
分类号 编号

U D C 密级

本科生毕业设计（论文）

题 目： 调和分析和 Hausdorff维数专题

姓 名： 林睿军

学 号： 11611302

系 别： 数学系

专 业： 数学与应用数学

指导教师： 刘博辰

2021年 4月 30日



CLC Number
UDC Available for reference □Yes □No

Undergraduate Thesis

Thesis Title: Harmonic Analysis and Hausdorff Dimension,

a Brief Survey

Student Name: Ruijun Lin

Student ID: 11611302

Department: Department of Mathematics

Program: Mathematics and Applied Mathematics

Thesis Advisor: Bochen Liu

Date: April 30, 2021



诚信承诺书

1.本人郑重承诺所呈交的毕业设计（论文），是在导师的指导下，独立进

行研究工作所取得的成果，所有数据、图片资料均真实可靠。

2.除文中已经注明引用的内容外，本论文不包含任何其他人或集体已经

发表或撰写过的作品或成果。对本论文的研究作出重要贡献的个人和集体，

均已在文中以明确的方式标明。

3.本人承诺在毕业论文（设计）选题和研究内容过程中没有抄袭他人研

究成果和伪造相关数据等行为。

4.在毕业论文（设计）中对侵犯任何方面知识产权的行为，由本人承担

相应的法律责任。

作者签名:

年 月 日



COMMITMENT OF HONESTY

1. I solemnly promise that the paper presented comes from my inde­

pendent research work under my supervisor’s supervision. All statistics

and images are real and reliable.

2. Except for the annotated reference, the paper contents no other pub­

lished work or achievement by person or group. All people making

important contributions to the study of the paper have been indicated

clearly in the paper.

3. I promise that I did not plagiarize other people’s research achieve­

ment or forge related data in the process of designing topic and research

content.

4. If there is violation of any intellectual property right, I will take legal

responsibility myself.

Signature:

Date:



调和分析和 Hausdorff维数专题

林睿军

（数学系 指导教师：刘博辰）

[摘要]：调和分析是从 Fourier分析出来的数学分支，主要研究将一个函

数表示为若干基本的三角函数叠加，以及推广 Fourier级数和 Fourier变

换的概念。Hausdorff维数是一个比经典维数更好的描述集合尺度的指标，

也是几何测度论中最重要的概念之一。几何测度论是分析学中用测度论

方法解决几何问题的一个分支。

本篇毕业设计是一篇关于诸多不同形式的 Fourier变换和 Hausdorff维

数相互作用的概述。并且讲述了一个应用，即证明了实数集上 Borel环的

一个特性：要么它的 Hausdorff维数为 0，要么它是整个实数集。

[关键词]：Fourier分析，Hausdorff维数，能量积分，Borel环.



[ABSTRACT]: Harmonic analysis is an area of analysis grown from Fourier

analysis, which is concerned with the representation of functions as the super­

position of basic trigonometric functions, and generalization of the notions of

Fourier series and Fourier transforms. Hausdorff dimension is a finer index to

measure the “mass” of sets than classical dimension. It is one of the most im­

portant concepts of geometric measure theory, an area of analysis concerned

with solving geometric problems via measure­theoretic techniques.

This thesis is a survey on various types of Fourier analysis and the interplay

with Hausdorff dimension, with an application in proving the behavior of a

Borel ring on the real line: either has Hausdorff dimension zero or is the whole

real line.

[Keywords]: Fourier Analysis, Hausdorff Dimension, Energy Integral, Borel

Ring.
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The content of this thesis is mainly based on Mattila[1] .

1. Preliminaries

Definition 1.1 (Borel Set). The Borel sets in a metric space X is the smallest σ­algebra of
subsets of X containing all open subsets of X .

Definition 1.2 (Borel Measure, Borel Regularity).
A Borel measure is a measure µ for which Borel sets are measurable.
A measure µ is called Borel regular if for anyA ⊂ X there is a Borel setB such thatA ⊂ B
and µ(A) = µ(B).

Definition 1.3 (Borel Measurable Function). A function f : X → Y is said to be a Borel
measurable function if for all Borel measurable sets B ⊂ Y , f−1(B) is Borel measurable in
X .

Definition 1.4. The image or push­forward of a measure µ under a map f : X → Y is
defined by

f#(µ(B)) = µ(f−1(B)) for B ⊂ Y.

Lemma 1.5. If µ is a Borel measure and f is a Borel measurable function, then∫
gdf#µ =

∫
g ◦ fdµ

for all nonnegative Borel measurable functions g on X .

This can be proved by the monotone convergence theorem.

Definition 1.6 (Weak Convergence). Let C0(Rn) be the space of continuous functions with
compact support on Rn. The sequence {µk}∞k=1 of Borel measures on Rn is said to be con­
verges weakly to a Borel measure µ if for all φ ∈ C0(Rn),∫

φdµk →
∫
φdµ as k → ∞.

There is an important weak compactness theorem of Borel measures.

Theorem 1.7. Any sequence of (finite) Borel measures {µk}∞k=1 such that µk(Rn) is bounded
for all k = 1, 2, · · · has a weakly converging subsequence.

The following proof of the theorem is mainly given by Mattila[2] . It relies on the Riesz
representation theorem for measures (stated below), the so­called diagonal argument and the
density argument, where the density comes from the following lemma without proof.

Lemma 1.8. The space C0(Rn) with L∞­norm is separable.

Proof. of Theorem 1.7. Define a sequence of operators {Tk}∞k=1, where Tk : C(Rn) → R,
Tk(φ) =

∫
φdµk. Tk is well defined for each k and φ ∈ C(Rn) since the support of φ is

compact and {µk(Rn)} is bounded so that

|Tk(φ)| ≤
∫
|φ|dµk ≤ [sup

k≥1

µk(Rn)]∥φ∥∞ <∞
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ByLemma 1.8, we take a countable dense subsetD ofC0(Rn), written asD = {φ1, φ2, φ3, · · · }.
Now comes to the diagonal argument.

First, for φ1, {Tk(φ1)} is a bounded (numerical) sequence, so it has a converging subse­
quence denote by T1,k(φ1) and we take out the corresponding operators {T1,k}.

Second, for φ2, {T1,k(φ2)} is a bounded (numerical) sequence, so it has a converging
subsequence denote by T2,k(φ2) and we take out the corresponding operators {T2,k}.

...
Proceeding in this fashion we obtain a countable array of operators {Tm,k}:

T1,1 T1,2 T1,3 · · ·
T2,1 T2,2 T2,3 · · ·
T3,1 T3,2 T3,3 · · ·
...

...
... · · ·

The diagonal sequence {Tm,m}∞m=1 is the needed sequence that converges at each φ ∈ D.
Since D is dense in C0(Rn), {Tm,m}∞m=1 converges at each φ ∈ C0(Rn).

Finally, Theorem 1.7 gives the limit measure.

Theorem 1.7 will be used to prove the important Frostman’s lemma linking the Hausdorff
dimension and Borel measure in the next section.

We also list some definitions and theorems that will be used later.
The general definition of approximate identity is from Stein et al.[3] .

Definition 1.9 (Approximate Identity). The family {ψt}t>0 of continuous functions on Rn is
said to be an approximate identity if it satisfies the following three conditions:
(i) ∫

Rn

ψt(x)dx = 1

for every t > 0;
(ii) (Uniform Boundedness) There is a positive constantM such that∫

Rn

|ψt(x)|dx < M

for every t > 0;
(iii) For every δ > 0, ∫

|x|≥δ

|ψt(x)|dx→ 0 as t→ 0

There is a very important type of approximate identity called mollifiers, which is in ad­
dition nonnegative, infinitely differentiable and compactly supported. We give a description
below.

Definition 1.10 (Standard Mollifier). The standard mollifier on Rn, ψ : Rn → R is defined
by

ψ(x) =

{
ce

− 1
1−|x|2 if |x| < 1

0 if |x| ≥ 1
,

where the constant c is chosen so that
∫
ψ = 1.
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It is easy to check that ψ is compactly supported and infinitely differentiable. Using this
stantard mollifier we can give a concrete approximate identity.

Proposition 1.11 (Standard Approximate Identity). Let ψ be defined as above. For t > 0
we define

ψt(x) = t−nψ(t−1x).

Then the family {ψt}t>0 satisfies all the requirement of approximate identities. We call
{ψt}t>0 the standard approximate identity.

The proof of this proposition is just a simple verification of definitions.

Definition 1.12 (Convolutions).
(1) The convolution of two functions f and g is defined by

(f ∗ g)(x) =
∫
f(x− y)g(y)dy;

(2) The convolution of a function f and a Borel measure µ is defined by

(f ∗ µ)(x) =
∫
f(x− y)dµ(y);

(3) The convolution of two Borel measures µ and ν on Rn is defined to satisfy the condition∫
φd(µ ∗ ν) =

∫∫
φ(x+ y)dµ(x)dν(y) for all φ ∈ C+

0 (Rn).

The following two theorems (from for example, Duoandikoetxea[4]) explains where the
term “approximate identity” comes from. It approximates functions through convolutions.

Theorem 1.13. Let {ψt}t>0 be an approximate identity. Then ψt ∗ f converges to f in
Lp(Rn) if f ∈ Lp(Rn), 1 ≤ p < ∞, and ψt ∗ f converges to f uniformly (i.e when p = ∞)
if f ∈ C0(Rn).

To prove this theorem, we introduce the important Minkowski’s inequality for integrals.

Lemma 1.14 (Minkowski’s Inequality for Integrals). Suppose (X,µ) and (Y, ν) are two
measure spaces with σ­finite measures. Then

(∫
X

∣∣∣∣∫
Y

f(x, y)dν(y)

∣∣∣∣p dµ(x)) 1
p

≤
∫
Y

(∫
X

|f(x, y)|pdµ(x)
) 1

p

dν(y),

or in the form of norms,∥∥∥∥∫
Y

f(x, y)dν(y)

∥∥∥∥
Lp(X,µ)

⩽
∫
Y

∥f(x, y)∥Lp(X,µ)dν(y).

Now comes the proof of Theorem 1.13.
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Proof. of Theorem 1.13. Since by definition, {ψt}t>0 has integral 1 (the first requirement in
the definition),

(ψt ∗ f)(x)− f(x) =

∫
Rn

ψt(y)[f(x− y)− f(x)]dy.

If 1 ≤ p <∞, by the Minkowski’s inequality for integrals,

∥(ψt ∗ f)− f∥p ≤
∫
Rn

|ψt(y)| ∥f(· − y)− f(·)∥p dy.

Recall that the translation is “continuous” in Lp(Rn) which means that for any given ε > 0,
we can always choose a small δ > 0 such that ∥f(·+h)−f(·)∥p < ε/2M whenever |h| < δ.
By the third requirement in the definition of approximate identity, we choose t small enough
such that

∫
|y|≥δ

|ψt(y)|dy ≤ ε/4∥f∥p. Thus,

∥(ψt ∗ f)− f∥p ≤
∫
Rn

|ψt(y)| ∥f(· − y)− f(·)∥p dy

=

∫
|y|<δ

|ψt(y)| ∥f(· − y)− f(·)∥p dy +
∫
|y|≥δ

|ψt(y)| ∥f(· − y)− f(·)∥p dy

≤
∫
|y|<δ

M ∥f(· − y)− f(·)∥pdy + 2∥f∥p
∫
|y|≥δ

|ψt(y)|dy

≤M · ε

2M
+ 2∥f∥p

ε

4∥f∥p

where the first term of the last inequality above is because {ψt}t>0 is uniformly bounded by
the constant M > 0, and the second term is because of the properties of the norm, where
∥f(· − y)− f(·)∥p ≤ ∥f(· − y)∥p + ∥f(·)∥p = 2∥fp∥ = ε.

If p = ∞ instead, f has finite L∞­norm. By continuity of f , for every x ∈ Rn we can
choose a δ > 0 such that |f(x − y) − f(x)| < ε/2M . The index t is chosen small enough
so that

∫
|y|≥δ

|ψt(y)|dy ≤ ε/(4∥f∥∞), analogous as above. Then,

|(ψt ∗ f)(x)− f(x)| =
∣∣∣∣∫

Rn

ψt(y)[f(x− y)− f(x)]dy

∣∣∣∣
≤
∫
Rn

|ψt(y)| |f(x− y)− f(x)|dy

≤
∫
|y|<δ

M |f(x− y)− f(x)|dy + 2∥f∥∞
∫
|y|≥δ

|ψt(y)|dy

< ε/2 + ε/2 = ε.

The proof is complete.

Theorem 1.15. Let {ψt}t>0 be an approximate identity and µ a locally finite Borel measure
on Rn. Then ψt ∗ µ converges weakly to µ as t→ 0, that is,∫

φ(ψt ∗ µ)dLn →
∫
φdµ as t→ 0

for all φ ∈ C0(Rn).
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Proof. We perform direct computation.∫
φ(x)(ψt ∗ µ)(x)dx =

∫
φ(x)

(∫
ψt(x− y)dµ(y)

)
dx

=

∫ ∫
φ(x)ψt(x− y)dx dµ(y)

=

∫ ∫
φ(x)ψt(y − x)dx dµ(y)

=

∫
(φ ∗ ψt)(y)dµ(y)

−→
∫
φdµ, as t→ 0.

The second equality is because of the Fubini’s theorem, the third equality is by the reflection
invariance of Lebesgue integration and the last line is by Lebesgue’s dominated convergence
theorem, and Theorem 1.13.

The Radon­Nikodym theorem and Riesz representation theorems builds a connection
between measures and integrable functions. First we recall that a Radon measure on a metric
space is an inner regular and locally finite measure. A Hilbert space is a complete inner
product space.

Theorem 1.16 (Radon­Nikodym Theorem). Let (X,X , µ) be a σ­finite measure space and
ν a σ­finite measure defined on the measurable space (X,X ) that is absolutely continuous
with respect to ν. Then there is a nonnegative function fν on X that is measurable with
respect to X for which

ν(E) =

∫
E

fνdµ, ∀E ∈ X

The function fν , is unique in the sense that if g is any nonnegative measurable function
on X that also has this property, then g = fν µ­almost everywhere. Such a function fν ,
written formally as fν = dν

dµ
, is called a Radon­Nikodym derivative. Moreover, if µ is a finite

measure, i.e., µ(X) <∞, then such fν is integrable.

Theorem 1.17 (Riesz Representation Theorem for Measures). Let X be a locally compact
metric space and T : C0(X) → R a positive linear functional. Then there is a unique Radon
measure µ such that

Tf =

∫
fdµ for f ∈ C0(X)

Theorem 1.18 (Riesz Representation Theorem for Hilbert Spaces). Let H be a (Hilbert
space). Given any T ∈ H∗ there exists a unique u ∈ H such that

Tv = ⟨u, v⟩ for all v ∈ H.

Moreover, the vector norm of u is the same as the operator norm of T :

∥u∥ = ∥T∥

(The above three theorems come from Royden[5] , Mattila[2] and Muscat[6] .)
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The Baire category theorem states that complete metric space cannot be a countable union
of nowhere dense sets. The Steinhaus’s theorem states that the difference set of a Lebesgue
measurable set of positive measure contains an open ball. We state them and prove the latter
here which will be used later.

Theorem 1.19 (Baire Category Theorem). Let X be a nonempty complete metric space.
Suppose there is a countable family of subsets {An}∞n=1 such that

X =
∞⋃
n=1

An,

then at least one member of this family {An}∞n=1 has a nonempty interior.

Theorem 1.20 (Steinhaus’s Theorem). Let E be a Lebesgue measurable subset of Rn of
positive measure. Define the difference set of E as

E − E = {x− y : x, y ∈ E}.

Then there exists a δ > 0 such that the open ball B(0, δ) ⊂ E − E.

To prove Theorem 1.20 we need the following lemma.

Lemma 1.21. Let E ⊂ Rn be a measurable subset with Ln(E) > 0. For every λ satisfying
0 < λ < 1 there is a cuboid I such that λ|I| < Ln(I ∩ E), where |I| stands for the volume
of the cuboid I .

Proof. The conclusion is trivial when Ln(E) is infinite, so we assume Ln(E) < ∞. For
0 < ε < (λ−1 − 1)Ln(E), we choose a cover of E by cuboids, say {Ik}∞k=1 such that∑∞

k=1 |Ik| < Ln(E) + ε. We claim there is a k0 satisfying λ|Ik0| < Ln(Ik0 ∩ E). In fact, if
for all k ∈ N∗, λ|Ik| ≥ Ln(Ik ∩ E), then

Ln(E) ≤
∞∑
k=1

Ln(Ik ∩ E)

≤ λ
∞∑
i=1

|Ik|

≤ λ(Ln(E) + ε) < Ln(E)

which leads to a contradiction.

Proof. of Theorem 1.20. Since 0 < λ < 1, we can restrict λ satisfying 1−2−(n+1) < λ < 1.
From the previous lemma, there is a cuboid I such that λ|I| ≤ Ln(I ∩E). Now let δ be the
smallest side length of I . Define a new open cube

J = {x = (x1, x2, · · · , xn) ∈ Rn : |xi| < δ/2, i = 1, 2, · · ·n}.

We now claim that J ⊂ E − E. This is equivalent to say that

∀x0 ∈ J, (E ∩ I) ∩ ((E ∩ I) + {x0}) ̸= ∅

because this time we have y, z ∈ E ∩ I , such that y − z = x0.
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Since J is a cube centered at the origin with side length δ, then I + x0 still contains the
origin. Thus we have in geometry that

Ln(I ∩ (I + {x0})) > 2−n|I|,

from which we have

Ln (I ∪ (I + {x0})) = |I|+ Ln (I + {x0})− Ln (I ∩ (I + {x0}))
< 2|I| − 2−n|I|

which means Ln (I ∪ (I + {x0})) < 2λ|I|. By the translation invariance of Lebesgue mea­
sure, (E∩ I) and ((E∩ I)+{x0}) is of the same measure larger than λ|I|, and they are both
contained in I ∪ (I + {x0}). So they must have nonempty intersection. Otherwise

Ln ((E ∩ I) ∪ ((E ∩ I) + {x0})) > 2λ|I|

which leads to a contradiction.

The Gamma functions and Bessel functions will be used later for in the discussion of
some particular measures and functions, so we list the definitions here.

Definition 1.22 (Gamma Function). For x > 0, the integral

Γ(x) =

∫ ∞

0

tx−1e−tdt

is well defined (which means converging absolutely). This integral is called the Gamma
function.

Some properties of Gamma functions are listed below.

Properties 1.23.
(i) Γ(x) > 0 for all x > 0,
(ii) Γ(1) = 1,
(iii) Γ(x+ 1) = xΓ(x), x > 0,
(iv) Γ

(
1
2

)
=

√
π.

Definition 1.24 (Bessel Function). The Bessel function Jm : [0,∞) → R of orderm > −1/2
is defined by the formula

Jm(u) =

(
u
2

)m
Γ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

eiut
(
1− t2

)m−1/2
dt

We give the following recursion properties for Bessel functions (from Grafakos[7]) which
will be used later.

Properties 1.25.
d

dt
(t−mJm(t)) = −tmJm+1(t),

d

dt
(tmJm(t)) = tmJm−1(t).
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Proof. For the first identity,

d

dt

(
t−mJm(t)

)
=

i

2mΓ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

seits
(
1− s2

)m− 1
2 ds

=
i

2mΓ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

it

2
eits

(1− s2)
m+ 1

2

m+ 1
2

ds

= −t−mJm+1(t)

For the second identity,

d

dt
(tmJm(t))

=
2mt2m−12−m

Γ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

eits
(
1− s2

)m− 1
2 ds+

t2m2−m

Γ
(
m+ 1

2

)
Γ
(
1
2

)i∫ 1

−1

eitsis
(
1− s2

)m− 1
2 ds

=
2mt2m−12−m

Γ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

eits
(
1− s2

)m− 1
2 ds+

t2m2−m

Γ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

(
eits

t

)′ (
1− s2

)m− 1
2 sds

=
2mt2m−12−m

Γ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

eits
(
1− s2

)m− 1
2 ds− t2m2−m

Γ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

eits

t

((
1− s2

)m− 1
2 s
)′
ds

=
t2m−12−m

Γ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

eits
[
2m
(
1− s2

)m− 1
2 −

((
1− s2

)m− 1
2 s
)′]

ds

=
t2m−12−m

Γ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

eits(2m− 1)
(
1− s2

)m− 3
2 ds

=
t2m−12−(m−1)

Γ
(
m− 1

2

)
Γ
(
1
2

) ∫ 1

−1

eits
(
1− s2

)m− 1
2

ds√
1− s2

= tmJm−1(t)

2. Hausdorff Dimension

Definition 2.1 (Hausdorff Content). Let (X, d) be a metric space and A ⊂ X be a subset.
Let s ≥ 0 and 0 < δ ≤ ∞ The s­dimensional δ­limited Hausdorff content of A is defined by

Hs
δ(A) = inf

{
∞∑
j=1

α(s)2−sd (Ej)
s

∣∣∣∣A ⊂
∞⋃
j=1

Ej, and d (Ej) < δ, j = 1, 2, · · ·

}

where d(E) is the diameter of the set E, d(E) = sup{d(x, y) | x, y ∈ E}, and α(s) is a
positive real number. For s = n the integers, we let α(n) be the volume of the n­dimensional
unit ball (especially, α(0) = 1); for non­integer s we leave α(s)2−s = 1.

We say that {Ej}∞j=1 is a covering of A if A ⊂ ∪∞
j=1Ej .

The definition n­dimensional δ­limited Hausdorff contents of a set is “essentially the
same” as the case of s­dimensional contents. They just differ by a multiplication of the
constantα(s)2−s. Actually, this constant is defined tomake theHausdorffmeasure consistent
with Lebesgue measure when s = n are integers.

9



The infimum in the definition of Hausdorff contents implies the following easy proposi­
tion:

Proposition 2.2. For fixed A ⊂ X and s ≥ 0, Hs
δ(A) is non­increasing about δ, that is,

Hs
δ1
(A) ≥ Hs

δ2
(A) for δ1 ≤ δ2.

Because of this, fixing s, the limit ofHs
δ(A) exists (or is infinity) as δ goes to 0.

Definition 2.3 (Hausdorff Measure). Let 0 ≤ s ≤ n. The s­dimensional Hausdorff measure
of a set A ⊂ X is defined to be

Hs(A) = lim
δ→0

Hs
δ(A)

Proposition 2.4. If for a set A, Hs
δ0
(A) is zero for some 0 < δ0 ≤ ∞, then Hs

δ(A) = 0 for
all 0 < δ ≤ δ0 so that Hs(A) = 0.

Proof. We may just assume that α(s)2−s = 1. For every ε > 0, there exists a covering
{Ej}∞j=1 of A such that d(Ej) < δ0 and

∞∑
j=1

d (Ej)
s < ε

Thus every d(Ej) < ε
1
s j = 1, 2, · · · .

Now if δ ≤ δ0, take ε > 0 such that ε < δs ≤ δs0 and we obtain a covering {Ej}∞j=1

with d(Ej) < ε
1
s < δ ≤ δ0. So we have a covering {Ej}∞j=1 with d(Ej) < δ0 such that∑∞

j=1 d (Ej)
s < ε. Hence Hs

δ(A) = 0 for all 0 < δ ≤ δ0, and Hs(A) = limδ→0 Hs
δ(A) =

0.

Combining Propositions 2.2 and 2.4, we have

Corollary 2.5. Hs(A) = 0 if and only if Hs
δ(A) = 0 for some δ > 0.

Lemma 2.6. ForA ⊂ X , there is a unique non­negative real number s0, such thatHs(A) =
∞ if s < s0 and Hs(A) = 0 if s > s0.

We omit the proof of this lemma. Because of the Lemma 2.6 we bave the concept of
Hausdorff dimension.

Definition 2.7 (Hausdorff Dimension). The Hausdorff dimension of a set A ⊂ X is defined
as

dimA = inf {s : Hs(A) = 0} = sup {s : Hs(A) = ∞}

Corollary 2.5 tells us that we can express the definition of Hausdorff dimensions equiv­
alently by

dimA = inf

{
s : ∀ε > 0,∃E1, E2, · · · ⊂ X s.t. A ⊂

∞⋃
j=1

Ej and
∞∑
j=1

d (Ej)
s < ε

}
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3. Frostman’s Lemma and Energy Integral

3.1 Frostman’s lemma
It is in general not easy to evaluate theHausdorff dimension of a subset ofRn. The Frostman’s
lemma is a useful tool in determining such a quantity.

Theorem 3.1 (Frostman’s Lemma). Let 0 ≤ s ≤ n. For a Borel set A ⊂ Rn,Hs(A) > 0 if
and only if there is a µ ∈M(A) such that

µ(B(x, r)) ≤ rs for all x ∈ Rn, r > 0. (3.1)

In particular,

dimA = sup{s : there is a µ ∈ M(A) such that (3.1) holds.}.

Theorem 3.1 established the relation between Hausdorff measures and Borel measures.
A measure satisfying (3.1) is often called a Frostman measure. The idea of the proof is to
construct a sequence of Borel measures {µk} and the needed Frostman measure is its weak
limit.

Proof. Suppose there is a µ ∈ M(A) satisfies the condition: µ(B(x, r)) ≤ rs, for all x ∈
Rn, r > 0. Let {Bj}∞j=1 be a collection of balls covering A. We have

∞∑
j=1

d(Bj)
s ≥

∞∑
j=1

µ(Bj) ≥ µ(A) > 0,

ThusHs(A) = limδ→0 Hs
δ(A) = supδ>0 Hs

δ(A) > 0.
Conversely, supposeHs(A) > 0. We may assume A is compact. By definition of Haus­

dorff measures there is a c > 0 such that

∞∑
j=1

d(Ej) ≥ c (3.2)

for all coverings {Ej}∞j=1.
First we give a standard cubical partitioning of the whole space Rn with cubes of side­

length 2−k. Define a measure µk,1 satisfying the condition on such cubes Q:

µk,1(Q) =

{
d(Q)s if Q ∩ A ̸= ∅,
0 if Q ∩ A = ∅.

This measure fits for cubes with side­length less than 2−k but not necessarily for larger balls.
Second, we modify µk,1 to a measure by giving a standard cubical partitioning of the

whole space Rn with cubes of side­length doubled, i.e., 21−k. Define µk,2 as follows:

µk,2(Q) =

{
µk,1(Q) if µk,1(Q) ≤ d(Q)s,
d(Q)s otherwise.

Continue this process until we come to a single cube Q0 containing the compact set A, and
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let µk be the final measure obtained in this way. In this process, we never increase the
measure, so µk(Q) ≤ d(Q)s for all dyadic cubes with side­length at least 2−k. Moreover the
construction yields that every x ∈ A is contained in some sub­cubeQ′ ⊂ Q0 with side­length
at least 2−k such that µk(Q

′) = d(Q)s.
Choosing maximal, and hence disjoint such cubes {Q′

j} covering A. Thus by (3.2), we
have

µk(Rn) =
∞∑
j=1

µk(Q
′
j) =

∞∑
j=1

d(Q′
j)

s ≥ c (3.3)

Now take a weakly converging subsequence of {µk} using Theorem 1.7, still denoted by
{µk} and denote its limit measure by µ. From the construction, the support of µ, suppµ is
contained in A. Thus (taking φ = χQ in Theorem 1.7) for all cubes Q

µ(Q) = lim
k→∞

µk(Q) ≤ d(Q)s

for all cubes Q in Rn. Since the definition of (normalized) Lebesgue measure of Borel sets
using balls is equivalent with that using cubes, we conclude that µ(B) ≲n d(B)s for all balls
B. Note that µ cannot be a zero measure because of (3.3). Finally a scaling of the obtained
Borel measure µ by multiplying an appropriate number gives the needed new Borel measure.

A simple but useful application of the Frostman’s lemma is the inequality for dimensions
of product sets.

Theorem 3.2. Let A and B be nonempty Borel sets in Rn. Then

dim(A×B) ≥ dimA+ dimB.

Proof. By Theorem 3.1, if 0 ≤ s < dimA and 0 ≤ t < dimB, we can choose a µ ∈ M(A)
with µ(B(x, r)) ≤ rs and ν ∈ M(B) with ν(B(x, r)) ≤ rt. Then the product measure
µ× ν ∈ M(A×B) with (µ× ν)(B((x, y), r)) ≤ rs+t from which the theorem follows.

3.2 Energy integral
In this section we will see an equivalent expression of Hausdorff dimensions by energy in­
tegrals.

Definition 3.3 (s­dimensional energy integral). The s­dimensional energy integral, or s­
energy of a Borel measure µ is defined as the integral

Is(µ) =

∫∫
|x− y|sdµ(x)dµ(y)

This integral can be written as the form of a convolution

Is(µ) =

∫
(ks ∗ µ)(x)dµ(x)

where ks(x) = |x|−s, x ∈ Rn is called the Riesz kernel.
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A direct observation is that if µ has compact support we have trivially Is(µ) <∞ implies
It(µ) < ∞ for 0 < t < s, by considering the integral on |x − y| ≤ 1 and |x − y| > 1,
respectively.

The Hausdorff dimension of a set can be expressed by s­energy, as stated in the following
theorem.

Theorem 3.4. Let 0 ≤ s ≤ n. For a Borel set A ⊂ Rn, Hs(A) > 0 if and only if there is a
µ ∈ M(A) such that the s­energy integral Is(µ) <∞. Equivalently,

dimA = sup{s : there is µ ∈ M(A) such that Is(µ) <∞}.

The proof is to use the above Frostman’s lemma (Theorem 3.1) and some arguments.
First we need the following lemma about integrals.

Lemma 3.5. Let µ ∈ M(A) be a Borel measure on Rn and let f be a non­negative µ­
integrable function. For every r > 0, define the strict hypograph Er to be Er = {y : f(y) >
r}. Then we have ∫

Rn

f(y)dµ(y) =

∫ ∞

0

µ(Er)dr.

Now it is time to prove the Theorem 3.4.

Proof. of Theorem 3.4. Let µ such that (3.1) in the Frostman’s lemma holds.
Using Lemma 3.5 by taking f(y) = |x − y|−s, then Er = {y : |x − y|−s > r} =

{y : |y − x| < r−1/s}. This is an open ball centered at x with radius r−1/s. Thus µ(Er) =
µ(B(x, r−1/s)). For any ε > 0,

Is−ε(µ) =

∫ ∫ ∞

0

µ(B(x, r−1/(s−ε)))dr dµ(x) = µ(Rn)

∫ ∞

0

µ(B(x, r−1/(s−ε)))dr

We can restrict the lower limit of the integral to d(supp)−(s−ε), because when

r−
1

s−ε > d(suppµ)

the value of the integral no longer increases.
Applying Theorem 3.1,

Is−ε(µ) ≤
∫ ∞

d(supp)−(s−ε)

r−1− ε
s−εdr <∞

Thus dimA ≤ sup{s : there is µ ∈ M(A) such that Is(µ) <∞}.
On the other hand, suppose µ ∈ M(A) satisfies Is(µ) <∞. Then

∫
|x−y|sdµ(x) <∞

for almost all y ∈ Rn. We can find a 0 < M < ∞ such that the set C = {y :
∫
|x −

y|sdµ(x) < M} has positive µ measure. Then µ|C(B(x, r)) ≤ 2sMrs for all x ∈ Rn. Thus
we have

dimA ≥ sup{s : there is µ ∈ M(A) such that Is(µ) <∞}

Combining the results above, we have

dimA = sup{s : there is µ ∈ M(A) such that Is(µ) <∞}.
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4. Fourier Transform

4.1 Fourier transform in L1(Rn)

Definition 4.1 (Fourier Transform inL1(Rn)). For Lebesgue integrable functions f ∈ L1(Rn),
the Fourier transform is defined by

F(f)(ξ) = f̂(ξ) =

∫
Rn

f(x)e−2πix·ξdx, ξ ∈ Rn

where the · is the dot product in Rn.

Some easy properties are listed below.

Properties 4.2.
(i) f̂ is well defined, bounded and continuous.
(ii) Product formula ∫

f̂g =

∫
fĝ, f, g ∈ L1(Rn)

(iii) Convolution formula
f̂ ∗ g = f̂ ĝ, f, g ∈ L1(Rn)

(iv) Define the translation τa(x) = x+ a for a ∈ Rn and the dilation δr(x) = rx for r ∈ R.
Then

f̂ ◦ τa(ξ) = e2πia·ξf̂(ξ)

ê2πia·xf(ξ) = f̂(ξ − a) = f̂ ◦ τa(ξ)

f̂ ◦ δr(ξ) = r−nf̂(r−1ξ)

Lemma 4.3 (Riemann­Lebesgue Lemma). For f ∈ L1(Rn),

f̂(ξ) → 0 as |ξ| → ∞.

Proof. Note that
f̂(ξ) =

∫
Rn

f(x)e−2πix·ξdx

= −
∫
Rn

f(x)e−2πi(x·ξ+ 1
2)

= −
∫
Rn

f(x)e
−2πiξ·

(
x+ ξ

2|ξ|2

)

= −
∫
Rn

f

(
x− ξ

2|ξ|2

)
e−2πix·ξdx

Thus
f̂(ξ) =

1

2

∫
Rn

[
f(x)− f

(
x− ξ

2|ξ|2

)]
e−2πix·ξdx→ 0

as |ξ| → ∞ by the Lebesgue’s dominated convergence theorem.

One of the most important conclusions in the Fourier transform is the Fourier inversion
formula.
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Theorem 4.4 (Fourier Inversion Formula). If f ∈ L1(Rn) and f̂ ∈ L1(Rn), then we have
the Fourier inversion formula

f(x) =

∫
Rn

f̂(ξ)e2πiξ·xdξ

for almost every x ∈ Rn.
The Fourier inversion of such a function f is often denoted by F−1(f) or f̌ . To prove

the Fourier inversion formula, we first introduce some notations.
Notations. Define fε(x) = f(ϵx) = f ◦ δε(x), and f ε(x) = ε−nf(ε−1x). Then we have

the following practical identities:
f̂ε = (f̂)ε

f̂ ε = (f̂)ε

Definition 4.5 (Gauss Funcion, Gauss Kernel). For x ∈ Rn, the Gauss kernel Ψ(x) is given
by

Ψ(x) = e−π|x|2

and the Gauss kernels is defined to be the family {Ψε}ε>0.
Lemma 4.6. The Fourier transform of the Gauss function Ψ is itself, that is

Ψ̂ = Ψ.

The proof is based on complex analysis method and we omit it here.
Lemma 4.7. The Gauss kernel {Ψε}ε>0 ⊂ C∞(Rn),is an approximate identity.

This can be checked directly by definition of approximate identities.

Proof. of Theorem 4.4 Define

Iε(x) =

∫
Rn

f̂(ξ)e−πε2|ξ|2e2πiξ·xdξ.

On the one hand, by the Lebesgue’s dominated convergence theorem,

Iε(x) −→
∫
Rn

f̂(ξ)e2πiξ·xdξ, ε→ 0;

On the other hand, consider g(x, y) = e−πε2|y|2e2πiy·x. Fixing x, let gx(y) = g(x, y), we have
that ĝx(y) = Ψ̂ε(y − x) = Ψε(x − y). Using the multiplication formula and Theorem 1.15
and Lemma 4.7,

Iε(x) =

∫
f̂gx =

∫
fĝx = (Ψε ∗ f)(x) → f(x) in L1.

Hence we can take a subsequence {Iεn}∞n=1 of {Iε} converging to f pointwise almost every­
where. Also, {Iεn} converges to

∫
Rn f̂(ξ)e

2πiξ·xdξ pointwise by the previous argument. This
yields the Fourier inversion formula

f(x) =

∫
Rn

f̂(ξ)e2πiξ·xdξ
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for almost every x ∈ Rn.

There are several equivalent expressions of Fourier inversion formula. If we define the
reflection f̃(x) = f(−x) and the conjugation f(x) = f(x), then the Fourier inversion
formula can be expressed by

f̌ =
˜̂
f =

̂̃
f,
̂̂
f = f̃ , f =

̂̂
f. (4.1)

Of course these equations hold almost everywhere.

Corollary 4.8. If f and f̂ are both belong to L1(Rn), then f is continuous.

This is because of the Fourier inversion and the continuity of the Fourier transform.
We can also deduce the so­called “reversed convolution formula” from Fourier inversion.

Corollary 4.9 (Reversed Convolution). If f, g, fg, f̂ , ĝ ∈ L1(Rn), then

f̂g = f̂ ∗ ĝ almost everywhere.

4.2 Fourier transform in the Schwartz space S(Rn)

Notations. Let α ∈ Nn, that is, α = (α1, · · · , αn), αi ∈ N, i = 1, · · ·n and let |α| =
α1 + · · ·+ αn. For x ∈ Rn, let xα = xα1

1 · · ·xαn
n . Define the partial differential operator

Dα =
∂|α|

∂xα1
1 · · · ∂xαn

n

.

This is to take αi­th order partial derivatives on xi respectively.

Definition 4.10 (Rapidly Decreasing Function; Schwartz Space). A function f : Rn → C is
said to be rapidly decreasing if it is infinitely differentiable and for all α, β ∈ Nn,

sup |xαDβf(x)| <∞.

The space S(Rn) of all such functions is called the Schwartz space on Rn.

Some observations come as follows. Firstly, the Schwartz space S(Rn) is closed under
addition and scalar multiplication, which makes S(Rn) into a vector space. Secondly, if f is
a rapidly decreasing function, then so is xαDβf for every given α and β. Thirdly, if f and
g are rapidly decreasing functions, then the multiplication fg is also a rapidly decreasing
function.

We can directly check that S(Rn) ⊂ Lp(Rn) for 1 ≤ p ≤ ∞ by definition, so we
can perform the Fourier transform directly on the Schwartz space. Since rapidly decreasing
functions are smooth, hence continuous, then for f ∈ S(Rn), the Fourier inversion of f̂ is
precisely f .

The less direct conclusion is that the convolution of two rapidly decreasing functions is
also rapidly decreasing. We just give this proposition and do not prove it here, but we will
give some explanations later.

Proposition 4.11. If f, g ∈ S(Rn), then f ∗ g ∈ S(Rn).
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We list two properties of Fourier transforms of derivatives.

Properties 4.12. For f ∈ S(Rn),

(̂
∂f

∂xj

)
(ξ) = 2πiξj f̂(ξ)

(−2πixjf)̂(ξ) = ∂f̂

∂ξj
(ξ)

Proposition 4.13 (Parseval’s Identity). For f, g ∈ S(Rn), we have the identity∫
fg =

∫
f̂ ĝ

Proof. ∫
fg =

∫
Rn

f(x)g(x)dx

=

∫
Rn

̂̂
f(−x)g(x)dx (Fourier Inversion)

=

∫
Rn

̂̂
f(x)g(−x)dx (Reflection invariance of Lebesgue integral(

=

∫
Rn

f̂(x)g̃(x)dx (Multiplication formula)

=

∫
Rn

f̂(x)ĝ(x)dx

The last equation is because

ĝ(x) =

∫
Rn

g(−x) =
∫
Rn

g(y)e−2πiy·(−x)dx

=

∫
Rn

g(y)e−2πiy·xdx

= ĝ(x)

In particular, when taking g = f we obtain a conclusion that the Fourier transform of
rapidly decreasing functions preserves L2­norms.

Corollary 4.14 (Plancherel’s Identity for S(Rn)). For f ∈ S(Rn), ∥f̂∥2 = ∥f∥2.

The Schwartz space S(Rn) is somewhat a nice space because the Fourier transform per­
formed on S(Rn) is a linear bijection. We now discuss on this by the following several
propositions.

Proposition 4.15. If f ∈ S(Rn), then f̂ ∈ S(Rn).
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Proof. If f ∈ S(Rn), then f ∈ L1(Rn), so f is bounded as in Properties 4.2. Thus D̂αxβf is
bounded becauseDαxβf ∈ S(Rn) for any given α and β. Using Properties 4.12 repeatedly,

D̂αxβf(ξ) = (2πi)|α|(−2πi)−|β|ξαDβ f̂(ξ).

If we let 1/C = (2πi)|α|(−2πi)−|β| then

ξαDβ f̂(ξ) = CD̂αxβf(ξ)

which is bounded as argued above. This means f̂ ∈ S(Rn).

Lemma 4.16. The Fourier transform is a surjection from S(Rn) to S(Rn).

Proof. Let f ∈ S(Rn). Define f̃(x) = f(−x). Then ̂̃f ∈ S(Rn) by Proposition 4.15. The
equivalent expressions of Fourier inversion implies that

̂̂̃
f(x) = f̃(−x) = f(x).

Hence we find that ̂̃f is a pre­image of f under the Fourier transform. Since f is any rapidly
decreasing function, we conclude that the Fourier transformation is a surjection from S(Rn)
to S(Rn).

The Fourier inversion formula implies directly that the Fourier transform is an injection
from S(Rn) to S(Rn), since if f, g ∈ S(Rn) and f̂ = ĝ, then the Fourier inversion implies
f = g. Combining this with Lemma 4.16, we can infer that the Fourier transform is bijective
and hence an isomorphism on S(Rn).

Corollary 4.17. The Fourier transform F is a linear isomorphism from S(Rn) to S(Rn).

Back to Proposition 4.11, the quickest way to see this is using the convolution formula
mentioned in Properties 4.2. The functions f̂ and ĝ are rapidly decreasing and so is f̂ ĝ =

f̂ ∗ g. Apply Fourier inversion and Corollary 4.17 we can conclude that f ∗ g ∈ S(Rn).

4.3 Fourier transform in L2(Rn)

Corollary 4.14 inspires us to think whether we can perform Fourier transforms in the space
L2(Rn).

Let’s recall some concepts from functional analysis (for example, from Muscat[6]).
Strictly speaking, L2(Rn) is a normed vector space consists of square integrable func­

tions, modulo an equivalence relation defined as follows: two functions are equivalent if the
L2­norm of their difference is zero. That is to say,

L2(Rn) =

{
f : Rn → C

∣∣∣∣ ∫
Rn

|f(x)|2dx <∞
}/

∼ .

Define L2­norm to be ∥f∥2 =
∫
Rn |f(x)|2dx. The equivalence relation ∼ is defined by

f ∼ g ⇐⇒ ∥f − g∥2 = 0.
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This equivalence relation is equivalent to the statement that f ∼ g if and only if f = g almost
everywhere.

A Hilbert space (H, ⟨·, ·⟩) is a (real or complex) inner product space which is complete
with respect to the norm induced by the inner product ∥ · ∥ =

√
⟨·, ·⟩.

L2(Rn) is a Hilbert space with the inner product defined by

⟨f, g⟩ =
∫
Rn

f(x)g(x)dx,

where g(x) denotes the complex conjugate of g(x). The norm defined from the inner product
coincide with the L2­norm.

Lemma 4.18. S(Rn) is a dense subspace of Lp(Rn) with Lp­norm for 1 ≤ p <∞.

This is because C∞
0 (Rn) ⊂ S(Rn) ⊂ Lp(Rn) and C∞

0 (Rn) is dense in Lp(Rn) using the
standard approximate identity.

Because of this we can give a unique isometric linear extension from S(Rn) to L2(Rn).

Theorem 4.19. The Fourier transform F : S(Rn) → S(Rn) is an isometric isomorphism
on S(Rn), and can be uniquely extended from S(Rn) to L2(Rn), and the Fourier transform
in L2(Rn) is isometric.

The unique extension means that the extension is unique in L2(Rn). In other words, it
means that if two functions in L2(Rn) are the Fourier transform of the same function, then
they coincide almost everywhere.

Proof. Isometric extension: Let f ∈ L2(Rn). By Lemma 4.18 we can choose a sequence
{gk}∞k=1 ⊂ S(Rn) such that

gk → f as k → ∞.

Apply F to gk and denoted by F(f) the obtained limit of F(gk). The limit exists because
we can check that {F(gk)}∞k=1 is a Cauchy sequence. Then

∥F(f)∥2 = ∥F(f)−F(gk)∥2 + ∥F(gk)∥2
= ∥F(f)−F(gk)∥2 + ∥gk∥2

Let k → ∞, and note that |∥gk∥2 − ∥f∥2| ≤ ∥gk − f∥2 → 0 as k → ∞. We have
∥gk∥2 → ∥f∥2 as k → ∞. Hence ∥F(f)∥2 = ∥f∥2, equivalently, the operator norm of F ,
∥F∥ = 1.

Uniqueness: If F(gk) → h in L2 for another h ∈ L2(Rn), then

∥F(f)− h∥2 ≤ ∥F(f)−F(gk)∥2 + ∥F(gk)−F(h)∥2 → 0 as k → ∞,

proving that F(f) = h almost everywhere.

Because of Theorem 4.19, the translation and dilation formulas in Properties 4.2 con­
tinue to hold for L2 functions. The identity ∥F(f)∥2 = ∥f∥2 for L2(Rn) is known as the
Plancherel’s identity for L2 space, analogous to the Proposition 4.14 for rapidly decreasing
functions. With a further argument can show that the Parseval’s identity continue to hold in
L2 space.
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Theorem 4.20 (Parseval’s Identity for L2(Rn)). For f, g ∈ Rn, we have the identity

⟨F(f),F(g)⟩ = ⟨f, g⟩.

Proof. The key is to express the inner product of two elements using the norm.
For L2(Rn) as a real inner product space we have

⟨f, g⟩ = ∥f + g∥2 − ∥f − g∥2

4
(4.2)

for all f, g ∈ L2(Rn).
For L2(Rn) as a complex inner product space we have

⟨f, g⟩ = ∥f + g∥2 − ∥f − g∥2 + ∥f + ig∥2i− ∥f − ig∥2i
4

(4.3)

for all f, g ∈ L2(Rn).
With the identities (4.2) and (4.3) the claim in this theorem can be immediately verfied

by Theorem 4.19.

Corollary 4.17 and Theorem 4.19 motivate us to continue thinking whether the Fourier
transform extended from S(Rn) to L2(Rn) is also an isometric isomorphism on L2(Rn).
Fortunately, this is true as we expect.

Recall that the adjoint operator of a linear operator T : V → W is the operator T ∗ : W →
V such that ⟨Tv, w⟩ = ⟨v, T ∗w⟩ for every v ∈ V and w ∈ W . The Riesz representation
theorem for Hilbert spaces guarantees that such a vector T ∗w is unique so that T ∗ is well
defined. T ∗ is indeed linear which can be checked directly by definition.

A unitary operator U on a Hilbert space H is a bounded linear operator U : H → H
satisfying U∗U = UU∗ = I , where I is the identity operator.

We present a lemma in functional analysis without proof which states the equivalent
definition of unitary operators.

Lemma 4.21. A bounded linear operator on a Hilbert space U : H → H is a unitary
operator if and only if
•the range of U is dense in H and
•U preserves the inner product of H , that is, for all vectors x and y in H we have:

⟨Ux, Uy⟩ = ⟨x, y⟩.

With these preparations, we can now conclude that the Fourier transform on L2(Rn) is
indeed a unitary operator, and hence is an isometric isomorphism.

Theorem 4.22. The Fourier transform F : L2(Rn) → L2(Rn) is a unitary operator.

Proof. We have seen that L2(Rn) is a Hilbert space with its inner product defined before. By
Lemma 4.21 we need to verify that the range of F is dense in L2(Rn) and F preserves the
inner product. But this already hold because of Lemma 4.16, Lemma 4.18, and the Parseval’s
identity for L2(Rn) (Theorem 4.20).
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4.4 Fourier transform of (finite) measures
Definition 4.23 (Fourier Transform of Finite Borel measure). Given a finite Borel measure
µ on Rn, the Fourier transform of µ on Rn is defined by

µ̂(ξ) =

∫
Rn

e−2πix·ξdµ(x), ξ ∈ Rn.

When µ ∈ Rn, µ is bounded Lipschitz function, that is, ∥µ̂∥∞ ≤ µ(Rn) and there is an
R > 0 such that |µ̂(x) − µ̂(y)| ≤ R · µ(Rn)|x − y| for all x, y ∈ Rn, if suppµ ⊂ B(0, R).
However µ̂ need not be in Lp(Rn) for any p <∞.

The Fourier transform of finite measures generalizes the Fourier transform of functions
in L1(Rn), where we can identify dµ = fµdLn according to the Radon­Nikodym theorem.

The following product and convolution properties of Fourier transform of measures are
analogous to those of functions, and can be checked using Fubini’s theorem.

Properties 4.24. For f ∈ L1(Rn), µ, ν ∈ M(Rn),
(i) Multiplication formulas ∫

µ̂f =

∫
f̂dµ,∫

µ̂dν =

∫
ν̂dµ.

(ii) Convolution formulas
f̂ ∗ µ = f̂ µ̂,

µ̂ ∗ ν = µ̂ν̂.

Wecan appproximatemeasures with smooth compactly supported functions using convo­
lutions. Let {ψε}ε>0 be an approximate identity inC∞

0 (Rn) such thatψε(x) = ε−nψ(x/ε), ψ ≥
0, suppψ ⊂ B(0, 1) and

∫
ψ = 1. Then ψ̂ε(ξ) = ψ̂(εξ) → ψ(0) =

∫
ψ = 1 as ε → 0. For

a finite Borel measure µ, setting µε = ψε ∗ µ, by Theorem 1.15 we have µε converges to µ
weakly as ε→ 0 and µ̂ε = ψ̂εµ̂→ µ̂ uniformly.

Since C∞
0 (Rn) ⊂ S(Rn), using Fourier inversion formula we can draw a conclusion that

two compactly supported measure coincide if and only if their Fourier transformation are
equal.

Proposition 4.25. For µ, ν ∈ M(Rn), µ̂ = ν̂ if and only if µ = ν.

Proof. If µ = ν, then µ̂ = ν̂ immediately by taking Fourier transforms on both sides.
Conversely if µ̂ = ν̂, then by the above discussion, µ̂ε → µ̂ and ν̂ε → ν̂ uniformly and

the right­hand sides are equal. Since by definition µε, νε ∈ S(Rn), the Fourier inversions
performed on their Fourier transforms bring themselves back, so

µε(x) =

∫
Rn

µ̂ε(ξ)e
2πix·ξdξ −→

∫
Rn

µ̂(ξ)e2πix·ξdξ,

and νε(x) =
∫
Rn

ν̂ε(ξ)e
2πix·ξdξ −→

∫
Rn

ν̂(ξ)e2πix·ξdξ, as ε→ 0.

Here we use the uniform convergence of {µε} and {νε}. Thus the two limits are equal.
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Meanwhile,
∫
φµεdLn →

∫
φdµ and

∫
φνεdLn →

∫
φdν as ε → 0 for every φ ∈

C0(Rn), by Theorem 1.15. Also,∫
φ(x)µε(x)dx −→

∫
φ(x)

(∫
µ̂(ξ)e2πixξdξ

)
dx

and
∫
φ(x)νε(x)dx −→

∫
φ(x)

(∫
ν̂(ξ)e2πixξdξ

)
dx as ε→ 0.

The above two limits are obtained by the Lebesgue’s dominated convergence theorem,
with dominating functions |µε|∥φ∥∞ and |νε|∥φ∥∞, respectively. We can see that right­hand
sides in the above formulas are equal. By the uniqueness of limits,∫

φdµ =

∫
φ(x)

(∫
µ̂(ξ)e2πixξdξ

)
dx =

∫
φ(x)

(∫
ν̂(ξ)e2πixξdξ

)
dx =

∫
φdν

for every φ ∈ C0(Rn). Thus µ = ν because we can approximate the characteristic function
on any set pointwise by continuous functions.

Properties 4.26. For µ, ν ∈ M(Rn) and f, g ∈ S(Rn),

(Reversed convolution) f̂µ = f̂ ∗ µ̂∫
fdµ =

∫
f̂ µ̂∫

f̂ ĝdµ =

∫
f(µ̂ ∗ g).

If we have known the behavior of the Fourier transform of finite Borel measures, we can
also infer back the property of the measure themselves. Recall the Radon­Nikodym theorem.
If µ is a finite, absolutely continuous measure (with respect to the Lebesgue measures Ln),
then there is a function fµ ∈ L1(Rn) unique up to a set of measure zero, called a Radon­
Nikodym derivative, such that dµ = fµdLn and we may identify µ with fµ in the following
contexts.

Theorem 4.27. Let µ ∈ M(Rn). If µ̂ ∈ L2(Rn), then fµ ∈ L2(Rn).

Proof. By Theorem 4.22, when we identify µ̂ with a function in L2(Rn), there is indeed a
function f ∈ L2(Rn) such that µ̂ = f̂ . Define µε = ψε ∗ µ and fε = ψε ∗ f . Then by the
convolution formula we have

µ̂ε = ψ̂εµ̂ = ψ̂εf̂ = f̂ε,

so µε = fε as rapidly decreasing functions. As µε → µ weakly and fε → f in L2, we have
fµ = f almost everywhere.

Theorem 4.28. Let µ ∈ M(Rn). If µ̂ ∈ L1(Rn), then fµ is almost a continuous function,
which means that fµ is equal to a continuous function almost everywhere.

Proof. Let µε be as in the previous proof. Then µε ∈ S (Rn). By the Fourier inversion
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formula and the Lebesgue’s dominated convergence theorem,

µε(x) =

∫
µ̂ε(ξ)e

2πiξ·xdξ =

∫
ψ̂(εξ)µ̂(ξ)e2πiξ·xdξ

−→
∫
µ̂(ξ)e2πiξ·xdξ, as ε→ 0.

Denote by g(x) the limit integral. g is continuous since µ̂ ∈ L1. On the other hand,
µε converges weakly to µ, so fµ = g almost everywhere according to the Radon­Nikodym
theorem.

4.5 Fourier transform of tempered distributions
Definition 4.29 (Tempered Distribution). A tempered distribution is a continuous linear
functional on the Schwartz space: T : S(Rn) → C.

Definition 4.30 (Fourier Transform of a Tempered Distribution). Let T : S(Rn) → C be a
tempered distribution. The Fourier transform of T is the tempered distribution T̂ satisfying

T̂ (φ) = T (φ̂) for φ ∈ S(Rn).

Generally, every locally integrable function f with an additional condition: |f(x)| ≲
|x|m when |x| > 1 for some fixedm, can be regarded as a tempered distribution and we can
define its distributional Fourier transform. Such a function is called a tempered function (in
the sense of Wolff[8]).

Definition 4.31 (Tempered Function). A tempered function f : Rn → C is a locally inte­
grable function such that ∫

Rn

(1 + |x|)−m|f(x)|dx <∞

for some constantm ≥ 0.

Definition 4.32 (Fourier Transform of a Tempered Function). Let f be a tempered function.
The Fourier transform of this tempered function f is another tempered function f̂ , such that
the following holds:

(multiplication formula)
∫
f̂φ =

∫
fφ̂

for all φ ∈ S(Rn).

For a tempered function f , consider the operator Tf : S(Rn) → C defined by

Tf (φ) =

∫
fφ.

Then Tf is indeed a tempered distribution and we call Tf the tempered distribution induced
by f .

Lemma 4.33. If f1 and f2 are two tempered functions on Rn inducing the same tempered
distributions, i.e., Tf1 = Tf2 , then f1 = f2 almost everywhere.
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We just sketch the idea of the proof. First consider the case when φ ∈ C∞
0 (Rn) ⊂ S(R).

The Riesz representation theorem for measures and the Radon­Nikodym theorem imply that
there is a unique f up to a set of measure zero, such that

Tf (φ) =

∫
fφ.

Then we conclude the theorem using the density of C∞
0 (Rn) in S(R) with the Lebesgue’s

dominated convergence theorem.
The Fourier transform of a tempered function is the Fourier transform of a tempered

distribution if we identify T̂f with Tf̂ :

Tf̂ (φ) =

∫
f̂φ = T̂f (φ) =

∫
fφ̂ = Tf (φ̂).

From the above definitions, we see that functions inL1, S andL2 are tempered functions.
An observation gives us that L1 + L2 defined by

L1 + L2 = {f1 + f2 : f1 ∈ L1, f2 ∈ L2},

is also a tempered functions, so that their original Fourier transforms are compatiable with
their distributional Fourier transforms.

4.6 Fourier transform of radial functions
Definition 4.34 (Radial Function). A radial function f on Rn is a function whose value at
each point depends only on the length of the variable, that is, f(x) = ψ(|x|), x ∈ Rn for
some ψ : [0,∞) → C.

A simple observation yields the following proposition.
Proposition 4.35. A function f onRn is a radial function if and only if it preserves rotations.
That is to say, f ◦ ρ = f for all ρ ∈ SO(n), the special orthogonal group on Rn.

An useful conclusion is that the Fourier transform of radial functions can be expressed
expressed explicitly by Bessel functions.
Theorem 4.36 (Fourier Transform for Radial Functions). Let f ∈ L1(Rn) be a radial func­
tion. The Fourier transform of f is given by

f̂(x) = c(n)|x|−(n−2)/2

∫ ∞

0

ψ(s)J(n−2)/2(2π|x|s)sn/2ds,

where c(n) is some constant depending on n which need not be determined, ψ is the func­
tion of a one­dimensional variable defined in the above definition and J(n−2)/2 is the Bessel
function of order (n− 2)/2.

From Theorem 4.36 we can see that the Fourier transform of a radial function is also a
radial function.

To derive this formula we should first recall the change of variable formula of Lebesgue
integration in polar coordinates. If f ∈ L1(Rn), then∫

Rn

fdLn =

∫
Sn−1

(∫ ∞

0

f(rx)rn−1dr

)
dσn−1(x) (4.4)
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where Ln is the n­dimensional Lebesgue measure and σn−1 is the stantard spherical measure
on the unit sphere Sn−1 ⊂ Rn.

For the second, if we fix a direction e ∈ Sn−1 and let Sθ = {x ∈ Sn−1|e · x = cos θ} for
0 ≤ θ ≤ π, then Sθ is an (n− 2)­dimensional sphere of radius sin θ (which is a circle when
n = 3). If we denote by σn−2

sin θ the surface measure (area) of Sθ we have

σn−2
sin θ = σn−2(Sn−2)(sin θ)n−2. (4.5)

Then for g ∈ L1(Sn−1),∫
Sn−1

gdσn−1 =

∫ π

0

(∫
Sθ

g(x)dσn−2
sin θ (x)

)
dθ. (4.6)

After these preparations, we begin our proof of this formula.

Proof. of Theorem 4.36. By the change of variable formula and Fubini’s theorem,

f̂(re) =

∫
Rn

f(y)e−2πire·ydy =

∫ ∞

0

ψ(s)sn−1

(∫
Sn−1

e−2πirse·xdσn−1(x)

)
ds. (4.7)

Apply the equation (4.6) to the inside integral of the right­hand side,∫
Sn−1

e−2πirse·xdσn−1(x) =

∫ π

0

e−2πirs cos θσn−2
sin θ (Sθ) dθ

= σn−2(Sn−2)

∫ π

0

e−2πirs cos θ(sin θ)n−2dθ

(4.8)

where the first equality comes from (4.5)
Changing variable by letting cos θ = −t and introducing Bessel functions

Jm(u) =

(
u
2

)m
Γ
(
m+ 1

2

)
Γ
(
1
2

) ∫ 1

−1

eiut
(
1− t2

)m−1/2
dt,

we obtain∫
Sn−1

e−2πirse·xdσn−1(x) = σn−2(Sn−2)

∫ 1

−1

e2πirst(1− t2)(n−3)/2dt

= c(n)(rs)−(n−2)/2J(n−2)/2(2πrs)

Substitute the above formula in (4.8) and we obtain the needed result.

The following property of radial functions in L2(Rn) will be used in the next section.

Proposition 4.37. Let f ∈ L2(Rn) be a radial function. Then its Fourier transform F(f) is
also a radial function, in the sense that F(f) is a radial outside a null set.

Proof. The idea is to construct a sequence of radial an rapidly decreasing functions approx­
imating f for f ∈ L2(Rn).

Let {ψt}t>0 be the standard approximate identity, which, as we observe, is radial. Then
ft = f ∗ ψt ∈ C∞

0 (Rn) ⊂ S(Rn) is radial for any t > 0, because it is easy to check that the
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convolution of two radial functions is again a radial function. Thus f̂t is a radial function by
the formula given in Theorem 4.36. By Theorem 1.13 ft converges to f in L2 as t goes to
0. We know from Theorem 4.19 that F(ft) converges to F(f) in L2(Rn). Then there is a
subsequence {F(ftk)}∞k=1 of F(ft) converging to F(f) almost everywhere as k → ∞.

Since {F(ftk)}∞k=1 is a family of radial functions and converges to F(f) outside a null
set, then F(f) is radial outside a null set.

4.7 Fourier transform of Riesz kernels
Recall that Theorem 3.4 tells us that the s­dimensional Hausdorff measure of A ⊂ Rn is
nonzero if and only if there is a finite Borel measure µ ∈ M(A) such that its s­dimensional
energy integral is finite. The s­dimensional energy integral of a measure µ can be written as
Is(µ) =

∫
(ks ∗ µ)(x)dµ(x), where ks is the Riesz kernel ks(x) = |x|−s. It is easy to veryfy

that the Riesz kernel ks is a tempered function. We now compute the distributional Fourier
transform of the Riesz kernel.

Theorem 4.38 (Fourier transform of Riesz kernel). Define the Riesz kernel by ks(x) =
|x|−s, s > 0. For s such that 0 < s < n, then there is a positive and finite constant γ(n, s)
such that ∫

ksφ̂ = γ(n, s)

∫
kn−sφ for φ ∈ S (Rn) . (4.9)

That is to say, the Fourier transform of the Riesz kernel ks (as a tempered function), is k̂s =
γ(n, s)kn−s.

Moreover, the constant γ(n, s) can be computed explicitly:

γ(n, s) = πs−n
2
Γ
(
n−s
2

)
Γ
(
s
2

) . (4.10)

We list a lemma ahead of the proof of Theorem 4.38 which will be used in the proof.

Lemma 4.39. Suppose that g is a tempered even function on Rn such that its distributional
Fourier transform f is a tempered function. Then

f̂ = g.

Proof. Using the product formula and equivalent expressions of Fourier inversion, we have
for φ ∈ S(Rn),

Tf̂ (φ) = Tf (φ̂) =

∫
fφ̂ =

∫
ĝφ̂ =

∫
ĝ̂φ

=

∫
g(x)φ(−x)dx =

∫
g(−x)φ(x)dx =

∫
gφ,

from which the lemma follows.

Proof. of Theorem 4.38 We split the proof in three cases according to s.
Case I. n

2
< s < n. We observe that ks ∈ L1 + L2 because we can decompose ks into

ks = f1 + f2 with f1 ∈ L1 and f2 in L2, where f1 = ksχB(0,1) and f2 = ksχRn\B(0,1). Since
ks is radial and ks(rx) = r−sks(x) for r > 0, then k̂s is also radial by Theorem 4.36, with
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k̂s(rx) = rs−nk̂s(x) by the dilation formula in Properties 4.2. We see that k̂s(x) is of the
form γ(n, s)kn−s. To be rigorous, since k̂s(rx) = rs−nk̂s(x) and k̂s(x) = h(|x|) for some
h : [0,∞) → C, then for every x ∈ Rn \ {0}, we have

k̂s

(
x

|x|

)
= h(1), and

k̂s

(
x

|x|

)
= k̂s(x)

1

|x|s−n

.

Thus k̂s(x)/|x|s−n = h(1) and ks(x) = h(1)|x|s−n. The case x = 0 automatically suits the
equation. The constant h(1) is denoted as γ(n, s) depending on n ∈ N∗ and s > 0, and
|x|s−n = kn−s(x). Combining all obtained above, we have

k̂s(x) = γ(n, s)kn−s(x).

The k̂s is indeed the distributional Fourier transform of ks because L1+L2 is clearly a subset
of the collection of tempered functions.
Case II. 0 < s < n

2
. We should show that k̂s(x) = γ(n, s)kn−s(x) is also the distributional

Fourier transform of ks. By Lemma 4.39 and the discussion in Case I, the Fourier form of
ks = γ(n, n− s)−1k̂n−s (as n/2 < n− s < n) is

k̂s = γ(n, n− s)−1kn−s

.
Case III. s = n

2
. This requires harder and more technical work work. We use a limiting

argument.
If k̂n/2 is the distributional Fourier transform of kn/2, then∫
k̂n/2φ =

∫
kn/2φ̂ =

∫
lim

s→n/2
ksφ = lim

s→n/2

∫
ksφ̂ = lim

s→n/2
γ(n, s)

∫
kn−sφ =

∫
kn/2φ.

The interchange of the limit in the third equation is because of the Lebesgue’s domimated
convergence theorem. Now we should explain why lims→n/2 γ(n, s) = 1.

TakeΨ(x) = e−π|x|2 ∈ S(Rn) to be theGauss function, so that Ψ̂ = Ψ. Forn/2 < s < n,
we have by the validity of (4.9),∫

ksΨ =

∫
ksΨ̂ = γ(n, s)

∫
kn−sΨ,

that is, ∫
|x|−se−π|x|2dx = γ(n, s)

∫
|x|s−ne−π|x|2dx. (4.11)

For 0 < s < n/2, we replace γ(n, s) by γ(n, n− s)−1 so that (4.11) becomes∫
|x|−se−π|x|2dx = γ(n, n− s)−1

∫
|x|s−ne−π|x|2dx.
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Taking the limit as s → n/2 on both sides with Lebesgue’s domimated convergence
theorem gives that lims→n/2+ γ(n, s) = lims→n/2− γ(n, n − s) = 1. Recall the definition
of the Gamma function. Computing the integrals on both sides of (4.11) we find that the
formula for γ(n, s) is precisely (4.10). Moreover by (4.10), γ(n, s) = γ(n, n− s)−1 so that
the constants for Case I, II, and III can be unified.

4.8 Expression of energy integrals by Fourier transforms
The following theorem shows that energy integrals of µ can be precisely expressed by the
corresponding Fourier transformations. This builds a bridge between the Hausdorff dimen­
sion and Fourier transform.

Theorem 4.40. Let µ ∈ M (Rn) and 0 < s < n. Then

Is(µ) = γ(n, s)

∫
|µ̂(x)|2|x|s−ndx (4.12)

Proof. If we still have the validity of Parseval’s identity, convolution formulas, then by The­
orem 4.38, we have

Is(µ) =

∫
ks ∗ µ dµ

(Parseval’s identity) =

∫
k̂s ∗ µµ̂

(Convolution formulas) =

∫
k̂s|µ̂|2

(Theorem 4.38) = γ(n, s)

∫
|µ̂(x)|2|x|s−ndx.

Therefore we should check the validity.
Let φ ∈ S(Rn) be a real­valued function. Changing the variable z = y−x and denoting

φ̃(x) = φ(−x) we have

Is(φ) =

∫∫
ks(y − x)φ(x)φ(y)dxdy

=

∫∫
ks(z)φ(y − z)φ(y)dzdy =

∫
ks(φ̃ ∗ φ).

By Corollary 4.9 and equivalent forms of Fourier inversion formula, with Theorem 4.38, we
have

Is(φ) = γ(n, s)

∫
kn−s|φ̂|2 = γ(n, s)

∫
|x|s−n|φ̂(x)|2dx.

So we finished proving the theorem for “smooth measures” φ.
For general µ ∈ M(Rn), we approximate µε with µε = ψε ∗ µ, where {ψε}ε>0 is the

standard approximate identity defined before. With φ = µε applied in the above smooth
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case, we have∫∫ (∫∫
|x− y|−sψε(x− z)ψε(y − w)dxdy

)
dµ(z)dµ(w)

=

∫∫ (
|x− y|−s

∫
ψε(x− z)dµ(z)

∫
ψε(y − w)dµ(w)

)
dxdy

=Is (µε) = γ(n, s)

∫
|µ̂(x)|2|ψ̂(εx)|2|x|s−ndx −→ γ(n, s)

∫
|µ̂(x)|2|x|s−ndx, as ε→ 0.

We perform another change of variables by taking u = (x− z)/ε, and v = (y−w)/ε. Then
looking at the inner integral of the first term,∫∫

|x− y|−sψε(x− z)ψε(y − w)dxdy

=

∫∫
|ε(u− v) + z − w|−sψ(u)ψ(v)dudv −→ |z − w|−s as ε→ 0 and z ̸= w.

With the above identity we have the estimate:∫∫
|x− y|−sψε(x− z)ψε(y − w)dxdy ≲ |z − w|−s.

Thenwhen Is(µ) <∞, we can conclude the proof by the Lebesgue’s dominated convergence
theorem.

When Is(µ) = ∞, we get by Fatou’s lemma,

∞ = Is(µ) ≤ lim inf
ε→0

∫∫ (∫∫
|x− y|−sψε(x− z)ψε(y − w)dxdy

)
dµ(z)dµ(w)

= γ(n, s) lim inf
ε→0

∫
|µ̂(x)|2|ψ̂(εx)|2|x|s−ndx = γ(n, s)

∫
|µ̂(x)|2|x|s−ndx.

The proof is complete.

5. Projection of Sets

Definition 5.1. Given a direction e ∈ Sn−1, n ≥ 2, the projection of a point in Rn onto this
direction Pe : Rn → R is defined by

Pe(x) = x · e,

where · means the standard dot product in Rn.

In other words, this is the orthogonal projection onto the line {te|t ∈ R}.
A simple observation is that dimPe(A) ≤ dimA because the projection map is a Lips­

chitz map which does not increase dimensions.

Theorem 5.2. Let A ⊂ Rn be a Borel set and s = dimA.
(i) If s ≤ 1, then dimPe(A) = s for σn−1­almost all e ∈ Sn−1;
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(ii) If s > 1, then L1(Pe(A)) > 0 for σn−1­almost all e ∈ Sn−1.

Proof. If µ ∈ M(A) and e ∈ Sn−1, define the image µe = (Pe)#µ under the projection
Pe : Rn → R, that is

µe(B) = µ(P−1
e (B)), B ⊂ R.

Then µe ∈ M(Pe(A)) and

µ̂e(r) =

∫ ∞

−∞
e−2πirxdµe(x) =

∫
Rn

e−2πir(y·e)dµ(y) = µ̂(re) for all r ∈ R (5.1)

To prove (i), suppose 0 < s = dimA ≤ 1. For every 0 < t < s, pick a µ ∈ M(A) such
that It(µ) <∞ by Theorem 3.4. Using Theorem 4.40 and (5.1) together with the change of
variable formula in polar coordinates (4.4),

∫
Sn−1

It(µe)dσ
n−1(e)

((4.12) in Theorem 4.40) = γ(1, t)

∫
Sn−1

(∫ ∞

−∞
|µ̂e(r)|2 |r|t−1dr

)
dσn−1(e)

((5.1) and µ̂e(r) is even) = 2γ(1, t)

∫
Sn−1

(∫ ∞

0

|µ̂(re)|2rt−1dr

)
dσn−1(e)

((4.4)) = 2γ(1, t)

∫
Rn

|µ̂(x)|2|x|t−ndx

((4.12)) = 2γ(1, t)γ(n, t)−1It(µ) <∞

In particular It(µe) < ∞ for σn−1­almost all e ∈ Sn−1 and dim(Pe(A)) ≥ t for such e by
Theorem 3.4. Since t < s is chosen arbitrarily, we conclude that dimPe(A) ≥ s for σ­almost
all e ∈ Sn−1.

To prove (ii), suppose s > 1. By Theorem 3.4 there is a µ ∈ M(A) such that I1(µ) <∞
(because Is(µ) <∞ implies It(µ) >∞ for 0 < t < s).

Using the similar argument as above with t = 1,∫
Sn−1

(∫ ∞

−∞
|µ̂e(r)|2dr

)
dσn−1(e) = 2γ(n, 1)−1I1(µ) <∞

whence µe ∈ L2(R) for σn−1­almost all e ∈ Sn−1.
By Theorem 4.40, µe, if regarded as a nonnegative integrable function, is inL2(R), which

means that there exists a nonnegative function fµe ∈ L1(R)∩L2(R) such that dµe = fµedL1.
In particular, µe(identified with fµe) is absolutely continuous with respect to L1 for σn−1­
almost all e ∈ Sn−1. As µe ∈ M(Pe(A)), we conclude that L1(Pe(A)) > 0 for such e.

Theorem 5.3. Let A ⊂ Rn be a Borel set and dimA > 2. Then the projection Pe(A) has
nonempty interior for σn−1 almost all e ∈ Sn−1.

Proof. Let 2 < s < dimA. We can choose a measure µ ∈ M(A) such that Is(µ) < ∞, by
Theorem 3.4. Define µe(B) = µ(P−1

e (B)), B ⊂ R as in the previous theorem.
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Now, we consider the integral∫
Sn−1

(∫ ∞

−∞
|µ̂e(r)|dr

)
dσn−1(e)

where µ̂e is the Fourier transform of the measure µe.

∫
Sn−1

(∫ ∞

−∞
|µ̂e(r)|dr

)
dσn−1(e)

≤2

∫
Sn−1

(∫ ∞

1

|µ̂e(r)|dr
)
dσn−1(e) + 2µ(Rn)σn−1(Sn−1)

≤2

[∫
Sn−1

∫ ∞

1

|µ̂(re)|2rs−1drdσn−1(e)

]1/2
·
[∫

Sn−1

∫ ∞

1

r1−sdrdσn−1(e)

]1/2
+ C(µ)

(5.2)
The first inequality is because the Fourier transform of a Borel measure is always an even

function, and ∫ ∞

−∞
|µ̂e(r)| dr = 2

∫ ∞

1

|µ̂e(r)| dr + 2

∫ 1

0

|µ̂e(r)| dr

≤ 2

∫ ∞

1

|µ̂e(r)| dr + 2

∫ 1

0

|µ̂e(0)| dr

= 2

∫ ∞

1

|µ̂e(r)| dr + 2

∫ 1

0

µ (Rn) dr

= 2

∫ ∞

1

|µ̂e(r)| dr + 2µ (Rn)

The second equality is because of the Schwartz’s inequality:

∥ |µ̂(re)| ∥L1([1,∞)×Sn−1) ≤ ∥ |µ̂(re)|rs−1 ∥L2([1,∞)×Sn−1) · ∥r1−s∥L2([1,∞)×Sn−1).

We continue to estimate the integral:∫
Sn−1

(∫ ∞

−∞
|µ̂e(r)|dr

)
dσn−1(e)

≤ 2

(
σn−1(Sn−1

s− 2

) 1
2

·
(∫

Rn

|µ̂(x)|2|x|s−ndx

) 1
2

+ C(µ)

= C(n, s)Is(µ)
1/2 + C(µ) <∞

The inequality above is obtained by direct computation of the second term in (5.2) and
rs−1 ≤ rs−n when n ≥ 1 and r ≥ 1.

Hence µ̂e ∈ L1(R) for σn−1­almost all e ∈ Sn−1 and by Theorem 4.28, µe is a continuous
function, in the sense that there is a continuous function gµe ∈ L1(R) such that dµe = gµedL1.
As µe ∈ M(Pe(A)), we conclude that the interior of Pe(A) is nonempty for σn−1­almost all
e ∈ Sn−1.
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6. Dimension of Borel rings

The projection theorem of sets can be applied to the discussion on the dimension of the so­
called Borel rings. The goal of this section is to show that if the dimension of a Borel ring
on the real line R is stricly grater than zero, then this Borel ring must be the R itself.

Recall that an algebraic subring of a ring (with multiplicative identity) (R,+, ·, 0, 1) is a
subset S of R that preserves the structure of a ring under + and ·. A Borel ring is a Borel set
equipped with a ring structure.

The main theorem is stated as follows.

Theorem 6.1. LetE ⊂ R be a Borel set which is also an algebraic subring ofR. Then either
E has Hausdorff dimension zero or E is the whole real line R.

Proof. To prove Theroem 6.1, we just show that if such E ⊂ R has dimension strictly larger
than zero, then dimE = 1.

We first do some observations. Suppose dimE > 0. From Theorem 3.2 we have
dimEk ≥ k dimE for any k ∈ N∗, where Ek is the k­fold Cartesian product of E. Be­
cause of this we can choose a sufficiently large k so that dimEk > 2. Consider the linear
functional φ = Pe : Rk → R by just choosing the projection operator. Theorem 5.3 shows
that φ(Ek) has nonempty interior, and since the image of the linear functional φ(Ek) is a
subspace of R, φ(Ek) = R.

The following two lemmas imply that continuing the above discussion, k can only be 1
and E = R, which conclude the proof of the theorem.

The first lemma is a purely linear algebraic proposition.

Lemma 6.2. Let E ⊂ R be a subring. Assume that there is a k ∈ N∗ and a linear functional
φ : Rk → R such that φ(Ek) = R, then such a k can be chosen so that φmapsEk bijectively
onto R.

Proof. The above discussion guarantees the existence of integers k satisfying φ(Ek) = R.
Then we can find a smallest k such that φ(Ek) = R holds. We still denote the smallest
integer by k. Now φ is already surjective on Ek. We claim that the restriction of φ to Ek,
φ|Ek : Ek → R is injective. Let {e1, · · · , ek} be the standard basis of Rk. Denote by rj the
image of each basis vector, rj = φ(ej). Now φ(Ek) = R implies that the span of the vectors
{rj; 1 ≤ j ≤ k} with coefficients in E is the real line R, that is,{

k∑
j=1

ajrj : aj ∈ E, j = 1, · · · k

}
= R. (6.1)

Suppose on the contrary that φ|Ek is not injective. Then there are b1, · · · bk ∈ E not all
zero, such that

∑k
j=1 bjrj = 0. We may assume that bk ̸= 0 so we can express rk by

rk =
k−1∑
j=1

−bj
bk

rj.

Let s ∈ R and then s/bk ∈ R. By (6.1), there exists a1, · · · ak ∈ E such that s/bk =
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∑k
j=1 ajrj . Therefore

s =
k−1∑
j=1

bkajrj + bkak

(
k−1∑
j=1

bj
bk
rj

)
=

k−1∑
j=1

(bk − aj − ak − bj)rj.

This implies that {
k∑

j=1

ajrj : aj ∈ E, j = 1, · · · k − 1

}
= R

and we obtain the restriction of φ to Ek−1, φ|Ek−1 : Ek−1 → R mapping Ek−1 onto R. This
contradicts the minimality of k, and thus prove the claim that φ is injective on Ek.

The second lemma forces the Borel subring of R with dimension strictly larger than zero
to be R.

Lemma 6.3. Let E ⊂ R be a Borel subring. Let k be a positive integer and φ : Rk → R a
linear functional mapping Ek bijectively onto R. Then k = 1 and E = R.

Proof. Let ψ : R → Ek be the inverse map of φ|Ek , the restriction of φ to Ek. Recall that
φ, as the projection, is continuous and one­to­one when restricted to Ek. So, ψ maps Borel
subsets of Ek onto Borel sets (by a standard result on Borel sets). Thus ψ is measurable
linear homomorphism. Using the same notation, let {ei; i = 1, · · · k} be the standard basis
of Rk and let rj = φ(ej). Let π1 : Rk → R be the map taking out the first coordinate. Then
τ = π1 ◦ ψ is a map from R to R,satisfying τ(x + y) = τ(x) + τ(y) for all x, y ∈ R and
τ is Borel measurable because it is the composition of a Borel measurable morphism with a
continuous map. We claim that there is a constant c such that τ(x) = cx for all x ∈ R.

To verify the claim, we first observed that τ(x+y) = τ(x)+ τ(y) implies that τ is linear
on the rational numbers, i.e., τ(q) = τ(1)q for all q ∈ Q. This is because if we let q = a/b,
assuming a, b ∈ N, b ̸= 0, then a = bq = q + q + · · · q where there are b copies of q so that
τ(bq) = bτ(q). Similarly, τ(a) = aτ(1). Thus, aτ(1) = τ(a) = bτ(q) and

τ(q) = τ(1)q, q ∈ Q.

Second, if we show that τ is continuous, then it follows that τ(x) = cx for all x ∈ R.
Since the linearity condition holds onQ, it suffices to show that τ is continuous at the origin
0. We do this with the help of the Steinhaus’s theorem. By the denseness ofQ inR, for every
ε > 0, the balls centered at rational points (with radius ε/2) cover the real line R, that is⋃

q∈Q

B(q, ε/2) = R.

The inverse image of τ preserves unions.

⋃
q∈Q

τ−1 (B(q, ε/2)) = τ−1

(⋃
q∈Q

B(q, ε/2)

)
= R.

We know from the Baire category theorems applied here that there is a rational index q0 ∈ Q
for which τ−1(B(q0, ε/2)) ̸= ∅, so that L1(τ−1(B(q0, ε/2))) > 0. Then by the Steinhaus’s
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theorem, there exists a δ > 0 such that

B(0, δ) ⊂ τ−1(B(q0, ε/2))− τ−1(B(q0, ε/2))

⊂ τ−1(B(q0, ε/2)−B(q0, ε/2))

= τ−1(B(0, ε)),

which shows that the inverse image of any neighborhood of τ(0) = 0 is a neighborhood of
0. This is equivalent to say that τ is continuous at the 0.

Finally, τ(r1) = π1(e1) = 1, so c is nonzero. But if k > 1, there would be an r2 ̸= 0with
τ(r2)π1(e2) = 0 which is a contradiction. Therefore k can only be 1 so that φ : R → R has
the form φ(x) = ax for some constant a ∈ R. Since φ maps E to R, we have E = R.
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