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ABSTRACT

ABSTRACT

This paper is a survey of certain methods of homotopy theory in algebraic geometry,
emphasizing how conceptual structures integrate with computational tools. It consists of
two parts. The first part (Chapter 1 - Chapter 5) discusses classical homotopy theory,
including oo-categories, higher algebras via stable co-categories, power operations, and
Adams spectral sequences. The second part (Chapter 6 - Chapter 9) discusses motivic ho-
motopy theory and its multiplicative structure. We first introduce how to use co-categories
and higher algebra to construct unstable motivic homotopy category and stable motivic
homotopy category. Then we introduce Bachmann and Hoyois’s construction of norms in
motivic homotopy theory and explain how norms lift certain arithmetic phenomena (i.e.
norms of Galois field extensions) in algebraic geometry to the homotopy-theoretic level.
Based on this, we show how to derive motivic power operations from norms using mo-
tivic extended powers and equivariant motivic homotopy theory following the joint work
of Bachmann, Elmanto, and Heller. In the end, we apply all the discussed methods to
motivic cohomology and motivic Adams spectral sequences and discuss possible future

research topics.

Keywords: motivic homotopy theory; cohomology operations; spectral sequences
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INTRODUCTION

Methods of homotopy theory have both conceptual and computational perspectives.
These methods turn out to be effective in the study of spaces up to continuous deforma-
tion. For example, cohomology operations play an important role in both understanding
the abstract properties of spaces and computing their concrete invariants. In Chapter 1, we
introduce some historical background about these topics. In particular, power operations
are the most important cohomology operations and one perspective we try to show in this
paper is that power operations conceptually reflect the multiplicative homotopy coherence
(coherence usually means that some specific diagrams commute) depicted by abstract ho-
motopy theory in cohomology, and computationally serve as the foundation of spectral
sequence algorithms.

From this viewpoint, the paper is divided into two parts. In the first part, we introduce
some basic notions and results about co-categories in Chapter 2 and higher algebra via
stable oo-categories in Chapter 3 as the desired categorical framework. Then we review
some basic concepts and constructions of power operations in classical homotopy theory
and try to reveal how they reflect the multiplicative coherence in Chapter 4.

Next, we study how spectral sequences organize the computations of power opera-
tions. More concretely, we study how the power operations that are presented in the E,-
page reflect the multiplicative information of the homotopy classes in the E-page along
an Adams spectral sequence following Bruner’s work!! in Chapter 5. We summarize
Bruner’s work in the following diagram.

. induces at induces at .
power operations +——— ]Hloo-structure _— hOIIlOtOpy operations

cohomology level homotopy level
Wencoded

displayed ‘ How to convert cohomology operations into homotopy operations ‘ displayed

\“/presented

differentials in the Adams spectral sequence

Ext}! (E*Y,E*X X,Y)E
E'E ( ) converges along the Adams spectral sequence [ ’ ]t—s
E3-page Eoo-page
In the second part, we focus on exploring methods of homotopy theory in algebraic
geometry with a theme of motivic power operations. However, algebraic geometry poses

some challenges for applying homotopy theory methods directly due to its richer structure
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and more complicated phenomena. To overcome these challenges, we use co-categories
to introduce the framework of motivic homotopy theory in Chapter 6. This is a variant of
classical homotopy theory that takes into account the arithmetic information encoded by
schemes. Motivic homotopy theory allows us to construct and study cohomology theories
for schemes that respect both their geometric and arithmetic features.

With this setup, we study norms in motivic homotopy theory following Bachmann-
Hoyois’s construction?! in Chapter 7. Norms are generalizations of norms for finite Galois
extensions and are the encapsulation of the coherence data in a multiplicative structure
which was elusive previously. Moreover, Bachmann and Hoyois defined the notion of
normed motivic spectra as an analog of a structured ring spectrum in classical homotopy
theory.

Recall that encoding coherence data is also the raison d’étre of E-structures and
H ,-structures in classical homotopy theory. The comparison between the classical ho-

motopy theory and motivic homotopy theory can be shown in the following diagram.

. presented as — presented as
Fin, ‘ intrinsic symmetry ‘ FEt
based finite-set morphisms finite étale morphisms

J{ parametrize encoded in parametrize J

4

encoded in . 1. . encoded in L.
E-structure +—— — multiplicative coherence data ———— motivic norm structure

[E-operad action |

|

take motivic colimits !

pass to homotopy |
|

s

H ,-structure motivic extended powers

[E-operad homotopy action |
!

|
Construction 4.13 Construction 8.12 :
|

v

power operations motivic power operations

In particular, it is effective to use the technique of spans to describe the coherence for
Fin, and FEt, see Appendix C in the joint work of Bachmann and Hoyois!?!. As a part
of the diagram, we show also how norms induce motivic power operations on motivic
spectra via motivic extended powers following Bachmann-Elmanto-Heller’s work! in
Chapter 8. We introduce how they define a notion of colimit for diagrams in a motivic
category indexed by a presheaf of spaces (e.g. an étale classifying space), and study the
basic properties of this construction. As a case study, it constructs the motivic analogs
of the classical extended and generalized powers, which refine the categorical versions of

these constructions as special cases. It also offers more computationally tractable models
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of these constructions using equivariant motivic homotopy theory.

Finally, we give a brief introduction to motivic cohomology and motivic Adams spec-
tral sequences in Chapter 9. Moreover, we discuss how to apply the methods in previous
chapters to motivic cohomology and motivic Adams spectral. Specifically, we focus on
three entry points:

¢ the multiplicative structure on motivic cohomology,

* the theory of motivic structured ring spectra,

* how to generalize motivic Adams spectral sequences following Bruner’s work
In particular, We hope that the diagram of Bruner’s work has a motivic version so that we

can gain more insights into the multiplicative coherence encoded by norms.
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CHAPTER 1 HISTORICAL BACKGROUND

In this chapter, we introduce some historical background of cohomology operations

and motivic homotopy with concrete examples.

1.1 Classification problems and homotopy theory

Classifying objects up to a specified equivalence relation is central to nearly all of
geometry and topology. Many beautiful theorems are solutions to particular classification
problems, such as the classification theorem of closed surfaces, or they are motivated by
classifications, such as partial solutions to the generalized Poincaré conjecture. Some of
the deepest results related to classification problems made essential use of the methods of
algebraic topology, translating geometric questions to computations with algebra.

Algebraic topology carries out such translations from a geometric problem into an
algebraic problem by taking invariants. The effective working of this type of methods
depends on the following two aspects:

* the associated algebraic problem captures the essential features of the geometric
problem;

* the associated algebraic problem is sufficiently simple to solve.

Actually, these two aspects are reciprocal to each other: the more geometric informa-
tion an algebraic problem encodes, the more difficult it is to solve. In this case, homotopy
theory plays a central role in reconciling these two aspects. The strategy of homotopy the-
ory to resolve a classification problem is to convert a task of classifying objects (spaces,
manifolds, etc.) into a task of classifying related (stable) homotopy classes. This method
works effectively because in the first place, with proper set-up, homotopy classes are able
to capture sufficient geometric features. Here are some examples.

Theorem 1.1 (Thom![*): Let G be a subgroup of GL(F, k) for F = R, C, or H. Suppose
X is an n-dimensional manifold. Then there is a bijection between the set of cobordism
classes of submanifolds of X with a G-structure (on their tangent bundle) and the set of

homotopy classes of continuous maps from X to a Thom space MG:

bijection
{G-cobordism classes in X} [X,MG]
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Theorem 1.2 (Pontryagin®l): There is a bijection between the set of cobordism
classes of framed k-dimensional submanifolds of R™** and the set of homotopy classes

of continuous maps between spheres:
bijection
{k-dimensional framed cobordism classes in R***} «—————= [S"tk 7]
Theorem 1.3 (Steenrod!8]): Given a topological group G, there is a bijection between
the set of isomorphic classes of principal G-bundles over a paracompact space X and the
set of homotopy classes of continuous maps from X to a classifying space BG:

bijection
{isomorphism classes of principal G-bundles on X} [X,BG]

These theorems demonstrate a general principle that classifying geometric objects
of a specific type is equivalent to classifying homotopy classes of maps to a correspond-
ing object. The homotopical structure of this “classifying object” largely determines the
classification in question.

In addition to the capability of homotopy classes to encode geometric information,
there are many tools to effectively address the associated algebraic problems with homo-
topy classes, making them easier to solve. The most significant ones are homological and

cohomological types of machinery with operations, which we discuss in the next section.

1.2 How cohomology operations work

The method of detecting homotopy classes by cohomology operations originated
from Steenrod’s work!”1. In this work, Steenrod constructed a device called cup-i prod-
ucts, for i = 1, as a higher-order analog of cup product to give some results on the
classification of homotopy classes of maps from an (n + 1)-dimensional complex to the
n-dimensional sphere. Specifically, Steenrod used cup-i products to derive a family of
cohomology operations called Steenrod squares on mod-2 cohomology. These are the
first examples of cohomology operations. From the 1950s to the 1960s, Steenrod devel-

8-111 " On the mod-p cohomology, these

oped the theory of such cohomology operations!
cohomology operations along with the Bockstein operations became known as Steenrod
operations. They were widely applied to solve various problems in topology and geom-
etry. For example, Borel and Serre proved that S2" for n > 4, do not admit an almost
complex structure!'?! . Around the same time, Thom solved the Steenrod problems of de-

termining when an integral or mod-2 homology class of a finite-dimensional polyhedron

5
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can be realized as a manifold.

In the previous examples, the crux is to exploit the actions of Steenrod operations
on cohomology rings. From this viewpoint, it is natural to use homological methods to
analyze these actions. Specifically, mod-p stable cohomology operations form an alge-
bra called the Steenrod algebra Ap. In the 1950s, Adem discovered a set of relations
in A, [13-141; Serre showed that Steenrod operations and their Adem relations fully de-
termine the algebra A, as generators and relations [151; Milnor showed the Hopf algebra

structure of Steenrod algebras and their duals!!®]

. In the same period, Adams invented
his famous spectral sequences!!”! to show the existence of Hopf elements in my,_; (S™)
and 14,_1(S?™) for n < 4. The significance of the Adams spectral sequences is to ex-
hibit how Steenrod operations detect homotopy classes and illustrate the extent to which
the information is detected. In particular, Greenlees explained how the Adams spectral
sequences “cure the blindness” of a cohomology theory in his enlightening article!!8!.

In the 1960s, the monograph by Steenrod and Epstein was published and it gives a
comprehensive introduction to cohomology operations!!!. Specifically, the authors pre-
sented a systematic method to construct power operations by using transfers and extended
powers. It is tempting to think of and desirable in practice that such power operations
be applicable to cohomology theories other than mod-p ordinary cohomology and this
systematic construction work more generally.

This is indeed the case. In fact, power operations on other generalized cohomol-
ogy theories led to even deeper results than their ordinary analogues did. For example,
Adams and Atiyah constructed power operations in K-theory, called the Adams opera-
tions?°. Equipped with these, Adams solved the problem of vector fields on spheres
completely?!l, obtaining stronger results than those in!??! with Steenrod squares. Adams
and Atiyah also presented an elegant solution to the Hopf invariant one problem!?*!, which
is conceptually much simpler than Adams’s proof using secondary cohomology operations

on ordinary cohomology [24]

(25]

. Besides K-theory, tom Dieck constructed power operations
in cobordism theory
ring MU*(X) is generated by @, MU' (X) as an MU* (pt)-module, and deduced his the-

orem on formal group laws that the complex cobordism ring is isomorphic to the Lazard

. Quillen then used these operations to show that the cobordism

ring[6!. As demonstrated above, the structure of cohomology operations is prevalent and
carries a wealth of information through various cohomology theories. For deeper inves-

tigations, we need a framework to conceptualize cohomology theories in order to exploit
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this intrinsic structure of power operations. In fact, stable homotopy theory serves as a

desired framework.

1.3 Cohomology theories and stable homotopy theory

In?’l, E.H. Brown showed that for each generalized cohomology theory h*, there
exists a sequence of spaces {E,} with structure maps &, : E, — QFE,,; such that
h™(Y) = [Y,E,] and the suspension isomorphisms are induced by the adjoint maps of
{e,}. These spaces with structure maps form a spectrum in the sense of?®! and we say h*
is represented by the spectrum E = {E,,, €,}. For example, ordinary cohomology theory
with coefficient ring R is represented by the Eilenberg-MacLane spectrum HR, complex
K-theory is represented by the K-theory spectrum KU, and G-cobordism theory is repre-
sented by the Thom spectrum MG for a classical group G ?°). In general, the representabil-
ity theorem indicates that the study of the generalized cohomology theories is equivalent
to the study of spectra, which are central objects in stable homotopy theory. Notably, the
manipulation of Steenrod operations can be simplified in the context of stable homotopy
theory. For example, Rudyak showed how to simplify Thom’s method using Steenrod op-

erations!* by an approach with stable homotopy theory 3!

. More applications of stable
homotopy theory are documented in May’s review (311

Here, we focus on how power operations are present at the level of spectra. Given
a cohomology theory E, its degree-n cohomology operations are natural transformations
from E* to E**". By the Yoneda lemma and Brown’s representability theorem, E*E =
[E, E]_. is the algebra of cohomology operations on E. If we take E = HIF,,, the mod-
p Steenrod algebra A,, = HIF,HF,. Recall that A, is generated by mod-p Steenrod
operations subject to Adem relations!!*!| and Steenrod operations are induced by extended
powers! !l Therefore, in order to study power operations in stable homotopy theory, we
need to define extended powers for spectra.

In the 1970s, May and his collaborators built a theory of multiplicative E,-structures

in spaces and spectra through a series of works 3234

. Furthermore, May demonstrated
that an [E,-structure produces power operations*>!. In particular, HR, KU, and Thom
spectra are all Eo,-spectral®*!, which illuminates why ordinary cohomology, complex K-
theory, and cobordism theory each possess power operations. Conversely, the existence of
power operations does not imply the existence of an E,-structure, which means that [E,-

structures may be too stringent for utilizing power operations. A more suitable structure
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to supply power operations is an H,-structure, a weaker notion than E,, which was intro-
duced by May in the 1980s!1. There, May used equivariant half-smash products to define
extended powers of ring spectra and then defined the notion of H,-structure in terms of
maps related to extended powers. Bruner showed that every H,-ring spectrum admits an
associated generalized Adams spectral sequence and explained how an H,-structure con-
verts cohomology operations into homotopy operations, which is the essence of Adams-
type spectral sequences. McClure analyzed the connection between H,-structures and
power operations and showed that the power operations in mod-p ordinary cohomology,
complex K-theory, and cobordism theory coincide with the respective operations derived

from H,-structures.

1.4 The homotopy theory of smooth schemes

Besides within topology, algebraic geometry is a field which makes extensive use of
cohomological methods. We would naturally expect that the model of homotopy theory
and cohomology operations can be modified in a suitable way so that they function well
in algebraic geometry. To achieve this, we need to address the following two questions:

* How can we carry out homotopy theory in a general setting beyond topology?

* Cohomology theories in algebraic geometry are defined by sheaves, while coho-
mology theories in algebraic topology are defined by spectra. How can we generalize the
homotopical framework to incorporate these two types of cohomology?

For the first question, Quillen built a framework called homotopical algebra, which
distills the essential features for working with homotopy theoretic tools in terms of ax-

iomatic properties possessed by a model category ¢!

. For the second question, K.S.
Brown used sheaves of spectra (or simplicial sets) to generalize sheaf cohomology, with
coeflicients in a complex of abelian sheaves. These set the stage for performing homotopy
theory in algebraic geometry that is compatible with cohomology theories.

In the 1990s, Morel and Voevodsky constructed Al-homotopy theory of schemes,

(37]

also called motivic homotopy theory'”’'. Under this framework, Voevodsky constructed

motivic power operations 8! and these operations led to an elegant solution of the Milnor

¢3! and the Bloch-Kato conjecture?! (the earlier proofs of these conjectures

conjectur
had been given by Voevodsky in the 1990s, but they were lengthy as the framework of
motivic homotopy theory had not been well developed at that time). Apart from the set-

tlement of these famous conjectures, the following are more evidences showing why Morel
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and Voevodsky’s approach is a reasonable and fruitful one.

As an analogue of Theorem 1.3, Morel !, Asok, Hoyois, and Wendt*?! proved
that given a smooth affine scheme X over a Noetherian commutative ring of a particular
class, isomorphic classes of rank-r algebraic vector bundles over X are in bijection with
Al-homotopy classes of maps from X to the infinite Grassmannian of r-planes.

As an analogue of Brown’s representability theorem from Section 1.3, Voevodsky
also constructed motivic stable homotopy theory to represent cohomology theories in al-

(431 For example, motivic cohomology theory (analogous to singular

gebraic geometry
cohomology theory) is represented by the motivic Eilenberg-MacLane spectrum HZ,, ¢,
algebraic K-theory (analogous to complex K-theory) is represented by K G L, and algebraic
cobordism theory (analogous to complex cobordism) is represented by MGL.

Moreover, motivic stable homotopy theory is deeply related to classical stable ho-
motopy theory. To be more concrete, let k be a field with an embedding k < C. There is

a realization functor
tc: SH (k) > SH

where SH (k) is the motivic stable homotopy category over k and SH is the classical

stable homotopy category. The striking coincidences are
HZg; —= HZ KGL —<3 KU MGL —<3 MU

The properties of the realization functor t¢ indicate that motivic (stable) homotopy theory
is an adequate version of (stable) homotopy theory in algebraic geometry. It is worth
noting that t¢ plays a central role in Voevodsky’s earlier unpublished proof of the Milnor

el*4! . Voevodsky proved a purely topological result on MU and HZ/£. He then

conjectur
applied the result and the realization functor t¢ to prove a motivic version of the result
on motivic cohomology and algebraic cobordism, which is essential to the proof of the
Milnor conjecture. Specifically, the proof of the topological results relies on the use of
the Steenrod algebra, while the proof of the motivic result relies on a motivic Steenrod
algebra and the realization functor t¢ which preserves the structure of these algebras. This
technique demonstrates the significance and efficacy of the methods of homotopy theory
in algebraic geometry via cohomology operations.

This profound connection between classical homotopy theory and motivic homotopy

theory has not only advanced the research in algebraic geometry and number theory, but

9
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also facilitated the study of classical stable homotopy theory. Isaksen and Dugger con-
structed motivic Adams spectral sequences in the 2010s and used them to improve the
computations of the classical stable stems!*!. More recently, the discovery of a deep re-
lationship between the motivic Adams spectral sequence and the algebraic Novikov spec-
tral sequence has led to great extensions of the computations to higher dimensions 4481
Central to this relationship is an element 7 in the mod-p cohomology of a point, which
serves as a parameter for a deformation between motivic and classical stable homotopy
categories. This element featured in Voevodsky’s computations with the motivic algebra

and its dual.

10
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CHAPTER 2 CATEGORICAL FRAMEWORK FOR
HOMOTOPY THEORY

In this chapter, we will introduce co-categories as the categorical framework for ho-
motopy theory. oo-categories are generalizations of ordinary categories that allow for
higher-dimensional morphisms and equivalences. In Section 2.1, we introduce how to
define oo-categories by using simplicial sets that satisfy the Kan condition, which is so-
called the model of quasi-categories. Meanwhile, we introduce an equivalent definition of
oo-categories using simplicial categories in Section 2.2. From the viewpoint of simplicial
categories, higher homotopies are parametrized by Kan complexes as the mapping spaces.
The positions of simplices and their faces in the mapping Kan complexes exhibit the co-
herence among the higher homotopies. The most intuitive illustration refers to Remark
4.2.

In Section 2.3, we introduce the notions of limits, colimits, and adjoint functors in
the context of co-categories. In particular, we focus on presentable co-categories and the

adjoint functor theorem in Section 2.4.

2.1 The theory of «-categories

Definition 2.1: Let n be a non-negative integer, then the datum of the category [n]
consists of

* The set of objects is {0, 1, 2, ..., n},

* The morphism is defined by

O k>j
Hom[n] (k,_]) =
=) k<)
Let A denote simplex category, the objects of simplex category are {[n]}, oy, (0} and

the morphisms are functors.

In other words, A is the category of finite ordinals and order-preserving maps.
Definition 2.2 (Simplicial objects): Given a category C, a simplicial object in C is a
contravariant functor from A to C. Morphisms between simplicial sets are natural trans-

formations. In particular, a simplicial set is an object in Fun(A°P, Set) and we denote the

11
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category Fun(A°P, Set) of simplicial sets by sSet.
Construction 2.3: The following are basic simplicial sets:
(1) For [n] € A, a simplicial set A,, defined by

An([m]) := Homy([m], [n])

is called the standard n-simplex. By Yoneda lemma, for any simplicial set X,, there is a

canonical isomorphism
HomsSet(Anl X) = Xn

where elements in X,, are called n-simplices of X.
(2) The boundary 04, is defined by

dA,([m]) := {f € Homua([m],[n]) | f is not surjective}
(3) For 0 < k < n, the kth n-horn A}, is defined by
k([m]) :={f € Homp([m], [n]) | f([m]) U {k} # [n]}

In particular, if 0 < k < n, the horn AY, is said to be an inner horn.
Remark 2.1: The Yoneda embedding A & sSet exhibits sSet as a cocompletion of the
simplex category A. Given any colimit-preserving functor Q : A — C targeted at a cocom-
plete category C (i.e. a cosimplicial object in C), one has a unique extension Q : sSet = C
of Q. This refers to the Yoneda extension or left Kan extension.

Definition 2.4: Given two simplicial sets X, Y, the simplicial set Map_,_ (X, Y) is de-
fined to be

Map, ., (X,Y), = Homgse (X X A™,Y)

In this way sSet is enriched by itself.
Proposition 2.1: Given three simplicial sets X, Y, Z, then we have

Homyg. (X X Y,Z) = Homgs. (X, Map(Y, 2))

Definition 2.5 (The nerve of category): Given a small category C, the simplicial set
N(C) defined by

N(C)r := Fun([n],C)

which is essentially the set of n-composable morphisms in C. The degeneracy map is given
by composition and the face map is given by adding an identity morphism. In particular,
N([n]) = A,.

12
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Proposition 2.2: The nerve functor N : Cat — sSet is fully faithful.
Proof: See!#1Tag 002z, n
Definition 2.6: A quasi-category or say (oo, 1)-category C is a simplicial set such that
every inner horn A} = C, 0 < k < n, can be extended to an n-simplex A" — C. Elements
in C, are objects in C and elements in C,, are called n-morphisms in C for n > 0. For
convenience, 1-morphisms are simply called morphisms in C. Two morphisms f,g: ¢ —
d are homotopic if there is a 2-simplex o : A?> —» € with boundary do? = (g, f,id). The
homotopy category hC of C is a category whose objects are elements in Cy and whose
morphisms are homotopy classes of C;.
Remark 2.2: The condition of quasi-categories ensures that the homotopy category of
a quasi-category is indeed a category. In particular, the composition law and associativity
can be displayed by filling inner horns.
Definition 2.7: A morphism f: x — y in an co-category C is an equivalence if [f] is
an isomorphism in hC.

In this paper, an (oo, 1)-category is simply called an co-category.
Definition 2.8: Functors between two co-categories C, D are morphisms between them
as simplicial sets.
Proposition 2.3: Let D be an co-category and C be a simplicial set, then mapping space
Map(C, D) is an oco-category. In this way, the category of co-categories is enriched by
itself.
Proof: See!4°1Tag 0066 |

Construction 2.9: The standard cosimplicial space |A*|: A = Top assigns
A" < (%0, %,) € RV | le- = 1and x; > 0 for all i
i

Then for any topological space X, we define the singular simplicial set of X as
Sing, (X) := Hom(|A*|, X)

and it forms a functor Sing, : Top — sSet. Furthermore, there exists a geometric realiza-

tion functor | — | : sSet — T op as an extension of |A*| such that we have the adjunction
| —|:sSet = Top:Sing,

Theorem 2.1: There exists a model structure on sSet such that
(1) cofibrations are monomorphisms between simplicial sets;

(2) weak equivalences are the morphisms whose geometric realization are weak

13
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equivalences of topological spaces;

(3) fibrations are the morphisms that have the right lifting property with respect
to all horn inclusions, which are so-called Kan fibrations.
Furthermore, the adjunction (| — |, Sing,) is a Quillen equivalence. This is the so-called
Quillen model for simplicial sets.
Definition 2.10: A Kan complex X is a simplicial set such that every horn A} — X,
0 < k < n, can be extended to an n-simplex A™ — X. In particular, Kan complexes are
exactly fibrant objects in Quillen’s model. The category of Kan complexes is denoted by
Kan.
Definition 2.11: An co-groupoid is a quasi-category whose morphisms are all isomor-
phisms in the homotopy category.

Proposition 2.4: An co-category is an co-groupoid if and only if it is a Kan complex.

2.2 Simplicial categories and c-categories

Definition 2.12 (Simplicial category): A simplicial category C, is a category en-
riched by simplicial sets. The corresponding enriched functors are simplicial functors.
The category of simplicial categories is denoted by sCat.

Definition 2.13: Given a simplicial category C., morphisms f, g € Hom¢_ (X,Y), are
homotopic if there is an 1-simplices in Hom¢_ (X, Y),; whose boundary is f and g. Hence
we can define the homotopy category Ho(C,) by quotient the homotopy relation.
Construction 2.14 (Simplicial resolution): First we define the simplicial category
C (A™) associated to [n] by

o NP;;, i<},
MaPC[An] @)= o
@, i>].
where P;; := {I c {i,i +1,..,j — 1,j} | i,j € I} is a poset ordered by inclusion (as
a category). Then it forms a cosimplicial object C[A"] in sCat. Furthermore, by using

Yoneda extension, there is an adjunction
C[—]:sSet = sCat: Ny

where N, is called the homotopy coherent nerve functor and C is called simplicial thick-
ening.
Definition 2.15: A simplicial functor F : C — D is a weak equivalence if

(1) the induced functor myF : myC — 1D is essentially surjective;

14
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(2) for any objects x,y € C, the induced map Map.(x,y) = Map,, (Fx,Fy)isa
weak equivalence of simplicial sets.
which is also called a Dwyer-Kan equivalence.
These two conditions mean that a Dwyer-Kan equivalence is homotopically essen-
tially surjective and homotopically fully faithful.
Theorem 2.2: There exists a left proper combinatorial model structure on sCat such that
(1) the Dwyer-Kan equivalences are weak equivalences;
(2) asimplicial category is fibrant if and only if all simplicial mapping spaces are
Kan complexes (which is so-called a locally fibrant simplicial category).
This refers to the Bergner model structure.
Definition 2.16: A morphism f: X — Y of simplicial sets is a categorical equivalence
if the induced simplicial functor C[f]: C[X] — C[Y] is a Dwyer-Kan equivalence.
Theorem 2.3: The exists a left proper combinatorial model structure on sSet such that
(1) cofibrations are monomorphisms;
(2) weak equivalences are categorical equivalences;
(3) fibrations are the morphisms that have the right lifting property with respect
to all inner horn inclusions, which are so-called inner fibrations.
This model structure refers to the Joyal model structure. In particular, fibrant objects in
this model category are exactly co-categories.
Theorem 2.4: The adjunction C[—]:sSet = sCat: N, is Quillen equivalence between
the Joyal model structure and the Bergner model structure.
This theorem tells us that an co-category is equivalent to a K an-enriched category
and vice versa.
Definition 2.17: The co-category of spaces S is Ny(Kan).
Definition 2.18: A marked simplicial set is a pair (X,Ex) where X is a simplicial set
X and £y < X; contains the degenerate ones. A morphism of marked simplicial sets
(X,Ex) — (Y, Ey) means a morphism of simplicial sets f : X — such that f(Ex) C &y.
The category of marked simplicial sets is denoted by sSet™.
For any oco-category C, it gives us a marked simplicial set ' by marking equiva-
lences. The oo-category of (small) co-categories Caty, is the homotopy coherent nerve of
the full simplicial subcategory of sSett of the marked simplicial sets of the C for some

co-category C. The oo-category of locally small co-categories is denoted by Cat,,.

15
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2.3 Categorical constructions for co-categories

Definition 2.19: Let K and L be two simplicial sets. The join K * L of K and L is the
simplicial set defined by
(K% L), =K, ULy, U U Kix L, n>0
i+1+j=n

Roughly speaking, the vertices of K x L are the union of vertices in K and L. The
edges of K * L consist of the union of edges in K and L separately plus extra edges from
x to y for each (x,y) € (Ky X Ly).

Actually, the join construction is a functor *: sSet X sSet — sSet. In particular, we
have canonical inclusions K > K x Land L — K * L.
Proposition 2.5: Forany i,j > 0, we have Al x A/ = A"+ A]l these isomorphisms
are compatible with obvious inclusions of A? and A/.
Construction 2.20 (Slice simplicial sets): Let f: K — X be a morphism of simpli-
cial sets. The slice simplicial set X ;¢ of X over f is defined by setting:

* Ann-simplex of X is a map of simplicial sets f: A" *K — X such that f|x = f.

* For any order-preserving map a : [m] -, the associated map on X ¢ is given by
the composite

A g K Ak D x

Construction 2.21 (Coslice simplicial sets): Let f : K — X be a morphism of
simplicial sets. The coslice simplicial set X¢, of X under f is defined by setting:
* An n-simplex of X, is a map of simplicial sets f: KxA" - X such that f|, = f.
* For any order-preserving map a : [m] —, the associated map on X¢, is given by
the composite

Kxam 2 e Ly

Proposition 2.6: Let K be a simplicial set, let C be an co-category, and letp: K — C
be a diagram. Then the simplicial sets C,,, and C, are oo-categories.

Proof: See!#ITag018F, ]
Example 2.1: Let C be an oo-category with an object x, characterized by a functor k, :
A° - C. Then the co-category C /ic,, 18 called the over co-category above x and we may
denote it by C/, simply. Dually, C;_, is defined as the co-category of objects under x and
is simply denoted by Cy, .

Definition 2.22: Given an co-category C, an object x € C is said to be a final object, if
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the canonical map €/, — C is an acyclic fibration of simplicial sets. Dually, x is an initial
object, if the canonical map C,, — C is an acyclic fibration of simplicial sets.
Proposition 2.7: Given an co-category C and an object x, x is final if and only if for all
x' € C, the mapping spaces Map,(x’, x) are acyclic Kan complexes. Dually, x is initial
if and only if for all x" € C, the mapping spaces Map,(x, x") are acyclic Kan complexes.
Definition 2.23: Let K be a simplicial set and let C be an co-category. An initial object
in G is said to be colimit of a diagram p: K — C. Dually, a limit of p is a final object in
Crp-

Definition 2.24: An co-category C is cocomplete (resp. complete) if C admits a colimit
(resp. limit) for any diagram p: K — C.

Adjoint functors are very important tools in ordinary category theory and they can
be characterized in terms of natural transformations called units and counits. Next, we
will define adjoint functors for co-categories following this formulation. Recall that if for
two co-categories C, D, Fun(C, D) also forms an co-category and natural transformations
between functors of o-categories are morphisms in Fun(C, D).

Definition 2.25: Let F: C - D and G: D — C be functors of co-categories. Given a
pair of natural transformations n: ide = Go Fand €: F o G = idp, we say (1, €) are
compatible up to homotopy if the following conditions are satisfied:

(1) F =Foide Leen, FoGoF £, idp o F = F is the identity isomorphism
idg.

(2) G=idpoG 2o, GoFoG M, G o idp = G is the identity isomorphism
idg.
Definition 2.26: Let F: C —» D and G: D — C be functors of co-categories. (F,G) is
a pair of adjunctions if there exits a pair of natural transformations (n: ide = G o F, €:
F o G — idp) that is compatible up to homotopy. Here 7 is the unit of the adjunction and
€ is the counit of the adjunction. We say that F is a left adjoint of G, G is a right adjoint
of F, and denote them by

F:C=D:G

Proposition 2.8: Given a pair of adjunctions F :C = D: G for co-categories, by taking
homotopy categories, (hF,hG) : hC = hD forms a pair of adjunctions for ordinary

categories.
Proof: [491Tag 2EY ]

Proposition 2.9: Let G: D — C be a functor between co-categories. G admits a left
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adjoint functor if and only if for any X € C, there exists an object Y € D with a morphism
X556 (Y) such that for any Z € D, the following composite is a homotopy equivalence

between Kan complexes
G o
Map,, (Y, Z) — Map,(G(Y), G(Z)) — Map, (X, Z)

Proof: Seel#!Tag 02EV, m
Proposition 2.10: Let F:C = D:G be a pair of adjunctions for co-categories. Then F

preserves colimits and G preserves limits.

Proof: See!*91Tag 02KE n

2.4 Presentable «-categories and the adjoint functor theorem

Definition 2.27: Let C be an co-category and k be a cardinal. A C is said to be k-
accessible if C admits k-filtered colimits and there is a small subcategory D such that
(1) For any object ¢ in C, we can canonically write ¢ = colimg F, where F: K —
D is a k-filtered diagram in D.
(2) For each d € D, the associated functor Map.(d,—) : C — sSet preserves
k-filtered colimits.

The idea is that an accessible co-category is essentially determined by a small sub-

category. Roughly speaking, the first condition is about the generation of objects and the
second condition is about the generation of morphisms.
Definition 2.28: An co-category is presentable if it is accessible and admits any small
colimits. Let Pr c Cat,, be the subcategory of presentable co-categories and left adjoint
functors. Similarly, PR is the subcategory presentable co-categories and right adjoint
functors.

Definition 2.29 (Simplicial presheaves): Given a small simplicial set K, we define
P(K) := Fun(K,S)

which is called the co-category of simplicial presheaves on K.
Construction 2.30 (Yoneda embedding for co-categories): Given an co-category

C, we construct the Yoneda embedding
y:€—->P(©)
by setting

X MapC[C] (=, x)
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where C[C] is the associated simplicial category of C. Since C is an co-category, C[C] is
locally fibrant i.e. enriched by K an. Generally, it can be defined for any simplicial set by
using Kan’s functor sSet — Kan.

Given two oco-categories A and B, we denote by
Fun"(A, B) € Fun(A, B)

the full subcategory spanned by the functors preserving colimits. Then the image of
Fun(P(A),B) in Fun(A, B) along the Yoneda embedding is exactly Fun" (A, B).
Theorem 2.5 (Adjoint Functor Theorem): A functor between presentable oo-
categories is a left adjoint if and only if it preserves colimits. It is a right adjoint if and
only if it preserves limits and is accessible.

Definition 2.31: If A functor between two oco-categories admits a fully faithful right
adjoint, then it is called a localization.

There is another way to perform localization. Let M Cat,, be the co-category of
marked” co-categories i.e. pairs (C, W) where C is a co-category and W is a collection of
equivalence classes of arrows in C that contains all the degenerate maps
Theorem 2.6: [OIProposition 55.1.1 Ay oo_category € is presentable if and only if there is

a small co-category D such that C is an accessible, localization of P (D).
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CHAPTER3 HOMOTOPICAL ALGEBRA VIA HIGHER
CATEGORIES

This chapter introduces homotopical algebra via higher categories, which is a method
to study homotopy theory using higher categorical structures. The chapter consists of four
sections:

 The first section reviews the Grothendieck construction in co-categories, which is
a way to associate an oo-category to a functor from an oo-category to the oco-category
of co-categories. This construction allows one to study fibrations and cofibrations in co-
categories.

* The second section shows how to use the Grothendieck construction to construct
symmetric monoidal co-categories, which are co-categories equipped with a tensor prod-
uct that satisfies certain coherence conditions. We show that every symmetric monoidal
infinity category can be obtained as a Grothendieck construction applied to a suitable
functor.

* The third section discusses stable infinity categories and their symmetric monoidal
structure. Stable co-categories are co-categories that have finite limits and colimits and sat-
isfy a triangulated axiom. They are important for studying derived categories and spectra.
We show that every stable infinity category has a canonical symmetric monoidal structure
given by its tensor product.

» The fourth section explains some results from Robalo’s thesis'>!! on formal inver-
sion and stabilization. Formal inversion is a process that allows one to invert some objects
with respect to the tensor product for a symmetric monoidal co-category. Stabilization is
a process to realize a formal inversion concretely. This technique will be used to construct

the motivic stable homotopy category in Section 6.2.

3.1 Grothendieck constructions for fibered categories

Definition 3.1: Let p : C — D be a functor between co-categories. A morphism f :
c1 = ¢, in C is p-cocartesian or a p-cocartesian lift of a = p(f) if the following map is

an equivalence between co-categories

Cr/ = Cey) XDpery Doy
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where Cf/ = (Ccl/)f/ and Dp(f)/ = (Ddl/)p(f)/ Dually, f is p-cartesian if the induced

functor

Crr = Crey XDpieryy Proer)

is an equivalence between co-categories.

Remark 3.1 (The Grothendieck construction for ordinary categories): Given
afunctorp: C —» D, wesay f : ¢; = ¢, in C is p-cocartesian if for any c; € C with
h:c; - c3inC, letd; := p(c;),a = p(f):dy = d,, p(h) =y:d; = ds3, and any
B:d, = ds such that f o @ = f3, there is a unique g: ¢, = c3 such that § = p(g) and
h=gof.

€1 # C2

Alg

Vh

dy —— d;

In other words, f is p-cocartesian if the following diagram is a cartesian diagram

f*
Map,(¢z, ¢3) ————— Map;(cy, ¢3)

p
i p(f)] \LP
Map,, (p(c2), p(c3)) — Mapy(p(c1), p(c3))

This diagram means that Cr, - C., Dy, is an isomorphism and reveals the

XDp(ey)/
insight of the co-categorical definition. Next we demonstrate why we need such lifting

property.

Note that if f': ¢ - ¢" and f" : ¢ — ¢" are two p-cocartesian arrows with the
same target p(f') = p(f"), there is a unique isomorphism ¢: ¢ = ¢” in Cp .1y such that
bof =f"

If p: C —» D has the property that for all ¢; € € and all morphism « in D, we can

lift & to a p-cocartesian morphism f: ¢; = ¢,

p(c1) # p(c2)
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then we cam assign each ¢ € C and a: p(c) = d a p-cocartesian lift. For a: d; — d,,

let f: c; = ¢, be a p-cocartesian lift of a: p(c;) = d,, we have a functor
a:Cq, 2 Cq,, 1P 0

which sends ¢, : ¢c; = ¢ to ¢, ¢; = ¢5 in the following diagram

®1
! n n
1 > > 5
AP, X
7
//
P c p
D 2
a
dy p > d,

Since the functor depends on the choice of lifting, 5, o a; # (f © @), in general. Never-
theless, there is a unique isomorphism S o a; = (f o a),. This is related to the notion of
pseudo-functors in the context of ordinary categories. However, since the co-categorical
framework carries homotopy coherence naturally, we do not deal with this subtle issue of
the choice of liftings.

Theorem 3.1; D0ITheorem3.2.0.1 There s an equivalence
Fun(C, Cat,,) — Carte

where Carte C Cat,, Jc is the subcategory of cartesian fibrations over C whose morphisms
are functors preserving cartesian fibrations. This equivalence is called the unstraightening

functor. Dually, we have
Fun(C, Caty,) = coCarte

where coCarte C Cat,, /¢ s the subcategory of cocartesian fibrations over C whose mor-
phisms are functors preserving cocartesian fibrations.
Remark 3.2: Given a functor F : C% — Cat,,, we construct a new category [ F that is
informally described as follows

* The objects are pairs (¢, X) where ¢ € C and X € F(X);

* Given two objects (¢, X), (¢’,X") € [ F,anarrow (¢, X) — (c’,X") is apair (f, @),
where f: ¢ = ¢’ is a morphism in the category and a : ¢ = F(f)c’ is a morphism in
F(c).”

The corresponding cartesian fibration is given by the natural projection [ F - C, (¢, X) -
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c. This construction is called the Grothendieck construction.

3.2 Symmetric monoidal «o-categories

Let Fin, be the category of pointed finite sets. We specify a finite pointed set of
cardinality n by setting

(‘I’l) = {0' 1, 'n}

whose pointed point is 0. We denote (n)’ the non-pointed part of {m) i.e (m) \ {0}. Note
that one should distinguish (n) and [n] since [n] is ordered while (n) is not. We just use
these integers to mark elements and ignore their orders.

Definition 3.2: A symmetric monoidal co-category is a cocartesian fibration q: D® —

N(Fin,) such that

n

Diny R H DY)

i=1

is an equivalence, where §; : (n) = (1) is defined by

sp={ 7"

0 j+i
This condition is called the Segal condition. A symmetric monoidal functor between
q: D® - N(Fin,) andp: C® - N(Fin,) is a morphism in coCarty(rin,)-
Example 3.1: Suppose D is an co-category that admits finite products. We define an
associated co-category D whose objects are finite sequences (X4, -+, X;,) and a morphism
from (Xq, -, Xy) to (Yy,:++,Y) is given by (&, {f;};), where a: (k) = (n) in Fin, and
fi: 1_[ Xi-Y,i=1,k
jea=t(d)

Higher morphisms (i.e. n-simplices for n > 1) in D* are given by higher morphisms in

N(Fin,). The desired cocartesian fibration D* — N(Fin,) is given by
Xy, Xn) = (n)

Actually, for a symmetric monoidal (ordinary) category M, the symmetric monoidal co-
category structure for N(M') can be given in an analogous way. The associated category
D* refers to the notion of multicategories, which is closely related to operads 2231

Remark 3.3: Given a symmetric monoidal oo category p: M'® — N(Fin,), the source

of the cocartesian category is not the actual underlying co-category according to Example
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3.1. The actual underlying co-category is closer to M = M g’) and the tensor product is

given by
2 ~ @ Q@ _
XR:M =My > Mg =M

which is induced by the map (2) — (1) sending 1,2 to 1.

Definition 3.3: A symmetric monoidal co-category p : M® — N(Fin,) is a pre-
sentable symmetric monoidal co-category if the underlying category M’ = M % is pre-
sentable and any choice of tensor product bifunctor & : M' XM — M preserving colimits
in each variable.

Definition 3.4: A morphism @ : (n) — (m) is inert if for any i € (m)’, the preimage
a~1(i) c (n) is a singleton. « is active if @1(j)  (n) is a singleton for each point
Jj €(n).

Definition 3.5: Given a symmetric monoidal co-category p : M® — N(Fin),, a
commutative algebra object of C is a section s : N(Fin), — M® sending inert mor-
phisms to cocartesian morphisms. Let CAlg(C®) c F uny(rin,) (N (Fin,), C®) be the
oo-categories of commutative algebras.

Example 3.2: Note that Cat,, admits finite products and by Example 3.1, Cat}, forms a
symmetric monoidal co-category. Then CAlg(CatZ,) is exactly the co-category of (small)
symmetric monoidal co-categories. Similarly, éﬁt; is a symmetric monoidal co-category.
Theorem 3.2: Let C,D be two presentable oo-categories. Let FunR(D,C) c
Fun(D°P, C) be the full subcategory of right adjoint functors. Then FunR(DP,C) is a

presentable co-category, and FunR (D°P, C) corepresents the functor
Funkt(€x,D,—) € Fun(C x D, —): Pr - Cat,

where Funt(Cx, D, &) is the subcategory of functors preserving colimits in each vari-

able.
Proof: [54]Lemma 4.8.1.16,Proposition 4.8.1.17 .

Therefore, we may take
C ® D = FunR(D, C)

as the tensor product between two presentable co-categories and thus Pr" forms a sym-
metric monoidal co-category Prl.

Theorem 3.3: Let P: C » P(C) be the functor of taking presheaves. Then

P —~®
CatX — Pr- - Caty,
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is a symmetric monoidal functor.

Proof: See!3#1Corollary .

3.3 Stable «-categories and their tensor products

Definition 3.6: Given an oco-category C, an object 0 € C is said to be a zero object if it
is both initial and final. If C admits a zero object, it is said to be a pointed co-category.
Definition 3.7: Let C be a pointed oo-category with zero object 0. A triangle is a com-
mutative square A X Al - C.

a—LsB

Lok

00— C
A triangle is left exact (resp. right exact) if the square is a cartesian (resp. cocartesian).
We say a triangle is exact if it is both left exact and right exact.

The limits and colimits in co-categories should be understood as kinds of homotopy

limits and colimits. We may compute them by transporting them in a simplicial category
and invoking two-sided (co)bar constructions. For example, the push-out of the following

diagram in S,

A—— 0

!

0
is XA. Dually, the pull-back for the diagram

0
!
0 —— B

is QB. Therefore a triangle of the following form

A——> 0

Lol

00— 8B
is left exact (resp. right exact) if and only if A = QB (XA = B). To generalize this idea,
we have the following definition
Definition 3.8: Given a pointed category C with zero object 0 that admits finite limits
and colimits, we define £z : C — C by sending X € C to the colimit of the following
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diagram
X——0
0
Similarly, we define Qz: C = C by sending Y to the limit of the following diagram
0
0 — Y

Proposition 3.1: Let C be a pointed co-category. The following statements are equiv-
alent

(1) C is stable.

(2) C admits finite colimits and X: C — C is an equivalence;

(3) Q¢: C — Cis an equivalence.
Definition 3.9: Let " c S, be the full subcategory generated by points with finite col-
imits. A functor F: $" = € is said to be excisive (resp. reduced) if F sends cocartesian

squares to cartesian squares (resp. sends initial objects to final objects). We denote
Exc, (S fin @ )

the full subcategory of reduced and excisive functors.

Remark 3.4: Actually, for any pointed co-category D that admits finite colimits, we can
define excisive or reduced property for any functor D — C in the same way. Note that Sfi»
is the initial one in pointed oco-categories with finite colimits. Therefore, we can expect
some universal property for Exc, (Sf", €).

Definition 3.10: Let C be an co-category that admits finite limits. The oo-categories

Sp(C) of spectrum objects in C is defined as
Sp(C) = Exc, (s, ¢)

If C = ., we just simply denote it by Sp and call it the co-category of spectra.
Proposition 3.2; [34IProposition 1.42.16 T ot © be an co-category that admits finite limits.
The oo-category Sp(C) of spectrum objects in C is stable.

Proposition 3.3: D#Remark 142257 ot @ be an oco-category that admits finite limits. The

functor

Q¢ Qe

. Q
Sp(C) = Exc, (S, €) - lim{-+ — € —> € — C}

26



CHAPTER 3 HOMOTOPICAL ALGEBRA VIA HIGHER CATEGORIES

induced by evaluation on spheres is an equivalence of co-categories. Therefore we may
also call Sp(C) the stabilization of C.

Remark 3.5: The idea of stabilization occurred very early, see!>1Section 12

. Howeyver,
there was no homotopy theory for homotopical categories or even categories. More specif-
ically, there was no framework to tell us what homotopy limits for diagrams in the category
of small categories are at that time. From this point of view, we are further convinced that
the higher categorical theory is meaningful.

Remark 3.6: By taking adjunction, we may write

b ) b
Sp = colim{S, = S, = S, — -}

in Prl.

Proposition 3.4: [#Proposition 1444 1£ ¢ 5 3 presentable oo-category, then so is Sp(C).
Corollary 3.1: The functor Sp(€) — C that evaluates at §° preserves limits. Thus it
admits a left adjoint £*°: C —» Sp(C) by using Theorem 2.5.

Proposition 3.5: [#Corollary 1445 Eor any two presentable oo-categories € and D, if D

is stable, then
—oY®
Fun“(Sp(C), D) —— Fun"(C,D)

is an equivalence.
Proposition 3.6: For every stable
Proposition 3.7: [S0IProposition 5.25 1 e Prl- be the co-category of stable presentable co-
categories with left adjoint functors. ?r];t admits a closed symmetric monoidal structure
such that

(1) Sp is the monoidal unit.

(2) The tensor product C; & C, is given by FunR(C3¥, C,).

(3) The internal hom of Dy, D, € Pr, is given by Fun"(D;, D,).
The oo-category of presentable stable symmetric monoidal co-categories can be given by
CAlg(Prs,).
Corollary 3.2: Given a presentable co-category C, its stabilization (€) can be given by
C @ Sp. In this way, we can define smash product for Sp(C)

(CRSP) X (RSP > (CRC)RD(SpRSp) > C RSP

where the tensor product is in the symmetric monoidal structure for Prl.
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3.4 Generalized stabilization with universal characterization

Definition 3.11: Let C be a symmetric monoidal co-category with tensor product ).
An object X € C is invertible if the functor X @ —: C — C is an equivalence.
Theorem 3.4: [1IProposition2.9 1 ot ¢ € CAlg(Prl), and let X € C. There exists a pre-

sentable symmetric monoidal co-category C[X 1] with
I¥:C - C[X71]
in CAlg(P1%) such that for any D € CAlg(P1"), the composition
L -1 °ZX L
CAlg(Pr-)(C[X~'],D) — CAlg(Pr-)(C,D)

is a fully faithful embedding and its essential image is the full subcategory of functors
sending X to an invertible object in D. This is called formal inversion of C with respect to
X.

Theorem 3.5: Let C be a presentable symmetric monoidal category and let X € C. The

stabilization with respect to X is defined to be

. X®- X®-
Staby (€C) := colim{C —— C —— -}

If the cyclic permutation action on X @ X ® X is homotopic to an identity map by applying
X @ — several times, then the Staby (C) admits a canonical symmetric monoidal structure

and Staby (C) =~ C[X1].
Proof: See![511Theorem 2.14, Corollary 2.22 .

Example 3.3: The oo-category of pointed spaces S, admits a symmetric monoidal struc-

ture by considering the smash product. Then we have
Sp=S.[(SH™]

The motivation for topologists to consider the “negative circle” is about the Alexander

duality, the Freudenthal suspension theorem and the Bott periodicity theorem, see>’!.
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CHAPTER 4 POWER OPERATIONS FOR
STRUCTURED ALGEBRAS

This chapter aims to study how we construct power operations and more general

Steenrod operations from various multiplicative structures with homotopy coherence.

4.1 Algebraic formalism for Steenrod operations

This section mainly refers to May’s algebraic approach to Steenrod operations>>!.

Let R be a commutative ring with a unit 1, p be a prime number, and r be a natural
number. Let G € X, be a subgroup and C,, < ¥, be the p-Sylow subgroup. Let V be a free
R[Z,] resolution of R, W be a free R[G]-resolution of R and j: W — V be an inclusion
induced by G C X,. In particular, if G = C,, then we let W be the Tate resolution of R.
Let R[C,] = R[T]/(TP), where T can be identified as (12 ---p) € Z,, that generates C,,
the Tate resolution W is defined to be

W; = R[Cpl{e;}, d(ez) = (1 —T)ey_q, d(ezig) =A+T+ -+ TP 1)ey;

We have the following standard result by computing group cohomology of €}, with

coefficient IF,,.
Theorem 4.1: The group cohomology algebra is given by

H*(Cy, Fp) = Iy, x| =1,

H*(Cp, Fp) = Ap, [x] ®IF,, Fylyl, |x| = 1]yl =2, pisanoddprime
where AIFp means the exterior algebra over FF,,.
Construction 4.1: Given a Z-graded homotopy associated and commutative differen-
tial R-algebra K, we let X, act on K" by permuting factors and let £, act on K trivially.
Definition 4.2: The category C(G, R) of G-structured R-algebras consists of the follow-
ing data:

* Objects: A pair (K, 0) where K is a Z-graded homotopy associated and commu-
tative differential R-algebra and 6 : W @ K" — K is a R[G]-equivariant morphisms of
complexes such that

(1) 6(eg Qrx1 Qg Qr X)) = X1 *+* Xy
(2) There exists R[X,]-morphism ¢: VR K" = K suchthat 0 ~ ¢po(jQpid)
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via a chain homotopy.
e Morphisms: (K, 8) ER (K, 0") is a morphism of R-complexes such that the follow-

ing diagram commutes up to G-equivariant chain homotopy

1Qf" \Lf
WK™ —2 K
The tensor product (K,0) ® (K',0") is defined to be (K ®; K',8), where 8 is
defined to be the following composition

RTXid 00!

WRrK®QK) 228 W@, W ®, K" @ K™Y @, K Qe W QiK' 22 Kk @, K’
where Y : W - W ®pr W is a R[G]-homomorphism covering R = R @z R, o is the
shuffle permutation, and 7 is the transposition.

Construction 4.3: For any (K, ) € C(Cp, F,),
6.: H.(W ®c, KP) > H.(K)
encodes all the data to define the mod-p total Steenrod operation for H,(K). Let x €
H,(K) be a homology class represented by u € K. We set
Di(x) = 6.(e; @ uP) € Hpq1i(X)
In the case of p = 2, we define the algebraic Steenrod squares
0 s<q
Sqy: Ho(K) = Hys(K), x
Dg_q(x) s>q
In the case of an odd prime p, we define algebraic Steenrod operations

0 2s <q

Pg: Hq(K) - Hq+25(p—1)(K)' x = s
—D°v(@)Ds—1yp-1)(x) 2s =q

and
0 25 <q
(—D*v(@)Dzs-1yp-1)-1(x) 2s =¢q
where v(n) = (=1)/(mD¢forn =2j+ eandm = (p — 1)/2.

BPs: Hq(K) - Hq+25(p—1)—1(K)r X =
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In the cohomological setting
Ki:=K_;
Sq’:=Sq,: H1(K) » H1*S(X)
PS:=P_ : H1(K) —» HI*t25®-1)(K)
BP*:=fP_g: HI(K) > HT*#PU*(K)
Theorem 4.2: The algebraic Steenrod operations Sq, P and SP have the following prop-
erties
(1) For any x € H1(K), we have that
*In the case of p = 2, Sq?(x) = x? and Sq"* (x) = 0 forn > q.
*In the case of an odd prime p, PS(x) = xP if 2s = q, and P°(X) =
BP(x) = 0if 25 > q.
(2) Let B be the Bockstein operation. Then Sq1 = [ in the case of p = 2 and
PP = [ o P exactly in the case of an odd prime p.
Proof: See![33Proposition 2.3, Proposition 2.4, Proposition 2.5 n
Definition 4.4: A Cartan object in C(G, R) is an object (K, 0) € C(G, R) such that the
product K @ K — K can be extended to (K,0) ® (K,0) — (K, 0).
Theorem 4.3: BSIProposition 26 7 ¢ (K, 6) and (K',8") be two objects in C(Cp, F,), and
let (x,x") € H1(K) x H"(K"). If p = 2,
ST @)= ) Sd(®) @S,
i+j=r
If p is an odd prime, then
PP(x®x") = Z Pi(x) @ P/ (x),
i+j=r
and
P @x)= Y P ®PI(x) + (-)IP(x) ® BPI(x)
i+j=r
These formulas are called Cartan formulas.
Corollary 4.1; [35ICorollary 27 1¢ (g 9 is a Cartan object, then we have the internal Car-
tan formulas i.e. we may replace the tensor product by the multiplication on K.
Remark 4.1: Let U be a R[Z,2]-resolution of R and let H = C,, ¢ C,, © X2 be the p-
Sylow subgroup. Note that H = €}, ¢ C, acts on W @ WP “diagonally”, where one of C,
acts naturally on W and the other C,, acts on W? by permuting factors. Letw: W QWP —
U be a R[H ]-homormophism extending the identity R — R. Then the following homotopy
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commutative diagram demonstrates the Adem relations.

2 wQygkid

(W Qg WP) @ KP* — U Qg K**
x
shuffle K

e
1Q, 6P

WQr (W Qg KP)P —— W Qg K?

4.2 Application: power operations on the mod p cohomology of
spaces

The main goal of this section is to illustrate that given a CW-complex (or a simplicial
complex) X, how we can modify C*(X, IF) to make it an object in C(Cp, Fp,).

LetA: X — X™ be the diagonal map. Note that there is no cellular approximation (or
simplicial approximation) of A that is X,,-equivariant. Here we let £,,, act on X trivially
and act on X™ by permuting factors. We expect to construct a map ¢ : EX,, X X —
X™ such that ¢ is both X,,-equivariant and cellular (or simplicial). This map should be
regarded as an enhanced diagonal map. Since we require it to be cellular or simplicial, we
can manipulate it on the level of chain complexes. Steenrod used the trick of acyclic carrier

to show the existence of such a map!®3!

. Now we show some insight of the enhanced
diagonal map.

Before we start to construct this map, we need to specify a model of EG. First, we
consider the Milnor model for the universal bundle EG [*°! using join construction. Recall

that the join between two spaces X, Y is
X+xY={ax+by|x€X, ye€Y, abe[0,1], a+b =1}

and its topology is given by some induced topology. In Milnor’s construction, EG =
G x G * G * --- with N-copies. The A-complex structure of EG is given by

* n-simplicies are marked by ordered (n + 1)-tuples [go, :**, gn] With g; € G;

* For 0 < i < n, the i-th face of [gg,***, gnl is [go, ***» Ji» ***» Gnl
Another interpretation for E G is taking it as the geometric realization of E,G where E,,G =
G geel3N

Then by taking simplicial approximation for A, we have a simplicial map A’X — X™,
even though A’ is not X,,,-equivariant. Nevertheless, we claim that for any g € X,,, there is

chain homotopy from gA’ to A’. Actually, this homotopy exists if we applying the acyclic

32



CHAPTER 4 POWER OPERATIONS FOR STRUCTURED ALGEBRAS

carrier theorem (see Appendix A. Theorem A.1) for the carrier C(o) = ¢™ for each
simplex g P81Section2 “Qince gA” ~ gA = A =~ A’, for any go, g; € G, there is a homotopy

from goD, to g1 Dy, and we write the homotopy by

h9091

XX - X™
Then we can define
Cr*Zp)xX — XM
(tgo+ (1 =8)g1,x) +— hgyq, (x,1 1)
In other words, we let [gg, g1] X X = X™ parameterize the homotopy hg, 4, . In this way,

we have construct (EZ,,); X X = X™. For a 2-simplex [go, g1, g2] of EZ,,, we can see
92

02 hl

Yo hoq 91

[go,91] parameterize hoy = hg 4. god' = g 4’

[g1,92] parameterize hy; = hg g4, g14" = g A

[go, g2] parameterize ho, = hg, g, god = g4’
Note that the join of homotopies hy; * hy, is from goD, to g,Dy. Since both hyq * hqy
and hg, are carried by C, the equivariant acyclic carrier theorem promises a homotopy
H: X XIXI— X™from hy, * hyy to hy,. We let the 2-simplex [gg, g1, 93] parametrize
this 2-homotopy H. Inductively using the trick of acyclic carrier theorem, we construct a

¢p:EX,, XX > X"

Note that X,,, acts on EX,, freely by left action. Let ¥, acts on EZ,,, X X diagonally. Then
we can see ¢ is G-equivariant according to our construction. By taking the simplicial

chain complexes with coefficient IF,, and using the Eilenberg-Zilber theorem, we have
¢.: C.(EZp; Fp) ® Cu(X; Fp) — Co(X; Fp)™

Furthermore, we can replace X, by any transitive subgroup ¢ C X,, to give a similar

construction for EG X X — X™. By taking m = p, and note that

C.(X; F,) = Homg (C*(X; F,); Fp)

33



CHAPTER 4 POWER OPERATIONS FOR STRUCTURED ALGEBRAS

we have
0: C.(EZp; Fp) ® C*(X; Fp)P = C*(X; Fy)
which is given by
eRf®®fpr(ar fi® - Q f(d(e ® )

Since E%,, is contractible and its A-complex is a free complex, we may take C,(EZ,; F,)
as a [, [Z,,]-resolution of IF,,. In this way, we can regard (C*(X; Fp), [F,,) as an object in
C(Cy; Fp) and the mod p Steenrod operations can be given by Construction 4.3.
Remark 4.2: The homotopy from hy; * hy, to hy, is a kind of inner horn filling, if we
look at the triangle, which is a kind of Kan condition. In this way, we can see why quasi-
categories require this condition, otherwise homotopies may not be coherent up to higher
homotopies, which is the insight of homotopy coherence.

Remark 4.3: The construction {E,X,,}men actually forms an E.-operad called the

60]

Barratt-Eccles operad!®. Then in the category of CW-complexes with cellular maps,

each CW-complex X is an “E,-coalgebra” given by
EL, XX - XM

and thus the cochain complex C*(X; IFp,) is a natural [E,-algebra.

Remark 4.4: The mod-p power operation is more effective than the literally power with
respect to the cup product because the former one can detect the X 4-action on [u]%, while
the later one does not. If we use the language of equivariant cohomology using Borel

construction, the following diagram will demonstrate the reason.

:Pd d d A* d
H'(X) ———— Hgdd(X ) — H"(BZ, x X)
[u] [u®]z,
n-cocycle class X 4-equivariant nd-cocycle class

4.3 Application: power operations on the cohomology of Hopf
algebroid

Definition 4.5: A Hopf algebroid over a commutative ring k is a pair of commutative
k-algebras (4, ') endowed with maps

* 1. A — I called left unit or source,

* nr: A - I called right unit or target,

e W:T - T'®y I called coproduct or composition,
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* ¢: ' > A called counit or identity,
e c: ' -» T called conjugation or inverse.
and the data satisfies the following rules:
(1) ny is flat.
(2) €ony = €ong =1idy.
3T 5 F®,T Lr X4 A = T is the identity map, where ¢ = idr & € or
€ Q idr.
(4) ([dr@WP)o¥ = (Y Qidr) o V.
(5) cong =n, and cn;, = Ng.
(6) coc =idf.

(7) There exists maps such that the following diagram commutes

r“ﬁ“r@kr“ﬁ“r

MR 1"®AI‘ nL
q

A< r > A

€ €

Remark 4.5: (1, 7nz) exhibits I' as an A-bimodule and T is ab A-comodule.

Remark 4.6: Given a Hopf algebroid (A4, T, 1, nr, ¥, €, ¢) and a commutative k-algebra
R, there is a groupoid whose objects are Homy, (4, R) and its morphisms are Hom,, (T, R).
In summary, a Hopf algebroid determines a functor from the category of k-algebras to the
category of groupoids.

Definition 4.6: Given a Hopf algebroid (A4,T"), a right T-comodule M is an right A-
module M together with an A-linear map Y : M = M @ 4 I such that (idy; @ €) e Yy, =
idy and (idy @ W) o Yy = (W & idy) o YPy,. The category of I'-comodules is denoted
by Comodr.

Remark 4.7: Given aright A-module M, M ® 4T is a right ['-comodule naturally, which
is called the extened comodule of M.

Suppose P, Q are two graded right A-modules, then we define
Homy (P, Q) := {f: P* = Q**" | f is A-linear}

In this way, Hom,4 (P, Q) is a graded A-module.
If P, Q are right I'-comodules, then let Homp (P, Q) be the submodule of Homy, (P, Q)

consisting of I'-comodule morphisms.
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Theorem 4.4 (Comparison theorem): Given an A-split exact sequence X = {0 —
P - Xy = X; = ---} of right I'-comodules and a complex Y ={0 - Q - Y, - Y; — -}
consisting of injective right I'-comodules, for any I'-homomorphism f : P — (Q, there
is a unique chain homotopy class of '-homomorphisms F : X — Y extended f, where
X={Xg-> X, > }andY ={Y; > Y, > -}

We denote Extﬁ1 the j right derived functor of Homp with respect to injective and
["-split comodules resolution.
Definition 4.7: Given two right I'-comodules, the right I'-comodule structure on M @ 4N
is defined to be

id id id®id
MNP, v®,re T 22y N, re,T L2

M@ NQ 4T

where ¢: I' @4 I' = T is the morphism induced by the multiplication in T.

Remark 4.8: Note that we can always embed the category of left (or right) A-modules
into the category of A-bimodules by setting a - m = (—1)™l%lm . a. Thus the tensor
product between two right A-modules can be identified with the tensor product between
the associated A-bibmodules. This can be done because A is commutative (in the sense
of graded algebras).

Let I’z (resp. I')) be a right A-module (resp. left A-module) by forgetting the left A-
action induced by 1, (resp. the right A-action induced by 1z). The A-bibmodule structure
of I and I'; are different with this setting. However, given a right A-comodule M, M @ 4
IF'=M®,Tx, seel™? JTetd: M @,Tr & M ®,4T be the isomorphism (as right

['-comodules). Specifically, the following diagram commutes.

M @4 Tr

ld@/
M 6
%
MQ@,uT
Let p: Tx — T be the cokernel of ng and given an element x € T, let X := p(x).
Define t: T — I'g by X = x — g o €(x). Note that t is well-defined, since if x = ng(y),
then t(x) = nr(y) — ng ° enr(y) = 0. Then for any right I'-comodule M, we have the

following I'-split short exact sequence

.d _
p— M 2 R, Ty 2R Y@, F — 0

where a section of id @ 4 ng is id ® 4 € and a section of id Q@4 p isid Q4 t.
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Definition 4.8: Let M be a right A-comodule, then the normalized canonical resolution

C(T, M) of M is the I'-split differential graded right I'-comodule

do d,
0— G~ ¢ 5

where C; = M @, T®5 @, Tk, ds = (1 @4 1r) © (1 @4 p) and a section o of d is
(id Q4 t) e (id ®4 €). We denote

mlay| - lagla:=m @ d; Qs ®ads ®aa

and we assign it homological degree s, internal degree t = |m| + Y, |a;| + |a|, bidegree
(s,t) and total degree t — s.
If N is a right I'-comodule, the canonical complex C(N,T’, M) is defined to be

Cs¢(N,T, M) := Hom\(N, C5(T, M))

Proposition 4.1: Ext; (N, M) = H(C(N,T, M)).
Proof: See!!1Chapter IV, Proposition 1.2 n
Definition 4.9: Let C be the category whose objects are triples (N, T', M) such that

(1) (A,T) is a Hopf algebroid over k,

(2) M is a commutative unital algebra in Comodp (let 17y, : T' = M be the unit),

(3) N is a cocomutative unital coalgebra in Comody (let €y : I' = N be the counit).
and whose morphism (N,T, M) — (N',T',M") are triples (f, A, g) such that

(1) A: (A,T) = (A, T") is a morphism of Hopf algebroids,

(2) f+ M — M’ is an A-equivariant morphism of algebras preserving units,

(3) g: N' - N is a A-equivariant morphism of coalgebras preserving counits.

Given atriple (N, 4, M) € C,let¢p: M™ — M be the iterated productand A: N - N™

be the iterated coproduct. Then by using the comparison theorem 4.4, we can extend
¢: M" > M to

¢: C(T,M)" - C(T,M)

and this extension is unique up to homotopy. In this way, C(I', M) is a homotopy associa-

tive and commutative differential graded algebra in Comod. Furthermore, the following
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diagram

Homp (N, C(T, M))* =—— C(N,T, M)"

|

Homp(N™, C(T,M)™)

\LHom(A,(z))

Homp(N, C(T', M))

C(N,A, M)

also characterizes C(N, [, M) as a homotopy associative and commutative differential
graded algebra in Comodr.

Proposition 4.2: Let (N, T, M) be a triple over IF,, and G < Z,,, then there is a unique
chain homotopy class of [F,,[G]-equivariant maps ®: W &, C(I', M) - C(N,T, M) such
that (C(T', M), ®) is a G-structured [Fp,-algebra (recall Definition 4.2).

Corollary 4.2: Let (N, T, M) be a triple over [, then C(N,T, M) has a (m, F,)-pair

structure.

W ® Homp(N, C(T,M))P =—— W & C(N,T, M)P

le
HOmr(Np, w ®k C(F, M)P)
\LHom(A,GD)

Homp(N, C(T, M)) =———= C(N, 4, M)

Construction 4.10 (Steenrod operations in Ext): Note that Extf:t(N, M) is the ho-
mology of C(N,T, M) and here we let G = Cp,. Let x € Extl{’t(N, M).
If p = 2, we define
Pl = Sq' (%) = 0,(6j_rss Qi x2), if i>t—s
If p is an odd prime, we define
Pl(x) =(=D(t = 5)b.(ei-t+s)p-1) Qi ¥P)  2i=2t—s
BPI(x) =(—D)'(t = 5)b.(ei-t+s)p-1)-1 Qi ¥P) 20>t —s
where v(n) = (=1)/(m)é forn = 2j+ eandm = (p — 1)/2.
Let (N,T, M) be a triple over Zb such that N, I' and M are torsion free. Let N =
NQ®Z/p,T =TQ®Z/pand M = M ® Z/p. Then (N,T, M) is a triple over [Fp,. The

exact sequence

0 —> Z/p — Z/p? > L/p —> 0
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induces the Bockstein operation
B+ Ext"(N, M) - Ext2" (N, M)

Theorem 4.5: The Steenrod operations in previous definition has the following proper-
ties.

(1) BeP: Extlt — Extl 72T VREPY yhere e = 0if p = 2.

(2) Whenp = 2,P" = Ounlesst —s > i > t. When p is an odd prime, P* =
unless t — s > 2i Zt,andﬁPi =Qunlesst —s+1=2i=>t.

(3) P{(x) =xPifp=2andi =t — sorifpisanodd prime and 2i = t — s.

(4) The Cartan formulas hold:

P"(xy) = ) PIP"i()

BPMGxy) = ) FPIPI) + ) (DRI 0PI ()

(5) The Adem relations hold: if p = 2 and 0 < a < 2b, then

/2 iy o
Sq*Sq” = z < 0 2j )Sqa+b_]Sq]
j=0

If p is an odd prime and a < pb, then

98] 1y - y—1
Pan — Z p ] Pa+b_ij
—= a—pj

and if a < b, then

[a/p] .
pagrs = Y. (070D gpuss-r

= a—pj
[(a-1)/p] ,
+ Z (_1)a+j—1<(p -D® ._]) - 1>3Pa+b—jpj
= a—pj—1

(6) Letf: (N,T,M) - (N',T'"M)and g: (N',T',M") - (N",T",M") be two
morphisms of triples such that the following sequence is exact

0 —= cov, M) < cov My S99 covrr MTy — 0

and let & : Exti‘t(N, M) - Exti’,t, (N",M") be the boundary map in the associated long
exact sequence. Then § o P! = Pl o § and § o BP' = —P! 0 §.
(7) If (N,T, M) is the mod-p reduction of torsion free triple over Z, then B o
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Sqi+1 = lSql and ﬁ o Pi = ﬁPl lfp is an odd prime,
Proof: See!!IChapter IV, Theorem 2.5 _

4.4 Power operations for structured ring spectra

Recall that the co-category Sp of spectra is a stable symmetric monoidal co-category.
A commutative algebra in Sp is said to be a commutative ring spectrum or an [E.-ring
spectrum. More specifically, an E,,-ring spectrum is a section s : N(Fin,) — Sp and
we let E = s((1)) be the underlying spectrum. Due to the Segal condition, we have that
s({n)) = E"". The coherence of the multiplication on E is totally encoded by N (Fin,),
especially the morphisms and higher morphisms. For example, the multiplication E™ — E
is Z,,-equivariant, if we let £,, act on E™ by permuting factors and act on E trivially. Thus

we have
Sym E = E"/X, - E.

Note that the notion of X, -equivariant action is in the context of co-categories and the
quotient is the homotopy quotient actually. Actually, a more suitable form to exhibit Sym_,
is the notion of extended powers.

Construction 4.11: Given an spectra E, the j™ extended power of E is defined to be
D;E = (EZ))+ NET)/3;

where E'Y; is the universal principal-Z; bundle.

There are natural maps associated to extended powers:

* (it MJ > D;M;

* @i DiM A DM — Dj, M induced by the inclusion ¥; X ¥ © Xj k3

* Bjx: DiDgxM — Dj;M induced by the wreath product X; ¢ X — Zjy;

* §;: Di(MAN) > D;M AD;N.

The extended powers and these maps for pointed spaces are defined similarly and
they compatible with the suspension functor. Given two pointed spaces X, Y, the following

diagrams commutative up to homotopy:

40



CHAPTER 4 POWER OPERATIONS FOR STRUCTURED ALGEBRAS

DjI®X
2°(X7)
T°D;X

D;(Z*X AXL®Y) ———3 D;(2*X) A D;(£°Y)

Z°D; (X AY) % T°(D;X AD;Y)
Bjk o
D;DEX . > D Z°X
0B
2% D; Dy X s 5*D,X

[ee] [ee] a]’k [ee]
DiZ®X ADI®X ———— D;; I°X

2%aj g
IPDiX ADiX) ———— E¥Dj X
Lett: EAF — F A E denote the commutative isomorphism in Sp. The following
assertions demonstrate the homotopy coherence data carried by extended powers.
Proposition 4.3: The extender powers are equipped with the following structure maps
and coherence.
(1) {a;\} is acommutative and associative system up to homotopy, namely for any
[, ], k, we have
Ajp°oT = Ay j;
@ivji © (@i ; ANid) = a; jip o (Id A aj);

(2) {Bjx} is an associative system up to homotopy, namely for any i, j, k, we have

Bijk ° Bij = Bijk ° Dibj k-
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(3) Each §; is commutative and associative with respect to the smash product up
to homotopy:
*T o 6] = 6] o D]T,
'(6] N ld) o 6] = 6] ° (ld A 5])

(4) The following diagrams commute up to homotopy:

M]/\Mk _ Mj+k (DkM)]
ak,...k
LiALg li+k Ly D]kM
aj Bjk
DM A DM —5—% D M D;DM

(5) Let v; be the evident shuffle isomorphism, then the following diagram com-

mute up to homotopy
. Vj . .
(ENF)Y) ———— EJAF

Lj Lj/\Lj

é‘ .
D;(E AF) ———— DE AD;F
(6) The following diagram commutes up to homotopy:

BixBjk

D;DyM A D;DM ———""-% DM A Dj; M

@i j ik, jk

Bi+jk

D+ jDpM > Dik+jicM
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(7) The following diagrams commute up to homotopy

o
D;(M A N) A D (M AN)) i S Dik(MAN)

5]'/\5k 6]'+k

a]-,k/\a]-,k

DjM AD;N A DM A DN "™ p.M A DM AD;N ADF —2-%3% D, M A D, N

B,
D;Dy(M A N) I S Dj(M A N)
Dj6k 6jk
5; BjkABj,
D; (DM A Dy N) % D;DM AD;DN s DjM A DN

(8) The following diagram commutes up to homotopy:

5; Bi,jNB;
D;(D;M A DeM) —=——% D,D;M A D;DeM —2"2% D;;M A DyM

Ditjk Aijik

Bij+k
D;D; M ? DijiM

Proof: See [1]Lemma 2.8, Lemma 2.9, Lemma 2.10, Lemma 2.11, Lemma 2.12, Lemma 2.13, Lemma 2.14, Lemma 2.15

]
Definition 4.12: [!Definition 3.1 Ap 1 _ring spectrum is a spectra M together with &; :
DiM — M for j = 0 such that &; is the identity map and the following diagrams commute

for j, k = 0 up to homotopy

aj Bj,
DM A DM I > DM D;DM —% 5 DM
§jnsk $j+k DSk
f.
MAM —2%  spy—2 sy D;M L v M

Remark 4.9: The structured diagrams for H,-ring spectra commute in hSp, while the
structured diagrams for [E.,-ring spectra commute in Sp. In other words, in the case of
H . -ring spectra, diagrams commute up to homotopy, while in the case of E,-ring spectra,
diagrams commute homotopy-coherently (it depends on the feature of co-categories).

Construction 4.13: Let E be an H,-ring spectrum and E be the associated cohomol-
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ogy theory, the j-total power operation P; is defined to be

~ Pj ~
E* 00 ! > E*(BYj, AX)

H D of N H

[Z°X, E] — [D;(Z°X), D;E] TN [2°(D;X),E] —2 [E°(B;, AX),E]

where A* is induced by the diagonal map X — X/.
If we have E*(BE]-+ ANX) = E*(BZj+) Qg E*(X), then given a € E*BX; and
x € ET(X), we can define a*(x) to be Da* o P(x), where Da*: E"(X) = m,E is the dual

function of «.
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CHAPTER 5 THE YOGA OF SPECTRAL SEQUENCES

Spectral sequences are the most important computational tools in homotopy theory
and homological algebra. For example, they can be used to compute graded invariants
of a space such as homotopy groups, homology groups, or cohomology groups by taking
approximations. Since it is hard to compute the invariants of an object directly, we replace
an object by taking its filtration or resolution (so-called sequential replacement) consisting
of relatively simple objects and compute the invariants step by step along the filtration
or resolution, where spectral sequences play a role as an effective algorithm for us to
successively approach the information of the object. Roughly speaking, spectral sequences
compute “the (co)homology of (co)homology groups” and iterate the process inductively.
The concrete procedure is to use exact couples and their derived couples inductively©!].
In this chapter, we follow this big picture and focus on the Adams-type spectral sequences
and their generalization.

* In Section 5.1, we show how to derive a spectral sequence from a sequence of spec-
tra. We focus on how a specific topological setting or spectra-level setting on the sequences
corresponds to a computable homological setting on spectral sequences. In particular, we

discuss two types of sequences and examples of spectral sequences respectively.

types sequences resulting spectral sequences

inverse sequence | Adams resolution Adams-type spectral sequence

direct sequence | skeletal filtration | Atiyah-Hirzebruch-type spectral sequence

* In Section 5.2, we introduce how to construct an Adams-type spectral sequence
systematically. The key construction is the canonical Adams resolution (Construction 5.5).
Specifically, given a spectrum X and Y, the associated complex of the canonical Adams
resolution of Y with respect to E and X is exactly the canonical complex C(E, X, E.E,E.Y),
so that we can apply the result in Section 4.3 on Adams spectral sequences. In particular,
we have power operations in the E,-page of an Adams-type spectral sequence.

* In Section 5.5, we introduce a generalized version of the Adams-type spectral se-
quences and their properties. The generalized Adams spectral sequences are designed for
mixed filtration. More specifically, the input of a generalized Adams spectral sequence

consists of two sequences, one of which is an Adams resolution and the other of which
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carries extra information so that the Adams-type spectral sequence can be manipulated
further. We will then use this construction together with the filtration on the extended
powers to show how power operations detect homotopy operations.

* In Section 5.3, we introduce how extended powers display at the level of filtration.
Given an H,-ring spectrum Y, the unique (up to homotopy) algebraic extended power
structures on C (7. E, E.E, E,Y) mentioned in Section 4.3 can be derived from the extended
powers in the H ,,-structure on Y. In detail, we construct a “filtration” of £ : DY — Y (See
Theorem 5.3) and show this “filtration” endow C(r.E, E.E, E.Y) a Z,,-enhanced algebraic
structure which is equivalent to the one in Proposition 4.2 (See Corollary 5.2).

* In Section 5.6, we use a generalized Adams spectral sequence in Section 5.3 to-
gether with the filtration of extended powers in Section 5.3 to show how the power oper-
ations detect the homotopy operations on m,(Y) associated to the extended power. More
specifically, there is a spectral sequence E™*(S, E) associated to a filtration E of D;S"™,
and each x € m,(Y) determines a morphism of spectral sequences from E™*(S, E) to
E**(S,Y), which exhibits E**(S,Y) is a module over E**(S, £). This module structure
indicates how the power operations detect the homotopy operations.

In summary, the following diagram demonstrates the outline of this chapter.

filtration for powers > homotopy operations

w V

’ generalized Adams S.S. ‘

Adams resolution > homotopy classes

5.1 Spectral sequences from sequences of spectra

Definition 5.1: Let C be a category. An inverse sequence in C is an object in
Fun(Z2b, €), where Z2b is the category of non-negative integers with > as morphisms.

We may write it as
YoV <Yy -
Dually, a direct sequence in C is an object in Fun(Zsq, C) and is written as

XO _)Xl <_X2_>
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More generally, a tower in C is an object in Fun(Z, C) and we may regard an inverse
sequence (resp. direct sequence) as a bounded-above (resp. bounded-below) tower. All
these items are called sequential objects in C.
In this section, we focus on sequential objects in the category of spectra and study
how to derive spectral sequences from sequential objects.
Construction 5.2: Suppose there is an inverse sequence of spectra
Yy, Ly, Ly, &

isqr— i
Let ig,: Yoir =5 Ys and Y ;- be the cofiber cofib (i) of is,. Then we have a

cofiber sequence in a form of

where Js ,- is of degree -1. Then we have the following derived diagram

You —==> Z¥ig ===} B2y —==> -

T \jl; \ ZTY \ \ -1
A

Each column with the coboundary 9 is a cofiber sequence induced by i), and the dashed
arrows are induced by evident compositions. Let X be a spectrum. If we apply [X, —] to
the diagram, then we obtain an exact couple

iy

69s,t [X' Ys+1]t—s > eas,t[X' Ys]t—s

eBs,t [X' Ys,l]t—s

and the E;*-term of the associated spectral sequence is
st im([X, Y5 le—s = [X, Ys1le-s)
S =
ker([X,Ys1le—s = [X, Ys—ra1r)e-s)
To make the spectral sequence computable, we need to add some assumptions to

make it meaningful in the setting of homological algebra. The following example is about
the idea of classical Adams spectral sequences.

Example 5.1 (Adams-type spectral sequence): In this example, we abbreviate
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the mod-p cohomology as H* simply. Let Y be a CW-spectrum of finite type and let
{a;}{=1 be a set of cohomology classes in H*(Y') such that they generate H*(Y) as an A;-
module. Then we let g;: ¥ — ]—[?=1 X" HT, be the map representing these cohomology
classes. Recall that the homotopy groups of a generalized Eilenberg-Mac Lane spectrum
K consisting of HF,, is exactly the graded module Hom,g; (H* (E), Fp) [61]Proposition 2.1.2(d)

Therefore, by using the Whitehead theorem, the natural map

n

n
\/Z”iHIFp - 1_[ S"HF,

i=1 =1

is an equivalence. In this way, we lift g4 to

n
p:Y > \/Z"iHIFp
i=1
and let Y; — Y be the fiber of p;. Inductively, we repeat this procedure by replacing Y by
Y to produce Y1 — Y;. Eventually, we have an inverse sequence
Y=Y0(i_0Y1(i_1Y2(i—2'-'
According to our construction, the Y; ; is a wedge of HIF,, with some degree shifting. If

we apply H* to the sequence 5-1, then we have
0« H'(Yo) « H'(Yo1) « H'(EY11) « = <« H (X" 1) < -

where each arrow is a surjection. Moreover, it turns out to be a resolution of H*(Y)

consisting of free Ay-modules. Since cofib(iy 1) is a wedge of HIF,,, we still have
[X, cofib(is 1)] = Hom,;» (H*(Ys1), H* (X))
and
[X, cofib(is1)]; = Homfﬂ;) (H* (Y5 1), H* (X)).
The E,-page of the associated spectral sequences can be written as
Eyt = Exti’l% (H*Y,H*X)

where Exti’l% (M, N) is the s right derived functor of Hom A (M,N).

The convergence problem is more complicated. More details can be found in
Ravenel’s textbook 611,

Based on this example, we can see the desired assumption for constructing an Adams-
type spectral sequence, see Definition 5.4.

Dually, a direct sequence can also derive a spectral sequence in a similar way. Specif-
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ically, the key homological feature appears in the sequence 5-1 by applying a suitable
cohomology functor to it. Similarly, a direct sequence can also derive a complex.

Construction 5.3: Suppose we have a direct sequence of spectra
Xo 2oty 2oy 2
For convenience, we write cofib(j;) as X;,1/X; and denote
X =27 X/ Xi41)-

Then we have an associated sequence

_______ > E_ZXZ ______} Z_le ey XO
F) 0
4 ~ ~ <~
E_ZXZ Z_1X1 X
(5-2)
4 ~ ~ <~
Z_ZXS Z_lXZ X
< ' h ~N
27%(X3/X7) 7 (X2 /X1) X1/Xo

Let E be a spectrum, P = E, X, and P; = E,(27'X;). The associated complex is
EX <« E.(C X)) « E.E72X,) « - « E,(37"X,) « -

Then it will form an exact couple similarly and thus derive a spectral sequence. In par-
ticular, the E;-page is actually given by the associated complex. Moreover, the spectral
sequence will converge to E, (colimg X) [621Chapter 3, Section 2.

Similarly, we define a cohomological-associated complex by replacing E, by E™.

A bounded-below filtration is a special direct sequence. By using cellular approxima-
tion and the telescope construction, any direct sequence is equivalent to a bounded-below
filtration with subcomplex inclusion. In this case, cofib(js) = X;/X,1 exactly. The most
important bounded-below filtration in topology is skeletal filtration.

Example 5.2 (Atiyah-Hirzebruch-type spectral sequences): Let A be a spec-
trum and its associated cohomology ring of a single point is denoted by A*. Let X be a
connected CW-complex (since we always can take it as a spectrum by taking the asso-
ciated suspension spectra, there is no harm to work on spaces) and we take the skeletal

filtration of X

XOL)X]_ L))(2 L)X3L)
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Then the E;-page is given by

EPT = A (X /Xs_1) = CS(X; AY)

cel

where C3_(X; AY) is the cochain cellular complex with coefficient A¢. This is true since

cell

X/ Xs_q is the wedge of all the s-cells in X. Moreover, its E,-page is given by
Ey' = H3(X; 4%
and we can write
E>* = HS(X; AY) = ASTL(X)

This spectral sequence is called an Atiyah-Hirzebruch spectral sequences.

5.2 The Adams spectral sequences

In this section, we will follow the approach in Example 5.1 to study Adams-type
spectral sequences more systematically. In particular, the homological computation in the
set-up of the Adams spectral sequence is based on some results on the cohomology of
Hopf algebroid discussed in Section 4.3.

Suppose E is a (homotopy) commutative ring spectrum with unitn : § = E and
product u: E A E — E. We assume the induced map 1, : m,E — E,E is flat. Therefore
(m.E, E.E) forms a Hopf algebroid naturally.

Proposition 5.1: With the assumption that ), is flat, the natural map

EE®pqpEX -1, (ENEANX)

is an isomorphism.
In particular, we have E,(E A E) = E.E Qg E.E. Now we let A = m.E and
['=E,E. The coproduct W: ' - T ®,4 I'is

X€E[S,ENE]l,»nAx €[S, ENEANE].

For any spectrum X, E,X is a right A-comodule in a similar way. (we just replace the
suitable E by X in previous formula.)
Definition 5.4: Let E be a homotopy commutative ring spectrum. An Adams resolution

of a spectrum X with respect to E is an inverse sequence

Y < Y < Y2 < L

such that for each s
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(1) Ys, is a wedge of (suspensions) of E or a retract of I A E for some spectrum

(2) E.Ys = E.Y; 1 is an m,(E)-split monomorphism.
If we splice an Adams resolution of Y, we obtain a m, E-injective resolution of E.Y,
because E,Ys ; is a direct summand of of E,(X; AE) = E.(X) Q. g E.E and the cofiber

sequences induce short exact 7, E-split sequences61141.2.8. Lemma

0 S\ E.Y > EYyy — EZV, — E*ZZYZ‘1 —_ .

T

E.XY, E.x2%Y,

Construction 5.5 (Canonical Adams resolution): Leti: £ — S be the fiber of
the unit n : S — E. Since a cofiber sequence in the stable homotopy category is a fiber
sequence, the cofiber of i is exactly the unit. We defined the canonical Adams resolution
inductively by setting Yy =Y, Y ; = Yy AE and iy = idAi: Y, AE - Y, AS = Y;. Note
that the cofiber Ci is Y5 A E according to the definition.

The Adams spectral sequence for [X, Y], with respect to E is the associated spectral
sequence of the exact couple obtained by applying [X, —], to an Adams resolution of Y.
We denote it by Ey" (X, Y).

Remark 5.1: If we smash E on the cofiber sequence

s 1S E \ SE

then we have another cofiber sequence

nAid

SAE —> EAE —> ENE (5-4)

Note that n Aid has a section u: EAE - E = S A E. Then we have a m,E-split exact
sequence by applying m, on the cofiber sequence (5-4)

n

0 —> n,E —> EE > E.XE —> 0.

Therefore E,XE is isomorphic to the cokernel of n: m,E — E,E, which means that E.XE
play a role as I in the normalized resolution resolution in Definition 4.8.

Lemma 5.1: The spliced resolution in the form of (5-3) obtained from the canonical
Adams resolution is the normalized canonical resolution C(E,E, E,Y) in Definition 4.8.

Condition 5.6: Forany Y and . E-projective E, X, we have the following isomorphisms.

[X,Y A E], = Homg z(E.X,E.(Y AE)) = Hom,,_;(E.X,E.Y)
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The Condition 5.6 holds for E = S,HZ/p,K,KO,MU,M0O,MSp, and BP,
see[11Chapter IV, Lemma 3.7
Remark 5.2: Given Condition 5.6, for any Adams resolution in Definition 5.4, we have
[X,Y; 1] = Homg g (E.E, E.Ys 1). Therefore, the E,-term in the associated Adams spectral
sequence is Extg g (E. X, E.Y).

Suppose the Condition 5.6 is satisfied, then we have the following results.

Lemma 5.2: If E,X is ,E-projective, then
EY(X,Y) = Co(E.X,E.E,E.Y)
If E.X is m,E-projective, then
E>*(X,Y) = Bxty z(E.X,E.Y)

Theorem 5.1 (Adams): Given a commutative ring spectrum E and two spectra X, Z sat-
isfying the condition in!63ITheorem I5.1 "the Adams spectral sequence E;'* (X, Z) converges
to [X, Z]E, where [X, Z]E is the graded group of homotopy classes in the E-localized stable
homotopy category.
Proof: See!631PartIIL, Chapter 15 n
Remark 5.3: Adams’s conditions for the convergence of Ef (X, Z) = [X, Z]E are

(1) Z is bounded below,

(2) E is connective and y, : my(E) @ my(E) = 1o (E) is an isomorphism,

(3) if R € Q is maximal such that the natural ring homomorphism Z — my(E)
extends to R — myE, then H,.E is finitely generated as an R-module for all r;
Theorem 5.2: Given a pair of Adams spectral sequences Ex"" (L, K) and E="" (L', K"), we
have that

ES(LK) ® EX(L,K") - EX"(LAL,KAK')
U U U
LKE ® LK - [LALYAK]E
In the case where both E, L and E, L are 7, E-projective, the product on the E,-pages

is exactly the external product
Ext(E,L, E.K) Q Ext(E,L',E.K") - Ext(E,L Q E,L',E.L Q E.K")

by using the Kiinneth isomorphism.
Corollary 5.1:
(1) {E;"(S,S)} is a spectral sequence of bigraded commutative algebras.

(2) E;/7(X,Y) is a differential E/"(S, S)-module.
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(3) If X is a suspension spectral and Y is a commutative ring spectrum, then {E; "}
is a spectral sequence of bigraded commutative {E;" (S, S)}-algebras whose product con-
verges to the smash product on [X, Y] defined by the diagonal map A: X = X A X and the
product u: Y AY =Y.

5.3 Filtration for extended powers
Suppose Y is an H,-ring spectrum, we let
&:DY->Y

be its " extended power.
Let G c X, and let E G, be the n-skeleton of a contractible G-free CW-complex EG.
We assume W, = G. Then we let D:Y := ((EG;)+ A Y")/G, which is a subcomplex of

D;Y. This construction induces a filtration of D;Y .
DY c D}Y € DY c --- c DgY

Now we let E be a ring spectrum satisfying Condition 5.6 and (m.E, E,E) forms a

Hopf algebroid. Let

Y=Y < Y; < Y; <
be an Adams resolution with respect to E. Then we let

Fs = ()"
Z =DgYy=((EG)+ NYp)/G

Zis=((EG)+ NK)/G

Lemma 5.3: Let B; = EG;/G.
(1) Z;_15 and Z; 544 are subcomplex of Z; .

(2) Zis o~ Bi AR,

Zi1s i-1
(3 ) Zi,s ~ B; Fg
Zi—1sYZis41 Bi_1 Fsiq

(4) The following diagram commutes.

Zis ~ y Bi A Fs
4
Zi—1,sUZi,s+1 Bi—1 Fs—1
la \LaAidvid/\a
Zi—1s Zis+1 ~ \ Bi—1 Fs B; Fs41
va N N
Zi2sVZi_15+1  Zi-15+1YZis+2 Bi—2  Fs+1  Bi-1  Fsi2
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Proof: See!!IChapter IV, Lemma 5.1 ]

Theorem 5.3: If E.Y; is m,.E-projective for each s, then there exists maps §; s: Z; 5 —

Ys_; such that the following diagrams commute

Proof: Sece [1]Chapter IV, Theorem 5.2 . n

Remark 5.4: The mix {Z; ¢} of the skeleton filtration on E7 and the Adams resolution
of Y together with {&; ¢} is the “resolution” of £ : DgY — Y. We will see how {¢; ¢}
“converge” to ¢ along a generalized Adams spectral sequence later (see Theorem 5.8).

Let W, = ny(EG,/EGi_1) and d : W}, = Wj,_; be the map induced by the ge-
ometric boundary map. Then we have a Z[G]-resolution of Z with W, = Z[G]. Let
Cst = Et_sYs 1. Then

0 > Co > C1 > Cz >

is the resolution of E.Y associated to the Adams resolution. (Here the index i of C; is
the total degree of elements in @, C;..) Note that C;, coincides with Ef‘t(S, Y), and
Cst = Cs¢(m.E,ELE,E.Y).

Note that if each E.Y is m,E-projective, the Kiinneth homomorphism is an isomor-
phism from CR to the resolution associated to {F,}. Let hg : m, — E, be the Hurewicz
homomorphism, k the Kiinneth homomorphism.

Corollary 5.2: If nyE = Z/p and the chain map ®': W @, C" — C is defined to make

the following diagram commute

hg Qi
Wi ® (®; Csye) 228 Ey(EGi/EGr—t) ® (®; EepsYs,1)

: !

Et sik(EGr/EGy_1 NFsq)

wheret = t; +--+t, ands = s; +---+5,, then @’ is chain homotopic to ® in Proposition
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42 (HereweletI' = E,E,M =E,Y,and N = m .E).
Corollary 5.3: Suppose X is a spectrum with a coproduct A: X - X A X and E.X is
m,E-projective. Let e € Wy and f; € [X, Ysj’l]tj_sj, then ®,(e ® fi. ® -+ Q f;-i) is

represented by the composite

Zt_s"'kX ————————————————————————————— > Ys—k,l

lzt—S+kAT fk,S

Zt—s+kx7‘ Zk . th_SjX erA; 1)) EG./EG Y.
— LA ) —————7 EG/EGk—1 AN(\jYs;1)

Remark 5.5: The total power operations can be written down explicitly with the ex-
tended powers internalized by H,-structures. Furthermore, we can use them to study
differentials of the form d, 8€P'x and related homotopy operations. We will see its appli-

cation in the following section.

5.4 Application: on the Hopf invariant one problem

Let x € my,,_1(S™) be an element represented by a map f: S?"~1 - S™. We attach

a 2n cell along f to get X = S™ Uy e®™. Then we have

) A4, i=0n2n
HY(X;A) =
0, otherwise

Specifically, we focus on A = Z or [F,. Let o be a generator of H"(X; A) and T be a
generator of H2™(X; A) given by the orientation of H*(—; A). Let H(f) € A such that

c?=H(f) 1

and H(f) is said to be the Hopf invariant of f. Since the homotopy type of X is indepen-
dent of the choice of representing maps for x, we may let H(x) = H(f) and thus define
Hopf invariants for homotopy classes. Moreover, The assignment
Ton-1(8") — Z
x — H(x)
is a group homomorphism. The question is: given a positive integer n, does Ty, (S™)
has an element of Hopf invariant one? When n = 2,4, 8, the answer is positive, since
R™ can be a division algebra over R. However, the further question is: are n = 2,4, 8
the only cases for the existence of Hopf invariant one elements? We will show how to use

Adams spectral sequences and power operations to solve the problem in the mod-2 case

following!17-24641
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First, we need some data about the mod-2 Adams spectral sequences for the sphere
spectrum.
Theorem 5.4 (Adams!['7]): Exti’lz (F,, F,) is generated h; for i > 0, where h; is dual
to qui € A3 and is in Ext™2

These elements are strongly related to elements of Hopf invariant one and that may
be why we use the letter “h” to denote them.
Proposition 5.2 (Adams[']): If there is an element h” of Hopf invariant one in
Tan—1(S™), then n = 2™. The class h’ of h” in Ex™ is detected by h,,, € Ezl‘zm.

Conversely, if h,, survives to the E,-page, then there is an element of Hopf invariant
one in my,_1(S™) forn = 2™,

Therefore, the Hopf invariant one problem is essentially about the computation of
the differentials supported by h,, (i.e. the values of differentials at the classes of h,,;).
We will compute these differentials to solve the Hopf invariant one problem using some
multiplicative structure and power operations in the Adams spectral sequences.

Recall that there is a multiplication in the Adams spectral sequence
7§,t ® E{S”t, N 1§+s',t+t’

which coincides with the cup product when ignoring the sign issue and r = 2. Besides,

the multiplication satisfies the Leibniz rule
dr(uv) = d,(Wv + (—1)"°d,(v).
Theorem 5.5 (Adams['71): The multiplicative relations in Exti‘é (FF,, F,) are only sub-
ject to
hihiy; =0
and the multiplicative relations in Exti’lz (FF,, F,) are only subject to
hihis1hj = 0, (R)?hiyz = (his3)?, hi(hiz2)* = 0.

Second, we need to compute the action of power operations on the E,-page of the
Adams spectral sequences.
Theorem 5.6 (Milgram[64): The action of Steenrod square on Ext g (F2, Fp) is totally

determined by
0
Sq (hi) = hitq,
1
Sq" (hy) = h?.
Third, we need to figure out the relations between differentials and power operations

56



CHAPTER 5 THE YOGA OF SPECTRAL SEQUENCES

on the E,-page.

Theorem 5.7 (Milgram[®4]): Let Sqi : Extcs/‘li - Exti;li’Zt be operations described in
2 2
r,Ss

Ay we have

Section 4.3. Then for any a € Ext

. hOSqu(a), i=s mod 2
dy(Sq' (@) =
0, otherwise.

The proof of this theorem mainly relies on the analysis of the filtration for extended

powers in Section 5.3[64-63]

. Milgram wrote down the H,-ring structure of the sphere
spectrum via some group representations and used the geometric interpretation in Section
5.3 of the power operation in the spectral sequences to deduce the theorem about the
differential (6]

Combine these theorems, we can see that
d,(h;) = dz(sqohi—1) = hOSql(hi_l) = hohiz_1-

According to the multiplicative relations in Theorem 5.5, we can see that d,(h;) # 0
when i > 3. Therefore, there is no element of Hopf invariant one in m,,_4(S™) unless

n =1, 2,4,8, according to Proposition 5.2.

5.5 The generalized Adams spectral sequences

Theorem 5.8: Suppose E is a commutative ring spectrum such that (r.E, E,E) is a Hopf
algebroid which satisfies Condition 5.6. Let

Zi=(Z =2, < fo 7, < fi 7, < f2 )

be an inverse sequence such that E, Z; is m,E-projective and E, f; is a m, E-split monomor-
phism for each i. Then
(1) there exists a spectral sequence Ex"" (X, Z), natural with respect to maps of such

sequences, such that
Btz = P Bt
i

where Ex"" (X, Cf;) is the Adams spectral sequence converging to [X, Cf;] (recall Theorem
5.1);
(2) if E,Y" is m,E-projective and we let

id id id
ZAY = ZAY = ZyAY L2 7 Ay L2 oAy 2L L
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there is a pairing

E(X,2) @ ES* (X', Y) ——— EX"(XAX',ZAY")

(X, Z1F ® [X',Y']E S XAX,ZAY'E
(3) if
7 <fo 7, <f1
C()\L Cll
Y —=1Y, £ Y; <€

is an inverse-sequence morphism from Z to an Adams resolution of Y, then there is a

homomorphism c of spectral sequences
E/ (X, 2) — [X,Z]¢
E/(X,Y) =—= [X,Y]E
which maps the pairing in (2) to the smash product pairing

EX'(X,2) QEX (X', Y) ———— EZ*(XAX',ZAY")

c®id c

EVXY)QES(X,Y) —— EX(XAX, Y AY")
(4) the spectral sequence E;” (X, 2) converges to [X, Z]E if E and Z satisfies the
Adams condition in Remark 5.3 and E,(Mic Z) = 0, where Mic Z is the microscope or

homotopy limit of the inverse sequence Z.
Proof: See!l!IChapter IV, Section 6 .

5.6 How power operations detect homotopy operations

s,n+s

Letx € m,(Y) be detected by x € E5” " (S, Y) (this means that the element x : S™ —
Y is detected by X : S™ — Y; and the later one is an element in some E,-homology group),
the Adams spectral sequence with respect to a commutative ring spectrum E satisfying

the condition in Theorem 5.8. Let Z be the sequence

E = (DE°S™ —— DI TIS™ <—— DFTTES™ 4—— - &—— DS 4—— S™P)
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where G = C, and DLiS™ = (W), AS™)/m is the extended power of S™, where W is the
i-skeleton of the standard free G-CW-complex, i.e. the universal cover of the mod-p lens
space where W,;_; = S%'~1. By Theorem 5.3, if E.Y; is m,E-projective, then we have a

morphism from Z to the canonical Adams resolution of Y.

DPS® «—— pPitsn ¢ e 4 DAS"™ «— s
\LDGJZ \LDGJZ' \LDGJE \LDGQZ

DEYs 4—— DE* 'Yy 4—— - &—— DiYy <—— V¢
\prs,ps \prs—l,ps \Lf1,f \Lfo,ps
Yo < Y1 < < Yps—l % Yps

By Theorem 5.8 3, we have a homomorphism
P(x): Er"(S,B) » E/*(S,Y)

of spectral sequences (here we assume the domain spectral sequences exist). Similarly,

we have compatible maps
DES™AY = Yy
and a homomorphism
P(x): EF*(S,EAY) - EZ(S,Y)

Proposition 5.3: If E,D;"1S® — E,DLS™ is a m,E-split monomorphism for each
i = ps, then the spectral sequence E;” (S, Z) exists and E, (S, E) is free over E,(S,S)
on generators e; € E s-Lps+pn (DE’S™, ). Similarly, E,(S™, E AY) is free over E5(S,Y)
on the image of the e; under the map induced by the unit S - Y.

Proof: See!!Chapter IV, Proposition 7.5 n
Remark 5.6: We may take e; as the np + i-cell of D;S™ (the smash product among p
copies of S™ and the unique i-cell of W).

Theorem 5.9: Suppose the hypothesis of Proposition 5.3 holds and E.Y is m,E-
projective. Then P (x) sends e; to ®,(e; Q xP).

Remark 5.7: If p = 2, then P(x) sends e; to Sqi+n(5c). If p is an odd prime, then P (x)
sends (—1)v(n)e; to BEP/x if i = (2j —n)(p — 1) — . P(x) sends elements to 0 if i is
not of this form.

Definition 5.7 (Homotopy operations): Suppose Y is an H,-ring spectrum. Given

a € Y, (Dj, S™ A --- A Dj, S™), the associated homotopy operation
a*:my Y X X1y Y > 1 (V)
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is defined by sending f; X -+ X fi € my, Y X --- X 1y, ¥ to the composite

Djlfl/\"'/\Djkfk/\id

S —%y D StA - AD, S AY D Y A AD Y AY — ¥

Now we show how Steenrod operations on the E,-page detect homotopy operations.

If we assume
Ex"(S,E) = m,DPSGS™

then any @ € m,DE°S™ can be detected by an element Y aze, € E,(S, E), where a;, €
E,(S,S). Applying P(x), we see that a*(x) is detected by Y a;, @, (e, @ xP) € E,(S,S).
Similarly, if E;”"(S,E A Y) converges to Y,DE°S™, any a € Y,DE°S™ is detected by
Yagex € E;(S,EAY), where a € E»(S,Y), then a*(x) is detected by P (x).
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CHAPTER 6 MOTIVIC HOMOTOPY THEORY

In this chapter, we use the framework in Chapter 2 and Chapter 3 to construct unstable

motivic homotopy theory and stable homotopy theory respectively.

6.1 Unstable motivic homotopy theory

Let S be a quasi-compact and quasi-separated scheme. Let Smg be the category of
finitely presented smooth S-schemes. Note that this category is essentially small, so we
may regard Smg as a small co-category category.

Construction 6.1: Given a small co-category C with finite coproducts. Let Ps(C) C
P(C) be the full subcategory of presheaves that transform finite coproducts into finite
products. By the Yoneda embedding, Ps(C) is generated by C under sifted colimits
(roughly speaking, sifted colimits are the combination of filtered colimits and reflexive
coequalizers, see!6°1).

Lemma 6.1: Let C be a small co-category that admits a final object and finite coproducts.
Then the Yoneda embedding C, < P5(C). can be extended to an equivalence Ps(C,) =
P=(C)..

Definition 6.2 (Nisnevich topology): Given a quasi-compact and quasi-separated
scheme X, Nisnevich covering of X is an étale covering {U; — X} such that the étale maps
are jointly surjective on k-points for every field k. The Grothendieck topology generated
by Nisnevich coverings is said to be Nisnevich topology.

We let Shv,,;s(Smg) © P(Smg) be the subcategory of Nisnevich sheaves i.e. the
Nisnevich-local objects. Note that a presheaf F is Nisnevich local if for any Nisnevich

covering U, — X in Smg, we have the following equivalence
iy T =T
where C, (U.) is the Cech nerve associated to the Nisnevich covering U, given by
Co(U) = U, Xy -+ Xx U,

the iterated product of n + 1 copies of U,.
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Proposition 6.1: Nisnevich sieves on X are generated by the following cartesian square

V—>Y

Loob

v —sx
where p is an étale morphism and j is an open immersion such that (Y\V);eq = (X\U)eq is
an isomorphism. Such a square is so-called a elementary distinguished square. Therefore,
a presheaf is a Nisnevich sheaf if and only if it send each elementary distinguished square
to cartesian square.
Proof: See!371Section 3 Proposition 1.4 n
Definition 6.3: A presheaf F € P(Smy) is A-invariant if for any X € Smyg, the natural
map F(X) - F(XxA?) is an equivalences. Let the subcategory of A-invariant presheaves
denoted by P41 (Smyg).
Construction 6.4: The co-category H (S) of motivic spaces over S is defined by

H(S) = Shv,;s(Smg) N Py1(Smg) € P(Smg)

Note that Shv,;s(Smg), Pa1(Smg) and H(S) are reflective subcategories of P (Smyg),
since they are closed under colimits (here we use Theorem 2.5 implicitly). Therefore
we have localizations L,;g, Lg1 and L,,,+ respectively. A morphism in P (Smyg) is said
to be a Nisnevich equivalence (resp. Al-equivalence or motivic equivalence) if Ly;s(f)
(resp. La1(f) or L,o¢) is an equivalence.

Similarly, we can construct co-category of H, (S) pointed motivic space by working

on P(Smg, ).

6.2 Stable motivic homotopy theory

Construction 6.5: Note that H,(S) is a presentable symmetric monoidal co-category.
Let T be the set of Thom spaces over S. The motivic stable homotopy category SH (S) is
a presentable symmetric monoidal co-category obtained by inverting P3.
Recall that if V is a vector bundle over a scheme S, the Thom space Th(V) € H,(S)
is the motivic space defined by
Th(V) =V/(V\0) = P(V @ Ag)/P(V),

and we may also write it as SV. The functors X" and QY are defined by

(=) :=8S"A(-), QY(-) = Hom(S",-)
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Proposition 6.2: 671249 1f P! is invertible, then any Thom space over S is invertible.
Let C € CAlg(Pr) and J be a set of objects in €. For any finite subset | =
{X1,,Xp} © J, we denote @I = X; ® -X,,. The formal inversion with respect to
J is given by
17 — ol -1
€197 = eplime[(QQ) ]

I finite

Corollary 6.1: Let T be the set of Thom spaces over S, then
SHS) = H.(H[T].

The unit object in SH (S) is denoted by 15 and we may also call it the motivic sphere

spectrum over S.
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CHAPTER 7 MULTIPLICATIVE COHERENCE IN
MOTIVIC HOMOTOPY THEORY

In the study of field extensions (especially separable field extensions), norm maps
usually encode massive arithmetic information. The most significant results are about
the class field theory, which indicates how norm maps characterize the Galois groups.
Actually, norm maps are kinds of “multiplicative averaging” with respect to the Galois
group action. Recall that given a finite Galois extension L/K with Galois group G, the
norm map is given by

Nyk:L-K, x'—>1_[0(x)

o€G
This is a multiplicative map i.e. Ny x(xy) = Np/x(Xx)Np/k(y) clearly and this is well-
defined according to the fundamental theorem of Galois theory since [[ ;¢ o(x) is invari-
ant under the action of G.

This section intends to study this idea in the context of motivic homotopy theory,
based on the joint work of Bachmann and Hoyois!?!. Specifically, the corresponding is

given in the following table. By taking the residue field for each stalk of the right column

field theory scheme theory
fields quasi-projective smooth schemes
finite separable extensions finite étale morphisms

of this table, we exactly have the left column. Moreover, every motivic space can be
written as a sifted colimit of quasi-projective smooth schemes, so we believe the notion
of norms in motivic homotopy should be a good generalization of the classical norms in
field theory.

In Section 7.1, we study the notion of Weil restrictions when dealing with push-
forwards. If we consider the Weil restriction for a finite separable extension, we will see
how multiplicative averaging performs on schemes explictly (see Remark 7.1), which is
very similar to the classical notion.

In Section 7.2, we introduce how Bachmann and Hoyois construct norm functors for
motivic spaces and motivic spectra. Norms in motivic homotopy theory are symmetric

monoidal functors that generalize the notion of norms for finite Galois extensions of fields.
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They are constructed for any finite locally free morphism of schemes, and they relate the
pointed unstable motivic homotopy category over the source scheme to that over the target
scheme. When the morphism is finite étale , they also stabilize to functors between the
stable motivic homotopy categories over the source and target schemes.

In Section 7.3, we briefly show how the norm functors are compatible with other
operations. After that, we introduce the notion of normed motivic spectra in Section 7.4
and roughly speaking it turns out to be a motivic spectrum that can be parametrized by
finite étale morphisms coherently. If we only take the trivial projections in these finite
étale morphisms, then the notion of motivic normed spectra (resp. motivic incoherent
normed spectra ) is very similar to the notion of E,-ring spectra (resp. H,-ring spectra).
From this viewpoint, we can see why a normed spectrum is an enhanced motivic [E,-ring
spectrum. Recall that May’s [E,-ring spectra have a monadic interpretation derived from

E-operads. We also have a monadic interpretation for normed spectra.

7.1 The Weil restrictions

Definition 7.1: Given a morphism ¢ : S’ — S of schemes and an S’-scheme X', we have

a presheaf on Schg given by

Ry X':T - X'(T X5 S')
If the presheaf R, X" is representable by an S-scheme X, then X is defined to be the Weil
restriction of X’ along ¢.
Example 7.1: Let L/K be a finite Galois extension with Galois group G, let VV be a L-
scheme and W be a K-scheme. Note that W can be viewed as a L-scheme naturally. Let
p: W — V be a morphism between L-schemes. Then we have

[Jorw-[ s

o€EG o€EG

given by w = (6*"p(W))s+eg, Where Vs is the image of V under the functor ¢*: Sch; —
Schy. If the morphism [, op is an isomorphism, then W is the Weil restriction of V
along the field extension SpecL — SpecK, see081Section 1.3

Remark 7.1: These examples essentially come from the theory of Galois descent. Let

K'/K be a finite separable extension, let X’ be a quasi-projective K'-scheme, and let L /K
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be a finite Galois extension that contains K'. Let
X = 1_[ X" Xy ; Spec(L)

JK'oL
where the product runs over all embeddings K' — L over K. Then, for ¢ € Gal(L/K),
there exists an isomorphism ¢ : X = X over Spec(L) given by id X ¢, such that
X, {0s}oecai/k)) is an effective descent data, giving the k-scheme Ry /x (X). Com-
pared to norm maps in field and Galois theory, it is reasonable to regard Weil restrictions
as a kind of norm map for schemes.
Example 7.2: Given a finite field extension L/K of order d. If we specify a K-basis
{e1,+,eq} of L, then for an affine L-space A]' = SpecL[xy, -, xy], the Weil restriction
Rk (A}) is given by

SpecK[y;;] = AR?
Similarly, we have an analogous result for projective spaces.
Proposition 7.1: If VV admits has the Weil restriction (W, [[,¢; op) as above, then
either a Zariski-open L-subscheme of VV or a closed L-subscheme has its Weil restriction.
Proof: Seel68ISection 1.3 n
Theorem 7.1: Letp: T — S be a finite locally free morphism between schemes, and X
a quasi-projective T-scheme. Then the Weil restriction R, X exists and is quasi-projective
over S.
Proof: See!691Section 7.6, Theorem 4 n
Remark 7.2: We need to require that the morphism should be finite locally free, because
we need to basis affine-locally, as we do in Example 7.2.
Proposition 7.2: Let E be an arbitrary scheme and X € Smp. Suppose there is a finite
locally free morphism p : E = B. R, X is smooth over B whenever the Weil restriction

exists.

7.2 Norms for motivic spaces and spectra
We intend to construct the multiplicative norm functor
Pg: H.(T) = H.(S)

and its stable version for an integral and universally open morphism of schemesp: T — S.
and we expect it to satisfy the following properties:

(1) The smash product should be preserved by pg).
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(2) Sifted colimits should be preserved by pg.

(3) p. should be extended by pg i.e. pg(Yy) = (p.Y)4 for Y € Smy.

(4) pg should be the n-fold smash productif p: S X {n} — S is the trivial projec-
tion (we may also write it into a fold map S"" — ).

Since we have already had a good description of p,, at least for quasi-projective
smooth schemes. We just need to deal with two issues

(1) Extend p, from non-pointed case to pointed case at the level of presheaves.
More specifically, we need to extend it to a functor Ps(Smy), e, Ps(Smg), such that
the requirements are satisfied;

(2) Verify that the extension preserves motivic equivalence.
The second issue is relatively easier, because we have the following proposition.
Proposition 7.3: [?! Given an integral morphism p: E - B of schemes, Nisnevich and
motivic equivalences are preserved by the functor Ps(Smg) i Ps(Smp).

Here we need to require the morphism to be integral because integral morphisms are
direct limits of finitely presented morphisms. In this way, we can reduce the case to finite
morphisms and further to finite field extension stalkwisely.

Now we just need to deal with the first issue. Note that Property 2 and Property 3
should determine pg, since P5(Smr), is generated under sifted colimits by objects of the
form X, . However, there is an obstruction on the way to the pointed cases: some maps in
Ps(Sm)r may not come from the functor X — X, . For example, f: (X UY), — X, that
collapse Y to the base point cannot come from any map X U Y — X. Therefore, the key
point is how we define such p,(X UY), = p,(X),.

Here we specialize the case to the case where X,Y € Smy. Then for any U € Smg,
we decode the items:

(D p,(XUY),(U)=Smp(UXs T, XUY),;

(2) p.(X)y =Smp(U X T, X) 4;
Forany s: U Xg T — X U Y, how should we define pg (f)(s) € p.(X)? Notice that we
should collapse the part s|s-1(yy: s71(Y) - Y according to the definition of f.

N

UxsT S XUy
\L:ollapse the “cross terms”
UxsT —s 1Y) S X

However, the bottom arrow is not an element in p, (X ) (U) evidently, which is regarded as a

“cross term” in p, (X) (U). To make it more clear, we need to separate s|g-1(y) sTHY) -

67



CHAPTER 7 MULTIPLICATIVE COHERENCE IN MOTIVIC HOMOTOPY THEORY

Yfroms: UXgT - XUY inp,(X UY),(U) by decomposing the presheaf p,(X UY),.
Definition 7.2: A relatively representable morphism is a morphism Y — X in P(Smy)
is such that the presheaf I Xy Y is representable whenever V — X for some V € Smy.
Lemma 7.1: For any coproduct decomposition X = X; U X, in Ps(Smg), the natural
inclusion X; © X is relative representable.

Proof: Let j;: X; = X be the natural inclusion for each i = 1,2. For any Y € Smyg, by

the universality of colimits, we have Y = Y; U Y,, where
Y=Y Xy X;fori=1,2
Recall that O(Y) = Homg,, (Y, A1). Then we can decompose the ring of functions of Y
into
Homyg,, (Y, A') = Homg,, (Y; U Y, A') = Homg,, (Y1, A') X Homg, (Y2, A)
By reducing the case to affine cases, we can decompose Y into two clopen subsets that
represents Y; and Y, respectively. ]

Construction 7.3: Let Y, ..., Y, — X be relatively representable morphisms. For U €

Smyg, let
D (X|Yq, ., Vi )(U) :={s: U Xg T - X | s71(Y;) - U is surjective for all i}

where s71(Y;) — U is given by the middle vertical composition of arrows in the following

diagram.
sTHY) — Y

!
T <—— U i T —=3 X
b
S&———U
Note that p,(X|Y;, ..., Yx) is a subpresheaf of p*(X). If X € Ps(Smy),represents

p«(X|Yq, ..., Yi).
Lemma 7.2: Given a universally clopen morphismp : T — S, Y € Ps(Smy), with
relatively representable morphisms Z4, ...,Z, — Y, for every coproduct decomposition
Y =Y'UY"in Py (Smy), there is a decomposition

P(YZ1, s Zi) = 0 (Y'|Z1, o, Z) Up (YY", Zy, .., Zi)
in Ps(Smg), where Z; = Z; Xy Y'.

Proof: First, we reduce the case to k = 0:
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(1) Let¢: p,(Y") U p.(YY") = p.(Y) be the morphism induced by the inclu-
sions.

(2) Note that p,(Y'|Z1, ..., Zy) = p.(X") N p.(Y|Z4, ..., Zy).

(3) Note that p, (YY", Zy, ... Zx) = 0. (YY) N p.(Y|Z4, ..., Z).

(4) Consider the following cartesian square

p. (Y24 s ZY U (YY" Zey s Z) ———— De(Y|Z1s e Zi0)

¢

p.(Y) up.(YIY")

(5) We just need to show ¢ is an equivalence.

> P (Y)

Then we specialize to the case k = 0, and show ¢ is a monomorphism:

(1) p.(Y') Xp, vy P (Y|Y"™) has no sections over nonempty schemes, because Y’ N
Y'"=0@inY.

(2) Hence p.(Y') X, vy p«(Y]Y") is an initial object of P5(Smg), which means
that ¢ is an equivalence by the universality of colimits. In particular, ¢ is a monomor-
phism.

It remains to show that ¢ is objectwisely an effective epimorphism:

(1) Letpy : U Xg T — U be the morphism parallel to p: T — S in the evident
cartesian square.

(2) Given U € Smg and s € p,(Y)(U), we will decompose U according to these
data.

(3) LetU' ={y e Ul pyt(x) cs 1 (Y}

(4) Let U” be the complement of U’ in U, and U" = py(s~1(Y")), which is a
clopen subset of U.

(5) The image of the restriction s|y7: U' = Y isin Y', according to the construc-
tion. Hence 5|y € p.(Y')(U') and we have U’ — p,(Y").

(6) s71(Y") > U” is surjective, according to the construction. Hence s|;s €
p.(Y)(U") and we have U" — p,(Y|Y").

(7) Combine these coproducts together to define a section
U=U0"uU"-p(Y")Up.Y|Y"

which is a preimage of s by ¢y.

69



CHAPTER 7 MULTIPLICATIVE COHERENCE IN MOTIVIC HOMOTOPY THEORY

Remark 7.3: The proof of the surjectivity is the essential part, where we notice that the

decomposition

p(Y) up.(YIY") =p.(Y)
essentially encodes the decomposition of each section s: U = p,(Y)

U

U ——uv'uy" <—U"
! | !
p(Y) —> p.(Y) U (YY) <— p(Y|Y")
s
p.(Y)
We may conclude that s: U — p,(Y) is in p,(Y|Y") if and only if the corresponding map
UXgT - Xcanbeliftto U Xg T — Y — Y” along the inclusion Y" & Y. If we let
f:Y, > Y] collapse Y" to the base point, the right vertical arrow U" — p,(Y|Y") can be
interpreted as the “cross terms” that should collapse. Therefore, we can see how p(Y|Y")
packs the ““cross terms”.
Example 7.3: Given a universally clopen morphismp: E — B andletY,Z € P5(Smg),

we have the decomposition
p.(Y UZ) =p.(@) Up. (YY) Up.(Z]Z) up.(Y UZ|Y,Z)

Theorem 7.2: Given a universally clopen morphism p: T — §, there is a unique sym-

metric monoidal functor
Pg: Pz(Smr), - Ps(Smg),

such that

(1) sifted colimits are preserved by pg;

(2) there is anatural equivalence pg (X4) = p.(X), between symmetric monoidal
functors;

(3) forevery g: Zy — Y, with Y, Z € Pg(Smy), the map pg (g) is the composite

p.(Z)4 = p.(g (V)1 D p. (1)

by collapsing the part p,(Z|Z \ f~1(Y)) to the base point.
(4) Nisnevich and motivic equivalences are preserved by pg whenever p is inte-

gral.
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Proof: [2]Theorem 3.3 . n

Proposition 7.4: If p: SY" - S is the fold map, then
P Ps(Smgun). = (Pz(Smg).)" - Ps(Smg).

Proof: Note that the n-fold smash product preserves sifted colimits, it remains to check
that the smash product has the functoriality described Theorem 7.2 (3).
We may reduce the case ton = 2. Let iy, i5: S © SUS be the two natural inclusions.

Then the equivalence Ps;(Smg;5). = Ps(Smg), X Ps(Smyg), is given by
F v (iiF,i5F)
Our goal is check that F + i;F A i;F satisfies Theorem 7.2 (3). Let f: Y, —» X, be a

morphism in Ps(Smg), with X,Y € Py(Smg). Let U € Smg and U Xg SH2 = U L U. We

consider the diagram

HY(U): AGY(U)4

YU LU), — % @GYU) X 1Y (U))s (@1, a2)
[ | )
XU UV, — (X U)X 5XU)); flar @)

EXU)L ABXU)4
We just need to check that f(aq,a,) = = if and only if (aq,a;) € p.(Y | f71(X)).
By taking the right adjoint images of @ : U — ijY and a, : U — i;Y, we have a map
i1.U Ui, U = U UU - Y that represents (aq,a;). Then f(aq,a;) = * if and only if
there is a lifting
Y\ f1(X)
T l
vulu — Y,
if and only if (ay, a3) € p.(X|Y \ f~1(X)) by Remark 7.3. n
Definition 7.4: Let p: T — S be a morphism of schemes, let X € P(Smy), and let
Y c X be a subsheaf. For U € Smg, let

p-(X||Y)(U) ={s: U Xg T = X | s sends a clopen subset covering U to Y}.

Note that p, (X||Y) < p.(X), and it is in Py whenever X and Y are.
Proposition 7.5: Given a universally clopen morphismp: T — S, X € Ps(Smy), and
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a subpresheaf Y C X in Py, there is a natural equivalence

pe(X/Y) = p.(X)/p.(XIIY)
in Ps(Smg)..
Proof: Sece [2]Proposition 3,7. n
Proposition 7.6: Let p : T — S be an integral universally open morphism, let X €

Ps(Smy), and let Y < be an open subsheaf. Then there is a natural equivalence

in Shv,;s(Smg)..
Proof: See [2]Corollary 3.11 ) n
Proposition 7.7: Given a finite étale morphism, p: T — S, X € Smg, and a closed
subscheme Z c X, if the Weil restriction R, X exists, then
X R, X
) =t
X\Z R,X\R,Z

Ifp: T - Sis a finite étale and V — T is a vector bundle, its Weil restriction

P (

R,V — § has a canonical structure of vector bundle (stalkwisely, it is Example 7.2).
Proposition 7.8: Given a finite étale morphism p: T — S, a vector bundle V over T,
we have pg (SV) = SRV in H.(S).

Proposition 7.9: Given a finite étale morphismp: T — S, the functor X, pg : H.(T) —

SH (S) has a unique symmetric monoidal extension
pg: SH(T) > SH(S)

preserving sifted colimits.

Proof: Since pg does not necessarily preserve colimits, we cannot use the universal
characterization in Construction 6.5 directly. We borrow [2llemma 4.1 ¢4 revigse the universal
property and the result follows. ]

Remark 7.4: Letp: T — S be finite étale morphism and let E € SH (T). Then we have
Pg(E) = colim Z_RPAanp@, (Ep)
n

where E,, is the nth space of E and E = colim,, A" £°E,,.

7.3 Properties and coherence of nhorms

In this section, we mainly introduce how the multiplicative norm functors interact

with other operations coherently.
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Proposition 7.10 (Composition): Given two universally clopen morphisms f: F —

E and g: E — B, there is a symmetric monoidal natural equivalence

9Ne = 9ofe: Pe(Smp). = Ps(Smg). - Py (Smg)..

Hence, the same result holds in H, (resp. in SH) if f and g are integral and universally
open (resp. are finite étale ).
Proposition 7.11 (Base change): Given a pull-back square of schemes as follows
T 23T
q\L \Lp
S’ ﬁ S
where p is universally clopen. Let C € Smy be a full subcategory and let X € Ps(C)..
Suppose either of the following assertions is true
(1) f is smooth;
(2) the Weil restriction R, U is a smooth S-scheme for every U € C,
Then there exists a natural equivalence Ex% Ff'pe(X) = qgg” (X). In particular, if p is
finite étale (resp. finite locally free ), then there is an equivalence Ext® P~ 9e9”
equivalence in SH (resp. in H,).

Remark 7.5: By taking adjunction for Exg: f*pg = qgg*, we have

Exg«: Podx = filde

If f is smooth, we also have

Exy: fade = P J#

Given a finite locally free morphism p : T — S and a quasi-projective morphism

h: Q = T, we have the diagram
q
Q £ RyQxsT — RyQ
\ \Lg \Lf
T—2 35
where e is the counit of the adjunction (p*, p.), q and g are the canonical projections, and

f =Ry (h). Then we define

EX#*

. " . €
Disy. : f#Q*e — b. gz — p*h#= QPU - QPS

Furthermore, we consider

. . EX#® L P
Disyg: fadge” — pogse” g hu
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) U « EX@x X
Disg.: pgh. = pgg.e” — f.qge

To organize these properties and their coherence more efficiently, we introduce the notion
of spans.
Definition 7.5: Given a category C with two classes of morphisms L and R such that

* they all contains equivalences,

* the pull-back of any arrow in L (resp. in R) along any arrow in R (resp. in L) is
still in L (resp. in R),

* they are closed under compositions,
we construct a new oo-category Span(C, L, R) whose objects are objects in € and mor-

phisms are of the form
f g
o &— 0o — o

where f € L and g € R. The composition is given by pull-back.

Let S be a scheme. We write C Cy Schg if C is a full subcategory of Schg that
contains S and is closed under finite coproducts and finite étale extensions. We denote fét
the class of finite étale morphisms.

Definition 7.6 (Normed co-category): LetS be a scheme and C Cg Schg. A normed

co-category over C is a functor
A: Span(C,all, fét) - Catyy, (X & ¥ D 2) o pof,

preserving finite products. IV is said to be presentably normed if:
(1) N (X) is presentable for every X € C;
(2) h* : V(X)) » N(Y) has a left adjoint hy for every finite étale morphism
h:Y - X;
(3) f*: N (X) = N (Y) preserves colimits for every morphism f: ¥ — X;
(4) for every pull-back square
v L5y
s
X' ﬁ X
where h is a finite étale morphism, there an equivalence
Exy: hyg™ = f hy: N(Y) > N (X")
as an exchange transformation;

(5) pg: AY) — A(Z) preserves sifted colimits for every finite étale morphism
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p:Y > Z;
(6) for every diagram
U<~ R,UxsT ——% RU
x \Lg \Lf
T % S

where p and h are finite étale morphisms, there exists an equivalence
Disyg : faqge” = Pohs

as the distributivity transformation .

Example 7.4: In this example, we will construct the functor
SH®: Span(Sch,all, fét) » CAlg(Caty,), § - SH(S), (U £ T B §) o pef*

which will form normed categories. Note that 7 (S) is generated by SmQP under sifted

colimits. Our construction is decomposed into the steps

SmQP;, w P5(SmQP), w» H.(S) = SH(S)

7.4 The category of normed motivic spectra

Recall thatif A : C — Cat is a functor classifying a cocartesian fibrationp: € - C,
a section of A is a section s: C — &£ of p. More specifically, for any ¢ € C, s(c) is an

object in A (c). We write
fc/l = £ and Sect(A) = Fune(C, E)

Definition 7.7: LetS € Schand C ¢, Schg. A normed spectrum over C is a section of
SH® over Span(C, all, fét) that is cocartesian over C°P. An incoherent normed spectrum
over C is a section of hSH ® over Span(C, all, fét) that is cocartesian over C°P.

The full subcategory of normed spectra over C is denoted by NAlg.(§H) <
Sect(SH® | Span(C, all, fét)). The frequent choices of C are Smg, Schg and FEtg. For
convenience, we write NAlgg (SH'(S)) instead of NAlgSmS (SH).

Roughly speaking, a normed spectrum E over C is to assign Exy € SH (X) for any
XC and pgf*Ex — Ez in SH(Z) for any span X L Y 2 Z. Note that by full-back,
we have that f*Ey = Ey naturally. Therefore, the extra data for an (incoherent) normed
structure is a spectrum E € Sch(S) equipped with a parametrized multiplicative transfer

Up : PoEy — Ey for any finite étale morphism p : V' — U in C such that the following
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coherence conditions are satisfied.
Condition 7.8 (Coherence conditions for incoherent normed spectra): (1)
Uy is an equivalence when p is the identity;

(2) The square with two arbitrary composable finite étale morphisms q: W — V
andp:V ->UinC

PQU
PedxEw 4 P Ev

:l lup

PO Ew —— Ey

Hpq

commutes up to homotopy.

(3) for every pull-back square
v sy
q\L \Lp
U’ ﬁ U
in C where p is a finite étale morphism, the following diagram

f*llp

f'peEy —— fEy
49 Ey ~

|

a@Eyr ——— Euv
commutes up to homotopy.

In particular, these coherence conditions imply that u), : pgEy — Ey is homotopi-

cally equivariant for the action of Aut(4/U) on pgEy. Thus we have

Up: (p®EV)hAut(V/U) - Ey

Basically, the multiplicative coherence data for a normed spectrum over C Cg, Smyg is
parametrized by C N FEts.
Proposition 7.12: Suppose S is a scheme and C Cg; Schg.

(1) The oo-category NAlg.(SH) — SH (S) admits all finite limits and colimits.
If C is a small co-category, then NAlg,(SFH) is presentable.

(2) The forgetful functor NAlg.(SH) — SH(S) is conservative and preserves
sifted colimits and finite limits. If C € Smy, it preserves limits and hence is both monadic.

Proof: Sece [2]Proposition 7.6 . n
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Remark 7.6: The forgetful functor NAlg(§H) — SH(S) has a left adjoint NSym,, :
SH(S) - NAlg.(SH). When C = Smg or C = FEtg, we have that
NSym(E) = colim fypg (Ey)
p:Y—X
where the indexing co-category is the source of the cartesian fibration classified by C°P —
S, X v FEty. Therefore the motivic norm structure on a spectrum E € SH(S) can be

exhibited as
NAlg. (E)-E

The monadic argument can be found in[?/Section 7.1,16:4
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CHAPTER 8 MOTIVIC EXTENDED POWERS AND
OPERATIONS

In this chapter, our main goal is to study how norms in motivic homotopy can derive
motivic power operations, following Bachmann, Elamnto and Heller?!.

* The first section introduces the notion of motivic colimits to study the free norm
monad further.

* The second section shows that the free norm functors are essentially extended
power in the context of motivic homotopy theory via motivic colimits.

* The third section introduces some equivariant motivic homotopy theory, which we
provides us with more computable tools.

 The fourth section explains the extended powers from the viewpoint of equivariant
motivic homotopy theory. One may recall how power operations in ordinary cohomology
are derived from this viewpoint in Remark 4.4.

* The fifth section shows how we use all the previous notions and constructions to

construct motivic power operations.

8.1 Motivic colimits and the fundamental diagram
Given a functor
C: Smy - Cate

such that
* If py: X = S € Smg be the structure map, then C(px) : C(S) — C(X) has a left
adjoint py.
* The category C(S) is cocomplete.
Let (Smg) j¢ = Smyg be the cartesian fibration classified by C, i.e. objects in (Smg) /¢ are
pairs (px: X = S € Smg, E € C(X)). Then we construct a functor
M, : (Sms)//c — C(9)
(X,E) — pxsE

From a more conceptual perspective, let

Mg : C(S) = (Smy) e
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be a standard inclusion, since the fiber of (Smg) ¢ = Smyg over S can be identified with
C(S), M, is a left adjoint of MY.

Since C(S) is cocomplete, we may extend M, to a cocontinuous functor
M: P((Smy) je) = C(S5)

The category P ((Smyg) j¢) is too large, so we need to restrict it to some reasonable
subcategories. Since an co-groupoid is a Kan complex, we may regard C~ as a presheaf
of space on Smg. Then we let P(Smyg) /¢~ be the slice category over C~ and let (Smyg) /¢
be the restriction of representable presheaves for P (Smyg) /¢c=~. Besides, (Smg) /¢ = Smg
is a cartesian fibration classifying X — C(X)~ and P(Smg) e~ =~ P((Smg)/e~). The
inclusion (Smg) /e~ = (Smg) /¢ induces P ((Smg) /e~) = P((Smg) ¢)-

Definition 8.1: The motivic colimit functors for C are the compositions
M
P((Smg) ye) — C(S)

P(Sms) = = P((Sms) e=) ~P((Sms)je) = €(S)
Remark 8.1: We may view C as oo-categories parametrized by Srngp and PSmg /e can
be regarded as to assign a diagram Fy — C(X) for each X € Smg. From this point of
view, a motivic diagram is to parametrize diagrams by Smgp and a motivic colimit functor
encodes the colimits of the parametrized diagrams with coherence in the initial category
C(S).
Example 8.1: Recall that we have a pair of adjunction

c:§ = P(Smg):T

where ¢ sends a space X to a constant presheaf on Smg with value X and I' is the global
section. Now given a space X with ¢X' - C= € P(Smg),s~, which is equivalent to a

functor
a: X - C(S)
Then one may find
M(a) =~ co)lclm a

Example 8.2: Given X € Smg with the structure map py : X — S. By the Yoneda
embedding, we may take X as a discrete presheaf hy, and E € C(X) is classified by

E: hy — C. According to the definition, we have

colimE = pyxE
hx
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More generally, let (X 5e ) € P(Smyg) ¢. First, we may write

X = colim  hy
(X,x)E(Sms) yx

where X € Smg and x: hy — X (or equivalently x € X' (X)). Then we have

a aox
X —-0) = colim hy — C
( ) (x,x)e<Sms)//x( X )

and consequently

a
M(X > C) = colim X - X)sa(x
(X =€) = solim (X = X)pa(x)

where a(x) € C(X) is represented by hy “e.

Example 8.3 (The motivic Thom spectrum functor): Let (Smg),/s3y — Smg
be the cartesian fibration classified by SH : Smgp — Cat,. Note that the objects in
(Smg) /53¢ are pairs (f : X > § € Smg, Y € SH(X)). The motivic Thom spectrum

Sfunctor
Mg: P((Smg),/s3¢) = SH(S)
is the colimit-preserving extension of

(Smg) /53 — SH(S)
(f:X->SpeSHX)) — fyP
Here we take SH as C in the setting. Let Vect € P (Smg) be the functor that assign to X
the nerve of the groupoid of vector bundles over X, denoted by Vect(X). Then by taking

the Thom spaces, we obtain a symmetric monoidal functor
Vect(X) = SH(X), & - §¢

Since S*% is invertible in S# (X) according to the definition of the motivic stable homotopy

category, we may extend it to a natural transformation
j:K® - SsH
by taking group completion. Let Gr,, be the infinite Grassmannian and let y : Gry, — K°
be the map whose restriction to Gr,, classifies the tautological bundle minus the trivial
bundle of rank n. Then we have
MGLg = Mg(joy: Gro, » SH)

More details can be found in[2Section 16,
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Next, we study how motivic colimit functors interact with multiplicative transfers.

Smg” — Span(Smg, all, fét)
\LC )/
c®
Cat,,

Let FEty be the groupoid whose objects are finite étale morphisms f : X — Y and
morphisms are isomorphisms. Then FEt™ : X — FEty will form a presheaf on Smg. We

construct
N: P(Smg) jppe= X C(S) = P(Smg) e
informally given by

(X - FE,E € C(S)) = (X - €) € P(Smg) ¢

~ NE(Y)
where X (Y) - FEty —— C(Y) and

Ng(Y) : FEt;, — C(Y)
USY) = peky
Recall that given a small co-category D, the Grothendieck construction gives an equiva-

lence

f : Fun(D, Cat,,) = Carty,

P t
where Carty = C’atfjr/p is the category of cartesian fibrations over D. We let
Funy™ (€1, E;) € Funp(Eq, &)

be the full subcategory on the functors over D that preserves cartesian edges.
Example 8.4: Let h: D — Fun(D,S) c Fun(D, Cat,,) be the Yoneda embedding,
ie. hg(—) := Map,(—,d) for d € D. Through the Grothendieck construction, the
corresponding cartesian fibration

.]- hd =D /d -D
is given by the slice category D 4.
Lemma 8.1: For any d € D, evaluation at (d, id) defines an equivalences

Fun®ar( j hy, &) = &,

where £ is the fiber over d.

Proof: See!70lLemma25.7 ]
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Construction 8.2 (Fundamental diagram): First, we identify

C(S)=F ung‘;r;n (Sms,fétall) ( j hg, Span(Smyg, fét, all) /¢)

using Lemma 8.1. Then by restriction Span(Smyg;, fét, all) to Smg, we have

F ungi‘)r;n(sm&fét’an)( f hg, Span(Smyg, fét, all) y¢) - F ungarflts ((Smg) JFEC (Smg) s¢)

Span(Smg,fét,all)

The cartesian fibration

hg = Span(Smyg, fét, all)
Span(Smg,fét,all)

classifies X — {Y Ex ER S} where p is a finite étale morphism and f: X — S is in Smg.
Then by restriction to Smg, the value of [ hg at X — S is exactly FEty. Combining all

these morphisms together, we have
N(;r’ c(S) - Tung?;;((sms)//FEtzl (Sms)//e) c Tun((sms)//FEt:' (Sms)//e)

By taking adjunction, we have

No: (Smyg) jpge= X C(S) = (Smyg) e
The composite

P(No)
N: P(Smg) /g X C(S) = P((Smy) ypge X C(S)) —— P((Smg) ye)
takes values in P (Smyg) s¢. The functor
N
P(Smyg) ppe= X C(S) — P(Smg) se

is defined to be the fundamental diagram.
Remark 8.2: By the construction, N is cocontinuous functor in the first variable. Then,

in analogy to Example 8.2, we may write @: X — FEt™ =  colim  (hy — FEt),
(X, x)E(Smg) yx
where @ o x can be identified as (pgoy : U = X) € FEty. Then we have

N(a,E € C(S)) = colim X, Dyo Ey)).
( () = Solim (X, Pasee (Eo)

8.2 The generalized motivic extended powers
Lemma 8.2: For any scheme S, we have a canonical equivalence
FEt™" |smg = BgZy € P(Smy).

Proof: Let BTorsg(Z,) be the motivic space associated to the presheaf on Smg that
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assigns to U € Smyg the nerve of the groupoid of étale G-torsors on U and sends f :
U’ = U to the associated base change pull-back. According tol7!1Proposition 36 “there js g
motivic equivalence BgZX, > BTorsg(Z,,). Then the result follows from the standard
correspondence between étale X,,-torsors and finite étale morphisms of degree n!7216:1:3)

]
Definition 8.3: Suppose that C(S) admits small colimits. The generalized motivic ex-

tended power functor is defined as the composite
N M
Dg"é%t‘ P(Smg) jpge= X C(S) — P(Smg) je — C(S)

We adopt the following notation:
(1) For X € P(Smg) /pp,= fixed, we denote the functor DI (X, =) by

Dot C(S) - C(S);

(2) if X = FEt™", the stack of finite étale morphisms of rank n, we denote the

functor DI*°* by
Dot €(S) - C(S);

(3) if G - I, is a group homomorphism, and X € P(Smg) /g is given by the
composite B4G — ByZ, = FEt"" & FEt", then we denote DJ*°¢ by

DIt c(S) - C(S)

(4) if BG is the constant presheaf, then there is a canonical map BG — BX, —

B4ZX,,, and we put

D* =: DReve: C(S) - C(S),
and in particular

D;”Z‘Zf =: DJI%Ve: C(S) - C(S).
Remark 8.3: According to Remark 8.2, we have that

mot — :
Dx (E) = (X,x)c‘g(lslnr%)//x Paox® (Ev)

where (pgox: U = X) € FEty is induced by hy 2%, FE{™ via the Yoneda lemma.
Example 8.5: If we let C® be SH® and let the motivic Thom functor fit in the motivic

generalized extended power, then we have

Dot (FEt, E) = NSymg, (E)
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by referring to Remark 7.6, Example 8.3 and Remark 8.2. We may split FEt™ ~ LIFEt™"
(a Ly-equivalence) in P5(Smg), and we have

NSym(E) = Dy, (B) = \ / Dot (B).

n=0

More details can be found in [2/Remark 16:27 5 g [3]Example 5.13
Proposition 8.1: The functor D29 : P (Smy) /e X C(8) = C(S) preserves colimits
in the factor P (Smyg) pp,~. If each of the functors f *, Pg preserves colimits of some shape
K, then Dg’%‘,’f preserves colimits of shape K in the factor C(S).
Proof: See[3/Proposition 5.1 n
Proposition 8.2: B! Let G » X, and H — X,, be group homomorphisms of finite
groups. Let H ! G = Z,,,,, correspond to the canonical of H ¢ G on {1,---,n} X {1,---,m}
with lexicographic order. Assume that C is a Zariski sheaf. Then there is a canonical
equivalence of functors DJ*°t o Dt ~ Dot

Proof: See [3]Proposition 5.28 . m

8.3 Equivariant motivic homotopy theory

Given a quasi-compact and quasi-separated scheme S and a finite group G, we denote
QPg the category of finitely presented and quasi-projective S-schemes with G-action. The
elements in QPg are called G-schemes simply. Let SmQPg be the full subcategory of
smooth schemes in QPg.

Definition 8.4: Suppose X is a G-scheme and x € X. The subgroup
Stab(x){g € G | g - x = x and idy () = 9"+ k(x) = k(x)}

is defined to be the stabilizer of x.
Definition 8.5: A family F of subgroups of G is a collection of subgroups such that
(1) If H € F, then any subgroup of H is in F;
(2) If H € F and H' is conjugate to H, then H' € F.
Example 8.6: The following families will be frequently used
(1) The trivial family Fy,.;, = {€}.
(2) The family of all proper subgroups Fy;.op-
(3) The family of all subgroups F,
If F is a family, we denote co(F) = F,; \ F.

Definition 8.6: Let F be a family of G. SmQPg [F] is the full subcategory of SmQPg
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defined as follows:
SmQP [F] = {X € SmQP{ | Stab(x) € F for any x € X}

Definition 8.7: Let f : U — V be an equivariant map in SmQPg. If Stab(v) =
Stab(f (v)) for any v € U, then f is a fixed point reflecting map.
Definition 8.8: Given a finite group G and a G-scheme X € SmQPg, a fixed point Nis-

nevich covering is generated by the following cartesian square

V—Y

L b

v—sx
where p is a fixed point reflecting étale map and j is an open immersion such that (Y \
rea = (X \ U)yeq is an isomorphism. The generated topology is so-called the fixed
point Nisnevich topology.
Proposition 8.3: Let G C SmQPg be a full subcategory such that for any B € Cg,
if E = B is an equivariant étale map, then E is also in Cs. With this assumption, the
Nisnevich topology on Cg agrees with the fixed point Nisnevich topology on Cs.
Proof: See!73Proposition 2.13 -
Remark 8.4: Given a family F of subgroups in G, the category SmQPg [F] satisfies the
assumption in Proposition 8.3.
Definition 8.9: (1) The category H ¢ (S) of motivic G-spaces is the full subcat-
egory of Nisnevich and Al-invariant sheaves in Ps (SmQPg). Note that we have the re-
flective localization functor L, ¢ : Py (SmQPg) — 4 (S). Similarly, we can define the
pointed version HE (S).

(2) Given a family F of subgroups in G, the category F ¢ (S)[F] is the full subcat-
egory of Nisnevich and Al-invariant sheaves in Py (SmQPg) [F]. Similarly, we can define
the pointed version HE (S)[F].

Definition 8.10: Suppose F is a family of subgroups in G. The universal F-space is the

presheaf on SmQPg
®, X & SmQP}[F]
EF(X) = G
*, X € SmQP¢[F]

In particular, we denote EG = EF¢, .
Proposition 8.4: Let F be a family for a finite group G. The presheaf E# is motivic

local and is represented by an ind-smooth G-scheme.

85



CHAPTER 8 MOTIVIC EXTENDED POWERS AND OPERATIONS

Proof: See!73IProposition 3.3, Proposition 3.7 .

8.4 Motivic extended powers via enhanced smash powers

Definition 8.11: The functor

(nzp,

D, : SH(S) s S7En(S) 2, SH(S).

If H c £,, is a subgroup, then we denote Dy the functor

_\yAn _
Dy SH(S) 2 SHE(S) » SHH(S) 2 s3(5).

Proposition 8.5: Letp: T — S be a finite étale morphism of degree n, and q: R — S

the associated X,,-torsor. Then we have an equivalence
PeP" = Ry Ay, (7)'%: SH(S) > SH(S)

Proof: Since these two functors are symmetric monoidal and preserves sifted, we just
reduce the case to SmQP,, — SH(S). Thus it remains to show that for X, € SmQPg_,

there is a natural equivalence
PeP X = XL = (R X5, X™)4.

Since both of them are étale sheaves, we may assume T = SU™ and R = § X X by taking
an étale cover, then both of the sides are X™. [}
Lemma 8.3: There is a canonical equivalence EG = colimgeg, ¢ R € Shv, (Smg).

Proof: First, we may write a presheaf as a colimit of representable presheaves
EG = colimR
R-EG
where R € SmQPg is a representable sheaf. According to Definition 8.10, we have that

colimR = colim R
R-EG RESMQPE [Feriv]

By specifying a faithful embedding G — X, the construction of EF,,;, [73IProposition 3.7

coincides with the geometric model of B, G [3715ection 4, Proposition 2.6 n

Proposition 8.6: There is a canonical equivalence between Dy and D/*°¢.
Proof: By decoding the definition of DJ7*°*(X), it is a motivic colimit parametrized by
BsH < BgX, = FEC™, According to Proposition 8.5, we have

Dot (=) = Lolim Ry As,, (=)™
éten
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By reducing to H, we have
Dmot ~ im R Mo~ EH Ao~ D
H ()—gggéltIHl + A (5)™F = EHy Ay (=)™ = Dy(-)

where the middle equivalence is given by Lemma 8.3. ]

8.5 Motivic power operations via nhorms

Given a normed motivic spectrum (or an incoherent motivic spectrum) E € SH (S)

and X € H (S), the E-cohomology space of X at degree (p, q) is given by
X & Mapg;e s, Z°X,,ZPIAE)

The associated E-cohomology group EP4(X) := ToMapg,. sy Z*X,,ZPIANE). We
Construction 8.12 (Power operations): Letp: T — S be a finite étale morphism of
rank n in Smg. Let E; = Q®E and by adjunction, E%%(X) = moMapy, s (X4, Eo).The

multiplication parametrized by p is given by
p®p* * * Hp *
Map(X,, Eg) —— Map(pgp* X+, Pgp Eq) — Map(pgp*X., Eo) = Map(W Az, (X.)", Eo)

where 1, : pop*Ey = Ej is given by the normed structure of E, W — S is a X,-torsor
corresponding to p: T — S, and the last equivalence is promised by Proposition 8.5.
Recall that Morel and Voevodsky constructed a geometric model for B4 G by using
admissible gadgets[3715ection 42 “Specifically, fixed a group embedding G — X, let U;
A™ be the free-action locus with respect to the diagonal action of A™ = (A™)!, and we

have an equivalence
Uy /G :=colimU; /G = B4G (8-1)
1—>00

where U; /G — BgG =~ BTorsg(G) (recalll71Proposition 5.6y ¢ the classifying map for the
natural G-torsor U; i) U;/G, and U; = U;,4 is a pointed natural inclusion of the first i
copies of A™. Let p;: T; = S be the finite étale map associated to f;: U; = U; /G, and we

have diagram

> Ti—q > Ti ? Tiyg — =
\( \Lp/
Di-1 Di+1

S

If we apply the procedure (8-1) for this diagram by taking G = Z,, exactly, then we will

have

Map(X,, Eg) = Map(Ue, As,, (X4)"%, Ep)
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If we let X, = S and replace Map by the internal motivic mapping space, then we have
the rotal power operation
Pn : EO - Hom(Béth, Eo)

Remark 8.5: Given a finite étale morphisms f : Q — S with the structure étale group
scheme G associated to f, we can define a total power operation twisted by Q as follows
PT: EO i Hom(BétG, Eo)

More details can be found in!?1Example

(U; X5 T) = S and transfer them via (U; X5 T) = U;/G.
Remark 8.6 (Comparison with Voevodsky’s construction on motivic power

. Roughly speaking, we just replace U;/G — S by

operations): Bachmann and Hoyois show that the motivic cohomology spectra HZg
is a normed motivic spectrum(?/S¢ction 14 = They decode the motivic spectrum in terms

of equidimensional relative cycles of dimension ([2/Lemma 14.17,

Meanwhile, Voevod-
sky constructs the total motivic power operations for mod p motivic cohomology spec-
tra by decoding and manipulating them in terms of equidimensional relative cycles,

too [38]Theorem 3.1

. It is natural to believe that power operations via norms on the motivic
cohomology spectra coincide with Voevodsky’s construction, by observing that both the
constructions intend to perform the following rough procedure:

(1) Take simplicial resolutions for the motivic spaces of equidimensional relative
cycles to make them accessible;

(2) Take a suitable auxiliary vectors;

(3) Mark the cycles on fibers so that we can parametrize by manipulating vector
bundles;

(4) Use Thom spaces or Thom compactification to bring the results back to the

context of motivic cohomology.

We will show the role of equidimensional cycles in the next chapter briefly.
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CHAPTER 9 MOTIVIC COHOMOLOGY AND ADAMS
SPECTRAL SEQUENCES

Motivic Adams spectral sequences are tools for computing stable homotopy groups
of motivic spectra, which are generalizations of topological spectra to algebraic geometry.
They are motivic analogs of the classical Adams spectral sequences in topology, which use
the cohomology of the Steenrod algebra to approximate homotopy groups. Motivic Adams
spectral sequences use the cohomology of the motivic Steenrod algebra, which depends
on a base field and a weight parameter. They have similar construction and convergence
properties as their topological counterparts but also exhibit new features and challenges
due to the richer structure of motivic homotopy theory. Ultimately, we give rise to several

questions on motivic cohomology and motivic spectral sequences.

9.1 Motivic cohomology and the associated spectra

Definition 9.1: Fix a field k, we define an additive category Cor, whose objects are

objects in Smy,.
Cory (X,Y) = Z (elementary correspondences from X to Y)

An elementary correspondence from X to Y is an irreducible closed subscheme W
X X Y such that W — X is finite and surjective. The composition is given by pull-back.
The assignment X ® Y := X X, Y endows Cor;, a symmetric monoidal structure.
Remark 9.1: There is an embedding

Homg,, (X,Y) — Corg(X,Y)

f =TI

where [}, € X X}, Y is the graph of f. For convenience, we let I': Sm;, — Corj, denote
this functor.
Definition 9.2: A presheaf with transfers is a contravariant additive functor F : Cor;, —
Abel. The category of presheaves with transfers is denoted by PST (k).
Theorem 9.1; [74ITheorem 23 pQT (k) has enough injectives and projectives.
Example 9.1: The presheaf of global units O*: X ~ I'(X)" is a presheaf with transfers,

whose transfers are defined by norm maps for field extensions. Specifically, If X is normal
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and W — X is finite and surjective, then there is anorm map N : O*(W) — 0*(X) induced
by the usual norm on the function field k(W)* — k(X)*.

Similarly, we can define additive transfers for the presheaf of global sections. Specif-
ically, Tr: O(W) — O(X) is the trace map induced from k(W) — k(X).
Construction 9.3: Given X € Smy, we define Z;,.(X) to be

Ler (X)(U) = Cory (U, X)
For any abelian group A, we let
Aer (X)(U) = Cor (U, X) ® A

Given some pointed schemes (X;, x;) in Smy, we define
n
Lop (X, A AXy) = coker(@ Tp (Xy X o X Ky X oo X X)) = Lyn(Xy X - X X))
i=1

Construction 9.4: Given F € PST(k) and X € Smy, we define
FX(U) := F(U X, X)
Then we define the associated simplicial object C,(F) by setting
Ci(F) = F%%
where Al := Speck|[xq, ..., xp]/(Z; x; = 1). The normalized chain complex is denoted
by CPX(F). The differentials of another chain complex C,(F) are given by an alternative
sum of face maps.

Definition 9.5: For any non-negative integer q, the motivic complex 7.(q) is defined to
be

Z(q) := C.Zer (Gni)[—4]
Specifically, Z(q)} = Cy—;Zer (Gmt).
Similarly, for any abelian group A, we can define A(q) to be
A@)' = CqiZer(Gnl) ®z A

Lemma 9.1: Z,,.(Y) is a Zariski sheaf and C,Z;,Y is a complex of Zariski sheaves.
Definition 9.6: The motivic cohomology group HP'4(X) is defined to be

HP(X, Z) = Hyar (X, Z(q))

(Here H7,, is Zariski hypercohomology i.e. the cohomology of the total complex of the

bicomplex of the injective resolutions for the Zariski chain complex.)
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Remark 9.2: Let C, be a left bounded complex. Then for each C;, there is an injective

resolution [; , and we may extend these injective resolutions by their lifting properties into

AN AN AN AN
101\ 111< 121\ I31<
AN AN AN AN

Z <z
IOO A\ 110 A\ 120 A\ 130 A\
AN AN AN AN
Co < C; < C, < Cs3 <

Construction 9.7: There is a multiplicative structure on Z(n). First, there is a mor-
phism in PST(k)

Ly(Xy N NXp) @ Loy (Kipa Ao NLj) = L (X Ao A X))
Then we have
Z(m) @ Z(n) — Z(m + n)
(reduce to simplicial case and use Eilenberg-Zilber theorem)
CZer (Gm") @ CZer (Gry') = Coer (Gr™*™)
Therefore, we have a pairing
HP4 @ HP 4’ — Hp+Pa+d’

which makes H** a bi-graded algebra.

One of the significant features of motivic cohomology is about the connection to the
Milnor K-theory and the higher Chow groups.
Theorem 9.2; [74ITheorem 5.1, Theorem 19.1 The motivic cohomology groups are connected
to the Milnor K-theory and the higher Chow groups in the following ways:

* Let k be a field. For any n and any Abelian group A, there is an isomorphism
H™"(Speck, A) = K} (k).
* For any separated scheme X € Sm,, for a perfect field k, there is an isomorphism
HPY(X,7Z) = CHY(X,2q — p)

for any p, q.
The first part of Theorem 9.2 is related to the computation of the cohomology of the
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points.

Theorem 9.3: %401 Given a prime p, let k be a field with a primitive p™ root of unity
{p. Let T € H*!(k,F,) = Z/p. Then we have
H"" (k, Fp) = KM (K)[7] @z Z/p

where the elements of degree n in KM (k) are assigned to be degree (n,n) and 7 is of
degree (0, 1). The result also holds for fields with characteristics coprime to p. For con-

venience, we denote
M, (k) := H™"(k, Fp).

The second part of Theorem 9.2 essentially indicates how to construct motivic co-
homology spectra in terms of Bloch’s cycle complexes. In particular, we need to use

equidimensional cycles in its proof.
Z(n) <~ Equidimensional cycles <~ Bloch’s cycle complex 9-1)

The following diagram illustrates the relationship between the motivic complexes and

equidimensional cycles.

PST level L (A™) /7, (A" — 0) — > Zoqui(A™, 0)
simpliil level C.(Z:r (A™) /%tr(A” -0) —— C, (zequim, 0))
compli level C*(Ztr(An)/\itr(An —0) —— C*(Zequiﬁn, 0))

motivic implexes Z(n%Zn] = A (f) [2n]
9-2)

where C,(Z¢ (A™) /Zy (A™ — 0)) = Z(n)[2n] V4 Theorem 152 17 i (T, m)(X) is the free
abelian group generated by the irreducible closed subvarieties of X X T that are dominant
and equidimensional of relative dimension m over S, and Z5F (n) is the Suslin-Friedlander

complex defined as
Z5F (n) = C.Zeqyi (A", 0)[—2n].
Let zéqui(X, m) = Zgqy;(X,dimX — {)(A™) for an equidimensional X and i <

dim X. Then we write zé qui(X, ) for the corresponding simplicial object and zi, qui (X, %)

for the corresponding complexes. Let z' (X, n) be the free abelian group generated by all
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subvarieties of codimension i on X X A™ which intersect all faces X x A/ properly. Then
z'(X, ) is a simplicial group and the associated complex z'(X, *) is the Bloch’s cycle
complex. The relationship between Bloch’s cycle complexes and equidimensional cycles

is

Zhqui (X, %) © > zH(X, %)

CHP(X,q) == mq(zP(X,*)) == Hy(z"(X,*))
Therefore, K (Z(n), 2n) is the motivic space z" associated to the simplicial presheaf
X - z"'(X,e),
since
H?™(X;7) = CH™(X,0) = my(2"™(X,)) = [X,2"]41.

It reveals that motivic Eilenberg-MacLane spectra are built from motivic complexes es-
sentially. For schemes over a Noetherian scheme S, we may define Corg(X,Y) using
relative cycles, see!741ApPendix IA - Simjilarly, we can further define motivic Eilenberg-Mac
Lane spectra in SH (S). In the rest of this chapter, the based scheme S is assumed to be

Noetherian.

9.2 The motivic Steenrod algebra

In this section, we recall some results about the structure of the motivic Steenrod
algebra in 38401
Definition 9.8: Given a prime p and a field k of characteristic 0, the mod p motivic

Steenrod Algebra A** (k) is defined to be
A (K Fp) = [HF, (k), HF, (k)]s

Similarly to the structure of the classical Steenrod algebra, Voevodsky shows that
there exist motivic Steenrod operations that generate the motivic Steenrod algebra as a
M,-algebra with the motivic Adem relations 84071,

Theorem 9.4: %! Let £ be a prime and let H** be the motivic cohomology functor over
F,. Let X € Smy. There exists P, : H*"(X; Z/¢) —» H**2(=D+E=D (X 7,/¢) and
BL: H**(X; Z/£) » H* 2= D+L+IE=1) (x; 7 /) such that

(1) P} = id and P} (u) = u™ if u € H*™";

(2) If £ = 2, then we denote Squ = P and Squ+1 = B!
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(3) Cartan formula: if € # 2,

PL(uv) = Z P )P (v)
7=0

i) = 3 B0t ) + (-1 B 0
j=0

(4) If £ = 2, let T be the generator of H*(K;Z/2), and p € H*(k;Z/2) be the

class of —1, then

L i-1
qui(uv) — z Squ(U)Squ_Zj(U) + TZ Sq25+1(u)5q2i—25—1(v)
j=0 s=0

i
S¢° ) = ) a7 @S @) + 847 wse™ )
j=0

i-1
+p Z qus+1(u)sq2i—25—1(v)
5s=0

Definition 9.9: The dual motivic Steenrod algebra is defined by
A = HomMp (A™, Mp)

The motivic Adem relations are given in[3%/Theorem 102, Theorem 10.3 Now we focus on
the mod 2 case.
Theorem 9.5: The mod 2 dual motivic Steenrod algebra A,, is a commutative M-
algebra given by
A (k,F2) = Mp[1;, & 112 0,j 2 1]/(tf — €41 — pTiv1 — PTHEi+1)

where 7; € Ayir1_q5i_q(k; Fy) and §; € Ayira_y 5i1(k; Fy). Furthermore, it is a coal-

gebra with the coproduct A given by

At =11+ fiz_kk & Tk

J
M) = ) 5 B
k=0

Then (M, A, ) forms a Hopf algebroid with
* the left unit n; : M, — A,, is the natural inclusion

¢ the right unit n,.: M, = A,, is givenby p = p and 7 = T + pT,.

94



CHAPTER 9 MOTIVIC COHOMOLOGY AND ADAMS SPECTRAL SEQUENCES

9.3 Motivic Adams spectral sequences

In this section, we focus on the construction of the motivic spectral sequences fol-
lowing Dugger and Isasken!*.
For convenience, we write H(S) for the ring spectrum HF,(S) € SH(S), where
S = Speck for some field of characteristic 0. If the base scheme is given obviously, we
just write H simply.
Definition 9.10: Let X be a set with bigraded objects X = {xg, 5 }ie;. We say X is
motivically finite if for any i € I, there are only finitely many j € I such that a; = a; and
2b; — a; = 2b; — a;.
Definition 9.11: Let X be a spectrum in SH(S). An H-Adams resolution of X is an
inversion sequences
X=Xy =X <Xy & X3
such that
(1) the induced map H,,(X;) = H,.(X;) is an H,,-split monomorphism.
(2) the cofiber X; of X;,; = X; is a of the form
X = \/ zabiy
i€l
where the set of indices {(a;, b;)};e; is motivically finite.

This definition is very similar to Definition 5.4. Therefore, the exact couple is given

by the induced diagram for T-spectra

0 H H**X H H**XO H H**ZXZL H H**EZXZ H Ut

[T

H,.2X, H..2%X,
Compared to Construction 5.5, we also have the notion of canonical motivic Adams res-
olution.
Construction 9.12 (Canonical motivic Adams resolution): Let H be the fiber of

the unit map n: 1 - H. The canonical H-Adams resolution is given by assigning
X; = HMAX
and

— Aid - -
Xipg = AN AX DS AAANAX = BN AKX = X,
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In particular, we have
X;=HAHMAX.

Recall that the canonical Adams resolution induces the normalized canonical reso-
lution for a graded comodule over the Hopf algebroid. We also expect that its motivic
version has such good homological-algebraic properties. Therefore, we need some extra
assumptions for X.

Definition 9.13: 81 If E € SH (S) is a homotopy colimit in terms of X*? 1, then E is
said to be a motivic cellular spectrum.
Example 9.2: 7% The motivic spectra H, KGL and MGL are (stably cellular).

One of the key features of motivic cellular spectra is the Kiinneth isomorphisms!7¢!.
Then we have the following proposition.

Proposition 9.1: If X is a cellular spectrum. Then the canonical motivic Adams reso-
lution of X induces the normalized canonical resolution C (H,., H,.(X)) (recall Construc-

tion 4.8). Therefore, the E,-page of the motivic Adams spectral sequences induced by the

canonical motivic Adams resolution of X with respect to H is given by
Ey ™) = Ex®) (M, H,.X)

The convergence problem of the motivic Adams spectral sequences is a complicated

problem. In the case of algebraically closed fields, we have that

Ext’y ) (Mg, M) = 1m0 (1))

This result refers to the joint work of Hu, Kriz and Ormsby 77781,

9.4 Further directions

In this section, we will discuss some observations and further questions on motivic
cohomology and motivic Adams spectral sequences.
Observation 9.14: Recall that the motivic cohomology spectra are constructed from
motivic complexes and the motivic complexes also have normed structures!?!. Can we
write down the normed structure on Bloch’s cycle complexes as we did in Section 4.2
Jor simplicial complexes? We observe that both of these two kinds of complexes are
constructed by A* and their difference can be shown in the following table Moreover, the
product in Chow groups relies a moving lemma or deformation to the normal cone, which

can be regarded as deformation parametrized by A! in some sense. If we lift the product
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simplicial or cellular complexes | motivic cycle complexes

parameter interval R? Al

fundamental elements simplices or cells algebraic cycles

structure to Bloch’s cycle complexes, we may need an extra structure to help us encode
the Al-homotopy coherence, as the E,,-coalgebra structure is a lifting of cup product to
the level of complexes, see Remark 4.3. A possible strategy is to consider the A*-Milnor
construction or more generally, Al-two sided bar construction. We hope that this idea
can stimulate the development of intersection theory from the viewpoint of A'-homotopy
coherence.

[79-801 " while a

Observation 9.15: An E,-ring spectra has a monadic interpretation
normed motivic spectra also has monadic interpretation given by the free norm functor.

Then we may have a rough correspondence. Recall that NSym(E) = V,,5o DI*°t(E) (see

classical stable homotopy theory | motivic stable homotopy theory

E-ring spectra normed motivic spectra

H ,,-ring spectra incoherent normed spectra

Example). Based on this observation, can we describe Condition 7.8 of coherence in terms
of motivic extended powers in analogous to the conditions in Construction 4.11 (notice
their diagrams respectively)? Moreover, can we say that Proposition 4.3 is essentially the
same as the propositions in Section 7.3?

Observation 9.16: If we regard an incoherent normed spectrum as an motivic version
of M, -ring spectrum, can we design a generalized motivic Adams spectral sequence for
it as we did in Chapter 5? The key feature of the generalized Adams spectral sequence is
that it can manipulate two sequences of filtration or towers and the mixed tower in spec-

811 In topology, we usually consider the mix of a skeletal filtration and

82] )

tral sequences!
an Adams resolution. Bruner used this technique to compute invariants for manifolds!
However, in algebra geometry, what is the right notion for skeletal filtration that respect
arithmetic structure? Can we use this type of spectral sequences to compute some arith-

metic invariants?
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CONCLUSION

Our main contributions are:

* Providing an accessible introduction to methods of homotopy theory in algebraic
geometry using cohomology operations as a guiding thread.

* Explaining how norms generalize notions from classical Galois theory into a
higher-categorical setting.

* Exploring some connections and applications of norms and motivic power opera-
tions in motivic homotopy theory.

We hope that this paper will serve as a useful introduction and reference for read-
ers who are interested in learning more about methods of homotopy theory in algebraic

geometry. We also hope that it will stimulate further research on this fascinating topic.
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APPENDIX A THE ACYCLIC CARRIER THEOREM

APPENDIX A THE ACYCLIC CARRIER THEOREM

A geometric complex K means a simplicial complex or a CW complex. By taking
simplicial chain complex or cellular complex, we may identify a geometric complex with
a chain complex C,(K). Sometimes I may abbreviate C,(K) by K and there is no harm.

The group C;(K) of q-chains is the free abelian group generated by the g-cells and
the boundary operator is denoted by

0: Cq(K) - q—1(K)

and d o d = 0. Suppose o is a cell in K and 7 is its face, then we may write T < o. The
Kronecker index In(c) of a 0-chain ¢ = }; a;x; is defined to be Y. a;, where x; are 0-cells.
We denote Z;(K), B;(K) and H,(K) the group of g-cycles, the group of q-boundaries
and the group of q homology classes, respectively. We say two elements in Cy(K) are
homologic if they are different from a boundary.
Definition A.1 (Carrier): A carrier from complexes pair (K, L) to (K', L") is a function
which assigns to each cell o of K a non-trivial subcomplex C (o) of K such that ¢ € L
implies C(0) c L' and if T < g, then C(t) < C(0). A carrier is acyclic, if C (o) is acyclic
for each cell o € K.

We say a carrier carries a chain homotopy h if for each cell o, h(c) € C(0). Simi-
larly, a carrier carries a chain map ¢ it ¢(o) € C(0).
Lemma A.1 (Acyclic carrier lemma): If C is an acyclic carrier K - K', then C
carries a chain map ¢. Moreover, if ¢,y are two chain maps carried by C, then ¢ is
homotopic to .
Proof: We construct such ¢ inductively on the dimension. First, for each 0-cell o € K,
we just let ¢ (o) € C(o) with index 1, for example, a 0-cell in K. Then we can extend it
to a homomorphism from Cy(K) to Co(K"). Suppose we have already define ¢ : C,,(K) —
Cn(K") for n < q, we need to construct a homomorphism C, 41 (K) = C,11(K"). Leto
be a g-cell, then do = )] a;c;, where ¢; is a face of g-cell. Since ), a;c; is a cycle, do
is also a cycle by the inductive hypothesis and ). a;¢(c;) € C(o). Then there is a chain
¢ (o) € C(o) such that d¢(d) = ¢p(d0o), because C (o) is acyclic, namely each cycle is a
boundary.

Next, we prove any two chain map ¢,y carried by C are homotopic. We first write
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down the diagram
d d
Corr () =2 Cq(K) —25 Coua(K)
s ol el

Car(K") == Co(K) —=> Cqoa(K")
We construct the chain homotopy inductively on the dimension of cells. Since In(¢a) —
In(y o) = 0, we can find an 1-chain h(o) € C(o) such that dh(o) = ¢po —1o, due to the
acyclicness. Now we suppose for each n-cell 7, n < g, we have such h(7) to exhibit the
chain homotopy at lower dimension, then we need to find h(o) such that dh(o)+h(do) =
¢o—1po. Note that o —1po —h(d0o) is a cycle, because d(po —po) = ¢p(do) —P(do)
and by inductive hypothesis

¢o — Yo — h(do) = ¢p(do) —yY(dg) — h(do) = 0h(ddo) =0
Since C(0) is acyclic, we can find h(o) € C (o) such that
dh(o) = ¢po — Yo — h(do)

which is what we need. u
Definition A.2: An operation of degree i from K to K’ is defined to be a sequence of

homomorphisms
Di : Cq(K) - Cq+i(K,)
for all ¢ and commutes with boundary maps. Let O; be the set of all operations of degree i
and it forms an additive group naturally. We define the boundary operator w: 0; = 0;_4
by
(wD;)c = dD;c + (—1)'*'D;dc (A-1)
Clearly, ww = 0 and the operator complex is defined by ({0;}, w). Specifically, the

operator complex from K to K’ is denoted by O(K,K").
Proposition A.1: Let W be a complex, then there is a natural isomorphism

HomCh(W, O(K, K’)) = HOHlCh(W X C. (K), C. (K’))
Sketch proof: The isomorphism is given by

HomCh(W, O(K, KI)) — HomCh(W ® C.(K), C.(K,))
f - [Wq®cq |_>/I(Wq)'cq]
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The pattern is similar to
HOIIlMOd (M X N, P) = HOIIlMOd (M, HomMOd (N, P))

in the category of modules. ]
Definition A.3: Let C be a carrier from K to K', the operator complex O (C) associated
to C is defined by

0(C)gq :=1{Dq € 04 | Dg(0) € C(0),Yo € C4(K)}

Lemma A.2: Let C be an acyclic carrier from K to K', then the associated operator
complex O(C) contains 0-cycle of index 1, and O(C) is acyclic.
Sketch proof: The proof of this lemma is similar to the proof of Theorem A.1. |
Example A.1 (The construction of the cup-i product): Let ¢ be an n-cell in X,
let & be the subcomplex containing all the faces of o and it is acyclic. Let C(0) = 6 @ 4.
By the definition, this forms a carrier from C,(X) to C.(X) @ C.(X). Moreover, C is an
acyclic carrier and T-invariant, namely, TC (o) € C(0o).

Since both Dy and T D,y are carried by C, by Lemma A.1, they are homotopic. We let
D, be a chain homotopy from D to T D, carried by C. More specifically, for any n-cell o
in X, D;(0) is in C (o) such that

D, (o) + D1(00) = TDy(5) — Do(0)
or
D, (0) = TDy(0) — Dy (o) — D1 (80) (A-2)
Similarly,
dTD;(0) = Do(0) — TDy(0) — TD; (90) (A-3)

Notice that D; + T D, is a homotopy of D, around a circuit back to itself (the addition
between chain homotopies in Ch means the join of homotopies) and D, (o) + TD;(0) €
C (o) for each cell o. Since both D; and the constant homotopy of Dy are carried by the
acyclic carrier C, apply Lemma A.1 again, and there is a chain homotopy D, from D; +T D,
to the constant homotopy of D, carried by C. Specifically, for any n-cell o, there is an

n + 2-cell D, (o) such that
0D,(0) = Dy(0) + TD,(0) + D,(0d0)

Now observe that D, — T D, is a homotopy from D; + T D, to itself. Similarly, D, — TD,
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is homotopic to the constant homotopy of D; + T D, namely, there exists D3 such that
0D3(0) = Dy(0) —TD;(0) — D3(00)

Repeat the procedure inductively, then we have {D,,}n—, to exhibit higher homotopies.
Note that D,, is an operation of degree n from C,(X) to C,(X) @ C.(X). Recall Definition
A.2 and the operator boundary A-1,

wD; = Dy + (=)™ TD;_y
We let W be the subcomplex of O(C) from C,(X) to C.(X) & C.(X) and W, is freely
generated by D; and TD; (since C is T-invariant, TD; is also in 0(C)).

Then according to Proposition A.1, the inclusion map W < O(C) uniquely deter-

mined a chain map

p: WRC.X) — C.X)RC.(X)

(A-4)
D;®o +— D;(o)

Note that the diagram
W® C.(X) —2— .00 ® C.(X)
T®id T (A-5)
W® C.(X) —2— C.(X) ® C.(X)

For each i > 0, we define a product called cup-i product as follows. for u € C?(X)

and v € C?(X), the cup product is defined by
u—iv-c=u®uv-¢(D; Xc)

for ¢ € Cpiq-i(X). By taking IF,-coefficients, the i"™Mth Steenrod square is given by

[u] = [U —gim@—i) ]
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