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Classifications and visualization for the behavior
of eigenstates in gapless quantum mechanical

systems

Chenlu Huang

（Department of Mathematics Tutor：Yifei Zhu）

[ABSTRACT]: The swallowtail catastrophe naturally exists in non-Hermitian
systemswith both parity-time and pseudo-Hermitian symmetries, revealing tran-

sitions among diverse topological singularities. In this thesis, we aim to figure

out how eigenvectors behave while changing the parameters. Firstly, we will

give some properties of a single swallowtail, whose geometric structure often

arise in non-Hermitian systems in a more complicated way. Additionally, we

will show detailed calculation process for the evolution of eigenvectors by giv-

ing 2-band Hamiltonian as example. Then, we will do similar calculation for a

given 3-band non-Hermitian Hamiltonian. Firstly, we will show the stratified

parameter space with the dimension of characteristic subspace on the discrim-

inant surface. Based on this, we will calculate several non-trivial loops and

illustrate how eigenvectors behave. Moreover, we will show some ideas of fur-

ther work.

[Keywords]: Swallowtail; Non-Hermitian Hamiltonian; Singularities; Evo-

lution of eigenvectors
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[摘要]：燕尾突变自然存在于具有宇称时间和伪厄米对称性的非厄米系
统中，揭示了不同拓扑奇点之间的状态转换。在这篇论文中，我们的目标

是找出本征态随参数改变时的演化规律。首先，我们将介绍单个燕尾模

型的一些几何性质，它的很多几何结构在非厄米系统的参数空间中经常

以更复杂的方式出现。此外，我们将以二能带的哈密顿量为例子，展示

我们计算特征向量演化行为的具体过程与方法。同时，二能带系统中特

征向量的演化规律也会出现在三能带的一些环路中，这就为我们计算更

复杂的情况提供了参考与灵感。接下来，因为三能带非厄米系统的参数

空间具有比较复杂的结构，但不同系统之间依然有很多相似之处，所以

我们将只对一个三能带的非厄米哈密顿量进行类似的计算。首先，我们

将给出对应的分层参数空间，以及判别面上特征子空间维数的情况。基

于参数空间的几何结构，我们将计算几个非平凡的环路，用可视化的方

法说明特征向量的演化规律，并且对这些环路的类型进行初步分类。在

最后，我们还将基于现有的结果展示一些进一步的研究想法。

[关键词]：燕尾模型；非厄米哈密顿量；奇点；特征向量的演化规律
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1. Background and introduction
1.1 Motivation

To describe a physical system, we always use some parameters, such as the tempera-

ture and pressure. These parameters can change, and form parameter space. In this thesis,

we consider non-Hermitian Hamiltonian matrix with real parameters preserving two sym-

metries:[1]

ηHη−1 = H†, [H,PT ] = 0 where η =

(
1 0
0 −In−1

)
.

Here are some examples for such H:
⎛

⎝
1 f1 f2

−f1 −1 f3
−f2 f3 −1

⎞

⎠ ,

⎛

⎝
1− f1 − f2 f1 f2

−f1 f1 − f3 f3
−f2 f3 f2 − f3

⎞

⎠ ,

⎛

⎝
f1f2 f1 f2
−f1 f1 f3
−f2 f3 f2

⎞

⎠ .

In general, the entries of Hamiltonian matrix can be written as polynomials of some

relative parameters. Given values of parameters, there will be some energy bands, which

are related to eigenvalues in mathematics. When the eigenvalues are distinct, these energy

bands are gapped. However, for some singular points, two eigenvalues will degenerate (see

Figure1). Then, the corresponding two energy bands become gapless. If we consider more

about the evolutions of the corresponding eigenvectors, then some non-trivial evolutions will

arise due to the singularities.

Figure 1 Gapless Hamiltonian
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1.2 Overview of recent research

Recently, Prof. Yifei Zhu, in cooperation with Hongwei Jia et al. from the Hong Kong

University of Science and Technology, have made a significant progress in studying non-

Hermitian systems. They discovered that the swallowtail catastrophe naturally existed in

non-Hermitian systems with both parity-time and pseudo-Hermitian symmetries, revealing

transitions among diverse topological singularities. The topological structure of the singular

spaces involved is extremely rich and intricate, and detailed visualization of these systems

under adiabatic evolution has been highly desirable for solving related classification prob-

lems.[1]

1.3 Introduction of this thesis

Our main work will be shown in section 4, but before that wewill introduce some simple

structures and methods first.

In section 2, we introduce some geomertic structure of a single swallowtail, including

properties of its discriminant surface and stratified space. In section 3, we show detailed pro-

cess to calculate the behavior of eigenvectors by giving two examples of Hermitian Hamil-

tonian and non-Hermitian Hamiltonian respectively.

In section 4, we aim to figure out the behavior of eigenvectors along loops in parameter

space. In section 4.1, we introduce an efficient method to figure out the evolution of an

n-dimensional (n ≥ 3) vectors by only figuring out the image of a function. This method

offers reduction by focusing on the non-constant part of eigenvectors. In section 4.2, we

will give the root structure of a non-Hermitian Hamiltonian. In section 4.3, we calculate

two loops around singularities. In section 4.4, we calculate three loops intersecting with

discriminant surface. Both in section 4.3 and section 4.4, we mainly show how the directions

of eigenvectors change by giving the visualisations for their eigenvector bundles.

In section 5, wewill introduce some possible further work, based on the results in section

4.
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2. Swallowtail
The singularity of a single swallowtail arises in the discriminant surface of

f(t) = t4 + xt2 + yt+ z. (1)

where x, y, z ∈ R.

2.1 Discriminant surfaces

For every polynomial f(t) that can written in the form as equation (1), its coefficients

correspond to a point (x,y,z) in R3. Conversely, for each point (x,y,z) in R3, it also corre-

sponds to a monic polynomial f(t) = t4 + xt2 + yt + z with real coefficients. Therefore,

there exists a bijection between the set {f(t) : f(t) = t4 + xt2 + yt+ z, (x, y, z) ∈ R3} and

R3.

Figure 2 Polynomials f(t) = t4 + xt2 + yt+ z

See Figure 2, when (x,y,z) varies in R3, the number of real roots and the signs of roots

will change. So, we hope to find the root structure of f(t) in its coefficient space R3. With

this hope, we first consider the points where polynomial has repeated roots.

Definition 2.1 Let f(t) be a monic polynomial of degree n. Over C, f(t) can has n roots,

namely t1, t2, · · · , tn.

f(t) = tn +
n−1∑

i=0

ait
i =

n∏

i=1

(t− ti) (2)
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Then, the discriminant ∆ is

∆ :=
∏

i<j

(tj − ti)
2. (3)

Remark 2.2 ∆ is a polynomial in the coefficients ai(0 ≤ i ≤ n− 1).

In particular, the discriminant surface of f(t) = t4+xt2+yt+z is given by∆(x, y, z) =

0, where repeated roots arise. Wewill show some properties of this discriminant surface first.

Notice that f(t) has a zero with multiplicity at least 2⇔ gcd(f, f ′) ̸= 1⇔ there exists τ ∈ C

such that f(τ) = f(τ)′ = 0, which gives equations
{
τ 4 + xτ 2 + yτ + z = 0

4τ 3 + 2xτ + y = 0
(4)

Take x and τ as independent variables. Then, we can solve y,z
{
y = −τ 4 − 2xτ

z = 3τ 4 + xτ 2
(5)

Therefore, the discriminant surface can be parameterized by x and τ
⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
0

−4τ 2

3τ 4

⎞

⎠+ x

⎛

⎝
1

−2τ
τ 2

⎞

⎠ (6)

for all x ∈ R and some τ ∈ C such that y, z ∈ R.

Proposition 2.3 The discriminant surface of f(t) = t4 + xt2 + yt+ z is a ruled surface

with an isolated curve attached at the origin.

Proof. To prove this proposition, we consider two cases: τ ∈ R and τ ∈ C in the

parameterization (6).

For all τ ∈ R, y and z are already in R, and therefore the parameterization (4) is clearly

a union of lines in R3, and therefore is a ruled surface. (see Figure 3)

For τ /∈ R as a zero of f(t), write τ = a+bi, where a, b ∈ R and b ̸= 0. Then, τ̄ = a−bi

is also a zero of f(t) for real coefficient x,y,z, because

f(τ̄) = τ̄ 4 + xτ̄ 2 + yτ̄ + z = τ 4 + xτ 2 + yτ + z = 0.
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Figure 3 Ruled surface

So, if τ /∈ R is a zero with multiplicity at least 2, then τ̄ is a distinct zero also with

multiplicity at least 2. Therefore, τ, τ, τ̄ , τ̄ are all zeros of f(t) with none of them is real.

Then, we can write f(t) = (t− τ)2(t− τ̄)2 = [(t− a)2 + b2]2. Since it must have the form

as f(t) = t4 + xt2 + yt+ z (i.e. the coefficient of t3 is 0), then a=0 and f(t) = (t2 + b2)2 =

t4+2b2t2+ b4. Therefore, all points (x,y,z) such that f(t) has two double complex roots form

an isolated curve parameterized by b
⎧
⎪⎨

⎪⎩

x = 2b2

y = 0

z = b4
, b ∈ R (7)

Eliminating the parameter b, we obtain

{
x2 = 4z

y = 0
, (x > 0) (8)

which is a half of parabola.

Since f(t) cannot have real roots along this curve, then this curve does not intersect with

the ruled surface. However, take x −→ 0, (x, y, z) −→ (0, 0, 0). So, they are connected at
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the origin. We complete the proof.

Actually, we have a similar proposition for the discriminant surface of a kind of poly-

nomials at any degree n (n>3).

Proposition 2.4 The discriminant surface S ⊆ k3 of

P (x, y, z, t) = f(t) + xg(t) + yt+ z ∈ k[x, y, z, t]

is a ruled surface, where k is algebraic closed and f, g ∈ k[t] satisfying

(1) f is monic;

(2) n=deg(f)>deg(g)>1;

(3) df
dt ̸= 0 and d2g

dt2 ̸= 0;

(4) char(k)̸= 2,3,5.[2]

2.2 Stratified parameter space

Next, we will shift our attention from the surface to the whole space. Before giving a

specific structure, we will give a brief explanation of the word “stratified”.

An n-dimentional topological stratification of X is a filtration

∅ = X−1 ⊂ X0 ⊂ X1 · · · ⊂ Xn = X.

We call X a stratified space, and the i-dimensional stratum of X is the spaceXi \Xi−1.

Saying roughly, if a topological space is equipped with a partition into smooth mani-

folds, then it is called a stratified space.[3]

If we consider the three real coefficients x,y,z as parameters, then the parameter space

R3 is a stratified parameter space. By the continuity of the natural map from (x,y,z) to four

roots in C, the discriminant surface split the coefficient space into some path connected

components, each of which stands for one situation of roots. Therefore, we can describe the

situations of roots in a geometric way, which we call “root structure”.

For polynomials of degree 4, there are 5 possible situations for the number of the re-

peated roots (see Table 1). Here, same numbers mean repeated roots and different numbers
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mean distinct roots. For example, type 1111 means there is a quadruple root, and type 1234

means four distinct roots.

Table 1 Types of roots

1234 four distinct roots

1123 a double root and two distinct roots

1122 two double roots

1112 a triple root and a distinct root

1111 a quadruple root

Let S(type) denote all the points in the parameter space where the corresponding type

arises. Take X = X3 = R3, X3 \ X2 = S(1234), X2 \ X1 = S(1123), X1 \ X0 =

S(1122) ∪ S(1112) and X0 = S(1111). Then, we will show that this is a stratification of

the parameter spaceX = R3. Here,X2 \X1 are pieces of surfaces; andX1 \X0 are several

special curves.

To give more specific root structure, we use r to denote a real root and use c to denote a

complex root with nonzero imaginary part. Then, there are different finer types for 1234,1123

and 1122.

Table 2 Finer types of roots

1234 rrrr

rrcc

cccc

1123 rrrr

rrcc

1122 rrrr

cccc

For X2, it is the discriminant surface containing types of roots: 1123,1122,1112 and

1111. Also, it splits S(1234) into three different path connected components with different

finer types: rrrr,rrcc and cccc. (see Figure 4)
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For X1, it is some special curves on the discriminant surface intersecting at a point.

Here, we will give their parametrizations for different finer types.

• Type 1122(cccc): two double complex roots

Recall equation (8), it is the curve

{
x2 = 4z

y = 0
, (x > 0) (9)

• Type 1122(rrrr): two double real roots

Suppose f(t) = (t − a)2(t − b)2. Expanding f(t), then we have f(t) = t4 − 2(a +

b)t3 + (a2 + 4ab + b2)t2 − 2ab(a + b)t + a2b2 with a, b ∈ R. Since f(t) has the form

f(t) = t4 + xt2 + yt+ z, then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = 2(a+ b)

x = a2 + 4ab+ b2

y = −2ab(a+ b)

z = a2b2

(10)

Eliminating b by 2(a+ b) = 0, we obtain a parametrization for the curve
⎧
⎪⎨

⎪⎩

x = −2a2

y = 0

z = a4
, a ∈ R (11)

So, the curve is {
x2 = 4z

y = 0
, (x < 0) (12)

which is another half of the parabola.

• Type 1112(rrrr): triple root

Suppose f(t) = (t−a)3(t−b)with a ̸= b. Similarly, we can obtain the parameterization

of it ⎧
⎪⎨

⎪⎩

x = −6a2

y = 8a3

z = −3a4
, a ∈ R, a ̸= 0 (13)

8



If we modify the type 1112 by comparing the triple root and the fourth root (see Ta-

ble3), then the corresponding curves have same expressions as equation(13) with a<0 and

a>0 respectively.

Table 3 Finer types of roots for triple roots

1112 The triple root is less than the fourth root.

1222 The triple root is larger than the fourth root.

Finally, forX0, it is the origin (0,0,0), where four different path connected components

of X1 \X0 (i.e. the four special curves above) meet. So, we call it as meeting point.

The stratified parameter space gives the root structure. (see Figure 4)

Figure 4 Root structure

For a given non-HermitianHamiltonianmatrixH[f1, f2, f3]with parameters f1, f2, f3 ∈

R, we can also obtain a discriminant surface in R3 by its characteristic polynomial f(λ) =

|H−λI|. The discriminant surfaces of the 3 non-Hermitian Hamiltonian matrices mentioned

in section1.1 can be seen in Figure 5 respectively.

9



Figure 5 Discriminant surfaces

Although multiplicities of eigenvalues are different from the situations of the single

swallowtail, these discriminant surfaces have similar geometric structure locally. The first

discriminant surface can be think of as four swallowtails connected. The second is two

separated swallowtails. The third discriminant surface is four swallowtails connected in a

more complicated way with some other geometric structures such as cones.

Similar to the single swallowtail, the corresponding root structures can be given. (Here

is an example forH1 to be seen in section3.2.) For the convenience of mentioning the similar

geometric structures in Figure 6 later, we give notations as the Table 4.

Figure 6 Stratified parameter space
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Table 4 Notations for exceptional surfaces, lines and points[1]

Notations Types of roots in Geometric features in Figure 6

a single swallowtail

ES 1123 surfaces with black “edges”

NIL 1122(rrrr) the red curve where two ESs meet

NL 1122(cccc) the isolated red curve

EL 1112 or 1222 the blue curves

MP 1111 the black meeting point of the above curves

3. 2-band Hamiltonian
After figuring out the structure of the parameter space, we can consider the evolutions

of the corresponding eigenvectors (or “eigenstates” in physics) along some loops.

At each point in the parameter space, the eigenvectors can change continuously. How-

ever, there is some difference between the real eigenvectors and the complex eigenvectors

(with nonzero imaginary part).

For real eigenvalues, the corresponding eigenvectors are real. Moreover, there are only

two corresponding unit eigenvectors, namely v and -v, for a given eigenvalue λ with mul-

tiplicity 1. Notice that the map v −→ −v is discontinuous but the eigenvalues and the

corresponding eigenvectors are change continuously. Therefore, if we fixed the initial direc-

tion of an eigenvector, then the final direction is unique as long as the eigenvalue keep real

along the loop.

Unlike this, for a complex eigenvalue, it has infinitelymany corresponding unit complex

eigenvectors. Moreover, by multiplying a complex eigenvector by eiθ(t), we can rotate it to

any direction we want within a path continuously whenever θ(t) is a continuous function.

In general, we only consider conjugate (or reversely conjugate) eigenvectors for conju-

gate eigenvalues. When we take the Hermitian angle to describe the relative position of two

conjugate (or reversely conjugate) eigenvectors, the result is independent of the expressions

we use for eigenvectors. Unfortunately, we still cannot have a unique solution in mathemat-
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ics for the final direction of an eigenvector, which is an unsolved problem in this thesis. In

section 3-4, we just give some expressions for eigenvectors which are consistent with the

result of physical experiments.

In this section, wewill give examples of 2-bandHermitianHamiltonian and non-Hermitian

Hamiltonian to show detailed calculation process for the evolution of eigenvectors, which

will provide inspiration for 3-band cases.

3.1 Hermitian Hamiltonian

Example 3.1 Take

H =

(
f3 f1
f1 −f3

)

Its characteristic polynomial is f(λ) = |H − λI| = λ2 − f 2
1 − f 2

3 , where I is the 2× 2

identity matrix. So, the parameter space R2 has only one singularity at the origin. Write two

eigenvalues λ+ =
√
f 2
1 + f 2

3 and λ− = −
√
f 2
1 + f 2

3 . Then, the corresponding eigenvectors

are

v+ =

(
f3 +

√
f 2
1 + f 2

3

f1

)
, v− =

(
f3 −

√
f 2
1 + f 2

3

f1

)
.

We can see that eigenvalues and eigenvectors are real. Additionally, the eigenvectors

corresponding to distinct eigenvalues are orthogonal to each other. Although this conclusion

can be obtained without calculation because H is a real symmetric matrix, with concrete

expressions of eigenvectors we can go further.

Now, we can consider a loop around the singularity (i.e. the origin)

{
f1 = cos t
f3 = sin t

, t ∈ [0, 2π],

The eigenvectors can be expressed as

v+ =

(
sin t+ 1
cos t

)
, v− =

(
sin t− 1
cos t

)
.

Then, we normalize v+ and v−, and plot their first and second components respectively.

(see Figure 7)

12



Figure 7 The first and second components of v+ and v−

Notice that the discontinuities arise at t = 3π
2 and t = π

2 respectively. These disconti-

nuities can be seen as v changes to -v at these points. So we can take proper signs to ensure

the continuity of their change.

Figure 8 The first and second components of v+ and v−

To be specific, take

v+ =
1√

(sin t+ 1)2 + cos2 t

(
sin t+ 1
cos t

)
, t ∈ [0,

3π

2
)

v+ = − 1√
(sin t+ 1)2 + cos2 t

(
sin t+ 1
cos t

)
, t ∈ [

3π

2
, 2π]

and

v− =
1√

(sin t− 1)2 + cos2 t

(
sin t− 1
cos t

)
, t ∈ [0,

π

2
)

13



v− = − 1√
(sin t− 1)2 + cos2 t

(
sin t− 1
cos t

)
, t ∈ [

π

2
, 2π].

Then, the Figure 8 shows that the eigenvectors change continuously to their opposite

directions from t = 0 to t = 2π.

Moreover, using these continuous expressions of v+ and v−, we can obtain the corre-

sponding eigenvector bundles from t = 0 to t = 2π. The two bundles are half of twoMobius

bands orthogonal to each other everywhere.

Figure 9 t varies from 0 to 2π

If t varies from 0 to 4π, then two eigenvectors are back to the initial situations, and the

bundles could be two complete Mobius bands.

Figure 10 t varies from 0 to 4π

We will see similar results in a 3-band system later.

3.2 Non-Hermitian Hamiltonian

Example 3.2 Take

H =

(
f3 f1
−f1 −f3

)

Its characteristic polynomial is f(λ) = |H − λI| = λ2 + f 2
1 − f 2

3 . Two eigenvalues are

14



Figure 11 Stratified parameter space of H

λ+ =
√

f 2
3 − f 2

1 and λ− = −
√
f 2
3 − f 2

1 . When f1 = f3 or f1 = −f3, f(λ) has a double

real root. When |f1| > |f3|, there are two distinct real eigenvalues. When |f1| < |f3|, there

are two distinct complex eigenvalues with nonzero imaginary part. (see Figure 11) This root

structure is more complicated than the 2-band Hermitian case.

Take the corresponding eigenvectors

v+ =

(
f3 +

√
f 2
3 − f 2

1

−f1

)
, v− =

(
f3 −

√
f 2
3 − f 2

1

f1

)
.

Consider a loop containing the origin

{
f1 = cos t
f3 = sin t

, t ∈ [0, 2π],

λ+ and λ− are real when t ∈ [π4 ,
3π
4 ] ∪ [5π4 ,

7π
4 ].

The eigenvectors along this loop can be expressed as

v+ =

(
sin t+

√
− cos 2t

− cos t

)
, v− =

(
sin t−

√
− cos 2t

cos t

)
.

Let

a(t) =
sin t
∥v+∥

b(t) = − cos t
∥v+∥

15



c(t) =
|
√
− cos 2t|
∥v+∥

When v+ is real, we can write

v+
∥v+∥

=

(
a(t) + c(t)

b(t)

)
(14)

When it is complex, we write

v+
∥v+∥

=

(
a(t) + c(t)i

b(t)

)
(15)

Then, taking proper signs, we can plot the image of two components of v+ when it is

real and plot a(t), b(t), c(t) respectively when it is complex. Similarly, we can plot the image

of components of v−. (see Figure 12)

Figure 12 Image of components of v+ and v−

When t varies from 0 to 2π, v+ changes to−v+ and v− changes to−v−. Moreover, they

are conjugate for t ∈ (3π4 ,
5π
4 ) and reversely conjugate for t ∈ [0, π4 ) ∪ (7π4 , 2π].

Therefore, the corresponding eigenvector bundles are also half of Mobius bands, but

they are not orthogonal.
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4. Loops in 3-band non-Hermitian Hamiltonian systems
Although 3-band cases are more complicated, the calculation steps are similar with the

2-band cases. So, in this section, we will skip some calculation steps and only give the

expressions of eigenvalues and eigenvectors.

Firstly, we will introduce a quick method to determine whether the eigenvectors change

to its opposite direction.

4.1 A method for reduction

When calculating how the vectors behave along loops, it is hard to plot vectors in higher

dimension. However, when the loops lie in some planes related to the symmetry of the

discriminant surface, the explicit expressions of eigenvectors are not so complicated. In this

section, we will introduce a method to simplify the calculation in a special situation.

Let v be a unit vector in Rn. If v can be written in the form

v =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
...

f(t)
...
vn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

where vi ∈ R(1 ≤ i ≤ n) are constant except for vj = f(t) ∈ R a function for some

1 ≤ j ≤ n.

Then, the trace of the end point of v
|v| is contained in a circle S

1.

Only the trace is not enough. We still need to know how v rotates along such circle. To

ensure that the vector changes continuously, we only need to remove the infinite discontinuity

points of f(t). ( f(t) cannot have other kinds of discontinuity. )

Let N denote the plane (or hyperplane) where ω in it satisfies

17



ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
...

vj−1

0
vj+1
...
vn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To ensure the continuity of the vectors, only one condition need to be required: the point

a which represents the value of f(t) can pass through the plane N only when f(t)=0. Moreover,

it is only allowed to move from −∞ to +∞ on the same side of N. So, we can identity two

pairs of −∞ and +∞, and then gain an S1. Obviously, there exist an homeomorphism

between two S1. (see Figure 13)

Figure 13 A method for reduction

More generally, for functions f(t) ∈ C, the method still works if we use the complex

planes instead of axes and consider S2 instead of S1.

4.2 Root structure of the parameter space

In section4, we give examples for the following specific Hamiltonian.

H1 =

⎛

⎝
1 f1 f2

−f1 −1 f3
−f2 f3 −1

⎞

⎠

Before calculating the evolutions of eigenvectors in this parameter space, we need to
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give its specific root structure first.

Figure 14 Root structure of the parameter space

Let h(λ) = |H−λI| be the characteristic polynomial. Then, solving the equations h =

h′ = h′′ = 0, we can obtain the ELs. (The explicit expressions of ELs are too complicated to

write down, but one parametrization is given in the appendix.) Note that ELs are symmetrical

about two planes, namely f1 = f2 and f1 = −f2. So, we can find NLs and NILs by solving

∆(f1, f2, f3) = 0 under conditions f1 = f2 and f1 = −f2 respectively. Then, we obtain the

root structure. Here, we will give more information about the dimension of the characteristic

subspace.

Points that are not on the surface are divided into four regions (see Figure 14(a)), three of

which have three distinct real roots. Besides, the discriminant surface is divided into several

pieces of surfaces, all of which can be classified into three different kinds according to their

geometric shapes. The pieces of surface whose shapes are like a triangle has smaller double

roots than the third roots. Other pieces of surface has larger double roots than the third roots.

Both of these two kinds has 1-dimensional characteristic subspace for the double roots (see

Figure 14(b)). Additionally, NILs and NLs here are two orthogonal circles intersecting at
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the origin with two isolated arcs perpendicular to each other. Along these two circles, the

relationship between the eigenvalues is as shown in the figure and almost all points have 3

distinct eigenvectors except for four meeting points (see Figure 14(c)). Finally, the EL3s are

points where triple roots arise with 1-dimensional characteristic subspace (see Figure 14(d)).

• 2NILs and 4 NLs
⎧
⎪⎨

⎪⎩

f1 = cos t
f2 = − cos t
f3 = 1 + sin t

, t ∈ [0, 2π)

⎧
⎪⎨

⎪⎩

f1 = cos t
f2 = cos t
f3 = −1 + sin t

, t ∈ [0, 2π)

• 5 MPs

(
2
√
2

3
,−2

√
2

3
,
2

3
), (−2

√
2

3
,
2
√
2

3
,
2

3
), (

2
√
2

3
,
2
√
2

3
,−2

3
), (−2

√
2

3
,−2

√
2

3
,−2

3
), (0, 0, 0)

Notice that it seems to be simpler than the root structure of single swallowtail, because

there can only be 1 or 3 real roots for polynomials of degree 3 and there cannot have a pair

of double complex roots. However, it still have similar shapes with a single swallowtail. For

other non-Hermitian Hamiltonian, their structures are also similar. So, it is considerable to

only consider the specific Hamiltonian given before.

With the root structure, it is easier for us to study the behavior of eigenvectors. In the

following sections, we only calculate some special loops. However, by the continuity, we

can obtain the same evolution for several kinds of loops.

4.3 Loops around singularities

In this section, we will calculate two loops around an NL and a MP respectively. (see

Figure 15)

Example 4.1 The first loop (see Figure 15(a)) is given by the following parametrization

α1 : [−π, π] −→ R3

α1 : t /−→ (f1, f2, f3)
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Figure 15 Two loops around singularities

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 =
1

2
√
2
cos t

f2 =
1

2
√
2
cos t

f3 = −1

2
sin t

, t ∈ [−π, 0]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 =
1

2
cos (

1

4
π + t)

f2 =
1

2
sin (

1

4
π + t)

f3 = 0

, t ∈ [0,π]

For t ∈ [−π, 0], the eigenvalues are

λ1 =
1

8
(−2 sin t+

√
2(29− 5 cos 2t+ 16 sin t))

λ2 =
1

8
(−2 sin t−

√
2(29− 5 cos 2t+ 16 sin t))

λ3 = −1 +
1

2
sin t

Figure 16 Eigenvalues for t ∈ [−π, 0]
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For t ∈ [0,π], the eigenvalues are distinct constants

λ1 =

√
3

2
,λ2 = −

√
3

2
,λ3 = −1

Since the loop does not intersect with the discriminant surface, then the eigenvalues

keep distinct. Moreover, the corresponding three eigenvectors are linearly independent ev-

erywhere. So, we can obtain three eigenvector bundles without intersection or exchange,

each of which illustrates how the corresponding eigenvector behave along this loop.

For t ∈ [−π, 0], the corresponding eigenvectors are

v1 =

⎛

⎝
0
−1
1

⎞

⎠

v2 =

⎛

⎝
1
2(−4

√
2 sec t+ sec t

√
29− 5 cos (2t) + 16 sin t−

√
2 tan t)

1
1

⎞

⎠

v3 =

⎛

⎝
1
2(−4

√
2 sec t− sec t

√
29− 5 cos (2t) + 16 sin t−

√
2 tan t)

1
1

⎞

⎠

For t ∈ [0,π], the corresponding eigenvectors are

v1 =

⎛

⎝
0

− tan (π4 + t)
1

⎞

⎠

v2 =

⎛

⎝
−(2 +

√
3) csc (π4 + t)

cot (π4 + t)
1

⎞

⎠

v3 =

⎛

⎝
(
√
3− 2) csc (π4 + t)
cot (π4 + t)

1

⎞

⎠

We can gain three stratified vector bundles along this loop by considering the unit eigen-

vectors. (see Figure 17)

The first bundle is trivial. The second and the third ones show that eigenvectors v2 (or

v3) rotate to their opposite direction −v2 (or −v3) from t = −π to t = π. Similar to the

2-band cases, these two bundles can be seen as half of Mobius bands.
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Figure 17 Eigenvector bundles for loop1

Example 4.2 The second loop (see Figure 15(b)) is given by the following parametriza-

tion

α2 : [0, 2π] −→ R3

α2 : t /−→ (f1, f2, f3)
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 =
1

2
cos t

f2 =
1

2
sin t

f3 = 0

, t ∈ [0, 2π]

The eigenvalues are

λ1 =

√
3

2
,λ2 = −

√
3

2
,λ3 = −1,

and the corresponding eigenvectors are

v1 =

⎛

⎝
−(2 +

√
3) csc t

cot t
1

⎞

⎠

v2 =

⎛

⎝
(
√
3− 2) csc t
cot t
1

⎞

⎠

v3 =

⎛

⎝
0

− tan t
1

⎞

⎠

We can also gain three stratified vector bundles. However, the frame of eigenvectors

cannot keep parallel to the three coordinate axes of the loop in this case. More explanation

will be given in the following.
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Figure 18 Two different kinds of behavior of eigenvectors

We hope to distinguish between the two situations in Figure 18.

Figure 19 Offset

Let t be the tangent vector of the loop. Let “×” denote that the direction of t is into the

paper, and “·” denote that t is outward the paper. For the non-trivial situation, if the frame of

eigenvectors is parallel to the three coordinate axes, then there will exist an offset along the

loop, which leads to a trivial bundle. (see Figure 19)

Therefore, we need tomodify the frame of eigenvectors here such that the angle between

this frame and the Frenet frame of the loop is constant. After this modification, we obtain

the following eigenvector bundles. (see Figure 20)

Figure 20 Eigenvector bundles

All eigenvectors rotate to their initial position. However, the second and the third bun-

dles are non-trivial with rotation π.
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4.4 Loops intersecting with discriminant surface

We can do similar work for other loops which pass through the discriminant surface in

the parameter space. (see Figure 21)

Figure 21 Three loops intersecting with discriminant surface

Example 4.3 The third loop (see Figure 21(a)) is parameterized by

α3 : [0, 2π] −→ R3

α3 : t /−→ (f1, f2, f3)
⎧
⎪⎨

⎪⎩

f1 = cos t
f2 = cos t
f3 = 2 + sin t

, t ∈ [0, 2π]

The eigenvalues are

λ1 =
1

2
(2 +

√
−7− 9 cos 2t√

2
+ sin t)

λ2 =
1

2
(2−

√
−7− 9 cos 2t√

2
+ sin t)

λ3 = −3− sin t

In Figure 22, we only plot the eigenvalues when they are real. We can see that λ1 and

λ2 become the same fourth time, which is consistent with the number of points where this

loop intersects with the discriminant surface. Besides, λ1 and λ2 become conjugate when
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they are complex.

Figure 22 Eigenvalues

Take corresponding eigenvectors as the following

v1 =

⎛

⎝
1
4(
√
−14− 18 cos 2t sec t+ 2 tan t)

1
1

⎞

⎠

v2 =

⎛

⎝
1
4(−

√
−14− 18 cos 2t sec t+ 2 tan t)

1
1

⎞

⎠

v3 =

⎛

⎝
0
−1
1

⎞

⎠

v3 is a constant vector, and thus has a trivial bundle. Using the method in section 4.1,

we can obtain the evolutions of v1 and v2 by only calculating their first components.

Let

a(t) = |
√
−14− 18 cos 2t| sec t

b(t) = 2 tan t

Then, when v2 and v3 are real, they can be written as

v1 =

⎛

⎝
1
4(a(t) + b(t))

1
1

⎞

⎠

v2 =

⎛

⎝
1
4(−a(t) + b(t))

1
1

⎞

⎠
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When v2 and v3 are complex, write

v1 =

⎛

⎝
1
4(a(t)i+ b(t))

1
1

⎞

⎠

v2 =

⎛

⎝
1
4(−a(t)i+ b(t))

1
1

⎞

⎠

The images of a(t) and b(t) are

Figure 23 The images of a(t) and b(t)

Note that the first components of two eigenvectors have a discontinuous point respec-

tively. Therefore, we can draw a conclusion that they change to the opposite direction after

2π.

Figure 24 Eigenvector bundles

Moreover, we can plot two segments of bundles where v1 and v2 are real. (see Figure

24) In each segment, two vectors with the same direction will rotate to opposite directions.

In two complex regions, one is where the two eigenvectors are conjugate, and another one
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is where v1 and −v2 are conjugate. Their evolution is similar to the two eigenvectors of the

2-band non-Hermitian case in section 3.2.

Example 4.4 The fourth loop (see Figure 21(b)) is a more complicated but more inter-

esting loop.

From the root structure, we can obtain the evolution of three eigenvectors directly in

the segment where they are all real vectors. (see Figure 25) In this segment, v2 changes from

v2 = v3 at the left b to v2 = v1 at the right b. Then, v2 keep conjugate with v1 and change to

−v3 when returning to the left b. So, there are two nontrivial eigenvector bundles exchange

with a trivial bundle along this loop.

Figure 25 Eigenvalues in real region

Example 4.5The fifth loop (see Figure 21(c)) has 3 trivial bundles, although it intersects

with the discriminant surface.

5. Further work
Aiming to make classification, we consider the Moduli space. For example, the Moduli

space M2 of 2-band non-Hermitian Hamiltonian is S1 ∨ S1 ∨ S1[4] and then we can obtain

π1(M2). For n ≥ 3, π1(Mn) is non-Abelian[5] and much more complicated thanM2.

Additionally, since we hope to figure out the evolution of eigenvectors, we consider

eigenvector bundles. If we see unit real vectors v and -v as two points, then the behavior

along loops can be seen as principle S0-bundles over S1.

Proposition 5.1 There are only two principle S0-bundles over S1. (see Cohen 2002,

Theorem 2.7[5])

• The trivial bundle
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S0 ↪→ S1 × S0 −→ S1

Figure 26 Trivial bundle

The total space S1×S0 is disconnected. In Example 4.1, v1 cannot change to−v1 after

2π. So, its bundle is trivial.

• The Hopf bundle

S0 ↪→ S1 −→ S1

Figure 27 Hopf bundle

The total space S1 is connected and is isomorphic to the margin of a Mobius band.

In Example 4.1, v2 and v3 change to −v2 and −v3 after 2π. So, the corresponding two

eigenvector bundles are Hopf bundles.

For the loop 1 and loop 3 we have calculated in section 4, they all have two Hopf

bundles and one trivial bundle. However, the corresponding eigenvectors for Hopf bundles
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are different. For loop 1, v2 and v3 generate Hopf bundles, while for loop 3, v1 and v2 generate

Hopf bundles.

Figure 28 Loop 1 and Loop 3

However, only these two kinds of bundles is not enough to classify loops. In Example

4.2, all eigenvectors return to their initial direction. However, the bundles of v2 and v3 are

non-trivial. Actually, loop 2 can be seen as two loop 1 connected.

Figure 29 Another way to obtain loop 2

The two non-trivial bundles of loop 2 both are formed by two Hopf bundles. However,

two Hopf bundles connected can be a trivial bundle. We need to consider the orientation to

distinguish between two different situations in Figure 18.

Moreover, S0 is not enough for complex vectors. Additionally, in Example 4.4, the

eigenvector bundles exchange. So, only consider bundles formed by one eigenvector is not

enough. We need to find the relation between eigenvectors or their bundles.
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Appendix

Here is part of codes for calculation.
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