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ABSTRACT

ABSTRACT

This thesis is motivated by a classification problem of continuous maps between topo-
logical spaces up to homotopy. For this purpose, it then turns to some computational
methods that are useful albeit complicated, namely, spectral sequences and cohomology
operations, and uses them to calculate with some interesting examples. Chapter 3 in-
troduces the general construction and properties of a spectral sequence, and specializes
these ideas to the Serre spectral sequences for homology and cohomology with explicit
constructions. We calculate 7,4(S 3) and reprove the finiteness of stable homotopy groups
in positive dimensions through an argument with the Serre classes. Chapter 4 introduces
a class of important operations on cohomology, carrying a lot of extra information and
structures than classical cohomology theories. They form the Steenrod algebras A, for p
a prime number. Their applications include giving an upper bound for orthogonal tangent
vector fields on spheres and Adams spectral sequences. The latter becomes an extremely
powerful tool in algebraic topology, calculating the stable homotopy classes of maps be-
tween two topological spaces. As an example, we calculate the 2-component of z;. The
last two sections of Chapter 4 introduce K-theory as a generalized cohomology theory
and the Adams operations as its cohomology operations. Using them we deduce two clas-
sical facts in algebraic topology, namely, Adams’s theorem on Hopf invariants and the

classification of finite-dimensional division algebras over R.

Keywords: Serre spectral sequence; Adams spectral sequence; cohomology operation;

stable homotopy group; K-theory
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CHAPTER 1 Introduction

CHAPTER 1 Introduction

Algebraic topology is a branch of mathematics that uses tools from abstract algebra
to study topological spaces and continuous maps between them. The ultimate goal is to
classify all topological spaces up to homeomorphism using algebraic invariants, though
usually most classify up to homotopy equivalence. So the computation methods are sig-
nificant parts in algebraic topology.

The first concerned invariant of a space X, in some sense, is the fundamental group
m1(X), which roughly speaking is sort of loops in the space X . Two loops are viewed as the
same if one can deform continuously to the other. After choosing a basepoint x in X, we
can equip the set of loops starting and ending at xy a group structure, denoted by 7; (X, x).
Henri Poincaré defined the fundamental group in 1895 in his paper “Analysis situs”. The
concept emerged in the theory of Riemann surfaces, in the work of Bernhard Riemann,
Poincaré, and Felix Klein. It describes the monodromy properties of complex-valued
functions, as well as providing a complete topological classification of closed surfaces.
Even it is the simplest invariant in algebraic topology, the computation of fundamental
groups is not easy. Van Kampen’s theorem and covering space theory are basic tools for
computing it. Former allow us to decompose the fundamental group of X into simpler
spaces whose fundamental groups are easier to obtain. The latter gives a correspondence
of all subgroups of 7;(X) and all covering spaces of X, which is surprisingly analog of
Galois correspondence.

The simplest invariant means it captures the least information of spaces. Funda-
mental groups only capture little information. For instance, S2 and S° both have trivial
fundamental groups, but they are not homeomorphic. A more powerful tool called homol-
ogy was introduced by Henri Poincaré. The main idea is to count the "holes” in a space
X. It is more complicated than fundamental groups but fortunately we have more tools
to compute them. For example, simplicial homology, cellular homology. After that, we
have a nice version called singular homology which has its own advantage in theoretical
aspect. And these homology theories are coherent in most situations. Homology groups
are abelian, which makes one get comfortable comparing with nonabelian groups such
as fundamental groups. It can also detect higher dimensional information, we can use
homology to distinguish .2 from S in the previous example. In fact, we can use it to

distinguish manifolds in different dimensions. Homology has many applications, such as
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Brouwer fixed point theorem in all dimensions, degree of a map, hairy-ball theorem and
so on. But it is not enough, S' v §' v §2 and T? can not be distinguished by homology
theories, and they are not even homotopy equivalent.

Actually, there may not exist a perfect theory to detect all different spaces, at least for
now. To improve homology theories, algebraic topologists started to observe functions
from chain groups to a given group G. This leads to the dual conception of homology the-
ories, the cohomology theories. They are some abelian groups such as homology groups,
but there are more structures on cohomology theories, for instance, the cup product, which
endows a ring structure on a cohomology theory. One important structure is cohomology
operations, especially Steenrod squares and Steenrod powers, which gives a cohomology
theory .A-module structure after the ring structure. Using these structures, we can detect
more information and classify spaces more accurately. We can never find that S?v S*is
not homotopic equivalent to CP? just using homology or additive structure of cohomol-
ogy. But when we look at the ring structure of cohomology, the power of each element in
H*(S?Vv.S*; Z)is zero, while in H* (CP?; Z), the generator has nontrivial power. Therefore
these two spaces is not homotopy equivalent. The basic tool for computing cohomology
groups is the universal coefficient theorem, which turns the computation of cohomology
groups into homology groups. So we can transparent computation methods for homology
into cohomology contributing to the universal coefficient theorem. The computation for
cohomology operations requires much more work.

The last classical one is called homotopy group x,,. It is the generalization of the
fundamental group, r,(X), the n dimensional homotopy group. It is abelian when n > 2.
Homotopy groups are very hard to compute due to the failure of excision. Even for
the the simplest space .S’, we do not have a conclusion for its homotopy groups for ar-
bitrary i. Tools for computing homotopy groups are various, such as Freudental sus-
pension theorem, covering space, Hurewicz theorem, fiber bundles, fibrations and so
on. Hurewicz theorem provides the relation between homotopy groups and homology
groups. As for cohomology, there is a nice theorem saying that there are natural bi-
jiections T : (X, K(G,n)) — H"(X;G) from the set of homotopy classes preserving
the base-point from X to the Eilenberg-MacLane space K(G, n) to the n-th cohomology
group of X with coeflicient group G. Fiber bundle F — E — B provides the long exact
sequence just like in homology for pairs A - X — X\A. Freudental suspension theorem

says the suspension map 7;(X) — 7;,1(SX) is isomorphic when i < 2n — 1 and X be-
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ing (n-1)-connected CW complexes. This theorem tells us these maps will eventually be
isomorphisms even there is no assumption on the connectivity of X.

(X)) = 71 (SX) = 75(S2X) = -,
We call this eventually stable group the stable homotopy group of X, denoted by 77 (X).
The calculation of the i-th stable homotopy group z; = x; (59 is an important problem.
Serre used spectral sequence showing that z; is always finite for i > 0, and Adams spectral
sequence obtained the result of z; for small i.

This article will be divided in two parts. The first part is the introduction to gen-
eral spectral sequence, and use it to deduce some basic results as examples. The second
part is about cohomology operations, including Steenrod operations and Adams opera-
tions. Adams spectral sequence will be the application of Steenrod operations in spectral
sequence, and we will use it to calculate some famous examples. As I just said, these meth-
ods are tedious and hard to understand, but it worth the efforts. Once accepting them, one

will get amazed by their magic power!
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CHAPTER 2 Motivations

As explained in chapter 1, algebraic topology translates a geometric problem into
a homotopy theory problem, then using algebraic tools solving them. The first step is
slightly easier then the second step. Starting with a general situation. Let [ X, Y] be the ho-
motopy classes of maps between X and Y. One may ask whetheramap f : X — Y isnull
homotopic or essential, that is, not null homotopic? One way to achieve this is applying re-
duced mod 2 cohomology H*(—, Z,). If f induces f* € Hom (H*(Y; Z,), H*(X; Z,))
nontrivial, then f must be essential. But this method is too coarse. Consider the following
example.

Let X,Y be S! and f be the squaring map. Cohomology with Z coefficients de-
tects f is essential, with degree 2. But passing to Z, coefficients, the reduced mod 2
cohomology becomes invalid. Fortunately, we have a chance to repair it.

Consider maps X L Y — Y Uy CX and induces a long exact sequence in coho-
mology. If f induces 0 in mod 2 cohomology, then the exact sequence splits into a short

exact sequence:
0 H*(Y;Z,) « H*(Y Uy CX;Z,) « H* (SX;Z,) < 0

Now if /" is null homotopic, then Y Uy CX =~ Y Vv SX. And this sequence splits. Hence
H*(Y Up CX;7Z,) = H*(Y v SX;7Z,). Our chance is using the ring strucure of co-
homology. Therefore, we have H *(RP?; 7, = H*(S LAV S Z,) as ring isomorphism,
contradiction.

Do not get satisfied too early. When passing to S'f : S$? — 52, the modified method
becomes invalid again, since suspension isomorphism H(X; Zy) = H i+1(S X; Z,) does
not preserve the ring structure. But don’t get frustrated, we can still repair our method,
though it needs more efforts.

The ring structure is not enough to get over this obstruction. We need something
called Steenrod algebra .A,, which consists of Steenrod squares which are stable under
suspension. The mod 2 cohomology, then becomes a .A,-module. And this new structure
can help us.

To summarize,

1. Consider f* € Hom (H*(Y; Z,), H*(X; Z,)), and if it is zero,
2. Consider H*(Y Uy CX; Z,) as an element of Extitz(lfl*(Y; Z,); H*(SX; Z,)).
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If it is unfortunately zero again, then we have some way to continuing such step, which
leads to the Adams spectral sequences. Before introducing all concepts and main theories,
let me explain two cases the method fails destined.

The first case is the suspension destroys f. Hence all we can detect using this method
is the set [S*X, .S¥Y] for large k. The Freudental suspension theorem implies that this
group is stable for k > dim X + 2. 2 ensures that this group is abelian. Denote this group
as {X,Y}.

The second case is that this method can only detect mod2 phenomenon. For instance,
3f ~ 0, then it tells you f is null homotopic.

Fortunately, this method has these two blindness only. As it will explain in chapter
4. The next chapter introduces general spectral sequences, and the last two chapters give

some interesting examples of its own, inspite of our original motivation.
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CHAPTER 3 Spectral Sequences

Exact sequences are important tools in algebraic topology, but sometimes their com-
plicated relations could not fit into exact sequences. Thus more tools will be needed. The

spectral sequences arise in a natural way.

3.1 Bicomplexes

Bicomplexes provide a perfect stage for spectral sequences. So we will start with

bicomplexes.
Definition 3.1. A graded module is an indexed collection M = (M) ez of R-modules
(for some ring R), denoted by M, for convenience.
Example 3.1.

1. A complex (C,0) is a graded module.

2. Homology H,(C) of a complex is a graded module.
Definition 3.2. A graded map of degree a, denoted by f : M — N, is a collection of
maps f = (f, : M, > N,.,

the degree of f by deg f = a.
Example 3.2.

)pEZ where M, N are graded modules and a € Z. Denote

1. The differential of a complex is a graded map with degree -1.
2. Achainmap f : C - C' is a graded map with deg f = 0.
We can define Hom(M, N) to be
Hom(M, N) = J,cz(I1, Hom(M,, N, ),
then graded modules over a fixed ring form a category.
M' is a submodule of M means M,” C M, for all p. If M’ is a submodule of
M, then the quotient module M/M' = (M,/M"),cz. It is obvious that both inclusions
and natural quotient maps have degree 0. For graded map f : M — N with degree a,
ker f = (ker f,),cz C M, imf = (imf,_,),cz C N. Therefore, A i) B 5 C is exact if
imf = kerg.

i J
Foe 0 - C' —» C - C"" — 0 a short exact sequence of complexes, the long exact
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sequence of their homology modules can be summarized as an exact triangle:

H.(C) "* H,(C")

H,(C"),

where each vertex is a graded module, and maps are exactly graded maps: degi, =
degj,. =0, and dego = —1.

Bigraded modules are something generalizing graded modules.
Definition 3.3. A bigraded module is a indexed collection

M =M, )pqgezxz

of R—modules, denoted by M,,.
Definition 3.4. Suppose M and N are bigraded modules, and (a,b) € Z X Z. A bigraded
map of bidegree (a, b), represent by f : M — N, is a collection of maps f = (f,, :
M, . = N,io4+b)p.gezxz- Denote the bidegree of f by deg f = (a, b).

Just like graded modules, we can define morphisms between two bigraded modules
M, N to form a category. The definition for submodules, quotient modules and exactness
of bigraded modules is something analogue to graded modules. A bicomplex is a bigraded
module with all maps being differentials.

Definition 3.5. A bicomplex is an ordered triple (M, d’, d'"),where M is a bigraded mod-
ule, d’, d"’ : M — M are differentials with degd’' = (—=1,0) and degd'’ = (0,-1), and
@iy + 47 g =0

A bicomplex M can be drawn in the pg—plane with M, , lying on point (p, ¢). The
rows M, , and the columns M, , are complexes. The equation d 1’9 19 o +d 1’) : 144 0 =0
says that each square anticommutes. (Fig. 3.1(a))

Remark 3.1. It doesn’t matter one get confused about the anticommutativity at the first
glance, since we can always transform a commutative bigraded module with differentials
d', d"" into a bicomplex. All one needs to do is a sign change. Let A}, = (=1)Pd}/.

Kernels and images are not affected by changing signs, thus A"’ A"’ = 0, the columns are

still complexes. As for anticommutativity:

d;;,q—lqu + A;;,—l,qdzg,q = (_l)pdl,;,q—ldz;:q + (_l)p_ld;zl—l,qdz,hq
=(=Dd,,_dy—d,, dpy)

=0.

Therefore, (M ,d’, A" is a bicomplex.
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Lr!“ L » P
» P

n—=Il=p+qg n=p+q

(a) Bicomplex. (b) Total complex.

Figure 3.1

Definition 3.6. If M is a bicomplex, its total complex, Tot(M), is the complex whose nth
term
Tot(M), = @ M,,
ptq=n
and with differentials D, : Tot(M), — Tot(M),_, given by
D, = Z (dpg +dpg)

ptq=n
(Fig. 3.1(b)).
The total complex (Tot(M),D) is indeed a complex. Since imdl’%q cC M, ,and
imdl’)’q’ C M, ,_,; no matter in which case, the sum of indices willbe p+¢q—1=n—-1,
thus imD C Tot(M),,_;.

As for D is a differential:

DD = Z(d’ +d"Yd +d")

D.q
=Zd’d’+Z(d’d”+d”d’)+2d”d”
=0

Spectral sequences can be used to compute the homology of a total complex Tot(M).
Before the really computation, we shall see some example first.

Example 3.3.
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1. Let R be a ring, and suppose
!/

A=—>Ap—p>Ap_1—>---—>A0—>0

and

B=—>qu>Bq_1—>---—>B0—>O
are complexes. Define (M, d’, d"’) by
M, =A,®rB,d,,=4,® 1Bq, and d,, = (—l)plAp ® 4, .
This is a bicomplex, the total complex denoted by Tot(M ) = A @ B is called the
tensor product of complexes.

A®B), = @ 4,8 B,

ptq=n
and D, : (A®@B), - (A®B),_, is given by
D,:a,®b,~ A’ap ® b, + (—1)pap ® A;,bq-
Definition 3.7. A first quadrant bicomplex is a bicomplex with M, , = 0 whenever
p or q is negative.
2. Let A, B be R—modules, and let P, Qp be deleted projective resolutions. By I,
we vyield a bicomplex, and this example will help us to prove the Tor functor is

independent of which variable performing resolution.

3. The Eilenberg-Zilber Theorem says that
Hn(X X Y) = Hn(So(X) ®Z S.(Y))a

where X and Y are topological spaces and S,(X) is the singular complex of X.

And we can use spectral sequence to prove the Kunneth formula.

3.2 Exact Couples

Suppose we have a filtration (F”C) yez of complex C, that is the commutative diagram

with the vertical maps being inclusions and the horizontal maps differentials.

C: Cn+1 Cn Cn—l

A : :

. 14 E17 p
FPC: Fn+l FT" Fn—l
—1, . p—1 p—1 p—
Frlc: ——F F F|
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Abbreviate FPC to FP. For each fiexed p, there is a short exact sequence of com-

plexes,

0 pr1 7 pp I ppypr-l

that gives a long exact sequence

p

— = H (FFy—%~ H (FP) H (FP/FP~1)

H,_(FFYy—*“~H _(F—'~H_ (F/IF1

where a = ip_la p=j% andy = 0. Let p + q = n, we can rewrite this sequence as
-1 b -1 v
— H,y (F7™) — = H ., (F7) H,, (FFIFP™)
—1 ﬂ _1
Hp+q—1(Fp ) . Hp+q—1(Fp)4>Hp+q—1(Fp/Fp ) —.

Observing that there are two types of homology groups: H,(F*) and H,(FF/F P=1). De-

fine

D=(D,,), where D, , = Hp+q(Fp),

E=(E,,), where E, , = H,,,

(FP/FP1y.

With these notation, we can summarize all long exact sequences here, i.e. for each p, as
an exact couple.

Definition 3.8. An exact couple is an ordered tuple (D, E,a, fp,y), with D, E beging
bigraded modules, a, f,y being bigraded maps. And at each vertex, maps are exact:

ker @ = imy, ker f = ima, kery = imp.

N4

Using the notation above, every filtration (F”C) e of a complex C will provide an

D

exact couple

a(l,-1)

D——=D
7(—1k %(0,0)
E

Definition 3.9. A differential bigraded module is an ordered pair (M, d), where M is a
bigraded module andd : M — M is a differential. Suppose degd = (a, b), the homology

10
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H(M,d) is then a bigraded module with p, q term

kerd, ,
imd, ,,
A bicomplex (M,d’,d"") yields two differential bigraded modules, (M,d") and
(M, d'".

Proposition 3.1. If (D, E, a, B,y) is an exact couple, then d' = pyisa differential dl:

H(M.d),, =

E — E, and there is an exact couple (D2, Ez, az, ﬁz, yz) called the derived couple, with
E?=H(E,dY.

D? o’ D?
X /
Y p
E2

Proof: We justlook into the case of exact couple coming from the filtration of a complex,

where dega = (1, —1), deg f = (0,0), degy = (—1,0). First, verify that d! is a differen-
tial: d'd' = B(yP)y = 0, by the exactness of the original couple. deg d' = (-1,0).

2 _ 1 2 _ 1yl

Define E- = H(M,d"). Thus, E,, =kerd, / 1mdp

2 _ . 2
Define D =ima C D. Thus, D, , =ima,_; .,

+1,g°
1€ Dpy

We now define maps.

Let a® : D*> - D? to be the restriction a|D>. Clearly, deg @’ = dega =(1,-1). If

2 —
x €Dy, thenx =auforue D, .., and
alz,,q X =qu ax =aau

Define > : D> — E? as follows. If y € Dlz,,q, then y = av forsome v € D,,_; .

and fuv is a cycle for d'pv = B(yp)v = 0. Hence

B2y cls(fo).

we shall verify f° is well-defined. Suppose y = av’, then v — v’ € kera = im y. Thus
thereis w € D, ,_; Withyw = v—v". Therefore f(v—1") = fiyw = d'® is a boundary.
Note that deg % = (-1, 1)

Define y2 : E* - D? as follows. Let cls(z) € EI%

o thus d'(z) = pyz = 0.

yz € ker f = im a. Define y> by
y2 ccls(z) — yz.

If w is a boundary, that is ® € im d;_H w = d'x = Byx. Then y’cls(w) = yByx = 0.

4q=1
Hence 72 is independent of the choice of representatives. Note that deg y? = (~1,0).

11
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What remains is to verify the exactness at each vertex. First of all, adjacent compos-

ites are 0.
ﬂ2a2 x =au aau — cls (fau) = 0.
v2B% 1 x = auw cls (Bu) — ypu = 0.
a2y2 icls(z) > vz ayz=0.

kera® C im y%: If x € kera?, then ax = 0 € D?. Hence x € kera = im y, thus there
isaye Ewithx =yy. And x € D> = ima = ker 8, fx = Byy = d'y = 0, hence
cls(y) € E? with x = Yy = yzcls (y) € im yz.

kerﬁ2 Ccima’: Ifx e kerﬁz, Xx = av with fv € im d'. That is pu = dlo= Py®. Hence
v—ywEekerf =ima = D?. Notice that az(v —yw) = av — ayw = av = X, therefore
x € im a.

ker yz Cim ﬁ2: If cls(z) € ker yz, yz =0, thus z € kery =im f, z = fv forsome v € D.
Observe that av € D? so, cls(z) = ﬁz(av) € im ﬂz. i
Definition 3.10. The rth derived couple of an exact couple (D, E,a, B,y) inductively:
its (r + 1)st derived couple (D"*', E™*1, a1, pr+1 "1y is the derived couple of
(D", E",a",B",y"), the rth derived couple.

Theorem 3.1. Let (D, E, a, B, y) be the couple of a filtration (F?C).

1,-1 1,-1
D (L=1) D (L=1) D

D - 7 5
(14 r
A7
(-1,0) 0,0) (-1,0) (I=r,r—1)
E E"

Then:
1. the bigraded maps o, ', y" have bidegrees (1,—1),(1 —r,r — 1),(—1,0), respec-
tively;
2. the differential d" = B"y" has bidegree (—r,r — 1);
3. B\ = H(E",d");
4. D, =im(a,_y ,41)( @2 412) = (@p_p i1 g4r—1)5 in particular, for the exact couple

in the beginning of this section,
D, =im (P'iP72 it o H (FPTHY S H(FP).

Proof: The proof of this theorem is trivial by induction. Also notice that d ;’q L E,, —

E,_, , is the last circumstance is the connecting homomorphism 0
H, (FPIFP™"y - H,  _(FF~/FPr?)

12
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arising from 0 - FP~1/FP=2 — FP/FP=2 - FPIFP=2 5 (. |
Definition 3.11. A spectral sequence is a collection (E",d"),s of differential bigraded
modules such that E™*' = H(E",d") for all r. By previous discussion, every filtration of

a complex provides a spectral sequence.

3.3 Convergence

Theorem 3.1 states that a filtration of complex C provides a spectral sequence, but
what is the connection between the E” term of the spectral sequence and the homology of
H,(C)?

If (E",d") is a spectral sequence, then E? = H,(El,dl) is a subquotient of E":
hence, El=27 2/B2, where

B*c z*c E.
And Z3, B3 can be viewed as quotients B3/B?c Z3/B* c Z%/B? = Ez, so that
B*cB'cz’cz’*cE.
Continuing such steps, for each r, there is a chain
B’c-.cB cZ c-cZ*cE.
Definition 3.12. Given a spectral sequence E",d", define Z* =n.Z" and B> = U,B".
Then B® C Z, the limit term is defined by
Eyy=Zpy! Bpy-

Clearly, E't' = E"iff Z'*' = Z" and B! = B"; and if E™*! = E" forall r > s,
then E® = E®.

Definition 3.13. Ler (FP(C) be a filtration of a complex C. Let i’ . F? — C be the
inclusions, define the induced filtration of H,(C) to be
®’H,(C) = im .

Definition 3.14. A filtration (FP M) of a graded module M = (M) is bounded if, for
any n, we can find integers s = s(n), t = t(n) such that
F°M,=0and F'M, = M,
If F? is a bounded filtration of a complex, the induced filtration on homology of that
complex will be bounded as well. Moreover, their bounds are equal.

Definition 3.15. A spectral sequence (E",d"),5, converges to H, a graded module, de-

13
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noted by
E2 =>H
pg 5
if there is some bounded filtration (®” H,) of H with

~ -1
EX ~@"H,/®'"H,

forany p+q=n.
Theorem 3.2. Let (F¥C) be a bounded filtration, and (E", d"), be the associated spec-
tral sequence. Then
1. forany p,q, E,, = E, , for large r, depending on p, q,
2. E;, ? H ,(C).
Proof:
1. If p is large, that is p > #(n), then FP~1 = FP and FP/FP~' = 0. So that E,,=

Hp+q(FP/F1’_1) = 0. Since E, , is a subquotient of E,, ,, we have E}, , = 0 for every

a
r. If p < s(n), we have F” = 0, therefore E, , = 0 for every r.

Then considering the differential d”, which has degree (—r,r — 1). For any fiexed
(p, q9), we can choose a sufficient large r, such that p—r < s(n) and p+r > t(n). In this
— +1 _ : : —

= 0, thus Elr,’q = E;,q, which yields E;,q = E;f’q.
2. Writing e for all second indices and observe the first subscript.Look into the exact

1 r — r
circumstance, d g = dp rg—rt]
sequence coming from the rth couple:

ﬁr Er },r
b.q

.
r 4 Dr

ptr—2,e pt+r—1,e D] (-1

p—Llq
The module
D), =im (PP P 0 | (FPTHY S H(FP).

Replacing p first by p+r — 1 then by p + r — 2, we have

=2 4r—1
D:’+r—l,o =1m (lp ’ lp)>:< - Hn(Fp " )
=3 p—1 +r=2
;+r_2’. =im (P77 - iPTY), C H (FP™77).

For large r, FP*" -l = F' = C, and the composition of the inclusions is just the

inclusion i’ : F? — C. Therefore, D" = im ¥ = @®’H, and D’ =
)/ p+r—2,e
im ii_l =P 'H ,- Hence we can rewrite (3-1) in the following:

+r—1,

p—1 D r r
""" H,->®H,—- E, — Dp—l,q’

14
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where the first map is inclusion. If D;_ = (), then for sufficient large r,

1,q

@®'H,/|®" 'H, = E, = E.

and we are done. But D;_l , = im (H,(FP™") — H,(FP™')), which is zero for

H,(FP™") = 0 when r sufficient large.

3.4 Homology of the Total Complex

Now let us turn to the calculation of total complexes arising from bicomplexes. For
a bicomplex (M, d’,d""), Tot(M) can be filtered in two different ways. The first filtration
of Tot(M) is (\F?), where
(in)n = @ Ml‘,n—i
i<p

= OM, 2 ®OMy 1, OM,,.

The nth term of it is clearly the direct sum of all M;,_, on the left of a vertical line.

i,n—i

r

N

P

N

-
>

v

N

p n=p+q n=p+q

(a) First filtration (b) Second filtration

Figure 32 U

The second filtration of Tot(M) is (1 F?), where
i} _
( Fp)n - @Mn—J’j
J<p

= @ Mq+2,p—2 @ Mq+l,p—l @ Mq,p’

The nth term of it is clearly the direct sum of all M, _; below a horizontal line.

i,n—i

15
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From now on, suppose the bicomplex is first quadrant. Let ({E") and ("E") be the
spectral sequences associated with the two filtrations of Tot(M). By previous theorem
3.2, we have the following:

Corollary 3.1. The two filtrations are bounded and
1. For any p,q, (IE;f’q) = (IEIZ,q) and (IIE;f’q) = (HEIr,’q)for large r depending on p, q.
2. (E;,) = H,(Tot(M)) and ("E ) = H,(Tot(M)).

What makes spectral sequences so useful is that the E? page of a spectral sequence
arising from a bicomplex is computable. We will compute (IEI%’q) below, hence throwing
away the prescript I in the following argument.

E,,= H,(FP/FP~1), notice that the nth term of FP/FP~! is just M, , by definition.

The differential (FP/FP~Y), — (FP/FP~Y), | is

D, :a,+(FFY, v Da,+(F'™Y, |,

n
where a, € (FP),; we may assume a, € M, .. Now D,a, = (d,,+d, )a, € M, | , &
M,, . ButM, , C (FP~1,, so that D,a, = d,.a, mod (FP~Y), . Thus only d"’
survives in F?/FP~! To be precise,
ker D, kerd,/
H(FIIFP) = ——= = —20 = Hy(M,,,),
im D,y My,

where (M, ,, is the pth column of M which is a complex with differentials d"’. And there
are horizontal maps d’ survive. Hence consider the gth row,
s H/(M ), Hy (M, ), H (M4 L), -

which is complex whose differentials are induced by d’. So far, we already define another
bigraded module with p, q term denoted by H, H,' (M) being first taking homology gth in
pth column, then taking pth homology in gth row. Briefly speaking, first taking homology
vertically, then horizontally.
Definition 3.16. For bicomplex (M ,d’,d'"), the bigraded module whose (p, q) term being
H,H, (M) is called the first iterated homology.

Next theorem leads to a miracle.

Theorem 3.3. If M is a first quadrant bicomplex, then

('E,,) = H,(M,,)
(E; )= H)H] (M) = H,(Tot(M)).

Hence we can compute the E? page through the first iterated homology.

16
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Proof: Only thing to verify is the second statement. Omit the prescript I for convenience.
We show that d;,q : E;,q — E;_l’q takes clsz — cls(d’z) € HI;H(;’(M) is the same as
differentials defined in the first iterated homology. Then the consequence follows. As

d' - H

p+q(F”/F”_1) - H, (FP=1/FP=?) is the connecting homomorphism, we have

a diagram in chain complexes:

Jj
M —1,g+1 ® Mp,q Mp,q 0

p
lﬁ
i
0 Mp—l,q p—lg ® Mp,q—l'

where D : @yt g Opg) P (d”ap_lvq +d’ap,q , d”ap’q). Let z € M, , be a cycle; that is,

d,'.z = 0. Choose i~z = (0, 2), so that D(0, z) = (d),2,0) ford"" =0.

d'cls(z) = cls(i"'Dj ™' z) = cls(d’z) € H}H]/(M).

There is a dual version for the second filtration.
Definition 3.17. For a bicomplex (M ,d’,d'"), the bigraded module whose (p, q) term is
H,H (M) is called its second iterated homology. That is taking homology horizontally
at pth row first, then vertically at qth column. Notice that the indices in this circumstance
are interchanged.

Theorem 3.4. If M is a first quadrant bicomplex, then

"E,,) = H/(M,,)

"E; )= H) H)(M) = H,(Tou(M)).

Even both two spectral sequences converge to H,(Tot(M)), there may not be iso-
morphisms IE;f’q = IIE;f’q and the induced filtrations on H, from ('FP) and from (" F?)
need not be the same. The following situation usually happens, that is, there are lots of 0
on the E? page.

Definition 3.18. A spectral sequence collapses on the p-axis if Eiq = 0forall g # 0;
collapses on g-axis if Eiq = 0 for each p # 0.

By arguing on the factor modules, one finds if a first quadrant spectral sequence

converges, then
1. If it collapse on either axis, then E;f’q = Eiq for all p, q.
2. If it collapse on the p-axis, then H,(Tot(M)) = Eio.
3. If it collapse on the g-axis, then H,(Tot(M)) = E&n.

17
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In homological algebra, there are two important functors Torff and Ext,lf, the left
derived functor of tensor and the right derived functor of Hom. These functors are actually
bifunctors and independent of the variable resolved. We can use spectral sequence to show
this property.

Example 3.4. Recall the notation:
TorR(A, B)y = H, (P, ®z B) and tor}(A, B) = H,(A ® Qjp),

where P 4 and Qg are deleted projective resolutions of A and B respectively. Then
Torf(A, B) = H,(P, ®g B) = H,(P, ® Qp) = H,(A ®g Qp) = tory (A, B)

Suppose we have bicomlex (M ,d’,d"") in section 3.1 whose total complex is P, @ Qp
and compute it with the first iterated homology. E' is H é'(M p.x)» the qth homology of the

pth column

This sequence is exact for q > 0 because that P, is projective, thus H,(M, ) = 0 for
qg>0. Whenq =0, Q; - Qy — B — 0isexact respect to the functor Pp ® . Therefore,
Hq(Mp’*) = P, ® B. To sum up,

0, ifg >0,
Il _
E,q= ,
Pp ® B, ifq=0.
Therefore, the spectral sequence collopses on the p-axis.

07 l.fq > O’

H,(P,®B), ifq=0.

12 _ I8z gl —
Ep,q - Hqu (M) =

Thus the previous observation yields

H,(P, ®Qp) = H,(TorM)) 2 'E; =~ H,(P, ® B).

A similar argument using the second iterated homology gives
0 ifp>0

H(A®Qp) ifp=0.

Thus this spectral sequence collapse on p-axis,

g2 _ 1oy’ —
E,q=H, Hy(M)=

H,P, ®Qp) = H,(To((M)) = "E} = H,(A®Qp),

which proves our statement.

The Ext version will focus on a third quadrant bicomplex, and the argument is the

18
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same as it in the first quadrant.

3.5 The Serre Spectral Sequence

Suppose # : X — B is a filtration. The base space B is path connected, and has
a cell structure. We can construct a filtration of X by the subspaces X, = 7~ 1(BP), BP
being the p—skeleton of B. Since (B, B?) is p—connected, (X, X p) is p—connected as well
for the homotopy lifting property, the inclusion X, < X induces an isomorphism on H,
with any coefficient G. Together with X, = when p < 0, we obtain a bounded filtration
of chain complex on X.

The E! term consists of E;’q = H

» +q(X » X =15 G), which is nonzero only when

p,q = 0. Hence the spectral sequence is a first quadrant one. Together with the argument
above, this spectral sequence converges to H,.(X; G).
Theorem 3.5 (Serre Spectral Sequence). Suppose we have a fibration F — X — B with

B path-connected. Then the corresponding spectral sequence converges, with
. . ~ 2 .
H,(B;H,(F;G)) 2 E;, =p> H,(X;G),

if 7y (B) acts trivially on H (F; G).

The proof of this theorem is a quite long story, readers can find it in?!.
Example 3.5. From the preceding theorem, we can compute the homology of K(Z,?2).
Firstly, we consider 2B — P — B as a pathspace filtration of B being a K(Z,?2).
QK(Z,2)is a K(Z,1) wich can be identified with S, Pis the pathspace of B which is

contractible. Then the spectral sequence is in the following form.
E, page for H,(K(Z,2))

H\(B), H,(B), H3(B), H,B), Hs(B) HgB)
T T T T T

Z
0| Z H\(B) Hy(B) H;3(B) HyB) Hs(B) HgB)

0 1 2 3 4 5 6

Eg’q = H,(K(Z,2), Hq(Sl)), and the differentials d? are indicated in the figure.
Since P is contractible, H'(P) = 0 for all n # 0, and d' are all zero maps for i > 3,
we know that E;’q = Elo,f’q = 0 for p,q > 0. Therefore, all the differentials d? must be
isomorphisms, which yields H,, = Z and H,, ., = 0.

There is a analogous Serre spectral sequence in cohomology, which is more powerful

contributing to the extra structure on it.
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Theorem 3.6. Let F — X — B be a filtration. Let B be a path-connected CW complex,

then there is a spectral sequence converges to H"(X; G) with
EY? = HP(B; HU(F; G)).

if 7, (B) acting trivially on cohomology H*(F;G).
The cohomological version of Serre spectral sequences have cup products structure.

That is a bilinear map:
EPix EY — EPTSIY (3-2)

satisfying:
1. d, satisfies d(xy) = d(x)y + (=1)"*9xd(y) for x € E”?. This implies the product
EP % Ef’t - Ef+s’q+t induces a product Effl X E:ll - Ef:ls’qH, and this is
exactlythe product for E, ;.

2. The product in E, page is (—1)?° times the standard cup product
HP?(B; HY(F; R)) x H*(B; H'(F; R)) - H"**(B; H"*'(F; R))

sending (¢, y) to ¢ — y, the coeflicients are combined through the cup product in
H*(F; R).
. . . + .
3. The cup product in H*(X; R) restricts to maps Flj” X F{! — F;’_’Hn. These induce
quotient maps F,'/F\ | X F{/F{ | — F, o' F 1;’_:’11 that coincide with the products
m— = +s,m+n—p—
Egom prgon s_)Egosm n—p s.
The tedious proof of statements above will not be covered. But with these properties
in mind, we can start to compute something interesting.
Example 3.6. We can calculate the cohomology of K(Z,2) through the product structure.

Again, starting with the pathspace filtration K(Z,1) - P — K(Z,2).
E, page for H*(K(Z,2))

1 Za\o)Zaxz 0 Zaxy 0 Zaxg
0 1 2 3 4 5 6

Eg’q = HP(K(Z,2); HI(S")). a and X; are generators of Eg’i = Z and E;’O =Z.
The differentials in this chart must be isomorphisms since P is contractible, and all terms
except Z1 disappear in E,. Hence we may regard x, = dya. x,;,, = dy(axy;) =
(dya)xy; = a(dyxy;) = (dya)xy; = XyXo;. This implies that H*(K(Z,2); Z) = Z[x,] is a
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polynomial ring.

3.6 Computing 7,(S>)

In this short section, we can calculate the p-torsion of Ei(S3 ). Itis O wheni < 2p
and Z, when i = 2p.

As in previous section, we can find a map S° — K(Z,3) which is isomorphic on
m5. And then, we can obtain a filtration F — S — K(Z,3). F is 3-connected and
r(F) = 7rl-(S3 ) according to the long exact sequence of this fibration. Stretch F — 3
to another fibration K(Z,2) - X — S° where X ~ F. The spectral sequence for this

fibration have E, = E; pages shown in the figure.

E, page for H*(X) E; page for H*(X)
6 |Zd’ Za’x 6 |Zd® Za’x
5 5
4 | zd* Za*x 4 | za? Za*x
3 3
2 | Za Zax 2 | Za Zax
1 1
0 | 71 Zx 0 | Z1 Zx
0 1 2 3 0 1 2 3

We want to determin H*(X; Z). Since X is 3-connected, H,(X) = H;(X) = 0 by
Hurewicz theorem, thus by universal coefficient theorem, H 3(X ) = 0. Thatis ng = E2’3
must be zero, therefore the differential Za — Zx is isomorphic. Hence dya = x, which
implies that d3(a") = na"'x. From this we deduce that H'(X) = Z,wheni =2n+1
and O when i = 2n > 0. The corresponding homology is that H;(X) = Z, wheni = 2n
and O wheni =2n — 1.

Let &, the Serre classes, be one of three following classes:

1. FG, finitely generated abelian groups.
2. T,, torsion abelian groups. And the order of each element is only divisible by num-

bers from a set P of primes.
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3. F,, finite groups in 7.
Theorem 3.7. If X is a path-connected and (X)) acts trivially on x,(X), then n,(X) €
& forallniff H(X;Z) € © forall n > 0.

Especially, homotopy groups of a simply connected space are all finitely generated
if and only if all its homology groups are finitely generated. Hence z;(S") is finitely
generated. The preceding theorem can be deduced by a more generally Hurewicz theorem:
Theorem 3.8. If X is path connected and n| acts trivially on r; for all i. Suppose n;(X) €
© for i < n, the Hurewicz homomorphism h : n,(X) - H,(X) is isomorphic up to mod
©.

According to these two theorem, we obtain that the first p-torsion in 7, (X) & 7,.(S°>)
is Z, in x,. Let p = 2 we have (8% =7,.

In the last part of this section, the conclusion that z; is finite for i > 0.

Theorem 3.9. z;(S") is finite when i > n, except for y,_, (S?K). It is indeed a finite group
taking the direct sum with Z.

Proof: Since we already known that ni(Sl) =0 when i > 1, we can assume that n > 1.
Then the condition for Serre spectral sequence qualified.

Asusual, there is amap S" — K(Z, n) which induces an isomorphism between them.
Get a fibration with fiber F. Then F is n-connected according to the long exact sequence,
and z;(F) = z;(S") for i > n. Stretch another fibration K(Z,n—1) - X — S", with X ~
F from the map F — S™. Then we can apply the cohomological Serre spectral sequence

with Q coeflicients. When #n is odd, E, page is the following picture. For the same reason
3n-3 | Qa’ Qa’x
2n-2 | Qa? Qa’x
n-1 Qa ~ Qa x
0 | ai ~ Qx

0 n

Figure 3.3

as previous examples, the differentials Qa — Qx must be isomorphism. Otherwise, it
contradicts to X is (n — 1)—connected. Hence all differentials are isomorphisms, which
leads to H*(X;Q) = 0 = H,(X;Q), therefore ,(X) = ,;(S") is finite for all i > n
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according to theorem 3.8.

When # is even, there are only the first two rows being nonzero in the picture. Since
the cohomology of X is the same as S?"~! in Q coefficients. Hence by the preceding
theorem, z;(S") is finite when n < i < 2n—1 and a Z direct sum with a finite group through
factoring out finite groups. When i > 2n — 1, let Y be obtained from X by attaching cells
of dimension greater than 2n — 1 such that 7;(Y) = O fori > 2n — 1. Consider X < Y
as a fibration, whose fiber is Z. Then Z is (2n — 2)—connected according to the long
exact sequence and 7;,(Z) = n;(X) fori > 2n—1, and 7;(Y) = 7;(X) fori < 2n—1 since
adding cells greater than 2n— 1 does not affect z; with i < 2n—1. Therefore z;(Y) is finite
for all i which leads to H*(Y; Q) is finite and hence zero. Applying spectral sequence on
Z —» X — Y yields H*(Z;Q) = H*(X;Q) = H*(5*"~!; Q). Then choose a map from
Z to K(Z,2n — 1) inducing isomorphism on x,,_;. Using the argument above, we have
7;(Z) is finite for all i. Eventually, when i > 2n — 1, 7;,(Z) = n;(X) suggests x;(S") is

finite for i > 2n — 1. [ |
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CHAPTER 4 Cohomology Operations

The main purpose of this chapter is to introduce the Steenrod operations and Adams
spectral sequences as we mentioned in chapter 2. Steenrod operations as a kind of coho-
mology operations, is not just servicing for Adams spectral sequence. I give an example

that determine the upper bound of tangent vector fields on sphere.

4.1 General Cohomology Operations

Definition 4.1. A cohomology operation is a transformation ©® = Oy : H"(X;G) —
H"(X; H), with fixed m,n, G and H, and fit into the diagram.

H™(Y:G) -~ H'(Y; H)
|- |
H™(X;G) -2~ H"(X; H)

If we view H™(e;G) and H"(e; H) as functors from the category of topological
spaces to the category of groups or more generally modules, then we may regard a coho-
mology operation as a natural transformation between these two functors.

Example 4.1.
1. With coefficients in a ring R, the transformation H™(X; R) > H"’(X; R), a — a”,

is a cohomology operation since [*(aP) = (f*(a))P.

2. Taking R = Z, the previous example says that a cohomology operation need not to

be a homomorphism. It can be just between sets.

Proposition 4.1. For fixed m,n, G and H there is a bijection between © : H"(X;G) —
H"(X; H), all cohomology operations and H"(K(G, m); H), explicitly © — O(1) where
1 € H"(K(G, m); G) is a fundamental class.
Proof: Let X,Y be CW complex, so we can identity H"(X; G) with (X, K(G, m)). If an
elment « € H™(X; G) corresponds to amap ¢ : X — K(G, m), so that ¢*(1) = a, then
O(a) = O(¢p* (1)) = ¢*(O(1)), hence O is uniquely determined by O(1) since ¢* is uniquely
determined by the class or element in H™(G; G). This provides injectivity. In the case of
surjectivity, suppose a« € H"(K (G, m); H) representing a map 6 : K(G,m) —» K(H,n),
then 0 induces (X, K(G, m)) — (X, K(H,n)), thatis, ® : H"(X;G) - H"(X; H) and
H"(K(G,m); H), with () = « |

Cohomology operations must satisfy m > n. Since K (G, m) being (m—1)—connected
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and applying universal coefficient theorem, yields H"(K(G,n); H) = 0 when m < n.
Moreover, since H"(K(G, m); H) = Hom(G, H), cohomology operations fixing dimen-
sion are coefficient homomorphism. This proposition is analogue, in some sense, to the

Yoneda Lemma in category theory.

4.2 Steenrod Operations

The interesting cohomology operations are Steenrod squares and Steenrod powers

since they actually are homomorphisms:
Sq¢' : H"(X'Z,) - H"" (X, Z,)
P H'(X;Z,) - H20-D(x, Z,) for odd primes p

The Steenrod squares[4] Sq¢' : H"(X;Z,) - H"™(X;Z,), i > 0, satisfy the fol-

lowing properties.

1. S¢'(f*(a)) = f*(Sq'(a)) for f : X — Y, the naturality.

2. Sq'(a+ p) = Sq'(a) + Sq'(p), being homomorphism.

3. Sq'(a — p) =X, S¢/(a) — Sq'~/(P) (the Cartan formula®).

4. Sq'(c(@) = 6(Sq'(a)) where 6 : H"(X;Z,) » H""'(XX;Z,) is the suspension
isomorphism.
Sq'(@) = a? if |a| = i, and Sq'(a) = 0if i > |a].
6. Sq° = 1, the identity.

hd

7. Sq' is the Z, Bockstein homomorphism f associated with the coefficient sequence
0—>Zz—2>Z4—>Zz—>O.

Recall the Bockstein homomorphism. If one has an exact sequence 0 - A - B —

C — 0 on abelian groups, then one can apply the covariant functor Hom(C,(X); —) to

yield an exact sequence 0 — C"(X; A) - C"(X; B) » C"(X;C) — 0. Thus we have:
> H"(X;A) » H"X:B) » H"(X;C) » H"(X; A) > -

whose boundary map f§ : H(X;C) - H" (X A) is the Bockstein homomorphism.
Passing to Steenrod powers el pi + HMX: Z,) - H n+2i(p-D x Z,), the similar
properties holds:
1. P'f*= f*P'for f : X — Y, the naturality.
2. Pi(a + p) = P'(a) + P'(p), being homomorphism.
3. Pl(a — )= X; P/(a) — P"/(p), the Cartan formula."]

4. Stable under suspension.
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5. Pi(a) = a? if 2i = |a|, and P'(a) = 0if 2i > |a|.
6. PV=1.

It is clear that Steenrod squares and Steenrod powers are homomorphisms from (2).
(4) means that the .S¢"’s are stable under suspension. Steenrod firstly introduced Steenrod
squares, with composition as product, these squares form an algebra, denoted A,, called
the mod 2 Steenrod Algebra. The analogous Steenrod powers were constructed latter, and
form the mod p Steenrod Algebra, A,. In the early 1950’s, Cartan and Adem explored the
structure of them. Then Serre and Cartan showed that Steenrod’s constructions established
all possible stable cohomology operations over the finite fields. The explicit constructions
of Steenrod squares and powers are not important, instead, their strong properties are what
we want.

The fotal Steenrod squares and powers are Sq = SqO+Sq1 4+--and P = PO+ Pl +....
Their actionona € H*(X,Z ) canonly have finite Sq"’s or P"’s being nonzero . Sq(a —
p) = Sq(a) — Sq(p) and P(a — p) = P(a)o P(f) according to Cartan formulas, so that
Sq and P are actually ring homomorphisms. Notice that Sq(a”) = (Sq(a))" = (a+a®)" =
>, (’Z)a”” when |a| = 1, therefore S¢'(a") = (;’)a"” when |a| = 1.

Example 4.2 (Vector Fields on Spheres [2.71), We can use Steenrod squares to find a upper
bound of the number of independent tangent fields on spheres.

Recall the Stiefel manifold V,, , is a space whose points are orthonormal k—tuples in
R". Projecting a k—tuple onto its first coordinate is actually amap p : V, , — S "= yith
fiber V,_; y_1. A section corresponds to a set of k — 1 orthonormal tangent vector fields
on S"1.

The (n—1)—skeleton of V,, ; is RP”_I/RP”_k_lfor 2k—1 < n. Now suppose we have
fosls V.. is a section. Since pf =1, f* is surjective on H" (- Z,). By cellular
approxiamation, we can assume [ is cellular, thatis f : S"~' - RP"I/RP" %1 jf2k -
1 < n. Hence [ is an isomorphism due to the cellular cohomology of RP"~!/RP"*=1,

If the number k satisfying (Z:llc) =1 mod 2, then the Steenrod square S g< !

H" *RP"/RP"* 1, Z,) — H" |(RP"/RP"*71, Z,)

an—k — <Z - T)an—l

should be nontrivial. But f* inducing an isomorphism, it contradicts to
qu—l . Hn—k(Sn—l : ZZ) N Hn—l(Sn—l : ZZ)

is zero.
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Thusletn=2"Q2s+ 1)and k =2" + 1 with s > 1, then
<n - k> _ (zrﬂs - 1)
k-1 2r ’
and in mod 2 case is nonzero. The condition that s > 1 guarantees the condition
2k—1<n

To conclude, for n = 2"(2s + 1), the sphere S"~! cannot have 2" tangent fields if
s > 1. When s = 0 this also holds, since S "=1 can not have n orthonormal tangent vector
fields.

When r < 3, this result is optimal. Let n = 2"m. When r = 1, there is only 2l 1
candidate. View S*"~! as the unit sphere in C™, the unique tangent filed is x — ix. When
r =2, view S*1 as the unit sphere in H™, the maps x +— ix, jx, kx yields all tangent
fields. As for r = 3, one performs the same procedure on octonions, O. The upper bound
is not best. The optimal one is obtained by K -theory, using the Adams operations.

Steenrod squares and powers can be composed, with quite complicated rules, called

Adem relations'™®

Sq¢°Sqb = Z <b a_ _Jz_jl>sqa+b—fsqf if a < 2b
J

peph= Y 1y <(p— D= )= 1>Pa+b—jpj if a < pb
. a—p]
J

PaﬁPb — 2(_1)a+j <(p - 1)(b _J)>ﬁPa+b—jP]
- a-pj

where the coefficients are taking in Z,. By convention, the binomial (':) is zero if m or
n is negative or if m < n. Though complicated at the first glance, it is still helpful in
simplifying computation. For example, Sq'Sq” = (b — 1)S¢*™! so S¢'S¢* = S¢**!
and Sq'S¢¥*! = 0.

The mod 2 Steenrod algebra A, is the algebra over Z, generated by Sq',Sq%, -
quotient the ideal generated by the Adem relations. Similar to A,, A, for odd prime p is
defined to be the algebra over Z, generated by S, Pl P2 ... quotient the ideal generated
by Adem relations and ,B2 = 0. Thus H*(X, Z,) can be extend to a module over A,
rather then just Z,,. Clearly, A, is a graded algebra with element of degree k being maps
H"(X,Z,) - H™ (X; Z,) up to Adem relations for all 7.

Proposition 4.2. A, is generated as an algebra by elements of degree 2K since there is a
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relation Sq' = Do< j<i 4 g Sq. A, is generated as an algebra by elements of degree
p* with relation P' = Yo<j<i ajPi_ij witha; € Z,,.

Proof: This is a little trick. The argument for p = 2 and odd p is the same. Assume p is
odd. Leti =iy +i;p+ - +i,p* withi, #0. Let b= p* and a = i — b so that a < pb and

(p—1Db—1
a

a,b > 0if i is not a power of p. If we can show that ( ) the j = 0 term is nonzero,

then the conclusion follows from the Adem relation. It is indeed the case. The p—adic

k—1

expansionof (p— Db —1=pF 1 1 —pf=(p-DA +p+ -+ pF 1+ (p-2)p* and

a=iy+ip+ -+ (i, — DpF. It follows that
()= 00 -G
a i i1 ) \ig=1)"
is nonzero. i

An elemnt a of a graded algebra is decomposable if it can be writen as ) ; a;b; with
a;, b; having degree lower than a. This proposition implies that most of Steenrod opera-
tions are decomposable.

Using the argument above, we can show that the only spaces X with its cohomology
ring with Z coeflicients a polynomial ring Z[x] must satisfy the dimension of x is 2 or 4,
corresponding to CP* and HP.

Theorem 4.1. Suppose H*(X; Z ) is the polynomial algebra on a generator a with |a| =
nlfp=2n=2%ifpisodd, then n = Kl where I divides 2(p — 1) and is even.

Proof: When p = 2, Sq"(a) = a® # 0 according to our hypothesis. If n is not a power
of 2, then S¢" decomposes into some S¢q" ™" Sq¢' with 0 < i < n. But such term must be
zero since Sqi maps anything into H””(X; Z, = 0since j < nand H*(X; Z,) = Z[a]
with |a| = n.

When pis odd, a® # 0 implies that # is even. Suppose n = 2k, then P¥(a) = a” # 0.
Since P¥ can be written as some P”is, some PP #0in H*(X;Z »)- This implies n divides
2p'(p — 1). The result follows. [

Now if H*(X) = Z[a], passing from Z to Z,, the theorem yields that |«| is a power

of 2. Passing to Z5, |a| is a power of 3 times a divisor of 2(3 — 1) = 4. Hence |a| = 2,4.

4.3 Adams Spectral Sequences

We finally arrive here. In this section, I will establish the progress of calculation with
Adams spectral sequences and calculate 71'; as a special case of the motivated problem.

Theorem 4.2. Let X,Y be CW complexes of finite type. And Y has finitely many cells.
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Then there is a spectral sequence with
Ey' = Ext;p(ﬁl*(y, Z,), H (S'X,Z,) > {S"°X,Y},.

This implies the statement in the last of chapter 2. The construction and proof of this
theorem requires amounts of work. Using CW spectra and cofibration sequence for pair
(X, A). Hence I will not present it here. Spectral sequences are machinery, it is enough
for one using them in spite of understanding the constructions of them. To use Adams
spectral sequence doing computation, one proceeds in three steps[9]

1. Calculate Extitp(I:I*(Y, Z,), H*(S'X, Z,)). This steps falls into two parts.
Firstly, figure out the structure of H*(X;Z,) and H*(Y;Z,) as modules over A,.
Secondly, calculate the Ext group using homological algebra. This is quite difficult.

2. Calculate E, | from E,. This step is really hard, usually impossible for there are
infinitely many tough terms to be computed.

3. Deduce {S"*X, Y}; from E_ page. One obtains a filtration on it at most time.

Perhaps the greatest uses of the Adams spectral sequences are proving things rather
than calculation. For instance, if a map X — X’ induces isomorphism on E, pages, then
inducing isomorphism on {X,Y}g — {X’,Y};.

As promised, let us compute the 2-component of z;. The first step involves the cal-
culation of Exti’f2 (Z,,7Z,), where t means the latter Z, viewed as a graded module, has
the Z, summand on the grading . Homological algebra suggests us to do the deleted
projective resolution for the former Z, or deleted injective resolution for the latter, both
viewed as graded modules with Z, on the grading 0.

Generally, for computing EXti’fp(H *(X), Z,) it suffices to construct a minimal free

resolution of H*(X) over A b
> F, —>F - F—> HX)-0

where at each step of the inductive construction, the number of generators of F; chosen is
minimal.

Proposition 4.3. For a minimal resolution, all maps in dual complex
R HomAp(Fz,Zp) «— HomAp(Fl,Zp) « HomAp(FO,Zp) <0

are zero, hence Exti’( (H*(X), Z,) = Homi4 (F, Z,), tindicates the grading for Z,,.

P 14
Proof: Denote A™ for the ideal in A generated by elements having degree nonzero.
Observe that ker¢; : F; > F;_; C A" F,. Since if x € ker¢; and x = 2 a;x;; with

a; € A with some a; € A’=7 , nonzero, then we can solve the equation 0 = ¢;(x) =
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D ; aj$i(x;;) for ¢;(x;;), which against to the minimal construction on F;.
Since ¢;_;¢; = 0, we have ¢;(x) € ker ¢;_; foreachx € F; with¢;(x) = },; a
with a; € A™. Hence for each f € Hom 4(F,_;,Z,) we have

G =fd(x) =D a;f(xi. ) =0

J

jXi-1,j

since a; € AT will send f(x ) € Z,, to zero. i

i—1,j

Return to the calculation on 2-component of z;. Remind that we have already proved
m = 7,(S%) = Z,, since forn > i + 1 7} = m,,;(S"). The E, page consists of terms
HomtAz(Fs, Z,) where F’s being the minimal free resolution of Z, in the category of
graded A,-modules. Hence our task is to construct F;’s as we need.

Begin with Fy, — Z,. Then F, must be a free .A, module generated by one generator
in degree 0 denoted by 1 with 1 = 1 € Z,. Hence Fy = A,1, the first column of the table
below. This map sends everything to zero except i, thus the kernel is A;

Then we consider F| — F,. Clearly, we need a «; with degree 1, which maps to
Sq'1. Therefore, there is a A,a; C F,. Notice that Sq'a; will map to S¢'Sq'iin F,
which is zero. We have no choice but introducing a new generator a, with degree 2 who
maps to quz.

It is convenient to let Sq’ denote the composition S¢'1.5¢"2 ---. If no Adem relations
can be applied to Sq’, that is, i j = 2ij41, then we say it admissible. By applying Adem

relations iteratively, we can write every monomial .S¢’ as a sum of admissible monomials

Since a; maps to Sq'1, it follows that Sq’ a; is sent to Sq’ Sqi for all admissible
I except those end with 1. In particular, Sqlal maps to zero. And we need the a, as
explained above. All generators we need in the second column are a,.’s which are mapped
to qunl since qun can not be decomposed. Also notice that F; starts with a generator
with degree i by induction, as one can see in the first two rows of the table below.

Subsequent columns are computed in this way. And by finding out all generators, we
can compute the E, page. But this is unpractical, since one can never know whether he
can move to the next column. Instead, one can compute the generators of a whole row by
vanishing line theorem.

The calculation show that the portion of E, page in mod 2 case is in the following
table 4.1. The horizontal coordinate stand for # — s and the vertical for s. Changing the
coordinates is convenient for investigating z,, for all its factor groups lying on the column
I—s=n.
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t-s 0 1 2 3 4 5
J 0 t &, / B ¥; f 0, &;
1 Sqt Sq «, Sqp, Squ3 Sqld1 Sql.sS
X,
2 || sd’c Sq o, Sa’B, Sa’y Sa’s, Sd’e.
s / o / f f
s / Sq;:lo‘l Sqi’l B, quq,ly3 sd's, qu},1£)
Sq’t Sq'«, Sa B, Sq'ys 8546, Sq &5
2 1
Sq°«, Sa B,
Xy Bs X
4 Sq? ll SLZ? 1 0(1 5(134,162 qu,ly3 Sq? 154 Sq 163
Sq't Sq;xz Sa B, 5q 'y, 5a 5, 5q &5
2
qu ?(1 Sa B, Sql)/e
Sql’ - Sqlﬁs
Sq «,

Figure 4.1 Resolution for Z,*!

Mod 2 Adams spectral sequence for x;

4 |- *
3 | e o
2 | e ) ° o
1 | ° o

e}
—_
\S)
w
o
W
(@)
<

t-s=n

The second step is to consider the differentials d,. In this coordinates change, differ-

entials d, has degree (—1, r). Hence all differentials are zero except for d;’z starting from

(1,2) to (0,4) in this page. Hence are terms are stable except the term at (1,2) position.
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But we already know that 7} = 7,(S?) = Z,, the differential a’,1 2 must be zero for all
r > 2. Then according to Serre spectral sequences, all stable homotopy groups z; are
finite except for i = 0, we conclude that the orders of (,) 73 and () 73 are 2 and 8 respec-
tively. As for ()73, one still needs to determine the structure of this group with order 8.
Actually, () 7, is a graded ring. There is a fact states that ;) 73 = Zg using the graded
ring structure z; X 77 — x}, ; defined by compositions Sititk s gitk gk To clarify
this explicitly requires more work, thus not included.

Calculations using Adams spectral sequence is really complicated due to the structure
of Steenrod algebra. In Appendix, I included some charts of Adams spectral sequences
in different prime p made by Hood Chatham. Greenlees generalized this approach for

some other cohomology theory, Adams specral sequences yield some different informa-

tion about { X, Y}, listing in the table below.

Table 4.1 Result of Greenlees

Cohomology theory Information
H*(-32,) (XY},
H*(-;Q) {(X,Y} ®0Q
H*(-;2) {X,Y}

K*() A periodic form of {X,Y}
MU*(-) {X,Y}

K*(-) stands for K-theory. The periodicity is an attenuated form of Bott periodicity
and mixes up {S*X, Y} for various k. MU*(-) is the complex cobordism, which requires
a lot of hard work as preparation. When X, Y are both spheres, this method is the most

efficient known method for calculation at odd primes.

4.4 K-Theory and Adams Operations
44.1 K-Theory

K-theory is the first generalized cohomology theory, invented by Atiyah and Hirze-
bruch around 1960, based on the Bott’s Periodicity Theorem. The idea is to consider all

vector bundles over a space X forming an abelian group, in fact ring structure.
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If E| and E, are vector bundles over B, we say they are stably isomorphic if E; @
" =~ E, @ €", denoted by E; ~, E,, €" is the n—dimensional trivial bundle. This is an
equivalence relation. Under this relation, we can define the addition E,+ E, tobe E; ® E,,
where E; representing the equivalent class of its own. It is associative, commutative, with
identity element ¢". Bui int this setting, only ¢” has its own as inverse. Hence we add the
formal inverse —E of E forall E, and E| — E| = E, — E} if E; + E, ~; E, + E|. Denote
this group by K(X). Notice that any element in K(X) can be written as E — E’ and the
zero element is the class of E — E for all E. Further, E—E’' = (E+ E'Y)—(E'+E'%) =
(E + E'Y) — €". Therefore the elements in K(X) can be written as E — ¢".

Similarly, there is another equivalence relation. We say E; ~ E, if E,®e™ = E,®¢e"
for some m and n. The set of all vector bundles over X under this relation then forms
an abelian group automatically, since for any E, there is a vector bundle E* such that
E @ E* =~ ¢" for some n. Denote this group by K(X).

There is a natural homomorphism from K(X) to K(X), namely sending the class of
E — ¢" to the class of E. The kernel of this morphism is the class of E — ¢" with E = ¢™
for some m, that is the subset {e™ —¢"} of K(X). In fact, restricting of E over X to a base
point x,, gives a homomorphsim from K(X) to K(x,) which restricts on {e™ — €"} is an
isomorphsim. Hence K(X) splits as K(X) = K(x;) & KX)=KX) o Z.

We can also define multiplication over K(X), which is
(E, —EI)(EZ—Eé)=El ®E, - E, ®E£—E{®E2+E{®Eé.

Multiplication over K(X) is associative, commutative, and satisfies distribution. Hence
K(X) is a commutative ring with identity elements €.

K(-) is a contravariant functor from the category of topological spaces to the category
of commutative rings, satisfying if f ~ g : X — Y, then f* = g* : K(Y) - K(X).
K(X) identified with the kernel of K(X) — K (x) is clearly an ideal of K(X) and a ring
of its own.

Consider projections p, and p, from X X Y to X and Y. Applying the functor K(-),

we get a commutative diagram
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u : (a,b) —» pj;(a)p;(b), which is bilinear. Therefore we get a morphism called cross

product or external product as in ordinary cohomology theory:
i KX)® K(Y) — K(X XY)
a® b axb=p(a)p,b).

Let Y = .52, we have a map K(S5%) ® K(X) - K(S? x X). In K(S?), let H be the
complex line bundle over CP! = S2, we have arelation (H @ H)® 1 = H @ H, thatis
H?+1 =2H. Hence there is a map from the polynomial ring Z[H]/(H — 1)? > K(S?),
which is an isomorphism in fact. And the cross product K (SHQ K(X) > K(S?x X) is
an isomorphism as well.

Theorem 4.3 (The Fundamental Product Theorem!'%!), The homomorphism u
K(X)QZ[H]/(H — 1)2 - KX)Q® K(SZ) - K(X X S2) is an isomorphism of rings for
all compact Hausdorff spaces X.

Taking X as a point, one finds K (S?) is generated by H — 1, and multiplication in
K(S?) is trivial sicne (H — 1)> = 0.

Now we can extend K(-) to a cohomology theory. Suppose we have A C X and

] i ~
maps A & X %, X/A between topological spaces. Applying the functor K(-) yields

s

Rxia) L Rx) IR K(A). It is clear that the image of j* contained in keri*. For
the opposite, suppose E over X is trivial when restricts on A. Choosing a trivialization
h . p‘l(A) — A X C". Construct E/h as the quotient space of E under the identifications
hl(x,v) ~ h_l(y, v) for x, y € A. Then E/h is a vector bundle over X/A and j*(E/h) =
E in K(X).

For pair (X, A), the cofibration sequence is
AS XS XUCAS (XUCAUCX S ((XUCAUCX)UC(XUCA) <,
By collapsing contractible subspaces, the above sequence can be written as
AS XS X/IAS SAS SX o S(X/IA) S -
We have shown that K (-) is exact on cofibration sequence, hence there is an exact sequence,
> K(SX) - K(SA) - K(X/A) - K(X) - K(A).

If X = AV B, then X/A = B and the sequence splits, K(X) = K(A) @ K(B) since the
last map is restriction on A which is surjective.
As cross product in K(-), we can define the corresponding cross product in K(-). For

a € K(X) = ker(K(X) » K(xy) and b € K(Y) = ker(K(Y) — K(,)), then external
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product a * b = pj(a)p;(b) € K(X X Y) has pj(a) restricting zero in K(Y) and p3(b)
restricting zero in K(X). So p’l‘(a)p;(b) restricts to zero in both K(X) and K(Y'), hence
on K(X VY). This defines the reduced cross product K(X)®K(Y) - K(XXY,XVY) =
KX AY).

Since S" A X = X"X which is homotopic equivalent to S"X. Taking Y = S2, we

have a map:
B: K(X)— K(S*X), pla)=H -1)xa

where H is the canonical line bundle over S = CP!.
Theorem 4.4 (Bott Periodicity Theorem!''). The homomorphism p : K(X) = K (SZX ),
f(a) = (H — 1) * a is an isomorphsim for all compact Hausdorff spaces X.
Proof: The external product on K(-) is actually the restriction of external product in K(-)
on K(-). Since the fundamental product theorem is an isomorphism, the consequence
follow. |
Hence by Bott Periodicity Theorem, K(S>"*!) = K(S!) = 0; K(5*") = Z, the
generator is (H — 1) * --- % (H — 1). The first statement comes from all complex bundles
over S! are trivial.
If we set K~"(X) = K(S§"X) and K~"(X, A) = K(S"(X/A)), the sequence above

can be rewritten into:
K2(X) - K2(A) - K'(X,A) - KI(X) - K'(4) - KX, 4) - K'(X) = K°4)

Define K*(X) = K(X) and K**!(X) = K(SX) for i > 0. The long exact sequence can

summarized as following periodic diagram.

KX, A) — K°(X) ——K°(4)
T l
K'(4)~—K'X)~—K'(X,A4)

A product K'(X)® K/(Y) - K"t/ (X AY) can be defined as previous in the obvious
way. Let K*(X) = K°(X) @ K'(X), then this gives a product K*(X) ® K*(Y) —
K*(X AY). The relative form of this is a product K*(X,A) ® K*(Y,B) - K*(X x
Y, XXBUAXY).

If we compose the external product K*(X)® K*(X) — K*(X AX) with the diagonal
map X — X x X, then we have a multiplication on K*(X) making it into a ring, and
extending the previously ring structure on K°(X).

Proposition 4.4. The multiplication is graded commutative, aff = (=1)pa for a €
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K'(X) and p € K/ (X).

4.4.2 Adams Operations and Division Algebras

In this section, we will use Adams operations to prove the celebrating theorem of
Adams which asserts that:

Theorem 4.5. There exists a map [ Sn=l _, g2n of Hopf invariant +1 only when
n=124

This theorem has famous applications, for instance, R" is a division algebra and sn-1
is parallelizable only for n = 1,2,4,8. Of course, we can deduce that R" has a division
algebra structure only when 7 is a power of 2. But using K-theory, the conclusion is more
powerful. Starting with the definition of H-space.

In our case, an H-space structure on "' is a continuous map S"~! x §"~! - §7~!
which has identity element e € S"~!. We do not assume the existence of inverses and
associativity of the multiplication.

Proposition 4.5. If R" is a division algebra, then S"~! is an H-space.
Proof: This is because if we have a division algebra structure, then we can define the
H-space structure on sl by (x,y) = xy/|xy|. [

Since we have the isomorphism K(5%) ® K(X) — S2k A X, the external product
on K(SZk) RK(X) — K(SZk X X) is also an isomorphism. And K(Szk) can be described
as Z[(x]/(az), we can deduce that K(Szk X SZI) is Z]a, ﬂ]/(az, ﬂz). An additive basis for
K(S* x S*)is {1,a, ,ap}.

We can from this deduce that .S2¥ is not an H-space for k > 0. Suppose u : Sk x
S2 - §2% i an H-space multiplication. It induces homomorphism p* : ZiyVG?) -
Zla, ﬁ]/(az, ﬂz). The composition §2k Ll> S2k  §2k £ S2k is the identity, where i is the
inclusion onto either of the subspaces Sk % {e} or {e} X Sk The map i* induced by
inclusion into the first factor sends a to y and g to 0, hence the coeflicient of & in ™ (y) must
be 1, similarly, coefficient for § is 1 and no constant term. Therefore u*(y) = a + f +tap.

Now using K (.5%%) has trivial ring structure and y* is a ring homomorphism,
0=u"(r’) = (a+p+1ap)* =2ap #0,

a contradiction. Hence R" may have a division algebra structure only when n is even.
It remains to show that .S~ is not a H-space when # is even and different from 2,4,8.
This needs the concept of Hopf invariant.

Ifg : S" ! x.8" ! - §" ! s amap, we can associate a map § : S>"~! - §”,
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defined as follow. Regard .S 21=1 95 9(D" x D") = dD" x D" U D" xdD", and S" the union
of D} and D". Then § is defined on dD" X D" by g(x,y) = |ylg(x, y/|y]) € D’ and on
D" x 0D" by 8(x,y) = |x|g(x/|x|,y) € D". g agrees with g on S" ! x §"1.

Now focus on 7 is even, so replace n by 2n. For a map f : Sl 5§21 et Cybe

S$2" with a cell e*" attached by £, thus C f/S2” is S*. There is a short exact sequence
0 > K(S*) > K(C;) » K(5*) > 0.

Let a € K(Cf) be the image of the generator of K(S*") and p € K(Cf) map to the
generator of K (S?M). Tt follows from g° maps to 0, hence B> = ha. The Hopf invariant
of f is defined to be the integer h.

Proposition 4.6. If g is an H-space multiplication on S2"=1 " then the associated map
g 1 S*1 5 2" has Hopf invariant +1.

The result then follows from the Adams Hopf invariant one theorem stated at the
beginning.

To show the theorem of Adams, we need more structure on K(X). Just as Steenrod
operations on cohomology rings, we have Adams operations on the K rings.

Theorem 4.6. There are ring morphisms pk . K(X) > K(X), for any k > 0 satisfying:
1. Prf* = Pk forallmaps f + X - Y.
2. YX(L) = LF if L is a line bundle.
3. propl =k
4. YP(a) = af mod p for p prime.
X need to be compact Hausdorff spaces.

As Steenrod operations, we do not need the explicit construction of Adams operations
at most time. Their properties can help us a lot. For example, ¥* : K (S > K(S™)
must be a multiplication by an integer for K ($?"y=7Z.Inthecasen = 1,leta = H — 1
be the generator of K (SZ”). Then

Ph@)=PY*H - 1)= HF -1
=(l+a)f-1
=1+ka-1
=ka
And hence P¥ : K(S?") - K(S?) is multiplication by k" by induction.

Finally, we can start to prove the Adams theorem on Hopf invariant. Recall that « €

K(Cy) is the image of the generator of K (S*) and g € K(C #) mapped to the generator
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of K(S?") with the relation f> = +a. Now ¥*(a) = k*"a and P*(p) = k"f + u,a for
some y,; € Z. Therefore
phplp) = PRI"B + ) = K" + (K" ) + 1"y ).

Since PKy! = wk — wlpk e must have the relation

k2n ln _ l2n kn

Myt =y + KOy

or equivalently,

(k2n _ kn)ﬂl — (12n _ l")uk.

By letting k = 2, we have ¥2(f) = % mod 2. Since > = ha with h = +1 the Hopf
invariant, the formula ¥2(8) = 2"8 + o implies p, = h mod 2, so u, must be odd. By
letting k = 3, we have 2"(2" — 1)y = 3"(3" — 1)u,. Hence 2" divides 3" — 1 for 3" and p,
both odd. But 2" divides 3" — 1 only holds for n = 1,2, 4 by elementary number theory
fact.

Therefore R" has division algebra structure only for n = 1,2,4, 8 corresponding to

R, C, H and O. The first two have indentities and the last one dose not satisfy associativity.
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CONCLUSION

Computing stable homotopy groups is a core work in algebraic topology. And now we
can at least tell something about stable maps { X, Y } between X and Y, thatis, { X, Y’} with
its p—component. Though we have powerful tools such as, Adams spectral sequences, the
complicated and tedious work often makes one confusing. To avoid or at least ensure
the method is effective, we need to analyze our problem as further as possible, instead of
throwing all stuff into the machinery. The spectral sequences method can also be used in
some new cohomology theory, such as topological modular forms, which is one aspect in
my Ph.D. study. In spite of this, cohomology operations show its own strength by deducing
an upper bound of the number of independent vector fields over S"~! is 2" — 1 when
n = 2"(2s + 1) and proving that there is no space with polynomial ring as its conomology
ring except CP* and HP®. The last two section show the power of K-theory, a generalized
cohomology theory through the classical result on Hopf invariant one and division algebra
structures over R, which indicates that new homology or cohomology theories is needed.
This master degree thesis emphasizes the absurdity of ignoring the calculational aspect of

theories and methods aiming to the philosophy of algebraic topology.
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A.1 Mod 2 Adams spectral sequence
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Figure A.1 Mod 2 Adams spectral sequence for 75!

This figure from ! shows the 2-component of z% up to n < 20. The structure lines

displayed in this figure mean there are product structures between them.

A.2 Calculation on mod 2 Steenrod Algebra

Recall that if a < 2b, then
Sq°Sq" = (ba__j 2_.1>Sqa+b‘quj-
j>0 J

Applying this, when a = 1, one obtains that Sq'S¢® = (b — 1)S¢”*!. Hence
Sq' S = S and Sq' S¢¥"! = 0.

This applies to Sql(xz = Sq¢'S¢% = S¢, Sqlﬂ4 = Sql(Sq3<x1 + quocz) =
Sq]Sq2a2 = Sq3a2, and calculates all relation in the table established in section 4.3.
And there are more things we can compute.

In the second column, Sq2’1a2 maps to S¢*Sq 'S¢’ = S¢*Sq = Sq5 + Sq*Sq!
and Sqloc4 maps to Sq'Sqt = Sq5 by identities above.

Whena =2, S¢*Sq” = (") Sq"?+S5¢""' Sq". This can help in computing Sq*a,
maps to (;) Sq® + 5¢°Sq' as shown in the figure.
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Figure A.2
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