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Classifications and visualization for the behavior
of eigenstates in gapless quantum mechanical

systems

Chenlu Huang

(Department of Mathematics Tutor: Yifei Zhu)

[ABSTRACT]: The swallowtail catastrophe naturally exists in non-Hermitian
systems with both parity-time and pseudo-Hermitian symmetries, revealing tran-
sitions among diverse topological singularities. In this thesis, we aim to figure
out how eigenvectors behave while changing the parameters. Firstly, we will
give some properties of a single swallowtail, whose geometric structure often
arise in non-Hermitian systems in a more complicated way. Additionally, we
will show detailed calculation process for the evolution of eigenvectors by giv-
ing 2-band Hamiltonian as example. Then, we will do similar calculation for a
given 3-band non-Hermitian Hamiltonian. Firstly, we will show the stratified
parameter space with the dimension of characteristic subspace on the discrim-
inant surface. Based on this, we will calculate several non-trivial loops and
illustrate how eigenvectors behave. Moreover, we will show some ideas of fur-

ther work.

[Key words]: Swallowtail; Non-Hermitian Hamiltonian; Singularities; Evo-

lution of eigenvectors
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1. Background and introduction
1.1 Motivation

To describe a physical system, we always use some parameters, such as the tempera-
ture and pressure. These parameters can change, and form parameter space. In this thesis,
we consider non-Hermitian Hamiltonian matrix with real parameters preserving two sym-

metries:[!

nHn=' = H',[H, PT] = 0 where = ((1) 0 )
—in—1

Here are some examples for such H:

LA l-fi=f h fa fife i fo
-h -1 f3 ], —fi h=f s |- h fs
—f2 f3 -1 —f fs fa= s —fo f3 fo

In general, the entries of Hamiltonian matrix can be written as polynomials of some
relative parameters. Given values of parameters, there will be some energy bands, which
are related to eigenvalues in mathematics. When the eigenvalues are distinct, these energy
bands are gapped. However, for some singular points, two eigenvalues will degenerate (see
Figurel). Then, the corresponding two energy bands become gapless. If we consider more
about the evolutions of the corresponding eigenvectors, then some non-trivial evolutions will

arise due to the singularities.

I———— ) Ly -
A1

— eigenvalues

gapless Az ~

(fl, fz, . ) parameter space

Figure 1 Gapless Hamiltonian



1.2 Overview of recent research

Recently, Prof. Yifei Zhu, in cooperation with Hongwei Jia et al. from the Hong Kong
University of Science and Technology, have made a significant progress in studying non-
Hermitian systems. They discovered that the swallowtail catastrophe naturally existed in
non-Hermitian systems with both parity-time and pseudo-Hermitian symmetries, revealing
transitions among diverse topological singularities. The topological structure of the singular
spaces involved is extremely rich and intricate, and detailed visualization of these systems
under adiabatic evolution has been highly desirable for solving related classification prob-

lems.[!
1.3 Introduction of this thesis

Our main work will be shown in section 4, but before that we will introduce some simple
structures and methods first.

In section 2, we introduce some geomertic structure of a single swallowtail, including
properties of its discriminant surface and stratified space. In section 3, we show detailed pro-
cess to calculate the behavior of eigenvectors by giving two examples of Hermitian Hamil-
tonian and non-Hermitian Hamiltonian respectively.

In section 4, we aim to figure out the behavior of eigenvectors along loops in parameter
space. In section 4.1, we introduce an efficient method to figure out the evolution of an
n-dimensional (n > 3) vectors by only figuring out the image of a function. This method
offers reduction by focusing on the non-constant part of eigenvectors. In section 4.2, we
will give the root structure of a non-Hermitian Hamiltonian. In section 4.3, we calculate
two loops around singularities. In section 4.4, we calculate three loops intersecting with
discriminant surface. Both in section 4.3 and section 4.4, we mainly show how the directions
of eigenvectors change by giving the visualisations for their eigenvector bundles.

In section 5, we will introduce some possible further work, based on the results in section



2. Swallowtail

The singularity of a single swallowtail arises in the discriminant surface of
ft) =t + 2t + yt + 2. (1)

where z,y,z € R.
2.1 Discriminant surfaces

For every polynomial f(t) that can written in the form as equation (1), its coefficients
correspond to a point (x,y,z) in R®. Conversely, for each point (x,y,z) in R3, it also corre-
sponds to a monic polynomial f(t) = t* + xt*> + yt + 2 with real coefficients. Therefore,
there exists a bijection between the set { f(¢) : f(t) = t* + xt* + yt + z, (x,y,2) € R3} and

R3.

— 14217 +1
t'-212+1
4+ 12+ 3t

— '+ £2-3t

Figure 2 Polynomials f(t) = t* + 2t> + yt + 2

See Figure 2, when (x,y,z) varies in R?, the number of real roots and the signs of roots
will change. So, we hope to find the root structure of f{(t) in its coefficient space R3. With
this hope, we first consider the points where polynomial has repeated roots.

Definition 2.1 Let f(t) be a monic polynomial of degree n. Over C, f(t) can has n roots,

namely ¢, t9,- - | 1,.

—_

n—

FOy=t"+> ait' =] (t—t;) 2)

% i=1

n

I
o



Then, the discriminant A is
A=l —t) 3)
i<j

Remark 2.2 A is a polynomial in the coefficients a;(0 < i <n —1).

In particular, the discriminant surface of f(t) = t*+xt>+yt+2is givenby A(x,y, 2) =
0, where repeated roots arise. We will show some properties of this discriminant surface first.
Notice that f(t) has a zero with multiplicity at least 2 < ged(f, f') # 1 < there exists T € C
such that f(7) = f(7)" = 0, which gives equations

(4)

My dyr+z= 0
47° 4 2eTr +y = 0

Take x and 7 as independent variables. Then, we can solve y,z

= —74_-9
{y T xrT (5)

z= 374 27°
Therefore, the discriminant surface can be parameterized by x and 7
0 1

= | -4 +az |27 (6)
374 72

IS ISR

for all x € R and some 7 € C such that y, z € R.

Proposition 2.3 The discriminant surface of f(t) = t* + xt? + yt + z is a ruled surface
with an isolated curve attached at the origin.

Proof. To prove this proposition, we consider two cases: 7 € R and 7 € C in the
parameterization (6).

Forall 7 € R, y and z are already in R, and therefore the parameterization (4) is clearly
a union of lines in R3, and therefore is a ruled surface. (see Figure 3)

For 7 ¢ R as a zero of f(t), write 7 = a+bi, where a,b € Rand b # 0. Then, 7 = a—bi

is also a zero of f(t) for real coefficient x,y,z, because

fE) = +aP +yr+z=1"+arl+yr+2=0.



Figure 3 Ruled surface

So, if 7 ¢ R is a zero with multiplicity at least 2, then 7T is a distinct zero also with
multiplicity at least 2. Therefore, 7,7, 7, 7 are all zeros of f(t) with none of them is real.
Then, we can write f(t) = (t — 7)?(t — 7)? = [(t — a)* + b?]%. Since it must have the form
as f(t) = t* + xt? + yt + z (i.e. the coefficient of £* is 0), then a=0 and f(t) = (t> + b*)? =
t* +2b%2 + b*. Therefore, all points (X,y,z) such that f(t) has two double complex roots form

an isolated curve parameterized by b

x = 20
y=0 ,0eR (7)
2=

Eliminating the parameter b, we obtain
1 =4z
, (> 0) (8)
y =
which is a half of parabola.

Since f(t) cannot have real roots along this curve, then this curve does not intersect with

the ruled surface. However, take x — 0, (z,y,2) — (0,0, 0). So, they are connected at



the origin. We complete the proof.
Actually, we have a similar proposition for the discriminant surface of a kind of poly-
nomials at any degree n (n>3).

Proposition 2.4 The discriminant surface S C k3 of
P(z,y,2,t) = f(t) + zg(t) + yt + 2z € k[z,y, 2,1]

is a ruled surface, where £ is algebraic closed and f, g € k[t] satisfying
(1) fis monic;
(2) n=deg(f)>deg(g)>1;
(3)%—{7&0and‘f737£0;
(4) char(k)# 2,3,5.1
2.2 Stratified parameter space

Next, we will shift our attention from the surface to the whole space. Before giving a
specific structure, we will give a brief explanation of the word “stratified”.

An n-dimentional topological stratification of X is a filtration
g=X1CXyCX;---CX,=X.

We call X a stratified space, and the i-dimensional stratum of X is the space X; \ X;_;.

Saying roughly, if a topological space is equipped with a partition into smooth mani-
folds, then it is called a stratified space.l*!

If we consider the three real coefficients X,y,z as parameters, then the parameter space
R3 is a stratified parameter space. By the continuity of the natural map from (x,y,z) to four
roots in C, the discriminant surface split the coefficient space into some path connected
components, each of which stands for one situation of roots. Therefore, we can describe the
situations of roots in a geometric way, which we call “root structure”.

For polynomials of degree 4, there are 5 possible situations for the number of the re-

peated roots (see Table 1). Here, same numbers mean repeated roots and different numbers



mean distinct roots. For example, type 1111 means there is a quadruple root, and type 1234

means four distinct roots.

Table 1 Types of roots

1234 four distinct roots

1123 a double root and two distinct roots
1122 two double roots

1112 a triple root and a distinct root

1111 a quadruple root

Let S(type) denote all the points in the parameter space where the corresponding type
arises. Take X = X3 = R3, X3\ Xy = S(1234), X5 \ X; = S(1123), X; \ Xy =
S(1122) U S(1112) and X, = S(1111). Then, we will show that this is a stratification of
the parameter space X = R3. Here, X, \ X are pieces of surfaces; and X \ X are several
special curves.

To give more specific root structure, we use r to denote a real root and use c to denote a
complex root with nonzero imaginary part. Then, there are different finer types for 1234,1123

and 1122.

Table 2 Finer types of roots

1234 Irrr
rrce

CcCcCC

1123 rrrr

1rce

1122 Irrr

CcccC

For X5, it is the discriminant surface containing types of roots: 1123,1122,1112 and
1111. Also, it splits S(1234) into three different path connected components with different

finer types: rrrr,rrcc and cccce. (see Figure 4)



For X, it is some special curves on the discriminant surface intersecting at a point.

Here, we will give their parametrizations for different finer types.
* Type 1122(cccc): two double complex roots

Recall equation (8), it is the curve

2 __
{x ¥ @0 9)

* Type 1122(rrrr): two double real roots

Suppose f(t) = (t — a)?(t — b)?. Expanding f(t), then we have f(t) = t* — 2(a +
b)t3 + (a® + 4ab + b*)t? — 2ab(a + b)t + a?b® with a,b € R. Since f(t) has the form

f(t) =t + xt? + yt + 2, then

0=2(a+0)
x = a® + 4ab + b*

10
y = —2ab(a +b) (10)
2 = a’b?
Eliminating b by 2(a + b) = 0, we obtain a parametrization for the curve
T = —2a°
=0 ,a €R (11)
z=a'
So, the curve is
22 =4z
(z < 0) (12)
y=20

which is another half of the parabola.
* Type 1112(rrrr): triple root

Suppose f(t) = (t—a)?(t—b) with a # b. Similarly, we can obtain the parameterization

of it
r = —6a®
y=28a> ,ac€R,a#0 (13)
z = —3a"



If we modify the type 1112 by comparing the triple root and the fourth root (see Ta-
ble3), then the corresponding curves have same expressions as equation(13) with a<0 and
a>0 respectively.

Table 3 Finer types of roots for triple roots

1112 The triple root is less than the fourth root.

1222 The triple root is larger than the fourth root.

Finally, for Xy, it is the origin (0,0,0), where four different path connected components
of X7 \ Xy (i.e. the four special curves above) meet. So, we call it as meeting point.

The stratified parameter space gives the root structure. (see Figure 4)

1123 1111
(rrec) quadruple root

1 double

n1 real root

1234
(cccee)

— — = no real roots

1122 2 double
(rrrr)  real roots

-~

Y 2 double
-------- complex
.. t
1234 4 distinct _ roots 1122
(rrrr) real roots - (ccee)

\ 2 distinct 1234

triple root real roots  (rrec)
(purple curves)

1222

Figure 4 Root structure

For a given non-Hermitian Hamiltonian matrix H[fi, fo, f3] with parameters fi, fo, f3 €
R, we can also obtain a discriminant surface in R? by its characteristic polynomial f()\) =
|H — \I|. The discriminant surfaces of the 3 non-Hermitian Hamiltonian matrices mentioned

in sectionl.1 can be seen in Figure 5 respectively.



1 A f 1-fi—fr f fa fHfe fi £
H=|-f -1 f H, = —fi h-fs fs Hy=|-fi i f3
- fi -1 —f fs o fs ~fo f3 f

Figure 5 Discriminant surfaces

Although multiplicities of eigenvalues are different from the situations of the single
swallowtail, these discriminant surfaces have similar geometric structure locally. The first
discriminant surface can be think of as four swallowtails connected. The second is two
separated swallowtails. The third discriminant surface is four swallowtails connected in a
more complicated way with some other geometric structures such as cones.

Similar to the single swallowtail, the corresponding root structures can be given. (Here
is an example for H; to be seen in section3.2.) For the convenience of mentioning the similar

geometric structures in Figure 6 later, we give notations as the Table 4.

.-—\
Figure 6 Stratified parameter space

10



Table 4 Notations for exceptional surfaces, lines and points!"!

Notations Types of roots in Geometric features in Figure 6
a single swallowtail
ES 1123 surfaces with black “edges”
NIL 1122(rrrr) the red curve where two ESs meet
NL 1122(cccc) the isolated red curve
EL 1112 or 1222 the blue curves
MP 1111 the black meeting point of the above curves

3. 2-band Hamiltonian

After figuring out the structure of the parameter space, we can consider the evolutions
of the corresponding eigenvectors (or “eigenstates” in physics) along some loops.

At each point in the parameter space, the eigenvectors can change continuously. How-
ever, there is some difference between the real eigenvectors and the complex eigenvectors
(with nonzero imaginary part).

For real eigenvalues, the corresponding eigenvectors are real. Moreover, there are only
two corresponding unit eigenvectors, namely v and -v, for a given eigenvalue A\ with mul-
tiplicity 1. Notice that the map v — —wv is discontinuous but the eigenvalues and the
corresponding eigenvectors are change continuously. Therefore, if we fixed the initial direc-
tion of an eigenvector, then the final direction is unique as long as the eigenvalue keep real
along the loop.

Unlike this, for a complex eigenvalue, it has infinitely many corresponding unit complex
eigenvectors. Moreover, by multiplying a complex eigenvector by ¢(Y), we can rotate it to
any direction we want within a path continuously whenever 6(t) is a continuous function.

In general, we only consider conjugate (or reversely conjugate) eigenvectors for conju-
gate eigenvalues. When we take the Hermitian angle to describe the relative position of two
conjugate (or reversely conjugate) eigenvectors, the result is independent of the expressions

we use for eigenvectors. Unfortunately, we still cannot have a unique solution in mathemat-

11



ics for the final direction of an eigenvector, which is an unsolved problem in this thesis. In
section 3-4, we just give some expressions for eigenvectors which are consistent with the
result of physical experiments.

In this section, we will give examples of 2-band Hermitian Hamiltonian and non-Hermitian
Hamiltonian to show detailed calculation process for the evolution of eigenvectors, which

will provide inspiration for 3-band cases.
3.1 Hermitian Hamiltonian
Example 3.1 Take
= (ﬁ ! ;3)
Its characteristic polynomial is f(\) = |[H — M| = \* — f? — f3, where L is the 2 x 2
identity matrix. So, the parameter space R? has only one singularity at the origin. Write two

eigenvalues A\, = /f2 + fZand \_ = —/f% + f2. Then, the corresponding eigenvectors

arc

oy = (fz VI f;?) o <f3 -V +f§)
f1 T f1 '

We can see that eigenvalues and eigenvectors are real. Additionally, the eigenvectors
corresponding to distinct eigenvalues are orthogonal to each other. Although this conclusion
can be obtained without calculation because H is a real symmetric matrix, with concrete
expressions of eigenvectors we can go further.

Now, we can consider a loop around the singularity (i.e. the origin)

= cost
{fl t € [0,2n)],

f3 = sint ’

The eigenvectors can be expressed as

- sint + 1 o — sint — 1
7\ cost )7\ cost )

Then, we normalize v, and v_, and plot their first and second components respectively.

(see Figure 7)

12



—— The first component of v+ ~— The first component of v-

The second component of v+ The second component of v-

\’/

(a) v, (b) v.

Figure 7 The first and second components of v, and v_

Notice that the discontinuities arise at ¢t = 37” and ¢ = 7§ respectively. These disconti-
nuities can be seen as v changes to -v at these points. So we can take proper signs to ensure
the continuity of their change.

—— The first component of v+ ~— The first component of v—
The second component of v+ The second component of v-

: : : \

(@v. (b)v.

Figure 8 The first and second components of v, and v_

To be specific, take

] .
<s1nt + 1> e, 3_7r)

v =
T /Gint+ 1)2 + cos?

1 i 3
Vy = — - (Slnt+1)vt€ [_7(72,”]
V/(sint +1)2 4 cos2t \ c0st 2

1 sint — 1 s
v_ = - ,t€]0,=)
V/(sint — 1)2 4 cos2t \ ©OSt 2

and

13



1 sint — 1 T
v = — - € [=,27).
V/(sint — 1)2 4 cos2t \ ©Ost 2

Then, the Figure 8 shows that the eigenvectors change continuously to their opposite
directions from ¢ = 0 to ¢ = 2.

Moreover, using these continuous expressions of v, and v_, we can obtain the corre-
sponding eigenvector bundles from ¢ = 0 to ¢ = 27. The two bundles are half of two Mobius

bands orthogonal to each other everywhere.

L Eigenstate for A+
L Eigenstate for A-

Figure 9 t varies from 0 to 27

If t varies from 0 to 47, then two eigenvectors are back to the initial situations, and the

bundles could be two complete Mobius bands.

L] Eigenstate for A+
[l Eigenstate for A-

Figure 10 t varies from 0 to 47

We will see similar results in a 3-band system later.

3.2 Non-Hermitian Hamiltonian

(3 f1
H‘(—fl —fs)

Its characteristic polynomial is f(\) = |H — M| = \* + fZ — f2. Two eigenvalues are

Example 3.2 Take

14



f3=-f1

2 real roots f3=f1

{%\ double root
no real roots /

(] no real roots

2 real roots

Figure 11 Stratified parameter space of H

Take the corresponding eigenvectors

v, = (f3+\_/ﬁ_fl2>=”—: <f3—

Consider a loop containing the origin

= cost
h . ,t€]0,2n],
f3 =sint
At and A_ are real when t € %, 37| U [2F, Tr],

The eigenvectors along this loop can be expressed as

V3= fiand Ao = —/fF — ff. When fi = fsor fi = —fs, f()) has a double

real root. When | f1| > |f3|, there are two distinct real eigenvalues. When | f1| < |fs|, there
are two distinct complex eigenvalues with nonzero imaginary part. (see Figure 11) This root

structure is more complicated than the 2-band Hermitian case.

VI = It

wr)

o — (sint+\/—cos Qt) o — (sint— v/ — cos 2t>
+ = y U= — .
cost

—cost

Let
int
at) = sin
v
t
b(t) = — cos
(|



When v, is real, we can write

vy fa(t) +c(t)
||v+||‘( 10 ) (14

When it is complex, we write

i (a(t) + c(t)z') 15)

loall

Then, taking proper signs, we can plot the image of two components of v, when it is
real and plot a(t), b(t), c(t) respectively when it is complex. Similarly, we can plot the image

of components of v_. (see Figure 12)

a(t)-c(t) when v- is real

a(t)+c(t) when v+ is real

a(t) when v- is complex

a(t) when v+ is complex
b(t) -bi(t)

-«===- c(t)when v+iscompex  ====s ~c(t) when v~ is complex

(a) v. (b) v.

Figure 12 Image of components of v, and v_

When t varies from 0 to 27, v, changes to —v, and v_ changes to —v_. Moreover, they

are conjugate for ¢ € (2, 57) and reversely conjugate for ¢ € [0, Z) U (IF, 27].

Therefore, the corresponding eigenvector bundles are also half of Mobius bands, but

they are not orthogonal.

16



4. Loops in 3-band non-Hermitian Hamiltonian systems

Although 3-band cases are more complicated, the calculation steps are similar with the
2-band cases. So, in this section, we will skip some calculation steps and only give the
expressions of eigenvalues and eigenvectors.

Firstly, we will introduce a quick method to determine whether the eigenvectors change

to its opposite direction.
4.1 A method for reduction

When calculating how the vectors behave along loops, it is hard to plot vectors in higher
dimension. However, when the loops lie in some planes related to the symmetry of the
discriminant surface, the explicit expressions of eigenvectors are not so complicated. In this
section, we will introduce a method to simplify the calculation in a special situation.

Let v be a unit vector in R™. If v can be written in the form

U1
V2

fol

L Un

where v; € R(1 < ¢ < n) are constant except for v; = f(¢) € R a function for some
1<j<n.

Then, the trace of the end point of |Z—| is contained in a circle S*.

Only the trace is not enough. We still need to know how v rotates along such circle. To
ensure that the vector changes continuously, we only need to remove the infinite discontinuity

points of f(t). ( f(t) cannot have other kinds of discontinuity. )

Let N denote the plane (or hyperplane) where w in it satisfies

17



U1
V2

Vj—-1

Uj+1

Un

To ensure the continuity of the vectors, only one condition need to be required: the point
a which represents the value of f(t) can pass through the plane N only when f(t)=0. Moreover,
it is only allowed to move from —oo to 400 on the same side of N. So, we can identity two
pairs of —oo and +oco, and then gain an S'. Obviously, there exist an homeomorphism

between two St. (see Figure 13)

a=F S o S
N / /\ /_Fw’ - identify N / /_\ /_fw’ -
Fo= o/ U I::v\(’ :ln‘: —H= °/ U

Figure 13 A method for reduction

More generally, for functions f(¢) € C, the method still works if we use the complex
planes instead of axes and consider S? instead of S*.
4.2 Root structure of the parameter space

In section4, we give examples for the following specific Hamiltonian.

L f e
Hi=|-fi -1 fs
_f2 f3 —1

Before calculating the evolutions of eigenvectors in this parameter space, we need to

18



give its specific root structure first.

A=A >

(1 cigenvector )

(b)

b e ER—. AL=A =3
(1 eigenvector )

A=A > A3

( 2 eigenvectors )

\ y

W/
© @

Figure 14 Root structure of the parameter space

Let h(A) = |H — M| be the characteristic polynomial. Then, solving the equations 2 =
h' = h"” = 0, we can obtain the ELs. (The explicit expressions of ELs are too complicated to
write down, but one parametrization is given in the appendix.) Note that ELs are symmetrical
about two planes, namely f; = f> and f; = —f5. So, we can find NLs and NILs by solving
A(f1, f2, f3) = 0 under conditions f; = f, and f; = — f respectively. Then, we obtain the
root structure. Here, we will give more information about the dimension of the characteristic
subspace.

Points that are not on the surface are divided into four regions (see Figure 14(a)), three of
which have three distinct real roots. Besides, the discriminant surface is divided into several
pieces of surfaces, all of which can be classified into three different kinds according to their
geometric shapes. The pieces of surface whose shapes are like a triangle has smaller double
roots than the third roots. Other pieces of surface has larger double roots than the third roots.
Both of these two kinds has 1-dimensional characteristic subspace for the double roots (see

Figure 14(b)). Additionally, NILs and NLs here are two orthogonal circles intersecting at

19



the origin with two isolated arcs perpendicular to each other. Along these two circles, the
relationship between the eigenvalues is as shown in the figure and almost all points have 3
distinct eigenvectors except for four meeting points (see Figure 14(c)). Finally, the EL3s are

points where triple roots arise with 1-dimensional characteristic subspace (see Figure 14(d)).

* 2NILs and 4 NLs

f1 =cost
fo=—cost ,te[0,2m)
f3:1+Sint
f1 =cost
fa = cost ,t €[0,2m)
f3:—1—|—Sint
e 5 MPs
(2\/5 2/2 2) ( 2v/2 2v/2 2) (2\/5 2v/2 _2) (_2\/5 _2\/5 _2) (0.0,0)
3 b 3 73 b 3 ) 3 73 ) 3 ) 3 ) 3 ) 3 b 3 ) 3 ) ) )

Notice that it seems to be simpler than the root structure of single swallowtail, because
there can only be 1 or 3 real roots for polynomials of degree 3 and there cannot have a pair
of double complex roots. However, it still have similar shapes with a single swallowtail. For
other non-Hermitian Hamiltonian, their structures are also similar. So, it is considerable to
only consider the specific Hamiltonian given before.

With the root structure, it is easier for us to study the behavior of eigenvectors. In the
following sections, we only calculate some special loops. However, by the continuity, we

can obtain the same evolution for several kinds of loops.

4.3 Loops around singularities

In this section, we will calculate two loops around an NL and a MP respectively. (see
Figure 15)

Example 4.1 The first loop (see Figure 15(a)) is given by the following parametrization
o : [-m, 7] — R?

ay it (f1, f2, f3)
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(a) Loopl (b) Loop2

Figure 15 Two loops around singularities

(f 1 t
= ——cos
NG
1
{ fo = ——=cost,t€|—7,0
fa NG [, 0]
1 .
\ng—ESIHt
1 1
flzicos(zlﬁ+t)
1 1
f2:§Sin(Z7T+t) ,tE[O,T(]
f3=0

Fort € [—m, 0], the eigenvalues are

1
A= o(=2sint + V/2(29 — 5cos 2t + 16sint))

1 -
Ay = §(_2 sint — 1/2(29 — 5cos 2t + 16 sint))

1
A3 =—1+ ésint

— A3
— X2
JE—————————— -0sf A1

Figure 16 Eigenvalues for ¢ € [—, 0]
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For ¢ € [0, 7], the eigenvalues are distinct constants

Alzﬁa)@:_ﬁ

Ay = —1
2 273

Since the loop does not intersect with the discriminant surface, then the eigenvalues
keep distinct. Moreover, the corresponding three eigenvectors are linearly independent ev-
erywhere. So, we can obtain three eigenvector bundles without intersection or exchange,
each of which illustrates how the corresponding eigenvector behave along this loop.

For ¢t € [—m, 0], the corresponding eigenvectors are

0
V1 = -1
1

L(—4v2sect + sect/29 — 5cos (2t) + 16sint — /2 tant)

Vg = 1
1

1(—4v2sect —secty/29 — 5cos (2t) + 16sint — /2tant)
V3 = 1
1

For ¢t € [0, ], the corresponding eigenvectors are

vy = | —tan(§ +1)

Vg = cot (§ +1)
1
(V3 —2)csc(Z+1)
vg = cot (§ +1)
1

We can gain three stratified vector bundles along this loop by considering the unit eigen-
vectors. (see Figure 17)

The first bundle is trivial. The second and the third ones show that eigenvectors v, (or
v3) rotate to their opposite direction —vy (or —v3) from ¢ = —7 to t = 7. Similar to the

2-band cases, these two bundles can be seen as half of Mobius bands.
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I Eigenstate for A1 L Eigenstate for A2 L Eigenstate for A3

Figure 17 Eigenvector bundles for loop1

Example 4.2 The second loop (see Figure 15(b)) is given by the following parametriza-
tion

as : [0,27] — R?

6% tt— (f17f27f3)

fi= 3 cost
1
f2 — §Sint ,t S [0727'(']
f3=0
The eigenvalues are
V3 V3
Al = 7,)\2 = —7,)\3 = -1,
and the corresponding eigenvectors are
—(2++/3)cesct
v = cott
1
(v/3 —2)csct
Vg = cott
1
0
v3 = | —tant
1

We can also gain three stratified vector bundles. However, the frame of eigenvectors
cannot keep parallel to the three coordinate axes of the loop in this case. More explanation

will be given in the following.
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O

Trivial Non-trivial

Figure 18 Two different kinds of behavior of eigenvectors

We hope to distinguish between the two situations in Figure 18.

OO

Figure 19 Offset

Let t be the tangent vector of the loop. Let “x” denote that the direction of t is into the
paper, and ““-” denote that t is outward the paper. For the non-trivial situation, if the frame of
eigenvectors is parallel to the three coordinate axes, then there will exist an offset along the
loop, which leads to a trivial bundle. (see Figure 19)

Therefore, we need to modify the frame of eigenvectors here such that the angle between
this frame and the Frenet frame of the loop is constant. After this modification, we obtain

the following eigenvector bundles. (see Figure 20)

K Eigenstate for A1 L Eigenstate for A2 L Eigenstate for A3

Figure 20 Eigenvector bundles

All eigenvectors rotate to their initial position. However, the second and the third bun-

dles are non-trivial with rotation 7.
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4.4 Loops intersecting with discriminant surface

We can do similar work for other loops which pass through the discriminant surface in

the parameter space. (see Figure 21)

(a) Loop3 (b) Loop4 (c) Loop5

Figure 21 Three loops intersecting with discriminant surface

Example 4.3 The third loop (see Figure 21(a)) is parameterized by

as : [0,27] — R?

ag :t— (f1, f2, f3)

f1 =cost
fa=cost ,te€]0,27]
f3=2+sint
The eigenvalues are
1 V—=7—9cos2t .
M ==-(2+ L sint)

V2

1 v =7 —9cos 2t
V2

A3 = —3 —sint

+ sint)

In Figure 22, we only plot the eigenvalues when they are real. We can see that A\; and
Ao become the same fourth time, which is consistent with the number of points where this

loop intersects with the discriminant surface. Besides, A\; and A\, become conjugate when
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they are complex.

— A3

Al

Figure 22 Eigenvalues

Take corresponding eigenvectors as the following

i(\/—14 — 18 cos2tsect + 2tant)
V1 = 1
1

%;(_\/_14 — 18cos2tsect + 2tant)
1

0
V3 = -1
1

v3 1S a constant vector, and thus has a trivial bundle. Using the method in section 4.1,
we can obtain the evolutions of v; and v, by only calculating their first components.

Let

a(t) = |[v/—14 — 18 cos 2t| sect
b(t) = 2tant

Then, when v, and v3 are real, they can be written as

1(a(t) +0(1))

V1 = 1
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When v, and v3 are complex, write

v = 1

Vo = 1

The images of a(t) and b(¢) are

# — aft)

£ g b(t)

Figure 23 The images of a(t) and b(t)

Note that the first components of two eigenvectors have a discontinuous point respec-
tively. Therefore, we can draw a conclusion that they change to the opposite direction after

2.

I Eigenstate for A1
Il Eigenstate for A2

V1 = —V2
V1 = —Vy

Figure 24 Eigenvector bundles

Moreover, we can plot two segments of bundles where v, and v, are real. (see Figure
24) In each segment, two vectors with the same direction will rotate to opposite directions.

In two complex regions, one is where the two eigenvectors are conjugate, and another one
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is where v; and —wv, are conjugate. Their evolution is similar to the two eigenvectors of the
2-band non-Hermitian case in section 3.2.

Example 4.4 The fourth loop (see Figure 21(b)) is a more complicated but more inter-
esting loop.

From the root structure, we can obtain the evolution of three eigenvectors directly in
the segment where they are all real vectors. (see Figure 25) In this segment, v, changes from
vy = v at the left b to vy = vy at the right b. Then, v, keep conjugate with v; and change to
—uv3 when returning to the left b. So, there are two nontrivial eigenvector bundles exchange

with a trivial bundle along this loop.

® A1
a V1 = V2
Ay b
V2 = U3
b A3
o
a

Figure 25 Eigenvalues in real region

Example 4.5 The fifth loop (see Figure 21(c)) has 3 trivial bundles, although it intersects

with the discriminant surface.

5. Further work

Aiming to make classification, we consider the Moduli space. For example, the Moduli
space M, of 2-band non-Hermitian Hamiltonian is S* v S v S* and then we can obtain
71 (My). Forn > 3, m1(M,,) is non-Abelian!®! and much more complicated than M,.

Additionally, since we hope to figure out the evolution of eigenvectors, we consider
eigenvector bundles. If we see unit real vectors v and -v as two points, then the behavior
along loops can be seen as principle S°-bundles over S?.

Proposition 5.1 There are only two principle S°-bundles over S*. (see Cohen 2002,

Theorem 2.7[61)
* The trivial bundle
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G0y gl % 80 5 g1

Figure 26 Trivial bundle

The total space S* x S is disconnected. In Example 4.1, v; cannot change to —v; after

27. So, its bundle is trivial.

* The Hopf bundle

S0y gl 5 gt

Figure 27 Hopf bundle

The total space S* is connected and is isomorphic to the margin of a Mobius band.
In Example 4.1, vy and v3 change to —vy and —wj3 after 2. So, the corresponding two
eigenvector bundles are Hopf bundles.

For the loop 1 and loop 3 we have calculated in section 4, they all have two Hopf

bundles and one trivial bundle. However, the corresponding eigenvectors for Hopf bundles
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are different. For loop 1, v5 and v3 generate Hopf bundles, while for loop 3, v; and v, generate

Hopf bundles.

o
NIL: EL3
.\
N7 e’ “MP
o

Figure 28 Loop 1 and Loop 3

However, only these two kinds of bundles is not enough to classify loops. In Example
4.2, all eigenvectors return to their initial direction. However, the bundles of v, and v3 are

non-trivial. Actually, loop 2 can be seen as two loop 1 connected.

Figure 29 Another way to obtain loop 2

The two non-trivial bundles of loop 2 both are formed by two Hopf bundles. However,
two Hopf bundles connected can be a trivial bundle. We need to consider the orientation to
distinguish between two different situations in Figure 18.

Moreover, S° is not enough for complex vectors. Additionally, in Example 4.4, the
eigenvector bundles exchange. So, only consider bundles formed by one eigenvector is not

enough. We need to find the relation between eigenvectors or their bundles.
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Appendix
Here is part of codes for calculation.

ClearAll["Global™ %"]

(*2-band non-Hermitian case: Using sin,cos or tan to make components continuousx)
Sin[=2522] sin[t] +V_Cos[2t

Plot 4 [t] [2t]
Norm[Sin[ =2te37

* 3
. 1] Norm[{Sin[t] + V-Cos[2t] , -Cos[t]}]

& =2t+3
Sin[=2b2x +/Cos[2t]
Norm [Sin [ =2ts3n
4

sin[t]
* )
11 Norm[VCos[2t] | Norm[{Sin[t]+V-Cos[2t] , -Cos[t]}]

Sin [ =2 t4+37r ]

Cos[t]

Nor'm[S:i.n['“;;"]] Norm[{Sin[t] + V/-Cos[2t] , -Cos[t]}] ’

Sin[ -2t4+37r]

v Cos[2t] }
* 3
Norm[Sin [ _“‘:3"]] Norm[{sin[t] + V-Cos[2t] , -Cos[t]}]
{t, @, 2+ Pi}, PlotStyle -> {RGBColor[@, ©, .9], RGBColor[@, .3, .9], Orange,

{Dashed, RGBColor[@, .3, .9]}}, PlotLegends -> {"a(t)+c(t) when v+ is real",

"a(t) when v+ is complex", "b(t)", "c(t) when v+ is complex"}]

(xHow to plot the discriminant surfacex)

-f1 -1 f3

1 fi1 f2
H[fl_, f2_, f3_] := ( ];
-f2 f3 -1

s =3;

ploth = ContourPlot3D[Discriminant[CharacteristicPolynomial [H[f1, f2, f3], w], w] == 0O,

{f1, -s, s}, {f2, -s, s}, {f3, -s, s}, AxesLabel -> Automatic,

Mesh -> None, ContourStyle -> Opacity[0.6] ];

(*Plot the ELsx)

32 (449 £32)>
36 + 27 £32 -
£32

3
3vVe

plotel = ParametricPlot3D[{{-

1 £32 (-4 +9 £32)3 3
——|[-2+/6 3 36+27f32—¥—3 = £33
-4 - 27 f32 £32 2
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3/2
32 (-44+9 f32)°
£3 |36 +27 32 -

£32

A £32 (-4+9F32)°

36 +27 F32 - + > £3},

£32 6V6

. :{fsz(-4+9f32)3
36 + 27 3% - £32 (-4+9-F32)3

£32 1
. 26 f3,(36+27F32 - —m ————
36 _4-2732 32

3/2
32 (-4+9 32)>
£3 |36 +27 £32 -

£32
3 32 (-4+9£32)3
3 [ = £33,]|36+27f3%2- - 5

2 £32 6ve

£32 (-4+9 £32)3

36 +27 32+
32 1

3
36 -4-27 3?2

ONE

32 (-4+9£32)3 3
-246 f3 36+27f32+¥—3 = £33
£32 2

3/2
" £32 (-4+9 £32)
£3 |36 +27 3% +

£32
32 (-4+9f32)°
36+ 27 £32 + * > 3},

£32 66
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£32 (-4+9 £32)°

36 +27 3%+ = 2
{ 5 246 f3
346 -4-27 32
3 32 (-4+9f32)°
3 | = f33,|36+27 32y —m————————— _

2 £3?

3/2
£32 (-449 £32)°

3 |36+ 27 F32+
£32

6Ve

(*How to obtain eigenvalues and eigenvectorsx)
. 1 1._.
Eigenvalues [H[ = Cos[t], —Sin[t], @]]
2 2
. 1 .
Eigenvectors[H[ = Cos[t], = Sin[t], @]]
2 2

(*How to plot a vector bundlex)

. 1 1.
ParametricPlot3D|[{ {{;Cos[t], ;Sln[t], e} +

Sin[t] v
*

36 +27 3% +

32 (-4+9f32)>

£3?

5 f-'3}}, {f3, -s, s}, PlotStyle » Red];

*

Norm[Sin[t]]

Norm[{-2Csc[t] + A/3 Csc[t], Csc[t] Sec[t] - Tan[t], 1}]

{(cscrt] Sec[t] - Tan[t]) Sin[t+ E] + (—2Csc[t] + \/?Csc[t]) Cos[t + E],
a 4

-sin[t+ 1] (—ZCsc[t] +w/?Csc[t]) +Cos[t+ 1] (csct] Sec[t] - Tan[t]), 1}}},
4 4

{t, 0, 2n}, {v, 0, .3}, Boxed » False, Axes - False,
PlotLegends - {"Eigenstate for 22"},

PlotStyle - LightGreen]
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