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The Steenrod Operations Encode
the Data of Homotopy Coherence

Tongtong Liang

(Department of Mathematics Thesis Advisor: Yifei Zhu)

[ABSTRACT]: In algebraic topology, one often encounters diagrams
of spaces that are commutative up to homotopy, rather than strictly com-
mutative. However, by passing to the homotopy category, one loss the
information of higher homotopies. This makes the corresponding algebraic
invariants less effective to distinguish spaces. To give a more faithful alge-
braic picture for a geometric problem, it is desirable to devise machineries
that capture higher homotopies. In this thesis, I show how the cup-i prod-
ucts and the Steenrod squares encode the data of higher homotopy types.
From this perspective, I explain why the Steenrod squares and, more gen-
erally, cohomology operations for generalized cohomology theories work
effectively as algebraic invariants for spaces, in an attempt to understand
the raison d’étre of infinity-categorical algebra. This is based on investigat-
ing the literature and reorganizing theoretical and computational aspects
of important tools in algebraic topology into an organic entirety through
the theme of homotopy coherence. These include cohomology operations,

simplicial sets, classifying spaces, and spectral sequences.

[Keywords]: homotopy coherence, cohomology operations, Steenrod

squares, higher categories
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1

Introduction

To classify, simplify and compute with geometric objects, algebraic invariants are use-
ful, especially homotopy invariants.

Table 1: Methods of algebraic topology

Geometric objects Algebraic objects
CW complexes Numbers
Manifolds Chosen invariants Groups
Schemes —3 Rings
Data sets Chain complexes
Geometric Morphisms Algebraic Morphisms
Homotopy — Equality

Example 1.1 (The use of homology theory). 2-dimensional sphere S? is not homotopy
equivalent to 2-dimensional torus 7°:

H(S%Z)=0# H\(T3Z2)=Z®Z

This means that there is no non-trivial one dimensional hole on S? while there are two
non-trivial and unequivalent one dimensional hols on 72.

However, homology theory may fail to distinguish spaces.

Example 1.2 (A blind spot of homology theory). Let’s compare CP? and S? v §*.

Table 2: The homology groups of X and A with Z coefficient

|HO|H1|H2|H3|H4|---
ZiO‘Z}OlZ\ 0
0

CP*

S2vstlzZz|o|zZ]|o0]|Z

The homology groups do not help.
Fortunately, we have a more powerful invariants to fix the blind spot.

Example 1.3 (The use of cohomology rings). If we just take cohomology groups, there
is no difference: However, by considering the cup product structure

Table 3: The cohomology groups of X and A with Z coefficient

| A | AT | A HY Y
Z|{O0[Z|O0]|Z]|O
Z

CP?

S2vst|Z |0 | Z|o 0

—: HP(X) x H(X) — HPM9(X)



H*(X) is a commutative graded ring, which gives more faithful algebraic pictures than
homology groups.

Back to the case that CP?;Z) = Z[u]/(u®) and S? vV S*. We use the following facts
to show that they are not homotopy equivalent.

1. H*(CP?% Z) = Z[u]/(u?), where u is a generator of H?(CP?;Z). In particular,
u? = u — u generates H*(CP?; Z).

2. The cup product structure on H*(S? vV S*;7Z) is trivial, namely, u — v = 0 for
any two cohomology class u, v.

3. H*(CP? Z) is never isomorphic to H*(S%V S4;Z).

Nevertheless, cohomology rings still may fail.
Proposition 1.1. For any space X, the cup product structure on H*(XX) is trivial.
Proof. The proof can be found in the step 5 of the proof of Theorem 7.2 O

Example 1.4 (A blind spot of cohomology theory). According to the previous prob-
lem, we cannot distinguish XCP? and £(S? vV %) = S% v S° by cohomology theory.

To cure the blindness of cohomology, we need to construct more invariants on
cohomology rings. Thus we need cohomology operations.

Definition 1.5 (Cohomology operations). Let n,m be two integers and let 7, G be
two abelian groups, a cohomology operation of type (n,m;m,G) is a collection of
functions ¢y : H"(X;7) - H™(X;G) for each CW-complex X such that for any
continuous map f: X — X, the following diagram commutes

HY(X;7) 22 HY(X;G)

jT T I

HM Y1) ——3 H™Y;6G)

Clearly, the sum of two cohomology operations of the same type is still a cohomology
operations. We denote the group of cohomology operations of type (n,m;m,G) by
O(n,m;m,G).

A stable cohomology operation of type (r,7,G) is a sequence of cohomology
operations g, € Stab(n,m;n+7r;G) for n = 1,2,3,... such that for every X and every
n, the following diagram commutes

HY(X;m) —E20% 5 grdr( X G)

o s

HHHEX ) —y HH 1D Q)

Pnt+1)eX

where ¥ is the suspension isomorphism.
Let Stab(r; m, G) be the collection of stable cohomology operations of type (r, ; G).

The Steenrod squares are significant stable cohomology operations that can help
us fix the blind spot in Example 1.4.




Definition 1.6. The i-th Steenrod square S¢' consists of stable cohomology operations
Sq': H*(X;Fy) = H"(X;Fs)

for each n € N satisfying the following axioms

1. For any cocycle o, we have

0, ¢>dimae,
S¢a=<{a? i=dimae,
a, 1=0.

2. The following Cartan’s multiplication formula holds:

¢'(a~— B)= ) S¢’(a) — Sq¢*(B)

ptg=i

Theorem 7.2 shows the existence.

Example 1.7 (Cure the blindness of cohomology theory). Let’s back to the example
of YCP? and S® Vv S°: Suppose there is a homotopy equivalence f: S® Vv S% — SCP?,
then we consider the Steenrod square

Sq*: H3(SCP?; Z) — H°(XCP?; Z)

Let u be a generator of H*(CP?;Z), then by the suspension isomorphism, ¥*u is a
generator of H3(SCP?;Z). According to the definition, S¢*T*u = £*Squ = T*(u?) #
0, a generator of H°(XCP?;Z).

However, f*S¢’S*u = £*S¢? f*u = S*(f*u)? = 0, which leads to contradiction.

In this article, T will show how the Steenrod squares encode the data of homo-
topy coherence. Section 2 will show the significance of homotopy coherent structures
(Theorem 2.4), and formulate it by using simplicial categories; Section 3 modify the
category Ch of chain complexes to make it a simplicial category so that we can use
the result mentioned in Section 2 on chain complexes; Section 4 will use the set-up in
Section 3 to show that the homotopy coherent structure of the cup product will derive
cup-7 products on the cochain level; Section 5 will provide an intuitive way to describe
cup-i products; Section 6 will show how to construct the Steenrod squares (on the
cohomology level) by cup-i products; Section 7 will use spectral sequence to show the
Steenrod squares exist and are uniquely determined by their properties.



2.

Homotopy coherent structures
on the level of spaces

Cup-7 products
on the level of (co)chain complexes

Steenrod squares
on the level of cohomology theories

Homotopy coherence and realization problems

Definition 2.1. Let A be a small category, a commutative diagram (of A-shape) is

a functor F': A — Space; a homotopy commutative diagram is a functor G: A —
Ho(Space).

Given a homotopy commutative diagram F': A — Ho(Space), if there is a functor
G: A — Space such that the composition 7o G: A — Ho(Space) is natural isomorphic
to F', namely, there is a natural transformation N : m o G — F, such that for any
f:ax — yin A, the following diagram commutes

G(z) iy F(z)

G‘(f)l lF(f)

Gly) —= F(v)

where N,, N, are homotopy equivalences. then we say G is a realization of F.

Problem 2.1 (The realization problem). Given a homotopy commutative diagram,
does the realization exists?

Example 2.2 (G-spaces and homotopy G-spaces). Suppose G is a group, the asso-
ciated groupoid BG is a category with one object *, and Hom(z,z) := G where the
composition rule is given by the group multiplication.

A G-space is a functor BG' — Space. We may also say a space X is a G-space if
there is a functor BG — Space such that X is the image of x. Similarly, a homotopy
G-space is a functor BG — Ho(Space).

Let X be a G-space, if f: Y — X is a homotopy equivalence, then Y is a homotopy
G-space. We may say X is a realization of Y.

InlYl; Cooke gave an answer to the realization problem of BG-shaped diagram for
some group G.

Theorem 2.3 (Cooke, 1978). A homotopy G-space can be realized by a G-space X if




and only if the lifting problem 1 has a solution.

BAut(Y)
,/,,/" lBT (1)
BG ~B%5 BAut(Y)

where Aut(Y') be the group of automorphisms of Y in Space, Auto(Y') be the group
of automorphisms of Y in Ho(Space) and a: G — Autg(Y) is determined by the
homotopy group action. B: Abel — Space is the functor of classifying space.

For the general case, the answer to the realization problem is given in(?.

Theorem 2.4 (Dwyer-Kan-Smith,1989). A homotopy diagram has a realization of and
only if it can be lifted to a homotopy coherent diagram.

In brief, a diagram is homotopy coherent if it does not only have homotopies to
make the diagram commute up to homotopy, but also have higher homotopies make
the lower homotopies coherent. We use an example to interpret the homotopy coherent
phenomenon.

Example 2.5. Let’s consider a diagram
wi=0—1—02—93—>4— -

An w-shaped diagram in Space consists of space X for £ € w and morphisms f;; :
X; = X fori < k.

If it is a homotopy commutative diagram, then for any ¢« < 7 < k, there is a
homotopy i jx: fix =~ fix o fij-

This process specifies a path in Map(X;, Xj) from vertex fi to fir o fi;.

If it is homotopy coherent, then for any 7 < 57 < k < [, the chosen homotopies
provides four paths in Map(X;, X;):

R ket

Far frio fik
hi 1 Sr1ohi gk (2)
hj k10fi,;
fiio fij frpo fino fig

there is a 2-homotopy to filling the square in Map(X;, X)).
Similarly, for 7 < 7 < k < | < m, there are twelve paths and six 2-squares in
Map(X;, X,,) and then we can specify a 3-homotopy to filling in this cube.



hl“ A)
Jisn S — fim © fij

hj 1, mofi s
: Hiigim hjk,mofi,;
fim o fig y » fimo fipo fij
~ fk Oh' - ~
mOhij
S © fix > feimo Fiwo fig
Jt,mohi k1 frmohj i 10fi,5
hiimofik
hi 1, mof; k0 fi,5
~ ~
Jt,mofk 10hi ; k
Jimo frao fir - . > Jim © feg o fiw o fis

(3)

Proceeding the procedure, homotopy coherence means that all such n-homotopies

exits! In other words, any such n-cubes in the mapping spaces can be filled by higher
homotopies.

Note that there exists homotopy commutative diagram that is not homotopy co-
herent.

Example 2.6 (A homotopy commutative but not homotopy coherent diagram). Let
p be the Hopf fibration, 7 be inclusion of fiber at the based point and n is a degree
map e? — e"?:

Since 71(S®) is trivial, let @ : i ~ i o n be the homotopy. However, p o a is not
2-homotopic to the constant homotopy *.

In summary, a homotopy commutative diagram just specifies some 2-dimensional
simplicial complexes in the mapping spaces, where vertices are objects, 1-simplexes
are morphisms and 2-simplexes are homotopies exhibit the compositions,
see the following diagram

foz

A o

1

where 0,1,2 are vertices, fo1, fi2, foo are l-simplexes and the homotopy hgis from
f12 © fo1 to foo is the 2-simplex.

At the same time, a homotopy coherent diagram specifies some oco-dimensional
acyclic simplicial complexes in the mapping spaces, where higher simplexes exhibit




higher homotopies, for example, recall the diagram 2, we may write it into

l
] (6)
i » k
where the morphisms f; ;, fix, fit, fik, fi1, frq corresponds to 1-simplexes [4, 7], .. ., [k, 1],
the homotopies h; jk, ..., h;x; correspond to 2-simplexes [i, 7, k], ..., [J,k,{] and the 2-

homotopy corresponds to the 3-simplex [z, 7, k, [].

By observation, given a homotopy diagram F': A — Ho(Space), for each 2-simplex
in the nerve of A (see Appendix A), there is a 2-simplex to fill the triangle just like
the diagram 5. For more geometric intuition, we consider

Definition 2.7 (The classifying space of a small category). Let C be a small category,
the classifying space BC of C is defined by

= |N@l= |_| Homea([n],C) x |Ay|/ ~

n=>0
and this is a functor B: Cat — Space.

Remark 2.8. Let G be an Abelian group, then the classifying space BG of the G is
equivalent to the classifying space B(BG) of the category BG.

We expect the realization problem can be converted to such a lifting problem

BSpace
e
‘,,", lBﬂ' (7)
BABE, —— BHo(Space)

and the diagram 1 is just a special case. However, we cannot do this because
Space and Ho(Space) are not small categories. To provide some insight, we
may assume the nerve of a large category makes sense. Then if the diagram
F : A — Ho(Space) has a realization, then the lifting problem 7 has a solution.
Conversely, if the lifting problem 7 has a solution, there is no hard to pass to the
following diagram

Sing, (| N.Space|)
oy
s lSing,(Bw) (8)

SiIlg,(IN,A!)SM Sing, (| N,Ho(Space)|)

Since (| — |, Sing) are Quillen equivalences, there is a homotopy commutative diagram



in sSet:
N,Space

lN.n (9)
N, A Sl N,Ho(Space)

Since the nerve functor N, is fully faithful, the diagram 9 is actually a realization of
F.

Remark 2.9. A homotopy commutative diagram can specify a 2-dimensional subcom-
plex of |N,Space| i.e. each 2-simplex in NyA specify a homotopy in Space to witness
a composition, see the diagram 5. Hence F : A — Ho(Space) can specify a map
BA — Sky;BSpace and the diagram 7 is actually an extension problem. The diagram
is homotopy coherent if and only if there is no obstruction. A brief introduction to the
obstruction theory can be found in Appendix D.

Since the nerve of a large category may not make sense; to formulate homotopy
coherent phenomenon more precisely, we need the following definitions to show how
higher homotopies be coherent.

Definition 2.10 (Simplicial category). A simplicial category C, is category enriched
by simplicial sets. The category of simplicial categories is denoted by sCat.

Definition 2.11 (Homotopy in a simplicial category). Given a simplicial category C,,
morphisms  f, g € Homg, (X,Y") are homotopic if there is an 1-simplices in Home, (X, Y);
whose boundary is f and g. Hence we can define the homotopy category Ho(C,) by
quotient the homotopy relation.

Example 2.12. Note that Space is enriched by Top (see Appendix C). Since there is

a lax monoidal functor Sing, Space is a simplicial enriched category by base changing
(see Remark .20).

Next we will show for any small category, there will be a simplicial resolution for
this category, namely, a suitable simplicial category substitution.

Construction 2.13 (Simplicial resolution). First to define a cosimplicial object in
sCat. We define the simplicial category C'([n]) associated to [n] by

N.‘Pi.j} 1 S ja

H sSet 'i, . ‘=
Om[n] ( ]) {@, dss ]

where P, :={I C {i,i+1,...,7—1,5} |47 € I} is a poset ordered by inclusion (as
a category). Thus by Proposition .2, there is an adjunction

(C, Nao): sSet = sCat

where N, is called the homotopy coherent nerve functor and (' is called simplicial
thickening. Given a small category C, the simplicial resolution is defined by

Co A C(N.C)

More specifically, let U be the functor from Cat to the category of reflexive direct
graphs defined by forgetting the composition law and given a reflexive directed graph

9




G, let F(G) be the category freely generated by G. By composition, the simplicial
resolution is

«—
—— Y——

Goit FUC £ FUFUC & (FU)*C == (FU)C
' e —

By the composition law, there is an augmentation ¢: C, — C. More details arel3],

Example 2.14. Given a group G, the universal principal G-bundle EG can be given
by EG ~ |B.G|, seell, Chapter 16.

Definition 2.15 (Homotopy coherent diagram). Suppose A is a small category, a
homotopy coherent diagram is a simplicial functor A, — Space.

We say a homotopy commutative diagram F': A — Ho(Space) is homotopy coherent
if there is a lifting
A, — Space

l l,r (10)

A —L£ 5 Ho(Space)

Remark 2.16. For any simplicial category S, we can define homotopy commutative
diagrams and homotopy coherent diagrams in an analogous way.

The category of chain complexes is a simplicial category

A geometric complex K means a simplicial complex or a CW complex. By taking
simplicial chain complex or cellular complex, we may identify a geometric complex
with a chain complex C,(K). Sometimes I may abbreviate Cy(K) by K and there is
no harm.

The group C,(K) of g-chains is the free abelian group generated by the g-cells and
the boundary operator is denoted by

9: Cy(K) = Cpur(K)

and d o d = 0. Suppose o is a cell in K and 7 is its face, then we may write 7 < o.
The Kronecker index In(c) of a O-chain ¢ = ) a;x; is defined to be > a;, where
z; are O-cells. We denote Z,(K), B,(K) and H,(K) the group of g-cycles, the group
of g-boundaries and the group of ¢ homology classes, respectively. We say two
elements in Cy(K) are homologic if they are different from a boundary.

Definition 3.1 (Acyclic complex). A complex K is acyclic if Hy(K) = 0 for ¢ > 0.
For any abelian group G, the cohomology with coefficient G is defined to be
CY(K;@G) := Hom(C\y(K),G)
and in this way we have a cochain complex C*(K'; G) with coefficient G'. The value of
u € CYK;G) on c € Cy(K) is denoted by u - ¢. The dual of boundary operators are
coboundary operators denoted by §: C9(K;G) — C(K;G).

10



If L is a subcomplex of K, then CY(K, L;G) is the subgroup of g-chains that are
zero on cells of L. Similarly, we can define Z9(K, L; G), BY( K, L; G) and HY(K, L; G)
respectively.

A chain map ¢ is a sequence of homomorphisms

¢q: Cy(K) — Cy(K')

such that ¢,0 = 0¢,+1 for any g and In(¢c) = ¢In(c). The category of chain complexes
of Z-modules is denoted by Ch. If we replace Z by a commutative ring, the notation
is Ch R-

Suppose f is a continuous map from K to K’, due to the existence of simplicial
approximation and cellular approximation, there exists a simplicial or cellular map f’
such that f’ ~ f and the induced may f, can be given by f directly.

Let C, D be two chain complexes and f,g: C' = D be two chain maps.

Definition 3.2 (Chain homotopy I). We say f, g are chain homotopic if there exits a
collection of homomorphisms

{hi: Cn —> Dn+l};o=0

such that
Ooh;+hi100=9;— [;
Definition 3.3. We define a tensor product between C' and D by

(C ® D), ZC@D

i+j=n

and
(9((5,‘ b3 dj) = Bc,- ® dj + (—l)i(‘.,' ® 6dj, for C; € Cyi and dj € Dj.

The diagram is
f) o

n+1

7 n—1
u o fu b o fug
k’ Py

n+1_—)D —)Dnl

Definition 3.4 (Interval chain complex). The interval chain complex I, is defined by

Iy < I ¢ I
J I
0«

0 — Za@Zb X Zny 2

where 9: u+ a — b.

Sometimes, for convenience, we may just write I by regarding it as a simplicial
complex of the topological interval I.

Definition 3.5 (Chain homotopy II). We say f, g are chain homotopic if there is a
chain map h': C ® I, — D such that I'|¢g, = f and W |cgp =

b




The second definition of chain homotopy is more similar to the definition of topo-
logical homotopy and actually these two definitions of chain homotopy coincides by
setting

hi(e;) = hi(c; ® u), for ¢; € C;

Similarly, we can define chain homotopy on cochain complexes dually.

Definition 3.6. An operation of degree i from K to K’ is defined to be a sequence of
homomorphisms

Di: Cy(K) = Copi(K')

for all ¢ and commutes with boundary maps. Let O; be the set of all operations of
degree ¢z and it forms an additive group naturally. We define the boundary operator
w: O; = O;_; by

(wD;)e = dD;c+ (—1)**' D;0c (11)

Clearly, ww = 0 and the operator complex is defined by ({O;},w). Specifically, the
operator complex from K to K’ is denoted by O(K, K').

Proposition 3.1. If D; is an i-cycle in the operator complex, then D; carries cycle
into cycles, boundaries into boundaries, and thereby induces homomorphisms Hy(K) —
H,i(K'). If D;, D, are homologous cycles, then for any i chain c € K,, D;c and D;c
are homologous.

Sketch proof. Use the equation 11, the proof is straightforward. O

Definition 3.7. A O-cycle Dy in the operator complex has an index if there is an
integer k such that In(Dyc) = kIn(c) for any ¢ € Co(K) and k is the index. In
particular, Dy has index 1 if and only if Dy is a chain map.

Proposition 3.2. Let W be a complez, then there is a natural isomorphism
Homey (W, O(K, K')) = Homep (W @ Cy(K), Co(K"))
Sketch proof. The isomorphism is given by

Homey (W, O(K, K")) — Homen(W ® Co(K), Co(K"))
[ — [w,®cq fwy) - ¢

The pattern is similar to
Hompgoq(M ® N, P) = Hompjoq (M, Homygeq (N, P))

in the category of modules. |

Now we have shown that the category Ch is enriched by itself by considering the
operator complexes (see Definition 3.6). Then by base changing, Ch is a simplicial
category via Dold-Kan correspondence (see Example .14 and Section .21). In this way,
we can discuss homotopy coherent diagrams and the realization problems in Ch.

12



4. From cup products to cup-¢ products

Suppose K and K’ are two cell complexes, the product space K x K’ has a natural cell
structure given by ¢ x o', where o is a cell in K and Ko’ is a cell in K’. The product
of relative complexes is defined by

(K,L)x (K',L') = (K x K, K x ' UL x K)

Theorem 4.1 (Eilenberg-Zilber). Co(K x K') ~ Co(K) ® Co(K") naturally.

Definition 4.2 (Cross product). Let G, Gg, G5 be three abelian groups and a bilinear
map G x Go — G3, the cross product is a collection of bilinear pairing defined by

% OP(K,L;Gy <K, LGy — G (K% K\ K% L'UL % K'; Gs)
(uxu) (o xa) — ulo)(a)

Note that the cross products between cocycles are still cocycles. Hence cross prod-
ucts can be lifted to cohomology.

Definition 4.3 (Cup product). Let K be a cell complex and we define a diagonal map

D: K — KXK

Then the diagonal map induces D, : H,(X) — H,(X x X) and D*: H*(X x X) —
H*(X). The cup product — on H*(X) is defined by

HP(X) x HI(X) —— HP*(X x X)

H P+q

The cross product is clear, hence to compute cup products, we need to compute
A* or A,. Recall that if f is a cellular or simplicial map, then f, is explicit. However,
for any nontrivial cell complex K, the diagonal map D is never cellular or simplicial.
Thus we need to find a good simplicial or cellular approximation of A and Alexander-
Whitney approximation is what we need.

We begin with standard simplex. Let A™ be a standard n-simplex with ordered
vertices vy, ...,v,. We now try to give a suitable cell structure for A". We rename v;
by v;; and let 'U,J =42 je. the middle point of the edge [vii, vj;] for 0 <i < j <n.
The set of 0-cells is {v,-j} for the new simplicial structure. Then define a (p+1)(¢g+1)-
cell be a prism spanned by

{aij |i=td0 < <dp, J=Jo<--+<lJg ip < Jo}

These prisms give a new cell structure of A™. To distinguish them, we denote the new
one by P(A™).(Warning: this cell structure relies on the order of vertices.)

Definition 4.4. The p-front face of A", denoted by ,A" is the closed simplex(cell)
spanned by vg, ..., vp; the (n—p)-back face of A}, is the closed simplex(cell) spanned
by vp, ..., Un.

13




Proposition 4.1. There is a cellular map Dy : A™ — A"™ x A™ by mapping A"
homeomorphically onto Up_o(,A™ x A},_,) and P(A") has the same cell structure as
Up_o(pA™ X A7) C A" X A" via A as subcomplex. On the chain level, the morphism
18

Dj: C(A™) — C.(A™ x A™)
A" — 3 (A" X AT )
Proof. Let’s consider the barycentric coordinate of A™. Note that for any point z € A",
it can be written as the form Y. z;v;, Vo; > 0 and Y, 2; = 1. Now we claim that =
can be written in a form

1=0

n 1 P 1 n
Z iV = 5 Z YiV; + :2— Z 2iV;
=0 i=p

where y;,z; > 0 and > y; = > z; = 1 for some p. The principle to find such p is that
there exists a unique 0 < p < n such that

Therefore, for any z € A", x can be written in form of £ + £ form some p € ,A™ and

z € Ay_, for the unique p.

Then we define
Dy: A" — A" x A"
z — (y,2)

Clearly, Dy is a cellular embedding with Dy(vi;) = (vi;, v;;). Hence

n (A X AR_) = P(A™)

p=0 n—p

via this embedding. Specifically, the map is
n
Dy: [vg, -+ , 5] — Z[Uo,"' ,Up] X [Vp, -+, Un] (12)
p=0

O

Proposition 4.2. The simplicial (cellular) map Dy is homotopic to the diagonal map
D.

Proof. The homotopy is just given by a linear homotopy. O

For general case, suppose K is an ordered simplicial complex, define Dy : K —
K x K by mapping each ordered simplex of K in the previous way. If 7 is a common
face of simplexes L and L', then Dy|, = Dg|. clearly by the definition. This map is
called Alexander-Whitney map and the cup product is defined to by

¢~ o= (¢ x1p)- Do(o)

Motivation 4.5. Let Fy acts on X x X by permuting the coordinates and let T :
(z,y) — (y,z) be the generator of this action. Note that 7o D = D, but T'o Dy # D,
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though they are homotopic. Actually, any choice of simplicial approximation D is not
invariant under the composition with 7. There is a lack of symmetry when doing
approximation, which means that we lose some information if we just identify Dy
and D. More specifically, the following diagram is homotopy-commutative and is not
strictly commutative

X xX

= "

X T

s

which means that Dj is not Fy-equivariant but homotopically Fe-equivariant if we let IFy
acts on X trivially, and the cohomology rings lose the information of this symmetry by
modulo homotopy. Thus our next goal is to measure the deviation from the symmetry.

XxX

Actually, it is essentially a realization problem in Ch. By taking chain complex of
the diagram 13, there is a homotopy commutative diagram in Ch

Co(X) ® Co(X)

%‘
TR,

Co(X) @ C(X)

and this diagram is not strict commutative, which is the lack of symmetry. If there
is a realization of the diagram 14, then the difference between the homotopy coherent
diagram and the original diagram is the deviation from the symmetry. In the next
part, we will show that the diagram 14 is homotopy coherent. The main reference of
the following argument arel® and!®.

To show it is homotopy coherent, namely, the existence of some higher homotopies,
we need the following set-up.

Definition 4.6 (Carrier). A carrier from complexes pair (K, L) to (K', L') is a func-
tion which assigns to each cell ¢ of K a non-trivial subcomplex C'(o) of K such that
o € L implies C(0) C L' and if 7 < o, then C'(7) C C(0). A carrier is acyclic, if C (o)
is acyclic for each cell 0 € K.

We say a carrier carries a chain homotopy # if for each cell o, h(o) € C(0).
Similarly, a carrier carries a chain map ¢ if ¢(o) € C(0).

Lemma 4.7 (Acyclic carrier lemma). If C' is an acyclic carrier K — K', then C
carries a chain map ¢; and, if ¢,¢ are two chain maps carried by C, then ¢ is
homotopic to .

Proof. We construct such ¢ inductively on the dimension. First, for each O-cell o € K,
we just let ¢(0) € C(o) with index 1, for example, a O-cell in K’. Then we can
extend it to a homomorphism from Cy(K) to Co(K'). Suppose we have already define
¢: Cu(K) = Cy(K') for n < g, we need to construct a homomorphism C, 1 (K) —
Cny1(K'). Let o be a g-cell, then o = Y a;¢;, where ¢; is a face of g-cell. Since Y a;c;
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is a cycle, do is also a cycle by the inductive hypothesis and Y a;¢(¢;) € C(o). Then
there is a chain ¢(c) € C(o) such that d¢(a) = ¢(da), because C(o) is acyclic, namely
each cycle is a boundary.

Next, we prove any two chain map ¢, 1) carried by C are homotopic. We first write
down the diagram

Cor1(K) —2— Cy(K) —2— Cy1(K)

¢u¢ ¢u¢‘ @ ull’

CosilK") —2= C(K") —2 O, 1(K")

We construct the chain homotopy inductively on the dimension of cells. Since In(¢po)—
In(¢»0) = 0, we can find an 1-chain k(o) € C(o) such that dh(o) = do — 1o, due
to the acyclicness. Now we suppose for each n-cell 7, n < ¢, we have such h(7)
to exhibit the chain homotopy at lower dimension, then we need to find h(o) such
that Oh(o) + h(do) = ¢o — ypo. Note that ¢o — 1po — h(0o) is a cycle, because
d(po — o) = ¢p(do) — ¥(d0) and by inductive hypothesis

¢o — Yo — h(do) = ¢(do) — ¥(9o) — h(do) = Oh(D0c) = 0
Since C(0o) is acyclic, we can find k(o) € C(o) such that
Oh(o) = ¢po — o — h(00)

which is what we need. O

Definition 4.8. Let C' be a carrier from K to K’, the operator complex O(C') associ-
ated to C' is defined by

0(C), == {D, € O, | D,(c) € C(a),Yo € C,(K)}

Lemma 4.9. Let C be an acyclic carrier from K to K', then the associated operator
complex O(C') contains 0-cycle of index 1, and O(C) is acyclic.

Sketch proof. The proof of this lemma is similar to the proof of Theorem 4.7. O

Now we use this set-up to show the diagram 14 is homotopy coherent and see how
it realize.

Let o be an n-cell in X, let & be the subcomplex containing all the faces of o
and it is acyclic. Let C(0) = 6 ® 6. By the definition, this forms a carrier from
Co(X) to Co(X) ® C,(X). Moreover, C' is an acyclic carrier and T-invariant, namely,
TC(o) C C(o).

Since both Dy and T'Dg are carried by C, by Lemma 4.7, they are homotopic. We
let Dy be a chain homotopy from Dg to T'Dy carried by C'. More specifically, for any
n-cell ¢ in X, Dy(o) is in C(o) such that

0D, (o) + D1(00) = T'Do(0) — Dy(0)

or
dDy(c) = TDy(o) — Dy(c) — Dy(80) (15)
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Similarly,
OTDl(U) = Do(O') = TD()(O') = TDl(c')o) (16)

Notice that D; + 7D, is a homotopy of Dy around a circuit back to itself (the addition
between chain homotopies in Ch means the join of homotopies) and Dy (0)+TD;(0) €
C(o) for each cell o. Since both D; and the constant homotopy of Dy are carried by
the acyclic carrier C, apply Lemma 4.7 again, and there is a chain homotopy Ds from
D, +TD; to the constant homotopy of Dy carried by C'. Specifically, for any n-cell o,
there is an n + 2-cell Dy(0) such that

0Dy (0) = Dy(0) + T'D1(0) + Dy(00)

Now observe that Dy—T D5 is a homotopy from D;+7T D, to itself. Similarly, Dy—T D,
is homotopic to the constant homotopy of D+ T D;, namely, there exists D3 such that

0D3(0) = Dy(0) — TDy(0) — D3(d0)

Repeat the procedure inductively, then we have {D,,}°°, to exhibit higher homotopies.
Note that D, is an operation of degree n from C,(X) to Co(X) ® Co(X). Recall
Definition 3.6 and the operator boundary 11,

LdD-i = Di—l + (—I)H_ITD,'_]
We let W be the subcomplex of O(C) from C.(X) to Co(X) ® Co(X) and W, is freely
generated by D; and T'D; (since C' is T-invariant, T'D; is also in O(C)).

Then according to Proposition 3.2, the inclusion map W < O(C) uniquely deter-
mined a chain map

$: WRC[X) — CoX)®Cu(X)

Di®c ~— Do) (17)
which is realization of the diagram 14, because the diagram
W ® C.(X) —— C.(X) ®Ca(X)
Toid T (18)

Weo(X] —X 5 CyX)eci(Xx)

is strictly commutative and W @ C,(X) is equivalent to Cy(X) because W is con-
tractible.

Remark 4.10. Let T" act on W by composition, then we have an Fy action on W. Now
we define Fy action on W @ C,(X) by

Tz@y)=(Tz)®y

In this way, ¢ is a Fs-equivalent map i.e. T'¢p = ¢T'. Hence it is a realization of an
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A-shaped diagram, where the shape of A is

AT,

We may write the diagram 14 into

By —22 s g% ®C@T (19)

where the left automorphism of A is mapped to the identity of C,(X).

Remark 4.11 (The geometric realization of W). Let’s consider the cellular structure of
the infinity sphere:
o0
s2=|J)s
n=0

where S™ < S$™*! as an equator of S**!. Note that S**! = D!y S" U TD"H,
where D"t is an n + 1-cell as a hemisphere of S"*! with boundary S and T'D"*! is
the other one.

Figure 1: S
Then we let C,,(S*®) be a free group of rank 2 with a basis D", TD" and set
8D2n — D2n—] s TD2‘n—l BTDZn = TD2n——l s D2n—1
{ 6D2n+1 — TDZn o TDQn ar]wD2n+l — D2n A TD'Zn
In this way, by D' — D;, we have C,(S°°) = W. Therefore, we have the diagram

Sox X —% 3 XxX
Txidl lT (20)
Sox X —2 5 X xX

18



We may view S x X — X x as the diagram

v
Co(X) Dy Co(X) ® Co(X)
N

\

and similarly, D! is another cell filling the circle

Dg

Co(X) TD; Co(X) ® Co(X)

TDg

In this way, higher cells exhibits higher homotopies.

Recall the definition of cup product: for v € CP(X) and v € C9(X), the cup
product is defined by
u—v-c=u®u- Dpyc)

Similarly, we can define:

Definition 4.12. For each 7 > 0, we define a product called cup-: product as follows.
for u € C?(X) and v € CY(X), the cup product is defined by

u—iv-c=u®v-d(D; ®c)

for ¢ € Gy g i(X)-

Remark 4.13. The diagram 14 just gives cup products while the diagram 18 provides
cup-i products. The cup-i products measure the deviation from the symmetry.

Proposition 4.3 (Differential formula).

du—;v)=u—iv+v—iqut+du—i_1v+u—;dv mod 2

19




d.

Proof.

d(u —; v)(c) = (u~—; v)(0c) = u® v(D;(dc))
=u@®v[TD;_1(c) + D;i_1(c) + dD;(c)]
=v®u(D;_1(c)) + u®v(D;_1(c)) + u® v(0D;(c))
=V —jutu—i_1v+du—;v+u-—;dv

O

A geometric interpretation of the cup-2 products on simplicial com-

plexes

In this section, I will show the pictures of cup-z products to provide some intuition.

Suppose K is a simplicial complexes, then we we can endow K with a partial
order of its vertices such that the vertices of any simplex are simply ordered. Let
Vo < -++ <V, be a totally ordered subset of its vertices, then [V}, ..., V,] is a coordinate
of an n-simplex of K. However, there is more than one way to endow K with such a
partial order, we just take one of them, say . Actually, what we need is independent
of the choice of the orders. From now on, we always assume a simplicial K is ordered
by & and if we say there is a simplex [V}, ..., V,] in K, it always means V, < --- <V,
according to the partial order x on the vertices of K.

Recall the definition cup products on simplicial complexes, suppose 1 € C?(K)
and p € C(K), then

'(/) — (P([‘/Oa ERO% 1‘/})3‘/]7-}-1’ sas avp+q]) = "p([‘/(], ZO ,‘/;)])‘,0([‘/;+1, %l 'u‘/;)-l"q])

For more intuition, we want to describe the cup products on the simplicial chain
level instead of cochain level. Suppose ¢ is an n-simplex of K, then the dual of it ¢*
is defined by
0 7 #0;

c*: C"(K) — Z, an n-simplex 7 +» {
1l T=w9;

This map o + ¢* induces an isomorphism C,(K) — C™(K). Note that the cup
product define a bilinear map

— Cn(K) % Cm(K) — Cn+m(K)
YxXp — Y-

and by the composition with the isomorphisms, we have

K: Cu(K) X Cpu(K) — Chim(K)

o XT ZZH n + m~simplexes

el s (21)

(6* — 7 - a)a

where o, 7 are simplexes.

Example 5.1. Let o = [Up,...,Uy,], 7 = [Wy,..., Wy] be two simplexes in K, then

0’* ~ ’r* ¥ [‘/0, - -,Vn+m] = (U* : [‘/0, . -"/1;])(7-* ’ [V;n L -1Vn+m])
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Hence o* — 7* =0 if U, # W,. If U,, = W,, then
ot = [UO,---sUn;WI:---a‘/Vm]*

and thus o R 7 = [Up,...,U,, Wi,...,Wy].

Definition 5.2. Suppose o, 7 are simplexes of K, we say the ordered pair (o,7) are
O-regular pair in the order  if ¢ and 7 has one vertex V in common and V is the
last vertex of o and the first vertex of 7. Namely, ([Uy,...,Uy,], [Wo,...,Wy]) is a
O-regular pair, if and only if U, = W,.

Note that the cup product is cup-0 product actually and the cup-0 product between
two simplexes are non-trivial if and only if these two simplexes intersect on a 0-simplex
in a regular position. To generalize the case, we need to define what the regular position
of an i-simplex as the intersection of two simplexes is and try to use it to describe cup-z
products.

Definition 5.3. Let 0,7 be two simplexes with dimension n,m and let 7 be a non-
negative integer. The ordered pair (o, 7) is ¢-regular in the order x if the following
conditions are satisfied

1. The vertices of o,7 span a (n + m — i)-simplex {. In this case, 0,7 has i + 1
vertices in common, denoted by V), ..., V; in the order &.

Vp is the first vertex of 7;

Vb, Vi are adjacent vertices in o;

L

Vi, V, are adjacent vertices in 7;

5. Vj,Vjq1 are adjacent vertices in o (resp. 7) if j is even (resp. odd) for all
reasonable 7;

6. V; is the last vertex of o (resp. 7) if ¢ is even (resp. odd);
In particular, when 7 = 0, it coincides with Definition 5.2.

Definition 5.4 (The cup-i product on the level of chain complexes). Suppose (o, 7)
is an ¢-regular pair in the order of k, let oy be the face of ¢ spanned by its vertices
< Vp and let oy; be the face of o spanned by its vertices between V5;_; and V3, for
0 <27 <14, and if ¢ is odd, let 0;4; be the face spanned by its vertices > V;. Similarly,
let 79,11 be the face of 7 spanned by its vertices between V5, and V5,44, and if 7 is even,
let 7341 be the face of 7 spanned by its vertices > V;. By the i-regularity, we have

U=0’0®0'2®"'®02k
and
T=T1&T3E"'ET2;C+(_1)1‘

where 2k = ¢ if ¢ is even, and 2k = 7 + 1 if i is odd.
Still by the i-regularity, (o2;, Toj41) and (79j41, 02;42) are O-regular in the order x
and i
(=0oXn IZOgETg---E{TiH » 0ady

Oit1 ¢ even.
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Then we define the cup-¢ product on the level of chain level by

¢ (o,7) is i-regular;
= T= z
0 otherwise.

The cup-i product on the cochain level is given by the isomorphisms o — o*. Namely,
for u € C*"(K),v € C™(K), we may write them into

. K . *
W= E a;o;, v = E by,

where o; are n-simplexes of K and 7, are m-simplexes K, then

u—v =3 abi(o; —i )’
ak

Example 5.5. Let K be a ordered simplicial set and there are four vertices Vj < V; <
Va < Vi, clearly, ([Vo, Vi, V2], [V1, Va, V3]) is an 1-regular pair, the picture of the cup-1
product is [Vo, Vi, Va, V3], see Figure 2.

[Vo, Vi, V3

FigUI'e 2: [VQ, Vh ‘/2] 75 | [‘/Is V27 ‘/3] = [1/07 Vla V2, VJ]
Remark 5.6. Note that the Alexander-Whitney approximation Dy 12 actually provides

us a way to decomposition an n-simplex into a sum of O-regular pairs. When i = 0,
the cup-0 product coincides with the cup product

(U =0 “) ) [V01 SHUROR Vn+m] == ('Ll. ¥ [‘/09 LRREE ) Vn])(’“ E [Vn: o wElt ) ‘/1)—}-711])
When i =1,
(u ’U)-[Vg, ceey Vn+m—]]

p-1
=3 " [Vor <o Vi Vims - oo Vatmea]) @2 [y o5 Vipam])
3=0

In general, given a p + g — i-simplex «a, any i-face of o determines a splitting of « into
an ¢-regular pair (o, 7) such that (¢ —; 7) = £a.

Theorem 5.7. Let K, K' be two simplicial complex, and if f: K — K’ an order
preserving simplicial map, then f*(u —; v) = f*u —; f*v.

Theorem 5.8. If u,v are cochains of dimensions p,q, then
du~—;v) = (=1 "y v 4 (1P u+ du —; v+ (—1)Pu —; dv
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6.

The proof of these two theorem can be found in(”.

Note that both the definition of cup-i products in Section 4 depends on the choice
of ¢ and the definition in this section depends on the order a on the simplicial complex.
To make them be independent of the choice, we need to pass it to cohomology.

The Steenrod squares and their properties

In this section, the definition of cup-i products follows Section 4.
By convention, we set u —_; v =0. If u =v» and du =0 mod 2, then u —; u is a
cocycle modulo 2. Passing to cohomology classes gives a function

Sqi: HP(X;F;) — H*(X;F,)
U — U~ U

By setting S¢’ := Sg,—;, one have
S¢ : HP(X;F,) — HP(X;Fy)

These functions are called Steenrod squares.

Remark 6.1. Notice that cup-¢z products depend on the choice of ¢. However, any two
such ¢ are Fy-equivalently homotopic. Thus the Steenrod squares are independent of
the choice of ¢.

In this subsection, we may assume all the cochain complexes are Fo-coefficient.
Proposition 6.1. The following statements are true:

1. If f is a continuous map, then f*Sq* = Sq'f*.
Sqt is a group homomorphism.

8¢ =id.

™ S M

Sq"*(u) = u — u, if u is of n dimension.

S¢(u) =0

<

Proof. According to the definition of the cup_ 7 products and the Steenrod squares, 3,
4 and 5 are straightforward. We now prove the rest.

1. Consider the diagram
WxX 24 XxX

idxfl lij

WxY —2,vxY

and the diagram commutes up to homotopy because the following diagram com-
mutes

X2 XX

fl lfxf

Y — Y XY
Dy
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then at level of cohomology, we have the following equations

F*Sai(w)(c) = f*(u —i u)(c)
= f"(u®u)px (D' ® c)
= (["u® ["u)px(D' @ c)
= 5qif(u)

2. For any cocycle ¢ and note that ¢ is T-equivalent, then we have

Sqi(u+v)(v) = (u+v) —; (u+v)(c)
= (u+v) ® (u+v)¢(D' ®c)
=(uQ@u+tu®v+vu+v®v)p(D ®c)
(w)(e) + Sgi(v)(c) + u ® v(Di(c)) + v @ u(Ds(c))
(w)(e) + Sqi(v)(c) +u ® v(Di(c)) +u ® v(TDi(c))

Sqi
Sqi

Since T'D; ~ D;, then D (u ® v) = T'D!(v ® u) in the cohomology group. Thus
Sqi(u+ v)(c) = Sq;(u)(c) + Sgi(v)(c) mod 2

O

Now we define the cup_: product on the relative cohomology group: suppose
L C K as a subcomplex, then we have a short exact sequence

0 — OV (K, L) 2= @ &) —£5 6(1) ——0

We may assume ¢, = ¢g|wer, since ¢x(d; ® 0) € C(o). Then for u,v € C*(K),
7 (u ~—; v) = j*u —; 7*v. Let u,v € C*(K, L), then j*(¢*u —; ¢*v) = 0, then by the
exactness, there is a unique v —; v € C*(K, L) such that ¢*(u —; v) = ¢*u —; ¢*v so
that we can define cup_ 7 products on the relative cochain in this way.

Proposition 6.2. Suppose L C K is a subcomplex and 6: H"(L;Fy) — H"(K, L)
is the coboundary map, then 6Sq' = Sq'.

Proof. Recall the definition of d: Let a be an n-cocycle and [a] be its cohomology class,
then [a] = j*([b]) for some b € C"(K). Then j* o d(b) = d(a) = 0, so d([b]) = ¢*([¢])
for some ¢ € C"(K, L).

Then we consider the diagram

HY L) —32_ grti(r)

| I

Hn+l(K, L) S¢* ) Hn+1‘+1(L)

By the definition, Sq¢'(6*[a]) = Sq'(€) = [c ~ny1-i ¢] and S¢'[a] = [@ ~—,_; a]. We just
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need to show 6*[a —y—; a] = [¢ —pt1-i (]

q*[c ~nt+1-i C] = [CI'C ~n+1—i q*c]
. db ~n+1—1 db
= db

where i/ = b —,11_; db+b—,_; b and the Equation (3.6) comes from the differential
formula 4.3. Further, j*¥ = j*(b —n—i b) = a —,—; a. As a result, §*Sq¢'[a] =
Sq'é6*[al. O

By considering the pair (C X, X), where C' X is the cone of X, we have the following
corollary.

Corollary 6.1. The Steenrod squares are stable, namely
»S¢' = S¢'E

Theorem 6.2 (Cartan’s formula). Let K and L be two complexes and for any two
cohomology class uw € H*(K) and v € H*(L), we have

¢'(uxv)= Y S¢°(u) x Sq*(v)

pHg=i
which is called Cartan’s formula.
Proof. To prove the theorem, we first define a T" equivariant map by

r: W — WeW
Di — Yoeci(~1)¢)D; ® TD;

Let ¢x and ¢, be the chain maps inducing cup-i products on K and L respectively,
then we consider the composition

WKL 2L WeWRKQRL L s WoKQWQL

- RO  KeKkelel —LsKelLeKel

where T is a suitable shuffle map. We claim that this map is homotopic to ¢xgy, since
they are both carried by the same acyclic carrier clearly. Let p = dimu, ¢ = dim v and
n=p+q—1i. Thus

S xv) - (4®@8) = (@) —n (5 ®1)) - (408)
=(u®Vvu®V)- dxer(D.®a®b)
= (U®U®U®U)'Z¢K(Di®a)®Tj¢L(Dn—j®b)
=Yy u @) ® (g v
= 3" 50 (a) ® ST (b)
= Z(Sq”"ju X Sg77"y) - (a ® b)
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Hence, since Sq'z is zero for ¢ for ¢ > dim z, we have

Sq'(u x v) = Z SqPu x Sqt "ty

=0
P
= Z Sq°u x Sq* v s=p—1j
s=i—q
i
= Zquu x Sq' v
s=0

Corollary 6.2.
Sq'(u~—v)= > S¢’(u) — Sq’(v)

ptg=t

Thus we have the following morphism

Definition 6.3. Suppose X is a cell complex, then there is commutative graded ring

homomorphism
Sq: H*(X;F,) — H*X;F,)[t]
z — > S¢'(x)t

Remark 6.4. We consider the realization of the digram 13 in Space:

Sox X —2 3 X x X

Txidl lT (22)

o X —2 3 XxX

We quotient both sides by the group action, then we have
P: S x X[Fy = X

where the X = X x X/ ~ naturally. When passing to cohomology ring of coefficient
IF21 9‘5* = Sq
Sq=¢*: H(X;F,) —» H*(X;F,)[t]

where H*(S® x X /Fy;F,) = H*(X;Fy) @ H*(RP>®;Fy) = H*(X;F,)[t] and ¢t is a
generator of H'(RP>;F,).

In!", by using the construction of cup-i products in Section 5, the induced Steenrod
squares has the same properties in this section. In next section, we will see these
properties determines Steenrod squares uniquely.

The uniqueness and existence of the Steenrod squares

Recall the representability of ordinary cohomology in Appendix D, there is a canonical

isomorphism
(X, K(m,n)] & H(X;7)
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Theorem 7.1 (Classification theorem of cohomology operations). There is a canonical
isomorphism
9: O(n,mm,G) — H™(K(m,n);QG)
b — dlen)

where e, is the fundamental class of H" (K (mw,n);w) corresponding to
id] € [K(m, n), K (m, ).
Sketch proof. The canonical isomorphism is given by
h = hic(nm)(Fr)

where h is cohomology operation and F; is the fundamental class in H™(K (7, n); ).
By Yoneda lemma, this is a canonical isomorphism. [l

This definition makes sense, due the following theorem.

Theorem 7.2 (Existence and Uniqueness). For each 1 € N, the stable operations Sq*
satisfying the axioms in 1.6 exist and are unique.

Proof. To determine such stable operations Sq', we just need to determine Sq'(e,,) for
each i (e, is the fundamental class in H" (K (Fs,n);Fy)), because of the classification
theorem.

First, we fix n = 1, then we may define S¢’; = e, Sq'e; = €2 and Sg'e; = 0 for
TN

Now we may argue it by induction on n. Suppose we have already define Sq'e,_;
for each i € N, then we consider the spectral sequence associated to the fibration
K (Fa,n)" — K(F2,n) with fiber QK (F2,n) ~ K(Fy,n — 1). Note that the path space
K (Fy,n)! are contractible.

Step 1: Claim that for ¢ < n — 1, we have

Epti™h =H" M (K (Fa,n — 1);Fy),
EnG®  =H""(K(Fy,n);Fy)

According to Leray’s theorem, we have

B YK (Fy,n — 1), Fy),
EX0 (K (Fy, )i ).

and the transgression
dg'n-H_] . Eg,n+i—] Reew Eg,n+i—-2 - H2(K(IF2,n), H"H_?(K(]Fg,’ll)) = I

because by Huriwicz’s theorem, H*(K (Fqy,n) = 0 for i < n. We now argue by induction

to show
0,n+i—1 0,n+1—1
E2 S En+i

fori<n—1.
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We consider the transgressions again
+i— p— kn+i—k 4
dO,ﬂ 1 1: EO,n+z 1 E Nl ! " < I

then either k < n or n+i—k < n—1, because when k > n, we have n+i—k <i < n-—1.
Then such ' '
Es™F = HY(K (Fy,n); H" ¥ (K (Fy,n — 1);F,)) =0

because either H*(K (Fy,n)) = 0 or H""~*(K(Fy,n — 1)) = 0 by Huriwicz’s theorem.
Then Ef’"""’_k = () and inductively, we can finish the step 1.

Step 2: Claim that for i < n — 1, the transgressions

nAti—1 | H0n+ti-1 n-+41,0
d?l+i . E‘n,-}-i En—H'
are isomorphisms.
According to the transgression theorem, the transgression is given the composition

*\—1

H"H-Y(F,F,) —X H"H-Y(E, F;F,) L. 5 H™ (B, %;F5)

where F' = K(Fo,n — 1), E = K(Fy,n)! ~ %, B = K(Fy,n). Since F is contractible,
0* is an isomorphism. For p*: H""'(B,*;Fy) — H"''"Y(E, F;F,), we just need to
check that p, : Hpyi1(E, F;Fy) — H,i(B, *;Fs) is an isomorphism. First, it is
surjective due to the lifting property of the fibration. Then it is injective because E is
contractible.

Step 3: We just let _ , ,
Sg'en = dt 7 (Sd'en).

Hereby Sq'e, is defined for i < n — 1. We just set Sq"e, = ¢" and S¢'e, = 0 when
i > n. It remains to define S¢" 'e,.

Step 4: We will define S¢" e, in this step.
Observe that for the transgression

2n—2 0,2n—2 n,n—1
d'(f)l ¢ En+l — En

we have
dg,2n—2(sq71—lcn_l) = dg,z’n—Z(c,Z]_l) — 20_”_1(191’2"—2(6"_1) =0

. : . 40,2n—2
Hence Sq¢"'e,_; is an element in E, Ty

By the method in Step 2, we have

0,2n—2 __ _ 0,2n—2
En+l Tt = Lon-1

because Ef*" > — 0 for k > n+ 1. We take d3?"7%(Sq" e,_1) as Sq¢"(e,), by
the transgress

a3 % Bt — Egn 10 = H V(K (Fa, n); Fa)
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Step 5: Claim: the multiplication on the cohomology ring of any suspension space
is trivial.

We first to prove that the diagonal map D: ¥ X — ¥X x ¥ X is homotopic to
amap LX — XX VIX. We assume zq € X is the based point and we may write
YX = CoX UC1X where C;X are the cones. Then we define the homotopy by the
formula hy(z) = (p(z),¥i(x)) where hg = D, p1(CoX) = zo and ¥1(C1X) = x.
This can be done because C; X are always contractible. Then h,(XX) C £X VIX,
which means that any two cohomology classes of X can be identified with a cohomology
classes on XX VXX by restriction. Note that the cross product of any two cohomology
classes of X of positive dimension has zero restriction to ¥X VvV £X. Hence, in the
cohomology of XX, the cup product of any two classes of positive dimension is always
trivial.

Step 6: We now show that these operations are stable, namely, we need to check
that the maps induced by suspension ¥ are

2;1 H"-‘Li(K(Fg,n);Fg) — H"H‘I(K(]Fg,n);m‘z)
Sq'en, — Sq'en;

For 7 > n, both of them are 0.

For 1 < n, X! is the inverse of the transgression. According to the above construc-
tion, we have the result.

For i = n, Sq"e, = e¢2 and Sq¢"e,_; = 0. Then we have the diagram

EI

y H (K (Fy,n — 1);Fy)

™ %
» d9:

HZ”(ZK(IFQ, n=— 1), Fg)

H2"'(K(]F2, TL); ]Fg)

Note that K(Fy,n — 1) = QK (F2,n) and QK (Fy, n) is weakly homotopy equivalent
to K(F2,n) by i,. Then ¢2 will be mapped to 0 in H**(LK(Fa,n — 1);Fy) according
to the conclusion in Step 5.

Step 7: Uniqueness: Further, if they are stable cohomology operations, Sq'e,, must
be the image of Sq'e,_; for each 7, n. Hence our construction is the unique one.

Step 8: Cartan’s formula Assume o € H™(X;F,) and € H"(X;F;) for m,n >
0, then we have the following result immediately

0, i1>m+n

e {(a B) = (Sq™a) - (S4"B). i=m+n.

Hence we just need prove the case for i < m + n.

We argue the Cartan’s formula by induction on 7. Suppose the Cartan’s formula
holds for 2 > m+n—s and s > 0, then we prove the case i = m+mn—s. It is equivalent
to check

S ax B)= D S¢(a) x SgU(B)

p+q=m-+n—s
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for cross product. We may replace X x Y by X AY.

According to Yoneda lemima and the fact that products are compatible with induced
morphism, we just need to check the case that X = K, = K(F;,m) and Y = K,, =
K(Fy,n), @ = e, and B = ¢,. Then consider

(ERi-1) K K ="E (K1 N K

y

tdAin

Ko Ni(ERG ) = E(Kia N K5)
where i,,, i, are induced by Xe,,_1 and Ye,_;. Then we have

Hr(EKm—l A Kn; ]F2)

V

H'r(Km A Kn; IFQ)

(idAin)*
H (Kpn ANXK,_1;F))
and
T(Km—l A Kn;]F2)

B (imAid)*

H"'(Km A Kn,]FQ)

b3} —m

H
Hr(Km A Kn_];]Fz)

Recall that f,,: H"(K,,;Fs) = H"(K,,-1;Fs) is ¥71 04, and is the inverse of trans-
gression for r < 2m. Then in the diagram 23, we have

fm(@) x B
axf /
’\

a X fu(B)
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In particular,
€m-1 X €n

/
\

E€m X €n—1

Cn X€i

Observe that if r < 2(m + n) and a x f € H"(K,, x K,;Fy) with f,,(a) = 0
and f,(B) = 0, then a x 8 = 0, because if a # 0 and B # 0, then dima > 2m and
dim 8 > 2n,which implies dim(a x 8) > 2(m + n), contradiction.

Now we consider

Sg™ " (em X €n) — Y, SgPem x Sqlen € HA™M (K, x K, TFy)

ptq=m+n—s

then put it in the diagram 23, we have

Sqm+'n—s(e.m_l % en) - Z quem—l X Sqqen =0

p+g=m+n-—s

Sqm+n—s(em % e'n.—l) — Z Sq”em X Sq‘len—1 =

ptrg=m+n—s

by the inductive hypothesis. Then by the previous observation, we have
Sq"T (e X €n) — Z SqPen X Sqle, =0

ptg=m+n—s

More details can be found in®.

31




Appendices

Appendix A: The theory of simplicial sets

Definition .3. Let n be a non-negative integer, then the datum of the category [n]
consists of

« The set of objects is {0,1,2,...,n},
e The morphism is defined by

0 k>j

Hom[n](k,j) = {{S} k S]

which is called natural category of n.

For intuition, now we draw the diagrams of some natural categories:
The whole diagram of [0]:

®
The whole diagram of [1]:
c— e
The whole diagram of [2]:
L J
® —> @

The whole diagram of [3]:

A

For greater n, it is very inconvenient to draw the whole diagram of [n]. Instead,
the folded diagram of [n] can be easy to show as

0 > 1 > 2 > N

By observation, the diagram of [n] looks like the standard geometric simplex |A"|:
the objects are vertices, the morphisms are edges and the compositions
fulfil them.

Given m,n € N, a functor a: [m] — [n] is a non-decreasing map i.e. k < j implies

a(k) < a(y).
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Definition .4 (Simplex category). Let A denote simplex category, the objects of
simplex category are {[n]}nenugoy and the morphisms are functors between natural
categories.

Definition .5 (Simplicial objects). Given a category C'C, a simplicial object in C is
a contravariant functor from A to C. Morphisms between simplicial sets are natural
transformations. In particular, a simplicial set is an object in Fun(A®, Set) and we
denote the category Fun(A°P, Set) of simplicial sets by sSet.

Remark .6. Since Set is cocomplete, namely, then sSet is also cocomplete, namely, sSet
has all small colimits.

Example .7. For [n] € A, a simplicial set A,, defined by
An([m]) := Homa([m], [n])

is called the standard n-simplex.
By Yoneda lemma, for any simplicial set X,, there is a canonical isomorphism

Homgget (An, X) ~ X,

Elements in X, are called n-simplices of X.
The boundary 9A,, is defined by

OA,([m]) := {f € Homa([m],[n]) | f is not surjective}
For 0 < k < n, the k-horn Af is defined by

An([ml]) := {f € Homa([m], [n]) | £(Im]) U {k} # [n]}

Notation .8. There are two elementary morphism classes in A

; : J j<z

:n—1]—[n], 7
[ ] = n], J {j+1 i>i
| . o
a’:[n+1]-»[n],kH{? i
3=d Py

For any simplicial set X, the face map d;.: X,, — X,,_1 is X(6*) and the degeneracy
map si: X, = X, is X(0x). A Simplex in X, is called degenerated simplex if
it is an image of a degeneracy map.

We will set that these two kinds morphisms are the most essential ones in the
simplex category, because these two kinds of morphisms generates the simplex category.
To see this, we need the following two lemmas.
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Lemma .9. If f: [n] = [m] is not surjective, then there exists §' and f' such that

[n] 7 [m]

e e

4
[m —1]
Lemma .10. If g: [n] = [m] is not injective, then there exists o* and ¢’ such that

) —— [m]

o'kf '
~ g

[n—1]
Proposition .1. Any morphism in A is a composition of some &' and o*.

Example .11 (The nerve of category). Given a locally small category C, the simplicial
set N(C) defined by
N(C)p := Fun([n],C)

which is essentially the set of n-composable morphisms in C. The degeneracy map is
given by composition and the face map is given by adding an identity morphism. In
particular, N([n]) & A,.

Actually, N: Cat — sSet is a fully faithful functor.

Definition .12 (Cosimplicial object). Given a category C, the covariant functors A —
C is called cosimplicial set. The category of cosimplicial sets is denoted by cSet.

Given a cosimplicial object ) in the category C, there is an associated functor
Singg, : C — sSet defined by

Singq(X)n := Home(Q(Ar), X)
Proposition .2. If C is a cocomplete category, given then there is an adjunction
(| = |, Singg) : Fun(A, Set) = C
In particular, let S, be a simplicial set

|Se|@ = colim pg
A/Se

where A/S, is the simplex category of S. with objects ([n], A, — S.) and
po: ([n], An = X) = Q([n])

Sketch proof. Use small object argument, seel® and'?. B

Example .13 (Geometric realization and singular functor). The n-standard simplex
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A, is defined as follows

‘Anl = {(x()?xl" = ,x'n) S " I Z.’Z’,’ = ].}
Then A,, — |A,| determines a cosimplicial space and determines an adjunctions
(| = |, Sing): sSet = Top

For a simplicial set S,, the topological space (actually a simplicial/cellular complex)
|Se| is called the geometric realization of S,. In details,

IS.| — I_l IAn| X Sn/ e

n>0

where the relation ~ is given by the face maps and the degeneracy maps. The original
idea is inM]. Sing is called singular functor.
This adjunction is actually a Quillen equivalence, seel'?.

Example .14 (Chain complex realization and the normalize functor). In this example,
we will show an adjunction between the category of simplicial abelian groups and the
category of chain complexes.

Given a simplicial abelian group A,, the normalized chain complex M(A.) of A,
is defined by
q—1
Ni(A) = (" ker(di: Ag = Ag)

=0

Given a simplicial set S,, the free generated simplicial abelian group Z[S,] is defined
by
Z[Ss)n := Z[S,), the free abelian group generated by S,

Then we define a cosimplicial chain complex by
[n] = Ap = Z[AR] = No(Z[An])
and we denoted the adjunction associated to this cosimplicial chain complex by
(M., Z[-],T): sSet = Ch
Actually, NV, is a natural equivalence (and a lax monoid functor), seel™® which is
called Dold-Kan correspondence.

There is another equivalent definition of normalized complex. Given a simplicial
abelian group A4,, the Moore complex M,(A,) associated to A, is defined by

M., (A,) = A,

and the boundary map

n
Gyi= Zd,-: A, = A1

=0

the degenerate complex D, (A, ), associated to A, is a subcomplex of M, (A,)defined
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D, (A,) := free abelian groups generated by degenerated n-simplices in A,

Then there is a fact that N,(A,) = M,(A,)/D.(A,), see alsol'3].

Thus we have the diagram

sSet
A
A k
Ch < AR Space

Moreover, the homotopy theory on these three categories are compatible in this dia-
gram. In particular, the interval objects coincide

I= |0 = Ay = I, = Ni(Z[A])

Appendix B: Monoidal categories and enriched categories

Definition .15. Let C be a category. A nonunital monoidal structure on C consists
of the following data:

1. A functor @: C x C — C, which is called tensor product functor.

2. A collection of isomorphisms axyzX® (Y ®Z) ~ (X®Y)® Z, for any X,Y, Z
in C, called associativity constraints of C.

and the data satisfies the following rules:

1. for every triple of morphisms f: X — X', g: Y = Y/ and h: Z — Z', the

diagram
XYz —2X2 4, (X®Y)®Z
J@(g@h) (f@9)®h
Xt ® (Y’ ®Z’) W (X’@ Y’) ® Z'
commutes.

2. For every quadruple of objects W, X,Y,Z in C, the diagram of associativity
constraints commutes

WR(XeY)®Z) — W (XQY))®~Z

I |

WeXeY®Z2z) We(XeY))eZ

| _—

WeX)® (Y e®2)
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Let (®, ) denote the nonunital monoidal structure.
A unit in (®,«) is a pair (e,v) where e is an object C and v: e® e — e is an
isomorphism, which satisfies the following condition: the functors

Cc—C C—e®C

and
Cc—C C—C®e

are fully faithful. Since these two functors are fully faithful, for each X in C, we have
right unit constraints Axy: e® X — X and left unit constraints px: X ®e - X
induced by v and the associative constraints.

A monoidal category with unit object e is a category C with (®, a,e,v).

Example .16. The categories Vect, Set, sSet,Ch, Mod, Space, Top have monoidal
structures.

Definition .17 (Lax nonunital monoidal functor). Let C and D be two monoidal
categories, a lax nonunital monoidal functor F': C — D is a functor with a collection
of isomorphisms puxy: F(X ®Y) = F(X) ® F(Y) for each X,Y in C such that the
following diagram commutes for any pair of morphisms f: X — X', g: Y - Y ' in C

F(X)® F(Y) 2% F(X®Y)

lF (HeF(g) lF (f®9)

F(X)® F(Y) 2% F(X'®Y")

and these morphisms are compatible with the associativity constraints on C and D.

Example .18. The realization functor, the singular functor and Dold-Kan correspon-
dence are all lax monoidal functors.

Definition .19 (Enriched categories). Let A be a monoidal category with unit object
e. An A-enriched category C consists of the following data:

1. A collection of objects;
2. For every pair of objects X,Y in C, there is an object Hom#'(X,Y) in A;

3. For every triple of objects X,Y, Z in C, there is a morphism
ex.y.z: HomZ (Y, Z) @ Hom@'(X,Y) — Homy'(X, Z)

in A, which is called the composition law;

4. For every object X in C, there is a morphism ey : ¢ — Homg'(X, X) as the
identity of X;

and these data should satisfy the following rules:

1. the composition law is associative;
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2. for any objects X, Y, the following diagrams commute

e ® HomA(X,Y) S » HomA(Y,Y) ® HomA(X,Y)
Hom{(X,Y)
and
HomA(X,Y)®e il » HomA(X,Y) ® HomA(X, X)
Homg'(X,Y)

where A p, ¢ are left unit constraints, right unit constraints and the composition
law.

Given two A-enriched category C and D, an A-enriched functor F' consists of a
collection morphisms Fyy: Hom@(X,Y) — HomA(X,Y) that preserve identities.

Remark .20. Given a lax monoidal functor G': A — B and an A-enriched category C,
then there is a change of base to make C a B-enriched category via G by

HomZ(X,Y) := GHom¢'(X,Y)

Example .21. Given a commutative ring, the category of R-module Mod is enriched
by itself. Similarly, by taking operator complexes in Definition 3.6, Ch is enriched by
itself.

sSet is enriched by it self by setting

Hom®3%(X,Y), = Homg(X %Ay, Y)
for simplicial sets X, Y.
Space is a category enriched by Top, see next section.
Appendix C: Compact-open topology for mapping spaces
Motivation .22. In the category Mody we have the typical adjunction:

Hom(L ® M, N) = Hom(L,Hom(M, N))

The key point is that, in Mod, the morphisin set has a module structure naturally. This
is a good property. We wonder if we can do similar things on topological space. We
want to define an appropriate topology on the set Homr,,(X,Y")) so that the adjunc-
tion still works, or still works for some good topological space, for example locally com-
pact, Hausdorff,etc. Moreover, for any topological space X, we want Homqpa,(—, X)
or Hompe, (X, —) to be functor from Top to Top.
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Let Y := Homrep,(X,Y) be the set of continuous maps from topological space X
to topological space Y. For K C X, U C Y, we denote

W(K,U) = {f eY*: f(K) c U}

Definition .23 (Compact-open topology). The compact-open topology on Y is gen-
erated as subbasis by

{W(K,U) : compact K C X,open U C Y}

The following propositions will show why we endow topology on Y¥ in this way.

Proposition .3. Let f: X — Y be a continuous map, for any topological space Z, the
induced maps fZ: Y% — X% and Z7: ZX — ZY are continuous.

Proof. Let K be a compact subset of X, U be an open set of Z, then W(K,U) is an
open in X7 be the definition. It suffices to show the preimage of W(K,U) is an open
set in YZ. Since f is continuous, f(K) is still compact in Y, then W(f(K),U) is open
in Y% and Z/(W(f(K),U)) Cc W(K,U).

For Z/, let L be a compact subset of Z, O be an open subset of Y, and we consider
ZI(W(L, f~1(0)) € W(L, O), then the result is straightforward. O

Remark .24. This proposition shows that why we choose compact sets and open sets
to construct compact-open topology. The reason is that under a continuous map,
compact sets are mapped to compact sets while the preimage of an open set is an open
set. One may ask:'Why not use connected sets? Connected sets are still preserved
under continuous maps.” The following proposition will show us why we prefer compact
sets.

Proposition .4. Let [ : X xY — Z be a conlinuous map, the adjoint map
A X = ZY by fANx)(y):= f(x,y) is continuous.

Proof. For W(K,U) C ZY, where K is compact and U is open, we want to show
ATW(K,U)) is open. For any z € f " Y(W(K,U)), f({z} x K) C U and f!
is open and covers {x} x K. By the definition of product topology, we may write
fYU) = Uie] A; x B; where A; C X, B; C Y and both are open. Since K is
compact, there exists a finite subcover Uf:’:l A, x B, to cover {z} x K and we may

require x € A, for each n. Let V = ﬂf:;l A,, which is open in X and we have
VxKcf1U)ie f(VxK)cUie fNV)CW(K,DU). O

Remark .25. Clearly, in the category Set, we have a canonical bijection (actually a a
pair of adjoint functors):

Homset(X X Y, Z) £ Homset(X, Homset(Y, Z))

Proposition .4 shows that, if we endow the morphism set with compact-open topology,
the canonical map is well-defined in Top, which is the reason why we require compact-
ness instead of connectedness when defining the topology! We need the finiteness of
subcover!

We always assume that YX is endowed with compact-open topology when it is
mentioned as a topological space. The next question is whether the canonical
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map is a bijection with compact-open topology. To formulate this question
more clearly, we define some notations:
Let X,Y,Z be topological spaces, then the evaluation evyy =ev: YX x X - Y
defined by (f,z) — f(z).
Given a continuous map g: X — ZY, define the map ¢g¥ = evy z o (g x idy).
Define
o FEE oy (N

by setting 6(f):= f” and define
ﬁi (ZX)Y oy ZXxY

by setting 8(g):= ¢".

Clearly, in Set, oo 8 = id(zx)y and o a = idgzxxy. When it comes to Top, to
answer the question, we first need to check 8 is well defined. The key point is whether
the evaluation map is continuous.

Proposition .5. Let X be a locally compact (in my notes, compactness requires Haus-
dorff while quasicompactness does not have to) topological space. Then the evaluation
evxy =ev:Y* x X =Y defined by (f,z) — f(z) is continuous.

Proof. Let U be an open neighbourhood of f(z). Since f is continuous, f~'(U) is
a neighbourhood of x. Recall the definition of locally compactness, we can find a
compact nbhd K of z such that K € f~1(U) i.e. f(K) C U. Hence W(K,U) x K C
ev-1(U). O

Corollary .1. Suppose X,Y are locally compact, then for any topological space Z, we
the the canonical bijection (homeomorphism actually):

ZXXY o~ (ZX)Y

We will see that locally compact spaces are good enough to have this good bijection.
However, locally compactness is not the necessary condition. For more sophisticated
description of the spaces that own the canonical bijection in Corollary .1, Steenrod
gave us the suitable subcategory of Top is the category of compactly generated spaces,
see in". Let Space be this good category that all the objects in Space admit the
canonical bijection. We simply call these objects spaces. To study algebraic topology,
we just need to focus on Space instead of Top. Let Map(X,Y') be the topological space
that is Homrp (X, Y) with compact-open topology.

Definition .26. The homotopy category of spaces Ho(Space) has the same objects as
Space, the morphisms are homotopy classes, i.e.

HOInI‘io(Space) (:II, y) = WOMap(x, y)
Moreover, in Spacex, the evaluation maps are continuous and

(X, xo)(y’yO) = Map((X, -'130), (Y’ yO))
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with compact-open topology (sometimes, we may omit the based point for conve-
nience), does the bijection still holds?

Let (X,z0), (Y,%),(Z, z9) be three pointed spaces, and the based point of ZY is
the constant map from Y to zg. If we require a: Z¥*¥ — (ZX)Y is a based map,
then f”(zp) is the constant map i.e. f(xo,Y) = 2o. Switch the positions of X and Y,
we have f(X,yo) = z0. Hence we have f({zo} X Y U X X {yo}) = 29. Conversely, for
a based map ¢: Y — Z¥X ie. o(yo)(z) = z,Vz € X, we have p¥(X x {y}) = 2.
Similarly, switch the positions of X and Y again, we have oY (X x {yo}U{zo} xY) = 2.
In summary, we have

{f € Map(X x Y,Z) : f({mo} x YUX x {y0}) = 20} = Map(X,Z")  (24)

Definition .27 (Smash product). The smash product of two pointed topological
spaces (X, ), (Y, yo) is

XAY =X Y [{z) XY UX %{10)
Thus, according to Eq.(24), the adjunction in Spacex is given by
Map(X AY, Z) = Map(X, Z¥) (25)

Remark .28. Smash product is similar to tensor product ®. Observe that the based
point of a pointed topological space functions like ® of a module.

Appendix D: Obstruction theory and representability theorems

Motivation .29. Let B be a CW-complex and A C B be a subcomplex. Let X" =
AU B"™ and given a map f: X™ — Y, where Y is an n-simple space i.e. m1(Y) acts on
7, (Y) trivially i.e. S — Y determines an element in m,(Y") which is independent of
the choice of based point. Now the question is: Can we extend this map to B*'?
We may try to do it cell by cell. Let o be an n + 1-cell of B which is not in A and
o: 58" — X" C B is the characteristic map, then f o6 : " — Y is an element in
Tl YD,

Observation 1: f can be extended to X" Uo = X" U; D™ if and only if f o is
null-homotopic.

Let ¢(f): o + [f o d] be a cochain in C"*(B, A;m,(Y)) (recall the definition of
cellular cohomology).

Observation 2: If ¢(f) = 0, then we can extend f to B"*!.

We call ¢( f) the obstruction to extending f over B"*! or simply obstruction
cocycle. (We haven’t check that c(f) is a cocycle yet, but it is a fact.)

Proposition .6. Let K be a CW-complez of dimension < n and X is an n-connected
space, then any map f: K — X is null-homotopic.

Proof. Take (B,A) = (K x I, K x dI). Let ¢: K — X be a constant map, then we
have fUc: K x dI — X. Note that X is n-connected, hence the obstruction of f Lle
vanishes (actually, the whole cohomology group of coefficient 7,,(X) vanishes), hence
we may extend f Llc to K x I, which is the homotopy that we need. O
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Definition .30 (Difference cochain). Let f,g: X™ — Y be two maps that agree on
X™=1 Given an n-cell o not in A with the characteristic map &: S* ' — X" !. Then
we define d(f, g),: S™ — Y by talking S™ = D7 U S" 1 U D" with d(f, 9olon = flo
and d(f, g)o|p» = glo. Thus we get an n-cochain in C"(B, A; m,(Y’)) by defining

d(f,g) : o [d(f,9).]

which is called difference cochain between [ and g.

Proposition .7. Given f: X — Y and a cochain d € C™(B, A;7,(Y)), then there
exists g: X" —'Y such that d(f,g) = d and f|xn-1 = g|xn-1.

Proof. We just need to deal with the simple case: given d,: S™ — Y and f,: D" = Y,
there exists g,: S™ — Y such that g,| pp = fo and g; =2 d;.

Regard D™ as a subcomplex of S™ and clearly do|}, : D™ — Y is homotopic to
Jo: D™ =Y. Let h e such homotopy, then by HEP for CW pair (S™, D"), we have a
homotopy H: S™ x I — Y such that the following diagram commutes:

.pn

D" = s D" x |

/

i Y ixid

Sn ’° S S x 1

we just let g, = hy = h(—, 1) and it is done. O

Lemma .31. There is a coboundary formula for the difference cochains:

od(f, g) = c(g) — e(f) (26)

Proof. First, we consider the simplest non-trivial case where f and g are different on
only one n-cell e C X. Let 0 be an (n + 1)-cell of X; we want to show that

c(9) 0 —c(f)-o=[o:€ld(f,g) e

where [0 : ¢] is the coefficient of e in do.

Let ¢: D™ — X be a characteristic map for 0. We may assume that ¢~!(e)
consists of several open balls, of which every one is mapped homeomorphically onto e,
with preserving or reversing the orientation, and recall the definition of the boundary
maps in the cellular chain complex, [0 : €] is the difference of the number of balls where
the orientation is preserved and the number of balls where the orientation is reversed.
Then we represent ¢(f) - o and ¢(g) - ¢ by the maps of spheres, then see the following
picture

For the general case, we just check it cell by cell and the proof is completed. [

Lemma .32. There is an addition formula for the difference cochains

d(f,h) = d(f,g)+ d(g, h) (27)
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M ul«hﬂm f
9

e e

d(f,g)-e o:€]-d(f,9)-e  c(g)-o—c(f)-0

Figure 3: ¢(g) -0 —¢(f) -0 = [0 : €]d(f,9) - €

Sketch proof. The proof is similar to the Figure 3. O

Theorem .33. There is a map g: X" — Y which agrees with f on X™ if and only

if [e(f)] = 0.

Proof. 1f [¢(f)] = 0, then there exists d € C™(B, A;m,(Y)) such that ¢(f) = 4(d).
By previous proposition, we can find g : X™ — Y such that g|xsn-1 = g|xn-1 and
d(f,g) = —d. Then ¢(f) = 6(d) = —6(d(f,g)) = c¢(f) — c(g) = 0, then we can extend
g to XL

Conversely, if there is such g, let d = d(f, g|x») and [¢(f)] = 0 by considering
o(d). O

Remark .34. The key point is to use cochain or cocycle to determine the existence of
homotopy, by taking (B, A) = (K x I, K x 0I).

Theorem .35. Let K be a CW-complez of dimension n f|gn ~ g|gn relative on K™1
if and only if d(f,g) =0 in C*(K;m,(Y)).
flxn >~ glgn relative on K™ 2 if and only if [d(f,g)] = 0 in H"(K;m,(Y)).

Sketch proof. If f,g: K — Y agree on K" ! we take (B, A) = (K x I, K x 8I), then
there is a natural map k: X™ — Y(recall that X" = AU B") such that k|gnyq0y =
[s klgnxgy = g and k|gn-144(z,t) = f(z) = g(x). Further, c(k) corresponds to
d(f|gn,9|gn). Then if d(f,g) = 0 in C*(K;m,(Y)) & C""(ZK;m,(Y)). Note that
C™(B,A;m,(Y)) 2 C™Y(B/A; mn(Y)) = C*Y(ZK; 7, (Y)). Hence c(k) = 0 implies
that we can extend k: X" — Y to H: K x I — Y, which is the homotopy we need.
Conversely, we just reverse the direction of previous argument to show it is also true.

Similarly, we may use Theorem .33 to show the second assertion. O

Definition .36. Let 7 be an abelian group and n be a positive integer, the Eilenberg-
Maclane space K(m,n) is a CW-complex such that m,(K(m,n)) = 0 if ¢ # n and
(K (7, n)) = 7.

Remark .37. The homotopy type of K (m,n) is totally determined by 7« and n. A con-
crete cellular construction of K(m,n) is taking a wedge sum of n-spheres as generators
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of 7, then gluing boundaries of n + 1-disks on the representatives of the relations, then
gluing higher cells to kill all the homotopy groups m,(X) for ¢ > n.

Actually, up to homotopy equivalence, it is independent of the choice of concrete
construction.

Definition .38. We take the concrete cellular construction of K (m,n) mentioned in
Remark .37 as the model.

Let ¢ € C™"(K(m,n); ) be the cochain that assigns each n-cell to the corresponding
elements in 7. we claim that ¢ is cocycle and we will prove the claim in Lemma. Then
the cohomology class F; represented by ¢ is called the fundamental class.

Lemma .39. ¢ is a cocycle.

Proof. Note that the n+ 1-cells of K(m,n) corresponding to the relations of the gener-
ators. Suppose an n + 1-cell corresponds to the relation . k;g; = 0 for k; € Z and g;
is a generator and e; is the cell corresponding to g;, then according to the coboundary
formula 26, we have

de(o) = Z[aa : eile(e;) = Zk,-g,- =0

i

Proposition .8. F, = [d(const, id)]

Proof. For any n-cell o € K(7,n), we have
d(const, id) - 0 = [d(const, id),]

where 0 = S = D US"' U D" and d(const, id), (D% U S""!) is a constant map and
actually d(const,id), is homotopic to the inclusion map of o, so [d(const,id),] is the
element in 7 corresponding to o. O

Theorem .40 (Hopf-Whitney). Let K be a complex of dimension n, let Y be an
(n — 1)-connected space. Then

k: [X,K(m,n)] — H"(X;n) (28)
1] — f(F)

Proof. First, we show k is surjective. Let u be a cohomology class in H"(X; ) and
let ¢ be a representative cocycle of u. By Proposition .7, there exists a map f: X" —
K(m,n) such that f(X"') is a O-cell of K(m,n) and d(const, f) = ¢. Then we may
extend f to X, since the obstructions in 7,(K (7, n)) = 0 are trivial for all ¢ > n. Note
that f#: C"(K(n,n);7) — C™(X;7) maps d(const,id) + d(const, f) = ¢, which is
what we need.

Second, we show k is injective. Suppose f,g are two maps from X to K(m,n)
with f*(F,) = ¢*(F,). By cellular approximation, we may assume f, g are cellular. In
particular, f|X"~! = g|xs-1 = const. Note that d(f, g) = d(const, g) —d(const, f) = 0,
by Theorem .35, f ~ g. O
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