function and two parameters d, 7, using
Taken’s theorem to recover the orbit of a point and then using persistent homology introduced
in 3 to analyze its shape. Information of dynamical systems hide in the homotopy type of the

attractors. We finish this section with an example of slinding window persistence.

Example 4.1.6. Let M/ = T? = S' x §' C C? and w € R. Consider the following flow ®
and observation function F':

d: R xT? —+ T2

(t,(21,22)) = (€%z1,e™z)
F: T? - R
(21, 22) — Re(z + 22)
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If w € Q, then every orbit {®(t,p) | t € R} is periodic, that is, ®(t + 7,p) = (¢, p)
forall ¢ € R for some constant 7. However, if w is irrational, then the orbit {®(¢,p) | t € R}
of p never intersect itself and turns out to be dense in M. By results in dynamical system,
the whole space M = T? is the only attractor.

Here we choose p = (1,1) and w = /3. Then the time series data f(t) = Fo®(t,p) =
Re (e + ') = cost + cos(v/3t). Figure 4.2 illustrates the orbits, the corresponding time
series data and the barcode of the embedded point cloud. One can see that there are one
significant (0-dimensional cycles, two significant 1-dimensional cycles and one significant
2-dimensional cycle. This coincides with the homology of a torus.

0 05 1 15 2 25 3

Figure 4.2: Left: The orbit of a point on a torus S* x S, colored from blue to red. Center: The corre-
sponding time series data. Right: The barcodes of the sliding window embedding. Cf1"].

4.2 Application on Wheeze Detection

Wheezes are abnormal lung sounds, usually implying obstructive airway diseases. There-
fore, detecting wheeze signals is essential in diagnosing lung diseases. People have worked
on this problem in different ways, see reference . In this section, we mainly follow reference
, introducing a topological method to detect the wheeze signal. The idea is to use the sliding
window time delay embedding to embed the wheeze signal to R? and compute its barcodes,
then the first persistent Betti number distinguishes between wheeze and non-wheeze signals.

To get started, we model the wheeze signal. The frequency of a monophonic wheeze
signal is approximately piecewisely constant with respect to time. Therefore, we give a
model for wheeze signals as a continuous piecewise sinusoidal function with different periods

and phases and time-varying amplitude. That is,

w(t) = Z gi(t)

where
wi(t) i1 <t <,
gi(t) = ;
0 otherwise.
and w; fori =1,2,...,n, with{y, = a and {,, = b, are defined as
. 2w ‘
w;i(t) = A(t) sm(Ft + ;)

20



SUSTech’s Dissertation for Bachelor’s Degree

where A(t) is anonzero continuous amplitude function. To make w(t) continuous, the phases
should meet the requirement ¢; = ¢;_1 + 27rti_1(ﬁl_—l - —%— The fact is that this model ap-
proximate wheeze signals very well, by a measurement called Hausdorff distance. However,

for non-wheeze signals, this model not necessarily perform well.

Topological features of delay embeddings. Now we want to embed this time series data
to Euclidean spaces, using the sliding window embedding. Let 7 > 0 be the time delay. We

will consider the following sets
W(t) == {(w(t),w(t +7)) | t € [a,b]},

Wi(t) = {(wi(t),w;(t + 7)) | tica <t t+7 < 8}
W(t) is the embedding of the whole data and W;(t) C W (t) is the i-th piece of it. In

the following discussion, we first focus on the constant amplitude case, and then generalize
it to the varying amplitude A(t) case. We will elaborate that how the first Betti number
of the delay embedding W () being at least 1. The following theorem indicates that the
delay embedding sets of two sinusoidal functions that differ by a phase are equal after a
reparametrization.
Theorem 4.2.1. Suppose v;(t) = Asin(3t + ¢y) and vy(t) = Asin(%t + ¢),t € [0, 00)
and ¢o > ¢1. For 7 > 0, consider V(t) = {(vi(t),vi(t + 7)) | t € [0,00)} fori = 1,2. Let
' =t+2UT and V; = {(v;(t'), v;(t' + 7)) | t € [22T, 00)}, then Vi = Vy(2).
Therefore, we can ignore the phase during our analysis. The following theorem shows

that for suitable parameter 7, the time delay embedding of a sinusoidal function is an ellipse.

Theorem 4.2.2. Suppose u(t) = Asin(3t+¢),t € [0,00) and T # k% for all k € Z. Then

the time delay embedding U (t) for u(t) yields an ellipse with radii o, f = Ay/1 % cos( 2%)7'
centered at the origin with angle of rotation +£45°. The circumscribed square around the
ellipse has length 2A.

In the theorem above, the period 7" is fixed while the time delay 7 can vary. The fol-
lowing theorem gives the relation of the variation of 7 and 7.
Theorem 4.2.3. Suppose u,(t) = Asin(3t). Let U(t) = {(Asin(3t), Asin(Z(t + 7))}
15

with time delay T; for i = 1,2. Then the time delay embedding sets U, (t) and U,(t) differ by

a reparamelrization if and only if 7 = %
Now we discritize the above data. Let T be a small sampling time and I := {7}, 27y, ...,nT,}

be a finite set of time. Let W = {W(t;) | t; € I} and W; = {W;(¢;) | t; € I,t,t; +7 €

[ti-1,%:]}. Set K := {(wi(t;), wisa1(t; + 7)) | t; € I, € [ti-1,ti],t; + T € [tis tisa1} to be

the set of transition points from different w; segments, then we have

W=QMUK
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We note that K only occupies a small fraction of W, for example, in a real-world experiment,
K only contains 1.6% of the whole data points. Theorem 4.2.2 tells us that the radii of the
ellipse depend only on the delay when the period is fixed. Theorem 4.2.3 says that changing
delay can yield to same effects as changing the period. Therefore, when the period of w(t)
changes piecewisely constantly with time, the radii of the ellipse varies accordingly. As a
result, CJ W; with constant amplitude A is a set of concentric ellipses with angle of rotation
+45°, 121711 contained in a square with side length 2A. If A varies with time, the only thing

changed is that different ellipse would have circumscribed squares with different side lengths.

n
Theorem 4.2.4. Suppose | J W; C R? is a union of concentric ellipses, with radii o, B; =

i=1

Agn 15 cos(%?’f -7, all centered at zero with angle of rotation +45°. Then the persistence

n

diagram of | J W, has at least one 1-dimensional persistent barcode.

=1

L, G

; 0. 0
tlme(s) wi(t)

-t
A

0.5

Figure 4.3: The frequency of w(t) changed for three times, in different colors (left) and the corresponding
time delay embedding set as ellipses including the set & in dashed curve (right). Cf1®,

An example of | J W; can be seen in figure 4.3. From the above analysis, we have the
=1
following conclusion:
Corollary 4.2.5. Let w be the model of Wheeze signals. The corresponding time delay em-
n
bedding W with suitable parameter T is a set of concentric ellipses | ] W; with angles of
i=1
rotation +45°, with different radii and different-sized circumscribed squares. Therefore, the
Rips complex associated to the point cloud W always has at least one 1-dimensional persis-
tent barcode.

The resulting 1-dimensional persistent barcodes of Wheeze signals always exist, while
the experiments have shown that this is not the case for non-wheeze signals. Therefore, the

first persistent barcodes can effectively distinguish between these two kinds of signals.

Experimental Results Figure 4.4 shows nine lung signals consisting of three normal sounds

and six types of wheezes. One can see that compared to non-wheeze signals, the wheeze
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signals behave apparent periodic features. One-dimensional holes appear on them. Fig-
ure 4.5 prints the corresponding barcodes, with the wheeze data having a significant long

1-dimensional barcode.

15 15 — - — 1.8
1
05
0

(k) )

Figure 4.4: The time delay embedding set of non-wheeze signals (a,b,c) and wheeze signals (g,h.i,j,k,]).
Cf18,

Betti,

Betti,

05

Figure 4.5: The barcodes for non-wheeze sound signals (left) and wheeze sound signals (right). The
significant one-dimensional hole is indicated by the red bar, which is the key to distinguish between these
two. Cf18],

Compared to other methods for wheeze detection, this one achieves very high accuracy,
which is 98.39%. This is perhaps because the persistent homology extract the topological
features of the data, which is more important than geometric ones in the problem of wheeze
detection.
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Chapter 5 Extended Persistence and its Application

In this chapter, we introduce another kind of persistent homology which extends the
notion of persistent homology introduced in chapter 3. This new method, called extended
persistence, can be used to define a function characterizing shape on surfaces in R?. Using
this “shape function”, we can detect the place of “caviteis” and “protructions™ of a surface
by calculating the local maxima of the shape function. Detecting shape can further be used
to problems such as protein docking, as we shall see in the last section of this chapter. The

main references for this chapter are?, 1) and .

To officially get started, we need more knowledge about algebraic topology.

5.1 Relative Homology and Morse Function

Basic notions of relative homology and Morse function appear in the extended persis-

tence, so we introduce here.

Definition 5.1.1. A pair of spaces, or simply a pair, is an ordered pair (X,Y’) where X is
a topological space and Y C X is a subspace.

A space X can be identified with the pair (X, (). Therefore, space pairs are generaliza-

tion of topological spaces.

Definition 5.1.2 (Relative Chain). Let A be an abelian group. The n-dimensional rel-
ative chain with coefficients in A of the pair (X, A) is defined to be C,,(X,Y; A) :=
Cn(X)/C,(Y). An element in C,,(X,Y’; A) is called a relative n-chain.

By the definition of quotient spaces, one can regard a relative chain as a regular chain in
Cn(X), ignoring the coefficients on singular simplices that completely lie in Y. The bound-
ary map 0, : C,,(X) — C,,—1(X) induces naturally the boundary map 9,, : C,,(X,Y; A) —
C,-1(X,Y;A) (we abuse the same notation) by taking boundary of a representative of
an element in C,(X,Y’; A), and then ignoring the coefficients on singular simplices in Y.
0p © Opq1 = 0 follows directly from the property of boundary maps in the ordinary chain

complex, see proposition 2.1.5.

Definition 5.1.3 (Relative Homology). Keep all the notions above. Let Z,(X,Y;A) :=
kerd,, B, (X,Y; A) := im0, 41, then Z,, C B,,. Anelementin Z, is called an (n-dimensional)
relative closed chain, or an (n-dimensional) relative cycle. An element in B, is called an
(n-dimensional) relative boundary chain. The notion of homologous is the same as in def-
inition 2.1.6

The quotient group H,(X,Y; A) := Z,(X,Y; A)/B,(X,Y; A) is called the n-th rel-
ative homology group of (X, Y') with coefficients in A.
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In the case Y = 0, the relative homology coincides with the regular homology. If
Y = X, then each relative chain groups C,,(X ) /C,,(Y") will be trivial and so do the homology
groups H,(X,Y’). Geometrically, a relative cycle is a chain in X with nonempty boundary,
but whose boundary is contained in Y. Similarly, a relative boundary chain is the boundary
of some higher dimensional chain after ignoring the coefficients on simplices in Y.

Maps f : (X1,Y1) — (Xo,Y,) between space pairs (which by definition is a map
[+ X1 — X, such that f(Y;) C Y>) also induce maps f, : H,(X;,Y1; A) = H, (X5, Ys; A)
by the same way as in the regular homology and taking quotients. Homotopic maps f, g also
have the same induced maps f, = g., as before.

For a A-complex K and a subcomplex L of K, we also have relative simplicial homol-
ogy, that is the homology groups of the chain complex {C2 (K, L; A) := C2(K; A)/CA(L; A)}.
Again, the relative singular homology coincides with the relative simplicial homology for A-
complexes.

We now talk about the Morse function. We have encountered differentiable functions

on manifolds and their derivatives several times and took it for granted. In previous cases,
readers can simply regard them as continuous functions on topological spaces without los-
ing much information. However, when discussing the Morse function, the derivatives are
important. Thus we officially introduce the notion of smooth manifolds here.
Definition 5.1.4. A topological space M is a (topological) manifold of dimension n if it is
Hausdorff, second-countable and satisfies the following: for any z € M, there is an open
neighborhood U of 2 that is homeomorphic to some open subset of R?. In other words, a
manifold is locally homeomorphic to an open set in R", but unknown globally.

A pair (U, ) where U C M is an open subset and ¢ : U — V is a homeomorphism
from U to some open V' C R", is called a (local) chart of M. If U = M, then (U, ¢) is
called a global chart. By definition, every point of a manifold is contained in the domain U
of some chart of M.

An atlas on M is a collection of charts {(U,, ¢, ) } such that the union of all U,,’s covers
M. By definition, every manifold admits a chart.

Example 5.1.5. (1) Any open subspace U of R™ is a manifold with a global chart (U, id).
(2) The n-sphere S™ := {(=o, ...,z,) € R™" | 3" 27 = 1} C R**! is an n-manifold,
i=0
covered by 2(n + 1) charts: let U;" := {(zq,...,2,) € S™ | 7; > 0}, then ¢; : U;" = D,

(%o, ..., Tn) — (To,. .., L. .., Tpn) isahomeomorphism. Here D,, = {(z1,...,z,) € R" |
n

S x? < 1} C R is the n-disk and D,, is its interior. The hat symbol #; indicates deleting z;

1=1

from the (n+1)-tuple. Thus we obtain charts (U;", ;). Similarly, let U;” := {(zq,...,z,) €

S | i < 0V and g : U = Dy (%0, 5%n) B (05 v By ooy En)s then (U, T,) is
also a chart of S™. Since the union of all U; and V;’s cover S™, S™ is covered by local charts
and hence an n-manifold. See figure 5.1.

Since manifolds are locally Euclidean, it is a natural desire to do calculus on it. Itis also
not surprising that the calculus is done on charts. To define the concept of smooth function on

M, we do locally: we want to say f : M — R is smooth if f o = is smooth for every chart
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6 I Smooth Manifolds

Fig. 1.3 Charts for S”

are graph coordinates for S”. Since each point of S” is in the domain of at least one
of these 2n + 2 charts, 8" is a topological n-manifold. 4

Figure 5.1: Charts on the sphere 52

(U, p). However, different charts may lead to different kind of smoothness on M. Therefore,
we need the compatibility of charts.
Definition 5.1.6. Let M be a smooth manifold. Two charts (U, ¢) and (V, ¥) on M are said
to be (smoothly) compatible if the transition function ¥ o o' : (U NV) = ¥(UNV)
(which is a homeomorphism) is smooth.

Anatlas {(U,, ¢, )} is said to be smooth if each (U,, ¢, ) is compatible with each other.

A smooth atlas of M is also called a smooth structure on M. A manifold with a smooth
structure is called a smooth manifold.

Now we can formally define the smoothness of a function.

Definition 5.1.7. Let M be a manifold and {(U,, ¢, ) } be a smooth structure on it. A function
[+ M — Ris said to be smooth if fop ! : 0, (U,) — R is smooth for every chart (U,, ¢,)
in the smooth structure.

Each f o o' is said to be a coordinate representation of f.

Example 5.1.8. The height function & : S™ — R, h(zy,...,z,) = x, is smooth, as one can
check.

Once a function is smooth, we can differentiate it infinitely many times. In this article,
we still only do the differentiation locally. Fortunately, this is enough to give the definition
of the most interesting smooth function: the Morse function.

We differentiate f by differentiating the coordinate representations foy~! of f. Denote
the derivatives by d(f o '), which is vector-valued (think about the gradient vector in
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classical calculus). It is not hard to check that if p € U NV, where (U, ¢) and (V, ¥) are two
smooth charts, then d(f o ¢~!) = 0 if and only if d(f o ¥~1) = 0. We May simply write as

df (p) = 0. Hence the following definition makes sense.

Definition 5.1.9. Let f : M — R be a smooth function. A point p € M is said to be a
critical point of f if df(p) = 0. A critical point p is said to be degenerate if the Hessian
matrix Hessy(p) is singular, and nondegenerate otherwise.

A smooth function f : M — R is said to be Morse if

(1) All critical points of f are nondegenerate;

(2) All critical points of f have distinct values.

There are interesting properties for Morse functions. We will not give proof for most of

them, but focus more on their geometric intuition and applications.

Theorem 5.1.10 (Morse lemma). Let f : M — R be a Morse function and p € M be a
critical point of f. Then there is a smooth chart (U, @) containing p such that f has coordi-
nate representation f(z1,...,z,) = f(p) —a} — - — 23 + a3, + -+ 22, where X is an
integer between 1 and n. Moreover, \ does not depend on the choice of chart and is called

the index of f at p.

Corollary 5.1.11. If f : M — R is a Morse function, then the set of all critical points of f
is discrete.

Proof. By theorem 5.1.10, for a critical point p of f, it has a neighborhood U where the
derivative of f is non-vanish except for at p. In other words, every critical point is not a limit
point, hence the set is discrete. O

Before digging in more interesting properties, we give an example.

Example 5.1.12. As in figure 5.2, we have a torus T embedded in R®. f : T — R given
by f(z,y, 2) = z is the height function on the torus. Then f is Morse, having critical value
ag, a1, ay, az with index 0, 1, 1, 2 respectively. )

Let M, := f~!(—c0,a), then M, = () when a < ag; M, is contractible when ag < a <
ay; M, is homotopic to a disk with two points on the boundary joined by a curve, which is the
side face of a cylinder; by further connecting two points on the boundary of the cylinder, we
obtain M, for a; < a < ay; Finally, the torus is obtained by filling the hole using a 2-disk.

As we can see, the homotopy type of M, and M, are the same if there is no critical value
between a and b. Moreover, passing through a critical value upward effect the homotopy
type by adding a cell of dimension the index of the corresponding critical point. This is not
a coincidence, as we shall see in the next theorem.

Theorem 5.1.13 (Fundamental Theorem for Morse Function). Let M be a smooth manifold
and f : M — R be a Morse function. Let M, = f~'(—00,al.

(1) If a < b € R are real numbers such that there is no critical value between a and b,
then M, is homeomorphic to M, and M, is a deformation retract to M,.

(2) Let p be a critical point of index ) of f and set ¢ = f(p). Then for € > 0 sufficiently
small, M, is homotopic to M,_. with a A-cell attached.

Therefore, the cellular decomposition of a manifold can be given by a Morse function.
As in example 5.1.12, the four critical points correspond to a O-cell, two 1-cells and a 2-cell
in the C'W-complex structure of the torus.

With the basic knowledge in hand, we are ready to play with the extended persistence.
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Figure 5.2: The height function gives the celluar decomposition of the torus
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5.2 Extended Persistence

In the ordinary persistence, we started with a filtration) = K, C K, C --- C K,, = K

of a simplicial complex K. We can generalize them to the category of space pairs:
(0,0) = (Ko,0) C (K1,0) C--- C (K, = K,0)
Moreover, let K* := K — K;, we get another sequence of inclusions of space pairs:
(K,0)=(K,K") C (K,K™") C.-- C(K,K°) = (K, K)
Put them together, we obtain an extended filtration of K:
(0,0) = (Ko,0) C -+ C (Kp,0) = (K,K") C (K,K" ) C..-C (K,K° = (K, K)
The filtration and the inclusion maps induce maps between the homology groups for each p:
;P Hp(Ki,Kj) =% B

which is also a persistent vector space as in definition 3.2.3. Therefore, the persistent diagram
characterizing how homology classes created and dying of { H,,(K;, K7)} can be drawn for
each dimension p.

An important observation is that both the first and the last term, (0, () and (K, K) in
the extended filtration have trivial relative homology (all H,, = 0). The persistence vector
space start and end with no nontrivial homology class, so all classes being created at some

time are killed within finite time. In other words, there is no infinite point in the (relative)
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persistence diagram of the extended filtration. Up to the term (K, 0), the relative homology
groups coincide with the ordinary ones, so the finite points diagram is the same as that in the
ordinary persistent diagram. The infinite points, however, are killed by the following relative
terms (K, K*) in the extended filtration. There is a theorem characterizing how this be done
in details.

From no on, we consider filtration obtained by Morse functions. Let f : M — R be
a Morse function, M, = f~!(—oco,a] and M* = f~'[a,c0). Suppose f has critical values
ay < --- < a,. Let bg,by,...,b, € R be real numbers such that by < a; < by < -+ <
a, < b,. Then we have two filtration, § = Mb C Mb-1 C ... C Mb = M and
(M,0) = (M, M®) C (M, MP-1) C .- C (M, M%) = (M, M).

Definition 5.2.1. In the filtration § = M® C Mb- C ... C Mb = M, call a class
v € H,(M") essential if pers(v) = oo, and inessential otherwise.

Theorem 5.2.2. With the notions above,

(1) An inessential dimension p homology class of M® gets born at the same time that a
dimension p + 1 relative homology class of (M, M®) gets born.

(2) A dimension p homology class of M" dies at the same time that a p + 1 relative
homology class of (M, M") dies.

(2) An essential dimension p homology class of M® gets born at the same time that a
dimension p relative homology class dies.

By the theorem, we can analyze the relative homology classes of (M, M?) by taking
complement and going backward, looking at the ordinary homology classes in M. Instead

of giving a proof, we look at an example and understand the geometric explanation.

Example 5.2.3. Figure 5.3 illustrates a genus 2 surface M embedded in R3. f is a height
function on it, with critical values a; < - -+ < aq.

Going up, the critical point a; gives birth to a 0-cycle, namely a connected component,
making M;, homeomorphic to a disk. a, gives birth to another 0-cycle, which is killed by
ag. Each of a4, as, ag, a7, ag creates a new 1-cycle in H; and the class created by ag is killed
by ag. ayp finally creates a 2-cycle. All of the classes created by a4, a4, a5, ag, a7 and a are
essential, living forever in the ordinary persistence.

Coming down, a;q gives birth to an essential 0-cycle in M9, By theorem 5.2.2 (3), a
O-relative cycle dies in (M, M*19). This is the connected component created by ag upward.
If one know more about homology, notice that H, (M, M%) = H,(M U CM"), where H
denotes the reduced homology and CM'? := M™ x [0, 1]/ M x {1} is the cone over M*°.
When passing to reduced homology, the only connected component vanishes.

ag gives birth birth to an inessential 0-cycle in M*, which is killed by ag. By theorem
5.2.2 (1) (2), ag gives birth to a 1-relative class in (M, M*) killed by ag. Actually, an
inessential 0-cycle is the boundary of some 1-chain, which is contained in M“ in this case.
This 1-chain is a relative 1-cycle in (M, M) and become trivial in (A, M%),

Each of a7, ag, as, ay gives birth to an essential 1-dimensional homology class in M%7,
M, M%, M* respectively. By theorem 5.2.2 (3) again, a7, ag, as, a4 kill the upward es-
sential 1-cycles created by ay4, as, ag, az, respectively. As one can check, the 1-cycles created
by ay4, as, ag, a7 are contained in M%7, M, M M respectively, hence being trivial in the
corresponding space pairs.
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Finally, by the theorem again, a; gives birth to a 2-relative cycle killed by a,, and a,
kills the 2-cycle created by a,q going up. The extended persistence diagram is shown in
figure 5.4. Note that there is no infinite points.

R

R L ZZ
Jamm .
O |/
[/ //

PP PLY

Figure 5.3: Height function on a genus 2 surface
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Figure 5.4: The 0-th, 1-th and 2-th extended diagram D of the height function on a genus 2 surface. For
each (a;,a;) € D, there is an extended homology class born at a; and dying at a;.

One may have observed the symmetry in the above extended persistent diagram in com-

plementary dimension. This is not a coincidence.

Definition 5.2.4. Let f : M — R be a Morse function and Dgm,,(f) be the extended per-
sistent diagram of f. That is, the extended filtration comes from the subspaces M, and M?,
where each b is a critical point of f. We call homology classes born and dying going up
ordinary; call those born going up and dying coming down extended,; call those born and
dying coming down relative. We obtained the ordinary, extended and relative subdiagrams
of Dgm/( f) consisting of ordinary, extended and relative homology classes respectively. De-
note these subdiagrams by Ord(f), Ext(f) and Rel(f).

In figure 5.4, we used symbols o, x, l to denote the ordinary, extended and relative
classes respectively. One can easily notice the symmetric pattern on it, which is not a coin-

cidence.
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Theorem 5.2.5 (Persistence Duality Theorem). If f : M — R is a Morse function, where
M is an n-dimensional manifold, then

Ordy(f) = Rell_,(f)
Ext,(f) = Ext]_(f)
Rel,(f) = Ordy_(f)

where the superscript ‘T indicates the reflection along the main diagonal (a,b)
(b, a). Equivalently, Dgmy,(f) = Dgm}_,(f).

Theorem 5.2.6 (Persistence Symmetry Theorem). With the same notations in theorem 5.2.5,
we have

Ordy(f) = Ordg ,_;(—f)

Ext,(f) = Extg_,(—f)

Rel,(f) = Relf—pﬂ(_f)

where the superscript ‘R’ indicates the reflection along the minor diagonal (a,b) v
(—b, —a) and ‘o’ indicates the reflection with respect to the origin (a,b) — (—a, —b).

Computation. We now proceed to the computation of the extended persistence. In the
ordinary persistence, we obtained the ordinary persistent diagram by reducing the boundary
matrix d. To compute the extended diagram, we do the same reduction but on an augmented
matrix.

To begin with, we need to discretize the smooth manifold to a simplicial complex K,
as well as the Morse function, to an increasing function on K. In fact, there always exist
a A-complex structure on a 2-manifold M. Let K be a triangulation of M, that is, a A-
complex structure on M. We obtain a function, still denoted by f : K — R, given by
flo) = max f(z). Here o is a simplex in K and we abuse the notation o to also denote its
image in M. By definition, f(c) < f(7) whenever o is a face of 7. Hence f is an increasing

function.

Definition 5.2.7. Let K be a simplicial complex and ¢ € K be a simplex. A face of o is a
simplex in K spanned by a subset of vertices of 0. The star of o is the set of all cofaces of
o, denoted St(0) :={r€ K |o <7}.

Given f : K — R an increasing function, the lower star of o is St_(0) = {7 €
St(o) | f(7) < f(o)}. The upper star of o is St* (o) := {7 € St(o) | f(7) = f(o).

Now given f : K — R increasing, let vy, ..., v, be the vertices, that is, 0-simplices of
K, ordered by function values f(v,) < f(vs) < -+ < f(v,) (We may assume the genericity
of f that all vertices have distinct function value). Let K; be the full subcomplex of K
spanned by vy, ..., v; and K* be the full subcomplex spanned by v; 1, ..., v,. Then

is an extended filtration. Easy to verify that K; = K; ; U St v; = || St_v; and K* =
j=1

n
K"'UStt vy = | Sttw;. Hence thisis also called the lower and upper star filtration.
j=it+1
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To write the boundary matrix, we have to order the simplices in K. Among each K; —
K;_y, there may be more than one simplices. Order them arbitrarily, as long as in non-
decreasing dimension. Then we have an ordering oy, 05, ..., 0, on all simplices of K and
the corresponding boundary matrix A,, ., (with coefficient field Z,) where A[i, j] = 1 if g;
is a face of 0; and A[i, j] = 0 otherwise. Going backward, each K'~! — K* also contains
several simplices. Again, we order them arbitrarily, just making sure that the simplices are in
non-decreasing dimension, and get another total ordering oy, 0o/, . .., 0., of the simplices

of K. By this ordering we obtain a boundary matrix B. Now let P be the permutation matrix
A P

between (1,2,...,m) and (1,2',...,m’) and 9 = ( i B ) be the (2m) x (2m) block

upper-triangular matrix.

Theorem 5.2.8. With the notations above, let R be the reduced matrix obtained by reducing
the augmented matrix O by the algorithm ??. Then there is a one-to-one correspondence
between the lowest 15 in R and points in the extended persistence diagram D of the filtration
S

This theorem is an analogue of theorem 3.2.10. More precisely, the lowest 1 of the j-th
column is at the i-th row if and only if the point (i, j) € D.

Therefore, we get the extended persistent diagram by doing reduction on the augmented
boundary matrix d, just as in the ordinary persistence when we reducing the boundary matrix
0. We will give a proof of this theorem, which requires more knowledge of homology.
Readers without this knowledge can skip the proof with no influence on the understanding

of the following sections.

Proof of theorm 5.2.8. There is an isomorphism H,(X,Y) = H,(X U CY), where H de-
notes the reduced homology and C'Y := Y x [0,1]/Y x {1} is the cone over Y. Thus the
extended persistence homology groups also read

0— Hy(K1) =+ = H(KUCK') = -+« — Hy(KUCK™"' = H,(CK) =0

. Note that every the cone C' X is contractible for every space X, hence the reduced homology
end up with 0. To represent the cone, we add a dummy vertex v,. For a simplicial complex
K,CK = KU{(vy0) | 0 € K}, where (vy0) is the p+ 1 simplex with vertex v, and bottom
o for a p-simplex o.

Since bothof ) = Ky C K; C--- C K, = K and (K,0) C (K,K')C --- C (K, K)
are filtrations and the simplices in each K; — K,_; are ordered in non-decreasing dimension,
both the boundary matrices A and B are upper-triangular and so does d and R. The part

[ g ] of O represents the boundary of the bottom K of C'K, as we can easily see.

Now we will show that the part [ F ] represents the boundary of {(vo)} C K. Actu-

B

ally, each column in stands for a simplex of the form (vgo;/) and we have d(vyo;) =

P
B
o+ (vg0oy ), where k and 7’ are the order of o in the ordering of A and B respectively. In the
matrix d, the first m rows and columns stand for the first m simplices in K, while the last m

rows and columns stand for those simplices (vyo) in CK — K, with the order (1/,2,...,m/).
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The (vgdoy) part in d(vgo ;) appear in B, just vg and thinking of the definition of B. The left
term is oy, itself. By the definition of the permutation matrix P, we have P[i, k| = 1. This is
just saying that P gives the o} part of d(vgoy). See figure

O

We have talked about the idea and computation of the extended persistence. In the next

section, we will give an application of it in the protein docking problem.
5.3 Application of the Extended Persistence in Protein Docking

Protein molecules interact with each other via cavities and protrusions on their protein
surfaces, see figure 5.5. Suitable shapes of different molecules tend to bond and lead to
biochemical interactions. Therefore, we would like to know the places of cavities and pro-
trusions on a protein surface and use this information to predict whether two proteins will
interact with each other. This is the protein docking problem. The main reference of this
section is reference .

In this section, we use the extended persistence to define a function characterizing the
shape of a surface, called the elevation function. The local maximums of the elevation func-
tion give the places of cavity and protrusion. It is an analogue of the height function on
earth: we have the notion of “high” and “low” on earth by defining the height of a point as
the “mean sea level”. This is reasonable because of the relatively uniform geometric shape
of the earth, whose mass distribute uniformly around its center of mass in all directions. The
local maximums and minimums of the height function on the earth give the cavity and pro-
trusion on the earth. For general surfaces such as torus, this method might not work well and
the elevation function is a good analogue. We note that the cavity and protrusion information

is much geometric: it is not preserved under homeomorphism.

Target Ligand Complex
&
’P docking
o o a8
_...XA

Figure 5.5: Two proteins interact with each other

We begin to define the elevation function. During this section, M denotes a 2-manifold

embedded in R?, such as a torus.
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In figure 5.3, the height function f on a 2-torus M is a Morse function. It actually pairs
the critical points two by two, see figure 5.4. At each critical point a;, we define its elevation
to be | f(a;) — f(a;)|, where a; is the critical point paired with a; by f. For a general point =
on M, the idea is that there is a “height function” in another direction for which z is a critical
point.

Definition 5.3.1. Let u € S, representing a direction. The height function at direction u is
definedtobe f, : M = R, f,(z) :=< z,u >.

Clearly, for a smooth surface M C R? and z € M, z is a critical point of f,, if and only
if u is perpendicular to the tangent plane 7, at z. If f, is a Morse function, then we can pair
the critical points of f, and define their elevation. A point x € M is critical in two opposite
directions +u, perpendicular to 7,. We clearly have f_,(z) = — f,(z). By the persistence
symmetry theorem (theorem 5.2.6), (z,y) is get paired by f, if and only if it is get paired by
f-« = —fu. Therefore, the elevation of critical points of f, is well-defined whenever f, is
Morse.

What if f,, is not Morse? Recalling definition 5.1.9 for the definition of Morse functions,
we call a point x € M singular if x is a degenerate critical point for f,, or z is a critical
point of f, having the same function value with another critical point. Here u is the normal
vector of T),. There are two cases.

(1) Flat point. In this case, f, has a degenerate critical point. There is a geodesic through
x, restricted to which f,, has an inflection point, see figure 5.6 left. The point z is a flat point
for f,. If we disturb the direction u slightly to u', two points y, z near x are get paired. As
u' approaching u, v, z in the pair (y, z) get closer and finally disappear at z. There is no
more pairs near  when we disturb u to the other direction. For this reason, z is also called
a birth-death point.

(2) Shared tangent plane. In this case, f, has two degenerate critical points with the
same function value, see figure 5.6 right. z,y are two different critical points of f, with
fu(z) = fu(y). This happens when x, y has the same tangent plane. If we disturb u slightly
to ' to the left, we get two paired points near z and y, with the point near x higher in the
direction of «'. As ' approaches to u, the two points converge to z, y respectively. When
disturbing u to u” to the right, we get another pair of points near x, y getting paired, with
the one near y higher in the direction of »”. The order of height near z, y changed when the
direction passing through u, so z, y are also called interchange points.

In each cases, the analysis is based on moving u along one degree of freedom. If we
move u through another degree of freedom on S, we get a curve of singularities, on which
all points are flat or interchange points. Curves of singularities may intersect, causing higher
order singularities. We wish that M is not too bad, so we make the genericity assumption
on M: The only singular points of M are flat points, interchange points or intersections of

two curves of singularities.
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Figure 5.6: Two cases when f,, is not Morse. Left: flat point/birth-death point. Right:interchange point.

With the genericity assumption, we can define the elevation of z € M for almost every
z, by elevation(x) := | fu(z) — fu(y)|. where u is the normal vector of 7}, and y is the point
paired with z by f,,, assuming f, being Morse. As discussed above, when f,, is not Morse,
we want to define the elevation at x by analyzing the elevation on the neighborhood of z and
taking limit. This is when we have to talk about the continuity.

Near a flat point, the two paired points get closer and finally emerge at z, so the elevation
tends to 0 as ' tends to u. Therefore, we can simply define the elevation at a flat point to be
0.

At interchange points, however, discontinuity can appear. Figure 5.7 illustrates two
interchange points y, z in the direction u. When «’ tends to u from the left, points near y are
paired with points near w, which are global maximums and minimums in the direction u'.
Thus, going to u from the left, the elevation approaches to | f,(y) — fu(w)|. However, when
u” tends to u from the right, points near y are paired with points near z, which give birth
to and kill O-cycles. Thus, going to u from the right, the elevation tends to | f,(v) — fu(z)|,
which is different from the left limit. As a result, the limit of the elevation function near y
does not exist. Same circumstance occurs at z, as illustrated by the pink and blue points in
the figure. This discontinuity is caused by the two points y,z sharing a tangent plane. We

note that not all interchange points will cause discontinuity.

4 t ,
s — — W\

\A' (A',”

W

Figure 5.7: Discontinuity at an interchange point
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Surgery. The continuity of the elevation function is needed for well define the elevation
function. Therefore, we would like to do reversible surgeries on M at interchange points to
get a new manifold N, where the elevation function is continuous. Specifically, we cut M
along the curves where the function is discontinuous, getting a manifold B with boundary.
Then we glue the boundary of B by identifying points with the same limits. Figure 5.8
illustrates the process of a surgery on the example above. The curve on the left is a projection
of the surface M on a plane. The left end at y has the same limit as the right end at z and so
do the right end at y and the left end at 2. We glue these two pairs together, getting a new
disconnected manifold N. On N, we can safely define the elevation at singular points by the

function values on their neighborhoods, whose limits exist by continuity.

Figure 5.8: The process of a surgery

Now we get the elevation function on a surface M, defined as the height difference in
certain direction between a point and another canonical point on the surface. As we promised
at the beginning of this section, this function is an analogue of the height on earth whose lo-
cal maximums give the cavities and protrusions on the surface. For example, points on a
sphere 5% C R? are all paired with their antipodal points, with the same elevation, namely
the diameter of the sphere. Thus the elevation function on S has no local maximum, in-
dicating the uniform shape of S2. If we define the elevation function on the earth surface,
it is reasonable to expect mountain peaks and basins are local maximums of the elevation

function. Therefore, all we want is the local maximums of the elevation function.

Local maximums of the elevation function We will do the computation on the surface N

after surgeries and then put the result back to analyze the shape of the original surface M.

During the surgeries, we identifies different points on M. Forz € N, let uu(x) denote the
number of its preimages on M, called the multiplicity of z. By our genericity assumption
on M, u(z) is at most 3 (when z is a triple point). Suppose by some algorithm, we have
obtained a local maximum pair (z,y) for z,y € N. We further assume that points with
multiplicity 3 are only get paired with points with multiplicity 1. These leave us with four

types of maximums:
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one-legged if u(z) = pu(y) =1,
two-legged if p(z)=1 ) =2
three-legged if p(x) =1,u(y) =3,
)

four-legged if p(z)=ply)=2.
Figure 5.9 shows how the four types of maximums look like on M.

.‘ - : w
|
'3\ %v %‘ ax ‘}’5

Figure 5.9: From left to right: one-legged, two-legged, three-legged and four-legged maximum on M

The maximum (z, y) is called

When do a pair (z,y) € N? be a local maximum? By definition, the elevations of z, y
are locally the longest. If x, y have more than one preimages, their tangent planes must be

parallel. Geometrically, we have necessary conditions for (z,y) to be a local maximum.

Theorem 5.3.2. With the notations above, let Ty, ...,T,) € M and yy, ..., Yuu) € M be
the preimages of x, y respectively. Let n, be the unit normal vector of T),. Then the point ©
(or y) is a maximum of the elevation function only if

One-legged case: n, is parallel or anti-parallel to y — x;

Two-legged case: n,, y, — x and y, — x are linearly dependent and the orthogonal
projection of x onto the line 7153 lies between y, and ys;

Three-legged case: the orthogonal projection of x onto the plane Yy2y3 lies inside the
triangle Aiy1yoys.

Four-legged case: the orthogonal projections of the segments x1x and Y1y, onto a
plane parallel to both intersect.

In summary, x (or y) is a local maximum only if n, is a linear combination of the vectors
Y; — Ty

Computation. To compute the local maximums, as in the computation of the persistent
homology, we need first to discritize the surface M. As before, we choose a triangulation K
of M, which is a A-complex and can be expressed combinatorially. For a smooth manifold
M and p € M, the critical directions for p is £n,,, the normal directions of the tangent plane
at p. For K, however, there can be too much critical directions. For example, if p lies on a 2-
simplex of K, then it has a well-defined (up to a sign) normal direction as before; however, if
pis a vertex of K, then all directions can be said to be critical. The solution is to add another
restriction.

Definition 5.3.3. Let K be a triangulation of a surface M C R3, consisting of vertices, edges
and triangles. Let 0 € K be a simplex and z € ¢ be a point in R3. Let u € S? be a direction.
We say z is critical for the height function f, if

38



SUSTech’s Dissertation for Bachelor’s Degree

(1) < u,z — z >= 0 for all points z of o, where < —, — > denotes the standard inner
product in R?;

(2) the lower link Lk_(0) := {7 € St_(o) | 7N o = 0} of o is not contractible to a
point (that is, homotopic equivalent to a point).

For example, the lower link of a local minimum/maximum is empty or a circle, both
not contractible. For further reasons why this is necessary for x being a critical point, please
refer chapter V1.3 of reference!®!. To this end, we just admit that the additional condition (2)
helps us find reasonable candidates for critical directions for .

Let N(z1,Ts,...,7,) C S? be the set of directions that is critical on all of z, . .., z,,.

The necessary conditions in theorem 5.3.2 translate to:

* One-legged case: The candidates for one-legged maximums on K are pairs of points

(z,y) such that the direction (y — z) /||y — || is contained in N (z,y);

» Two-legged case: The candidates for two-legged maximums on K are triplets of points
(z,y1, y2) such that the orthogonal projection 2 of = onto the line 777 lies between y,

and y, and the direction (z — z)/||z — || is contained in N(z,y1,ys);

* Three-legged case: The candidates for three-legged maximums are quadruplets of
points (x,y1, ¥z, y3) such that the orthogonal projection z of = onto the plane 777573
lies inside the triangle Ay;y.y3 and the direction (z — z)/||z — z|| is contained in

N(z,y1,Y2,¥3);

» Four-legged case: The candidates for four-legged maximums are quadruplets of points
(21,29, y1,y2) such that the shortest line segment 2w connecting the lines 7775 and
717> touches both the line segments 2125 and y;y» and the direction (z — w)/|[|z — w||

is contained in N (zy, z2, Y1, Y2).

The fact is that after checking for all points, we get a finite set of candidates for each
kind of maximums. It remains to check whether these candidates are indeed local maximums.
That is, whether the points z, ¥ on the modified surface NN is paired by the extended persis-
tence algorithm. But this is done in section 5.2, where we reduced the augmented boundary
matrix 0 to find all pairs in the extended persistence. Therefore, after judging all candidate
local maximums, we get the genuine local maximums of the elevation function, as well as

the information of cavities and protrusions on the surface M.

A real-world experiment. The article’®! provides an example on the protein /brs. The
data of this protein surface is downloaded from the protein data bank. /brs contains 864
atoms excluding hydrogens, which are too small to be resolved by x-ray. The triangulation

of the surface has approximately 50 thousand vertices, see figure 5.10.
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Figure 5.10: Protein 1brs. The marked points are elevation maximums with top 100 elevation values on
the surface, with heads dotted in green. Cf°!

0
5 10 1520 25 30 35 40 45 50 S5 60 65 70 75 60 &5 90 5 %

Figure 5.11: The percentage of maximums with elevation exceeding the threshold on the vertical axis.
From top to bottom: the three-legged, four-legged, and two-legged maximum curves. Cf°l.

The table below lists the number of all kinds of elevation maximums. One can see
that there are significantly more two-legged type than others. This comes from the specific
geometric shape of the protein, including the way that atoms bonding with each other. The
one and three legged maximums are less in quantity, but when they appear the maximums
tend to have higher elevation value. Figure 5.11 sorts all kinds of maximums in the order
of decreasing elevation. We can observe that the fraction of higher elevation maximums of
three-legged ones is higher than that of two and four legged ones. Even more, although there
are only 5 one-legged maximums, but four of them have elevation more than 5 units. The

statistics for other proteins are similar.

#legs || one | two | three | four
#max || S |3617 | 728 | 1103

One interesting result is that the elevation maximums are to some extend uniformly
distributed on the surface. This contradicts the conjecture that the binding site of a protein
may have more or higher maximums. However, this should be considered together with the
fact that in many cases the protein pockets identify the location of the binding site.
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Conclusions

We have seen the method of persistent homology and its various applications. There
are further topics in the persistent homology and applied topology, such as the stability and
structural theorem of persistent homology, discrete Morse theory, graph theory, computation
on surfaces and so on. One can refer to!®). The knowledge we introduced about homology,
differential manifolds and Morse functions are shallow and without much rigorous discus-

sion. Interested readers may refer to?l,[*l and ! .
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