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ABSTRACT

ABSTRACT

Calculating the homotopy groups of topological spaces is a fundamental and chal-
lenging problem in algebraic topology. This thesis reviews the research history of this
problem, presents the current progress, and outlines possible future developments. Un-
less otherwise specified, all discussions in this thesis are conducted in the p-local case for
a prime p.

Starting from the stable case, we review the history of this problem and provide a
rigorous definition of the v,-periodic homotopy groups in the stable homotopy and the
unstable homotopy. Then, we propose a method to compute unstable homotopy groups by
applying the Bousfield-Kuhn functor. It is a functor from Top, to Sp, such that the stable
homotopy groups of a spectrum in the target is isomorphic to the v,-periodic homotopy
groups of the space in the source. Here T op, is the category of pointed topological spaces
and Sp is the category of spectra.

This thesis also provides a detailed account of the current computational process
for this problem. Firstly, we need to resolve the functor by the Goodwillie tower, which
expands the functor into n-excisive layers. Under specific conditions, we can compute
these layers’ completed Morava E-homology groups. The computation of these homology
groups relies on further resolution based on the topological André-Quillen theory, which
can be seen as a geometric realization of the Goodwillie tower. Inputting these homology
groups to the homotopy-fixed-point spectral sequence, we can compute the E,-page of this
spectral sequence, which converges to the homotopy groups of the spectrum we need. We
list the best results we know on this problem in this thesis.

Finally, this thesis outlines two possible directions for further research on this prob-
lem. One is to utilize a duality in algebraic geometry to reduce the number of nontrivial
entries appearing in the spectral sequence, thus avoiding the appearance of difficult dif-
ferentials. The other direction is to improve the computational method for the completed
Morava E-homology using tools such as elliptic curves and topological modular forms.
This improvement can also reduce the number of nontrivial entries appearing in the spec-

tral sequence.

Keywords: Unstable homotopy group; Chromatic homotopy theory; Spectral sequence
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

Studying periodicity in homotopy groups is a vital problem within homotopy theory.
Compared to the non-periodic parts, we have more tools to detect the periodic compo-
nents in homotopy groups. Computing the periodic part of homotopy groups can enhance
our understanding of computationally challenging objects, such as the unstable homotopy
groups of spheres. This thesis summarizes and outlines the research methods and progress
on the computation of the unstable v,-periodic homotopy groups of spheres and suggests
potential improvements to existing computational methods.

In this thesis, unless otherwise stated, the spectra or spaces we discuss are p-local.
Additionally, I have to use some undefined symbols in this introduction chapter due to
space constraints. These symbols will be explained in subsequent chapters.

We begin with the rational homotopy case. For a simply connected space X. Quillen
introduced two methods to describe its rational homotopy type int'l. One of them is the
rational differential graded Lie algebra L(X) and the other one is the rational cocommuta-
tive differential graded coalgebra C(X). The rational homotopy groups of X are given by
the homology of £L(X) and the rational homology is given by the homology of C(X). The
differential graded Lie algebra L£(X) can be obtained by taking the derived primitives of
the differential graded coalgebra C(X). In'?l, Sullivan reformulated this theory for finite
type X. In this situation, the minimal model A(X) of the differential graded algebra is
given by the dual of C(X). The underlying graded commutative algebra of the minimal
model A(X) is free, and the rational homotopy groups of X are recovered from the dual

of the indecomposable of A(X):

m.(X)q = (QA())".

Thus the rational homotopy groups of a space can be computed by taking the dual of the
derived indecomposables of a commutative algebra model of its rational cochains.

A similar result stands for every prime p, that is, the unstable p-adic homotopy type
of a simply connected finite type space is similarly encoded in its I_Fp-valued singular
cochains. However, to get an equation which is similar to the above one, we need to find
some other localizations of unstable homotopy groups. The v,,-periodic homotopy groups

are good candidates. The rational homotopy groups can be seen as vy-periodic homotopy



CHAPTER 1 INTRODUCTION

groups.

We need to define it explicitly before we study unstable v, -periodic homotopy
groups. That is our main target in Chapter 2. We will begin with the stable case.

In the perspective of chromatic homotopy theory, the v, -periodic homotopy groups
are induced by type n self-maps f : ¥V — V on the homotopy groups of spectra that
survive under the action of homotopy colimits. It is denoted as v;; 17, (X) because we can
prove that the v,,-periodic homotopy groups of X are independent of the specific choice
of the type n self-map. To simplify computations, we also apply K (n)-localization on the
spectrum X, where K (n) is the Morava K-theory.

The v,,-periodic homotopy groups can be defined similarly in the unstable case. By
applying the Bousfield-Kuhn functor ®,, on the space X, we can transform the computa-
tion back to the stable case. A functor from Top, to Sp (actually Spr(y,)), which is called
the Bousfield-Kuhn functor, allows us to calculate vy, 17, (X) by ,(®,X). Similar to the
stable case, this operator also has a K (n)-local version @ ).

Roughly speaking, the Bousfield-Kuhn functor (with coefficient V) encodes the
Map,(Z™V, X) for each n > 0 into a spectrum. Then, the “colimit” of such a func-
tor can give us the Bousfield-Kuhn functor. This process is similar to getting T'(n) in
the stable case. This process also makes the object we need to deal with into a spectrum,
which we have enough tools to compute its homotopy groups.

Next, we will show how to compute the 1, (Pg ) (X)) in Chapter 3. To further
calculate ®,,, we apply the Goodwillie tower on it to resolve the unstable spheres into
some well-known spectra. When X is an odd-dimensional sphere and n = 2,831 shows
that this resolution divides @k ;)X into spectra. These spectra consist of the Steinberg
summands of classifying spaces of the additive groups of vector spaces over [F,,. The
completed Morava E-homology of such spectra can be computed. To accomplish this
computation, we need to use the topological André-Quillen (co)homology as a model for
the Goodwillie tower and apply Koszul duality to compute the required completed Morava
E-homology groups.

To be specific, the Goodwillie tower provides filtration of the target space. The
topological André-Quillen (co)homology also decides a tower. The comparison map can

connect these towers. That is,
¢Sk : d(X) > TAQs, (Sk*)

. Here @ is an abbreviation of @y y,y. This map constructs a level-wise equivalence of

2



CHAPTER 1 INTRODUCTION

the tower’s filtration. To compute each layer of these towers, we need to introduce the
Morava E-theory Dyer-Lashof algebra as a model. The Koszul complex helps compute
this model. In a nutshell, the Morava E-homology of the resolution of Goodwillie tower
is isomorphic to the dual of the Koszul resolution of the Morava E-theory Dyer-Lashof
algebra.

The above process can be synthesis into a spectral sequence, that is,

Ext3q(E1(ST),E) = Egyr—sP(SY).

Rezk proposed this method in!*, and the specific computations were completed
inB!. InBl, more technical methods were used to complete similar computations but with
weaker results.

Using the Morava E-homology described above as an input for the E(n)-version
Adams-Novikov spectral sequence®, we can obtain an E,-page of a spectral sequence

which convergent to (P (X)). This spectral sequence is:

H:(G; E, @ (SN = m,_ P(SD).

Here the G means the Morava stabilizer group of prime p and height n.

Currently, the best results for the v,-periodic homotopy groups of unstable spheres

are as follows[3!:
Theorem 1.1 (Wang, Theorem 5.4.12): For a prime number p > 5,
H* (G, E; @k (2)S 3) is a vector space over [F,, with a set of basis of 12 different classes
with no possible differentials in the ANSS. Therefore, the homotopy groups 7, (P 2)S %)
is a free module over F,,[¢]/¢ 2 with the above generators.

We will briefly introduce the latest progress on this problem in the last chapter. Fur-
ther research on this problem currently needs some help. Since @)X is not a ring
spectrum in general, dealing with possible non-trivial differentials in the final spectral se-
quence is challenging. There are currently two approaches to overcoming this difficulty.

The first method is to “switch” the order of spectral sequences as follows. To explain
this, we need to summarize our method of computation with the following diagram:

_\GLn(Fp) (- DX

Goodwillie tower ———— H(Gp, En(Pgn)(SD)) 9, T, (P () (§D).

(D denote as ANSS later
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The first spectral sequence means we are obtaining the information of completed
Morava E-homology from the space we need with the help of the Goodwillie tower and
the resolution that the tower provides. The second spectral sequence means we can recover
the information of homotopy groups from the completed Morava E-homology for each
filtration. The result of such switching is shown as follows. The ? in the middle of the

equation is an object that we need to investigate further.

_)DX (_)GLn(]Fp)
Goodwillie tower —— 7 ——— T, (Pgy)(59)).

Its motivation is a duality in the field of algebraic geometry that we will introduce in
the last chapter of this thesis.

The second improvement is changing the completed Morava E-theory into the
Morava E-theory. This change can reduce the number of elements in the E, -page of
the ANSS. The progress of this method will also be introduced in the last part of this
thesis.

This thesis is organized as follows: The first chapter provides an overview of the
content. The second chapter sets up the problem which we will study strictly. After set-
ting up, the third chapter outlines the current computational methods we used in previous
research; finally, the fourth chapter briefly discusses possible improvements to the com-

putational methods for this problem.
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CHAPTER 2 SETTING UP OF THE PROBLEM

In this chapter, we provide the explicit definition of the v, -periodic homotopy groups
at first. Then we introduce the Bousfield-Kuhn functor and its application in the calcula-
tion of the unstable v,,-periodic homotopy group. We also discuss the K (n)-localization

of this problem for computational purposes.

2.1 The history of v-periodic homotopy group

In the E,-page of the Adams spectral sequence of the low stems, some structures
appear periodically at the top of the table.” This naturally raises a question. Does a
periodic structure appear in the homotopy groups of spheres?

In!"l, Mahowald and Davis use the self-map to construct v-periodic elements in sta-

ble homotopy groups:
Definition 2.1 (Mahowald & Davis): Let X be a finite complex. A periodic operator
is v € [Z'X,X] such that v* = 0 € [Z*X,X] forall k > 0. A class a € [X,Z] is
v-periodic if a o v* # 0 for all k. A class B € [S/, W] is v-periodic if, for some skeleton
X@1D of X, B can be decomposed as:

sth X/xED £ seiw,

and for all such § and all k = 0,

k
siky 2 x B xyxen B sy,

is essential. Here Z, W are spectra, and the corresponding group are in the meaning of
stable maps.

With the above definition, we can identify these periodic elements in homotopy
groups. In particular, a v-periodic element of m,(S°) gives rise to an infinite family
of nonzero elements of m,(S?) by choosing for each k the first cell on which W is
essential.

Naturally, we are wondering whether the choice of X and v influence the v-periodic

elements in a ,(Z) or not, as well as if X has to satisfy some restrictions to support a

(D The study of the periodic phenomenon in the classical Adams spectral sequence can be found in!®, this periodic
property also induces a periodic property in the homotopy group of the sphere spectrum.

5



CHAPTER 2 SETTING UP OF THE PROBLEM

self-map. To answer these questions, we need to introduce the chromatic perspective.
Roughly speaking, it gives us a filtration of self-maps.

The study of chromatic homotopy theory gives us more information about the self-
map. In!®], Devinatz-Hopkins-Smith proved the nilpotence theorem which describes a
restriction for X to support a permanent self-map f:

Theorem 2.1 (Devinatz & Hopkins & Smith): Denote MU, as the complex bordism
theory. It also decides a homology theory. A self-map f is called stably nilpotent iff
iterations of MU, (f) are trivial. The remaining maps are called periodic.

However, the MU is too big. As a result, we always deal with some “localization”
versions of it, such as BP, E(n) and K(n), to simplify the problem. In this thesis, the
Morava K-theory will be used frequently. We will give an introduction of it in detail as
follows.

Morava K-theory was first developed in the research of complex oriented bordism
theory MU and the formal group laws related to it. If the readers are interested in the
history of it, they can refer to°].

By considering the classifying map m : CP, A CP,, = CP,,, a formal group law F;y;
is decided. Its p-local part decided a spectrum BP, which also decided a formal group law
Fgp.

For a formal group law F, we define the addition as f +r g = F(f(x),g(x)). For
givenn > 0,

[n]F(x) =x4p+px
n

With the above definition, we can give the explicit structure of Fgp

Theorem 2.2 (Hazewinkel): For a prime p, an isomorphism of Z,)-algebras
BP,,< = Z(p)[vl, Uz, ]

exists. We can choose the generators v; € BP,,,i_1y to be the coefficients of xP' in the
following series
[Pley, () = ) wix?
i>0
The height of a formal group law © is determined by the power of the leading term in
the series expansion of [p] . (x) modulo p. the height of F is defined to be oo if [p] . (x) =

0. Two relations 6, (v,) = 1 and 6,,(v;) = 0 otherwise decide a ring homomorphism

@ over a commutative [F,-algebra A
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0, : BP* - A, we can define F,(x,y) = (0,,) * Fgp. According to the above theorem, it
follows that F, has height n. By the Landweber exact functor theorem!!%!, E, decides a
complex-oriented cohomology theory. This cohomology theory is K (n).

For geometry construction, we can get Morava K-theory by killing generators in BP.

Some other relevant spectra are also defined here:
BP(n) = Z[v1, V2, ]

P(n) = Fy [V, Vg1, ]
k() = Fp[vn]
The spectrum k(n) serves as the (—1)-connected version of the spectrum K(n) in

Morava K-theory. By utilizing k(n), we can define K (n) as follows:
K(n) = holim[E~2®@" Dk (n) - k(n)]

The homotopy limit of BP(n) can be used to define the Morava E-theory E'(n) in a similar
way.

In conclusion, we can summarize the above properties into a theorem:
Theorem 2.3: For any prime p, and for all integers n > 1, there exists a multiplicative,
2(p™ — 1)-periodic, and complex-oriented cohomology theory denoted by K(n)*(—),

with the coefficient ring given by
Kn)" = F, [Vn, 77171]

where v, has degree |v,| = 2(p™ — 1), and its associated formal group law F,(x,y)

satisfies the relation

[p]pn (x) = Unxpn-

Furthermore, if p is odd, the product on K (n)*(—) is commutative; for p = 2, it is non-
commutative.

Morava K-theories are significantly intertwined with B P-theory and complex cobor-
dism through various intermediate spectra. The computations regarding K (n) also yield
valuable insights into the stable homotopy groups of spheres, as demonstrated in!'!]
and['?],

Theorem 2.4 (Miller): Suppose N is a BP,BP-comodule in which every element is

I,-torsion and v,, acts bijectively on N. A natural isomorphism exists, which is

Extgp,pp(BP., N) = Extyy (E(n)., E(n). Qpp, N).
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Theorem 2.5 (Miller): The natural projection BP, = K(n), induces an isomorphism
ExtEP*BP (BP*’ U"IlBP*/In) = Extl*{(n)*K(n)(K(n)*, K(n)*).

What’s more, K (n) has the unique property. So we can define it in an axiom way.
This theorem & in[!3! shows the axiom definition of the Morava K-theory.
Theorem 2.6 (Ravenel): A series of homology theories K (n), exist forn > 0 and any
prime p, which have the following properties.@

* K(0),(X) coincides with H,(X; Q) which is torsion-free.

* K(1),(X) is one of the p — 1 isomorphic summands of mod p complex K-theory.

« K(0),(pt.) = Q and K(n).(pt.) = Z/(p)[vy, V; 1] for n = 1. The dimension
of v, is 2p™ — 2. This ring is a graded field. What’s more, K(n),(X) is a module over
Km).(pt.).

* There exists a Kunneth isomorphism

K. (¢ | [1) 2 K000 @k, oy K. (1),

» X is a p-local finite CW-complex. K (n),(X) vanishes implies that K(n — 1).(X)
vanishes

 If X is a p-local finite CW-complex as above, we have

K(n).(X) = K(n).(pt.) @ H.(X; Z/(p))

for n large enough. For simply connected and not contractible X, it is non-trivial.

Next, we need to give an explicit definition of the self-map we need to study. That
is the v,-self map, which is the self map of space (or spectrum) we are concerned with
in this thesis. Roughly speaking, they are non-nilpotent, graded by the chromatic level’s
self-maps which can be detected by the Morava K-theory. In particular, the Morava K-
theory can detect a specific part of those permanent self-maps by the periodic theorem
proved by Hopkins-Smith in[!4]:

Definition 2.2 (Hopkins & Smith): A p-local finite complex X is defined to be type
n iff M(X ) is nontrivial and it is the smallest n. In particular, X has type oo if it is
contractible.

Theorem 2.7 (Hopkins & Smith): For p-local type n finite CW-complexes X and Y,
we have

« There exists a self-map f : 2¢*PX — 29X for some p = 0 satisfies the condition

@D It can also be considered as a definition of K (1)
2 We follow the standard practice of omitting p from the notation.

8



CHAPTER 2 SETTING UP OF THE PROBLEM

that K(m),(f) is trivial for m > n and K(n).(f) is an isomorphism. (Such a map is
called a v,, map, which we will discuss later.) When n = 0, we have d = 0, and for
n > 0, d is a multiple of 2p™ — 2.

* For a continuous mapping h : X — Y, with both X and Y have been suspended suf-
ficiently times to serve as targets for v,-maps. Assume g : £¢Y — Y represents a self-map
as previously described. Consequently, there exist positive integers p and g, satisfying
dp = eq, ensuring the commutativity of the subsequent diagram up to homotopy. This
is the uniqueness property of v, maps.

zdPp
ydry — >3y

L

. X —> Y
Now, we can give an explicit definition of the periodic part in the stable homotopy
group.
Definition 2.3 (Rezk): The v,-homotopy group (with coefficient V) for a spectrum X

and a type n spectrum V as well as the self-map v:
vt (X, V) = v EV, X] gp

We can prove that the choice of v doesn’t influence the v,,-homotopy group of X.[13]

2.2 Bousfield localization and stable v,-periodic homotopy
group

If we use the above definition directly, we will find that determining whether a map
f + X — Y induces a v,-periodic homotopy isomorphism is hard. So we hope to find
a simple method to judge this. Recall that in p-adic homotopy theory and rational ho-
motopy theory, the isomorphism between homology groups can induce isomorphism be-
tween homotopy groups. Since K(0), is the rational homology theory, we have a natural
conjecture: Does the K (n),-isomorphism decide the v;; 17, -isomorphism? If not, is there
any other spectrum that can decide it?

To answer this question, we can transform isomorphisms between homotopy groups
into isomorphisms between homology groups. Then, with the help of the Bousfield equiv-
alence, we can deal with the problem by chromatic homotopy theory in which we have
enough mature tools. The Bousfield localization and the Bousfield equivalence are intro-

duced as follows.
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Aiming at calculating K (n). (X) as well as other generalized (co)homology theories,
Bousfield localization was developed in[!*] and[!'®!. This tool enables us to simplify the
X into Lg X, an E-local spectrum, without changing E,(X). Bousfield localization can be
done functorially.

Bousfield localization is a special situation of localization over a spectrum E:
Definition 2.4 (Bousfield): Let E, be a generalized homology theory. A space (or
a spectrum) Y is called E,-local if for any map f : X; — X, satisfies that E,(f) is an

isomorphism, the map

[, Y] & [, 7]
is also an isomorphism.

An E,-localization of a space or spectrum X is a map 1 from X to an E,-local space
or spectrum Z which we usually denote as LgX. It has a property that E, (1) is an isomor-
phism.

The property of E,-local is stable under the inverse limit, fiber sequence and smash
product. However, it is not stable under the homotopy inverse limit. In[!7] and[!®], Bous-
field proved that for any homology theory E, and any space or spectrum X, the localization
LgX exists and it can be constructed functorially.

For a ring spectrum E, its localization is simple:

Theorem 2.8 (Bousfield): For ring spectrum E and any spectrum X, E AX is E,-local.

Since K (n) is a ring spectrum, we can easily give the definition of Ly )

Next, we can consider when two different spectra E and F induce the same localiza-

tion functor. This question leads to the Bousfield equivalence:
Definition 2.5 (Bousfield): Two spectra E and F are Bousfield equivalent the follow-
ing equivalence holds. That s, for each spectrum X, the smash product EAX is contractible
iff F A X is contractible. As a result, these relations decide equivalence classes of spectra.
The Bousfield equivalence class of E is denoted by (E).

We will list some definitions and properties of Bousfield equivalence which are
shown int13!;

Proposition 2.1 (Ravenel):

* Ifthe contractibility of E A X implies the same property of F A X for each spectrum
X, we denote it as (E) = (F).

s (E)V(F)=(EVF).

* (E)A(F) =(EAF)

10



CHAPTER 2 SETTING UP OF THE PROBLEM

« If there is a spectra F satisfies that (E) V (F) = (S) and (E) A (F) = (pt.), we
called such F a complement of (E'), denoted as (E)° .

* The operations A and V have distributive laws:

(XY ALY)VAZ) = (X)VEZD AN VEZDUX) VYD) AZ) = (X)AEZ) VY)Y AZ))

* The localization functors L and Ly coincide iff (E') = (F)

* For(E) < (F), LgLr = Lg stands. As aresult, we can find a natural transformation
Lp - Lg.

Bousfield equivalence helps elucidate why we often analyze the p-component of
homotopy groups separately. Let 5(82 represent the rational sphere spectrum, S?p) denote
the p-local sphere spectrum, and S°/(p) stand for the mod p Moore spectrum. Then we
observe:

« (S°/(p)) = (S°Q) V (S°/(p))

(SO =(S°Q) vV Vp(S°/(p))

* (S°/() A (S°Q) = (pt.)

* (§°/(®)) A (S°/(@)) = (pt.) (The orthogonal property)

For MU, there is a similar result. Any readers interested in this can refer to Chap 7.3

of 1131,

What’s more, the class invariance theorem shows that the type of p-local spectrum
decided its class in Bousfield equivalence, which implies that the choice of type n spec-
trum V and self-map v doesn’t infect the result of localization.

Theorem 2.9 (Class invariance theorem): Consider X and Y as p-local finite CW-

complexes with types m and n respectively. Then we have

(X)y<({Y), m>n;

(X)=(Y), m=n.

By definition, for given (V,v), v;'m,-isomorphism is equivalent to T(n),-
isomorphism if T'(n) is independent of the choices of V and v. The spectrum T'(n) is
defined as:

Definition 2.6: For a type n p-local spectrum V with a v,,-self-map v,
v v v
T(n) = v; 1V := hocolim(V — 27KV = 572ky 5 ..,

This spectrum is independent of the choices of VV and v in the meaning of homotopy

11



CHAPTER 2 SETTING UP OF THE PROBLEM

equivalence due to the class invariance theorem.

The following part shows the relation between K (n) and T (n), which pulls this prob-
lem back to the field of the chromatic homotopy theory.

Bousfield localization of E(n) can be used to give the chromatic filtration of spec-
trum X. We use L, X to represent Lg ;)X and €, X to denote the fiber of the map X — L, X.

With the following theorem, we can calculate BP, (L, X) in terms of BP, (X)
Theorem 2.10 (Localization theorem): For any spectrum X, BPAL,Y = YAL,BP.
In particular, if v;1;BP,(Y) = 0, then BP AL,Y =Y Av;1L,BP.

Then we can define the chromatic tower and chromatic filtration of X:
Definition 2.7: The chromatic tower for a p-local spectrum X is the inverse system

LOX — L1X — LzX — X
The chromatic filtration of ,(X) is given by the subgroups
ker(m.(X) - m.(L,X))

The localization theorem ensures the convergence of the above inverse system which

is proved in[!'3]. What’s more, the monochromatic layers which are the fibers

MpZ = LyZ = Ly_1Z

satisfy that M,,Z € L,Sp := @®j=, K (i)-local spectra.

In["1, Mark Behrens and Charles Rezk defined an analogue of the chromatic tower
with T (n). We denote this tower as the T (n)-version chromatic tower.
Definition 2.8 (Rezk): The T'(n)-version chromatic tower for a p-local spectrum X

corresponds to such an homotopy limit
X LxeLlXxe X
Whose monochromatic layers can be defined as the fibers
MLz -1z .,z

satisfy that M{Z € L{lSp := @ v; 'm,-local spectra.
Let M,’; Sp, M,,Sp be the subcategories of LflS p, L,Sp, there are pairs of functor

(D)1 : Ho(MASP) S Ho(sprmy) * MA,

(_)I((n) : HO(MnSp) S HO(SPK(n)) : Mn-

It leads to that there are some strong relation between T'(n) and K (n). In{!3], Ravenel

12
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showed that (T (n)) = (K(n)). The inverse direction corresponds to the famous telescope
conjecture raised by Ravenel. That is, are (T(n)) = (K(n)) hold for every n? This
conjecture is true for n = 0, 1, but for n > 2, this conjecture is supposed to be false. The
case of n = 0 is trivial. In[2%) and[2!), the case of n = 1 was proved. Forn > 2, we
believe that this conjecture would fail at an early time. But the disproof was not completed
until the 6th, June, 2023.9 However, we have few tools to calculate T (n).(X). As a
result, we just use T(n), for some abstract proof. If we aim at calculating the v,,-periodic
homotopy group, we have to consider Ly ;)X @ instead of Lymn)X although some classes

of v,,-periodic homotopy group may be killed in the K (n)-localization.

2.3 Unstable v,-periodic homotopy group and Bousfield-Kuhn
functor

Now, we can move our steps to the unstable range. for any finite type n complex V,

It supports a v,-self map:
v 2k(N0+1)V N ZkNOV

for some Ny >> 0 due to the periodicity theorem.
Therefore, for any X € Top,, the unstable v,-periodic homotopy group (with coef-

ficient V) can be defined as!??!:
v lm (X; V) == v L2, Xltop.,

for n > 0. The k-periodicity ensures that it can be defined on any * € Z.

Since we only have enough tools to compute stable homotopy groups, we need to
pull the unstable v,-periodic homotopy group back to the stable range. The tool we use
is the Bousfield-Kuhn functor @, : Top, = Sprmyy. This functor allows us to calculate
v ', (X) by (P (X)).

We begin with the Bousfield-Kuhn functor with coefficient.? @y, (X) can be con-

Oth

structed as a t-periodic spectrum. Such a spectrum is decided by its space which is

defined as a direct limit:

Map,(V,X) » Map,(ZtV,X) - Map,(Z?V,X) - -

@ https://www.uio.no/studier/emner/matnat/math/MAT9580/v23/beskjeder/disproof-of-the-telescope-
conjecture.html

@ This corresponds to the chromatic homotopy theory.

® This part mainly refers to https://www.math.ias.edu/ lurie/ThursdayFall2017/Lecture6-BousfieldKuhn.pdf
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In this definition, we need explicit V and v. To get rid of these, we define C; as the
oo-category where objects consist of spaces V equipped with a v,-self map v : £V - V
at first.

For t > 0 an integer, the map (V, v) = @, we mentioned above determines a functor

of co-categories
@, : ¢/ - Fun(Space,, Sp)

By sending (V, v) to (V, v%), we get a functor Gt — C5¢ which fits into the following

Cs Cst
R Y

Fun(S,,Sp)

diagram.

By sending (V, v) to (ZV, Zv), we get a functor €t — C*! which fits into the following

Fun(S,,Sp)

diagram.
Cs41

With these observations, we see that we can construct a functor ¢’ -
Fun(Space,, Sp) to merge the information of the functors ®,. The €' can be derived
from the co-categories C;. This process is finished by taking a colimit along the transi-
tion functions we described earlier. Specifically, we define C' as the direct limit of the

sequence:
Cy1— Cy — C3 > -

where the maps from C,—1y) to Cpyy for each m are induced by (V,v) - (ZV,Z(v™)).
We will abuse notation by denoting this functor as ®, : €' - Fun(Space Sp) as well.
We can prove that the co-category C' is equivalent to a full subcategory of Sp. This
category is generated by those type > n finite spectrum, denoted as S p;"l". Therefore, the
functor @, can be regarded as P, : S p£,"{‘ - Fun(Space,, Sp). An informal but inspired
description is given as follows. When E represents a finite type n spectra, we can find
an integer k satisfies that ¥ E becomes homotopy equivalent to £V, where V denotes a
finite type n space. This space is naturally equipped with a v,,-self map. In this context,

& can be expressed as Z¥ o @,

14
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By consider @, (X) = lime—— ®g(X), we can get the Bousfield-Kuhn functor.
This functor is unique and satisﬁegﬁtﬂ)e following properties.
Proposition 2.2: We have the following properties:

* The spectrum ®,,(X) is T (n)-local for every pointed space X,

+ We can construct an equivalence between ® (X) and ®,,(X)E. This is a functional
equivalence which depends on E € Sp;l;” and X € Space,.

* &, (X) is left exact.

* If X is a spectrum, then ®,Q®X = Ly;)X (It shows that the unstable situation is
compatible with the stable situation.)

In particular, describing @, (X) as lim @, (X) (in the meaning of a homotopy limit)

is more convenient. To be specific, we can construct such a direct system of type n spectra:
EO_)El_)E2_>"‘

This direct system is cofinal among all finite type n spectra with a map to S°.

The v,,-periodic homotopy equivalence f : X — Y leads to a spectrum homotopy
equivalence ®,,(X) — ®,(Y). So this conversion from space to spectrum preserves all
of the information of the v,,-periodic homotopy group. Actually, we can factor @, (X)

out as follows
M v
Space, — Space:™ — Sp.

where Space™ is the category of pointed spaces which support v,,-self map. The functor

n

® : Spaces™ — Sp admits a left adjoint © : Sp — Space™
The K (n)-localization of @, is denoted as @k ) := Lg(n)P,. We are more con-
cerned about this part since we have enough tools to calculate it instead of T (n)-local

spectrum.
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CHAPTER 3 INGREDIENTS OF CALCULATION.

CHAPTER 3 INGREDIENTS OF CALCULATION.

This chapter introduces the current computational process for this problem. Firstly,
we resolve the Bousfield-Kuhn functor by the Goodwillie tower. Then we restrict our
view to some specific conditions, such as n = 2 and the odd-dimensional sphere S2™*1
for computation of the complete Morava E-cohomology groups of each fiber of the Good-
willie tower. The computation is finished by the application of the topological André-
Quillen theory which can be seen as a realization of the Goodwillie tower. Finally, these
cohomology groups can be input into the homotopy fixed point spectral sequence which
converges to the homotopy groups of the spectrum we need. The best result we know of

this problem is listed at the end of this chapter.

3.1 The Goodwillie tower

Now we need to find some methods to calculate the m,(®,X), or its K(n)-
localization. The K (n)-localization is denoted as @) := Lg(n)®p. The tool we need
is the Goodwillie tower.

To explain it, we need some ideas in the rational homotopy theory. In rational ho-
motopy theory, the information of rational homotopy type can be encoded by a rational
cocommutative differential graded @ coalgebra C(X) and arational d.g. Lie algebra L(X).

Suillivan connected them by the minimal model A(X)[?! with the following equation.
. (X)q = DQA(X)

For a simply connected finite space, the unstable p-adic homotopy type can be sim-
ilarly described within its [F_p-valued singular cochains. However, the p-adic analogue of
the mentioned equation does not hold. As a result, people discovered other localization
of unstable homotopy groups, which satisfies the above equation or its analogue. That
leads to the unstable chromatic homotopy theory. So there is a tight connection between
rational homotopy and v, -periodic homotopy groups.

Now we talk more about the Lie algebra structure. The algebra structure of m, (X)
is decided by the homotopy group of X as well as the Lie algebra structure decided by
the Whitehead product. In rational homotopy theory, the structure is simplified to the

(O We will denote differential graded as d.g. later
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CHAPTER 3 INGREDIENTS OF CALCULATION.

Lie algebra structure only. What’s more, Quillen’s work on rational homotopy theory!!]
reveals that:

Theorem 3.1 (Quillen): There is an equivalence of homotopy theories:

{Connected d.g. Lie algebras over Q } =~ {Simply connected pointed rational spaces}
Furthermore, For a simply connected pointed rational space X, which corresponds to a
Lie algebra g, under this equivalence. The Lie algebra (1,1 (X), [, ¢]) can be identified
with the homology of g,.

The lower central series filtration of g,
g™ e g®cg®c g
decides a tower:
Xy o X3 2 Xy o Xy o Xp = x

This tower is useful because we can use this to calculate m, (F,), where F, is the fiber of
Xn = Xp—1. The Goodwillie tower is a refinement of this picture which works well for
integers.

In general, the Goodwillie tower describes the homogeneous degree d part for each
d > 0 of a functor F : C — D.
Theorem 3.2 (Goodwillie,[231): Given a homotopy functor F : € = D there exists a

natural tower of fibrations under F (X)

v

Py(F) <—— D,(F)

'

Pi(F) <— Dy(F)

'

F Py(F)
such that
» P4F is d-excisive.
* ¢4 : F = P4F is the universal weak natural transformation to a d-excisive functor
The Goodwillie tower has a commutative property with the Bousfield-Kuhn functor

with some minor restrictions. That is,

Pk(bn = q)npkld
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CHAPTER 3 INGREDIENTS OF CALCULATION.

It is also true for @ ). So we just need to study the Goodwillie tower of Id to understand
the properties of ®,,.

However, since the Bousfield-Kuhn functor has the commutative property with
Goodwillie tower as we mentioned before, we can only consider the Goodwillie tower
of Id. The theorem of Goodwillie can be rewritten as follows.

Theorem 3.3 (Goodwillie): Let X be a simply connected pointed space. We can prove

that X is equivalent to the homotopy limit of a tower
2 P(X) = P3(X) = P(X) = P1(X)
with the following features:
* The unit map X = QXX coincide with X = P; (X).
» Each homotopy fiber D, X = fib(P,(X) = P,_1(X)) is an infinite loop space.
This spcae can be described as Q¥ ((Z*°X)™ A O(n))pyx,,. What’s more, the O(n) has an

explicit definition.
* O(t) is the 9;(F), which can be defined as

0%0,(F) = co lim Qfattkncy (F)(Sk, ..., Skn)
Lk
Here the cr;, is a functor cry, : Spacel = Space, defined by a formula

e (F)(Xy, -, X)) = tfib| S > \/ X;

igsc(n]
The tfib is the total fiber, which is defined as

tfib(X) := fib<X((Z))—> lim X(S)>

p=SeP(I)
The X is the I-cube, which is a functor from P(I) = Space, and P(I) is the set of subsets
of a finite set /.

If we apply the Bousfield-Kuhn functor on the Goodwillie tower, we have
== Oy P (X) = PpP3(X) = PPy (X) = PpPy(X) = Ly Z®X
and the homotopy fiber D,,(X) turns to:
On DX = Ly (E*X) A O(D)ns,

Functor ®,, commute with infinite homotopy limits for a sphere X. In this context, the
tower stabilizes (&, DX = 0, for k > 0.)

Come back to the Goodwillie tower of Id. In computational use, the above tower
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gives us a Bousfield-Kan spectral sequence which we will introduce in the next section:
ES' i (B X)E A O(O)pg, = TsX.
The O(t) is
On(Id) = D(Z2,4,)
The explicit definition of A,, can be found in ©

In particular, when X is SX, the sphere of dimension k, we have the following spectral

sequence:
ES" : mg(ZRO )z, = ms(S5).

For more details about the general Bousfield-Kan spectral sequence the readers can refer
to[?*] or Lurie’s lecture notes.

Inl®l, Zhu calculate the completed E-homology of ®,(S2™*1). With the help of
the homotopy fixed point spectral sequence and this result, we can calculate the target

homotopy group. That is,
Ey" = H* (Gy, E.(@2(S™ 1))

We will discuss such spectral sequences in the following section.

3.2 Bousfield-Kan spectral sequence

To ensure everything we consider in this section is connective, we restrict our view

to sSet. Consider a tower of fibrations:

Ds Ps-1
YS N YS—l N YS—Z

for s > 0, where Y := lim_ Ys, and F; denotes the fiber of p;.
By acting m, on it and rolling it into a spectral sequence, we have:

Definition 3.1: The Bousfield-Kan spectral sequence is
Els't =Mp_sls = MY

This spectral sequence is particularly useful when applied to the Tot tower. In!?>],
the author demonstrates how this method can be utilized to derive the homotopy fixed

point spectral sequence.

@ https://www.math.ias.edu/ lurie/ThursdayFall2017/Lecturel1-Derivatives.pdf
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Definition 3.2: For a cosimplicial object X € sSet, we define its totalization as
Tot(X*) = sSet(A*, X*)
and
Tot,(X*) = sSet(sk,A*, X*)

Here Tot,,(X*) = Tot,_1(X") is a fiber in the Reedy model structure.

In a simplicial category C, C, D € C and a simplicial resolution X* — C, Hom(X*, D)
constitutes a cosimplicial object. Utilizing the cosimplicial object, we can get a spectral
sequence which can be used to obtain information about sSet(C, D).

Let G be a group, and X be a spectrum with a G-action. The homotopy fixed points

of X are
X6 = F((EG)4,X)"

or in another word, the fixed point of the G-equivariant maps (EG), — X.

According to the above discussion, a simplicial resolution of (E'G), can be made by
the bar construction, which produces a cosimplicial object. This object can be inserted
into the Bousfield-Kan spectral sequence.

Specifically, consider EG = B*(G, G, *) with disjoint basepoint and a map form it to
X, we have
Theorem 3.4: For a spectrum X with a G-action, there exists a spectral sequence, de-

noted as the homotopy fixed-point spectral sequence:

ES' = H(G, m (X)) = me_s(X"9)

3.3 Topological André-Quillen (co)homology

Calculating the completed E-homology of ®,(52™*1) needs the help of the topo-
logical André-Quillen (co)homology. This section focuses on clarifying the details of it,
referred to as TAQ, which mainly refers to[!°].

Firstly, we will introduce the origin and motivation behind the definition of TAQ.
For unstable homotopy types, we hope to view them as stable homotopy types with extra
structure. For a category C, the aim is to embed its homotopy category into the homotopy

category of algebras over some spectra. Specifically, it can be written in this form:

U:Ho(C) S Ho(Alg,(S(C))) : C
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which satisfies that X ~ CU(X). Here the ? means an algebra structure we don’t decide
it at now. In this context, ?-algebra models are considered as unstable homotopy types
of C. For example, for rational pointed spaces, which stabilization is rational spectra.
Since Ho(Spg) = Ho(Chg), we have the algebra models that can be chosen as either
commutative coalgebras or Lie algebras.

Moreover, we hope the adjunction pair we mentioned above supports a category

equivalence:
Ho{Xe€eC st. X=CUX)}=Ho{A € Alg,(Sp(C)) s.t. A=CU(A)}.

Ideally, we hope U to be a fully faithful functor. As the canonical method, homotopy
descent can be employed to achieve this.

T AQ can be viewed as a model for the algebra of the operad on the unstable homotopy
category. To be specific, it can be seen as the functor U above. Using Koszul duality, we
can construct TAQ precisely. However, there are some slight differences between the
canonical way. So we need to establish its relationship with the model obtained through
homotopy descent.

Subsequently, we will study the comparison map, which serves as a tool connecting
TAQ and the Goodwillie tower. Through this map, we can regard TAQ as a model for the
Goodwillie tower. The proof involves reducing the equivalence of the comparison map to
each level of the tower’s filtration. Additionally, we can construct a more computational
model for TAQ: The Morava E-theory Dyer-Lashof algebra.

The proof mentioned above requires imposing the ®gyy-good condition on the
spaces we are studying. Thus, we need to explain this condition and specify its closure
under certain operations.

To set up the topological André Quillen (co)homology, I will list those definitions
that we need to use in the following chapter.

The first one is the algebra over an operad. Let M denote a closed symmetric
monoidal category with a monoidal unit I, and let X be any object within this category.
An canonical or tautological operad, denoted as Op(X), exists where its n" component
corresponds to the internal hom M (X ®™, X); the identity of this operad is represented by
the map

1y : 1 - M(X,X)
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and the operad multiplication is given by the composite
MX®*,X) Q@ M(X®™,X) ® -+ @ M(X®M, X) — M(XOmt+1k x)

Consider any operad O within M. An algebra over O entails an object X endowed
with an operad map £ : O — Op(X). Alternatively, the information regarding an O-

algebra is conveyed by a series of mappings
0k) @ X® - X

These maps define an action of O through finitary operations on X, alongside compatibil-
ity conditions that link the operad multiplication with the act of incorporating k finitary
operations on X into a k-ary operation. These conditions also ensure compatibility with
actions performed by permutations.

The next one is the algebra over a monad. Let (T, n, 1) be a monad on a category C.
An algebra over T consist of

* an object A of C,

e amorphisma : T(A) = A,
such that

cidg=aen,

caou=aoT(a).

After listing those definitions, we also need to list some techniques to set up the TAQ.
Homotopy descent is one of them. The theory of homotopy descent, as proposed by Hess
and Lurie, offers a natural candidate solution for the fully faithful functor U. Specifically,
the adjunction provides a comonad £z Qz on Sp(C). The spectrum £z X serves as a
coalgebra for this comonad for X € C. Consequently, we interpret the functor X3 as a

refinement to the functor
U:Ho(C) - Ho(CoalgzgoQéo)

When the functor is an equivalence, it is equivalent to the assertion that this adjunction is
comonadic. However, this equivalence only holds between two appropriate subcategories
of these two categories. Moreover, to fully utilize this equivalence, we require a clear
definition and idea of what it entails to be a £z Q7 -coalgebra.

For instance, If we set C = Top,. A map
X - C(AQ%,2°0%,2°X)

exist. The comonadic cobar construction is denoted as C(—, —, —) in the above equation.
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In particular, we have a cobar construction
CQ”, 220", 2°X) =Tot(QX = QQX = )

which can be considered as a functor called the Bousfield-Kan Q-completion of X. If X is
nilpotent, the above map is an equivalence. What’s more, for such spaces, its information
in unstable homotopy can be reconstructed from the £ Q*-comonad structure of X as
we expected.

Arone, Klein, Heuts, and others, give a partial description of the X*Q*-coalgebra
structure. That is, Q% can be described as the free commutative coalgebra functor for
connected spaces.

The next technique we need is the Koszul duality. For a commutative ring spec-
trum R and an operad in Modg O ®, the category of O-algebras is denoted as Algy =
Algp(Modg). An equivalence of O-algebras is a morphism in the category of O-algebras
such that its underlying map of spectra is an equivalence. According to the above hy-

potheses, there exists a free-forgetful adjunction:
Fo : Modp & Algy : U
the functor F, is a free O-algebra generated by X, which has an explicit form:

FoX) = \[ (01 ng X'w)s,

i

We also denote the associated monad on Mody as FO, abusing notation. Therefore, O-

algebras are equivalent to FO-algebras.
Algy = Algg,.
There is a natural transformation of monad since O is reduced.
€:Fp—1d

For an O-algebra A, the coequalizer of € and the structure map of F decides its module

of indecomposable QA:
Fo(A) 3 A - QA.
which has a right adjoint
Q:Algy S Modg : triv

Equipping X with O-algebra structure maps for a R-module X, we can achieve a O-algebra

(O All operads O discussed in this report are assumed to be reduced, meaning 0, = * and O; = R.
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trivX:

O, AR X =RAg X > X

O, Ag Xt 5 X, n#1

Here, we can give the explicit definition of the topological André-Quillen homology

of A: the left-derived functor
TAQY(A) := LQA.
It can be realized as the monadic bar construction which can be computed effectively:
TAQC(A) =~ B(Id, Fy, A).

Applying the R-linear dual on TAQY, we can get the Topological André-Quillen coho-

mology:
TAQo(A) = TAQ(4)"

The TAQY have two important properties:

« TAQY is excisive. (Takes homotopy pushout squares to homotopy pullback
squares.)

* TAQY(Fo (X)) = X.
In other words, TAQ encode a “cell structure” in an O-algebra.

With the help of the TAQ, we can prove such theorem:

Theorem 3.5 (Rezk): There is an equivalence of categories
Ho(Sp(Algp)) = Ho(Modpg).
with leads the following pair of functors
Za1g, P Ho(Sp(Algo)) S Ho(Modg) : Qg
by

25g,4 = TAQY(A),

Qg X = trivX.
Corollary 3.1 (Rezk): The spaces of the TAQy-spectrum are
O®E"TAQo(A) = Alg (A, trivE"R).

The last technique we need is the divided power coalgebras. Z; go (O] g -Coalgebra
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can be understood as a divided power coalgebra over the Koszul dual BO according to[?¢]
and[?"1
To be precise, the Koszul dual of O is a symmetric sequence obtained by forming the

bar construction according to the composition product.
BO :=B(13,0,15) =10 < 0o |

BO admits a cooperad structure, which is proved by Ching in the paper.

Define Comm = Commy, as
Comm; =% =0, R, i=>1.
For R =S, O = Commg, Ching proved that
BCommyg =~ (0.1dr,p,)".

The RHS of this equation is the duals of the Goodwillie derivatives of Id.

What’s more, for an R-Module X, we have

DTN

29019, X = TAQO (trivX) = B(Id, Fo, trivX) = FgoX.

For connective R, O and X, we can observe that

TB()X = 1—[(301 /\R X/\R l)

i

As a result, if we consider the homotopy category, the information included in a
2419, Yalg,-coalgebra C can be expressed by a collection of coaction map:

Y : € > (BO; Ag C"Ri)3,.

According to[?6! and[*%!| we have
TAQY : Ho(Algy) S Ho(d.p.Coalggy) : C.

and according tol?”1, we have
Theorem 3.6 (Ching): For connective R and O, the functors we mentioned above in-

duce an equivalence between categories
Ho(Algzh) - Ho(d.p.Coalgz}).

Now, we need to consider how to encode an unstable homotopy type X € M,J: Top, by
something we mentioned above. This information can be encoded in T'(n)-local Comm-

algebra S%((n) © according to the following consequence of Hopkins:

@ the Sy -valued cochains
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Theorem 3.7 (Hopkins): For an unstable type n complex V/, we have
Stny = triv(VY).

which comes from S¥(n) is an infintie loop object of Algcomm-

With the corollary we mentioned above, we have
X SV ~ O©y* X v
Alg STy STm) = Q7E T A5y (S7en) AV

By acting Sz,,) on vy, ln, (X; V) = [2*V, M{: (X)]7op, as well as applying the defi-

nition of the Bousfield-Kuhn functors of V, we have
cx + Py(X) > TAQs iy (SFmy) AVY

Then taking homotopy colimit on both sides as we did for the Bousfield-Kuhn functors,

we have such natural transformation:

Cx ¢ (Dn (X) - TAQST(n) (S’I)g(n))

called comparison map. Naturally, we have a K (n) version:

K
Cx ™, D ny(X) - TAQSK(n) (Sl}(((n))

The main theorem of!>°! said that the comparison map C)I(((n)

is an equivalence if X
is a finite @ ,)-good space, especially for the case that X is a sphere.

For such special cases, we have some easier proof as the paper of Behrens and Rezk
says. The idea of proof can be sketched as follows.

Notice that both @,y and TAQ Sk S 1(<_(31)) are functors from Top, to Spgm).
D (n) fits the Goodwillie tower, and TAQSK(n) &) 1((_(1)1)) fits a tower

TAQgr(A) = --- FxTAQgr(A) » Fi_1TAQg(A) — ---.

[3

according to*%!. This tower has such properties:

Theorem 3.8 (Kuhn): The fibers of the tower are given by
s~ Liey gz, (A'R¥)Y — FTAQR(A) = Fr_1TAQR(A).

for proper A. ©
Notice that in the Goodwillie tower of Id in Top,, the k" fiber of this tower is

Py myDrld(X) = (s Lieg Az X)) = PranyPrld(X) = Pi(nyPre—11d (X).

The “coincidence” of the fiber of such two towers is equivalent on each fiber inducing

an equivalence between towers for X finite. If we want to prove the comparison map is an

(O Refer to Kuhn’s paper for details.
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equivalence, we just need to show it induces equivalences on each layer of these towers.
We need the Dyer Lashof algebra to finish this part.

We use E,, to denote the nt"* Morava E-theory spectrum. For the completed Morava
E-homology, we denote it as E}}, to be m, (E,, A Z)K (n) for a spectra Z. InB! | the second

author introduced a monad
T: MOd(En)* e MOd(En)*'

leads to a new algebraic structure called T-algebra. It can be considered on the completed
E-homology as a Comm-algebra. A T-algebra refers to an algebra over the Morava E-
theory Dyer Lashof algebra A,,. As a result, the functor TM’s value is the free A,,-algebra
on M for an (E},).-module M. ©

What we need is such a theorem:

Theorem 3.9 (Rezk): If (E}).Z is flat over (Ey)., then the natural transformation
T(ER)<Z = (ER)«FcommZ
induce an isomorphism
(TEDZY = (ER)-Feomm?

Here the m is the unique maximal ideal of (En)o@
With the relationship between F.omm and TAQ, we can apply a Basterra spectral

sequence to such an equation. Then we have such spectral sequence:

AQY ((ED).A; (Kn).) = (Ky).TAQs, (A).

which leads to some explicit calculation.
For the proof of the main theorem, we can prove the equivalence for QX:
Theorem 3.10 (Rezk): Consider all N-fold suspension spaces X such that (Ej).X is

free and finitely generated over (E},),. In this context, there exists a comparison map
K(m)
o Cox 0x
E®)km) = Prm)(QX) —— TAQskmn) (Sk(n))

is an equivalence.

This theorem is established by demonstrating that a K (n)-homology isomorphism is
induced by the comparison map, given that they are K (n)-local. Consequently, it becomes
imperative to compute the K(n)-homology for each spectrum involved in the equation

above.

(D For additional details, see!'].
@ In" we have a stronger version as the Theorem 7.7 in the origin paper.
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The K (n)-homology of RHS can be calculated by:
Theorem 3.11 (Rezk):

(ER)-Siiny > TERX
induce an isomorphism of T-algebras if X satisfies the hypotheses of the above theorem.
and the spectral sequence we mentioned above.
Finally, for X is a sphere, we can apply the above theorem to the Bousfield-Kan

cosimplicial resolution. However, since QX is not finitary in general, we need some

tools to avoid it. According to the Snaith splitting in3*!, we have
B (QSFH(X) = QY*

The space Y* meets the finitary hypotheses.

What’s more,
Dy (X) = PgnyPrld(X)

is an equivalence for g odd and k = p", or q even and k = 2p™. We can use the above
equivalence in such a case. With the properties of the Goodwillie tower, we can prove the
comparison map induces an equivalence for odd sphere S2™*1,

The comparison map is deemed equivalent for X that is ®gpy-good. A space is

considered @ )-good if the map
Py n) (X) = holimPy(Pg(n)) (X)

is an equivalence.

We will list some important properties of @k py-good spaces. This properties are
also shown in!°].

* A finite space X qualifies as @k p)-good iff the comparison map is an equivalence.

* The product of finite Pk ,)-good space remains Py ,)-good

* The ®gn)-good spaces satisfy 2-out-of-3 property in a fiber sequence of finite
spaces that is K (n)-cohomologically Eilenberg-Moore.

* The special unitary groups SU (k) and symplectic groups Sp(k) are @ )-good.

The details of such properties and the method of proving the general case can refer
to the origin paper of Behrens and Rezk, 31, [34] and[*3] for the Arone-Ching approach,
and (%3] for the Heuts approach.
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3.4 Generalized Adams spectral sequence

The last ingredient we need to introduce is the (generalized) Adams spectral se-
quence. Adams spectral sequence is the most important tool for us to calculate the ho-
motopy group. It gives us a method to extract the homotopy information from the mod
p cohomology, or other cohomology theory. If we use the ordinary mod p cohomology,
we get the classical Adams spectral sequence. If we use the BP, we get the ANSS. For
other cohomology theories, there is some spectral sequence, but the above two spectral
sequences are widely used.

We will begin with the classical Adams spectral sequence.

Theorem 3.12 (Adams,381): Let X be a spectrum with a finite dimension of H*(X).

There is a spectral sequence
E*,* d . ES,t N s+r,t+r—1
* Hy Uy - T r
such that
st _ s,t *
Ey" = Extdqp(H (X), Zp) = m.(X) @ Ly

Here A, is the mod p Steenrod algebra.
What’s more, Adams spectral sequence is multiplicative if X is a ring spectrum.
Adams spectral is induced by the Adams resolution, which is a tower such that each
fiber is the wedge of some copies of Eilenberg-MacLane space (with some possible sus-

pension).
= 9o g1 9>
X =<— XO < X1 < X2 <

\Lfo \Lfl \sz
KO Kl Kz

We can roll it into an exact couple and get a spectral sequence. From the algebra
perspective, it is a (minimal) resolution of H*(X) as an A,-module. That also leads to
the computer computation of E, page of classical Adams spectral sequence.

If we repeat the same thing for other cohomology theories, we get the generalized
Adams spectral sequence. For a given cohomology theory E, (with some mild restrictions,
such as E, (E) has a E-comodule structure), we have

Definition 3.3: An E,-Adams resolution for X is a diagram
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— 9o g1 )
X < XO < X]_ < Xz <

\Lfo \Lﬁ \sz
KO K]_ KZ

such that for all s > 0 the following conditions hold

* X, constitutes the fiber of f;.

* EAX; isaretract of E A K, meaning there exists a map hg : E AKg —» E A X such
that hs(E A fs) is the identity map of E A Xs. In particular, E, (f;) is a monomorphism.

* K, is aretract of E A K.

s Ext"“(E,(Ky)) = my(Ks) when t = 0 and is otherwise 0.

Here the explicit definition of Ext and the restrictions of E, at here can refer to Appendix
Al and Chapter 2.2 of137],

This spectral sequence can detect the E-component of m,(X). That is,

Definition 3.4: An E-completion X of X is a spectrum characterized by the following
properties:

« There exists a map X — X that results in an isomorphism in E,-homology.

« X possesses an E,-Adams resolution {X} with lim X, = pt.

The above resolution induces a spectral sequence:

Theorem 3.13: An E,-Adams resolution for X leads to a natural spectral sequence E;""
with d,. : Ep* — Ef P71 such that E3* = Ext(E. (X)) = m.(X)

If we let E = BP, we get the ANSS.

Finding an analogue of the minimal resolution of the comodule is difficult. So we
use cobar construction to get the canonical E,-Adams resolution. It is useful for proof,
but for calculation, the cobar complex is too big to compute. Some other tools have been
developed to solve this problem. Such as the May spectral sequence and lambda algebra.
However, it’s not relative to this article. Readers interested in this topic can read Chapter
3 of 371, The details of calculating the ANSS can be found in Chapter 4.

3.5 The methods of the explicit calculation

After the above preparation, we can describe the known methods of calculating
. (Pgn)(X)). There are two known approaches. One is introduced in [3] by Wang, and

another one is introduced in* by Behrens and Rezk. These two approaches coincide
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expect the methods of calculating the completed Ej,-homology of @ ;) (X).

By considering E (n)-Adams spectral sequence of @k ) (X), we have

Exte, 5, (B, En(®kny () = 1.( @iy ().

Here the E;, means E,-homology. Since @ ) (X) is K (n)-local, according the Appendix

A of®8] we can transform it into the following form:

He (G, En(Pg(n) (X)) = T.( Py (X))

Here G, is the Morava stabilizer group. We call the original form K (n)-local E (n)-Adams
spectral sequence, and the second form as a special case of homotopy fixed point spectral
sequence.®

Then, we need to calculate the Ej,-homology of ®gmy(X). We can give a res-
olution of @y (X) by Goodwillie tower. By acting Ey. on the Goodwillie tower,
we can get E,(®Pgm)(X)) by the Atiyah-Hirzebruch spectral sequence if we know
En(Dy (®gm)(X))) for each k as well as the attaching map of Goodwillie tower. The dif-
ferentials of that spectral sequence can be calculated by representing those generators in
HZ(Gp, Fp). Here, we need to consider X as S™ where m is odd because we know enough
information of Dy (P k) (S™)). In this situation, the attaching map of Goodwillie tower
is decided by the James-Hopf map®.

In Wang’s approach, he proved that the Dy (P ) (S™)) is homotopy equivalent to

some spectrum related to the Steinberg summands of BIFj. That is,
D,eS* = Q®EFEL(t),

while D,,S* =~ * form = p%,t € N.

Since we can get E,,(X) by BP.(X) ®pp, En., the remaining work is cal-
culating the BP-homology of L(t),. The E,-page of Adams spectral sequence of
BP,(L(t)) is calculated in**1 if we know the ordinary cohomology of L(K) and it can
be calculated by analysing the base of ordinary cohomology of L(k) represented by
[E1Pl1pe2plz f€3 Pl ... admissible. However, if we need the full comodule structure of
it, we need the v,,-hidden extension in this spectral sequence.

As aresult, we need the BP-cohomology of L(t), which can be calculated by Koszul

(D Some papers directly use the homotopy fixed point spectral sequence to describe this, but I prefer to treat it as a
special case of the ANSS.
@ Only for spheres.

31



CHAPTER 3 INGREDIENTS OF CALCULATION.

complex © pp* (L(t)y) can be describe by BP*(L(t)) and Dickson-Mui generators.®
Then, using this E,,-homology as an input, we get the E, page of the above spectral
sequence. In particular, for n = 2 and p = 5, there is no possible nontrivial differential
in the ANSS, so we get its unstable v,,-periodic homotopy group.!
Another method is given by Mark Behrens and Charles Rezk in[*!. They constructed
a natural transformation from pointed spaces to K (n)-local spectra called the comparison

map.
CSK : Dy (X) = TAQs, (Sk)

This transformation relates @k ) (X) to the topological Andre-Quillen cohomology. For
X is an odd sphere, the comparison map is an equivalence. Some works have been done
to study these spaces such as[!°]. But in this article, we will not discuss this.

Ching’s work %] shows that TAQ Sk (S,)g*) has the structure of an algebra over the
operad formed by Goodwillie derivatives d,(Id). This can be regarded as a topological
analogue of the Lie operad. As a result, we can see TAQg, (S,)((") as a Lie algebra model
for the unstable v, -periodic homotopy type of X (or in a short way, an analogue of L(X)).

Since Dyer-Lashof algebra A7 can be used to construct a form of André-Quillen co-
homology, we can relate the André-Quillen cohomology with the Koszul resolution of A4.
It was finished by constructing a bar construction model for Kuhn’s filtration on topolog-
ical André-Quillen cohomology, in which layers of this filtration are equivalent to the
spectra L(k)4. Then we can show the Morava E-homology of the spectrum L (k) is iso-
morphic to to the dual of k" term of the Koszul resolution for A9. In spectral sequence’s

way, this can be described as

Extzq (En,t(sq)rEn,t) = En,q+t—s(cDK(n)(Sq))

for q odd. The attaching map of Goodwillie tower can be studied simultaneously in this
approach. This approach is used by !>l for calculating E,,, (® km) (S 2m+1))  The result of
this calculation can be found in this thesis.

Finally, we can get the main theorem in[3!:
Theorem 3.14 (Wang, Theorem 5.4.12): For a prime number p > 5,

H*(G}, E,® K@2)S 3) is a vector space over [F,,, with a set of basis of 12 different classes

(O Koszul complex can be seen as a special type of bar construction. Behrens and Rezk show that the information of
L(n) is encoded by some Koszul complex in their paper.

@ The L(t) can be seen as the result of unstable filtration for k odd. This filtration can be defined by the powers of
D,,, the nt" Dickson-Mui generator.
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with no possible differentials in the ANSS. Therefore, the homotopy groups 7, (P 2)S %)

is a free module over F,,[¢]/¢ 2 with the above generators.
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CHAPTER 4 CONCLUSION AND FURTHER
PROGRESS

In this thesis, We explain how to transform the calculation of unstable v,,-periodic ho-
motopy groups to the stable range by the Bousfield-Kuhn functor, as well as provide some
accessible methods of explicit calculation for unstable v,,-periodic homotopy groups. The
following sections will also explore new methods for further development of this prob-
lem. We hope that this paper will serve as a helpful introduction and reference for readers
who are interested in this topic. We also hope that it will stimulate further research on this
fascinating topic.

In the above calculation, we found that there are too many potential nontrivial dif-
ferentials in the ANSS for most cases. We have few tools to deal with them since
Dgny(S 2m+1y is not a ring spectrum. As a result, calculations using these approaches
are only available in some cases. As a result, we need to develop a new approach to fix

this problem.

4.1 The Algebraic Geometry approach

As we mentioned in the introduction, a possible improvement is to “switch” the order

of spectral sequence. The following duality inspires it in algebra geometry:

GLn (F)

Gross—Hopkins - N

period 7 S Period

Pn—l

Q
DX O % GL,(F)

The original method corresponds to the left side of the above diagram. The Koszul
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complex encodes the information of each odd sphere, and the dimension of these spheres
induces a filtration. This information can be seen as a sheaf on LJ;  for each Morava
stabilizer group. By acting homotopy fixed point spectral sequence on that, we can get
the (completed) E,,-homology for ®,,(5%). This process has a dual version on the right

side. However, the explicit meaning of this duality needs further study.

4.2 The elliptic curve approach

Another method is changing the completed Morava E-theory into the Morava E-
theory. This change can reduce the number of elements in the E,-page of the E (n)-based
ANSS.

With a modular description of the Goodwillie tower and Morava E-homology of
symmetric groups, we can turn the calculation of the Morava E-homology of the Stein-
berg summands into an algebraic calculation about the topological modular form. This
calculation is equivalent to computing the cohomology of a Hopf algebroid, in which we
know all of its relations.

This work has outlined a general framework, but the proofs require further refine-
ment and scrutiny, along with arranging them in the correct logical sequence. The relevant
computations need to be verified, too. Under the guidance of the author’s supervisor, the
study of the computational aspects of this work and verifying the existing computational
results are being pushed forward. The computation part of this problem has been trans-
formed into computing the cohomology of a certain Hopf algebroid. Furthermore, the
author plans to conduct additional computational experiments based on this framework to

gather more information.
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CONCLUSION

Our main contributions are:

* Explaining how to transform the calculation of unstable v,,-periodic homotopy
groups to stable range by the Bousfield-Kuhn functor.

* Providing some accessible methods of explicit calculation for unstable v, -periodic
homotopy groups.

» Exploring some new methods for further development of this problem.
We hope that this paper will serve as a useful introduction and reference for readers who
are interested in this topic. We also hope that it will stimulate further research on this

fascinating topic.
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