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ABSTRACT

ABSTRACT

In the study of cohomology within algebraic geometry, the cycle class map plays a
pivotal role. This paper aims to explore various aspects of this topic in depth. Specifically,
two notoriously challenging problems—the Hodge Conjecture and the Tate Conjecture—
are closely linked to the cycle class map. These conjectures have profound implications,
and we will discuss several significant corollaries. Furthermore, numerous issues in alge-
braic geometry and number theory, such as the Birch and Swinnerton-Dyer (BSD) Con-
jecture, are intricately intertwined with algebraic cycles.

We begin with an overview of algebraic cycles. In this section, we will clarify the
concepts of rational equivalence, homological equivalence, and numerical equivalence
related to algebraic cycles, and elucidate the interrelationships among these equivalence
relations. Rational equivalence is a fundamental concept that allows us to compare alge-
braic cycles by considering their differences as boundaries of higher-dimensional cycles.
Homological equivalence, on the other hand, relates cycles through their images in Weil
cohomology, while numerical equivalence considers intersections of cycles. Understand-
ing these equivalences provides a robust framework for studying algebraic cycles and
their properties.

Building on Grothendieck’s groundbreaking insights into the theory of motives, we
can interpret the cycle class map as a realisation. For instance, the Betti realisation of
motivic cohomology recovers the ordinary cycle class map to Betti cohomology. Con-
sequently, we will introduce recent advancements in motivic cohomology, including dis-
cussions on Poincaré duality and compatibility with Chow groups. Motivic cohomology
offers a powerful tool for understanding the structure of algebraic varieties and their coho-
mological properties. It generalizes classical cohomology theories and provides a unified
approach to studying algebraic cycles. Additionally, some applications of motivic coho-
mology will be outlined, highlighting its importance in modern algebraic geometry.

To date, satisfactory methods for studying the cycle class map remain elusive. One
reason for the difficulty of the Hodge Conjecture lies in its bridging of two fundamen-
tal mathematical structures: algebra and topology. Through the framework of algebraic
cobordism, it can be shown that the map from cycles to singular cohomology is realized

via complex cobordism. We will introduce the algebraic cobordism theories defined by

II



ABSTRACT

Levine-Morel and Voevodsky, respectively, and provide an isomorphism between these
two theories. Algebraic cobordism provides a rich structure that captures both geomet-
ric and topological information about algebraic varieties, making it a valuable tool in the
study of the cycle class map.

Finally, we will delve into fundamental Hodge theories and the construction of the
cycle class map. We will explain why the cycle class map can be decomposed through
complex cobordism and how this process poses challenges for the algebraicity of coho-
mology classes. A specific example of a non-algebraic cohomology class will be provided
to illustrate these challenges. Similar phenomena also occur in étale cohomology, where
the interplay between algebraic and topological structures presents additional complexi-
ties. By exploring these topics in depth, we aim to shed light on the intricate connections
between algebraic cycles, cohomology theories, and the broader landscape of algebraic

geometry.

Keywords: Algebraic cycle; Algebraic geometry; Algebraic cobrdism

III



TABLE OF CONTENTS

TABLE OF CONTENTS

B I
AB S T R A CT .o e II
CHAPTER 1 INTRODUCTION.. ..ottt 1
L1 Back@round .........couiiiniiiiiii e e 1
1.2 Organisation of this thesis...........c..oiiiiii i 3
1.3 Conventions of mathematics............oviiiiiii i 3
CHAPTER 2 BASIC ALGEBRAIC CYCLES.........cooiiiiiiiiiiiiieee, 4
2.1 AlgebraiC CyCleS ..ot 4
2.2 Homological equivalence ...........c.oiuiiiiiiiiiiiiiiii i e 8
2.3 Numerical equIValenCe .........vviiii i 10
CHAPTER 3 MOTIVIC COHOMOLOGY .....oviiiiiiiiiiiiiieieee e 11
3.1  Finite COrreSPONAEINCE ... ..ouuitiintitt ettt ettt eeeaaans 11
3.2 Completely decomposed topology: Nisnevich topology ......................... 16
3.3 Voevodsky’s mixed motives and motivic cohomology ............................ 19
CHAPTER 4 ALGEBRAIC COBORDISM .......cccoiiiiiiiiiiiiiiiiiiiiiiiee 27
4.1 Review complex cobOrdiSm ........oouiiiiiiiiiiii i 27
4.2  Brown-Peterson Spectrimi.........couueiiiniieiiie it 29
4.3 Interlude: motivic homotopy theory............coooiiiiiiiiiiiiiiiies 30
4.4 Voevodsky’s algebraic cobordiSm............ccovviiiiiiiiiiiiii i 33
CHAPTER S5 CYCLE CLASS INHODGE THEORY ................cccoiiiiinnn. 40
5.1 Basic Hodge theory ..ot 40
5.2 Obstruction to cohomology classes being algebraic......................c.ooeeel. 47
5.3 Betti 1ealiSation .. ..uouuiie i 51
5.4 Non-algebraic cohomology classes ..........c.ovviiiiiiiiiiiiiiiiiiiiii e, 54
CON CLUSION oo 57
REFERENCES. ... e 58
ACKNOWLEDGEMENTS ... 64
RESUME AND ACADEMIC ACHIEVEMENTS. ... 65

v



CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Background

Pierre Deligne’s work on the Weil conjectures!?6-2”] demonstrated the power of coho-
mological methods in algebraic geometry. A fundamental object is the cycle class map,
which relates to many difficult and important problems in algebraic geometry. Due to
Grothendieck’s insights into the theory of motives, the role of algebraic cycles has be-
come much more significant. We primarily highlight the failures of the integral Hodge
conjecture. Within the development of motivic homotopy theory, we can provide a con-
ceptual explanation for these failures. However, we cannot say much about the p-adic
cycle class map to crystalline cohomology since the theory of motives remains far from
complete.

The renowned Hodge conjecture posits that every rational Hodge class can be ex-
pressed in terms of algebraic cycle. One should note that this is the modified Hodge
conjecture. The original Hodge conjecture concerns integral coefficients. British math-
ematician William Vallance Douglas Hodge conjectured that all integral Hodge classes
are algebraic. However, as shown by Atiyah and Hirzebruch!®l, this is not true. As an
arithmetic analogue, John Tate conjectured that over a finitely generated field k, the cycle

class map
cl: CH*(X) ® Q; » HZF(X; Qq(k))©

is surjective. Similar to the Hodge conjecture, the Tate conjecture also fails to hold when
considering integral coefficients!?!!. Both the Hodge and Tate conjectures are of sig-
nificant importance due to their associations with Grothendieck’s standard conjectures.
Moreover, the integral Hodge conjecture plays a role in addressing the rationality prob-
lem of schemes.

The counterexample constructed by Atiyah and Hirzebruch employs the spectral se-
quence to demonstrate that the image of the integral cycle class map is annihilated by

differentials within this spectral sequence
HP(X; KU9(x)) > KUPT9(X).

Subsequently, Burt Totaro discovered that the integral cycle class map can be factored
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through complex cobordism, leading to a reformulation of the obstructions as follows:
CH¥(X) » MU?*(X*™) Qyy+ Z - H**(X*™; 7).

By utilizing the algebraic cobordism theory, this factorization becomes conceptually more
transparent. It has been shown that Steenrod operations present an obstruction to coho-
mology classes being algebraic. Additionally, the Brown-Peterson spectrum allows for
the description of an obstruction concerning torsion cohomology classes being algebraic,
which is grounded in the framework of algebraic cobordism.

Voevodsky made significant advancements by integrating methods from algebraic
topology into the field of algebraic geometry[#*-6%:76] His work led to the creation of mo-
tivic homotopy theory for schemes, also known as Al-homotopy theory. Within this in-
novative framework, each cohomology theory can be represented by a P*-spectrum (refer
tol36Jbeginning of section 5 51y §[75]Preface) * Thig new approach enables us to view cohomology
theories from a fresh angle, introducing numerous novel cohomology theories, including
algebraic cobordism M GL and its various forms. Algebraic cobordism serves as the uni-
versal oriented cohomology theory on Sm/S. Voevodsky initially tackled the Bloch-Kato
conjecture using algebraic Morava K-theories, which are modifications of MGL. Simi-
lar to practices in algebraic topology, it is possible to define the motivic Brown-Peterson
spectrum M BP. Ultimately, through the use of MBP and Betti realisation, we are able to
establish certain non-algebraic cohomology classes (done by Gereon Quick!®3]).

Our overarching goal is to explore the obstructions faced by cohomology classes in
being algebraic. Below, we present the main theorems.

The cycle class map is essentially unique:

Theorem 1.1 (I24): By the universal property of MG L and the Hopkins-Morel-Hoyois
theorem, the cycle class map to singular cohomology or étale £-adic cohomology is
uniquely determined.

We shall provide an explanation for why the cycle class map of X?" factors through
complex cobordism:

Theorem 1.2 (33]): The cycle class map CH*(X) — H?*(X%", Z) is indeed the compo-

sitions:
CH*(X) — Q*(X) QL Z » MU (X)) @ Z — H?* (X", ).

The Betti realisation of Voevodsky’s motives induces the cycle class map to inte-

gral singular cohomology. By combining this with the motivic Brown-Peterson spectrum
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MBP, we are able to factor the mod p-cycle class map:

Theorem 1.3 (183]): The mod p-cycle class map factors through BP:
CH*(X) = BP?*(X™) @ppe Ly = HZ (XM, L) » HZ* (X, Z/p).

Finally, we shall construct a non-algebraic cohomology class in BP(0)*(X*") =
H* (X, Z(py)- Specifically, the image of this non-algebraic class in H 2(X*; Z/p) is non-

trivial. Consequently, we obtain a non-algebraic Hodge class.

1.2 Organisation of this thesis

A key focus of this thesis is the study of algebraic cycles. In Chapter 2, we exam-
ine foundational concepts related to algebraic cycles and address associated challenges.
Chapter 3 delves into motivic cohomology, with a primary emphasis on the theory devel-
oped by Suslin and Voevodsky. We elucidate why the category of finite correspondences
functions as an additive category and highlight its advantages over general cycles.

In Chapter 4, we revisit essential aspects of complex cobordism before introducing
algebraic cobordism in both geometric and abstract contexts. The universal property of
algebraic cobordism will be thoroughly explained. Additionally, we explore the connec-
tion between algebraic cobordism and motivic cohomology. This exploration leads us to
conclude that the ring spectra mapping from the Chow group to the de Rham cohomology
spectrum is unique, thereby establishing the uniqueness of the cycle class map.

Chapter 5 examines the construction of the cycle class map to singular cohomology.
Its significance is underscored by its relevance to the Hodge conjecture, prompting an
introduction to fundamental Hodge theory. Specific examples of non-algebraic classes

will be provided.

1.3 Conventions of mathematics

We adopt the ZFC+U framework. For definitions and terminologies in algebraic ge-
ometry, we adhere to the conventions established by Alexandre Grothendieck. In addition
to "EGA” and ”EGA 1 2nd ed.”, we also refer to®3-3% for further details.

Let the base scheme S be a finite-dimensional Noetherian scheme throughout, and

let Sm/S denote the category of smooth, separated S-schemes of finite type.
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CHAPTER 2 BASIC ALGEBRAIC CYCLES

Algebraic cycles represent a classical and foundational concept in algebraic geome-
try, characterized by their intricate and multifaceted structures. In this chapter, we revisit
key notions related to algebraic cycles, including their definition, equivalence relations,

fundamental properties of Chow groups, and the theory of Weil cohomology.

2.1 Algebraic cycles

Definition 2.1: An algebraic cycle in a scheme X is a formal finite integral linear com-
bination Z = ), n;Z; of integral closed subschemes Z; of X. If all the Z; have the same
codimension d, we say that Z is a d-codimensional cycle. The group Z%(X), which rep-
resents the free abelian group of d-codimensional cycles on X.
Remark 2.1: From the definiton, Z2*(X,.q) =~ 2" (X). A codimension 1 cycle is called
a Weil divisor.

For each codimension d integral closed subscheme Z, let [Z] € Z%(X) denote the
element corresponding to Z.
Definition 2.2: For any closed subscheme Z of X whose irreducible components Z; are

of codimension d in X. Let y; be the generic point of Y;. We define the associate cycle.

2] 1= ) gy, (Oyy)I¥] € 29(X),

where Ig means the length function in commutative algebra. The integer lgOX'yi (Oyy,) is
also called the geometric multiplicity of y; in Y.

A notion strongly related to the Weil divisor is the Cartier divisor. Let X be a scheme.
For an open subset U X, we let Oy o, © I'(U, Ox) be the subset of regular sections, i.c.,
those whose restrictions are non-zero divisors in the stalks Oy , for all x € X. The sheaf
K of total rings of fractions of Oy is the localization of Oy at Oy -
Definition 2.3: Let X be a scheme. We write Divy for the sheaf Ky /Oy. A Cartier

divisor D is an element of the group

Div(X) := [(X, K}/03).
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Definition 2.4: Let D € Div(X) be a Cartier diviosr. Define the group homomorphism
eye : Div(X) - ZL(X),D — Z ord, (D)[Z].
ZeZ1(X)
Example 2.1: Let f € T(A}, OA}:) be a non-unit element, and different from zero and
Y = V(f) the equi-codimensional codimension 1 closed subscheme. Then Y = cyc(f).
Example 2.2: Let Y = V,(g) c P} be an integrally closed subscheme given by an
irreducible homogeneous polynomial g of degree d. Then x;%g is a rational function on

&, and

cyc(xg®g) = [Y] — d[Vy (x0)].

For a field extension k € J, the base change map sends Z¢(X) to Z%(X X J). This
morphism is characterized by mapping each cycle class [Z] € Z%(X) to the cycle associ-
ated with Z X, J. Specifically, given an element [Z] in Z¢(X), the morphism transforms
it into the cycle corresponding to the fiber product Spec(J) X Z in Z¢(Spec(J) X X).
Proposition 2.1: Let k c ] be an extension of field and X be a smooth k-scheme.

(1) The homomorphism Z%(X) - Z%(Z x, J) is injective.
(2) If] is Galois over k. Then

Z4(X) = 29X x, J)CU/0),

Proof: (1) Let Z; and Z, be different codimension d integral closed subschemes of X.
Then the schemes Z; X, ] are nonempty and do not intersect. Otherwise, Z; X J NZy X1 ]
descents to a subscheme of X.

(2) Consider a Gal(J/k)-orbit of Z4(X). Let Y be their union. Obviously, it is a
closed subscheme of X;. It descends to a subscheme of X. Since classes [Y] form a basis
of Zd(X])Gal(]/k), it is an isomorphism. ]

For general morphisms of schemes, there is no established definition for the push-
forward of cycles. However, this becomes possible for proper morphisms.

Definition 2.5 (Push forward): Let f : X — Y be a proper morphism and Z < X be

a cycle. The homomorphism
fe
2 (X) = Zx(Y)
is defined as follows: if the dimension of f(Z) equals the dimension of Z, then f,(Z) =
[k(Z) : k(f(Z2))] - f(Z); otherwise, it is zero.
Lemma2.1: LetX ER Y % Zbetwo proper morphisms. Then we have (gof), = g.°f.

on cycles.



CHAPTER 2 BASIC ALGEBRAIC CYCLES

Proof: Easy. |
Let X be s scheme and X3, ..., X;- be its irreducible components of X,..4. If all the X;

has the same dimension N, we obtain the cycle [X] = 2;1 [X:]-

Definition 2.6 (Pullback): Consider a flat morphism f : X — Y of relative dimension

n. If Z is a closed integral subscheme within Y and has dimension k, then the inverse

image f ~1(Z) is equidimensional, possessing a dimension of k + n. The pullback f*(Z)

is defined as the class [f ~1(Z)], which belongs to the group Zj ., (X).

Theorem 2.1 (Serre): Let A denote a regular ring, and consider p and q as two prime

ideals within A. Furthermore, let T represent a minimal prime ideal of A among the sum

of p and q. Then

ht4(p) + hta(q) = ht, (7).

Proof: See[67]Chapter V, part B, Theorem 3 ) n

The corresponding geometric form is:

Theorem 2.2 (Serre): For any two closed integral subschemes Z and Y of X, we have
codimy (Z) + codimy(Y) = codimy(Z NY).

Definition 2.7: Let A = ¥, n;[Y;] and B = X; m;[Z;] represent two cycles. We define
that A and B intersect properly if, for every pair (i, j), the following condition holds:

codimy (Y;) + codimy (Z;) = codimy (Y; N Z;).

We can define the intersection product A - B when they are intersect properly. Oth-
erwise, we call it an excess intersection.
Let Z c X represent a (k + 1)-dimensional integral closed subscheme, and let r be

an element of K(W)*. The associated cycle is expressed as

div(r) = 2 ordy (N[V] € Zu(W) € Z(X),

Here, ordy (r) denotes the order of vanishing or poles of r along V, and [V] represents the
corresponding cycle class in Z, (W), which is a subset of Z; (X).

Definition 2.8: A cycle a € Z;(X) is called rationally equivalent to 0, written as & ~
0, if @ = 0 or if there are finitely many (k + 1)-dimensional closed integral subschemes
Wy, ..., W, c X together with r; € k(W;)* such that

a= z div(ry).
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These cycles form a subgroup Z;%f(X) < Z,(X). Equivalently,

Zi0 =m| P ry S P
yex (-1 zex(®
The Chow group CH!(X) := Z1(X)/ZL,.(X).
Theorem 2.3: We possess the subsequent conventional properties associated with Chow
groups.

(1) For a smooth scheme X, the Chow group CH(X) = @ CHY(X) forms a graded
commutative ring under the intersection product. Here, the intersection product maps
pairs of cycles to a cycle of the appropriate codimension, preserving the graded structure
of the Chow group.

(2) Let f : X — Y be a proper morphism, there is a induced homomorphism
fi : CHp(X) = CHy(Y).

(3) Consider a flat morphism f from X to Y having a relative dimension of n. Such
a morphism naturally leads to an induced homomorphism mapping from the Chow group
CH(Y) to the Chow group CHj 4, (X).

(4) Let f : X — X be a flat morphism of degree d. Applying the pullback f*
followed by the pushforward f, results in multiplying elements of CH;(Y) by the degree
d of the morphism.

(5) Consider a closed embedding givenby i : ¥ — X,andletj: U =X\Y - X

be the inclusion map. Then, the sequence
CHy(Y) » CHy(X) » CHy(U) - 0

1s exact.
Example 2.3: If X is a noetherian local factorial scheme, then CH*(X) = Pic(X).

(1) For every field k, we have CH*(A}) = Pic(A}) = 0.

(2) For every field k, we have CH(P}) = Pic(P}) = Z.
Example 2.4: If F is an extension field of k, and i is an integer greater than 2, the natural
homomorphism from CH'(X) to CH!(Xr) does not have to be injective, which differs
from the case when i = 1. While the Chow group of projective space P" is torsion-free,
the Chow group associated with a Severi-Brauer variety can potentially contain torsion
elements.
Example 2.5: Although Z4(X) — Z%(X,)%@/M it is not true for Chow groups
that CH?(X) — CH ¢(x,)0E/K) et kg be a separable closure of k. Recalling the
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Hochschild-Serre spectral sequence:
Hea1(Gal(ks/k); HE(X Xy ks, §)) = HE™ (X ).

Taking § = G,,, we have the following exact sequence by standard homological algebra:

0 — Pic(X) - Pic(X X, k)¢ ks/k) - Br(k) — ker(Br(X) — Br(X X k)).
So, if Br(k) # 0, Pic(X) and Pic(X X, k)% (s/K) are not isomorphic. For example, the
Brauer group of Ris Z/2 # 0.

We state that two cycles in Z¢(X) are algebraically equivalent if they are connected
by a connected curve.

Clearly, ZL,.(X) € Z¢, g(X). They are generally distinct: let X be an elliptic curve
and a, b are two distinct points in X.
Theorem 2.4: The group NS(X) := CH*(X)/CHg;y(X) = Z*(X)/Z4,4(X) is the so
called Néron-Severi group. The group NS(X) is a finite type Z-module.

Proof: If the base field is C, it is easy. Indeed, the exponential sequence
0> Z(1) := 2miZ > Ox —> 0} > 1
gives a lone exact sequence
H(X, Z(1)) - HL(X, 0y) - Pic(X) <5 H2(X,Z(1)) L H2(X, 0y).

Then NS(X) = Pic(X)/ker(c;) = ker(j) is finitely generated since H?(X, Z(1)) is.

The general case is deep. Seel!!Exp- XIIL Théoréme 5.1 ]

2.2 Homological equivalence

The original motivation for Weil cohomology was the Weil conjecture. Let F be a
characteristic zero field. One should note that there are many different definitions of Weil
cohomology theory in literatures.

For a scheme X within this category, we use dy to indicate its dimension.

Definition 2.9: A Weil cohomology can be described as a functor
H : SmProj(k)°P — GrVectg

that satisfy the following conditions:
(1) Each H!(X) is finite dimensional and concentrate on 0 < i < 2dimX. The
F-vector space H?(PP!) is one-dimensional and H1(IP{) = 0. Its dual is denoted by

F(1) or simply (1) and we call it the Tate twist. Given X € SmProj(k)°P, we write
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H*(X) = @20 H (X)(1).

(2) (Trace) There is a functorial trace isomorphism
Tr: H24x(X)(dy) — F.

It is compatible with product:

H24x (X) (dy) @ H2A(Y)(dy) —2210 % F

\L: Tr XY

H2ax*2dy (X %, V) (dy + dy)
(3) (Kiinneth formula) For each X and Y, the Kiinneth formula holds:
H'X)QH(Y) > H' (X XY)

1s an isomorphism.

(4) (cycle class map) For any variety X, there exists a group homomorphism
yx : CH'(X) = H*(X) ()

that fulfills the following properties: 1. f*oyy = yxof™; 2. yx(anB) = yx (@) Uyx(B);
3. Troyy = deg.

Here, f* denotes the pullback map induced by a morphism f, N represents the inter-
section product in Chow groups.

(5) (weak Lefschetz theorem) Let h : W — X be a smooth hyperplane. For
dimensions i up to dim X — 2, the induced map h* between the cohomology groups H(X)
and H (W) is bijective. When i equals dim X — 1, this map is injective but not necessarily
surjective.

(6) (hard Lefschetz theorem) Let W be a smooth hyperplane section. Introduce
the Lefschetz operator L acting on cohomology groups such that for any element x €
HY(X), it transforms x into x U yx (W) in H*2(X). It follows that applying L iteratively
dim X — i times results in a mapping from H!(X) to H24mX=t(X) which is an isomorphic
correspondence.

Example 2.6: (1) For arbitrary field k, we fix an algebraically closure k of k. The étale
£-adic cohomology Hy (X%; Q) is a Weil cohomology. The hard Lefschetz property of
£-adic cohomology is highly non-trivial.

(2) If the field k is perfect, one considers the crystalline cohomology
H. . (X/W(k)). In this context, K = W (k)[1/p] comes equipped with the Frobenius
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automorphism ¢. The space defined by
Hepis(X) 2= Hipio (X /W (K)) ®wiy K

admits a functorial, ¢-linear, and bijective endomorphism known as the crystalline Frobe-

nius. However, it should be noted that the validity of the hard Lefschetz theorem is con-

tingent upon the Weil conjecture.

Proposition 2.2: Fix a Weil cohomology H, the cycle class map y : CH*(X) -

H?*(X)(*) is unique.

Proof: From the motivic viewpoint, it is almost automatical. ]

Definition 2.10: A cycle Z is said to be homologically trivial if yx(Z) = 0.
Obviously:

Proposition 2.3: Every rational cycle equivalent to zero is also homologically equiva-

lent to zero.

2.3 Numerical equivalence

Definition 2.11: Let Z = }; a;P; be a zero dimensional cycle. The degree of Z is
deg(Z) = X a;[k(P;) : k].

Definition 2.12: For Z € Z!(X), we say Z is numerially equivalent to zero if for every
W € Z974(X) such that Z N W is proper we have deg(Z N W) = 0.

We have a chain of inclusions:
Zrar(X) € Zi1g(X) € Zhom(X) € Zhum (X).
The following chain of inclusions of subgroups of the Chow groups is a consequence:

CH1i1um(X) c CHfiwm(X) c CHcillg(X) c CHi(X)'

The dimension of a rational Chow group could be infinity. Here is an example:
Example 2.7 (Clemmaens): The upshot is that Griffiths group CH}, o, (X)/CHL,; ; (X)
can contain an infinite cyclic subgroup. Let

4
Y=V,(z5+2z +25+23+2; + (Z a;zj)°) c P¢
j=0
for general ay, ...,a, < C. Then CHj;,, (Y)/CHE, ,(Y) constains an infinite cyclic sub-
group. Clemens demonstrated that, when tensoring over Q, the Griffiths group of a
generic quintic threefold in P¢ possesses an infinite-dimensional structure.

But the dimension of CH,,,,, is always finite.

10
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CHAPTER 3 MOTIVIC COHOMOLOGY

The theory of mixed motives as imagined by A. Grothendieck (some would say in-
vented or discovered) must offer the universal framework in which to deal with the coho-
mology of schemes. According to this philosophy, the other cohomological theories are

only so many incarnations, so many realisations, of the notion of motives.

3.1 Finite correspondence

We provide an in-depth exposition of the theory of finite correspondences devel-
oped by Andrei Suslin and Vladimir Voevodsky. This theory forms the cornerstone of
Voevodsky’s groundbreaking construction of mixed motives. The framework introduced
by Suslin and Voevodsky employs the category of finite correspondences, which offers a
refined and precise representation of general cycles.

Finite correspondence theory plays a pivotal role in algebraic geometry, providing
a novel perspective on the relationships between algebraic varieties. By introducing the
concept of finite correspondences, researchers can more accurately describe mappings
between algebraic varieties, thereby facilitating the resolution of complex problems. The
application of the category of finite correspondences has made previously intractable is-
sues more approachable.

Moreover, finite correspondence theory is closely intertwined with motivic homol-
ogy theory. Voevodsky’s pioneering work utilized the category of finite correspondences
to construct motivic homology theory, significantly advancing the fields of algebraic K-
theory, algebraic cycle theory, and motivic cohomology. Recent research in this area has
yielded substantial progress, as detailed in relevant literature (e.g.,[?%7%).

In summary, the theory of finite correspondences developed by Suslin and Voevod-
sky is not only a vital component of modern algebraic geometry but also provides powerful
tools for related fields. Through an in-depth exploration of this theory, we gain a deeper
understanding of the intrinsic connections between algebraic varieties and their broader
implications within the mathematical framework.

Fix aregular scheme S. To simplify the formulas to come, the following conventions

will be adopted: For schemes X and Y in Sm/S, we set X XsY := XY. For schemes X, Y,

11
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and Z in Sm/S, we denote the canonical projection morphism p¥y, : XYZ > Y.
Definition 3.1: Let X and Y be schemes within the category Sm/S. A finite correspon-
dence from X to Y can be described as a cycle @ = ), n;x; in the fiber product X Xg Y,
where for each index i such that n; # 0, the component x; projects to a generic point of
Y via the natural projection map. The groupe of finite S-correspondences from X to Y is
denoted by Cors(X,Y)

A correspondence will be denoted by a : X - Y.
Example 3.1: Now, we consider a morphism f : X = Y in Sm/S.

(1) Given that X/S is separated, the graph [ of f is a closed subscheme in X X Y.
Furthermore, the composition morphism from [ to X Xg Y and then to X is an isomor-
phism. Consequently, the cycle associated with I, denoted as (Ir)xy, constitutes a finite
correspondence.

(2) Assume that f is a finite pseudo-dominant morphism. The composition I'x —
X Xg Y — Y is isomorphic to f, implying that it retains the properties of being finite
and pseudo-dominant. Consequently, the cycle (If)y/y is a finite correspondence. This
correspondence will be denoted as ¢ f and referred to as the transpose of f.

Now, let’s examine two finite correspondences:
a:X-»Y, B:Y->»LZ
We want to define the product of composition of § with a by the following formula:

Boa =, xrz(B) - Pxyz(@)).

Two problems arise in this formula: (1) Is the intersection on the right side proper? (2)
Does the support of the cycle XZ, as obtained in the latter member, exhibit finiteness and
pseudo-dominance over X? Fortunately, the answes are yes. These are key properties
of finite correspondence. The composition is defined without modulo equivalence rela-
tion unlike ordinary cycles. That is why we need standard conjectures in Grothendieck’s
construction of motives.

Remark 3.1: Unfortunately, certain anticipated properties of Voevodsky’s motives lead
us back to the standard conjectures®].

Proposition 3.1: Here are some fundamental properties:

(1) Consider three finite correspondences:
xSy y-Lyz Sy,
Thenco(bea)=(cob)oa.

12
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(2) Consider a morphism f : X — Y in Sm/S and (I¥) the finite correspondece
from X to Y associated with I;. Then, for every finite correspondence b : ¥ —» X, the

pullback of b along f Xg Z is equal to
bo(Ty) = (f Xs Z)"(b).

(3) For any finite correspondence a : X - Y and any morphism g : Y = Z in

Sm/S, we have

(Tgdyz o a = (g Xk X).(a).

Proof: (1) Denote a’ = pyyyr(a), b’ = pyayr(b) and ¢’ = piyyr(c). Then,
using the formula for change of basis and the formula for projection, along with the com-

patibility of the flat basis change with the intersection product, we obtain the equality:

co(beoa)=pxyzr(c'- (b a")

and

(cob)oa=pgis ((c'-b")-a).
The associativity of the intersection product concludes.

(2) Results from the definition of the pullback by a morphism in Sm/S and the
fact that

vz (TF)) = (Trxgz)

where Ty 7 is the graph of the Z-morphism f Xg Z.
(3) We can assume that a = (U)yy for an integral scheme U. Similarly, we can
assume by additivity that Y is integral.

It is a question to prove an equality between cycles of XZ. We can therefore to prove
it locally at each point of XZ. We thus come back to the case where S, X,Y, Z are affine
schemes with respective rings A, B, C and D.

If I (resp. ) is the defining ideal of U in XY = Spec(BC) (resp. YZ = Spec(CD)),
weset M = BC/I (resp. N = CD/]). We obtain a = Z¥y, (M) and (Iy) = Zy;(N). Then

(Fg>YZ °oa= P)}gz* Z™m™(N ®§ M)).

Given that the map I, — Y is an isomorphism and M|p is a rank-1 free B-module, it
follows that M| is flat. Thus N ®,L3 M = N Qg M, which is translated to the formula

(Tylyzea= P))ggz* ((Tg Xy U)xyz)-

13
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Now, I, Xy U is supported in [;; X X. Through the isomorphism e : Ty — Y, the restriction
of the morphism p¥Z, to [y X5 X correspondent to the morphism g Xg X. The formula to
prove is therefore derived from the formula above given the isomorphism €.
]

Points (2) and (3) of this proposition show that we can define the identity correspon-
dence of a scheme X of Sm/S as the cycle (Ay/s), since Ay s is the graph of the morphism
of scheme 1.
Definition 3.2: The category finite correspondences Cor(S) associated with Sm/S
has objects that are smooth S-schemes of finite type. The morphisms in this category
consist of finite S-correspondences between these schemes.

The naturalness of the change of base by a morphism Sm/S shows that the associa-

tion f — (Ir) defines a functor
y:Sm/S = Cor(S).

The category Cor(S) admits finite sums, as does the category Sm/S, and the functor y
commutes with finite sums.
Proposition 3.2: The category Cor(S) is additive.
Proof: The finite correspondences from X to Y form a group Cor(X,Y) and the compo-
sition is additive by definition. The category Cor(S) admits an initial object, the empty
scheme @. It is also the final object because there is a unique finite correspondence X - @
the cycle associated with this closed subscheme X X; @ = @.

Let us consider two schemes X and Y in Sm/S and let Z = X U Y be the disjoint
union. We consider the standard open and closed immersions given by i : X — Z and

j 'Y — Z. Additionally, we can establish finite correspondences as follows:
p:Z>»X, q:Z->»Y
These are constructed by setting p = (Ayx/s)zx and ¢ = (Ay/s)zy. The following rela-
tionships are easily to verify:
pi=1x, q=1y, qi=0, pj=0, ip+jqg=1;

These show that Z is both the product and the sum of X and Y in the category Cor(S). =

So, we can enrich Sm/S to an additive category. One spirit of the theory of motives
is making Sm/S into an Abelian category.

We would like to make the product in Sm/S a monoidale structure in Cor(S). On

objects, this tensor product will correspond to the product of the S-schemes. Consider

14
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finite correspondences:
a:X-»Y, b:Z->W.

The tensor product of a and b must be a finite correspondence of the form XZ — YW. It

is defined by the formula:

a ®F b = Piyzw(@) - Pyaw (b).
As in the case of the composition, we can justify that this formula does indeed make sense.
Based on the commutative (resp. associative) property of the intersection product of
cycles, the tensor product exhibits symmetry (resp. associativity). It is also bifunctorial:

Proposition 3.3: Let us consider the finite S-correspondences:
a:X-Y, b:Y->Z c:X'-Y, d:Y' -2Z.
Then
(bea)®F (doc)= (b ®F d) e (a®F b).

The following proposition is therefore obtained:

Proposition 3.4: The category Cor(S) with the tensor product
[X] ®F [Y] = [X x5 Y]

for schemes X and Y in Sm/S and the product of the correspondences is symmetric
monoidale. The unit of the monoidale structure is the object [S]. The graph functor
y : Sm/S — Cor(S) is also monoidal, where Sm/S is provided with its monoidale struc-
ture defined by the product of the S-schemes.

Proof: All that remains is to prove the assertion concerning the functor y. Given the

morphisms f : X > Y and g : Z - W in Sm/S, we must show

[T] ®§ [Tg] = [Trxsgl-

This is easy by the Tor formula and the fact that the projection morphism I'r — § is smooth,
therefore flat. One may seel2section 92 for details. ]
Proposition 3.5: Letp : X — S represent a finite étale morphism, and let § : X —
X Xs X denote the corresponding diagonal morphism.

Then, [X] is strongly self-dual. Specifically, when considering schemes X, Y, and Z
within the category Sm/S, this results in a canonical bijection between Cors(X XgsY,Z)
and Cors(Y,X Xg Z).

Suslin and Voevodsky gave an elementary explaination of finite correspondence. We

15
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set a perfect base field k.

If Y is smooth quasi-projective over Spec(k), we can consider for all n > 0 the
k-scheme Sym"Y := Y™/S, where the quotient by the symmetric group S,, is defined
inB3¢1V2 The k-scheme Sym®Y := Ll,,»,Sym"Y is a k-scheme in commutative monoides.
Theorem 3.1: Forany X € Sm/k, the set Hom;, (X, Sym®Y) is a monoide of which we
can denote Homy (X, Sym*’Y)* the group completion. If we denote p as the characteristic

exponent of k. Then there is an isomorphism
Homcor (o (X, Y) ® Z[1/p] = Homy (X, Sym™Y)* ® Z[1/p].

Proof: This igl¢9]Theorem 6.8 _

3.2 Completely decomposed topology: Nisnevich topology

The Zariski topology exhibits undesirable behavior with respect to transfers, which
poses challenges in certain algebraic contexts. Conversely, it possesses excellent prop-
erties concerning cohomological dimension and compactness, unlike the étale topology,
which often requires more intricate considerations in these areas. The Nisnevich topol-
ogy serves as an intermediate framework that combines the favorable attributes of both the
Zariski and étale topologies. By integrating the simplicity of the Zariski topology with the
refined descent properties of the étale topology, the Nisnevich topology addresses many
of the limitations inherent in each individual topology.

Consequently, the Nisnevich topology plays a pivotal role in V. Voevodsky’s con-
struction of mixed motives, a foundational concept in modern algebraic geometry and
motivic cohomology. This topology provides the necessary tools to bridge gaps between
classical algebraic geometry and more abstract constructions, enabling significant ad-
vancements in understanding algebraic cycles and their associated cohomology theories.

The development of the Nisnevich topology arose from the limitations of étale de-
scent in algebraic K-theory. While étale descent is powerful in many contexts, it fails to
adequately address certain issues in K-theory, particularly those involving transfers and
local-global principles. To overcome these shortcomings, the Nisnevich topology was
introduced as a refinement that preserves desirable properties while addressing specific
deficiencies.

Voevodsky further advanced this field by introducing the concept of a completely

decomposed structure, which axiomatizes the properties of the Zariski, Nisnevich, and
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cdh topologies. This framework provides a unified approach to studying various topolo-
gies and their interactions, facilitating deeper insights into algebraic varieties and their
cohomological properties. By formalizing the relationships between these topologies,
Voevodsky laid the groundwork for groundbreaking developments in motivic homotopy
theory and related fields.

In summary, the Nisnevich topology represents a crucial advancement in algebraic
geometry, combining the strengths of the Zariski and étale topologies while addressing
their respective limitations. Its applications extend beyond mixed motives, influencing
numerous areas of modern mathematics, including algebraic K-theory, motivic cohomol-
ogy, and homotopy theory.

Definition 3.3: Consider a Noetherian scheme denoted by X. We define Xy as the
category comprising étale, separated, and finite type schemes over X. The class of mor-
phisms in X, represented by Cov(X), consists of families U = (U; EAR X)ie; Where each
f; 1s an étale morphism of finite type. Specifically, for any point x € X, there exists an
index i € I along with a point u € U; such that x = f;(u), and the induced map between
residue fields k(x) — k(u) is an isomorphism.

Proposition 3.6: For any Noetherian scheme X, the data of (Cov(X))xesm/s consti-
tutes a pre-topology on Sm/S. The topology generated by this pre-topology is called the
Nisnevich topology on Sm/S, the resulting site Sm/Sy;s and called the big Nisnevich site
of S. Moreover, if X is a Noetherian scheme, (Cov(Y))yex,,, constitutes a pretopology
on Xy;s. The corresponding site is denoted by Xy;s, and it is called the small Nisnevich
site of X.

By definition, Nisnevich topology standards between the Zariski topology and étale
topology. In particular, it is less fine than the canonical topology, which means that the
representable presheaves are Nisnevich sheaves.

Definition 3.4: Let X be an S-scheme and x a point of X. A neighborhood of x in the
Nisnevich topology is an étale X-scheme U and a point u of U projecting onto x and such
that the induced morphism between the residual fields k(u) and x(x) is an isomorphism.

We have a notion of morphisms of Nisnevich neighborhoods and we will denote V
the category of Nisnevich neighborhoods of x. The stalk of a Nisnevich sheaf F on S at

the point x is

E, = colim F(U)
UEW)OP

and the opposite category of V; is filtered.
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We can see that for any Nisnevich sheaf F on Sch/S and any point x of an S-scheme
X, we have a functorial isomorphism F, =~ F (Spec((?;("x)) = F(XM). The proof is almost
the same as étale topology.

Consider a field denoted by k. The subsequent proposition establishes that, for cat-
egory of étale k-schemes of finite type, the Nisnevich topology aligns with the Zariski
topology. It is important to note that this equivalence does not extend to the étale topol-
ogy.

Proposition 3.7: Let F € PSh(Spec kyis). The following are equivalent:

(1) F € Sh(Spec kyis)-

(2) F(©) is asingleton and the obvious map F(XUY) — F(X) X F(Y) is bijective
for all objects X and Y in Spec ky;s;

(3) For any X € Specky;s, the canonical morphism F(X) = [lyex, ) F(Y) is
bijective.
Proof: Conditions (2) and (3) are clearly equivalent, and (1) obviously implies (2). To
show that (3) implies (1), it is sufficient to show that for any X € Spec ky;s, any covering
X for the topology of Spec ky;s contains the covering associated with the inclusion of the
connected components of X in X, which results immediately from the decomposition of
a k-algebra into the product of separable finite extensions of k and from the definition of
the Nisnevich topology. ]
Definition 3.5: Let Y be a Noctherian scheme, we call the elementary Nisnevich cov-
ering of Y the data of an open immersion U ER Y and an étale morphism V LN Y,
with V quasi-compact, such that, if we denote F = Y — U, the schemes morphism
V Xy Freq = Freq by a change of basis is an isomorphism.

It can be seen that the notion of the elementary Nisnevich covering of a Noetherian
scheme is stable by change of base.

Theorem 3.2: Let X be a Noetherian scheme (resp. S a Noetherian scheme). Let F be
a presheaf on Xy;s (resp. on Sm/Sy;s), the following two properties are equivalent:

(1) F is a sheaf on Xy;s (resp. on Sm/Sy;s);

(2) F(Q) is a singleton and for any elementary Nisnevich covering O, F(0) is
Cartesian.
Proof: The case concerning the large Nisnevich sites is formally the result of the case of
the small Nisnevich sites, so we will consider only the latter.

Easy direction: (1) to (2). According to Yoneda lemma, it is sufficient to show
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that the diagram of elementary Nisnevich covering is coCartesian in Sh(Xy;s), for
any elementary Nisnevich covering (U i> Y;v LN Y) of Y € Xyis. This asser-
tion is verified after passing through the stalk at Spec K %, X of X a values in a
field. For all V € Xpj,, the stalk of the sheaf V on Xy, is identified with the set
Homy (Spec K, V) = Homgpe. x(Spec K, Spec K Xy V), i.e. the set of sections of the
Spec K-scheme V' Xy Spec K. We deduce that we can assume that x : SpecK — X is
an isomorphism. Moreover, it is clear that Y can be assumed to be connected. In this
situation, Y is the spectrum of a field, so two cases are possible: either U = @ and in this
case IV = Y is an isomorphism, or U = Y. But, in these two cases, the desired diagram is
tautologically coCartesian, hence the result. Conversely, we refer tol]. ]

One of the major differences between Nisnevich topology and étale topology is that
the latter escapes the formalism of cd-structures (seel’)) and the results derived from
them. The essential property that these topologies share is that they have local Henselian

rings as local rings.

3.3 Voevodsky’s mixed motives and motivic cohomology

Suslin-Voevodsky’s motivic cohomology is independent of motives. But to define
Betti realisation latter, we begin with Voevodsky’s motives.

We let K (Cor(S)) be the homotopy category of bounded cochain complex with val-
ues in Cor(S) since Cor(S) is an additive category. We represent Vs as the smallest thick
triangulated subcategory within K?(Cor(S)) that includes complexes of the following
structure:

(1) For any smooth S-scheme X, let p : A} — X denotes the canonical projection

of the affine line on X,
0o [A D x>0
(2) For any distinguished Nisnevich square:

v ks 7

L b

Y ﬁ X
the complex

(%)

0oV mer Y xo..
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Definition 3.6: We introduce DM} (S) := K?(Cor(S))/Vs. It is called the derived
category of effective geometric motives.

We denote Mg(X) the object of DMS’:,{ (S) represented by the complex equal to X
concentrated in degree 0, and we will call it the motive of X. We have thus defined a

functor
) eff
Mg : Cor(S) » DMgnm (S).

Definition 3.7: Let f : Y — X be a morphism within the category Sm/S. We define
the relative motive associated with f as the object in DM 5{,{ (S) that is represented by the
cone complex of the map from [Y] to [X]. It is denoted by Ms(p).

Definition 3.8: Consider a morphism p : X — S in Cor(S). The preceding definition
will be considered in the following cases:

(1) If s : § - X represents an S-point of X, we define Ms(X,s) to be equal to
Mg(s). Additionally, we refer to (X, s) as a pointed S-scheme, and M (X, s) is termed the
reduced motive corresponding to (X, s).

(2) Let Z be a closed subscheme of X. Define U = X \ Z, endowed with its natural
open subscheme structure within X. The canonical inclusion map from U to X is denoted
by j: U — X. Weset Mg ;(X) := Ms(j) and we call it the motive of X with support in Z.
Definition 3.9: A presheaf with transfer is an Abelian presheaf F on Cor(S). We say
that F is a sheaf with transfer if F o y is a Nisnevich sheaf.

The category of sheaves with transfer is denoted by Sht"(S), where the morphisms
consist of natural transformations between these sheaves.
Proposition 3.8: Let X be an S-scheme in Sm/X. Then the functor Y = Corg(Y,X) is
an étale sheaf with transfer.
For a scheme X in Sm/S, we denote Z5" (X) the sheaf with transfers Y — Corg(Y, X).
It should be remembered that for a regular scheme S, the category Corg is symmetric
monoidale.
Proposition 3.9: There exists a unique closed symmetric monoidale structure on

ShtT(S) for which the functor
ZE : Cor(S) - Sh'"(S)

is symmetric monoidale.
Proof: The tensor product of a closed monoidale category is right exact: the assertion

of uniqueness therefore results from the fact that the essential image of Z&" is generated
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in the Abelian category Sh!"(S).
The structure of the generators in Sh" (S) enables us to express any sheaf with trans-

fers uniquely in the form
— calim 7ET
F = cg)(l/lbgn Zs (X)

where X /F travels the category of arrows Z&" (X) — F in Sh'"(S).

For sheaves with transfers F and G, we set
tr oo : (X %< V).
FQRa Xc/(}:l}r}la Z (X XsY)
This definition is functionalial in F and G. It is immediately clear that this defines a

symmetric tensor product on Sht”(S). Iternal hom Hom . (F,G) is defined as the sheaf

with transfers
X & Homgptr sy (Z5" (X) QY F, G).
According to Yoneda’s lemma, for any scheme X in Sm/S,
Homgptr (s) (Z§" (X)), I_IO_mShtr(S) (F,G)) = Homgper(s) (Zg" (X) ®F F,G).

]
Example 3.2: Let H* represent Betti cohomology, de Rham cohomology in character-
istic 0, or £-adic cohomology. The presheaf defined by X — H"(X) forms a presheaf
with transfers on S.
Example 3.3: An important non-example of presheaf with transfers is algebraic K-
theory, SSJEXAMPLE2.7,
Example 3.4: V. Voevodsky introduced a new Grothendieck topology on the category of
S-schemas in his thesis. The main virtue of this h-topology is that it ’trivializes” transfers:
this topology sees only the S-morphisms of schemes, systematically substituting the latter
for finite correspondences. This property means that the h-sheaves in abelian groups are
canonically presheaves with transfers.

We will define a morphism of S-schemes g : X — Y as a topological epimorphism
if it is surjective and a subset of Y is open if and only if its inverseimage under g is open
in X. Given that this property is not preserved under base change, it becomes essential
to focus on universal topological epimorphisms. Specifically, these are morphisms of
S-schemes g : X — Y such that for any Y-scheme Z, the induced morphism X X5 Z — Z
remains a topological epimorphism.

The h-topology is a Grothendieck topology derived from a pre-topology where the
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coverings of an S-scheme X consist of finite families (X; — X);¢; of S-morphisms of

[ [
i

is a universal topological epimorphism. This topology is notably finer than the flat topol-

ogy.
Letter from Grothendieck to Faltings: treat a universal homeomorphism of schemes

finite type, such that the morphism

as the algebro-geometric analog of weak equivalence. Grothendieck: X and Y are fi-
nite type schemes whose étale cohomology and étale ; are equivalent implies universal
homeomorphism.

It is immediately apparent that surjective open morphisms and surjective closed mor-
phisms are topological epimorphisms. Universally open morphisms of finite type, e.g.
finite flat morphisms, and surjective morphisms, as well as proper and surjective mor-
phisms, are therefore coverings for h-topology. For this reason, the abstract blow-ups are
in covers for h-topology.

Abelian h-sheaves possess a canonical structure of presheaf with transfers, i.e. there

is a canonical additive functor Of" making the triangulated

PSh(S) <——— PSh!"(S)
commute. The sheaves of locally constant abelian groups for the étale topology are canon-
ically provided with a structure of presheaves with transfers.

An interesting example of sheaf with transfer is the Kéhler differential for smooth
schemes. We can develop algebraic de Rham cohomology theory (of course in characteris-
tic zero) in the framework of h-topology[*}l. This approach is much easier than Deligne’s
or Hartshorn’s.

Definition 3.10: We denote DM®/7 (S) the A'-localisation of D(Sh'" (S)).
Definition 3.11: Let F be a sheaf with transfers on S. The Suslin complex of F is
constructed as a complex of sheaves with transfers, which corresponds to the simplicial
ntr sy (25 (83), F). We denote it by cS™I(F).

By definition, forany X € Sm/S,T'(X, Cn "9 (F)) = F(X xgA™). In certain contexts,

object given by Hom

we adopt a cohomological notation for the Suslin complex. More precisely, we define:

€l (F) = 279 (F) = Hom

Shtr(s) (Zgr (A.;n)’ F)
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Definition 3.12: To any smooth k-scheme X, we define the motivic complex M (X) :=
Coing (Z (X)). 1t’s called the motive of X over k.

Let us examine the closed immersion s : Spec(k) — G,, associated with the unit
element of the group scheme G,,. It is a monomorphism split by projection. We denote

ZL (Gyy /1) the cokernel sheaf with transfers of the morphism
S, + Z =T (Spec(k)) = Z! (Gp,).
We therefore deduce morphism of sheaves on Sm/S
N+ LY (Gm) = L (Gm) = Zi (G /1)

where the first arrow is derived from the graph morphism.

Definition 3.13: We define the Tate motive Z(1) as the motivic complex
Ciing (2 (G /1)[-11.
Definition 3.14: If X is a smooth scheme over S, we let M (X) represent the object in
DM®T7 (S) that corresponds to Z& (X).

Consider an integer n > 0. We denote Z?(G’)ﬁn) the sheaf with transfers on S

obtained as the cokernel of the canonical morphism:
n
Pz @ - 2@
i=1

sum of the morphisms induced by the closed immersions of the form Gi;* X {1} X GI4 ¢ —
G-

Definition 3.15: The Tate motive Zg(n) is defined as the object of DM®//(S) rep-
resented by the complex of sheaves with transfers concentrated in degree n equal to
ZL (Gp") in degree n.

Definition 3.16: Given a smooth scheme X over S and a pair of integers (i,n) where

I € Z and n € Zs,, its effective motivic cohomology in bidegree (i,n) is the abelian
group:
Homy, yrers () (Ms (X)), Zs (M) [i]).
According to definitions, the functor Z£" induces a unique triangulated functor:
DM (S) - DMET(S).

This functor is fully faithful.
Definition 3.17: The category of geometric motives, denoted as DMy, (S), is con-

structed by first formally inverting the Tate motive Zg(1) within the category DM 5’;{ &)
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and subsequently taking the pseudo-abelian envelope.
Definition 3.18: Given a regular scheme S and a pair of integers (i, n) belonging to Z,
we introduce the motivic cohomology of S at degree (i,n) as the abelian group repre-

sented by:

H™(S) = Hompp,,, (s) (Zs, Zs(D)[n]).
Theorem 3.3: Here are some fundamental but difficult properties of motivic cohomol-
ogy.
(1) Let X be a smooth scheme over k. The motivic cohomology groups of X
can be identified with the higher Chow groups. For any integers p and g, the following

isomorphism holds:
HP(X,Z(q)) = CHY(X,2q — p).
Notably, when p = 24, this simplifies to:
H?4(X,Z(q)) = CHI(X).

While we have not provided a formal definition of higher Chow groups here, we
utilize the aforementioned isomorphism as the defining property of these groups (if you
accept). This isomorphism is natural in obvious sense.

(2) Let X be a smooth scheme over k. For integers p and g, the motivic cohomol-
ogy HP(X,7Z(q)) vanishes in the following scenarios: (1). If q is negative. (2). When p
exceeds 2q. (3). Whenever p is greater than g + dim X.

(3) (Suslin-Kelly) Let k be an algebraically closed field, m an invertible integer
in k, my : X = Spec(k) a separated morphism of finite type and let j < 0. Then there is

an isomorphism

HEH (X; A()) = Homg(CH; (X, n; A), Q/T).

ét,c
When X is smooth and equi-dimensional d = dim X, it’s

Homg (H2@=D="(X, A(d — /)), Q/Z) = H ) (X, A())-

(4) Consider a field L. For each non-negative integer q, there is a product preserv-

ing isomorphism:
Kg'(L) = HI(L, Z(q))

Additionally, for any positive integer m, this isomorphism leads to an induced iso-
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morphism:
K3'(L)/mK}' (L) = HY(L, Z/mZ(q)).

(5) Consider ¢ € N. Let A be an abelian group whose torsion is prime to the
characteristic exponent of the field k. In the derived category of étale sheaves on Sm/k,
the image of the motivic complex A(q) is equivalent to the twisted constant sheaf A(q).
Notably, if A = Z/mZ, then the image of Z/mZ(q) in this derived category is given by
ud
Theorem 3.4 (Voevodsky-Rost): Let m > 1. Let k be a field in which the integer
m is invertible. For any integer ¢ = 0, the Galois symbol (one may seel32Isection 4.6 for 5

construction)

Ky () /mKY (k) — HE (ke pin )
is an isomorphism. Equivalently, The obvious morphism

HPA(X,Z/mZ) > HY (X, Z/mZ)
is an isomorphism for p < q. (Moreover, these conditions imply that this morphism is
injective forp = q + 1.)
Proof: Highly non-trivial. To prove it, Voevodsky invented motivic homotopy theory,
motivic Steenrod algebra,... ]

Inl!0Jsection 3.10 "Beilinson demanded that motivic cohomology form a Poincaré dual-

ity theory with support as defined inl!3l. A key component of this framework is the Gysin
map, which serves as a fundamental input to the theory.

Proposition 3.10: Let f : Y — X be a projective morphism of relative codimension d

in Sm/k. There exists a functorial morphism in DM, (k):
' MX) > M) (d)[2d].

This morphism f" is referred to as the Gysin morphism.
Proof: Seel23]section2 m
Theorem 3.5 (Poincaré duality): Let X and Y be two projective schemes in Sm/k.

There exists an isomorphism:

Hompy,. iy (M(Y) (D[], M(X)) = Hompp, ey (M(Y) ® M(X), Z(dx — 1)[2dx — j]).
By setting Y = Spec(k), we obtain:

H2ax=74x=1(X) = H; ;(X).
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Proof: The proof employs only standard methods in the context of algebraic topology.
We indicate the construction of Poincaré duality.

There is the so-called slant product

/ HPA(X X, Y) @ H; j(Y) » HP~H47T (X)

. ., 1®b . @ .
(a,b) » a/b:=MX)(j) = M(X) ® Z(j) — M(X) @ M(Y)[~i] — Z(q)[p — i].
Let p be the structure map of X. The co-fundamental calss of X is

[X]" == App™ (1) € H?4X (X X X).

We define the map D : H,, ,(X) —» H2#x~Px~4(X) by setting D(a) := [X]*/a, |

As permitted in the abstract, we review some recent developments in motivic coho-
mology. To the best of the author’s knowledge, there has been no significant progress
regarding the abelian category of mixed motives. It is commonly believed that the pursuit
of understanding motives is a formidable challenge.

There are two new constructions of motivic cohomology!'*3%!, which aim to gener-
alise motivic cohomology to non-smooth schemes.

By restricting Elmanto and Morrow’s construction to smooth schemes, one obtains
the classical motivic complexes. However, Bouis’ construction requires an additional
Al-localisation. Both constructions provide limited discussion on cycles, which are fun-

damentally important in algebraic geometry.
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CHAPTER 4 ALGEBRAIC COBORDISM

Algebraic cobordism has two origins. One is Voevodsky’s early methods! %74 to
prove the Milnor conjecture or, more generally, the norm-residue theorem. Although Vo-
evodsky’s ultimate proofst’”-8!] did not appeal to algebraic cobordism, see3”). The other
origin is Levine and Morel’s attempt to construct a bordism theory in algebraic geome-
tryl33]. In fact, Levine and Morel’s algebraic cobordism forms the geometric counterpart
of Voevodsky’s construction.

We discuss the construction of algebraic cobordism after recalling complex cobor-
dism. We will give relations between algebraic cobordism, motivic cohomology, and

algebraic K-theory and mention some calculations of algebraic cobordism.

4.1 Review complex cobordism

There are two descriptions of complex cobordism. An abstract and quick description
is through the complex cobordism spectrum MU.

Let ™ : EU(n) = BU(n) be the universal complex bundle. Let MU (n) be the
Thom space of £™. We have the following pullback diagram:

EU() ® C ———> EU(n+ 1)

i:’kl(fn-'-l):fn@l(cl \L n+1

BU(n) ﬁ BU(n+1)
where 1 is the trivial vector bundld. Abstract property of Thom space gives the map
22MU(n) = Th(E" @ 1¢) » Th(E™) = MU(n + 1).
Definition 4.1: The complex cobordism spectrum MU is the colimit
MU := colimMU(n)

with transitions map £2MU(n) » MU(n + 1).

As indicated by its name, MU also possesses a geometric interpretation.
Definition 4.2: Let M and N denote two almost complex manifolds, and let X represent
any topological space. Two mappings f : M - X and g : N — X are said to be

bordant if there exists an almost complex manifold W of dimension (n+1), with boundary
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0W = M U N, such that the union of maps f L g can extend to W.
Definition 4.3: Denote by QY (X) the bordism class of n-manifolds to X.
Disjoint union makes QY (X) into an abelian group.
Theorem 4.1 (Pontryagin-Thom): The geometric bordism is isomorphic to the ab-

stract bordism:
QU (X) = (MU A X,).

An important feature of MU is its universal property. To describe it, we need the no-
tion of formal group lawlP0section 44 "1 a7ard showed there is a universal one L. Moreover,

Lazard showed there is an isomorphism:
L = Z[xq, x5, ... ],

where |x;| = 2i. This result is deep. We refer tol62ITheorem 68 41 3 modern abstract proof.
A primary origin of formal group laws stems from cohomology theory.

Definition 4.4: A ring spectrum E is complex orientable if the induced map
i*: E2(CP*®) - E2(S? = CP?) ~ ny(E)

is surjective. A complex orientation is a choice of an element xf € E2(CP*) such that
i*(xF) =1.
Example 4.1: Two examples:

(1) The Eilenberg-MacLane spectrum HZ is complex oriented. Let
xHZ € H2(CP*®;Z) = H*(S%,7) = 7

be the generator.

(2) The complex K-theory spectrum KU. Its orientation is given by
__0 2
[1]—1€ KU (CP®) = KU (CP*).
Example 4.2: Complex cobordism spectrum MU is also a complex oriented cohomol-
ogy theory. It is well-know that MU (n) is homotopy equivalent to BU(n)/BU(n — 1).
2
In particular, MU(1) = BU(1) = CP® which defines an element x™Y € MU (CP*).
Since MU (0) = S°, the map £2MU(0) - MU (1) corresponds to the map i : S? - CP®
which generates the group 7, (CP®). Therefore i*(xMV) = 1.
Proposition 4.1: Let E be a oriented spectrrum, where the complex orientation is de-

noted by x. Then
(1) E*(CP®) = m,(E)[[x]].
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(2) E*(CP*XCP*®) = m,(E)[[xq1, x2]], where x; = p; (x) forp; : CP*XCP* -
CIP* the i-th projection.
The multiplication map CP*

m : CP® x CP* —» CP*.

determines the formal group law pf (x,y) := m*(x).

The homomorphism

h:L-mn,MU)

was shown by Daniel Quillen to actually be an isomorphism[®4]:

Theorem 4.2 (Quillen): The ring homomorphism h : L, = m,(MU) is a ring isomor-
phism and L,, = MU (pt).

Proposition 4.2: Let E be an orientable spectrum. Fix an orientation y™U of MU. Let
g : MU - E be a map. The function g ~ g(yMY) induces a complex orientation
y € E2(CP*). Moreover, the function is a bijection. Hence each complex orientation of

E comes from a unique ring spectrum map MU — E in the stable homotopy category.

4.2 Brown-Peterson spectrum

An important variation of MU is the Brown-Peterson spectrum BP. To define it, we
need the notion of localisation. We refer to the relevant parts in!3>71.

Consider the p-localisation MU, of MU at a prime number p. According to some
general facts, MUy is still an Eq,-ring spectrum.
Theorem 4.3 (Quillen): Daniel Quillen proved the following famous theorem:

(1) There is a unique homotopy idempotent ring spectra map
ep : MUy = MUg).
(2) There is a ring spectrum BP and two maps of ring spectra
T: MU(p) - BP, {¢:BP - MU(p)

that satisfy fom ~ eand w o £ =~ idpp.
(3) There are elements v; € szpi_z such that BP, = Z(p) [vi, Vg, ... ].

Proof: Seel®4l orl30ITheorem 46.7 ‘The spectrum BP is defined as
BP := im(e) = hocolim(MUg,y — MUy = ...).

Note that my(BP) = my(MU). ]
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Definition 4.5: The n-th truncated BP is BP(n) := BP/(Vy41, Vnt2, - )-
One can show that BP(0) = HZ ).

4.3 Interlude: motivic homotopy theory

Voevodsky’s algebraic cobordism MGL mirrors the complex cobordism spectrum
MUl To achieve this, it is necessary to consider the motivic homotopy category.
Recently, Annala, Hoyois, and Iwasa extended Voevodsky’s construction to a non-Al-
invariant versionl?].

Voevodsky proposed to investigate the homotopy theory of schemes. He established
a homotopy theory for the category Sm/S. The fundamental approach involves emulating
constructions from algebraic topology by substituting the interval [0, 1] with the affine
line A

During his time at Harvard, Voevodsky developed his motivic homotopy theory,
which led to a novel construction of the Atiyah-Hirzebruch spectral sequence modulo
certain conjectures (later resolved by Levine). Additionally, he proved the Bloch-Kato
conjecture (étale comparison theorem), for which he was awarded the Fields Medal.
Definition 4.6: Let t be Nisnevich or étale topology. The co-category H,(S), which
consists of T-motivic spaces, is defined as the full subcategory of PSh(Sm/S) that in-
cludes only those Al-invariant T-hypersheaves.

We let H; ,(S) be the category of motivic spaces (pointed). Here, * signifies the

terminal object within the category H,(S). Then, there is an adjunction
()4 He(S) @ Hp o (5) 2w

It is important to observe that H,(S) possesses a symmetric monoidal structure, which
can be extended to endow H; ,(S) with a monoidal structure.

The stable motivic homotopy quasi-category is constructed by formally inverting
(P, 0) in Hy,.(S):
Definition 4.7: The stable motivic homotopy category SH,(S) := H,(S)[(PZ, ©)71].
When 7 is Nisnevich topology, we simply denote it by SH(S).
Remark 4.1: Secl®! for why the above constructions all make sense.
Remark 4.2: The Zariski topology is too coarse to meet our requirements. For instance,
one of the major drawbacks of the Zariski topology in the context of our applications is

. . i . ..
that, for a closed immersion X — Y between two smooth S-schemes, this immersion is
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not locally isomorphic to a closed immersion of the form (A" X {0}) N U —» A™™ N U,
where U is an open subset of A™*™. However, such a description exists if U is only étale
over A",
Furthermore, we prefer a topology for which the cohomological dimension is
bounded above by the Krull dimension. The étale topology is also not suitable because the
cohomological dimension of the small étale site of the prime spectrum of a field is gen-
erally not zero, being isomorphic to the Galois cohomology. One may seel#>1Exposé XVIII
for further development of étale cohomological dimension. Consequently, we choose the
Nisnevich topology, of which we will recall the definition and some essential properties,
particularly the Nisnevich descent which will be very useful. Another crucial reason for
not employing the étale topology is that algebraic K-theory fails to fulfill étale descent.
In the category SH(S), the following equivalence holds: Pi =~ S A G,,. Within
the framework of SH(S), both S* and G,,, possess invertibility. The operation (1) A — is
referred to as the Tate twist. We also establish Ipt =S 21 A —. For every scheme X in
the category Sm/S, there corresponds a motivic spectrum denoted by E]‘I’% X,
Theorem 4.4: Consider a closed embedding i from Z into X, where both are smooth
schemes over S. The associated normal bundle is represented as Ny ;. This setup induces

a canonical isomorphism in H,(S):
Th(Nx,z) = X/(X — Z).

Proof: This theorem looks like the tubular neighborhood theorem in differential geom-
etry. Its proof is a little complicated, seel®0ITheorem 2.23 onpage 115 - gy[3]Remark 2.5 “jt jg only
valid in Al-invariant H, (S). n
Definition 4.8: LetE € SH(S). Foreach X € Sm/S, the cohomology theory associated
with E is Homgy sy (X, E(q)[pD).

If E is moreover a ring spectrum, E*/(X) has an obvious ring structure for each
smooth scheme X.
Example 4.3: Here are some spectra in SH (k) representing useful theories.

(1) (Motivic cohomology) For any abelian group A, there is a spectrum M A rep-
resents motivic cohomology defined by Voevodsky. One may seel#?15ection4 o [68] for
details. There is also a Dold-Thom theorem like construction of MA, seel80section3
and[4lsection 5.1

(2) (Algebraic K-theory) For any regular and separated Noetherian scheme S,
there exists a spectrum K € SH(S) representing algebraic K-theory. One may seel!%76]
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for a proof. Since X is smooth, we don’t need to distinguish Quillen K-theory or
Thomason-Trobaugh K-theoryl7213-9- Corollary
(3) (Etale cohomology) We assume k is separably closed and # € k*. There is a

spectrum HZ, € SH (k) and canonical isomorphisms of groups:
HZy (X) = HG(X; Ze(q)) := lim HE (X; Z/£VZ(q)).
v
There is also a spectrum HQ, € SH (k) representing £-adic cohomology:

HQP(X) = HE(X; Qo(q)) = HE(X; Z,(q)) ®z, Q.

If the base scheme k is not a separately closed field, we get the spectrum representing
Jannsen’s continuous étale cohomology!*®! or pro-étale cohomology!!?IProposition 5.6.2
In fact, Cisinski and Déglise gave an axiomatic approach inl!°l. They showed that
algebraic de Rham cohomology and Berthelot’s rigid cohomology are both representable
in SH (k). One may seel??] for further development.
(4) (Deligne-Beilinson cohomology with real coefficients) Holmstrom and Schol-

bachl#0lsection 3 ¢onstructed a spectrum Hy, such that

HE (X, R(0)) = [Zpi X+, Hp D) [n]]snewy

for any smooth k-scheme X. Navarrol6!14ppendix extended it to non-smooth schemes over
an arithmetic field.
(5) (Absolute Hodge cohomology with real coefficients) Inl'>!, Bunke, Nikolaus,

and Tamme constructed a spectrum H, ¢ such that

Hips™ (X R(D) = [35 X+, Haps (D[] ]snao

for any smooth C-scheme X.

(6) (Hermitian K-theory) Hornbostel constructed a spectrum(*!! in SH (k) repre-
senting Hermitian K-theory when 2 is invertible. When 2 is not invertible, see Calmes,
Harpaz, and Nardin’s work!'®! for a through discussion.

Definition 4.9: A ring spectrum E € SH (k) is oriented if there exists a class cg €
E#1(PY) that pull back to the class ZI‘% Spec(k), AP} M EA P; in E*1(P}) via the
inclusion P} — P§.

Example 4.4: Many familiar theories are orientable in our sense. They are motivic
cohomology, algebraic K-theory, absolute Hodge cohomology, Deligne-Beilinson coho-
mology, algebraic and analytic de Rham cohomology, and rigid cohomology. Later, we

will see that algebraic cobordism provides a universal oriented cohomology theory.
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Proposition 4.3: Given an oriented motivic spectrum [E, and considering a vector bun-
dle V over X with rank n + 1, we identify a distinguished class ¢ within E>1(IP(V)). This
leads to the equivalence E**(P(V)) being isomorphic to the quotient E**(k)[c]/(c™*1),
structured as a left module over E** (k).

Proof: Their proofs are almost the same as the situations in algebraic topology. We only
explain the construction of c.

[nt601Section 4 “Norel and Voevodsky constructed a functorial isomorphism
Pic(X) - Homy, (X, BGp,).

They even proved BG,, = P{ in H, (k),[60IProposition 3.7 on page 138 "Wy have the first Chern
class

200
Pl + CE

. o0 k 00 1) 00 1)
¢1 : Pic(X) - [X, Py ]H*(k) —_— [E[plllc'+X’Z]}D1’+Pk ]SH(k) - [Z]P)i,_FX']E(]‘)[Z]]SH(R)'

The ¢ € E>*(P(V)) is choosed as the first Chern class of Opyy(—1). u
Proposition 4.4: Lect E be an oriented motivic spectrum. For any X € Sm/k. We have
un isomorphisme E**(X x; P}) = E**(X)[c]/(c"*1) of E**(k)-module.

Proof: Considering the homotopy equivalence between P%/P¥~! and S?™" within the
stable motivic homotopy category SH (k), P} qualifies as a finite cell complex according
to the definition provided in[21Pefinition 8.1 " Given that E**(P?) constitutes a free module
over the base ring E**(k), the Tor-spectral sequence from!**! allows us to establish the
isomorphism. L

The map
o: PY X XPy = Py

determines a fomral group law F(x,y) := o*(¢).

4.4 Voevodsky’s algebraic cobordism

Definition 4.10: Consider the Grassmannian scheme Gr(m,n) of m-dimensional
planes in A" and its universal bundle y,, ,,. By taking the colimit as n approaches infinity,
we obtain the infinite Grassmannian scheme Gr(m, o) equipped with the universal bun-
dle ¥y,. The natural embeddings from Gr(m, o) into Gr(m + 1, 00) give rise to mappings
from E; @ ¥y, t0 Y41, Where E; denotes the trivial bundle of rank one.

The algebraic cobordism spectrum MGL = (Th(y,y), Th(y;),...). Its structure
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maps are

P A Th(¥m) = Th(E; @ ¥m) = Th(ym+1)-

Proposition 4.5 (Bachmann-Hoyois): The spectrum MGL is equivalent to the ho-

motopy colimit colimy ¢) Thy (§) where X ranges over Sm/k and virtual vector bundle

& € Ky(X) has rank zero.

Proof: This isl7ITheorem 16.13 ]
Motivated by this proposition, Annala, Hoyois, and Iwasa defined the non-Al-

invariant algebraic cobordism:

Definition 4.11 (non-A'-invariant MGL): We work over non-A!-localised motivic

homotopy theory in a moment. The non-A-invariant algebraic cobordism is defined by
MGL := colim Thy (&)

where X ranges over smooth derived k schemes and ¢ € K, (X) has rank zero.
Proposition 4.6: Algebraic cobordism spectrum MGL is orientable.
Proof: We prove P}’ = Th(y,) first. Consider the closed immersion
L, : PRt > PL.
The normal bundle of [,, is 011»};—1 (—1) on P¥L. The open complementary P} — P}~ 1 =
# is contractible in SH (k). Using 4.4, one gets
(P%, 1) = PR/(Pg — Pg™") = Th(Opn-1(=1)).

This isomorphism is functorial concerning the inclusion of [,,. Therefore, one takes the
homotopy colimit over n to get the isomorphism.

So, we have a natural map
ewoL * Z5PE = IZ, Th(yy) = MGL(D[2].

By construction, the restriction of ¢y, to (P, %) corresponds up to IP4-desuspension to

the unit
Z]‘;Ilc Spec(k) = Zg}c Th(y,) » MGL.

Therefore, ¢y, 1s an orientation of MG L. ]
The algebraic cobordism MGL has a similar universal property to MU.

Theorem 4.5 (Gabriele Vezzosi): Let E € SH(k) be a ring spectrum. Then the

following sets are in bijective correspondence:

(1) Orientation ¢ of E,
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(2) morphisms of ring spectray : MGL — [E, by the map

Y = P.(CmeL)
where 1, : MGL"* — E*” is the induced map.

(3) The orientations of E correspond uniquely to isomorphisms of formal group
laws defined on E2** (k).
This theorem says nothing about the homotopy ring MGL,, ,. It was hypothesized

that, for any regular local scheme S, the natural homomorphism

@ MU? - @ MGIL?(S)

i=—oo i=—o0

is an isomorphism!76JCONJECTURE Ion page 601 H5y0is proved the conjecture partially:

Theorem 4.6 (Hopkins-Morel-Hoyois): Consider a field k and let p denote

its characteristic exponent. The map from L[1/p] to the motivic cobordism ring

MGL,, .(k)[1/p] is an isomorphic map.

Proof: This is the main result off*?, ]
As an application, Marc Levine proved[>*! the isomorphism between Q* and M GL?**:

Corollary 4.1: Let k be a field over Q and X € Sm/k. There is a ring isomorphism
Q' (X) = MGL***(X).

Proof: We refer tol>* for the construction of Q*. ]
This isomorphism also gives a geometric explanation of MGL.
Let a4, a,, ... be generators of the Lazard ring. A direct consequece of the Hopkins-

Morel-Hoyois theorem is

MGL/(ay, az, ..)[1/p] = MZ[1/p].

So, we can recover motivic cohomology from algebraic cobordism.
Proposition 4.7: Let E € SH(k) be a Z[1/p]-linear ring spectrum. Then the following
two properties are equivalent.

(1) E has additive formal group law.

(2) There exists a morphism (dependent on the orientation of [E) of motivic ring

spectra:
o: MZ - E.

When these conditions are fulfilled, the additive orientation ¢ on E is unique and is the

image under o of the canonical orientation on MZ.
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Proof: The implication from (2) to (1) is obvious.

Conversely. The orientation ¢ of E corresponds to a morphism of ring spectra
Y : MGL - E.

This map induces a morphism of formal group law. The map ¥, maps all generators
a;j, (i,j) # (1,0), (0, 1) of the Lazard ring to zero. Thus 1 induces the morphismo. m
If we denote E as the spectrum corresponding to de Rham cohomology or £-adic
cohomology, one can find the cycle class map of Chow groups is uniquely determined.
Now, let us say some calculations of MGL.
Proposition 4.8: Let k be any field.
(1) Along the diagonal line 7, ,(MGL) = KM (k) is the Milnor K-theory. For
p < qor2p <gq,ongetsm,,(MGL) = 0.
(2) IfX is a smooth scheme over k. Then rational algebraic cobordism and rational

motivic cohomology coincide:
MGL"*(X) ®; Q = MQ**(X) ®y L.
An important property of algebraic cobordism is its isomorphism between Chow
rings.
Theorem 4.7: Let k be an extension of Q. For arbitrary smooth projective scheme X

over k. We have
Q*(X) ®L Z — CH*(X).
Recall that we have defined the spectrum BP in algebraic topology. There is also a
motivic version BP. Let MG L, be the localisation of MGL. The localisation

is a map of ring spectra. It induces an orientation X,y of MGL ).

Just like stable homotopy theory, there is an idempotent map
€w) i MGLpy > MGLp).

Definition 4.12: For each prime number p, the motivic Brown-Peterson spectrum
MBP € SH(k) is

e e
MBP := hocolim(MGL py —=> MGLpy —2> MGL(py = ...).

According to the motivic Landweber exactness theorem, MBP can be equivalently

characterized as MG L) /(x), where x represents any regular sequence within L that gen-
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erates the ideal defining the p-typical formal group law.

Definition 4.13: Let {g;} denote the generators of L. We define the sets T = {g; : i #
p*—1,k > 1}and T(n) = {g; : i # p¥—1,1 < k < n}. The notation MBP is introduced
to represent the quotient MG L,y /T, and we define the truncated motivic Brown-Peterson
spectrum M BP(n) as the quotient MGL /T (n).

By construction, there is a tower of motivic spectra
MBP = MBP(o) — -+ - MBP(n) > MBP{n — 1) - --- - MBP(0)

Proposition 4.9: Let F be a field in which p € F* is a prime element. There exists an

isomorphism

MBP(0) — MZ ).

f{42]Theorem 7.12. ) m

Proof: This is just a reformulation o
A significant application of algebraic cobordism is the existence of Rost varieties,
which are crucial in Voevodsky’s proof of the Bloch-Kato conjecture regarding Galois
symbols (not the conjecture about Riemann zeta function). Here, we present their defini-
tion.
Definition 4.14: Let d > 0. We define s; : Ko(X) — H?%4(X,Z) as the additive
natural transformation (for any X € Sm/k) that is uniquely determined by the property
that if £ is an algebraic line bundle, then s;([£]) = c¢;(£)%. Furthermore, if X is a
projective smooth scheme of dimension d over k, we denote s;(X) := s4([TX]), where
T X represents the tangent bundle of X.
For details on the definition of s, seel78lsection 14,
Definition 4.15: Letn > 0. Let X be a connected smooth projective scheme on k. We
say that X is a v,,-variety if X is of dimension d = ™ — 1 and that deg s;(X) % 0 mod #?
where deg : H2%4(X) ~ CH%(X) - Z is the degree map.
Remark 4.3: Within the theories of motivic cohomology and finite correspondence, the

usual degree map of algebraic cycles is
Z(d)[2d] ® (Z — T (Y)*).

Definition 4.16: Let X € Sm/k. We define X as a v¢,_;-variety if: itis a v,_-variety,
and for every 0 < i < q — 2, there exists a morphism X; — X, where X; is a v;-variety.
Definition 4.17: Let a = (a4, ..., a,) be a tuple of elements of k*. A splitting vari-
ety for the symbol {ay, ..., a,} is a connected variety X € Sm/k such that the image of
{ay, ..., aq} is zero in K (k(X)) /€KY (k(X)).
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Definition 4.18: Let k be a field with characteristic zero. Suppose {a,, ..., a5} # 0 in
KC’IV’ 9 /{’KC’I" (k). An £-generic splitting variety for the symbol {ay, ..., a4} is defined as
a splitting variety X such that for any finite extension E of k whose degree is prime to £,
there is a k-morphism from Spec E to X.

Example 4.5: Let g = 2. Assume that y, C k, and select an £-th primitive root of unity
¢. Fora,b € k*, the central simple algebra A¢(a, b) admits an associated Severi-Brauer
variety X. Specifically, X is a projective, smooth, geometrically integral k-variety that is
isomorphic to Pi‘l if and only if A is not divisible. Furthermore, it is demonstrated that
X serves as an £-generic splitting variety for {a, b} € K/ (k) /€K (k).

Definition 4.19: Let k be a perfect field. The following are equivalent:

(1) There are no non-trivial finite extensions of k that have a prime degree with
respect to ¥

(2) For any finite extension of k, its degree must be a power of ¢;

(3) Gal(k/k) is a pro-£-group.

If these equivalent conditions are satisfied, we say that k is £-special.

Example 4.6: Let k denote an algebraic closure of k. By applying Zorn’s lemma, there
exists a k-subfield k' of k such that £ + [k’ : k] and k' is maximal with respect to this
property. It is clear that k' satisfies the £-special condition.

Theorem 4.8 (Rost): Let k be a field of characteristic zero that contains an £-th root
of unity, denoted by ¢. Consider an element a = {ay, ...,agz} # 0 in K (k) /€K' (k),
where q > 2.

(1) (norm variety) For the symbol {ay, ..., aq}, there is an £-generic splitting va-
riety X, that is smooth, projective, geometrically connected, with a dimension given by
2971 -1,

When the field k is £-special, any smooth and projective £-generic splitting variety X
with dimension #91 — 1, corresponding to the symbol {ay, ..., a4}, exhibits the following
characteristics:

(2) The variety X is a geometrically connected v,_;-variety.

(3) Let X € Sm/k. We denote C(X) the simplicial scheme such that € (X),, =
X™*+1 the simplicial morphisms being defined simply by conceiving X™*1 as the func-
tions of scheme” {0, ...,n} = X. The canonical map H_L_l(CV(X)) — k* is injective,
where H_y,_ (X)) := Hom,, err (2, M(CCO)(D[1])

The variety in this theorem is the Rost variety.
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Remark 4.4: Levine and Pandharipande found some applications of algebraic cobor-
dism in Donaldson-Thomas theory®*. Recently, Annala, Hoyois, and Iwasa recovered
algebraic K-theory from algebraic cobordism(?!. Are there any additional notable appli-

cations in the field of algebraic geometry?
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CHAPTER 5 CYCLE CLASS IN HODGE THEORY

In this chapter, we commence with an introductory overview of fundamental Hodge
theory. Following this, we proceed to a detailed analysis of the cycle class map, par-
ticularly its Betti realisation within the context of Voevodsky motives. Additionally, we
expound on the importance of the cycle class map and establish criteria for identifying
when cohomology classes are algebraic. Finally, we present examples of non-algebraic

cohomology classes.

5.1 Basic Hodge theory

The Hodge decomposition exists for general compact Kéhler manifolds. For our
purpose, we focus on smooth projective complex schemes. An important theorem for us
is the famous GAGA theorem. This theorem date back to Serre. We refer tol*®] for a
modern account.

We refer tol#41Chapters 2,3.4 143] 3391 for background on de Rham cohomology and
singular cohomology.

For a smooth scheme X € Sm/ Spec(C), its de Rham complex relative to Spec(C)
is denoted by Qy . Its filtration béte Q)Z(I/’(C 1s:

Q;Z/’C 0> >0- Q§/C —>Q§7£ - ...

Let ¥y, : Q;'/)(C - Q5 /C be the canoncial inclusion. The Hodge filtration F is given by
FPH'(X, Q) ¢) == Im(iy).
Theorem 5.1 (Grothendieck): Let Y be a smooth projective scheme over Spec(C),
and denote by Y?" the associated complex analytic space. There exists a functorial iso-
morphism

Hyu(Y, 0y /) = H'(Y™, ©),
and furthermore,

FPH, (Y,Qy,¢) = FPH! (Y™, C).

In this context, we consider a smooth projective scheme Y defined over Spec(C).

The corresponding complex analytic space is denoted by Y. We establish a functorial
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isomorphism between the Zariski hyper-cohomology of de Rham complex on Y and the
singular cohomology of its associated analytic space (complex). Additionally, we show

that this isomorphism respects the Hodge filtration, specifically:
FPHL, (Y,Qy,¢) = FPH! (Y™, C).
Proof: A key step is the hypercohomology spectral sequence
E3? = HI(X,Q,¢) = HP* (X, Oy /).

By the GAGA principle, the E,-page are isomorphic to E5'7(X*") = HI(X", Qg}an). So

HY(X, Q% ) =H Lxan, Q%an). Finally, the Poincaré lemma gives isomorphisms
HY(X, Q5 ¢) = H'(X", Qyan) = H' (X", C).
|
Theorem 5.2 (Hodge decomposition): Consider X as a smooth projective scheme
over Spec(C). The rational Betti cohomology associated with the analytic space X*" pos-
sesses a Hodge structure pure of weight k, which is functorial.

Hfar (X, Q% )¢) = H*(X™, Q) ®q C = @ H*P(X) = HP(X,Q9).
k

a+b=k a+b=
Proof: This theorem holds considerable significance, and its proof can be found
in[17IChapter 3 "The demonstration of this theorem relies on the Kéhler form over X*" along
with analytical methodologies. Deligne and Illusie demonstrated that the hypercohomol-
ogy spectral sequence degenerates using purely algebraic techniques. However, their ap-
proach did not yield a direct sum decomposition. The challenge of finding a proof that
relies exclusively on algebraic geometry remains an open problem.

To provide further context, it is important to note that the Kéhler form plays a crucial
role in complex geometry, defining the metric structure on manifolds and underpinning
many complex geometric and topological properties. In their work, Deligne and Illusie
ingeniously utilized tools from algebraic geometry, particularly through the introduction
of spectral sequences to address intricate cohomological issues. Although their method
successfully proved the degeneration of the spectral sequence, it did not offer an intuitive
direct sum decomposition, highlighting the need for further investigation.

Moreover, the significance of this problem lies in its exploration of the deep con-
nections between algebraic geometry and complex geometry. While Deligne and Illusie’s
work represents a significant advancement, the quest for a fully algebraic-geometric proof

of the direct sum decomposition remains challenging. This pursuit not only tests existing
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tools and techniques but also drives researchers to explore new mathematical frameworks
and theories.

In summary, the importance of this theorem extends beyond its immediate result, as it
sheds light on the yet-to-be-fully-understood relationship between algebraic and complex
geometries. Future research may bring breakthroughs that could ultimately resolve this
open problem. n

The word functorial in the theorem means that standard map of cohomology groups
induces morphism of Hodge structures. However, this sentence only make sense when
we consider Tate twist. Suppose Y € X is a smooth closed subscheme with codimyY =

r = 1. One has the Gysin map
Hi—Z‘r' (Yan, Q) N Hi(Xan, Q)

This is not an interset morphism of Hodge structures, as the only morphisms between pure
Hodge structures of different weights are trivial (zero) morphisms. To remedy this, one

consider the twisted map
HEZ27 (Yon, Q(—1)) - HI(X ", Q).

Definition 5.1: Let ¢ : H*?(X(C),Z) —» H?*?(X(C), C) be the map induced by Z — C.
The group HP9(X,Z) of integral Hodge classes of (p,p)-type is {x € H??(X,Z) :
¢(x) € HPP(X,C)}. Similarly, the group HPP(X, Q) of rational Hodge classes of
(p, p)-type is H?P (X, Q) N HPP(X).

A major and important source of Hodge classes is the cycle class. There are many
constructions. We will write down all the constructions as much as possible. In our case,

we will consider singular cohomology group of X%™:
CH"(X) » H* (X9, Z(1)).

To define it, we need resolution of singularities.
Definition 5.2: Given a locally Noetherian reduced scheme X, we call a morphism f :
X' — X such that X' is regular and f is proper and birational a resolution of singularities
of X. When such a morphism exists, we say that we can solve the singularities of X.

The following famous theorem is well-known:
Theorem 5.3 (Hironaka,Temkin): For any reduced excellent scheme Y whose residue
fields have characteristic zero, it is possible to achieve a resolution of singularities. Addi-
tionally, a resolution of singularities can also be obtained for any quasi-excellent Noethe-

rian scheme Z of characteristic zero.
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Recalling the exact sequence of sheaves:
0-2mi=7Z(1) - 0x — 05 = 1.

The cycle class map CHY(X) —» H?(X%",Z(1)) is the boundary map H1(X%", Z(1)) =
CH(X) —» H?(X%",Z(1)) associated with the sequence. We call it the first Chern class.

Following Grothendieck (For the case of K, refer tol®>); for higher K, con-
sult[33lsection 11in Chapter V y " there are theories of Chern classes in both algebraic and an-
alytic de Rham cohomology. Let L be a locally free Ox-module of rank 1. One can show
c1(£) = ¢; (L) under the isomorphism of Grothendieck by explicit cocycle construc-
tion. Using the projective bundle theorem and splitting principle, one can further show

that

cx(€) = cx(EM™)
for any vector bundle € under Grothendieck’s comparison theorem. By the universal

property of algebraic K-theory, there is a Grothendieck Chern class map
o+ Ko(X) > HZ (X", Q(k)).

Since X is smooth projective, there is a surjective map
Y :2(X) = Ko(X), Z e [0g].

The cycle class of a cycle Z € Z¥(X) is ¢, (¥(Z)). According tol!!formula (4.4) on page 674
or the Riemann-Roch theorem without denominators, the cycle class is
2= S con.
(k—1)!

Remark 5.1: There exists an alternative definition of the cycle class map that does not
rely on algebraic K-theory, as described inl*6I1Chapter X Eor the case of algebraic de Rham
cohomology, one may refer tol3918¢ction 7in Chapter I - Gimjijarly, these methods can be ex-
tended to the étale cycle class map provided that étale homology is appropriately defined,
as demonstrated in[?2THEOREME (7.2),

In fact, the cycle class [Z] is in H?¥(X,Z). Let Z c X be a codimension p cycle. It

determines a cycle class
[Zan] € HZk(Xan,Z(k))

as follows: let y : Z = X be a resolution of singularities. By Poincaré duality, the linear

function
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1
2n—2k .
H 2R (XN I(n—k) > Z, aw T L (@
is represented by a unique class & € H2* (X", Z(k)) with property that

1 1

—_— (@) = U a.

(Zﬂi)n_k ,l-Z”an K (a) (27Tl)n ,fXanE *

The class [Z%"] is of type (k, k). Indeed, if @ € H?"~2K (X" Z(n—k)) is of (n—i,n—j)-
type with i # j, then either i or j is strictly greater than p, and fzan u*(a) = 0. Thus a

cohomology class of a codimension k algebraic cycle gives rise to a (k, k)-Hodge class.
Lefschetz showed the cycle class for codimension 1 is surjective:

Theorem 5.4 (Lefschetz): The cycle class map

cl: CHY(X) » H?(X,Z(1))
is surjective on integral Hodge classes H¥ (X, Z).
Proof: The exponential short exact sequence of sheaves

05 Z(1) > Oy —> 0} > 1
induces a long exact sequence

5 HY(X, 03) = Pic(X) <5 H2(X™, 7(1)) D> H2(X%™, 04) - ...
The map f is identified with the composition
H2(X", Z(1)) » H*(X%",C) » H%?(X) = H?(X,0yx)

So ker f is exactly the set of integral Hodge classes. A class @ € H?(X,Z(1)) which
maps to 0 in H?(X, Ox) has a®? = 0 in the Hodge decomposition. But then it also has

a?? = @92 = 0, and thus it is of type (1, 1) hence a Hodge class. |

Hodge conjectured that
cl: CHP(X) » HPP(X,Z)

is also surjective whenever p > 2 based on Lefschetz’s result. However, Hodge’s original
conjecture is not true in general. Seel>”3) and our latter discussion.
The millennium problem is:

Conjecture 5.1: The rational Hodge classes are algebraic, i.e. the map
clg : CHP(X) ® Q » HPP(X,Q)

is surjective for every p.
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There are still examples of integeral Hodge conjectures. Voisin showed that all inte-
gral Hodge classes on cubic fourfold are algebraicl82Theorem 18,

Theorem 5.5: Let X be a cubic fourfold. Then the cycle class map
cl:CH"(X) > H""(X,Z)

is surjective.

The Hodge conjecture is renowned for its formidable complexity, and our current
understanding of it remains limited. However, its significance transcends its difficulty,
lying in its profound implications for algebraic geometry and related fields.

The importance of rational Hodge classes arises from their deep connection to
Grothendieck’s standard conjectures through the Hodge conjecture. The failure of the
integral Hodge conjecture presents significant challenges in establishing the rationality
of smooth projective schemes. This failure highlights the intricate relationship between
Hodge theory and algebraic cycles, underscoring the need for further research into these
fundamental questions.

To provide additional context, the Hodge conjecture posits a bridge between the topo-
logical and algebraic aspects of complex algebraic varieties. It asserts that every Hodge
class on a smooth projective variety over C can be expressed as a linear combination of al-
gebraic cycles with rational coefficients. While this conjecture has been verified in certain
special cases, its general proof remains elusive.

Moreover, the implications of the Hodge conjecture extend beyond its immediate
statement. For instance, if the Hodge conjecture holds true, it would imply the validity of
the standard conjectures over fields of characteristic zero. These conjectures, formulated
by Grothendieck, are central to the theory of motives and have far-reaching consequences
for the structure of algebraic varieties. In particular, they suggest that the category of
motives over C would possess a rich and well-behaved structure, forming a semi-simple
Tannakian category.

In summary, the Hodge conjecture not only represents a major open problem in math-
ematics but also serves as a cornerstone for understanding deeper connections between
algebraic geometry and other branches of mathematics. Its resolution would provide sig-
nificant insights into the nature of algebraic cycles and the structure of motives, thereby
advancing our knowledge of complex algebraic varieties.

Proposition 5.1 (Claire Voisin): If a smooth projective C-scheme X is birationally

equivalent to projective space P", then the integral Hodge conjecture is valid for codi-
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mensions 2n — 2 and 4.

An important cohomology theory in the Hodge theory is the Deligne-Beilinson co-
homology. Its definition is simple, but its properties are complicated.
Definition 5.3: Let Q;~" := 0 - Q) - Q} - - > Q%1 - 0 be the truncated de

Rham complex and A be a subring of C. The algebraic Deligne complex A(n)j, is
0-An) > 0x » QL » >8>0
The Deligne-Beilinson cohomology with coefficients R is defined as the hypercohomol-
ogy
Hp(X; R(n)) := Hyar(X; R(N)p).

According to Beilinson, Deligne-Beilinson cohomology is extension of mixed Hodge
structures. One important aspect of Deligne-Beilinson cohomology is the following exact
sequence.

Theorem 5.6: The Deligne-Beilinson cohomology fits into an exact sequence:
0 - J*(X) = Extyys(Z, H* 1(X; Z(k))) » HE*(X; Z(k)) » H**(X;Z) - 0.

Proof: We refer tol3!15ection 7.8 |
In light of Beilinson’s profound conjectures on L-functions, the study of Deligne-
Beilinson cohomology presents significant challenges.
The Hodge conjecture can be equivalently formulated using étale motivic cohomol-
ogy and Deligne-Beilinson cohomology as follows.
Theorem 5.7 (Rosenschon et Srinivas): The Hodge conjecture is equivalent the

generalized cycle class map
ci® : HE (X3 2(9)) ~ Hp (X; Z(9)

is injective on torsion parts.
Proof: Seel60lsections, ]
In Hodge theory, a key concept is that of the absolute Hodge class. To put it simply,
an absolute Hodge class refers to a Hodge class that remains unchanged across various
embeddings to C.
Let 0 : k —» C be an embedding of fields. Each smooth projective scheme X over
Spec(k) base change to a scheme X X, , C over C along o. Thus we can consider Hodge
decomposition of X Xy ; C.

Definition 5.4: A classa € ng (X; Qx/x) 1s called a Hodge class relative to o ifit is a
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Hodge class under the base change map
2 2
Hap(X; Qx ) = Hip(X Xpo € Qs /-

The class a is an absolute if it is a Hodge class relative to every o.
Remark 5.2: The homotopy type of (X X, - C)(C) is dependent on ¢ according to Serre.

We can also define absolute Hodge class in term of étale £-adic cohomology.
Definition 5.5: Let o : k > C be an algebraic closure of k inside C. We say a cohomol-
ogy class a € Héztp (X X, k; Qu(p)) is a Hodge class relative to o if its image under the
Artin isomorphism

HEP (X X Spec(k); Qe(p)) = Hygri(X Xi,o Spec(©); Qe(4))

is a Hodge class.
Remark 5.3: This is not Deligne’s definition in(>’]. He considered étale cohomology
and de Rham cohomology simultaneously.

The Hodge conjecture implies every Hodge class is absolute. Deligne proved it for

abelian varieties unconditionally!?>1.

5.2 Obstruction to cohomology classes being algebraic
The universality of MU yields a natural transformation
p:MU*(=) » H* (=, 7).

When X is a complex manifold, the image of a class f : Z — X in MU*(X) by u is
u([fD = £.(1) € H* (X, Z) where f, is the Gysin morphism.

Totarol731section 3 notes that the integral cycle class map
Zk(X) - H?**(X,7)
facotrs through complex cobordism
ZRX) > (MU*(X) Quu+ Z)** - H**(X,Z).

Through factorization, it is evident that any class in H%*(X, Z) that does not belong

to the image of the map
MU (X)) Qyu+ Z - H**(X, )

cannot possess an algebraic nature.
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Remark 5.4: Generally, the map
MU*(X) Quu+ Z = H*(X)

is neither injective nor surjective.
We can interpret the above factorisation using algebraic cobordism. Indeed, the fol-

lowing diagram is commutative:

Q (X s MU?*(X9™)

! l

QX)) QL ————> MU (X @ Z

| !

CH*(X) > H2* (X", 7)

Horizontal arrows are natural maps by the universal property of * and CH*. So Totaro’s
factorisation is the following compositions:

CH*(X) - QX)) QLZ-> MU* (X)) Q Z - H** (X, 7).
Proposition 5.2: Let X be a complex manifold. If k > 1. The image of the morphism
u = MU*(X) - H¥(X,Z) given by the universal property of MU is killed by integral
cohomological operations.

Proof: An integral operation of degree k > 0 is given by a map of spectra

f:HZ - FHT.
For k > 0, the group HZ¥HZ. is finite!1. In particular, it is torsion. The morphism y is
induced by a spectramap v : MU — HZ. The morphism
HY(HZ,7) - H*(MU, Z)

induced by v sends [f] to [f o v]. According tolP0IProposition 444 “the oroup HX(MU, Z) is

torsion free. Hence [f o V] is trivial. ]
So, the cohomology operation can detect whether a cohomology class is algebraic.

Let us review Steenrod operation. We assume all spaces are pointed.

Definition 5.6: Cohomology operations are a collection of transformation of cohomo-

logical functors:
fiH (= Fp) - H (=, Fp).

Definition 5.7: The mod-p Steenrod algebra A, = A, is the F,-algebra of cohomol-
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ogy operations
a*(-, Fp) - A (-, Fp).

Milnor found a distinguished family of operations Q; in!>’1, we called them Milnor
operations nowadays.
Definition 5.8: We define Q, to be the Bockstein. Inductively, we define
Qisr = PP Qi — QiPV.

Proposition 5.3: The following properties of Q; are proved in>°].

(1) Q; has degree 2p* — 1.

(2) Qi2 = 0 and Q;Q; = —Q;Q;. That is all Q; generate an exterior algebra under
composition.

(3) Q; are derivations.

Proposition 5.4 (Olivier Benoist): Let X be a smooth projective scheme over C. Fix
a € A, and x a reduction mod p of a cycle class.
(1) If deg(e) is odd, then a(x) = 0.
(2) If deg(a) is even, then a(x) is a mod p reduction of a Hodge class.
By the Landweber exactness theorem, the BP cohomology of a space X is given by
MU*(X) Quu+ BP*. A simple calculation shows

Hence the mod p-cycle class map factors through BP:

CH"(X) = BP*(X*™) ®pp+ Lp) = H** (X", Lp)) = H** (X", Z/p).

Recalling the fibre sequence of BP: Zan_zBP(n) n, BP(n) LN BP(n — 1).

Byl71IProposition 4-4 ' the following diagram is commutative:

BP(nY*(X) —2 s BP(n — 1)K(X) — % BP(n)*+2"1(x)

p"\) \Lpr_l;l pfl\L
-1

H*(X; F,) i—Qn> ]—]k+2pn_1(X; Fy,)
where the top row is by the definition reason and the two vertival arrows are induced by
BP(n) - BP(0) = HZ,y - HZ/p.

Combining with the mod p-cycle class map, we get the following diagram:
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BPZk(Xan)

| L,

BP(n)ZR(Xan) p y BP(n—l)Zk(Xan) qn*} Bp<n)2k+2pn—1(Xan)

PEII\L \LPLH
Z y HX 2 p) g HHTP XS L)
D T{n
From the given diagram, we can infer that if x € H?*(X;Z/p) satisfies Q,(x) # 0,

9

CH*(X)

then x cannot be algebraic. To elaborate, if x were algebraic, it would be represented
as cl,(y). Consequently, this would imply x = cl,(y) = p"11fg(y). However, it is
known that q,(fg(y)) = 0. Therefore, we have Q,(x) = p”,q,(fg(y)) = 0, which
contradicts the initial condition Q,,(x) # 0.
Remark 5.5: The non-trivial point is the map g. It relies on the theory of algebraic
cobordism.

Composing different q,, yields a commutative diagram up to sign

$BP(0) # 21Ql+1Q1lpp(1) a2 N an S 222?=0Pi—n—13p(n)

o

HIF
\LQn+1Qn---QO

n+1

¥2 Y=o pi—n—ZH[pp Y]

dn+1

— 523 P'-n=2gp(n 4 1)
p-1

since p*;q, = Q,p", up to a sign.

So, we deduce the following commutative diagram:

BP(Tl)k+2 2?:0 pi-n—-1 (X)

p%“l

BP(nyk+2Sizop'=n-1(x) I\ ppp 4 1yk+2Sis pion-2(x)

an---qo \Lpzl_li—1

H*(X; Fp) > HF2Zi2o Pon2 (X )

Qn+1--Qo
From the diagram we can read that if x € H*(X; F,) and Qp4q ... Qo(x) # 0, then

Gn - Go(x) & Im(p2*1). We will construct such an x.
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5.3 Betti realisation

Let Y be a complex analytic space. Denote by AnSm/Y the category whose objects

are smooth analytic spaces over Y. This category is endowed with the standard topology.
Let SH(AnSm/Y, Sp) represent the category of hypersheaves of spectra on AnSm/Y with
respect to this topology.
Definition 5.9: Let D! be a complex disc. We define SHp:(AnSm/X, Sp) be the left
Bousfield localisation of SH(AnSm/X, Sp) with respect to {D} ® A —» Y ® A} with
Y € AnSm/X and A € Sp.

We denote Ouv(X) the set of open subspace of X. We denote by £y : Ouv(X) —

AnSm/X the obvious inclusion that provides a pair of adjoint functors
£y : PSh(Ouv(X), Sp) 2 PSh(AnSm/X, Sp) : ¥x..
It is trivially descent to
€% : D(X,Sp) := SH(Ouv(X),Sp) @ SH(AnSm/X,Sp) : ¥x..

Ayoub proved the following theorem[61Théoreme 1.8,
Theorem 5.8 (Joseph Ayoub): The category D (X, Sp) of hypersheaves of spectra is
equivalent to SHp1 (AnSm/X, Sp).

In particular, when X = pt is a single point, this theorem provides an equivalence of

categories
SHp1(AnSm/X, Sp) = Sp.

We will define Betti realisation after we review analytification of schemes. For de-

tails, seel30].
Theorem 5.9: The functor & that maps an analytic space X to the set of morphismes
of ringed spaces of C-algebras Hom¢ (X%, X) is represented by an analytic space X" along
with amorphism ¢ : X*" — X. The space X*" is referred to as the analytic space associated
with X.

If | X" is the underlying set of X", ¢ induces a bijection between | X ™| and X (C).
Proof: This is classical. Seel36]Exposé XII Théoréme et définition 1.1 n
Example 5.1: Let f : Y — X be an étale morphism. Then f4" : Y3 — X%" is a local
isomorphism.

We have an analytic functor

Any : Sm/X - AnSm/X ™.
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The functor Any induces an adjunction of hypersheaves of spaces:

Any : Shy;s(Sm/X) 2 Sh(AnSm/X%™) : Any .

We have Anj(A}) = A,l,'%l and A}l,’gf is homotopy equivalent to D! as topological spaces

since we care about homotopy type. Thus we have an adjunction
Any : SH(X) @ SHp:1(AnSm/X™) : Any .

Definition 5.10: The Betti realisation functor of SH(X) is the following two compo-

sitions
SH(X) -» SHp1(AnSm/X*™") - D(X, Sp).

Remark 5.6: One may seel?81Definition 4.4. o [20]Chapter 17 for more general construction.
One has canonical homotopy equivalences Bettiy (S1) = S and Bettiy (G,,) = S?.

Then we have canonical morphism EP'4(X) — (Betti(E))? (X (C)).

Example 5.2: The following two examples show that Betti realisation gives classical

theories.

(1) From the constructions, we know that Betti(MGL) = MU, Betti(MBP) = BP,
and Betti(M BP(n)) = BP(n).

(2) The Betti realisation of the motivic Eilenberge-Mac Lane spectrum MZ is
Eilenberg-Mac Lane spectrum HZ by Dold-Thom theorem and Voeovdsky’s construction
of MZ.

For completeness, we describe the Betti realisation of Voevodsky motives. The an-

alytic functor
An : Sm/Cyis = Top, X » X(C)
is continuous. It induces a functor
An® : Shy;s(Sm/C) - Sh(Top).
Proposition 5.5: If X is smooth projective, the image An®(Z!" (X)) is the sheaf asso-

ciated with the presheaf

U - Hom(U, ]_[st(«:))+
d=0
where the scheme S%X is the symmetric power of X.

Proof: We explain notations. The symmetric power S4X := X%/%, where X% is d

times the fibre product of X and symmetric group X; acts (permuting the facotrs) on
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Xd = XX XX. By[SO]Proposition 3.5
287, (X)(Y) = Homgenye(Y, | [ 5400
d=0
for any semi-normal S. Combination with Z!" (X) = ay;s (ch (X )) we get
ZT(0)(Y) = Homsene(v, | [ 59000
d=0
As the functor An® maintains the property of representable functors, it transforms,
for all positive integers d and for any smooth scheme X, the sheaf X into the sheaf X4 (C).
Moreover, the functor An® commutes with any colimits: it sends the sheaf represented by
the smooth ind-scheme [] ., S%X to the sheaf represented by the space [ [;5, S?(X(C)).
Since the functor is compatible with algebraic structures, this proposition can be deduced
from this. [
Composing the functor An® with the exact functor forgetful of transfers, we obtain

the right exact functor
@ : Shyis(Cor(C)) — Sh(Top, Ab).
Composing with the Suslin complex functor C, (3.11), we obtain a right exact functor
Y : Shyis(Cor(C)) - C~(Sh(Top, Ab)).

Proposition 5.6: For arbitrary smooth quasi-projective smooth X over Spec(C), the
image W(Z'" (X)) is the complex computing the singular cohomology of X"

Proof: Seel691Section8 .

We deduce from W the topological realisation functor
tc : DM—¢f7(C) - D(Z).
Example 5.3: Recall the well-known calculations of de Rham cohomology groups
of Gy, are H3p(Gp) = k, Hiz(Gp) = k[dt/t], and O otherwise. According to
Grothendieck, there is a functorial isomorphism given by integral:
Hir(X) = HE(X) ®q C, [w] = f w.

Hence, the image of Z(1) = M (G,,)[—1] is the complex computing the reduced singular
homology of C*, shifted by —1. So, tc(Z(1)) = 2miZ centered in degree 0, by the residue
theorem.

Since the functor t¢ is monoidal and sends the motive Z(1) to an invertible object,

it extends to a functor to DM~ (C) and the results of this paragraph can be summarised as
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Theorem 5.10: There exists a symmetric monoidal topological realisation functor
tc : DM~ (C) - D(Z)
which for the motive M = M (X) associated with a smooth quasi-projective scheme X on
C allows us to represent the singular cohomology of X", i.e.
HP (X", Z) = Homp- 7y (tc(M (X)), Z[p]).

The compatibility with the product requires tc(Z(q)) = (2mi)?Z. So, the Betti
realisation of motivic cohomology HP1(X; Z) is HP (X%"; Z(q)). This fascinates us to
study the Hodge theory through motives.

If the scheme X is defined over Spec(R), the analytic variety of the complex points
(X Xspec R Spec €)(C) is provided with an action of the complex conjugation 7. Following
this action in the previous construction, it is shown that the topological realisation functor

is factored into a diagram

DM~ (R) —= 3 D(z°)

on] !

DM™(€) ——— D(Z)
where the category Z° refers to abelian groups equipped with an involution. The mor-
phism on the right is induced by disregarding the involution structure.

The Tate motive Z(1) is real and on its realisation t¢(Z(1)), the involution is induced
by the change of orientation of S in C* and acts by multiplication by —1.

For any embedding o : k — C, the extension of the scalars a¢ : DM~ (k) - DM~ (C)
composed with the topological realisation, defines a functor

ts : DM~ (k) > D(Z), M tgooc(M)=: M;(C).

We then set H; (M, q) = Homp,zy(M4(C), (2ri)?Z).
If the motivic complex M = M(X) is the motive of a smooth quasi-projective

scheme, the Betti realisation coincides with the singular cohomology groups

Hg (M(X), Z(q)) = HP (X", (2mi)9Z).

5.4 Non-algebraic cohomology classes
The Betti realisation functor induces natural transformations

HPA(X; Z) —» HP (X" Z(q))
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and
MBP{(n)P4(X) - BP(n)? (X").
Since H?PP(X) = CHP (X), we denote by cl,, the natural map
cl, : MBP(n)?“'(X) —» BP(n)?(X%").

It is a little complicate to check why the Betti realisation gives the cycle class map.
We omit it. The methods in*’! would go through.
We get the following obvious commutative diagram induced by universal property

of MBP and Betti realisation:
MBP(n)?(X) —="—% BP(n)?(Xo")
prMl lplll
H2 (X F) — b H2i(XOF)
Theorem 5.11 (Gereon Quick): For any integer n > 0, there is a smooth projective

scheme X and a b,, € BP(n)2Zi=0P"*+2(Xm) such that b,, is not contained in
cly : MBP(n)?ZizoP'+2Ziz0 +1(X) — BP(n)?ZizoP'+2(xan),
When n = 0, the map cl,, is

cl : MZ (X) = CHA(X; Zp) = HZ{,y (X)) = H*(XO™; Zy)).

So, we get a non-algebraic Hodge class.
Proof: The scheme X is the so-called Godeaux-Serre variety. Based on Proposition (6.6)
froml®], given any finite group G and any integer n greater than or equal to 3, one can
find a projective smooth scheme X such that its associated analytic space X*" exhibits
n-equivalence to the space K(Z, 2) X BG. We treat the case p = 2.

We take the group G = (Z/2)"*3. Let X be the Godeaux-Serre variety associated
with G. Let

¢: X" - BG xXK(Z,2) - BG

where the first map is the 2 Z?:ol p! + 1-equivalent. Considering the first map is k-
equivalent, each non-zero element within H(G; Z/2) gets transformed into a non-zero

element in H!(X"; Z,/2). Byl!ITheorem 44 onpage 66 \ye haye

H*(G;Z/2) = Fa[x1, o) Xnasl, x| = 1.
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According tol63Ikemma 3.2 ‘the element
Qn - Qo(%1 - Xn43) € H2Zi0P'¥2(G;2/2)
is non-trivial. Thus
Yo 1= §"Qn o Qo(X1 Xny3) = Qn e Qo($" (X1 Xny3)) € H2Zi=0PH2 (XM 7,2)
is also non-trivial. We define
b #= G - Qo($" (%1 - Xny3)) € BP(m)2ZimoP'+2(xam),
Its image in H2Zim pi+2(Xa"; Z./2) is +y,. By the discussion after 5.5,
b, & (Im : BP(n + 1)2Zi=oP'+2(xan)  Bp(n)2Liep'+2(xany)

Observing the following commutative diagram

n+1

BP*(X%") —% BP(n + 1)"(X®™) 2% BP(n)*(X™")

\ Jom

H* (X% Z/2)
we can conclude that b,, € Im(cl,,). If p is an odd prime number. The argument is almost

the same. ]
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CONCLUSION

Our primary contribution lies in:
(1) Elucidating some crucial properties of algebraic cycles. Presenting examples
of the complexity of Chow groups.
(2) Supplying a straightforward application of the motivic homotopy theory.
Highlighting the connection between the Hodge Conjecture and the theory of motives.
(3) There should also be analogous applications in étale cohomology. A possible

issue is whether the isomorphism
MGL***(X) Q. Z ~ CH*(X)

can be generalized to fields of positive characteristic. Precisely through this isomorphism,
we decomposed les morphismes classes de cycle in the case of characteristic 0. If the
aforementioned isomorphism can be realised in fields of positive characteristic, then we

could obtain a counterexample to the integral Tate Conjecture.
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