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GROUP ACTIONS ON MANIFOLDS AND PRODUCT IDENTITIES OF

MODULAR FORMS

Liao Wenbo
Abstract
This thesis is a reading report on recent work of Bringmann, Castro, Sabatini, and
Schwagenscheidt, which derived topological and number-theoretical consequences
from the rigidity of elliptic genera. The goal of this thesis is to state the rigidity
theorem and to deduce some apparently new product identities of modular forms
by applying this theorem, following their work. For these purposes, we study the
S1 actions on almost complex manifolds and symplectic manifolds, as well as basic

theory of modular forms.
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1 Introduction

A genus of a manifold is a kind of cobordant invariant, and an elliptic genus is a special
type of genus developed to deal with problems about quantum field theory. A elliptic
genus of level N associated to a compact almost complex manifold (M?", J), denoted by
dn(M), is a modular form with respect to the group I'y(N) of weight n. The elliptic genus
of level N should have relied on a parameter . However, it is independent of ¢ in fact.
This result is so-called the rigidity theorem.

The proof of the rigidity theorem has a long history and it is involved with Landweber,
Ochanine, Taubes, Bott, Atiyah, Hirzebruch, Hattori and so on. We will give the statement
of the rigidity theorem. Before that, we are going to study the prerequisites first.

In Section 2, we discuss the almost complex manifolds and symplectic manifolds with
a S'-action, which will be main geometric objects in the later sections.

Roughly speaking, the relations among the next Sections are as follows:

Section 3 = Section 4 = Section 5 = Section 6

Section 6 can give another description of elliptic genus of level N i.e. an index of certain
virtual bundle, which is important in the statement of the rigidity theorem.

Section 7 is independent of the previous sections. In this section, we will introduce
some basic knowledge of modular forms and define a special Eisenstein series, which is
just the coefficients of some formal power series in defining the elliptic genus of level N.

In Section 8, after introducing some conceptions of genus theory, we can define the
elliptic genus of level N in Subsection 8.3, and state the rigidity theorem in Subsection
8.4 by using the knowledge in the previous sections.

Section 9 is an application of the rigidity theorem. When applying this theorem on
a certain almost complex manifold, we can obtain some non-trivial relations of modular

forms. Specially, we will compute some such relations when the manifold is CP?,

2 Almost complex and symplectic circular manifolds

In this section, the properties of action of S' on almost complex and symplectic manifolds
will be introduced. The genera ( which will appear in section 8 ) is a map sending a
manifold to an element in a certain ring. When restricting some genera on these manifolds,

we will get some interesting consequences of geometry and number theory.



2.1 Almost complex structure and symplectic structure
Definition 2.1.1. If a real manifold M admits a tensor field J of type (1,1) s.t. Vo € M,
Ji=-Id

then M is called an almost complex manifold.

In a word, an almost complex manifold is equipped with an endomorphism J; : T, M —
T, M with J? = —Id and it depends on z smoothly.

Proposition 2.1.2. An almost manifold is of even dimension.

Proof. Assume dim M =N,V x e M,

det(J,;)? = det(J2) = det(Id,) = (—1)*

Since det(.J,) is real, it must be 1. Hence n is even. d

Proposition 2.1.3. An almost manifold of dimension 2n is orientable.

Proof. Choose a metric g compatible with Jie. VXY € T(M,TM), g(X,Y) = g(JX, JY).

Such metric always exists ( for example, start with an arbitary metric h, then let g(X,Y) :=
hMX,Y)+ h(JX,JY) ). Define w(X,Y) := g(X,JY). Then w is skew-symmetric since

w(X,Y) = g(X,JY) = g(JY, X) = g(J2Y, JX) = —g(Y, JX) = —w(Y, X)

Thus w is a 2-form. Let w™ := A" w. Then w™ is nowhere vanishing, thus it is an orientable
form. O

Let M be an almost complex manifold. Then TCM denotes the complexification of
TMie. T°M =TM ®C.
Since J? = —Id, J has eigenvalues v/—1 and — v/—1. Thus we have the following
decomposition
T°M = T"M @ T™'M

where TY9M and T%'M are eigenspaces with respect to /—1 and — v/—1. They are
called holomorphic and antiholomorphic tangent bundle respectively.

Definition 2.1.4. For an alomost complex manifold M, define the following bundles:
k k
N\ M=\ (T°Mm)"
N = N @omy a \' (@ my

Their sheaves of sections are denoted by A%, and AR} respectively. The elements in
D(M, AYY) =: APY(M) are called forms of type (p,q).
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There is a natural direct sum decomposition

ANu=d N\N'm

p+q=k
-Aﬁl = @ Aﬁ,[q
p+a=k
Definition 2.1.5. Let M be an almost complex manifold. d is the C-linear extension of

the exterior differential. We define two operators:
9 . 1TPtla . AP pt+lq
C)—H Od.AA_, -—)Al\l

9. 1P+l . AP p.g+1
di=I od: AV — A%

where TI™" is the natural projection form AJS™ to A",

Definition 2.1.6. A symplectic manifold (M,w) is a manifold M equipped with a non-

degenerate closed 2-form w. Such a form is called a symplectic form.

In the local coordinates, the symplectic form can be written as
wijdo;i A d.’L‘j, dw =0

Being non-degenerate means the matrix (w;;) is invertible. Since (w;;) is also skew-
symmetric, it must have an even rank. Hence a symplectic manifold is of an even dimen-
sion.

Also, the non-degeneracy implies \" w is nowhere vanishing if w is a symplectic form

on a 2n-dimensional manifold. Thus every syplectic manifold is orientable.

Definition 2.1.7. Let (M), w,), (M2, ws) be two symplectic manifolds. A symplectomr-
phism is a diffeomorphism f: My — M, s.t.

[fws = wy

Theorem 2.1.8 (Darboux). Let (M,w) be a symplectic manifold of dimsion 2n. Then
3 a local coordinate {x;,y;}}';—, of each point of M, s.t. the symplectic form in this local
coordinate is of the form:
W = Z dl‘i A d’y,'
i=1

Proof. See [3]. O

This means that all symplectic manifolds are "the same” locally. Thus the global

properties of a symplectic is much more interesting.

7



Theorem 2.1.9. Let (M,w) be a symplectic manifold. Then every differential function

H on M determines a vector field Xy which generates a symplectomorphism in the sense
of
Cwa =0

Proof. In a local coordinate, define
X} = wY9,H, Xy = X}y0;

This is equivalent to
txyw =dH

By Cartan’s magic formula, we have

ﬁwa = Lx,dw + d(L_,\’Hw) — d(dH)) 0

O

Remark 2.1.10. The function H is called a Hamitonian and Xy is called a Hamiltonian
vector field. The converse is true. Namely, any generator of a symplectomorphism comes
from a Hamiltonian vector field.

Theorem 2.1.11. A symplectic manifold is almost complex.

Proof. Choose a Riemannian metric g. Define an linear operator A : I'(M,TM) —
[(M,TM) as follows:
w(X,Y)=g¢(AX,Y)
In a local coordinate
Aj- = wjrg™

A is an anti-hermitian operator:
9(AX,Y) =w(X,Y) = —w(Y, X) = —g(4Y, X) = —g(X, AY)

Therefore AA” = —A? is hermitian and positive define. Thus we can take the square root
of AAH and define

J = (VAAH) 4

Since

J? = (AATY 1A% = —Id

J is an almost complex structure. O



2.2 Circle actions on almost complex manifolds and symplectic
manifolds

Lemma 2.2.1. The complex irreducible representations of S* are of the form z — 2", n €
Z.

Proof. Since S' is abelian, its irreducible representation is one-dimensional. Thus an
irreducible representation is an element in Hom(S',S'). Thus it is of the form z —
2" n € 7. O

Let the almost complex manifold (M, J,S') of dimension 2n admit a circle action
p: M x S* — M and the action preserves J i.e. Vs € S*, p,0J = Jo u,. We always
assume that this action has fixed points and denote the set of the fixed point as M5

Recall that if g : G x M — M is a Lie group action on a manifold M with a fixed

point p, then it induces a representation of GG as follows:
G — Aut(T,M), g~ du,

By the Lemma 2.2.1, if p € A’[Sl, then 3 a complex coordinates {z,-- -, 2,} on T,M =2 C"
s.t. the induced S* action on T,M is of the form

dﬂ's ' (zla e szn) = ('SWI(p)zls Tty swn(p)zn)
for some integers wy(p),- -« , wa(p).

Definition 2.2.2. If S* acts on a manifold with a fized point p, then the integers wi(p),- - - ,w,(p)
defined above are called weights of this action at p.

Proposition 2.2.3. p € M5 is isolated fized point iff every weight at p is non-zero.

Proof. Choose an S'-invariant metric ¢ on M, that is, Vs € S', X,Y € I'(M,TM),
9(X,Y) = g(dus X, dusY). Then py is an isometry. Thus, exp o dus = s 0 exp.

Suppose w; = 0. Then

i.e. exp(0,---2;-+-,0) is a fixed point. Similarly, VA € R, we have A(0,---2;---,0) is a
fixed point. Thus (0,---z;---,0) is not isolated.

Conversely, if p is not isolated, then for the neighborhood U on which exp is a diffeo-
morphism, there is a fixed point g € U.

exp o dys(exp(q)) = ps o explexp™(q) = us(q) = ¢

implies p(exp'(q)) is fixed= some weights are 0’s. O

9



Given a G-manifold M for some Lie group G, V¢ € Lie(G), there is an associated
vector field £# on M given by

d
& = Eh:oeﬂfp(tﬁ) T

let a symplectic manifold (M,w) admit a S'-action. Then we say the action preserves
the symplectic structure if
Lepw = d(tgpw) =0

If the closed form ¢z4w is exact, then this action is called Hamiltonian. More specifically,

we have the following definition:

Definition 2.2.4. Let (M,w,S") be a S*-symplectic manifold and the action of S* pre-

serves the symplectic structure. The S* action is called Hamiltonian if 3 a map ¢ : M — |

Lie(S1)* s.t. ‘
(1) ¢ is S* invariant. That is, Vo € M, s € S* we have

s- o(x) = Ad(¢(z))
(2) V€ € Lie(S*), we have
Lerw = dg®
where ¢*(z) := (4(2), ).
The map ¢ : M — Lie(S*)* is called moment map, which has a physical background.

Proposition 2.2.5. Let symplectic manifold (M,w) admit a Hamiltonian S*-action with
the moment map ¢ : M — Lie(SY)*. V& € Lie(S'), we have Crit(¢¢) = M5’

Proof. o L,
peEM” &£ =0
Sterwlp =0
edgh, =0
&p € Crit(¢°)
O

Corollary 2.2.6. If (M,w,S') is compact, then a Hamiltonian action always has fized
points.

Proof. Since the integral of every exact form on a compact manifold is 0, every exact form
on a compact manifold has vanishing points. Thus Ip € M s.t. d¢¥|, = tzewlp, # 0. By
the Proposition 2.2.5, we obtain the result. O

10



Theorem 2.2.7. Let (M,w) be a compact symplectic manifold of dimension 2n and sup-
pose S' acts as a Hamiltonian action on M with the moment map ¢ : M — Lie(S")*.
Then, V¢ € Lie(S?),the function ¢° is a perfect Morse-Bott function. Furthermore, the
critical submanifolds of ¢° are symplectic with all its indeces even. (See the appendiz)

Proof. See [11] O

I S . . . .
Moreoer, If M*" is discrete, then the moment map is a Morse function with only even

indices. Since it is perfect, we have
bzi(l\l) =N,;, Vie {O, s ,n}

where N; is the number of the critical point of the moment map with index 7; thus N; is
also the number of fixed points with ¢ negative weights.

Since w is non-degenerated, by; (M) # 0Vi € {0,--- ,n}. Thus, if there is a Hamiltonian
S'-action on a symplectic manifold of dimension 2n, the there are at least n+1 fixed points.

3 Universal bundles, classifying spaces, and equivari-
ant cohomology

Every fiber bundle can be pulled back by a continuous maps. After being pulled back, the
bundle carries less information than before. So here is a question: Does there exist ”the
most complicated bundle” s.t. every bundle is a pull-back of this bundle? Under some

circumstances, the answer is "yes”.

3.1 Universal bundles and classifying spaces

Definition 3.1.1 (Principal bundles). Let G be a topological group. If the continuous map
p: E — B from a G-space I to a topological space B satisfies the following conditions,
then (E, B,p) (sometimes denoted as E only) is called a principal G-bundle.

3 a countable open covering {U;}ic1 of B and homeomorphisms ¢; : U; x G — p~X(Uj;)
satisfying thatV b € U; and g, h € G

(1) poi(b,g) =b

(2) ¢i(b,gh) = g - ¢i(b,h)

Such (U;, ¢;) is called a trivialization and E is called the total space.

Definition 3.1.2. A principal bundle is called universal if the total space is weakly con-

tractible. i.e. every homotopy group of the total space is 0.

The universal bundle with respect to the topological group G is always denoted as
E¢ — Bg. Bg is called the classifying space with respect to G.

11



Remark 3.1.3. (1) This is not the origin definition but it is convenient. Later we will

see why it is called “universal”.

(2) The Whitehead theorem says that if [ is a continuous map between C'W-complexes
X, Y inducing isomorphisms on all homotopy groups, then f is a homotopy equivalence.

Thus if a CW-complez is weakly contractible, then il is contractible.
For an arbitrary topological group (7, dose there exist a universal principal G-bundle?
Theorem 3.1.4 (Milnor). Every topological group has a universal bundle.

Proof. Milnor constructed Fg directly as follows: Define the join of two spaces X.Y as
X xY x[0,1]/ ~ where (z,41,0) ~ (2, 4,,0) and (z1,y,1) ~ (z2,y,1) ( See the figure 2
), and it is denoted as X * Y. Just let Eg :=G*G*---xG -+, Bg := Eg/G. G has
a natural action on Eg and Eg is weakly contractible. Hence Eg — Bg is a universal
bundle with respect to (. O

Figure 1: X xY x[0,1] - X %Y

Example 3.1.5. (1) Let G = {e}, then pl — pl is the associated universal bundle.
(2) Let G = C*. G acts on C*\{0} by

C‘(.'.El,"' )xn) Z(C:L.Ia"' :an)

Then C\{0} — CP""! is a principal G-bundle.
However, this is not a universal bundle, since ma,—1(C*"\{0}) # 0, although the pre-
vious homotopy goups are all 0. How to fix this problem? Note C™\{0} — C"*'\{0}

(x1, -+ ,xp) = (21, , 2, 0) is G-equivariant. Therefore we get inclusions of G-bundles:
<o CM\{0} — C"H\{O} p e

1 1

v ey CP*! o CP* ey -

12



This forms a direct system. Take the direct limit. Then we get
C>\{0} — CP*>

is a uniersal principal G-bundle, since C*\{0} is weakly contractible.
(3) Let G = S'. G acts on S in the similar way as that in (2). Then S**+' — CP"
is a principal G-bundle. S**1 is k-connected whenever k < 2n + 1 but it is not 2n + 1-

connected, so this is not a universal bundle. Using the similar method to fix it, we get
S — CP*

is the universal bundle with respect to S*.
(4) Let G = GL,(C), MI™ denote the space of m x n matrices of full rank and
Gr,(C™) denote the Grassmannian. Then G has a natural action on MJ".

A/I,{l‘f,‘l’ — Gra(C™), [v1,++ ,un) = [span{vy, -+ ,v,}]

is a principal G-bundle. It can be shown that MI"" is k-connected whenever k < m — n.
Hence
M s G, (C)
is the universal bundle with respect to GL,(C).
(5) Let G=U,. Then
EG = {(617 e >e1z)|<ei| 6]) = 5ij7 e € Coo}
Bg = E¢/G ={V C C®|dimV = n} = Gr,(C™).
(6) Let G be a Lie group and H s a closed Lie subgroup of G. If Eq — Bg is a
uniwersal bundle of G, then Eg — Eg/H is a uniwersal bundle for H.

Before explaining the properties of the universal bundles, we need to make some prepa-

rations.

Definition 3.1.6. If X is a right G-space and Y is a left G-space, the balanced product
X xg Y is the quotient space X x Y/ ~, where (zg,y) ~ (z,g9y). Equivalently, we can
regard X x Y as a right G-space: (z,y)g = (29,97 'y). Then X xgY = (X xY)/G.

Lemma 3.1.7. Every fiber bundle with weakly contractible fibers admits a section.
Proof. See [14], Lemma 4.0.1. O

Lemma 3.1.8. Given two principal G-bundles P — B and P' — B'. There is a bijective
correspondance between Morg(P, P') and T'(B, P x¢ P’).

13



Proof. See [14], Corollary 4.0.1. O
Now, it is ready to explain what makes the universal bundle universal.

Theorem 3.1.9. Suppose Eq — Bg is a universal G-bundle. Then ¥ CW-complez X,
the map
[X, Be] = PeX, [f] = [f*Eq]

is bijective, where [X, Bg| denotes the homotopic classes of continuous map from X to Bg

and PcX denotes the principal bundles over X up to isomorphisms.

Proof. For surjectivity: Suppse P — X is a principal G-bundle. It is equivalent to finding
a G-equivariant map ¢ : P — Eg and putting f : X — Bg the induced map.

By the Lemma 3.1.7, it suffices to find a section of the bundle P x¢ Eg — X.

By the Lemma 3.1.8, it suffices to show P xg Eg is weakly contractible.

Since Eg is a universal bundle, it is weakly contractible. P is a principal G-bundle,
which implies G acts on P transitively. Hence, P X Eg is weakly contractible.

The injectivity part requires a lot of preparations so it is omitted. One can find the
proof in [14], Theorem 4.0.1. O

From this theorem, we know that every pincipal G-bundle is a pull-back of the universal
bundle. Bg is called the classifying space for G. If P — X is a principal G-bundle, then
any map f : X = Bg s.t. P = f*(Eg) is called a classifying map for P.

Lemma 3.1.10. Let F — E — B be a fiber bundle. Then there is a long exact sequence
of homotopy groups:

cor 3 T (F) = mp(EB) = mp(B) = Ty (F) = -+
Proof. See [5, Theorem 4.41, page 376]. O

Proposition 3.1.11. Let Eg — Bg be a universal bundle. Then

(1) Bg can be taken to be a CW-complex. Henceforth, Bg'’s that appear below default
to CW-complezes.

(2) Eg is unique up to homotopy equivalence.

Proof. (1) Let ¢ : B, — Bg be a CW-approximation. Then we have the following

commutative diagram:



Only need to show ¢* is weakly contractible. We have the following exact sequences

and commutative diagram by the Lemma 2.1.10:
w3 T(G) = m(Eg) = mn(Beg) = T (G) = - - -
te  tp té P
coo = T(G) = m(¢9*(Eg)) = mu(Bg) = Tn1(G) = - -

Since ¢ is a CW-approximation, ¢, is an isomorphism. Thus p,, is also an isomorphism

by Five Lemma. Hence, V n,

(9" (Eg)) = ma(Eg) =0
ie. ¢*(Eg) is weakly contractible.
(2) Choose two classifying maps
f:Bi; — Bg, g: Beg — Bg
8.t.
Eg = f*(Eg), Ec = g"(Eg)
Then
fog:Bg — Bg
is a classifying map of E¢g to itselfe since
(fog)(Eg) = g'(f(Eg)) ® 9" (Eg) = Eg
By the injectivity of the map [X, Bg] — PeX defined in Theorem 3.1.9, we have
fog=>Idg,
Similarly,
go f=~Idg,
Thus, Bg ~ Bg O

3.2 Equivariant cohomology

Cohomology rings of a topological space can tell us some topological information about
this space. But if we compute the Cohomology rings of a G-space directly, this does not
reflect any information about the group action (namely, the certain symmetry of this
space). A naive idea is to compute the cohomology rings of the orbit space instead, but
it does not work because the orbit space may have some ”singularities” if the action is
not "good” enough. For example, if the action is not free, then the quotient of a manifold
will not be a manifold again in general. Next, we will introduce so-called equivariant

cohomology to fix this problem.
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Definition 3.2.1. Let G be a topological group and X a G-space. Choose a universal
bundle Eq — Bg. The equivariant cohomology ring with coefficient in R is defined to be

H?;(X, R) = H*(X Xa EG, R)

Proposition 3.2.2. The definition above is independent of the choice of the universal
bundle.

Proof. Suppose E, — By, is another universal bundle. Consider the projections X x¢
Eg xg Et; & X xg Eg and X X¢ Eg x¢ E; — X Xg E;. These are fiberations with
firbers Ef; and Eg respectively. Then we have the exact sequence:

sieea— Wn(Eé;) =0— ﬂ"n(X Xaq Eg Xg Eé-;) — ‘R’n(X Xa EG) — Wn_l(EIG) =0—---
By the exactness, we have

YV n, m(X x¢ Eg x¢ EL) = ma(X x¢ Eg)

Similarly,
W,L(X Xa EG’ Xag E&) = 7Tn(X Xa Eé;
Thus, V n,
’Kn(X Xa EG) = 7rn(X Xa Eé;)
Hence

H*(X x¢ Eg, R) = H*(X x¢ Es, R)
|

Sometimes, we don't need to compute the all equivariant cohomology groups of a G-
space. To deal with the classifying space is not very easy. If we only need the finite certain

equivariant cohomology groups, the following proposition will be a convenient way.

Proposition 3.2.3. Let n € Nt and E™ — B" a principal G-bundle which is n-connected.
Then HF(X,R) = H™(X x¢ E™ R), ¥V compact topological group G, manifold X of

dimenston at most n, m < n.
Proof. See (8], Theorem 13.1. ]

Example 3.2.4. (1) If X = pt, then H;(X, R) = H*(Eg/G, R) = H*(Bg, R). Moreover,
if G =T"= (58", Then
HH(X, R) =H"((CP=)", R)
lim H"(CP")", )

%’l(_iﬂz R[:Dl, A :mm]/($?+11 T ’x?n.'_l)
—R[Ilv ,CUm]



where x; is of degree 2.
(2) If G s trivial, then pt — pt is a universal bundle. Thus

HX(X, R) = H*(X, R).
(3) If G acts freely on X, then 3 a fiberation
Eqg— X xg Bg — X/G

Thus
HH(X) = HY(X x¢g Eg) = H*(X/G).
The last =" is due to the argument in Proposition 3.2.2. This example says that if the
action is free, then the equivariant cohomology coincides with the "naive idea” mentioned
in the beginning of this subsection.
(4) Let H be a closed group of the Lie group G. Eg — Eg/H is a universal bundle for
H, which implies that

Hi(G/H,R) =H"(G/H x¢g Eg, R)
2H*(pt xg G xg Eg, R)
~H*(pt x5 Eg, R) = H}(pt, R)
=H"(Bg; &)

The equivairant cohomology has following properties:
(1) Pull back (functorial). Let X — Y be a G-equivariant continuous maps of G-spaces.

Then
fxldg, : X x Eg =Y x Eg

is a morphism of G-spaces, which induces a continuous map
f’:X xg Eqg =Y X¢g Eg.

Further, f’ can induce the pull-back of the cohomology groups of Y xg E¢ to X xq Eg
and hence the pull-back from the equivariant cohomology groups of ¥ to X.

(2) HE(pt) —mod structure. The G-equivariant map f : X — pt gives a monomorphism
Hg(pt) = Hg(X).

The equivariant cohomology ring can often tell us more information than the non-

equivariant one, since the inclusion {e} — G induces a pull-back

HE(M, R) = Hf,,(M,R) = H*(M,R)

17



Lemma 3.2.5 (Localization formula). Let (M, J,S") be a compact almost complex mani-

fold of dimension 2n acted by S* with discrete fized point set M5'. Let o be an equivariant

B 3 a(p)
-/Ma_ Z z"w; (p) - - - wa(p)

peMS!

Where x is as in H (pt, R) = Rlz].

cohomology class. Then

4 Characteristic classes and equivariant Chern classes

7 A characteristic class is a way of associating to each principal bundle of X a cohomology
class of X. The cohomology class measures the extent the bundle is 'twisted” and whether
it possesses sections. Characteristic classes are global invariants that measure the deviation
of a local product structure from a global product structure. They are one of the unifying
geometric concepts in algebraic topology, differential geometry, and algebraic geometry.”
~Wikipedia

In this section, the Chern classes, a kind of important characterastic classes, will be
introduced. There are mainly 4 approches to define Chern classes: axiomatic approach,
Obstruction theory, Chern-Weil theory and moduli space theory. We only introduce the
axiomatic approach and moduli space approach, which will be enough in the later sec-
tions. Obstruction theory and Chern-Weil theory are geometric and they are harder to be
constructed, so they will be omitted.

4.1 Two approaches to Chern classes

Definition 4.1.1. A characteristic class ¢ of a vector bundle or a principal G-bundle is an
assignment to each bundle a class in the cohomology ring of the base space that is natural:
if f: N = M is a map, then c(f*E) = f*(c(E)) € H*(N), where E is a bundle on M.

Definition 4.1.2 (axiomatic approach). The Chern classes are characteristic classes for
a complex vector bundle E — M. For each i > 0 the i" Chern class ¢;(E) € H*(M,Z).
The total Chern class ¢(E) := c¢o(E) + c1(E) + ---. The Chern class of M, c;(M), is
defined to be c;(TM). Chern classes satisfy the following condition:

(1) co(E) = 1.

(2) The Whitney sum formula: ¢(E & F) = ¢(E)c(F'). Hence,

xH(E®F)= Y c(E)(E)

i+j=k

(3) Let = be the generator of H*(CP™) = Z. Then ¢(H) = 1 — x where H is the
tautological bundle of CP?.
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Theorem 4.1.3 (Grothcndiekb The Chern classes exist and are unique.

Example 4.1.4. (1) Let ¢, — M be the trivial bundle of rank n. Then c(e,) = 1 since €,
is the pull-back of the trivial bundle over a point.
(2) e(E & en) = c(E)e(en) = ¢(E). Thus iof E is stably trivial, then ¢(E) = 1. Hence
the total Chern class can tell us a necessary condition for a bundle to be stably trivial.
(3) TCP" & C = H*®*+! implies ¢(CP") = (1 +z)™*L.

There is another way to think about the characteristic class. Given a complex bundle
E — M of rank n, we get a principal U,-bundle, hence a classifying map fg : M — By, .
If ¢ € H*(By,), then let ¢(E) := fi(c). Then ¢(F) is a characteristic class. On the
other hand, all characteristic classes for F arise this way since all principal U,,-bundle are
pull-backs of the universal bundle Ey;,, — By, by Theorem 3.1.9. Namely, a characteristic
class is a cohomology class of the classifying space.

Now, let’s define Chern classes by classifying space. First, the map

1 0
Un = Un+l7 A’_) (O A)

induces a map
BU“ — BUn+1

This is a direct system so we can take the direct limit
By = lﬂ‘gBUu
In fact By, has a concrete expression: G7,(C*) (see Example 3.1.5 (5)).
Theorem 4.1.5. H*(By) = Z[cy, ¢z, - -+ |, with |cx| = 2k.
Proof. See [6], Theorem 3.9. a

Then the k*" Chern class ¢,(E) can be defined to be fg(ci) where fg is the classifying
map of E.

Remark 4.1.6. This approach allows us to define the Chern classes for a principale G-

bundle, not just vector bundles.

Definition 4.1.7. Given a real vector bundle E over M, the k'™ Pontryjagin class pi(E)
is defined to be
Pe(E) == (—1)*co(E ® C) € H*(M, Z)
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4.2 Chern roots, Chern numbers, and equivariant Chern classes
Definition 4.2.1. Let E be a complex bundle, the Chern polynomial c¢; of E is given by:
a(E):=1+ci(E)t+ -+ co( E)t"

If we use the axiomatic approach to define the Chern class, then it is easy to see thath

the Chern polynomial satisfies the Whitney sum formula:
Ct(E D F) = Ct(E)Ct(F)

IfE =1L ®---&L, is a direct sum of complex line bundles, then it follows from the
Whitney sum formula that

c(E) = (1 +n(E)) - (1 +m(E)t)

where v;(E) = ¢1(L;). 7(FE) is called the Chern root of E, which determine the coefficients
of the Chern polynomial:
C’C(E) = ek(’\/l(E)a e ’Yn(E))

where ej, is the k" elementary symmetric polynomial.
Definition 4.2.2. The Chern character of a complex bundle E — X is defined to be
ch(E):=¢e"+---+¢" € H(X,Q)

where a; are Chern roots.

Equivalently, by Chern-Weil theory,

ch(E) =tr (ea:p (%))

where ) 1s the curvature matriz.
The Chern character satisfies

ch(E & F) = ch(E) 4 ch(F)
ch(E ® F) = ch(E)ch(F)

Definition 4.2.3. Let (M,.J) be a almost complex manifold , A = [Ay,--- , ] be a parti-
tion of n. The Chern number of (M, J) with respect to X is defined to be

C,\(M) Z=/ C,\l--'CAkEZ.
M

where the integral of a characteristic class is the integral of its associated differential form
class by de Rham theorem

H™(M,R) = Hip(M)
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Simliar to the reasons why the equivariant cohomology is introduced, we will introduce

so-called equivariant Chern class.

Definition 4.2.4. If a complex vector bundle £ — M is equivariant with respect to G,
then the equivariant Chern class c¢(E) := cx(E x¢ Eq — M x¢ Eg).

Proposition 4.2.5. Let (M™,.J,S') be an almost complex manifold with an action of S*.

If p is a fived point with weights wy, - -+ ,wy,, then

1 ;
le (p) =2 ck('wla T 1Iwn)l‘k

where ey, is the k' elementary symmetric polynomial.
Proof.

cSl(p) = c(T,M xg1 S*° — {p} x5 S*) = c(@ O(w;) = CP") = H(l + w;x).

13
Thus,
Cgl (p) = ek(‘wh e 1u’n)xk'

O

Corollary 4.2.6. Assume the same conditions in Lemma 3.2.5. Using Lemma 3.2.5 and
Proposition 4.2.5, we get

i I, Btllen Pl R pen S

pEMG

This gives another way to compute the Chern number.

4.3 Todd classes

Todd class is a kind of characteristic class, which plays a fundamental role in gener-
alising the Riemann-Roch theorem. The relation between the Chern class and the Todd
class is somechow like the relation between the tangent bundle and normal bundle.

Definition 4.3.1. Consider the formal power series

o

T T (=1)1B; z = o
T) = =1 - ~ L =1 — —_—— —
e =T +2+; eyl ¢ Tt T

where B; is the it" Bernouli number. Then the Todd class td(E) is defined to be
td(£) = [ [ Q(x)
where v; are Chern roots.
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The Todd class has a explicit expression in Chern classes:

2 4 2 ¥
= C) ¢y +Co C1Co =& + 4(31(32 + ci1c3 + 3(3% —E4
bd(E) =142 -
dif=ldg bgg= 4 5p+ 720 -

Although this seems a little scary, the Todd class will be a polynomial if the dimension of
X is finite.
The Todd class is multiplicative:

td(E @ F) = td(E)td(F)

Example 4.3.2. (1) Let L be a line bundle. Then cx(L) = 0 whenever k > 1. Thus

2 4
t(l(L)=1+-2—+T§—%+“':Q(Cl)

(2) There is a famous exact sequence, called Euler sequence ( see [9], Proposition 2.4.4

0 = O — O(1)®"*! _ TCP" — 0
Then td(CP") = td(CP")td(0) = td(O(1)"+) = (td(O1))™) = (=&)™*!

1—e®

Theorem 4.3.3 (Hirzebruch-Riemann-Roch). Let E be a holomorphic vector bundle on a
compact complex manifold X. Then its Euler characteristic is given by

\(X, E) = [{ ch(E)td(X)

5 K-theory and equivariant K-theory

Roughly speaking, the K-theory is the study of a ring generated by vector bundles over a
topological space, and it is a generalized cohomology theory. The early work on topological
K theory is due to Michael Atiyah and Friedrich Hirzebruch.

5.1 The Grothendieck completion

In order to study the vector bundles over a manifold M, we want to bring all the vector
bundles together. The bundles form a set, say Vect(M). However, this set does not
have a good algebraic structure. To fix it, we need to introduce so-called Grothendieck

completion.

Definition 5.1.1. An abelian monoid is a set A with a binary operation +, satisfying
(1) + is commutative and associative.
(2) There is an element 0 s.t. Va€ A, 0+a = a.
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Example 5.1.2. (1) Every abelian group is an abelian monoid.
(2) N is an abelian monoid but not an abelian group.
(3) Let N :=NU {oc}; Va € Nt , a+ oo =oc. Then N is an abelian monoid.

o0

Proposition 5.1.3. Let A be an abelian monoid. Define (ay,by) ~ (as,b) if 3 c € A s.t.
a; + by +c¢ = by +ax +c. It is clear that ~ is an equivalence relation on A x A. Then

A x A/ ~ is an abelian group with the addition
(a1, 01)] + [(az, b2)] = [(a1 + a2, by + b2)]
Proof. 1t is easy to see that [(0,0)] is the identity and the inverse of [(a,b)] is [(b,a)]. O

Definition 5.1.4. For every abelian monoid A, the group Ax A/ ~ is called the Grothendieck

complition of A.

Just like the way to define the fractional field of a ring, we denote [(a,b)] as a — b
instead. This will be more intuitionistic.
"4c” in the relation is necessary because an abelian monoid dose not have cancellation

in general, such as Example 5.1.2(3).

Example 5.1.5. (1) If A is an abelian group, then the completion of A is A itself.

(2) The completion of N is Z.

(3) The completion of Ny, is {0} since V a, b € N, a+0+00 =b+0+ 00 = 00
immpliesa —b=0—0.
5.2 Complex K-theory

Let Veect(X) be the set of all complex bundles over a topological space X. It is an abelian
monoid with the addition @. Denote the trivial bundle of rank n as ¢,.

Definition 5.2.1. Let X be a compact Hausdorff space. The Grothendieck completion of
Vect(X) is denoted as K(X).

Remark 5.2.2. (1) K(X) has a ring srtucture:
Addition:
(By— F) + (B2 — F2) := (B, ® B») — (F1 © F2)

Product:
(Byv—F)(Ey—F)=(E1QE0FF)— (B F,® F; ® E)

Zero: €y the bundle with each fiber= {0}
Identity: €, the trivial bundle of rank 1.
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(2) If f: X = Y 1s continuous. Then
fF:KY)—> K(X), E-Fw fY(E)- f*(F)

is a ring homeomorphism. That is, K(—) is a contravariant functor.
(3) Every element of K(X) has a representation of the form E — ¢, for some n, since
if we start with E — F we can add both E and F a bundle G s.t. F &G = ¢, for some n.

Example 5.2.3. (1) Vect(pt) = N. Thus K(pt) = the Grothendieck completion of N, i.e.
Z.

(2) If X is contractible and f : X — pt is a homotopy equivalence, then f* is an
isomorphism between K(X) and K(pt). Thus

K(X)2zZ
(3) The quotient map
[0,1] - S*=1[0,1]/0 ~ 1

determines a pull-back of the vector bundle over S* to [0,1]. Since every vector bundle
over [0,1] is trivial, the complex vector bundle of rank n over S* is determined by an
isomorphism between the fiber at 0 and the fiber at 1, i.e. an element in GL,(C). Since
GL,(C) is path connected, every complex vector bundle over S* is trivial. Hence,

K(SY)=Z

(4) Let D% and D™ be the upper and the nether (closed) semi-sphere of S™ respectively.
S™ can be written as
§* =17 [[ D% /8D ~ 8D
Since every vector bundle on D or D™ is trivial, every vector bundle of rank k on S™ is
of the form
E, := (D} x C) [J(D2 x C)/(2,v) ~ (z,9(z)v)

for some g : S** — GLi(C). Since E, = E; iff g =~ f, Vect*(S™) = [}, GL(C)] =
Tn-1(GLk(C)). Thus Vect(S™) = mp—1(GLx(C))-

Lemma 5.2.4. Let f,g: S™ ' — GL(C). Then
Efg @ e = By @ Ey

where E¢, B, were defined in Example 5.2.3 (4).
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Proof. Since GL;(C) is connected, there is a path v, € G Lok (C) from the identity matrix
to the matrix of the transformation which interchanges the two factor of C* x C*. Then
(f@I)v(Il & g)y gives a homotopy form f & g to fg& I. The later one is the associated
with the bundle Ef, @ €. O

Corollary 5.2.5. Let H be the tautological line bundle over CP' = S*. Then
HH®deg=2HsH

Proof. Let f=g:S* — GLy(C) be
2 (2)

Then use the lemma above. O

In the ring K'(S?) this conclusion turns to be H?+1 = 2H i.e. (H—1)? = 0. So there
is is a natural homomorphism Z[H]/(H — 1)? — K (S?).

Theorem 5.2.6. Z[H|/(H — 1)* = K(S?)
Proof. See [6], Corollary 2.3. O

Definition 5.2.7. There is another relation equivalence =~ in Vect(X), where X is a
connected compact Hausdorff space: E ~ F if E® e, = F & ¢, for some n and m. Then
Vect(X)/) =~ is an abelian group with respect to &, denoted as K(X), called the reduced
K -theory group.

There is a natural homomorphism ¢ : K(X) — K(X) sending E — €, to the ~ class
of E. This is clearly well-defined and surjective. Ker¢ = {e,, — €;|/m,n € N} = Z. Thus
we have a short exact sequence

0=>Z— K(X)— K(X)—0.

The sequence splits since rank : K(X) — Z is a left inverse of Z — K(X). Thus we have
KX)2K()eZ.

Definition 5.2.8. Let Y be a closed subspace of X. The space obtained by contracting
Y to a base point y is denoted by X/Y, and v : {y} = X/Y is the inclusion map. The
relative K group is defined to be

K(X,Y) = K(X/Y)
IfY = &, we define X/Y as X [[{pt}. Then
K(X,Y) = K(X [[{pt}) = Ker(t" : K(X [[{pt}) = K(pt)) = K(X)
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Equivalently, the relative K group can be defined to be
K(X,Y):={E > Fl|a is a bundle morphism and aly is an isomrophism}

Definition 5.2.9. The K theory with compact support on a compact base X is defined to
be

K(X)={ES3F

a is a bundle morphism and is an isomrophism outside a compact set}

Definition 5.2.10. Let X be a locally compact space. We define K(X) = K(X) where
X = X [[{pt} is the one-point compactification of X and

K(X) := Ker(¢* : K(X) — K(pt))

In fact, K(X) here is always denoted as K°(X) in other materials. More generally, we
can define K™"(X) V n € Z. K* satisfies the Eilenberg-Steenrod axioms for cohomolog;

theory. That is, K-theory is a kind of generized cohomology.

5.3 Equivariant K-theory

Definition 5.3.1. A G-vector bundle over a G-space is a complex vector bundle p : E —
X, together with a G-space structure on E, s.t.

(1) p is G-equivariant.

2)VgeqG, g (—):pz) = p(92) is a linear map.

The set of isomorphism classes of G-vector bundles on X forms an abelian monoid
under %. This set is denoted as Vecte(X).

Definition 5.3.2. The Grothendieck completion of Vecta(X) is called the equivariant K
group, and it is denoted as Kg(X)

The tensor product of G-vector bundles induces a structure of commutative ring in
Kg(X).

If f: X - Y is a G-equivariant map between compact G-spaces. Then there is a pull-
back f*: Kg(Y) — Kg(X), which is a ring homomorphism. Thus K¢ is a contravariant

functor from compact G-spaces to commutative rings.

Definition 5.3.3. Given a group G, the set of isomorphism classes of finite dimensional
linear C-representation of G is an abelian monoid. The Grothendieck completion of this
set is called the representation ring with respect to G, and it is denoted as R(G).

R(G) has a ring structure: the addition is the direct sum of the representations and
the product is tensor product.
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Example 5.3.4. (1) It is clear that
K(X) = K(X)

(2) Because a G-vector bundle over a point is just a complex vector space with a linear

action of G which is just the representation of G, we have
Kg(pt) = R(G)

Specially, if G = S, then
Kg(pt) = Z[t, t ]

(3) If G acts freely on X, then
Ko(X) = K(X/G)

Consider an extreme case. When G acts trivially on X. Then there is a ring homo-
morphism
K(X) = Ke(X)

Combining this with the natural map
R(G) = Kg(X)
we have a morphism of rings
R(G) ® K(X) = Ke(X)
Proposition 5.3.5. If X s a trivial G-space, then

R(G) ® K(X) = Ka(X)

6 Index theory and equivariant index

In differential geometry, the Atiyah—Singer index theorem, proved by Michael Atiyah and
Isadore Singer (1963), states that for an elliptic differential operator on a compact man-
ifold, the analytical index (related to the dimension of the space of solutions) is equal
to the topological index (defined in terms of some topological data). It includes many
other theorems, such as the Chern—Gauss—-Bonnet theorem and Riemann—Roch theorem,
as special cases, and has applications to theoretical physics. Equivariant index theory is

to study the index of a G-spaces.
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6.1 Analytic index and topological index

Definition 6.1.1 (Differential operator). (1) The linear map
D : C=(R") = C*(R")

s a differential operator of order k if

Df(x) = andy -+ 05" f

jal<k
and a, # 0 for some o with |a| = k.

(2) More generally, let E, F be two vector spaces. The linear map
D : C*®(R™ E) - C*([R", F)
15 a differential operator of order k if

Df(z) =) a.0f* -+ 0" f

laj<k

and ay # 0 for some o with |a| = k, where a, € C*°(R", Hom(E, F))
(3) More generally, let E, F be two vector bundles over a manifold X. The linear map

D:T(X,E) =T(X,F)
15 a differential operator of order k if locally

Df(z) =) andf--- " f

|| <k

and a, # 0 for some o with || = k, where a, € I'(X, Hom(E, F))

Example 6.1.2. (1) A vector field on a manifold is a differential operator.
(2) The exterior differential d is a differential operator.

Definition 6.1.3. Let D : T'(X, E) — I'(X, F) be a differential operator of order k. The
symbol of D is a vector bundle morphism

o(D): (E) = ©*(F)
where 7 : T*X — X s the projection from the cotangent space to X. On each fiber
O'(D)g 4 W*(E)(z,g) =FK,— W*(F)(z,a =,

s defined to be
o(D)e= ) aal2)é"

la|=k

where T*X 3 € =Y, £'dx; locally.
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Definition 6.1.4. A differential operator of order k is called elliptic if
o(D)g : T (E)ze = 7 (F)ze)
is tnvertible ¥ & # 0.

Remark 6.1.5. (1) If D : T'(X, E) = I'(X, F) is elliptic, then rank(E) = rank(F). Thus
the Example 6.1.2 (2) is not an elliptic operator.

The vector field is clearly non-invertible; thus it ws not an elliptic operator either.

(2) The symbol of the elliptic operator

o(D): *(E) = n*(F)

represents a class in K(T™(X),T*(X)o), where Vi denotes the zero section of a bundle V,

and we denote this class as [op].

Example 6.1.6. On a Riemannian manifold, the dual operator of the exterior differential
d* can be defined ( similarly, 0* is defined ).

(1) d +d* is an elliptic operator.

(2) The Hodge laplacian A := (d + d*)? = dd* + d*d is an elliptic operator.

(3) @+ 0" is an elliptic operator.

Theorem 6.1.7. If D is an elliptic operator on a compact manifold, then D is a Fredholm

operator.

Definition 6.1.8. The analytic index of an elliptic operator D on a compact manifold is
defined to be
a— Ind(D) := dim KerD — dim CokerD

Since D is Fredholm, this is well-defined.

Remark 6.1.9. dim KerD may jump discontinuously and so does dim CokerD. However,
they jump simultaneously, thus the analytic index is continuous. So there is a question, is
the analytic index a pure topological data?

Theorem 6.1.10 (Thom isomorphism). Let p : E — X be a real,oriented, k-dimensional
vector bundle over a compact base X. Then there is an isomorphism, called Thom iso-
morphism:

b H'(X,Q) » H(E, By, Q), a p*(a) - u

where u 1s called the Thom class.
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There is another version of Thom isomorphism. Assume the same condition. Then
there is an isomorphism:
¢ K(X) = K. (E)

Note that the Chern character defined in 4.2.2 can be natural extended to K(X) by |
defining ch(E — F) := ch(E) — ch(F'). This is actually a ring homomorphism.

Definition 6.1.11. Let D be an elliptic operator on a compact manifold X of dimension
2n. Then the topological index of D s defined to be

t — Ind(D) = ch(D)td(X)[X] = / ch(D)td(X)
X

where ch(D) := (=1)"¢~'ch([op]).

Remark 6.1.12. There is another way to define the topological index. Assume the same
conditions. Let f : X — RY be a smooth embedding for N large enough ( guaranteed by
Sard’s theorem ). This induces an embedding

fi : K(T*X,(T* X)) = K(T*RY (T*R™),)

(see [10]). Now, consider T*RY = RN ¢ RN = CV and think CV as a complex vector
bundle q : CN — pt. Let q : K.(CV) = K.(pt) = K(pt) = Z be the inverse of the Thom
1somorphism ¢'. Then the topological index can be defined to be

t —Ind(D) := q fi([op])

Actually, the two definitions are equivalent.

6.2 The Atiyah-Singer index theorem

Theorem 6.2.1 (Atiyah-Singer). Let D be an elliptic operator on a compact manifold.
Then
a—Ind(D) =t — Ind(D)

This theorem says that the analytic index is a purely topological data.; Many classical
theorems can be obtained by Atiyah-Singer theorem.

Example 6.2.2. (1) Take X to be a complex manifold with a holomorphic vector bundle
V. Let E, F be the sums of the bundles of differential forms with coefficients in V' of type
(0,) with i even orodd. Let D = (0 + 8*)|g. The analytical index is

a—1Ind(D) =Y (-1)*dimH*(X,V) = x(X)

k
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the topological index is
t —Ind(D) = / ch(V)td(X)
X

Thus, we get Hirzebruch-Riemann-Roch theorem by Atiyah-Singer index theorem:
x(X) = / ch(V)td(X)
X

Particularly, if C is a connected compact curve and L is a holomorphic line bunde on it,

then

K0) = [ e+ 25 = deglty + 5

which is the ordinary Riemann-Roch theorem.
(2) Let D = A =dd* + d*d. Then the analytical index is

a — Ind(D) = Sgn(X)

where Sgn(X) is the Hirzebruch’s signature of a 4k-dimensional manifold ( See [15, Chap-
ter 7] ). the topological index is

t — Tnd(D) = / ch(@D) )t (X) = / L(X)
X %
Where L(X) is the L-genus which is defined by Chern roots:

a;
b= U tanh(%)

Then we get the Hirzebruch’s signature theorem:
sgn() = [ LX)
X

(3) Let D = (d + d*)

Qeven_sqodd. 1Then the analytical index of D is
a — Ind(D) = x(X)

the topological index of D is
t — Ind(D) = / e(X)

X
where e(X) = ¢,(X) = [, v s called the Euler class. Then we get Chern-Gauf-Bonnet
formula:

x(x) = [ o)
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6.3 Equivariant index

Let M be a compact Riemannian manifold with a smooth action of a compact Lie group
G compatible with the metric. Consider the closed subset T5M of T M, which is defined
to be

(TEM), = {€ € (T*M),|E(VE,) =0, ¥V V € Lie(G), = € M}

W(E
where 7 : T*M — M is the projection, is then a closed G-invariant subspace. There is a

linear structure on (TAM) ¥V @ € M, but the fiber dimension may not be locally constant.

Definition 6.3.1. Let E, F' be smooth G-equivariant vector bundles over M, D : T'(M, E) —
L(M.F) be a differential operator on M. D is said to be G-transversally elliptic if it is
G-invariant and its symbol is invertible on (T5M ).

If D is a G-transversally elliptic operator, then its kernel is a G-invariant vector space.
Moreover,

glKe'rD :G— GL(I{BT'D), g—=g- (_)|I\'87‘D

is a representation of G.

Similarly, the adjoint operator D* is also G-transversally elliptic with symbol

o(D*)(,§) = o(D)(x,£)*
and KerD* is also associated to a representation of G.

Definition 6.3.2. Let D be a G-transversally elliptic operator on M. Then the G-
equivariant index of D 1is defined to be

Indg(D): G = C, g+ tr(g|kern) — tr(9|kern)

The ordinary index can be viewed as a map K(T*M,(T*M),) — K(pt) = Z. Mean-
while, the equivariant index can ve viewed as a map Kg(T*M, (TgM)y) — Ke(pt) =
R(G). Particularly, Indg: can be viewed as a map Kg(T*M, (T M)g) — R(SY) = Z[t, t71].
Lemma 6.3.3 (Localization formula). Let (M, .J,S*) be a compact almost complex mani-

fold acted by a circle with isolated fized points. Given an equivariant bundle E € Kg, its

equivariant index is given by

Indg:(E) = ) T E@) e Z[t,t7]

t—wl(P))
peMs!
( See [2, Lemma 2.2] )

The ordinary index of E mentioned above can be computed by its equivariant index,
namely

Ind(E) = lim Z T 1€(§ ) EZ

t—1
peMst
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7 Modular forms

Modular forms are bridges connecting geometry and number theory. Later we will con-
struct a genus using modular forms so that we obtain a correspondence between a certain

manifold (geometric object) and a certain modular form (object of number theory ).

7.1 The modular group, congruence subgroups, and modular
forms

Definition 7.1.1. (1) SLy(Z) = {(Z 2) | a,b,¢,d € Z, ad —be = 1}. PSLy(Z) =

SLo(Z/{x1} is called modular group.
(2) Let N € N, the principal congruence subgroup of level N, I'(N) is defined to be

‘é b) € SLo(Z)| a=d =1 (mod N), b=c=0 (mod N)}
(3) T is a congruence subgroup if '(N) <T' < SLy(Z) for some N € N.
Example 7.1.2. (1) T'o(N) := {(? (I;) € SLy(Z)| ¢ =0 (mod N)}

(2) T1(N) := {(Z Z) € SLy(Z)| a=d=1 (mod N), c=0 (mod N)}

['o(N) and 'y (N) are both congruence subgroups. Moreover, there is a relation I'(N) <
Fl(N) < PQ(AN) < SL)(Z)

SLy(Z) has a natural action on the upper half complex plane H ( so do the congruence

subgroups ), say
ar +b

=cr+d

where v = (¢4) € SLy(Z) and 7 € HL.
It is easy to check this action is well defined. By direct computation, we have

") =(vY)-

and

Im(y-7)= IIm(T) >0%e.vy-HCH

cr + d|?
In addition, if V7 € Hl, y(7) = +/(7), then v and v/ differ from an element in {£I}. Thus
the action of SLy(Z) induces an action of PSLy(Z) on H.

Definition 7.1.3. Write j(v,7) = ¢t +d. For k € Z, define the weight-k operator [
acting on function f :H — C as

ar +b
cr+d

FNe(m) = 3(y, ) *F(yr) = (er + d)7F f( )

33



Lemma 7.1.4. YV v, v € SLy(Z), T € H

(1) 5(vv's7) = 3% Y (7))is 7)

@) [Tk = D[y Ik

(3) 42 = j(y,7)~*

These are all due to easy calculations, so the proof is omitted.
Definition 7.1.5. Let I" be a congruence subgroup, k € Z. f : H — C is called a weakly
modular function of weight k with respect to I' iof f is meromorphic on H and

fk = f ¥y €T ie. f(y7) = (cr+d)*f(r) ¥y €T

Suppose f is a weakly modular function of weight k with respect to I'. Then

I’>P(N)=><(1) ]Y)EP

= f(r+N) = f(r)
= 3 the minimal h € N s.t. f(t+h) = f(1)
= f(7) =g(ez'7‘a‘1) for some g € M(0 < |2]| <1)

Definition 7.1.6. Near the origin, g has the Laurent expansion

then
+9e 2xinT
f(T) - z ane_ixg_

n=—oc

We say f is holomorphic at 0o if a, =0V n < 0. In this case, we write f(c0) = ay.

Definition 7.1.7. (1) The holomophic function f : H — C is called a modular form of
weight k with respect to T if f is a weakly modular function and is homolophic at oo.
(2) f is called a cusp form if f is a modular form and f vanishes at co.

It is clear that the modular forms of weight k form a vector space. We denote this
vector space as M(T'). similarly, the cusp forms form a subspace Sy (T") of M (T).

Proposition 7.1.8. Assume k is odd and —1 € I'. Then ¥V modular form f of weight with
respect to I' s 0.

Proof. Let vy = —I. Then V71 € H,

f(r) = 5(vm)*f(v(7)) = = f(7)
which forces f(7) to be 0. a
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7.2 Modular forms and Eisenstein series for I';(NV)

The action of SLy(Z) can be extended to @ U {oo} by setting v - 00 := £ and § = o0

whenever x # 0.

Definition 7.2.1. The elements of the obit space I't(N)\(Q U {oc}) are called cusps of
['y(N). Since there are only one cusp of SLy(Z) and the index of I'\(N) in SL2(Z) is
finite, the cusps of T1(N) are finite.

Lemma 7.2.2. Let v: (Z/NZ)* — C* be a function, k > 2. Then

Gi(r) = Z v([m])

k
e - (mT +n)
is a modular form of weight k with respect to I'y(N).
Proof. First, G} converges to a holomorphic function on H ( see [12, LEMMA 3.7] ).

a b\ _ (GN+1 b
W_(c d)_< 0 (IN+1>€F1(N)’

V() — : v([m]) _ . v(ldz — cy))
k(’)") = (CT+d)kZ ((am+cn)mr+(bm+dn))k = (CT"}‘d)LZ‘y: (TT+y)k

Since [dz — cy] = [(AN + 1)z] = [z], we get Gi(7) = (cr + d)*Gi(7). O

Proposition 7.2.3. Let (i be the N-th unit root.

L1 v
Gy 1= (2mi)* er; (mT + n)*

is a modular form of weight k with respect to I'y(N). This modular form is called Eisenstein

SETies.

Proof. 1t follows from Lemma 7.2.2 immediately by letting v([m]) = (3. O
To compute the Fourier expansion of the Eisestein series, we need the following lemma.

Proposition 7.2.4. For all even integer k > 0,

—1)2+12k!
: ()211')"' (k)

Proof. See [4, page 279]. O

By =

Lemma 7.2.5. For every k > 3,

Z 1 _ (2mi)* i pk=Lg2mimp
mr+n (k—1)! =

new
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Proof. Consider the expansion of zsinz
ot n
Z (=1) 20
|
o+ 1)1
The all zeros are {k7x}rez. Let the partial sum

m ) 2n
Zn—O 2n+1) '

Denote the set of its zeros as C,, = {¢,}. By the fundamental theorem of algebra, we have

Sy, 1s of the form

H(l = c_z)

Let m — oo. Then S,, — zsinz, C, = {k7}rez. Thus, formally we have

zsin
n= 1
i.e.
m 22
sinwz = WZH 1 ———).
U0 Gy

After taking the logarithm, we have

m 2
In(sinwz) = Inwz + Z In(1 — %2-)

n=1

Then take the derivative and use the Euler formula, we get

1, 1 1 1 4 iz S
;+§(z_d+z+d):1rcot7rz=(——m) o (ﬂZ(?; wn

Take (k — 1)% derivative, we have

( )k 1 |Z - _27riZ(27rin)k—le21rizn

d n=0

i.e.

1 p— 27”) -1 _2%izn
> = >

n=0
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Now, compute the Fourier expansion directly

1
Gy =—
k.N(T) (27."1)k ((:zo:d (ﬂ’ll -+ n Z (1’7?7’ +'IL >
1 ™m
s 2
e (20 +zzmﬂ)

m=1 neZ
=— 1 2 (2mi)* ( )+ Z de X 2’””1’") by the Lemma 7.2.5
\k ' HELSAES
(27”) (k m=1 d=1
Z Z(l" . A 1 : T —2% by letting q = dm
= Lo (k=1 (2mi)

q el gl(fl 2miqT Bk gl
2 dzlq (3) U1 e + T by the Proposition 7.2.4

Actually, we can extend the the definition of Eisenstein series to the case k = 1,2 by

letting
1+¢n

= k-1 Cd 2ri 2(1 —
Guvi==3_ | 3(3) syl A é =

g=1 dlq .
Kl

Remark 7.2.6. Usually, the Eisenstein series is defined to be

Z(mf +n)7*

myn

if k=1,

if k>1,

This Eisenstein series is a modular form with respect to SLy(Z). More generally, the
orthogonal complement of Si(T') in My(T) under the Pertersson inner product ( see [12,
LEMMA 4.32] ) is called Eisenstein space. The elements of Eisenstein space can be called

Eisenstein series.

The ingredients in this subsection are used to define so-called elliptic genus of level N

in the later sections. firmation/acceptance email.

8 Genera

The dimension of the first cohomology group of a surface tell us how many holes does
this surface have, which is called "genus”. ”Genus” maps a surface to an integer i.e. the
number of the holes. More generally, genera are maps from the collection of manifolds to
some ring. This will tell us some topological data about the manifold and even number

theory.
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8.1 Genera associated to formal power series

Definition 8.1.1. We say a manifold M bounds or M is bounded if 3 a compact, oriented
manifold N of dimension n+1 s.t. ON = M.

Definition 8.1.2. Two manifolds M, N are called cobordant if M [[(—N) is bounded.

”

Here ”"—7 means the orientation reversed.

”Corbordant” is an equivalent relation. This definition is natural in topology. For

example, two cycles represent the same homology class if they are cobordant.

Definition 8.1.3. Let Q" denote the set of the compact smooth manifold of dimension n,
up to cobordant equivalence.

Let addition be [], then (©,+) becomes a finitely generated abelian group. Consider

oQ
0= QB onr
n=0

Since the Cartesian product induces a map

the set

Qn % Qm =5 Q-m.+n

{2 has a graded ring structure. Moreover, [M x N] = (=1)™[N x M| for M € Q™, N € Q",
and the set of single point is the identity of 0.

Theorem 8.1.4 (Thom). Q"®Q = 0 of 4 does not divide n and Q* is a finitely generated
abelian group with rank equal to the number of partitions of K.

Due to the fact that [M x N] = (=1)™"*[N x M| and this theorem, Q ® Q becomes a
commutative ring.

Theorem 8.1.5. Q ® Q = Q[CP?,CP*,CP¥®, .. .]

Definition 8.1.6. Let R be an integral domain over Q. A genus is a ring homomorphism
?:QRQ — R with ¢(1) = 1.

There are so many genera. Here is a useful way to construct many genera.

Definition 8.1.7. let (M, .J) be a compact almost complex manifold of real dimension 2n,
R be a ring, and
Q(z) = 1 + a1 + asx® + azz® + - - -

be a normalized formal power series with coefficients ax € R. The genus associated to @
s defined to be

bo(M) = /M [[etw € R

where ~; are Chern roots of (M, J).
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Remark 8.1.8. (1) The integral is taken over the terms which can be integrated. i.e.
those classes in H*"(M).

(2) One have to check ¢¢ is indeed a well-defined genus. This refers to the properties
of Pontryjagin classes. For the details, see [7, page 14].
(3) In fact, [[Q(y:) can be expressed in Chern classes. For instance, if n = 1,2,3
respectively, then the integral is respectively taken over
@1 =ac;.
Q2 ‘:CLQC% + ((L% - (Lz)CQ.

Q_'; =(l36? + ((Llag — 3(1-3)61(52 + (CI,:I3 + 3(13 - 30,102)03.
where ¢; are Chern classes of (M, J).

Example 8.1.9. (1) Let

2 4

(— 1‘1312 z z
=1 b o
b= +Z 14—2+12 e

Q(x) =

Then the associated genus is called the Todd genus, which is just the integral of the Todd
class defined in the subsection 4.3.
(2) Let

\/_ zB21 - & z?
Qle) = tanh(\/z) Z (20)! 1+§—Z1§+“'

Then the associated genus is called the L genus.
Hirzebruch’s signature theorem says if dim(M,.J) = 4k, then

Sgn(M) = /M L(M).

(3) Let
e 2
_ 2 _q_ % T
Qle) = sinh(Z) =it~

Then the associated genus is called the A genus.

The A genus of a spin manifold is an integer. Moreover, if the dimension of the
manifold is 4 mod 8, then it is an even integer. In general, the A genus is not always an
integer.

By Atiyah-Singer index theorem, the A genus equals to the index of its Dirac operator.
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8.2 Hirzebruch’s x,-genus

Definition 8.2.1 (Hirzebruch x, genus). The Hirzebruch x, is the Q[y]-valued genus
associated to the power series

= & ) P (T - K
Q(z)—l_e_x(lJr—ye Ji=1 .y-l-;ak(y)a.,
where :
' Bn Bk
a(y) = ; A —l TRy

Definition 8.2.2 (Another definition of Hirzebruch x,, genus). Let M be a compact com-
plex manifold of dimension 2n. The Hirzebruch x, genus can be defined to be

Xy(M) =Y x(M, 80P = Y (—1)%hP(M)yP,

p=0 7,q9=0

where h?1(M) are Hodge numbers.
Before proving these two definitions are equivalent, we see some examples first.

Example 8.2.3. (1) xo(M) = x(M, Ou) is the arithmetic genus.
(2) If M is a Kdhler manifold of dimension 4k, then the Hodge numbers are symmetric.
Thus

n

xi(M) = )~ (—=1)%hP9(M) = Sgn(M)

Pq=0
( see [9, Corollary 3.3.18] ).
(3) If M is a compact Kdhler manifold, then

m 2n
X-1= ) (“PHRPM) = Y (~1)*0e(M) = e(M)
p.q=0 k=0

is the Euler number of M.

Lemma 8.2.4. Let M be a compact complex manifold. ~; are Chern roots of M. Then

ch (@ Qﬁly”) = H(l + ye™)
et

p=0
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Proof.

ch (@ Q’;[y”) = Z ch(%,)y"

p=0 p=0

- Z ch(\'T* M)y
p=0
- Z Z e~ N Yip P

p:O Ty sip

= H(l + ye )
=1

Proposition 8.2.5. The two definitions above are equivalent.

Proof. By Hirzebruch-Riemann-Roch Theorem and the lemma above, we have

n

Xo(M) =" x(M, %)y
p=0
- (@ax,yv)
p=0
- / ch | D %7 | td(M)
M =0

2 T
= -(1 +ye™™)
‘/A"[ =1 1 - e_‘\h

Corollary 8.2.6. (1) Let y = 0. Then we have the arithmetic genus

Y(M, Opy) = /A ()

(2) Let y = 1. Then we again have Hirzebruch’s signature theorem for Kdhler manifold
of dimension 4k:

Sgn(M) = | L(M)

(3) Let y = —1. Then we have Chern-Gaufl-Bonnet formula for compact Kahler man-
ifold of dimension n:

E(M) = / alM)
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Example 8.2.7. Let M = CP?. We have know that
Xy(M) = [ @
M

where Qo is as in Remark 8.1.8.

By direct computation, we have

By Ezample 4.1.4 (3), we have

2+1 2+1
c.1=< 1_ >x=3:1:, c2=< j )m2=3x2.

Thus,

Y 1

x(M) = [ (55 + L)En)E0) + (G - B 2 + 2@ =P~y +1

i 12 2

Also, by the another definition, one can easily get the same consequence.

8.3 Elliptic genera of level N

In this subsection, we will introduce an important genus, called elliptic genus of level
N, which is the central object in the rest sections.
Start from the Jacobi theta function

,19(7_’ Z) s Z(_l)ne?‘rr(n-i-.-zl-)zexi(n—{--é-)z-r’
ne
with 7 € H and 2z € C.
Jacobi theta function is invariant under the action of a discrete subgroup of the Heisen-
berg group (the group of 3 x 3 upper triangular matrices).

Definition 8.3.1. Let9'(7, z) denote f;z?(f, z). The elliptic genus ¢n of level N is defined
to be the genus associated with the power series

T

eN(l‘) = %1‘9,(7-1 0)19

0, = %)

) 2mi

(7, 2 )9(r. — 1) =1+a)(7)z + az(1)2® + - -
? 27 TN

It is denoted as ¢pn(M).

Lemma 8.3.2. The coefficients a;(1) = Gy n, the Eisenstein series defined in Proposition
7.2.3. Thus a;(T) are modular forms of weight i for I'y(N).

Proof. See [2, Lemma 2.8]. O

42



Let M be an almost compact complex manifold of dimension 2n. According to the

definition of the genus associated to a formal power series,

an01) = [ TT000

The integral is taken over the terms which has the degree 2n. Thus the coefficients of
these terms are modular forms of weight n for I'; (V) i.e. the elliptic genus of M, ¢n(M)

is a modular form of weight n for T';(N).

Lemma 8.3.3. Let E be a complex vector bundle of rank n over a manifold. If we write

AE = Z ANE)t and S,E Z(s E)t

i=0
Then o ;
ch(AE) = H(l + te”) and ch(S:E) = H z —-lte“f'
i=1 i=1

Proof. Since the Chern roots of A'E is given by {v;, + -« +7;,}, we have
WKE) = T e
jl '.N 7j!

Thus,

ch(AE) = Z Z ettt — H(1+tc“ﬁ).

=1 j1, t=1

For S;E, see [7,page 175)]. O

Write the elliptic genus of level NV as
on0) = [ TIe00 =mla [ TI800 = mi@rén(a0),

where
2

o 5 (1-q)
e %1;[ (1-g*™)(1-¢%)

The function ¢y (M) is called the normalized elliptic genus of level N.
The virtual bundle Ry(q) is defined to be

Ry(q) = A4 T"MRQA_ 13 TTMA_, 3 TM ® 5, T"M ® Sy TM

r=1
Its Chern character can be computed by the Lemma 8.3.3:
g - o)
—£T R )1 —etg")

ch(Ax(@) = [J(1 - e H (

=1
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Proposition 8.3.4. The normalized elliptic genus of level N is the index of the virtual

bundle, i.e.

dn(M) = Ind(Ry(q)).

Proof.

l—e "y 1’[ (1—~g—‘riCqu‘)(1_67iC§]qrb(l—q')"
~(M) / H =m0t LA Te i) (a1 —in ) 0G50
M

(1—q")?
1= c« IT. (1—¢na)(1—Cx ' a™)

:/ H(l - G—WC}V) H (1 ~ e—Yiqur)(l = emg&lqr) 5 ’Y‘i
M : “ ; '

(1—e™g)(1—e%q) 1-e

= [ eh((a) - a(a1)
—Ind(Rn(q))

8.4 Rigidity of the elliptic genera

In this section, we will define so-called equivariant elliptic genus of level N, which is similar
to the non-equivariant one but it in addition relays on a parameter . The rigidity theorem
says that the equivariant elliptic genus of level N is in fact independent of this parameter.

This theorem can construct a bridge between geometry and number theory.

Definition 8.4.1. Let (M?",.J,S') be an almost complex manifold with a circle action. If
Y p,q € M5, we have

wy(p) + -+ - + wa(p) = wi(g) + - - - +wn(q) (ModN)

for some N € N*t, then the circle action is called N-balanced. The common residue class
of w(q) + - -+ +wn(q)(modN) is called the type of the action.

Definition 8.4.2. The index of an almost complex manifold (M, J) is the largest integer
ko s.t. modulo torsion elements, ¢, = ko for some nonzeron € H*(M).

Proposition 8.4.3. Let (M*",.J,S*) be an almost complex manifold with a circle action
preserving J. If N|ko, then the circle action is N -balanced

Sketch of proof. Case 1: Suppose p, ¢ are in the same component of M* ', Since Vz € S,
dp.(p) is smooth in p, (w;(p) + -+ - + wy(p) is also smooth in p. By the connectedness, we
have (w;(p) + - - - + wy,(p) is constant.
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Case 2: Suppose p,q are in the same component of M9 ", Recall that the equivariant
Chern class ¢ (p) = (wy(p) + - - - + wy(p))z for some z € Hz,({p}) by the Lemma 4.2.5.
Thus it suffices to show ¥ p,q € M5,

gl St
¢t (p) —cf (q)
Z.
Nz =

Since the dimension of M is large enough with respect to the dimension of M* ' there
is a path from p to g and the image of the interval (0, 1) avoids other fixed points. Rotating

the path, we get a sphere S. Then to show

SO - _ [a
Nz SN.

Since & € H*(M), the integral must be an integer. a

Definition 8.4.4. An S'-equivriant bundle E is said to be rigid if its equivariant index
Indgi (E) is independent of t, hence it lies in Z C Z[t,t7'].

If a bundle E is S'-equivariant, then
Indg:(F) = Indgi(E)|=1 = Ind(E).

The virtual bundle
Ry(q) :== /\q*T*M ® SQEA""M%’T*M R /\_q,_*TM ® SgrT*M R S TM
is a formal power series in ¢. Thus we can write
Rule) =3 R

i=0

By the Proposition 8.3.4,
o (M) = m(q)"én(M) = m(q)" i Ind(R;)q'
=0

Definition 8.4.5. The equivariant elliptic genus ¢n(M,t) of level N is defined to be

dn(M,t) :=m(q)" Z Indg: (R;)q".

i=0

It is said to be rigid if Vi, R; is rigid.

Theorem 8.4.6 (Rigidity of elliptic genus of level N). Let (M, .J, S*) be a compact almost
complex manifold with index ko and the circle action preserves J. ¥ N € N with Nk,

the elliptic genus of level N is rigid, hence it equals the non-equivariant elliptic genus
dn(M). If the type of the action is not zero (modN), then ¢n(M) = 0.
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Proof. See [7, page 169-185]. 0O

Initially, the rigidity theorem for the case N = 2 and on a spin manifold was conjectured
by Witten. Finally, Hirzebruch generalized this theorem and get the result for all N and

removed the condition that the manifold is spin.

9 Relations of Eisenstein series

The modular forms of a certain weight can form a vector space. Thus, given enough
number of modular forms of the same weight, they must be linearly dependent i.e. there
is a linear relation among them. However, to find such a explicit relation is not easy in

general. The good news is that the rigidity theorem can tell us some of these relations.

Theorem 9.0.1. Let (M?*, ], S') be a compact, connected, almost manifold which is acted
effectively by a circle with a non-empty set of isolated fired points. Suppose N € N divides
the index ky. Then, for k > n we have the following relations of products of Eisenstein

SEries
mrlw st Wh
S |y mluhe b)) g, g
I€P.(K) \peMS' "
where P, (k) is the set of all partitions of k with at most n parts, my(xy,- -+ ,x,) denotes
the monomial symmetric polynomial, and Gy n = Gy, -+ Gy, for I = [iy,--+ i)

Sketch of proof. Consider the equivairant elliptic genus ¢n(M,t) and let t = €****. By
direct comuptation, we have the coefficient of z*=" of the Taylor expansion of ¢y (M, 1) is
exactly

Z Z my(wi(p), - -+ ,wa(p)) G-

[€Pa(k) \pemst wy(p) - - - wn(p)

The rigidity theorem 8.4.6, ¢pn(M,t) = ¢on(M,1). Thus, when k > n, the coefficient of
Z*=" must be 0. O

Example 9.0.2. Let M=CP?. By Ezample 4.1.4 (3), we have c;(CP?) = 3z. Thus the
index ko of CP? is 3. Let N = 3. Consider the following S*-action on M :

5-[20:21: 22) i=[20: 5%21 : sY29)

for some z,y € Z\{0}. There are three fix points, p = (1 : 0 : 0], ¢ = [0 : 1 : 0]
and v = [0 : 0 : 1]. Near p, take the canonical chart. Then the action is of the form
5 (51 52) = (37c el fﬁ), so the weight at p is wi(p) = z, we(p) = y. The action

207 zp
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near q is of the form s - (f’;l, ;f) = (s“’” w2l g, fj), so the weight at q is w(q) = —z,

wa(q) =y — x. Simalarly, wi(q) =z —y, wa(q) = —y.
By the Theorem 9.0.1, when k > 2 we have the following relation:

¥ <n1.,(§=, y) q mz(—'(w,y ,_)x) i 7"-1(‘('{/_"” — y)> Gra=0 (%)
R xy —z(y— =z —y(z —y)

Let k=3, x =1,y = —1. Then (x) becomes
15G4,3 +12G1 3G 3 + 3G§3 =0

i.e.
5Gas + 4G 3G+ G55 = 0.

Let k=4, z =1, y=3. Then (x) becomes
20G5'3 + 0G1‘3G4,3 =— 20G2‘3G3‘3 = 0

i.e.

G5,3 = G2,3G3.3'

Similarly, let k = 5,6 respectively. We have
4G1‘3G5,3 + 2G2'3G4,3 + G§'3 + 7G6‘3 =0

and
—G23Gs3 — G33G43 + 2G73 = 0.

These can also be checked by using the Fourier expansions. Furthermore, we can
apply the Theorem 9.0.1 to other manifolds (for example, CP") to get more relations of

the Eisenstein series.

A Morse theory

Definition A.0.1. Let f € C=(M). p is called critical if df|,= 0

Definition A.0.2. Hessf is a tensor of type (0,2) defined by Hess f,(V, W) = W(V(f))(p),
where V,W € T,M and V is a smooth extension of V. In a local coordinate, Hessf|, =

a2
(&),

It is easy to show that this definition is independent of the extension of V. Hence it is
well-defined.

Definition A.0.3. A critical point p is called non-degenerate if Hessf, is non-singular.
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This definition of Hess is different from that defined in Riemannian Geometry in which
Hessf is defined as V2f so that Hessf(V, W) = W(V(f)) = (VwV)(f)

Lemma A.0.4 (Morse). Let p be a non-degenerated critical point of f. Then 3 a local
coordinate (U, zy,- - ,x,) with x;(p) =0 s.t.

flz)=flp)—a}—-—aF+as  +-+22
Proof. In an arbitrary local coordinate (U,yy, -+ ,yyn),

1 82]0
f)=fp)+ ziy,-/ 1—t dt
(see[16], 13). Note that
/1 82f
1-—t dt
0 ( )6%’8%

is symmetric so that it can be normalized. The complete proof can be found in [13], page

6. O

Definition A.0.5. f € C*°(M) is called a Morse function if
(1) Each critical point is non-degenerated
(2) The critical points have distinct values.

In some books, the definition of the Morse functions does not require the condition(2).
We will see what role does this condition play in the Morse theory later.

Corollary A.0.6. If f is a Morse function, then Crit(f) is discrete where Crit(f) is the
set of all critical points of f.

Proof. 1t follows from the Morse Lemma immediately. O

Here is a question. Given a smooth manifold M, does M admit a Morse function?

How general are the Morse functions?

Proposition A.0.7. Let M C RN be a submanifold of dimension n. Then for almost
every p € RN, the function f, : M — R,, z + ||z — p||? is a Morse function

Proof. The derivative of f, is given by df,.(v) = 2{x —p,v). Therefore the critical points
occur exactly when T, M is normal to z —p. Choose a local coordinate (uy, - - ,u,) around
z. Then

Ofp ox Pfp 5 Or Oz it

u; L s u;’  Owdu; Ou; Buy +e-p)° 6u¢8uj)‘

By definition, x is a non-degenerate critical point iff x-p is normal to 7, M and the
matrix on the right is non-degenerate. By Sard’s Thm, it suffices to show that the p € RY
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s.t.  —p is normal to T, M and the matrix on the right is singular, are exactly the critical
points of some smooth map.

To find such a map, consider the normal bundle NM of M in RY. Define the map
NM — R¥, (z,v) = z +v. It can be verified that p = o + v is a critical point iff

L)i'.__()_i_ 02_7: i i s ; I - . :
25, 3 T Vo, au,) is singular. Hence, this function is what we need. O

Remark A.0.8. By Whitney embedding theorem, every smooth manifold can be embedded
in some Euclidean space. Thus for any smooth manifold, there exists a Morse function on
it.

Corollary A.0.9. The Morse functions are open and dense in C°(M).

Although almost every smooth function on a manifold is a Morse function, there are

still many functions which are not Morse function. Here are some non-examples:

(1)The "height function™ of a horizontal torus. The critical points form two circle
which are not discrete, so is not a Morse function. However, it is a so-called Morse-Bott

function which is a generalization of Morse functions.
(2)f(z) = z*. Even this usual function is not a Morse function.

(3)f(z,y) = 2*y*. f~%(0) is not a manifold so it is not even a Morse-Bott function.

Definition A.0.10. Let f be a Morse function. A in the lemma 2.2.4 is called the index
of f at p and it is denoted as Ind;(p). Equivalently, Ind;(p) is the dimension of the largest
subspace of T,M on which Hesss is negative define.

One can easily figure out the indices of the "height function” h at the critical points
in the initial example. i.e. Indy(a;) = 0, Indy(az) = 1, Indy(az) = 1, Indy(ay) = 2.

Recall that every manifold can be equipped with a Riemannian metric. The torus in
the initial example is embedded in R® so that we can consider the ”height” because it is
automatically a Riemannian manifold.

Recall that if f is a smooth function on a Riemannian manifold (M,g), then the

gradient gradf is defined to be (df)4. In a local coordinate, gradf = (.:%L‘,gij %.
Theorem A.0.11 (Regular interval theorem). Suppose f : M — [a,b] be a smooth map
on a compact Riemannian manifold with boundary. Suppose that f has no critical points

and that f(OM) = {a,b}. Then there is a diffeomorphism
F: fa) x [a,b) = M
s.t. m = f o F where 7 is the projection from f~'(a) x [a,b] to [a,b].
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Sketch of proof. Let n,(t) be the integral curve of Eg,:&_a;f%. Then F(z,t) := n,(t) is such a

function. ]

There is also a intuitive explanation. Note that gradf, = 0 < p € Crit(f) and grad(/f)

is orthogonal to the level sets. Then each point of each level can flow along ﬁ% to

another level set.

rad
S |gradf|?

Figure 2: flow along

Corollary A.0.12 (Fundamental theorem 1). Let M be a compact manifold, and f :
M — R a Morse function. Let a < b and suppose that f~'[a,b] contains no critical points.

Then M® is diffeomorphic to M®. Furthermore, M® is a deformation retract of M.

Proof. By the regular interval theorem, there is such F. Since f~*(a) x {a} is a deformation
retract of f~!(a) x [a, ], we see that f~'(a) is a deformation retract of f~'([a,b]). We can
now paste this deformation retraction with the identity on M* to obtain the deformation
retraction from M® to M®.

To prove that M? is diffeomorphic to M® we apply the same principle, but we need to
be more careful to preserve smoothness during the patching process.

Since Crit( f) is a closed subset of of the compact M, it is also compact. Therefor there
are real numbers ¢ and d with ¢ < d < a so that there are no critical values in [c, b].

By the regular interval theorem there is a natural diffeomorphism F from f~*([c,b])
to f~*c X [, b], that maps f~Y[c,a] diffeomorphically onto f~'c X [¢,a]. There is also a
diffeomorphism H : f~'c¢ X [¢,b] = f~'c X [¢,a], and we can insist that it be the identity
on f~'¢ % [¢,d]. Thus

FloHoF: f (b)) = f(ca])

is a diffeomorphism that is the identity on f~'([¢,d]), and thus we can patch it together
with the identity on M9 to creat a diffeomorphism from M?® to M®. |

Corollary A.0.13 (Reeb). If M is a compact manifold and f is a Morse function on i
with only two critical points, then M is homeomorphic to a sphere.
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Theorem A.0.14 (Fundamental theorem 2). Let f € C®(M), and let p be a non-
degenerate critical point with index \. Setting f(p) = c, suppose that f~'[c — €,¢c + €
is compact, and contains no critical point of f other than p, for some € > 0. Then V
sufficiently small €, the set Mt has the homotopy type of M~ with a A-cell attached.

The proof is omitted. But one can check this theorem by applying it to the previous
example. It is benefit for you to think about what submanifold is attached while passing
a critical point in the example.

Recall the Betti numbers are the ranks of the homology groups. Homology groups
are related to the CW structure. The fundamental theorem 2 tells us the CW structure
of a manifold is related to the critical points of a Morse function. So what is the relation

between the Betti numbers and the number of the critical points?

Theorem A.0.15 (Morse inequalities). Let f be a Morse function on a manifold, by be
the k™ Betti number, and ci. be the number of critical points of index k. Then

(1) ck(f) = bi(M) VEk
(2) (- > D (—1*be
k=0 k=0

(1) is called weak Morse inequality and (2) is called strong Morse inequality.

Proof. We only prove the weak one. We may regard M as M. When a passes a critical
point of index A, then there is a A cell attached to M® by the fundamental theorem 2.
Since attaching a A cell may or may not cause that bi(M?) plus 1, we get the weak Morse

inequality. O
Corollary A.0.16. Ifcy.1 =cy_1 =0, then ¢y = by and by = by—1 = 0.

Corollary A.0.17. Let f be a Morse function on M. Then f has at least as many critical
points as the sum of the ranks of the homology groups of M.

Definition A.0.18. Let f € C®°(M). A compact connected submanifold S C M is said
to be a critical submanifold if S C Crit(f) and Hess¢|, a5 is non-degenerate.

Definition A.0.19. We say f € C* is a Morse-Bott function if its critical points are a
finite disjoint union of critical submanifids.

Vs € S, we can define the index of s as the index of Hessg|,mgy,nmg. Since the index is
locally constant. it can be extended to defining on a component of Crit(f).



Definition A.0.20. Let f € C*(M) is a Morse-Bott function and Crit(f) = ][, Sk with
Sk eritical submaifolds of f.
(1) The Poincaré polynomial is defined to be

Py(t) := Zbk(M)fk
P
(2) The Morse polynomial is defined to be
My(t) := ) t¥50 Py (¢)
k
There is a partial relation < on Z[t]: we say P X @ if 3R € Z[t] s.t.
Q=P+(1+t)R

Theorem A.0.21 (Morse-Bott inequality). Let f be a Morse-Bott function on a compact
manifold M. Then

My =X Py

A Morse-Bott function f is called perfect if My = Py,.
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