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[ABSTRACT]: Harmonic analysis is an area of analysis grown from Fourier
analysis, which i1s concerned with the representation of functions as the super-
position of basic trigonometric functions, and generalization of the notions of
Fourier series and Fourier transforms. Hausdorff dimension is a finer index to
measure the “mass” of sets than classical dimension. It is one of the most im-
portant concepts of geometric measure theory, an area of analysis concerned
with solving geometric problems via measure-theoretic techniques.

This thesis is a survey on various types of Fourier analysis and the interplay
with Hausdorff dimension, with an application in proving the behavior of a
Borel ring on the real line: either has Hausdorff dimension zero or is the whole

real line.

[Keywords]: Fourier Analysis, Hausdorff Dimension, Energy Integral, Borel

Ring.
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1.

The content of this thesis is mainly based on Mattilal'!.

Preliminaries

Definition 1.1 (Borel Set). The Borel sets in a metric space X is the smallest o-algebra of
subsets of X containing all open subsets of X.

Definition 1.2 (Borel Measure, Borel Regularity).
A Borel measure is a measure . for which Borel sets are measurable.

A measure 1 is called Borel regular if for any A C X there is a Borel set B such that A C B
and p(A) = p(B).

Definition 1.3 (Borel Measurable Function). A4 function f : X — Y is said to be a Borel

measurable function if for all Borel measurable sets B C'Y, f~'(B) is Borel measurable in
X.

Definition 1.4. The image or push-forward of a measure p under amap f : X — Y is
defined by

fe(w(B)) = p(f~1(B)) for BCY.

Lemma 1.5. If i is a Borel measure and f is a Borel measurable function, then

/gdf#uz/gOfdu

for all nonnegative Borel measurable functions g on X.
This can be proved by the monotone convergence theorem.

Definition 1.6 (Weak Convergence). Let Cy(R™) be the space of continuous functions with
compact support on R". The sequence {y}7>, of Borel measures on R" is said to be con-
verges weakly to a Borel measure 1 if for all ¢ € Cy(R™),

/@duk%/@duask%oo.

There is an important weak compactness theorem of Borel measures.

Theorem 1.7. Any sequence of (finite) Borel measures { ju. } 32, such that j(R™) is bounded
forallk =1,2,--- has a weakly converging subsequence.

The following proof of the theorem is mainly given by Mattilal®!. It relies on the Riesz
representation theorem for measures (stated below), the so-called diagonal argument and the
density argument, where the density comes from the following lemma without proof.

Lemma 1.8. The space Cy(R™) with L>°-norm is separable.

Proof. of Theorem [L.7. Define a sequence of operators {7},}3 |, where T}, : C(R") — R,
Te(¢) = [ @dug. Ty is well defined for each k and ¢ € C(R™) since the support of ¢ is
compact and {(R™)} is bounded so that

16)) < [ leldio. < [sup (@) < o0
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By Lemma [I.§, we take a countable dense subset D of Co(R™), writtenas D = {¢1, va, 3, - - }.
Now comes to the diagonal argument.

First, for 1, {T%(¢1)} is a bounded (numerical) sequence, so it has a converging subse-
quence denote by 7} ; (1) and we take out the corresponding operators {77  }.

Second, for ¢y, {7} x(p2)} is a bounded (numerical) sequence, so it has a converging
subsequence denote by 75 ;,(¢2) and we take out the corresponding operators {75 }.

Proceeding in this fashion we obtain a countable array of operators {7}, ; }:

T, T Tis
To1 Tho Thgs
Tz1 T35 T33

The diagonal sequence {7, ., }oo_, is the needed sequence that converges at each ¢ € D.
Since D is dense in Cy(R™), {1},,.m }oo_, converges at each ¢ € Cy(R").
Finally, Theorem [1.7 gives the limit measure. |

Theorem |L.7 will be used to prove the important Frostman’s lemma linking the Hausdorft
dimension and Borel measure in the next section.

We also list some definitions and theorems that will be used later.

The general definition of approximate identity is from Stein et al.2.

Definition 1.9 (Approximate Identity). The family {1;}+~o of continuous functions on R™ is
said to be an approximate identity if it satisfies the following three conditions:

(i)
U(z)dr =1
R

foreveryt > 0;
(ii) (Uniform Boundedness) There is a positive constant M such that

[Ye(2)|de < M
.

for every t > 0,
(iii) For every 6 > 0,
/ |Ye(x)|de — 0ast — 0
|z|>6

There is a very important type of approximate identity called mollifiers, which is in ad-
dition nonnegative, infinitely differentiable and compactly supported. We give a description
below.

Definition 1.10 (Standard Mollifier). The standard mollifier on R", 1) : R® — R is defined

by
1
_ ) oce P if|z| <1

where the constant c is chosen so that [ ¢ = 1.



It is easy to check that ¢/ is compactly supported and infinitely differentiable. Using this
stantard mollifier we can give a concrete approximate identity.

Proposition 1.11 (Standard Approximate Identity). Let ¢ be defined as above. Fort > (
we define

Ui(x) =t "p(t ).

Then the family {{,}i~o satisfies all the requirement of approximate identities. We call
{1 }1>0 the standard approximate identity.

The proof of this proposition is just a simple verification of definitions.

Definition 1.12 (Convolutions).

(1) The convolution of two functions f and g is defined by

/fx— y)dy;

(2) The convolution of a function f and a Borel measure 11 is defined by

(Fm)@) = [ Fla = (o)

(3) The convolution of two Borel measures p and v on R" is defined to satisfy the condition

[edsv) = [[ oo+ pauteyivty) foratt o € i (2,
The following two theorems (from for example, Duoandikoetxeal®!) explains where the
term “approximate identity” comes from. It approximates functions through convolutions.

Theorem 1.13. Let {4, }1~0 be an approximate identity. Then 1), x [ converges to f in
LP(R™) if f € LP(R™),1 < p < oo, and 1y * [ converges to f uniformly (i.e when p = oc)
if f € Co(R™).

To prove this theorem, we introduce the important Minkowski’s inequality for integrals.

Lemma 1.14 (Minkowski’s Inequality for Integrals). Suppose (X, pu) and (Y,v) are two
measure spaces with o-finite measures. Then

<X/Yf(w,y)du(y) dp(x ) /(/ | f () [Py )> dvy).

or in the form of norms,

/Y f (@, ydv(y)

Now comes the proof of Theorem [1.13.

/||fx W)l (9).
P(X,u)



Proof. of Theorem [1.13. Since by definition, {1/ },( has integral 1 (the first requirement in
the definition),

(e % f) @ / b f @ — ) — f(2))dy.

If 1 < p < oo, by the Minkowski’s inequality for integrals,

[(We* f) = fllp < - eI =y) = FO)llp dy

Recall that the translation is “continuous” in LP(R™) which means that for any given ¢ > 0,
we can always choose a small § > O suchthat || f(-+h)— f(-)||, < €/2M whenever |h| < 4.
By the third requirement in the definition of approximate identity, we choose ¢ small enough
such that [ . [v:(y)|dy < /4| f|l,- Thus,

s )= o < [ 1) 156 = 0) = 5Ol do
[ @I = 0 = 1Ol dy+ [ @I =) = 1Ol dy
ly|<é ly|>6
<[ MU=y — FOldy + 2051, / )|y

ly[<d ly|=6

e E
< M-S poff,-S
oar 2 gy

where the first term of the last inequality above is because {1 };~¢ is uniformly bounded by
the constant M > 0, and the second term is because of the properties of the norm, where
1fC=y) = Ol < NFC =+ 1Ol = 2[1fll = &

If p = oo instead, f has finite L°°-norm. By continuity of f, for every z € R" we can
choose a § > 0 such that |f(z — y) — f(z)| < £/2M. The index ¢ is chosen small enough
so that f e [i(y)|dy < /(4] f|l), analogous as above. Then,

(e () = f2)] =

) f (e —y) - f(x)]dy]
- ()] | f(z—y) — f(z)|dy
<[ MIfe—y) - F@)ldy+ 27l / ()l dy

lyl<d ly|=6
<eg/24¢e/2=¢.

The proof is complete. u

Theorem 1.15. Let {1, };~o be an approximate identity and 1 a locally finite Borel measure
on R™. Then 1y x |1 converges weakly to pas t — 0, that is,

/gp(@bt*u)dﬁnﬁ/wduast%()

for all p € Cy(R™).



Proof. We perform direct computation.

/¢(x)(¢t 1) (x)da = /90(9:) </ il — y)du(y)> dx
_ / / ()b — y)dz du(y)
_ / / p(x)i(y — x)dx dp(y)
~ [(ex wauty)

—>/gpdu, ast — 0.

The second equality is because of the Fubini’s theorem, the third equality is by the reflection
invariance of Lebesgue integration and the last line is by Lebesgue’s dominated convergence
theorem, and Theorem [1.13.

|

The Radon-Nikodym theorem and Riesz representation theorems builds a connection
between measures and integrable functions. First we recall that a Radon measure on a metric
space is an inner regular and locally finite measure. A Hilbert space is a complete inner
product space.

Theorem 1.16 (Radon-Nikodym Theorem). Let (X, X, i) be a o-finite measure space and
v a o-finite measure defined on the measurable space (X, X') that is absolutely continuous
with respect to v. Then there is a nonnegative function f, on X that is measurable with
respect to X for which

y(E):/Efydu, VE € X

The function f,, is unique in the sense that if g is any nonnegative measurable function
on X that also has this property, then g = f, p-almost everywhere. Such a function f,,
written formally as f, = Z_Z’ is called a Radon-Nikodym derivative. Moreover, if |1 is a finite
measure, i.e., (X)) < oo, then such f, is integrable.

Theorem 1.17 (Riesz Representation Theorem for Measures). Let X be a locally compact
metric space and T : Co(X) — R a positive linear functional. Then there is a unique Radon
measure |1 such that

7f = [ fau for f € Colx)

Theorem 1.18 (Riesz Representation Theorem for Hilbert Spaces). Let H be a (Hilbert
space). Given any T € H* there exists a unique v € H such that

Tv = (u,v) forallv € H.
Moreover, the vector norm of u is the same as the operator norm of T':
[ull = 1T

(The above three theorems come from Royden®, Mattila®! and Muscat©.)



The Baire category theorem states that complete metric space cannot be a countable union
of nowhere dense sets. The Steinhaus’s theorem states that the difference set of a Lebesgue
measurable set of positive measure contains an open ball. We state them and prove the latter
here which will be used later.

Theorem 1.19 (Baire Category Theorem). Let X be a nonempty complete metric space.
Suppose there is a countable family of subsets { A, }>° | such that

X:[_len,

then at least one member of this family { A, }°°, has a nonempty interior.

Theorem 1.20 (Steinhaus’s Theorem). Let ' be a Lebesgue measurable subset of R" of
positive measure. Define the difference set of E as

E-E={zx—y:xz,ye E}.

Then there exists a 6 > 0 such that the open ball B(0,6) C E — E.
To prove Theorem we need the following lemma.

Lemma 1.21. Let E C R" be a measurable subset with L™(E) > 0. For every X satisfying
0 < X\ < 1 there is a cuboid I such that \|I| < L™(I N E), where |I| stands for the volume
of the cuboid I.

Proof. The conclusion is trivial when £"(F) is infinite, so we assume L"(F) < oo. For
0 <e < (A!=1)L"(F), we choose a cover of E by cuboids, say {I;}?°, such that
Yo x| < L™(E) + . We claim there is a kq satisfying A| Iy, | < L"(I, N E). In fact, if
forall k € N*, \|I,| > L"(I; N E), then

£E) <3 £ N E)

which leads to a contradiction. [ |

Proof. of Theorem [[.20. Since 0 < A < 1, we can restrict A satisfying 1 —2-("+1) < X\ < 1.
From the previous lemma, there is a cuboid / such that A|/| < £"(I N E). Now let § be the
smallest side length of /. Define a new open cube
J=A{x=(x1,29, -+ ,x,) € R" : 2] <9/2,i=1,2,---n}.
We now claim that J C E — E. This is equivalent to say that
Vege JJ(ENI)N((ENT)+{xg}) #

because this time we have y, 2z € £ N I, such that y — 2 = x,.
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Since J is a cube centered at the origin with side length 9, then I + x still contains the
origin. Thus we have in geometry that

LI N (I +{xo})) > 27",

from which we have

L (TU (I +A{xo})) = 1|+ L" (I + {xo}) = L (I N (I +{z0}))
< 2|1 - 27"|1]

which means £" ({ U (I + {x0})) < 2A|I|. By the translation invariance of Lebesgue mea-
sure, (ENI)and ((ENT)+{xo}) is of the same measure larger than A|I|, and they are both
contained in / U (I + {x}). So they must have nonempty intersection. Otherwise

L (BN UENTD +{z0}) > 2\

which leads to a contradiction. [ |

The Gamma functions and Bessel functions will be used later for in the discussion of
some particular measures and functions, so we list the definitions here.

Definition 1.22 (Gamma Function). For z > 0, the integral

F(m):/ t" et
0

is well defined (which means converging absolutely). This integral is called the Gamma
function.

Some properties of Gamma functions are listed below.
Properties 1.23.
(i) T'(z) > 0 forall x > 0,
(i) I'(1) =1,
(iii) Nz + 1) = 2['(z), z > 0,
(iv) I (1) =
Definition 1.24 (Bessel Function). The Bessel function J,,, : [0, 00) — R of orderm > —1/2
is defined by the formula

I (u) =

w)m 1
(2) / eiut (1 . tz)m—l/z dt

F(m+3)T ()

We give the following recursion properties for Bessel functions (from Grafakos”) which
will be used later.

Properties 1.25.

d —m _ m
E(t Jm(t)) =—1 Jm+1(t)7

d m _m
S T (0) = " (1),



Proof. For the first identity,

d —-m o i ! its 2m_%
E(t Jm(t))_QmF(m—l—%)F()/lse (1-5%) ds

1
2

1 2\m+3
— l - - / zezts(l S )1 dS
27T (m+ )T (3) Jo1 2 m+ 3
=—t" m+1(t)

For the second identity,
d
— (" T (t
(T (1)

B 2mt2m 12 m 1 s ) m—% t2m2fm . 1 e ) m_%
_F(m+%)F(l)/1€ (1—3) ds+F(m+%)I‘(%)l/le @s(l—s) ds

2

2mt2m—12—m 1 y L t2m2—m 1 ezts ! ) 1
— ’LS 1_ 2 1_ 2
Fon e ], 0 e ey [ () 4
B Imt2m—19—m 1 zts _% $2mo—m 1 eits ) m—% /
@ L0 e e [T () e
t2m7127m lt Qm—l Qm—l ,:|
- e |2m (1 — P ((1- 2s) | d
e L [ - - (0= e

t2m—12—m

:F(m—i—l)F( )/1 e (2m — 1) (1—32)m_5ds

1
2
$2m—19—(m—1) 1 s m—1 ds
B (m—l) (l)/ =) 2\/1—32
2 2

2. Hausdorff Dimension

Definition 2.1 (Hausdorff Content). Let (X, d) be a metric space and A C X be a subset.
Let s > 0and 0 < § < oo The s-dimensional 0-limited Hausdorff content of A is defined by

o0

H;(A):inf{z (s)27%d (E

j=1

ACUE and d(E;) < d,j=1,2,- }

where d(E) is the diameter of the set E, d(E) = sup{d(z,y) | z,y € E}, and o(s) is a
positive real number. For s = n the integers, we let a(n) be the volume of the n-dimensional
unit ball (especially, a(0) = 1); for non-integer s we leave a(s)27° = 1.

We say that { £;}32, is a covering of A if A C U, E;.

The definition n-dimensional d-limited Hausdorff contents of a set is “essentially the
same” as the case of s-dimensional contents. They just differ by a multiplication of the
constant ()2~ *. Actually, this constant is defined to make the Hausdorff measure consistent
with Lebesgue measure when s = n are integers.

9



The infimum in the definition of Hausdorff contents implies the following easy proposi-
tion:

Proposition 2.2. For fixed A C X and s > 0, H;(A) is non-increasing about 0, that is,
H;l (A) Z HEQ (A)fOl" (51 S (52.

Because of this, fixing s, the limit of Hj(A) exists (or is infinity) as § goes to 0.

Definition 2.3 (Hausdorft Measure). Let 0 < s < n. The s-dimensional Hausdorff measure
of aset A C X is defined to be

HE(A) = lim H3(A)

6—0

Proposition 2.4. If for a set A, Hj (A) is zero for some 0 < 6y < oo, then H3(A) = 0 for
all 0 < 6 < dg so that H*(A) = 0.

Proof: We may just assume that a(s)27° = 1. For every ¢ > 0, there exists a covering
{E;}52, of A such that d(E;) < 0y and

 d(E) <e
j=1

Thus every d(E;) < es j =1,2,---.

Now if § < 4y, take ¢ > 0 such that e < §° < §; and we obtain a covering {E;}32,
with d(E;) < e+ < 0 < . So we have a covering {E;}52, with d(Ej;) < dy such that
> 2 d(E;)” < e. Hence Hi(A) = 0 forall 0 < & < &, and H*(A) = lims_,o Hi(A) =

J=1

0. |
Combining Propositions 2.2 and 2.4, we have
Corollary 2.5. H*(A) = 0 if and only if H3(A) = 0 for some 6 > 0.

Lemma 2.6. For A C X, there is a unique non-negative real number sq, such that H*(A) =
o0 if's < sgand H*(A) = 0if s > s.

We omit the proof of this lemma. Because of the Lemma .§ we bave the concept of
Hausdorff dimension.

Definition 2.7 (Hausdorff Dimension). The Hausdorff dimension of a set A C X is defined
as

dim A = inf{s : H°(A) =0} = sup{s: H*(A) = oo}

Corollary R.3 tells us that we can express the definition of Hausdorff dimensions equiv-
alently by

dim A = inf{s Ve >0,3E), B+ C Xst. AC| JEjand Y d(E))" < e}

Jj=1 Jj=1

10



3. Frostman’s Lemma and Energy Integral

3.1 Frostman’s lemma

It is in general not easy to evaluate the Hausdorff dimension of a subset of R”. The Frostman’s
lemma is a useful tool in determining such a quantity.

Theorem 3.1 (Frostman’s Lemma). Let 0 < s < n. For a Borel set A C R", H*(A) > 0 if
and only if there is a p € M(A) such that

w(B(z,r)) <r° forallz € R", r > 0. 3.1
In particular,
dim A = sup{s : there is a p € M(A) such that (B.1)) holds.}.

Theorem established the relation between Hausdorff measures and Borel measures.
A measure satisfying (B.1]) is often called a Frostman measure. The idea of the proof is to
construct a sequence of Borel measures {1 } and the needed Frostman measure is its weak
limit.

Proof. Suppose there is a ;1 € M(A) satisfies the condition: u(B(xz,r)) < r*, forall z €
R"™, 7 > 0. Let {B;}32, be a collection of balls covering A. We have

Zd(Bj)S > ZM(BJ') = u(A) >0,

Thus H*(A) = lims_,o Hj(A) = sups., H5(A) > 0.
Conversely, suppose H*(A) > 0. We may assume A is compact. By definition of Haus-
dorff measures there is a ¢ > 0 such that

D d(E;) > (3.2)
j=1
for all coverings {E;}32,.

First we give a standard cubical partitioning of the whole space R™ with cubes of side-
length 27%. Define a measure /1 ; satisfying the condition on such cubes Q:

_[dQ) ifQnA#wo,
(@) _{ 0 ifQNA=o.

This measure fits for cubes with side-length less than 2% but not necessarily for larger balls.

Second, we modify (i, ; to a measure by giving a standard cubical partitioning of the
whole space R™ with cubes of side-length doubled, i.e., 2'~*. Define fix,2 as follows:

(@) it (Q) < d(Q)°,
Hi2(Q) = { df@)s otherwise.

Continue this process until we come to a single cube (), containing the compact set A, and

11



let 1 be the final measure obtained in this way. In this process, we never increase the
measure, so i (Q) < d(Q)? for all dyadic cubes with side-length at least 27%. Moreover the
construction yields that every x € A is contained in some sub-cube Q' C )y with side-length
at least 2% such that 11,(Q') = d(Q)*.

Choosing maximal, and hence disjoint such cubes {Q’} covering A. Thus by (B.2), we
have

ue(R™) = (@) = D d(Q))° > ¢ (33)
7j=1 7j=1

Now take a weakly converging subsequence of {1, } using Theorem [1.7, still denoted by
{p} and denote its limit measure by p. From the construction, the support of y, suppy is
contained in A. Thus (taking ¢ = x¢ in Theorem [1.7) for all cubes @

u(@Q) = lim (@) < d(Q)°

for all cubes () in R™. Since the definition of (normalized) Lebesgue measure of Borel sets
using balls is equivalent with that using cubes, we conclude that 1(B) <,, d(B)?® for all balls
B. Note that 1 cannot be a zero measure because of (B.3)). Finally a scaling of the obtained

Borel measure ¢ by multiplying an appropriate number gives the needed new Borel measure.
|

A simple but useful application of the Frostman’s lemma is the inequality for dimensions
of product sets.

Theorem 3.2. Let A and B be nonempty Borel sets in R™. Then
dim(A x B) > dim A + dim B.
Proof. By Theorem B.1], if 0 < s < dim A and 0 < ¢ < dim B, we can choose a ju € M(A)

with u(B(z,r)) < r®and v € M(B) with v(B(z,r)) < r'. Then the product measure
puxve M(Ax B)with (uxv)(B((x,y),r)) < r*t* from which the theorem follows. W

3.2 Energy integral

In this section we will see an equivalent expression of Hausdorff dimensions by energy in-
tegrals.

Definition 3.3 (s-dimensional energy integral). The s-dimensional energy integral, or s-
energy of a Borel measure 1 is defined as the integral

L) = [ [ 1o = yPduta)duty)

This integral can be written as the form of a convolution

&ww=/@awO®MM@

where kg(x) = ||, © € R™ is called the Riesz kernel.

12



A direct observation is that if 1« has compact support we have trivially /5(u) < oo implies
Ii(1n) < oo for 0 < t < s, by considering the integral on |z — y| < 1 and |z — y| > 1,
respectively.

The Hausdorff dimension of a set can be expressed by s-energy, as stated in the following
theorem.

Theorem 3.4. Let 0 < s < n. For a Borel set A C R", H*(A) > 0 if and only if there is a
p € M(A) such that the s-energy integral I;(1) < oo. Equivalently,
dim A = sup{s : there is p € M(A) such that () < co}.
The proof is to use the above Frostman’s lemma (Theorem B.1}) and some arguments.
First we need the following lemma about integrals.

Lemma 3.5. Let un € M(A) be a Borel measure on R" and let f be a non-negative [i-
integrable function. For every r > 0, define the strict hypograph E, to be E, = {y : f(y) >
r}. Then we have

[ fdutn) = [ niyar

Now it is time to prove the Theorem B.4.

Proof. of Theorem B.4. Let 1 such that (B.1)) in the Frostman’s lemma holds.

Using Lemma B.§ by taking f(y) = |z —y|™*, then B, = {y : |z —y|™* > r} =
{y : |y — x| < r~/*}. This is an open ball centered at = with radius r~'/*. Thus u(E,) =
p(B(z,r~1/%)). For any £ > 0,

L) = [ [ nBar /)i duta) = () [ (Bl )
0 0
We can restrict the lower limit of the integral to d(supp)~*~%), because when

r~= > d(suppp)

the value of the integral no longer increases.

Applying Theorem B.1],
Ii_.(pn) < / P dr < 0
d(supp) ~ (=)

Thus dim A < sup{s : there is u € M(A) such that I;(u) < oo}.

On the other hand, suppose u € M (A) satisfies [;(1) < oo. Then [ |z —y|*du(x) < oo
for almost all y € R™. We can find a 0 < M < oo such that the set C' = {y : [ |z —
y|*du(x) < M} has positive u measure. Then u|c(B(z, 7)) < 2°Mr® for all x € R". Thus
we have

dim A > sup{s : there is u € M(A) such that I;(u) < oo}

Combining the results above, we have

dim A = sup{s : there is € M(A) such that /(1) < co}.
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4. Fourier Transform

4.1 Fourier transform in L'(R")

Definition 4.1 (Fourier Transform in L' (R™)). For Lebesgue integrable functions f € L'(R"),
the Fourier transform is defined by

FUHO =7 = | fla)e ™" d, ¢ €R"
Rn
where the - is the dot product in R™.
Some easy properties are listed below.

Properties 4.2.
(i) ]?is well defined, bounded and continuous.
(ii) Product formula

[Fo=[ 13 rge @)
(iii) Convolution formula
frxg=1fg. f.g€L'(R")
(iv) Define the translation 7,(x) = x + a for a € R" and the dilation 6,(x) = rx forr € R.

Then — ja-& 7
foTa(§) =M f(¢)
eZmiaw f(£) = f(g —a) = fo Ta(§)

foo &) =r"f(r ¢
Lemma 4.3 (Riemann-Lebesgue Lemma). For f € L'(R"),

FE) = 0as |¢| = .

Proof. Note that
fie) = [ st

- _/n F(z)e2mi(zeta)
— _/n f(x)e‘mf'(”ﬁ)

_ o 5 —2miz-§
= fot () e

Fo =3 [ |11 (a-g55)]ermesae o

as |£| — oo by the Lebesgue’s dominated convergence theorem. [

Thus

One of the most important conclusions in the Fourier transform is the Fourier inversion
formula.
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Theorem 4.4 (Fourier Inversion Formula). If f € L'(R") and fe LY(R™), then we have
the Fourier inversion formula

fla)= | Fleermerds

for almost every x € R".

The Fourier inversion of such a function f is often denoted by F~'(f) or f. To prove
the Fourier inversion formula, we first introduce some notations.

Notations. Define f.(z) = f(ex) = f o d.(z), and f*(z) = e " f(¢~'z). Then we have
the following practical identities:

fa = (f)g
7 = (-
Definition 4.5 (Gauss Funcion, Gauss Kernel). For x € R", the Gauss kernel V(x) is given
by ,
U(z) = el

and the Gauss kernels is defined to be the family {U¢}.-,.

Lemma 4.6. The Fourier transform of the Gauss function VU is itself, that is
U=

The proof is based on complex analysis method and we omit it here.
Lemma 4.7. The Gauss kernel {V¢}..o C C*(R"),is an approximate identity.

This can be checked directly by definition of approximate identities.

Proof. of Theorem .4 Define

L(z)= [ f(g)e P ermierde,

R”

On the one hand, by the Lebesgue’s dominated convergence theorem,
L@ — [ Foemsa oo
Rn

On the other hand, consider g(z, y) = e~ ™ ¥* 2" Fixing x, let g, (y) = g(x, y), we have

that g, (y) = @\E(y — x) = ¥¢(z — y). Using the multiplication formula and Theorem
and Lemma }.7,

Is(af)z/fgx:/f@c:(‘Pa*f)(w)%f(w) in L',

Hence we can take a subsequence {/. }°°, of {I.} converging to f pointwise almost every-

where. Also, {1, } converges to [5, f(£)e*™*d¢ pointwise by the previous argument. This
yields the Fourier inversion formula

fla)= | Fleermerds
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for almost every = € R™. |

There are several equivalent expressions of Fourier inversion formula. If we define the

reflection f(z) = f(—=) and the conjugation f(z) = f(x), then the Fourier inversion
formula can be expressed by

~ ~
—~ ~

F=F=1.7T=1 7=

b

4.1)
Of course these equations hold almost everywhere.

Corollary 4.8. If f and J?are both belong to L*(R™), then f is continuous.

This is because of the Fourier inversion and the continuity of the Fourier transform.
We can also deduce the so-called “reversed convolution formula” from Fourier inversion.

Corollary 4.9 (Reversed Convolution). If f, g, fg, f, g € LY(R™), then

E = %G almost everywhere.

4.2 Fourier transform in the Schwartz space S(R")

Notations. Let o € N”, thatis, « = (aq, -+ ,ay),q; € Nji = 1,---n and let |o| =
a; + -+ a,. Forz € R, let 2 = 27" - - - 2. Define the partial differential operator

Do — 3|oz|

© 0zt Oxan”
This is to take a;-th order partial derivatives on z; respectively.

Definition 4.10 (Rapidly Decreasing Function; Schwartz Space). 4 function f : R — C s
said to be rapidly decreasing if it is infinitely differentiable and for all o, f € N",

sup |2 D" f(z)] < o0.

The space S(R™) of all such functions is called the Schwartz space on R".

Some observations come as follows. Firstly, the Schwartz space S(R™) is closed under
addition and scalar multiplication, which makes S(R") into a vector space. Secondly, if f is
a rapidly decreasing function, then so is z®D” f for every given « and 3. Thirdly, if f and
g are rapidly decreasing functions, then the multiplication fg is also a rapidly decreasing
function.

We can directly check that S(R™") € LP(R™) for 1 < p < oo by definition, so we
can perform the Fourier transform directly on the Schwartz space. Since rapidly decreasing
functions are smooth, hence continuous, then for f € S(R"), the Fourier inversion of fis
precisely f.

The less direct conclusion is that the convolution of two rapidly decreasing functions is
also rapidly decreasing. We just give this proposition and do not prove it here, but we will
give some explanations later.

Proposition 4.11. If f, g € S(R"), then f x g € S(R™).
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We list two properties of Fourier transforms of derivatives.

Properties 4.12. For f € S(R"),

(%) () = 2mit, ()
(—2miz, ) (€) = g—ga

Proposition 4.13 (Parseval’s Identity). For f,g € S(R"), we have the identity

/ﬁ:/ﬁ

Proof.

I

KH))

(Fourier Inversion)

(Reflection invariance of Lebesgue integral(

I

\ \ \\\
\s)>
QQl

x)dz (Multiplication formula)

The last equation is because

In particular, when taking ¢ = f we obtain a conclusion that the Fourier transform of

rapidly decreasing functions preserves L2-norms.

Corollary 4.14 (Plancherel’s Identity for S(R™)). For f € S(R™), ||fll> = |||l

The Schwartz space S(IR") is somewhat a nice space because the Fourier transform per-
formed on S(R") is a linear bijection. We now discuss on this by the following several

propositions.

Proposition 4.15. If f € S(R™), then fe S(R™).
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Proof. If f € S(R"), then f € L'(R"), so f is bounded as in Properties #.2. Thus D/ax?f is
bounded because D*z” f € S(R") for any given v and 3. Using Properties repeatedly,

Deaff(€) = (2mi) (=2mi) e D (e,
If we let 1/C = (2mi)!*l(—2mi)~1?! then
DA f(e) = CD P f(€)

which is bounded as argued above. This means f € S (R™). [

Lemma 4.16. The Fourier transform is a surjection from S(R") to S(R™).

Proof. Let f € S(R"). Define f(z) = f(—x). Then f € S(R") by Proposition f.13. The
equivalent expressions of Fourier inversion implies that

Hence we find that fis a pre-image of f under the Fourier transform. Since f is any rapidly
decreasing function, we conclude that the Fourier transformation is a surjection from S(R")
to S(R™). [

The Fourier inversion formula implies directly that the Fourier transform is an injection
from S(R") to S(R™), since if f, g € S(R") and f = , then the Fourier inversion implies
f = g. Combining this with Lemma §.1¢, we can infer that the Fourier transform is bijective
and hence an isomorphism on S(R").

Corollary 4.17. The Fourier transform F is a linear isomorphism from S(R"™) to S(R™).

Back to Proposition f.11], the quickest way to see this is using the convolution formula
mentioned in Properties .2, The functions f and § are rapidly decreasing and so is f§ =
f * g. Apply Fourier inversion and Corollary we can conclude that f x g € S(R").

4.3 Fourier transform in L?(R")

Corollary inspires us to think whether we can perform Fourier transforms in the space
L*(R™).
Let’s recall some concepts from functional analysis (for example, from Muscat).
Strictly speaking, L*(R™) is a normed vector space consists of square integrable func-
tions, modulo an equivalence relation defined as follows: two functions are equivalent if the
L?-norm of their difference is zero. That is to say,

LQ(R”):{f:R”%C‘ Rn|f(x)|2dx<oo}/~.

Define L?-norm to be || f||o = fR"

f(x)]?dx. The equivalence relation ~ is defined by

f~g = |f—gll2=0.
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This equivalence relation is equivalent to the statement that f ~ g ifand only if f = g almost
everywhere.

A Hilbert space (H, (-,-)) is a (real or complex) inner product space which is complete
with respect to the norm induced by the inner product || - || = /-, ).

L?(R") is a Hilbert space with the inner product defined by

(f.9) = . f(x)g(z)dr,

where ¢g(z) denotes the complex conjugate of g(z). The norm defined from the inner product
coincide with the L?-norm.

Lemma 4.18. S(R") is a dense subspace of LP(R™) with LP-norm for 1 < p < cc.

This is because C°(R™) C S(R™) C LP(R™) and C§°(R™) is dense in LP(R™) using the
standard approximate identity.
Because of this we can give a unique isometric linear extension from S(R") to L?(R™).

Theorem 4.19. The Fourier transform F : S(R") — S(R") is an isometric isomorphism
on S(R"), and can be uniquely extended from S(R") to L?*(R™), and the Fourier transform
in L?(R") is isometric.

The unique extension means that the extension is unique in L*(R™). In other words, it
means that if two functions in L?(R") are the Fourier transform of the same function, then
they coincide almost everywhere.

Proof. Isometric extension: Let f € L?*(R"). By Lemma we can choose a sequence
{gx}32, € S(R") such that
g — fask — oc.

Apply F to gi and denoted by F(f) the obtained limit of F(g;). The limit exists because
we can check that {F(gx)}7, is a Cauchy sequence. Then

IF 2 = IIF(F) = Flge)llz + 17 (g2
= [IF(f) = F(gr)ll2 + llgrll2

Let & — oo, and note that |||gxlla — || fll2] < llgr — fll2 — 0 as k& — oo. We have
llgkll2 = || f|l2 as & — oo. Hence ||F(f)||2 = || f|l2, equivalently, the operator norm of F,
IF|l = 1.

Uniqueness: If F(gi,) — hin L? for another h € L*(R"), then

IF(f) = hll2 < 1F() = Flgr)ll2 + F(gx) = F(R)]]2 = 0 as k — oo,

proving that F(f) = h almost everywhere. [ |

Because of Theorem §.19, the translation and dilation formulas in Properties con-
tinue to hold for L? functions. The identity || F(f)|[2 = || f]|2 for L?(R") is known as the
Plancherel’s identity for L? space, analogous to the Proposition for rapidly decreasing
functions. With a further argument can show that the Parseval’s identity continue to hold in
L? space.
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Theorem 4.20 (Parseval’s Identity for L?(R™)). For f, g € R", we have the identity

(F(f), F(g)) ={f.9)

Proof. The key is to express the inner product of two elements using the norm.
For L?(R") as a real inner product space we have

S tglP =S =gl

4.2
(f.9) 1 (4.2)
forall f,g € L*(R™).
For L?(R™) as a complex inner product space we have
f+gl* = Ilf — gl + |If +igll*i — || f —ig|[*i
1.9y W01 = 1f =gl + If +iglfi = | — ig] ws)

4

forall f,g € L*(R™).
With the identities (#.2) and (#.3) the claim in this theorem can be immediately verfied
by Theorem .19 |

Corollary and Theorem motivate us to continue thinking whether the Fourier
transform extended from S(R") to L?(R") is also an isometric isomorphism on L?(R").
Fortunately, this is true as we expect.

Recall that the adjoint operator of a linear operator 7" : V' — W is the operator 7 : W —
V such that (Tv,w) = (v, T*w) for every v € V and w € W. The Riesz representation
theorem for Hilbert spaces guarantees that such a vector 7w is unique so that 7™ is well
defined. 7 is indeed linear which can be checked directly by definition.

A unitary operator U on a Hilbert space H is a bounded linear operator U : H — H
satisfying U*U = UU* = I, where [ is the identity operator.

We present a lemma in functional analysis without proof which states the equivalent
definition of unitary operators.

Lemma 4.21. A4 bounded linear operator on a Hilbert space U : H — H is a unitary
operator if and only if
*the range of U is dense in H and

U preserves the inner product of H, that is, for all vectors x and y in H we have:

(Uz,Uy) = (x,y).

With these preparations, we can now conclude that the Fourier transform on L?(R") is
indeed a unitary operator, and hence is an isometric isomorphism.

Theorem 4.22. The Fourier transform F : L*(R") — L*(R") is a unitary operator.

Proof. We have seen that L?(IR™) is a Hilbert space with its inner product defined before. By
Lemma we need to verify that the range of F is dense in L?*(R") and F preserves the
inner product. But this already hold because of Lemma }.16, Lemma .18, and the Parseval’s
identity for L?(R") (Theorem 4.20). [
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4.4 Fourier transform of (finite) measures

Definition 4.23 (Fourier Transform of Finite Borel measure). Given a finite Borel measure
i on R", the Fourier transform of 1 on R" is defined by

A6 = [ e tduto), g e R

When i € R”, i is bounded Lipschitz function, that is, |||/ < p(R™) and there is an
R > 0 such that |f(z) — f(y)| < R - pu(R™)|z — y| for all z,y € R, if suppu C B(0, R).
However 12 need not be in LP(R") for any p < oo.

The Fourier transform of finite measures generalizes the Fourier transform of functions
in L'(R"), where we can identify dyp = f,,dL" according to the Radon-Nikodym theorem.

The following product and convolution properties of Fourier transform of measures are
analogous to those of functions, and can be checked using Fubini’s theorem.

Properties 4.24. For f € L'(R"), u,v € M(R™),

(i) Multiplication formulas
/ﬁfz/ﬁm

/ﬂdu = /ﬁdu.

fp= T,
[0 =D

(i) Convolution formulas

We can appproximate measures with smooth compactly supported functions using convo-
lutions. Let {1). }.~o be an approximate identity in C§°(R™) such that ¢, (z) = e " (x/e), ¢ >
0,suppyy C B(0,1) and [ ¢ = 1. Then QZE(f) = {b\(sg) — (0) = [¢p =1ase — 0. For
a finite Borel measure p, setting ji. = 1. * u, by Theorem we have j. converges to i
weakly as ¢ — 0 and /1. = @//)Zﬁ — 1 uniformly.

Since C§°(R™) € S(R™), using Fourier inversion formula we can draw a conclusion that
two compactly supported measure coincide if and only if their Fourier transformation are
equal.

Proposition 4.25. For p,v € M(R"), i = v if and only if 1 = v.

Proof. If p = v, then i = v immediately by taking Fourier transforms on both sides.

Conversely if ;1 = v, then by the above discussion, ;. — & and 7z — v uniformly and
the right-hand sides are equal. Since by definition y.,v. € S(R"), the Fourier inversions
performed on their Fourier transforms bring themselves back, so

o) = [ m(@ersde — [ peends

R

and v, (7) = / (6?8 — | D(€)e*™tdE, ase — 0.

R”

Here we use the uniform convergence of { .} and {v.}. Thus the two limits are equal.
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Meanwhile, [ @u.dC" — [@dp and [ @u.dC" — [@dv ase — 0 for every ¢ €
Co(R™), by Theorem [L.15. Also,

/ (2)pe(2)d — / ( / 2m€d§) dx
and/ (x)ve(z da:—>/ (/ 2mxfd§) dx ase — 0.

The above two limits are obtained by the Lebesgue’s dominated convergence theorem,
with dominating functions | |||¢||s and |v¢ |||, respectively. We can see that right-hand
sides in the above formulas are equal. By the uniqueness of limits,

[etu= [ ot ( JEG 2”””’3d£) iz = [ ot ( / ﬁ(é)emfdf) iz = [ g

for every ¢ € Cy(R™). Thus 1 = v because we can approximate the characteristic function

on any set pointwise by continuous functions.
|

Properties 4.26. For ji,v € M(R") and f,g € S(R"),

(Reversed convolution) ]/C,t\z = f* 1
/ fdp = / i
/ﬁduz /f(ﬁ*?)-

If we have known the behavior of the Fourier transform of finite Borel measures, we can
also infer back the property of the measure themselves. Recall the Radon-Nikodym theorem.
If 11 1s a finite, absolutely continuous measure (with respect to the Lebesgue measures £"),
then there is a function f, € L'(R"™) unique up to a set of measure zero, called a Radon-
Nikodym derivative, such that du = f,dL™ and we may identify p with f, in the following
contexts.

Theorem 4.27. Let 1 € M(R™). If i € L*(R™), then f, € L*(R™).

Proof. By Theorem §.22, when we identify /i with a function in L?(R"™), there is indeed a

function f € L?(R") such that i = f. Define y. = v * p and f. = 1. * f. Then by the
convolution formula we have

//[6 :¢aﬁ:¢sf = fea

so y1. = f. as rapidly decreasing functions. As p. — p weakly and f. — f in L%, we have
f. = f almost everywhere. -

Theorem 4.28. Let 1 € M(R"). If i € L'(R"), then f, is almost a continuous function,
which means that f,, is equal to a continuous function almost everywhere.

Proof. Let p. be as in the previous proof. Then . € S (R"). By the Fourier inversion
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formula and the Lebesgue’s dominated convergence theorem,

pe(z) = / AL (€)erE d = / DeE)A(E)mierde

— /ﬁ(f)e%g'xdg, ase — 0.

Denote by g(z) the limit integral. ¢ is continuous since 7 € L'. On the other hand,
= converges weakly to y, so f, = g almost everywhere according to the Radon-Nikodym
theorem. .

4.5 Fourier transform of tempered distributions

Definition 4.29 (Tempered Distribution). A tempered distribution is a continuous linear
functional on the Schwartz space: T : S(R") — C.

Definition 4.30 (Fourier Transform of a Tempered Distribution). Let T' : S(R") — C be a

o~

tempered distribution. The Fourier transform of T’ is the tempered distribution T satisfying

T(p) =T(p) foryp e SR).

Generally, every locally integrable function f with an additional condition: |f(z)| <

~Y

|z|™ when |z| > 1 for some fixed m, can be regarded as a tempered distribution and we can
define its distributional Fourier transform. Such a function is called a tempered function (in
the sense of Wolff¥]),

Definition 4.31 (Tempered Function). A tempered function f : R" — C is a locally inte-
grable function such that

[ slah @i < oo
for some constant m > 0.

Definition 4.32 (Fourier Transform of a Tempered Function). Let f be a tempered function.

The Fourier transform of this tempered function f is another tempered function f, such that
the following holds:

(multiplication formula) /fgp = /f@
forall p € S(R™).

For a tempered function f, consider the operator 7 : S(R") — C defined by

Ty(p) = /ftp-

Then 7% is indeed a tempered distribution and we call 7 the tempered distribution induced
by f.

Lemma 4.33. If f; and fy are two tempered functions on R" inducing the same tempered
distributions, i.e., Tt = TY,, then fi = fo almost everywhere.
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We just sketch the idea of the proof. First consider the case when ¢ € C3°(R") C S(R).
The Riesz representation theorem for measures and the Radon-Nikodym theorem imply that
there is a unique f up to a set of measure zero, such that

Ty(p) = /fso-

Then we conclude the theorem using the density of C§°(R™) in S(R) with the Lebesgue’s
dominated convergence theorem.

The Fourier transform of a tempered function is the Fourier transform of a tempered
distribution if we identify ﬁ with T%:

7o) = [ Fo=Tito) = [ 12 =14(0).

From the above definitions, we see that functions in L, S and L? are tempered functions.
An observation gives us that L' + L? defined by

L1+L2:{f1+f21f1 GLl,fQELQ},

is also a tempered functions, so that their original Fourier transforms are compatiable with
their distributional Fourier transforms.

4.6 Fourier transform of radial functions

Definition 4.34 (Radial Function). 4 radial function f on R™ is a function whose value at
each point depends only on the length of the variable, that is, f(x) = ¥(|z|),z € R" for
some ) : [0, 00) — C.

A simple observation yields the following proposition.

Proposition 4.35. A4 function f on R" is a radial function if and only if it preserves rotations.
That is to say, f o p = f for all p € SO(n), the special orthogonal group on R™.

An useful conclusion is that the Fourier transform of radial functions can be expressed
expressed explicitly by Bessel functions.

Theorem 4.36 (Fourier Transform for Radial Functions). Let f € L*(R") be a radial func-
tion. The Fourier transform of f is given by

f(:v) = c(n)|:10|_("_2)/2 /00 zb(s)J(n,g)/g(27T|x|s)s”/2ds,
0

where c(n) is some constant depending on n which need not be determined, 1) is the func-
tion of a one-dimensional variable defined in the above definition and J(,,_) /> is the Bessel
function of order (n — 2)/2.

From Theorem we can see that the Fourier transform of a radial function is also a
radial function.

To derive this formula we should first recall the change of variable formula of Lebesgue
integration in polar coordinates. If f € L'(R™), then

/R Lt = /S » < /0 N f(rx)r"_ldr) do™ " (z) (4.4)
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where L" is the n-dimensional Lebesgue measure and 0™~ ! is the stantard spherical measure
on the unit sphere S"~1 C R™.

For the second, if we fix a direction e € S~ ! and let Sy = {z € S" " !|e- & = cos §} for
0 < 6 < 7, then Sy is an (n — 2)-dimensional sphere of radius sin 6 (which is a circle when

n = 3). If we denote by o}~ the surface measure (area) of Sy we have
oly = 0""2(S"?)(sin )" 2. 4.5)

Then for g € L'(S™ 1),

[ oot = ([ sty ) s o)

After these preparations, we begin our proof of this formula.

Proof. of Theorem .36. By the change of variable formula and Fubini’s theorem,

f(?“e) = fly)e?™vdy = / P(s)s" ! (/ eZ’Tirse'xdanl(:c)) ds.  (4.7)
R7 0 Sn—1
Apply the equation (4.6) to the inside integral of the right-hand side,

T
—2mirse-x n—1 o —2mirscosd _n—2
/ € do (:L‘)—/ e o (Sp)do
Sn— 0

. (4.8)
— O,an (Sn72> / 6727”'7"5 cos@(sin 9)”72(19
0
where the first equality comes from (4.3)
Changing variable by letting cos § = —t and introducing Bessel functions
J (u) _ (%)m /1 eiut (1 . tg)m—l/Q di
L(m+3)T(3)
we obtain
/ e—?ﬂ'zrsewda_n—l(x) _ O_n—Q(sn—?) / 627m7‘st(1 . t2)(n—3)/2dt
sn—1 —1
= c(n)(rs)_(”_Q)/QJ(n_g)/g(27rrs)
Substitute the above formula in (%.8) and we obtain the needed result.
|

The following property of radial functions in L?(R™) will be used in the next section.

Proposition 4.37. Let f € L?(R") be a radial function. Then its Fourier transform F(f) is
also a radial function, in the sense that F (f) is a radial outside a null set.

Proof. The idea is to construct a sequence of radial an rapidly decreasing functions approx-
imating f for f € L*(R"™).

Let {1 };~0 be the standard approximate identity, which, as we observe, is radial. Then
fr = f =y € C(R™) C S(R™) is radial for any ¢ > 0, because it is easy to check that the
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convolution of two radial functions is again a radial function. Thus ﬁ is a radial function by
the formula given in Theorem }#.3d. By Theorem f; converges to f in L? as t goes to
0. We know from Theorem that F(f;) converges to F(f) in L*(R™). Then there is a
subsequence { F(f, )}, of F(f;) converging to F( f) almost everywhere as k — oc.
Since {F(f:, )}, is a family of radial functions and converges to F( f) outside a null
set, then F(f) is radial outside a null set. |

4.7 Fourier transform of Riesz kernels

Recall that Theorem .4 tells us that the s-dimensional Hausdorff measure of A C R" is
nonzero if and only if there is a finite Borel measure 1 € M(A) such that its s-dimensional
energy integral is finite. The s-dimensional energy integral of a measure ;. can be written as
I(p) = [ (ks % p)(x)dp(x), where kg is the Riesz kernel k,(x) = |z| 5. It is easy to veryfy
that the Riesz kernel k; is a tempered function. We now compute the distributional Fourier
transform of the Riesz kernel.

Theorem 4.38 (Fourier transform of Riesz kernel). Define the Riesz kernel by ks(x) =
|z|=%, s > 0. For s such that 0 < s < n, then there is a positive and finite constant y(n, s)
such that

[ e =r05) [he pories@). (4.9)

That is to say, the Fourier transform of the Riesz kernel k4 (as a tempered function), is kAS =

y(n, §)kn—_s.
Moreover, the constant y(n, s) can be computed explicitly:

LT ()
,8) =T A (4.10)
v(n,s) =T o)

We list a lemma ahead of the proof of Theorem which will be used in the proof.

Lemma 4.39. Suppose that g is a tempered even function on R™ such that its distributional
Fourier transform f is a tempered function. Then

-~

=g

Proof. Using the product formula and equivalent expressions of Fourier inversion, we have

for ¢ € S(R™),
T30 =190 = [ 18- [36= [ 47
= /g(x)gp(—m)d:c = /g(—x)go(:c)dx = /9%

from which the lemma follows. [ |

Proof. of Theorem We split the proof in three cases according to s.

Case I. 5 < s < n. We observe that k, € L' + L? because we can decompose k, into
ks = fi + fo with f; € L' and f5 in L?, where fi = ksxp(0,1) and fo = kyXrn\B(0,1)- Since
ks is radial and ky(rz) = r~°kg(x) for r > 0, then k is also radial by Theorem 4.3d, with
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l;:;(m") = rS*”lfAs(as) by the dilation formula in Properties #.2. We see that l%\s(x) is of the
form ~y(n, $)k,—s. To be rigorous, since ks(rz) = r° "ky(z) and ks(x) = h(|z|) for some
h : [0, 00) — C, then for every x € R"™ \ {0}, we have

S
vy
N
a5 s
N———
I
—
=
o
=
o,

S
vy
N
=8
N——
I
)
=)
Ef —
3

Thus /;;(x)/]xﬁ_” = h(1) and ks(x) = h(1)|z|*~". The case x = 0 automatically suits the
equation. The constant (1) is denoted as 7(n, s) depending on n € N* and s > 0, and
|z|*~™ = k,,_s(x). Combining all obtained above, we have

-~

ks(z) = v(n, s)kn_s(x).

The lgs is indeed the distributional Fourier transform of k, because L' + L? is clearly a subset
of the collection of tempered functions.

Case II. 0 < s < 5. We should show that k;:(a:) = y(n, s)k,—s(x) is also the distributional
Fourier transform of k,. By Lemma and the discussion in Case I, the Fourier form of

ks =~(n,n—s8)"k, s(asn/2 <n—s<n)is

~

ks =~(n,n—8) ks

Case Ill. s = 7. This requires harder and more technical work work. We use a limiting
argument.
If k2 is the distributional Fourier transform of %, , then

//?ngp:/kn/gga:/ lim ko= lim [ k@ = lim y(n, s)/k“@:/knw.
s—n/2 s—n/2 s—n/2

The interchange of the limit in the third equation is because of the Lebesgue’s domimated
convergence theorem. Now we should explain why lim,_,, /> y(n, s) = 1.

Take U(z) = e " € S(R") to be the Gauss function, so that U = W. Forn/2 < s < n,
we have by the validity of (.9),

/kS\If = /k@ = (n, s)/kns\lf,

/|$]_Se_”|x2d:v:7(n, s)/|$ls_”e_”|x|2dx. (4.11)

For 0 < s < n/2, we replace y(n, s) by v(n,n — s)~! so that (4.11]) becomes

that is,

/ 2| e ™ dr = y(n,n — )" / 2" e ™ da.
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Taking the limit as s — n/2 on both sides with Lebesgue’s domimated convergence
theorem gives that lim,_,, o+ v(n,s) = lim,_,, />~ 7(n,n — s) = 1. Recall the definition
of the Gamma function. Computing the integrals on both sides of (#.11)) we find that the

formula for y(n, s) is precisely (4.10). Moreover by (#.10), v(n, s) = v(n,n — s) " so that
the constants for Case I, 11, and III can be unified. [ |

4.8 Expression of energy integrals by Fourier transforms

The following theorem shows that energy integrals of i can be precisely expressed by the
corresponding Fourier transformations. This builds a bridge between the Hausdorff dimen-
sion and Fourier transform.

Theorem 4.40. Let 1 € M (R") and 0 < s < n. Then

1) = 7(n, 8) / APl da 4.12)

Proof. 1f we still have the validity of Parseval’s identity, convolution formulas, then by The-

orem {.38, we have
I(p) = /ks x o dp
(Parseval’s identity) = / ko % it
(Convolution formulas) = / E9|,E|2
(Theorem E38) =1 (n,5) [ (7o) ol "ds

Therefore we should check the validity.
Let o € S(R™) be a real-valued function. Changing the variable z = y — x and denoting
o(x) = p(—x) we have

L) = [ [kl = 2 @)ety)dody
— [[ Kooty = etiyzay = [ ko)

By Corollary §.9 and equivalent forms of Fourier inversion formula, with Theorem §.38, we
have

L(¢) = 1(0.5) [ k@ = 2(n,5) [ Jal*~"I3(0) Pdo
So we finished proving the theorem for “smooth measures” .

For general 1 € M(R™), we approximate p. with p. = 1. % u, where {1, }.~ is the
standard approximate identity defined before. With ¢ = p. applied in the above smooth
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case, we have

// (// |z =y ez — 2)e(y — w)cbcdy) dpu(2)dp(w)
:// (|x - yl‘s/%(w — 2)du(z) /@Z)g(y — w)d,u(w)) dzdy

=15 (pe) = 7(n, s) / )P [P(ew) Pl ~"dr — y(n,s) / i) [*|z]*"dx, as e — 0.

We perform another change of variables by taking u = (z — 2) /e, and v = (y — w)/e. Then
looking at the inner integral of the first term,

/ & — 5~ — 2y — w)dady

:/ le(u —v) + 2z — w|*Y(u)(v)dudv — |z — w|* ase — 0 and z # w.
With the above identity we have the estimate:

/ & — el — el — w)dady < |z — w|~

Then when /(1) < 0o, we can conclude the proof by the Lebesgue’s dominated convergence
theorem.
When I,(p1) = 0o, we get by Fatou’s lemma,

oo = 1) < timint [ [ (( [ 1o =0t = 2p0nty = wydaay ) )t

= 7(n, 5) lim inf / A(x) Pl ()Pl de = y(n, ) / i) Pl " d.

The proof is complete. u

5. Projection of Sets

Definition 5.1. Given a direction e € S, n > 2, the projection of a point in R™ onto this
direction P, : R" — R is defined by

P.(x)=x-e,

where - means the standard dot product in R".

In other words, this is the orthogonal projection onto the line {te|t € R}.
A simple observation is that dim P.(A) < dim A because the projection map is a Lips-
chitz map which does not increase dimensions.

Theorem 5.2. Let A C R" be a Borel set and s = dim A.
(i) If s < 1, then dimP.(A) = s for o™ '-almost all e € S™"™1;
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(ii) If s > 1, then L'(P.(A)) > 0 for o™ '-almost all e € S" 1.

Proof. If p € M(A) and e € S™!, define the image y, = (P,)yu under the projection
P, :R" — R, that is
pe(B) = W(P71(B)), BCR

Then p. € M(P.(A)) and

fle(r) = / e " dp(x) = / e~ 2 W) dyu(y) = fi(re) forall r € R (5.1)

oo

To prove (i), suppose 0 < s = dim A < 1. Forevery 0 < t < s, picka u € M(A) such
that I,(11) < oo by Theorem B.4. Using Theorem and (5.1)) together with the change of
variable formula in polar coordinates (%.4),

[ o)

Sn—l

(@D in Theorem ) (1) [ ([T im0 i) e

((5.1)) and fte (1) is even) = 2(1, t)/ </°° |ﬂ(7“€)’27“t1d7') do™ ()
sn-1 \Jo

(B4) = 27(1,1) - ()@ da
(B12) = 29(1, t)y(n, )" L(p) < o0

In particular 7,(j.) < oo for 0" *-almost all e € S™~* and dim(P.(A)) > ¢ for such e by
TheoremB.4. Since ¢ < s is chosen arbitrarily, we conclude that dim P,(A) > s for o-almost
alle € S™71.

To prove (ii), suppose s > 1. By Theorem B.4 there is a ;n € M(A) such that I; (1) < oo
(because (1) < oo implies I;(p) > oo for 0 < t < s).

Using the similar argument as above with ¢t = 1,

[ ([ ) dor o = 2201 ) < o0

o0

whence p. € L*(R) for o™ !-almost all e € S™~ 1.

By Theorem §4.40, .., if regarded as a nonnegative integrable function, is in L?(R), which
means that there exists a nonnegative function f,,, € L*(R)NL?*(R) such that du, = f, dL".
In particular, . (identified with f,, ) is absolutely continuous with respect to £! for " !-
almost all e € S™™. As p, € M(P.(A)), we conclude that £'(P.(A)) > 0 for such e.

|

Theorem 5.3. Let A C R" be a Borel set and dim A > 2. Then the projection P.(A) has
nonempty interior for o™ almost all e € S™"1,

Proof. Let2 < s < dim A. We can choose a measure . € M(A) such that /(1) < oo, by
Theorem B.4. Define pi.(B) = (P *(B)), B C R as in the previous theorem.

e
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Now, we consider the integral

[ (] ) aoo

where [, is the Fourier transform of the measure ..

[ ([ o) e

<2 [ ([T 1) a0+ oumeis

< { /S /1 h |ﬁ(re)|2r5_1drda”_l(e)} " l /S /1 wrl_sdrdan_l(e)} " ow

(5.2)
The first inequality is because the Fourier transform of a Borel measure is always an even
function, and

[e'e) [e'e) 1
/ |@<r>|dr:2/ r@<r>|dr+2/ () dr
—00 1 0
[e’e) 1
gz/ m<r>rdr+2/ 72.(0)] dr
1 0
[e'e) 1
2/ ]p?e(r)]dr+2/ 1 (R™) dr
1 0

=2 [T R0 dr+ 2 (R

The second equality is because of the Schwartz’s inequality:
I 7(re)] o o0y xsn-1y < e~ 2 (o0 xsn-1) - 172 | 22(1,00) x sm-1)-

We continue to estimate the integral:

[ ([ aoar) i

<3 (%) ([ ia@Plelan) o)
= C(n, 5)L(p)"* + C(p) < o0

The inequality above is obtained by direct computation of the second term in (5.2) and
rs~1 < 5" whenn > 1landr > 1.

Hence /i, € L'(R) for 0" '-almost all e € S"' and by Theorem §.28, 1., is a continuous
function, in the sense that there is a continuous function g,,, € L'(R) such that du, = g, .dL'.
As i € M(P,(A)), we conclude that the interior of P.(A) is nonempty for " !-almost all
ee S"L [ |
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6. Dimension of Borel rings

The projection theorem of sets can be applied to the discussion on the dimension of the so-
called Borel rings. The goal of this section is to show that if the dimension of a Borel ring
on the real line R is stricly grater than zero, then this Borel ring must be the R itself.

Recall that an algebraic subring of a ring (with multiplicative identity) (R, +,-,0,1) isa
subset S of R that preserves the structure of a ring under + and -. A Borel ring is a Borel set
equipped with a ring structure.

The main theorem is stated as follows.

Theorem 6.1. Let E C R be a Borel set which is also an algebraic subring of R. Then either
E has Hausdorff dimension zero or E is the whole real line R.

Proof. To prove Theroem b.1], we just show that if such £ C R has dimension strictly larger
than zero, then dim £ = 1.

We first do some observations. Suppose dimE > (. From Theorem we have
dim E¥ > kdim E for any k € N*, where E* is the k-fold Cartesian product of E. Be-
cause of this we can choose a sufficiently large k so that dim E¥ > 2. Consider the linear
functional ¢ = P, : R¥ — R by just choosing the projection operator. Theorem 5.3 shows
that ¢(E*) has nonempty interior, and since the image of the linear functional p(E*) is a
subspace of R, p(E*) = R.

The following two lemmas imply that continuing the above discussion, k can only be 1
and £ = R, which conclude the proof of the theorem.

|

The first lemma is a purely linear algebraic proposition.

Lemma 6.2. Let E C R be a subring. Assume that there is a k € N* and a linear functional
¢ : R¥ — Rsuch that o(E*) = R, then such a k can be chosen so that p maps E* bijectively
onto R.

Proof. The above discussion guarantees the existence of integers k satisfying o(E*) = R.
Then we can find a smallest & such that p(E*) = R holds. We still denote the smallest
integer by k. Now ¢ is already surjective on E*. We claim that the restriction of ¢ to E¥,
¢|gr : E* — Ris injective. Let {ey,- - - ,ex} be the standard basis of R*. Denote by r; the
image of each basis vector, 7; = ¢(e;). Now p(E*) = R implies that the span of the vectors
{r;;1 < j < k} with coefficients in E is the real line R, that is,

k
{Zajrj:ajEE,jzl,---k}:R. (6.1)

Jj=1

Suppose on the contrary that |z« is not injective. Then there are by, - - - b, € FE not all
zero, such that Z;?:l bjr; = 0. We may assume that b, # 0 so we can express 7y, by

Let s € R and then s/b, € R. By (b6.1)), there exists ay,---a; € E such that s/b, =
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k
> ;-1 a;rj. Therefore

o

-1

k—1 k
5= Z bpa;r; + bray (Z ) =Y (b —a; —ar —bj)r;.

j=1 7=1

This implies that

k
{Zajrj:ajEE,jzl,---k—l}:R

Jj=1

and we obtain the restriction of ¢ to E*7%, ¢|gr-1 : E¥~1 — R mapping E*~! onto R. This
contradicts the minimality of k, and thus prove the claim that ¢ is injective on E*. |

The second lemma forces the Borel subring of R with dimension strictly larger than zero
to be R.

Lemma 6.3. Let E C R be a Borel subring. Let k be a positive integer and ¢ : R¥ — Ra
linear functional mapping E* bijectively onto R. Then k = 1 and E = R.

Proof. Let v : R — E* be the inverse map of ¢|gx, the restriction of ¢ to E*. Recall that
¢, as the projection, is continuous and one-to-one when restricted to £*. So, 1) maps Borel
subsets of F) onto Borel sets (by a standard result on Borel sets). Thus v is measurable
linear homomorphism. Using the same notation, let {e;;7 = 1,--- k} be the standard basis
of R* and let 7; = ¢(e;). Let m; : R¥ — R be the map taking out the first coordinate. Then
T = m o1 is a map from R to R,satisfying 7(z + y) = 7(x) + 7(y) forall x,y € R and
7 is Borel measurable because it is the composition of a Borel measurable morphism with a
continuous map. We claim that there is a constant ¢ such that 7(z) = cx forall x € R.

To verify the claim, we first observed that 7(x +y) = 7(x) + 7(y) implies that 7 is linear
on the rational numbers, i.e., 7(¢) = 7(1)q for all ¢ € Q. This is because if we let ¢ = a/b,
assuming a,b € N, b #£ 0, then a = bg = q¢ + q + - - - ¢ where there are b copies of ¢ so that
7(bq) = b7(q). Similarly, 7(a) = a7(1). Thus, a7(1) = 7(a) = b7(q) and

7(q) =7(1)g, ¢ € Q.

Second, if we show that 7 is continuous, then it follows that 7(z) = cx for all z € R.
Since the linearity condition holds on Q, it suffices to show that 7 is continuous at the origin
0. We do this with the help of the Steinhaus’s theorem. By the denseness of Q in R, for every
e > 0, the balls centered at rational points (with radius £/2) cover the real line R, that is

U Blg,e/2) =

q€Q
The inverse image of 7 preserves unions.
UT B(q,¢/2)) (UBq,5/2>
q€Q q€Q

We know from the Baire category theorems applied here that there is a rational index ¢y € Q
for which 771(B(qo,€/2)) # @, so that £L'(771(B(qo,£/2))) > 0. Then by the Steinhaus’s
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theorem, there exists a 6 > 0 such that

B(0,6) € 7' (B(go,¢/2)) — 7 (B(qo.£/2))
C 7 '(B(g0,¢/2) — B(0,¢/2))
- T_l(B(O,€)),

which shows that the inverse image of any neighborhood of 7(0) = 0 is a neighborhood of
0. This is equivalent to say that 7 is continuous at the 0.

Finally, 7(r,) = m1(e1) = 1, so c is nonzero. Butif £ > 1, there would be an ry # 0 with
7(rg)m(e2) = 0 which is a contradiction. Therefore k can only be 1 so that ¢ : R — R has
the form () = ax for some constant @ € R. Since ¢ maps F to R, wehave E =R. H
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