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摘要

Ando-Hopkins-Strickland 发现了从 MU〈6〉 到椭圆上同调理论的一个特殊定向，称为 σ-
定向。在本文中，我们将给出 σ-定向的代数拓扑和代数几何前置内容。此外，我们将引入
形式群和形式群上的线丛的精确定义。另外我们会特别提到如何得到 E∞-空间的 n-连通
覆盖上的 E∞-结构，这在一般参考文献中没有很好地描述。

在本文中，我们首先将以 fppf 层为基础建立一个良好的代数几何框架，该框架能扩展
概形的范畴，使之包括形式概形和 p-可除群。我们会在这个框架内提供形式李群和形式
李簇的精确定义，从而可以考虑它们上的拟凝聚层。通过对 Thom 谱的构造进行函子化，
它会成为一个左 Quillen 伴随函子，这样我们可以很方便的得到所需的 E∞-Thom 谱的结
构。我们也会证明 Thom 同构是由对角余模结构产生的，并证明了将 Thom 谱函子与无
限回路空间机制相结合会在 E∞-空间的 n-联通覆盖上得到典范的 E∞-结构。最后，我们
证明了立方结构与 MU〈6〉-定向之间的对应关系，最终得到了本文最重要的定理：椭圆上
同调理论有唯一的 MU〈6〉-定向，称为 σ-定向。

关键词: 同伦论；代数拓扑；定向；代数几何；算术几何；椭圆曲线



Abstract

Ando–Hopkins–Strickland found a special orientation from MU〈6〉 to elliptic cohomology
theories, called σ-orientation. In this note we will give both topological and algebro-
geometric settings of σ-orientation. Furthermore, we will introduce the precise definitions
of formal groups, line bundles on a formal group, and particularly the n-connective cover
of an E∞-space, which seems not well-described in ordinary references.

Besides, we will establish a comprehensive framework for fppf sheaves that extends beyond
the category of schemes to include formal schemes and p-divisible groups. We provide
a precise definition of formal Lie groups and formal Lie varieties within this framework,
allowing for the consideration of quasi-coherent sheaves on them. By functorializing the
construction of Thom spectra and establishing it as a left Quillen adjoint, we obtain the
desired E∞-structure of a Thom spectrum. We show that the Thom isomorphism arises
from a diagonal comodule structure and demonstrate that combining the Thom spectrum
functor with the infinite loop space machine results in a canonical E∞-structure on the
n-connective cover of an E∞-space. Finally, we prove the correspondence between cubical
structures and MU〈6〉-orientations, culminating in the most important theorem of this
paper.

Keywords: Homotopy theory, Algebraic topology, Oriention, Algebraic geometry,
Arithmetic geometry, Elliptic curve



目录

摘要 0

Abstract 0

Introduction 2

1 Sites, fppf sheaves and completion 4
1.1 Grothendieck topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Localization of topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Completion of an fppf sheaf along a subsheaf . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Formal groups and p-divisible groups 9
2.1 Linearly topological rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Formal completion of pointed k-schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Formal Lie varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Formal Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Barsotti-Tate groups (p-divisible groups) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Thom spectrum functor and infinite loop space machine 19
3.1 Properties of the Thom spectrum functor . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Monads and Thom spectrum functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Diagonal and Thom isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Infinite loop space machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 The E∞-structures of MString and MU 〈6〉 . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 σ-orientation 27
4.1 n-cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Even spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 The Line bundle on a formal group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Cubical structure on elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Further developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Conclusion 38

References 39

Acknowledgment 42

Resume and academic achievements 43

1



Introduction

Given a homotopy commutative ring spectrum E, Quillen [32, 33] discovered a deep
connection between (homotopy) complex orientation set Orh(MU,E) = HomCAlg(hSp)(MU,E)

and formal group laws over E∗, that is we have a map of sets

{Complex orientations overE} → {Formal group laws overE∗}

which sends an orientation x ∈ Ẽ2(CP∞) to a formal group law F (x, y) ∈ E∗[[x, y]]. The
group law structure is induced by H-structure map

E∗[[x]] ' E∗(CP∞)→ E∗(CP∞ × CP∞) ' E∗[[x, y]]

with x 7→ F (x, y).
Also, Quillen found that the orientation element x ∈ Ẽ2(CP∞) uniquely determines a ring
spectrum map MU → E. Formally speaking, that is a one-to-one correspondence

Orh(MU,E)
≃−→ C1 (PE; I(0))

which became the cornerstone of the chromatic homotopy theory. After that, Ando–
Hopkins–Strickland discovered a correspondence

Orh(MU〈2k〉, E)
≃−→ Ck (PE; I(0))

between MU〈2k〉-orientations and n-cocycles when k ≤ 3, which give an elegant connection
between algebraic geometry and algebraic topology. By uniqueness of cubical structure on
any line bundle of any abelian variety, we can endow a unique MU〈6〉-orientation to any
elliptic cohomology theory [16–18].

In this paper, we will be investigating how to get this elegant correspondence connecting
algebraic geometry with algebraic topology and also give a rigorous proof. The article is
divided into two parts, algebraic geometry (chapter 1 and 2) and algebraic topology (chapter
3 and 4). In the chapter 1, we will introduce basic definitions and propositions about fppf
sheaves and how to take the formal completion for a pointed fppf sheaf along its basepoint.

In the chapter 2, we can see when the given fppf sheaf is given by the Yoneda presheaf
of an elliptic curve, the formal completion is a formal group. And then we will investigate
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how to use fppf sheaves to unify schemes, formal schemes and p-divisible groups. By that,
we can easily generate the definition of quasi-coherent sheaves to that on a formal scheme.

For the topology part, in the chapter 3 we firstly introduce how to functorialize the
construction of Thom spectra and establish it as a left Quillen adjoint in chapter 3. And
then we prove that the Thom functor is compatible with operads, thus we can naturally
obtain desired E∞-rings like MU〈2k〉 and MO〈2k〉 respectively from a given E∞-structure
on BU〈2k〉 and BO〈2k〉 respectively if there exists. After that, we prove that there indeed
exists a canonical E∞-structure on both BU〈2k〉 and BO〈2k〉 by using infinite loop space
machine and the connective cover of a spectrum to produce a natural E∞-structure on the
connective cover of an E∞-space.

In the chapter 4, we firstly introduce how to define n-cocycles in any category with finite
products. And then we introduce a technical concept called the even space, which can be
easily controlled by the algebra structure on it. The fact that BU〈2k〉 is not an even space
when k > 3 partly explains why the AHS correspondence fails when k > 3. Finally, we
prove the main theorem after proving an algebro-geometric proposition that any line bundle
on any abelian variety admits just a unique cubical structure.
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1. Sites, fppf sheaves and completion

Grothendieck topology and topoi are an important algebro-geometric machinery for homotopists
since lots of algebro-geometric objects like schemes, algebraic spaces, formal groups and p-
divisible groups all can fully faithfully embed into the category of fppf sheaves.

Now, let me give an introduction to Grothendieck topology and sheavs on sites. A good
reference for them is the stacks project [35].

1.1 Grothendieck topology

Definition 1.1. [35] A site is defined by a category C and a collection Cov(C) ⊂ 2Mor(C)

consisting of families of morphisms with fixed target {Ui → U}i∈I , where I is a small set,
referred to as coverings of C. These coverings adhere to the following axioms [20]:
(1) Any single isomorphism is a covering.
(2) The composition of coverings is still a covering, by which it means if {Ui → U}i∈I are
coverings for each i and {Vij → Ui}j∈Ji is a covering, then {Vij → U}i∈I,j∈Ji is a covering.
(3) If {Ui → U}i∈I is a covering and V → U is a morphism in C, then Ui ×U V exists for
all i and {Ui ×U V → V }i∈I is a covering.

Remark 1.2. In axiom (3) we require the existence of the fibre products Ui×U V for i ∈ I.
Actually almost all sites appear in algebraic geometry have all pullbacks.

Example 1.3. [Big τ site]
Let Sch be the category of schemes, and τ ∈ {Zar, et, Smooth, fppf, fpqc}. Let T be a
scheme. An τ covering of T is a family of morphisms {fi : Ti → T}i∈I of schemes such that
T =

⋃
fi (Ti) and each fi is respectively

(1)open immersion;
(2)étale;
(3)smooth;
(4)flat, locally of finite presentation;
(5)flat and such that for every affine open U ⊂ T there exists n ≥ 0, a map a : {1, . . . , n} → I

and affine opens Vj ⊂ Ta(j), j = 1, . . . , n with
⋃n

j=1 fa(j) (Vj) = U .

We denote the corresponding site to be Schτ . Appearently we have

Cov(Zar) ⊂ Cov(et) ⊂ Cov(Smooth) ⊂ Cov(fppf) ⊂ Cov(fpqc)
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1.1 Grothendieck topology

Definition 1.4 (Presheaf). Let C be a site. The presheaf category of C is just the functor
category Fun(Cop, Set). (Note C is not necessarily essentially small, so PSh(C) is not
necessarily locally small)

Definition 1.5 (Sheaf and topos). A topos is defined to be a category of sheaves on a site.

Definition 1.6 (Sheafification). Let JU be the category whose objects of JU are the coverings
of U in C, and whose morphisms are the refinements. It is worth mentioning that {idU} ∈
Ob (JU) and hence JU is not empty. We define

F+(U) = colimJ op
U
H0(U ,F)

We call sF = F++ by the sheafification.

Actually, this colimit is a direct colimit because we have the following lemma, which implies
different refinements between 2 covers induce the same morphism of H0.

Warning: JU is not necessarily a (essentially) small catgory, so not any presheaf on any
site can be sheafificated. Actually, there exists a presheaf on Schfpqc which admits
no fpqc sheafification!
However if we remove fpqc and consider τ ∈ {Zar, et, Smooth, fppf}, then all JU in Schτ

are essentially small and any presheaf in it can be sheafificated.

In the following context, we only consider the site whose JU are essentially small
and in which all pullbacks exists. (Actually, that holds for almost all sites in
algebraic geometry except for fpqc ones.)

Proposition 1.7 (Adjoint). PSh(C) ⇄ Sh(C) is a pair of adjunction.

Proposition 1.8. The sheafification functor s : PSh(C)→ Sh(C) preserves any finite limit
(because the sheafification can be witten as a filtered colimit of underlying sets).

Proposition 1.9 (Adjoint). We denote PAb(C) and Ab(C) to be the categories of abelian
presheaves and abelian sheaves on C respectively. Then PAb(C) ⇄ Ab(C) is still a pair of
adjunction.

Proposition 1.10. PAbSh(C) and AbSh(C) are abelian categories.

Proof: First, the kernel and cokernel PAb(C) are created objectwise, so it is abelian. For
the AbSh(C), we need the following lemma.

□
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1.2 Localization of topoi

Lemma 1.11. Consider an adjoint pair of functors C
b

⇄
a
D, where:

(1) C and D are additive categories, and b and a are additive functors.
(2) C is abelian, and b preserves finite limits.
(3) b ◦ a ∼= idD.
Under these conditions, D is also abelian.

Remark 1.12. By the Yoneda lemma, if a presheaf of abelian groups is representable by an
object H, then H admits a natural abelian group structure.

1.2 Localization of topoi

In 1.2 we give some useful propositions about topoi. [8, 12, 28]

Proposition 1.13. Let C denote a site with a Grothendieck topology in which any Yoneda
presheaf is a sheaf, and consider U is an object in C. By defining a covering of C/U if it is
a covering in C, therefore we can view C/U as a site.
Then we can identify Sh(C/U) with Sh(C)/U where we consider the latter U as the Yoneda
sheaf of U .

Proof: Actually we can give a natural categorical equivalence

Sh(C/S ′
) ⇄ Sh(C/S)↓S′

for any morhism S
′ → S in C.

For a sheaf Y in Sh(C/S ′
) let YS denote the functor on (C/S)op sending an S-object T to

the set of pairs (ε, y), where ε : T → S ′ is an S-morphism and y ∈ Y (ε : T → S ′) is an
element. There is a natural morphism of functors fY : YS → S ′ sending (ε, y) to ε.

Conversely, for a sheaf X in Sh(C/S)↓S′ , let XS′ be the functor on (C/S ′
)op whose value

on T → S
′ is the set of morphisms T → X in Sh(C/S)↓S′ . It is easy to show these two

functorial constructions give an equivalence of categories.

□

Remark 1.14. (1) In algebraic geometry, this equivalence tells us Sh(Sch/S)τ is exactly the
overcategory Sh(Sch)τ ↓ hS.

(2) This equivalence still holds even if we replace U by any sheaf F .

Sh(C/F) ⇄ Sh(C)↓F

6



1.3 Completion of an fppf sheaf along a subsheaf

Now let us focus on the big fppf site Schfppf . [13,19,25] Actually any representable functor
is an fppf sheaf.

Proposition 1.15. [30] Let S be a base scheme, X be an S-scheme, then the representable
functor HomS(−, X) is an fppf sheaf on Sch/S.

Now we introduce a useful equivalence. The intuition is that a sheaf is a gluing result.

Lemma 1.16. Consider a site denoted by C, with C ′ ⊂ C being a full subcategory satisfying
the following conditions:
(i) For each U ∈ C, there exists a covering {Ui → U}i∈I of U where Ui ∈ C ′ for all i.
(ii) If {Ui → U} is a covering of an object U ∈ C ′, with Ui ∈ C ′ for all i, and for any
morphism V → U in C ′, the fiber products V ×U Ui belong to C ′.
Under these conditions, a Grothendieck topology can be defined on C ′ such that a collection
of morphisms {Ui → U} in C ′ is a covering if and only if it qualifies as a covering in C.
Furthermore, the topos resulting from C ′ with this topology is equivalent to the topos derived
from C.

Proposition 1.17. For any τ ∈ {Zar, et, Smooth, fppf} (remove fpqc), Aff → Sch

induces a natural equivalence of topoi

Sh(Sch)τ
∼−→ Sh(Aff)τ

A τ -sheaf is determined by its values on affine schemes!

Corollary 1.18. Note that any object in Affτ is compact, so the sheaf condition in it is a
finite limit!
So we get: In Sh(Aff)τ any filtered colimit can be created in presheaf level, which commutes
with any finite limit.

1.3 Completion of an fppf sheaf along a subsheaf

The most following definitions are from [26].

Definition 1.19. Consider a monomorphism Y ⊂ X of fppf sheaves on Sch/S. We introduce
Infk

Y (X) ⊂ X, a subsheaf defined as follows: its value on an object T → S is given by the
condition that for t ∈ X(T ), t ∈ Infk

Y (X)(T ) if there exists an fppf covering {Ti → T} where
each Ti corresponds to a closed subscheme T ′i defined by an ideal whose k + 1 power is (0),
such that tT ′

i
∈ X(T ′i ) is contained in Y (T ′i ).

This definition is somewhat general, in most cases we only involve the completion of a scheme
along a subscheme.
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1.3 Completion of an fppf sheaf along a subsheaf

Example 1.20. (1) If X and Y are S-schemes and Y → U ⊂ X is an immersion, then
Infk

Y (X) = Infk
Y (U) ' Spec(OU/Ik+1) where I ⊂ OU is the according quasi-coherent ideal.

(2) Let Z ⊂ X be a closed immersion of S-schemes with the according quasi-coherent ideal
I, then the value of the sheaf X̂Z = lim−→k

Infk
Z(X) = lim−→k

Spec(OX/Ik+1) on a S-scheme T

equals {t ∈ X(T )|t∗(I) is locally nilpotent}.

We mostly consider the case when Y is a given base point, i.e. Y (T ) = {∗} = hS(T ) for
any S-scheme T . In this case we get an endfunctor (̂−) : Sh(Sch/S)

∗ → Sh(Sch/S)
∗ by

(X, e) 7→ (lim−→k
Infk

e (X), e), where Sh(Sch/S)
∗ is denoted as the category of fppf sheaves

over S with a basepoint.

We say an X ∈ Sh(Sch/S)
∗ is complete (ind-infinitesimal in [26]) iff X̂ = X. It is easy to

check we have a natural inclusion X̂ ⊂ X, and that ̂̂
X ⊂ X̂ is a natural isomorphism. So

any completion of a pointed fppf sheaf is complete. [5, 29, 34]

Proposition 1.21. (a) The endfunctor (̂−) : Sh(Sch/S)
∗ → Sh(Sch/S)

∗ preserves finite
limits. Let CSh(Sch/S)

∗ be the category of complete pointed fppf sheaves, so CSh(Sch/S)
∗

has finite limits, which are created in Sh(Sch/S)
∗.

(b) CSh(Sch/S)
∗

Forget

⇄
(̂−)

Sh(Sch/S)
∗ is an adjoint pair.

(c) CAb(Sch/S)
Forget

⇄
(̂−)

Ab(Sch/S) is an adjoint pair.

Proof: (a) It suffices to verify that (̂−) preserves the final object and pullbacks. The case
of the final object is straightforward. For a pullback X ×Z Y , we aim to demonstrate that
X̂ ×Z Y → X̂ ×Ẑ Ŷ is naturally isomorphic. Evidently, this is a monomorphism of sheaves,
and to establish it as an epimorphism is adequate. Consider (f, g) ∈ Γ

(
T, X̂ ×Ẑ Ŷ

)
where

T is affine. Then, there exists a (finite) covering family {Ti → T} and nilpotent immersions
of order k, T̄i −→ Ti such that f | T̄i = 0. Similarly, with an fppf covering family

{
T ′j → T

}
and nilpotent immersions of order k: T̄ ′j ↪→ T ′j corresponding to g.

And (b),(c) are direct corollaries of (a).

□
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2. Formal groups and p-divisible groups

All (big) sheaves involved in 2 will always mean fppf sheaves.

2.1 Linearly topological rings

Before the introduction of formal groups, we need some preliminary knowledge of linear
topological rings. In the category of linear topological rings ( [37] chap 4), we have an
excellent framework to deal with the completion.

Definition 2.1. A filtration of ideals I in R is a non-empty collection of ideals of R such
that for any pair of ideals I, J ∈ I, there always exists a I ′ ∈ I satisfying I ′ ⊂ I ∩ J .

Lemma 2.2. Given a filtration of ideals I in R, then

(i) {a+ I|a ∈ R, I ∈ I} forms a topological basis in R, and we call it the (linear) topology
induced by I.

(ii) The (linear) topology induced by I makes R become a topological ring.

Proof: Omitted.

□

Definition 2.3. A linearly topological ring R is a topological ring such that the topology
induced by the filtrtion of open ideals in R is the same as its topology.

Proposition 2.4. A topological ring induced by a filtration of ideals is a linearly topological
ring (note this is not a completely trivial statement).

Example 2.5. The linear topology induced by {In|n ≥ 1} for an ideal I ∈ R is called I-adic
topology. Note if I = 0, then this topology is discrete.

Let us denote LRings to be the category of linearly topological rings with continuous ring
maps.

Proposition 2.6.

(i) Given following morphisms in LRings

B Cg

f

then the subring a = {b ∈ B|f(b) = g(b)} with the linear topology by filtration

{J = I ∩ B|I open in B}

9



2.1 Linearly topological rings

is the equalizer in LRings.

(ii) So we conclude LRings has any limit.

Now we start to introduce the completion of linearly topological rings

Definition 2.7. Let R be a linearly topological ring. The completion of R is defined as the
ring R̂ = lim←I R/I, where I ranges over the set of open ideals in R. There exists a natural
mapping R → R̂, and the composition R → R̂ → R/I is surjective, implying the existence
of an ideal Ī ⊂ R̂ such that R/I = R̂/Ī. These ideals form a filtered system, allowing us to
endow R̂ with a linear topology where they serve as a base for the neighborhoods of zero.
It can be readily verified that ̂̂

R = R̂. A ring R is considered complete, if R = R̂. Hence, R̂
always represents a complete ring. We denote the category of complete rings as FRings.

Remark 2.8. It is important to notice that the completion R̂ from an I-adic topology is
not always the same as the IR̂-adic topology on R̂ ! But it is the case when I is finitely
generated, see [35] Algebra 96.3.

Proposition 2.9.

(i) A linearly topological ring with the discrete topology is always complete.

(ii) Consider R,S, and A in the category of formal rings, denoted as FRings. Suppose there
are continuous homomorphisms R → S and R → A, then it is evident that Ŝ ⊗R A

can be identified as the pushout of S and A with respect to R in the category of formal
rings, denoted as FLings. This observation leads us to the conclusion that the category
FRings possesses finite colimits, as it contains the initial object (Z with the discrete
topology) and all pushouts within its structure.

(iii) Any limit in FRings exists and could be created in LRings.

Definition 2.10. Let (R,m) be a local ring, we have a natural linear topology in R by the
m-adic topology. So we get a functor: LocalRings −→ LRings. In fact this functor is fully
faithful because of the following lemma, and base on that we will always treat local rings as
linearly topological rings.

Lemma 2.11. Let A,B ∈ LRings. Suppose their linear topology is induced by filtrations A

and B respectively. Let f : A −→ B be a ring homomorphism. Then f is continuous if and
only if ∀J ∈ B there exists I ∈ A such that f(I) ⊂ J .

Proposition 2.12 ( [35] Algebra chap 96,97). Let (R,m) be a Noetherian local ring,
then

10



2.2 Formal completion of pointed k-schemes

(i) (R̂,mR̂) is still Noetherian local, and m̂ = lim←n m/mn ' mR̂ .

(ii) (R,m) is regular if and only if (R̂, m̂) is.

(iii) The topology on the completion R̂ is the same as the m̂-adic topology on it, by 2.8.

Remark 2.13. (i) If a local ring (R,m) is not Noetherian, then (R̂,mR̂) is not necessarily
local.
(ii) When we consider the opposite category FRingsop we usually write an object to be Spf(R)

instead of R.

2.2 Formal completion of pointed k-schemes

Definition 2.14. For a k-scheme X with a rational point e ∈ X(k) we call it a pointed
k-scheme. The formal completion X̂ of X “along” e is defined to be the complete linearly
topological ring Spf(ÔX,e), the completion of OX,e by m-adic topology. This induces a functor

Sch∗k
(̂−)−−→ k-FRingsop where the left one is the category of pointed k-schemes.

Lemma 2.15. For a pointed k-scheme (X, e), if Spec(A) ⊂ X is an affine neighborhood of
e. Let m ⊂ A be the maximal ideal according to the closed point e, then by A/mn = Am/m

n

we have X̂ = ÔX,e
∼= Â where the right one is the m-adic completion of A.

Theorem 2.16. The functor (̂−) preserves finite limits. Particularly, it preserves finite
products and hence preserves (commutative) Monoid objects, (commutative) Group objects.
So it takes group k-schemes to formal group k-schemes.

Proof: Because any finite limit is a combination of pullbacks and terminal object, we only
need to show that (̂−) preserves pullbacks and terminal object. The terminal object is easy
to check. For the case of pullbacks, given a pullback diagram in Sch∗k (note that the pullback
in it is the same as the ordinary fiber product of schemes),

X ×Z Y Y

X Z

p

we take neighbouhoods of basepoints Spec(R) ⊂ Z, Spec(A) ⊂ X, Spec(B) ⊂ Y, Spec(A⊗R

B) ⊂ X ×Z Y . We write corresponding maximal ideals of basepoints eX , eY , eX×ZY to be
m1,m2,m respectively. It is easy to see the basepoint eX×ZY corresponds to A ⊗R B →
k ⊗R k = k ⊗k k, so actually m = m1 ⊗R B + A ⊗R m2. By the lemma above and the
description of pushout of formal rings, the natural

Â⊗̂R̂B̂ → Â⊗R B

11



2.3 Formal Lie varieties

is isomorphic, then so is
ÔY,e⊗̂ÔZ,e

ÔX,e → ÔX×ZY,e

□

It is easy to check following 2 useful propositions.

Proposition 2.17. (i) If k → F is a field extension, then for any (X, e) ∈ Sch∗k we have
natural isomorphism ÔX,e⊗̂kF → ÔXF ,eF .
(ii) If k is a field of char(k) = p > 0 and (X, e) ∈ Sch∗k, then ÔX,e → ÔX,e induced by
absolute Frobenius F : X → X is absolute Frobenius on ÔX,e, and ÔX,e⊗̂k,Frobk → ÔX,e

induced by relative Frobenius F : X → X(p/k) is the formal relative Frobenius on ÔX,e.

By Cohen structure theorem, we will see that a smooth group k-scheme of dim n can induce
a formal group over k of dim n.

Theorem 2.18. If G is a smooth group k-scheme of dim n, then Ĝ is a formal group over
k of dim n.

Proof: We know “smooth” implies “regular”, so ÔG,e is a complete regular local ring of dim
n. Then by the theorem above we win.

□

2.3 Formal Lie varieties

We have known that the equivalence of topoi Sh(Sch)fppf −→ Sh(Aff)fppf , so we will be
free to exchange things from each other.

It is obvious that χ̂ ⊂ Sh(Aff)fppf . Actually χ̂ is the category of “formal schemes” in
Strickland’s sense [37], which equals (Pro − Ring)op or Ind − Aff . And we have fully
faithful embeddings

FRing → χ̂

by sending R to Spf(R) = lim−→I open
SpecR/I and natural inclusion

χ̂→ Sh(Aff)fppf

Definition 2.19. Let X ∈ CSh(Sch/S)
∗, we call it a pointed formal Lie variety iff zariski

locally on S, the F is isomorphic to Spf(OS[[x1, ..., xn]]) as pointed fppf sheaves for some
n ≥ 0.

12



2.3 Formal Lie varieties

Proposition 2.20. [26] Let X ∈ CSh(Sch/S)
∗, the following are equivalent

(1) X is a pointed formal Lie variety.
(2) Zariski locally on S, the X is isomorphic to Spf(OS[[x1, ..., xn]]) as sheaves (not
necessarily pointed) for some n ≥ 0.
(3)
(a) The Infk(X) is representable for all k ≥ 0.
(b) The ωX = e∗(ΩInf1(X)/S) = e∗(ΩInfk(X)/S) is a finite locally free sheaf on S.
(c) Denoting by grinf∗ (X) the graded OS-algebra

⊕
k≥0 Ikk , such that grinf

i (X) = gri(Infi(X))

holds for all i ≥ 0. We have an isomorphism SymS (ωX)∗
∼−→ grinf∗ (X) induced by the

canonical mapping ωX
∼−→ grinf

1 (X).

Proposition 2.21. Let X → S be a smooth S-scheme with a base point e : S → X ∈ X(S),
then X̂ is a formal Lie variety.

Proof: Select an affine open set U containing s within S. Choose another affine open set V

in f−1(U) that includes x. Subsequently, select an affine open set U ′ in e−1(V ) that contains
s. It is noteworthy that V ′ = f−1 (U ′) ∩ V is affine due to its representation as the fiber
product V ′ = U ′ ×U V . Consequently, the maps f : U ′ → V ′ and e : V ′ → U ′ are identified
as separated, smooth, and a section (specifically, a closed immersion). This leads to the
result that X̂V ′ = Û ′V ′ . The proposition can be readily derived from the subsequent lemma.

□

Lemma 2.22. [35](Algebra 139.4) Consider a smooth ring morphism ϕ : R → S with a
left inverse σ : S → R where I = Ker(σ). Then the following results hold:
(1) The quotient module I/I2 is a finitely generated projective R-module.
(2) If I/I2 is a free R-module, then there is an isomorphism between the completion S∧ with
respect to the I-adic topology and R [[t1, . . . , td]] as R-linear topological rings.
Proof: Utilizing the exact sequence of Kahler differentials for R → S → R, we obtain
I/I2 = ΩS/R ⊗S,σ R. Since the module ΩS/R is finitely generated projective over S due to
the smoothness of the morphism, we establish the validity of (1).
In the case where I/I2 is free, consider the induced map Ψn : P/Jn → S/In for quotient
rings. As S/I2 = ϕ(R) ⊕ I/I2, the map Ψ2 is an isomorphism. Let σ2 : S/I2 → P/J2 be
the inverse of Ψ2. By induction, we show the existence of an inverse σn : S/In → P/Jn for
all n > 2 by the fact that S is formal smooth over R. This concludes the proof of the lemma.

□

13



2.3 Formal Lie varieties

Actually, any formal Lie variety on an affine base can be from the completion of a pointed
smooth scheme, as the following.

Proposition 2.23. Let X ∈ CSh(Sch/S)
∗ be a formal Lie variety. If S = Spec(R) is affine,

then we have a (non-canonical) isomorphism X → Spf(ŜymS(ωX)) as pointed sheaves.

Proof: Let Ik ⊂ OX be the quasi coherent ideal according S → infkX, and I → ωX → 0 be
the projection of R-modules. Then we can lift following arrows one-by-one

...

I2

I1

ωX I0

Hence we get a sequence of isomorphisms

... ...

Sym(ωX)/(ω
k+1
X ) OinfkX

Sym(ωX)/(ω
k
X) Oinfk−1X

... ...

≃

≃

≃

≃

which induces an isomorphism X → Spf(ŜymS(ωX)).

□

Remark 2.24. It is worth noting this theorem is based on the fact that a finite locally free
sheaf on S is a projective object in Qcoh(S) if S is affine.

Corollary 2.25. Let X ∈ CSh(Sch/S)
∗ be a formal Lie variety (S here is not necessarily

assumed to be affine), then X is a formally smooth fppf sheaf, which means X(Spec(A))→
X(Spec(A/I)) is surjective for any A→ A/I over S with a square-zero ideal I.

Proof: To show that X(Spec(A)) → X(Spec(A/I)) is surjective, we can assume S =

Spec(A) is affine. Then it is from the completion of a pointed smooth S-scheme Y =

14



2.4 Formal Lie groups

Spec(SymS(ωX)) by the proposition above. So it suffices to show the following is a pullback
diagram of sets.

Ŷ (Spec(A)) Ŷ (Spec(A/I))

Y (Spec(A)) Y (Spec(A/I))

i i

Let u ∈ Ŷ (Spec(A/I)), then u ∈ Y (Spec(A/I)) is from an element v ∈ Y (Spec(A)) by the
formal smoothness of Y . Now we claim v ∈ Ŷ (Spec(A)).

There exists n ≥ 1 such that u : Spec(A/I)→ Y factors through u : Spec(A/I)→ infk(Y )

since u ∈ Ŷ (Spec(A/I)), then u|Spec(A/I + J) = 0 for some nilpotent ideal J . So v ∈
Ŷ (Spec(A)) by the fact I + J is still nilpotent.

□

2.4 Formal Lie groups

Definition 2.26. A formal Lie group is an abelian sheaf X ∈ Ab(Sch/S) whose underlying
pointed sheaf is a formal Lie variety.

We more care about 1-dim formal Lie groups, which are called by “formal group” in most
references. In 2.4 we will show that formal groups over an affine basis are equivalent to
graded formal group laws on an even weakly periodic graded ring.

Definition 2.27 (EWP). A graded ring R∗ is called EWP(even weakly periodic) iff it
satisfies following conditions
(a) R2 ⊗R0 R−2 → R0 is isomorphic;
(b) R1 = 0.

Proposition 2.28. From the definition, for an EWP ring R∗ we immediately get
(1) R2 ⊗R0 Rn → Rn+2 is isomorphic for any n ∈ Z.
(2) Rodd = 0.
(3) R2 ∈ Pic(R0) with (R2)

⊗−1 = R−2.

Proof: We can directly check R∗ ' R[x±1], |x| = 2 zariski locally on Spec(R) and check
these properties zariski locally.

□

Example 2.29. Let R be a ring, and L ∈ Pic(R). Then SymR(L
±1)∗ =

⊕
i∈Z L

⊗i is an
EWP ring.
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2.4 Formal Lie groups

Now let us calculate the data of a formal group.

Lemma 2.30. For any M,N ∈ Qcoh(S), we have

HomSh(S)∗(Spf(ŜymS(M)), Spf(ŜymS(N))) =
+∞∏
i=1

HomOS−Mod(N,Symi(M))

Proof: Directly calculate by 1.21.

□

Corollary 2.31. Let X,Y ∈ CSh(Sch/S)
∗ be a pointed formal Lie variety of dim = 1 over

an affine base S = Spec(R), then
(1) HomSh(S)∗(X × X,X) '

∏
(i,j)|i+j≥1 HomOS−Mod(ωX , ω

i+j
X ) =

∏
(i,j)|i+j≥1 ω

i+j−1
X where

Sh(S)∗ denotes pointed fppf sheaves over S. So any F ∈ HomSh(S)∗(X ×X,X) corresponds
an element F (x, y) ∈ R∗[[x, y]], |x| = |y| = −2 where R∗ = SymR(ω

±1
X )∗.

If it satisfies the associated (commutative) law then it coincides with a graded formal
(commutative) group law on the EWP ring SymR(ω

±1
X )∗ or on SymR(ωX)∗.

(2) We have HomSh(S)∗(X,Y ) =
∏+∞

i=1 HomOS−Mod(ωY , ω
i
X) and

IsomSh(S)∗(X,Y ) = IsomOS−Mod(ωY , ωX)×
+∞∏
i=2

HomOS−Mod(ωY , ω
i
X) =

IsomOS−Mod(ωY , ωX)×
+∞∏
i=2

ωi−1
X = IsomOS−Mod(ωY , ωX)×

+∞∏
i=1

ωi
X

Theorem 2.32. Let p : MFGLs(EWP ) → Aff be the moduli stack of formal group laws
on EWP rings whose objects are pairs (E∗, F ) with F a formal group law on E∗, whose
morphisms are (oppositely) pairs (φ, f) with φ : E1∗ → E2∗ a morphism of graded rings and
f : φ∗F1

≃−→ F2 an isomorphism of formal group laws on E2∗. And p(E∗, F ) = Spec(E0).

Then The construction in last corollary actually gives an equivalence of moduli stacks

MFG MFGLs(EWP )

Aff

∼

Remark 2.33. This theorem provides a natural graded structure to a 1-dim formal group
over an affine base, which is important when we consider the Landweber exact theorem.
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2.5 Barsotti-Tate groups (p-divisible groups)

2.5 Barsotti-Tate groups (p-divisible groups)

Definition 2.34. A Barsotti-Tate group over a base scheme S is an fppf abelian sheaf G in
Ab(Sch/S) satisfying the following conditions:
(1) lim−→n

G[pn]→ G is naturally isomorphic. (p-torsion)
(2) G

p−→ G is an epimorphism of abelian sheaves. (p-divisible).
(3) G[pn] is representable by a scheme finite locally free over S for any n ≥ 1.

Lemma 2.35. Let G be an abelian fppf sheaf over S satisfying (1) and (2). Then for any
m,n ≥ 0 we have a short exact sequence of abelian sheaf

0→ G[pn]→ G[pm+n]
pn−→ G[pm]→ 0

So by fppf descent theory of finite group schemes [10], the (3) in the definition can be replaced
by the following
(3)′

G[p] is representable by a scheme finite locally free over S.

Proposition 2.36. If G0 → G1 → ... → Gn → ... be an sequence of morphisms of abelian
sheaves over S satisfying the following conditions:
(1) Gi is a scheme finite locally free of degree phi over S, where h ≥ 0 is a number independent
on i;
(2) Gn → Gn+1 is a closed immersion for any n ≥ 0;
(3) 0→ Gn → Gn+1

pn−→ Gn+1 is exact for any n ≥ 0,
then G = lim−→Gn is a Barsotti-Tate group over S, and G[pn] = Gn for every n ≥ 0.

Proof: The condition (3) implies Gn+1[p
n] = Gn, by induction we get Gn+m[p

n] = Gn, and
hence G[pn] = Gn and G = lim−→n

G[pn].
On the other hand we get a new exact sequence 0 → Gn → Gm+n

pn−→ Gm. We claim
Gm+n

pn−→ Gm is epimorphic. By fppf descent theory, we have a factorization

Gm+n Gm

Gm+n/Gn

pn

i

where Gm+n/Gn is a finite locally free group of degree pmi over S and i is a monomorphism.
However, any proper monomorphism is a closed immersion. So i is a closed immersion
between finite locally free schemes of the same degree over S, and hence an isomorphism.
Let n = 1, we get Gm+1

p−→ Gm → 0. Therefore take the direct colimit about m we get
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2.5 Barsotti-Tate groups (p-divisible groups)

G
p−→ G→ 0.

□

Remark 2.37. Actually, the proposition above is a local definition of the Barsotti-Tate
group. Because for any BT group G and s ∈ S, G[p]s = Gs[p] is annihilated by p, which
implies its rank must be phs for some number hs by the theory of algebraic groups.

18



3. Thom spectrum functor and infinite loop space machine

Before getting into the σ-orientation we introduce two important topological settings which
are infinite loop space machine and Thom spectrum functor respectively.
Here we only consider Thom spectra from a map into a classifying space of some topological
group, from which Thom spectra admit more useful properties compared with those from
a topological monoid.

Definition 3.1 ( [11] Thom spectrum functor). Let (f : X → BO) ∈ Top↓BO , then the
standard filtration XV = f−1(BO(V )) gives a Thom prespectrum

Mp(f)(V ) = Th(E(XV )→ XV ) = E(XV )+ ∧O(V )+ SV

The spectrification M(f) of Mp(f) is called the Thom spectrum corresponding f .

Remark 3.2. (i) Actually, any filtration lim−→V⊂R∞ FVX = X where FVX is closed subset in
X so that FVX ⊂ XV gives the same [11] Thom spectrum (though not the same prespectra).
(ii) For G = Sp(∞), U(∞), SU(∞), O(∞), SO(∞), the construction above also applies.

3.1 Properties of the Thom spectrum functor

For any spectrum E ∈ Sp and any V ⊂ R∞ , Ω∞E admits a right O(V )-action since
Ω∞E = E0 = ΩVEV = F (SV , EV ). These actions are coherent between different V , so we
actually get a right O-action on Ω∞E. [10, 31, 39]

In the following content we always assume G = Sp(∞), U(∞), SU(∞), O(∞) or SO(∞).

Theorem 3.3. The Thom spectrum functor induces a continuous adjoint pair

Top↓BG

M(−)
⇄

EG×GΩ∞(−)
Sp

Given a map (f : X → BG) ∈ U/BG and E ∈ Sp , then

HomSp(Mf,E) = HomU [G](f
∗EG,Ω∞E) = HomU/BG(X,EG×G Ω∞E)

Proof: Let us denote U and S to be the categories of unbased Topological spaces, and spectra
respectively. First we have

HomS(MX,E) = HomS(colimVMXV , E) = limV HomS(MXV , E)
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3.2 Monads and Thom spectrum functor

Second we define EXV and Z(V ) by pullback diagrams,

EXV B(∗, G(V ), G(V ))

XV B(∗, G(V ), ∗)

ZV B(∗, G(V ), G)

XV B(∗, G(V ), ∗)

then

limV HomS(MXV , E) = limV HomU∗(EXV+∧G(V )S
V , EV ) = limV HomU∗[GV +](EXV+,Ω

VEV )

= limV HomU [GV ](EXV ,Ω
∞E) = limV HomU [G](EXV×GV

G,Ω∞E) = limV HomU [G](ZV ,Ω
∞E) =

HomG(p
∗X,Ω∞E)

Since equivariant maps from a principle G-bundle to a G-space are equivalent to the following
sections, we can conclude

HomG(p
∗X,Ω∞E) = HomU/X(X, p∗X ×G Ω∞E) = HomU/BG(X,EG×G Ω∞E)

□

Proposition 3.4. This adjunction Top↓BG

M(−)
⇄

EG×GΩ∞(−)
Sp is actually a Quillen adjunction

since M(Sn−1 → Dn) is a cell pair of spectra and M(Dn× 0→ Dn× I) is a weak equivalent
cell pair for those morphisms over BG.

Proposition 3.5. Let f : X → BG be a map and A a space. Let g be the composite X×A→
X → BG, where the first map is the projection away from A. Then T (g) = A+ ∧ T (f),
which implies Thom spectrum functor preserves tensors, and hence is a topological Quillen
functor.

Proposition 3.6. Thom spectrum functor T (−) preserves weak equivalences. Any Thom
spectrum T (f) from a map F : X → BG is (−1)-connective.

3.2 Monads and Thom spectrum functor

Proposition 3.7. Let V1,V2 be two real universes.
(i) Given maps B → L(V1, V2) and f : X → BO(V1), denote g to be the composition
B×X → B×BO(V1)→ BO(V2). Then we have the natural isomorphism T (g) ∼= BnT (f).
(ii) Given maps f : X → BO(V1) and g : Y → BO(V2), denote f × g to be the composition
X × Y → BO(V1)× BO(V2)→ BO(V1 ⊕ V2). Then T (f × g) ∼= T (f) ⊼ T (g).
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3.3 Diagonal and Thom isomorphism

Proposition 3.8. Let L(n) = L(R∞×n,R∞), then for any map f : X → BO we have

T (g) =
∨
n≥0

L(n)×Σn T (f)⊼n

where g is the composition
⊔

n≥0 L(n)×Σn Xn →
⊔

n≥0 L(n)×Σn BOn → BO.

Now we introduce a quite useful lemma [6] which tells how to get the adjoint functor between
monadic algebra categories.

Lemma 3.9. Let C and D be topological powered and copowered categories, and A : C → C
and B : D → D be continuous monads. Given a continuous functor F : C → D which is
coherent with the monad structure, therefore it yields a functor F : C[A]→ D[B].

If F : C → D is left adjoint functor preserving copowers, and the monads A and B preserve
reflexive coequalizers, then F : C[A]→ D[B] is still a left adjoint functor preserving copowers.

Corollary 3.10. Thom spectrum functor induces topological Quillen adjoint pairs

Top[L(1)]↓BO ⇌ Sp[L(1)] and Top[E∞]↓BO ⇌ Sp[E∞]

where the L(1)-spectrum is the L-spectrum in EKMM [9] sense.

Remark 3.11. This section 3.2 also applies to G = U(∞) or G = Sp(∞) if we replace real
isometries operad by complex or symplectic isometries operads.

3.3 Diagonal and Thom isomorphism

Definition 3.12 (coaction). For any map f : X → BG, the diagonal induces a coaction
X → X × X in Top↓BG, where X × X → BG is the projection of the second variable. It
gives a natural coaction on Thom spectra: Mf → X+ ∧Mf .

Definition 3.13 (Thom morphism [11]). With the same hypothesis above, given a homotopy
commutative phantom ring spectrum (a commutative monoid in Ho(Sp)/phantoms) E and
a morphism of spectra Mf → E we have a natural morphism E ∧Mf → E ∧X+ ∧Mf →
E ∧X+ ∧ E → E ∧X+ in Ho(Sp)/phantoms. It induces a natural homological morphism
φf : E∗(Mf)→ E∗(X).

Under certain condition φf will be an isomorphism, which is called Thom isomorphism.

Theorem 3.14 (Thom isomorphism). Let G = Sp(∞), U(∞), SU(∞), O(∞), SO(∞) or
Spin(∞). Let E be a homotopy commutative ring (phantom) spectrum.
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3.4 Infinite loop space machine

(i) Given a phantom ring spectrum morphism MG → E, then for any map X → BG the
Thom morphism E∗(Mf)→ E∗(X) is an isomorphism.
Moreover, if X is E∞ and f is an E∞ map, then E∗(Mf) → E∗(X) is an isomorphism of
E∗-algebras.
(ii) Given an E∞ space X and an E∞ map f : X → BG. Let Mf → E be a phantom
ring spectrum morphism. If X is 0-connected, then E∗(Mf) → E∗(X) is an isomorphism
of E∗-algebras.

Example 3.15. Let MO → HZ/2 and MU → HZ be ring spectrum morphisms from
the 0-th postnikov tower. Then we have natural Thom isomorphisms H∗(MO;Z/2) →
H∗(BO;Z/2) and H∗(MU)→ H∗(BU).

3.4 Infinite loop space machine

Now we turn to the infinite loop space machine, which is an important technique in stable
homotopy theory.

Definition 3.16. (1). A commutative H-space space X i.e. a commutative monoid in
Ho(Top) is called group-like iff the monoid π0(X) is a group.
(2). We define group-like E∞-spaces as infinite loop spaces.
(3). Let X → Y be an H-map between commutative H-spaces, we call it the completion map
of X iff π0(Y ) is a group and H∗(X)[(π0X)−1]→ H∗(Y ) is isomorphic.

Now let me introduce the existence and uniqueness of additive infinite loop space machine.
[27, 30, 36]

Theorem 3.17 (Additive infinite loop space machine [1]). Let C be a cofibrant unital E∞
operad in Top and f : C∗ → Ω∞Σ∞ be a morphism of monads on Top∗. Then the Quillen
pair (Σf ,Ωf ) induces a equivalence of categories if we restrict it to the following Top-enriched
subcategories (so actually an equivalence of ∞-categories)

group-like Ho(E∞-spaces) ⇌ (−1)-connective Ho(Sp)

where Σf (−) = Σ∞ ⊗C∗ (−) is the coequalizer of the following diagram in Sp

Σ∞C∗X Σ∞X ΣfX

Σ∞Ω∞Σ∞X

Σ∞µ

And ΩfX = Ω∞X is endowed with the C∗-action C∗Ω
∞X → Ω∞Σ∞Ω∞X → Ω∞X.
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3.4 Infinite loop space machine

Theorem 3.18 (Uniqueness of additive infinite loop space machine [23]). We define an
(additive) infinite loop space machine to be an adjoint pair (F,G)

Ho(E∞-spaces)
F

⇄
G

(−1)-connective Ho(Sp)

such that
(1) The composition (−1)-connective Ho(Sp)

G→ Ho(E∞-spaces) → CMon(Ho(Top∗)) is
equivalent to Ω∞;
(2) For any X ∈ Ho(E∞-spaces), X → GF (X) is a group completion, which means
π0GF (X) is a group and H∗(X)[(π0X)−1]→ H∗GF (X) is isomorphic.

Now, if (F1, G1) and (F2, G2) are two infinite loop space machines, then there exists a natural
equivalence between F1 and F2.

Remark 3.19. The existence of an additive infinite loop space machine (F,G) implies that
for any group-like E∞-space X, the induced pointed H-space is actually an H-group because
X ∼= Ω∞FX in CMon(Ho(Top∗)) and Ω∞FX is a pointed H-group.

Furthermore, beyond the additive, there exists multiplicative infinite loop space machine as
the following constructed by May:

Theorem 3.20 ( [24] Multiplicative infinite loop space machine). Let K be the Steiner E∞

operad. We can construct a explicit morphism of monads f : K∗ → Ω∞Σ∞ on Top∗, which
further induces a morphism of monads on Top∗[L+] where L is the real linear isometries
operad. Then the Quillen pair (Σf

m,Ω
f
m) induces a equivalence of categories if we restrict it

to the following subcategories (enriched in Ho(Top).)

ring-like Ho(E∞-ring spaces) ⇌ (−1)-connective Ho(E∞-Sp)

where E∞-ring spaces means (Top∗[L+])[K∗] and “ring like” means it is group-like after
forgetting in Top∗[K∗]. The Σf

m(−) = Σ∞ ⊗K∗ (−) here should be the coequalizer of the
following diagram in Sp[L] instead of in Sp in the additive case.

Σ∞K∗X Σ∞X Σf
mX

Σ∞Ω∞Σ∞X

Σ∞µ

And Ωf
mX = Ω∞X is endowed with the K∗-action K∗Ω

∞X → Ω∞Σ∞Ω∞X → Ω∞X.

Remark 3.21. (1) Note that for a unital operad C on Top, the C∗ and C+ are different
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3.5 The E∞-structures of MString and MU 〈6〉

constructions of operads on Top∗. The C+ is added to an extra base point, while the C∗(X)

for an X ∈ Top∗ is defined as the following pushout diagram in Top[C], which makes C∗(X)

become an object in Top∗ by C(∅) = ∗ → C∗(X).

C(∗) C(∅) = ∗

C(X) C∗(X)

(2) An E∞-ring space, i.e. an object in (Top∗[L+])[K∗], can induce an additive monoid
in (Ho(Top∗),×) and a multiplicative monoid in (Ho(Top∗),∧), i.e. a semi-ring object in
(Ho(Top∗),×,∧).

3.5 The E∞-structures of MString and MU 〈6〉

Let bu the connective complex K-theory. By strategy of [22], bu = LΣf
m(

⊔
i≥0 BU(i)) 3.17

which means bu is a connective E∞-ring and bu∗ = Z[v], |v| = −2.
We define BU〈2k〉 = RΩf (Σ2kbu), a group-like E∞-space, then bu2t(X) = [X,BU〈2t〉].
When t = 0, actually we have BU〈0〉 = Z× BU in Ho(Top).

Multiplication by vt : Σ2tbu → bu gives the (2t − 1)-connective cover of bu. Under this
identification, we get a sequence of morphisms in Ho(Top[E∞]) by the infinite loop space
machine

...→ BU 〈2k〉 → ...→ BU 〈6〉 → BSU → BU → BU 〈0〉

derived from infinite loop space machine.

However, in order to get a Thom spectrum we need an actual over-map instead of a homotopy
class of over-map which is what we only have now. The similar problem also appeared
in [37]P87.

Lemma 3.22. Let Sp denote the ∞-category of spectra, then the inclusions Sp≥n ⊂
Sp≥0, n ≥ 0 and Sp≥0 ⊂ Sp are coreflective subcategories, which means the inclusion admits
a left adjunction.

Proof: It is a direct conclusion from the canonical t-structure on Sp.

□

Remark 3.23. The 3.17 actually gives an equivalence between the∞-category of connective
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3.5 The E∞-structures of MString and MU 〈6〉

spectra and the ∞-category of group-like E∞-spaces.

S[E∞]gl
∼−→ Sp≥0

This equivalence can be produced easier in ∞-categories by the fact that Sp≥0 is an additive
∞-category and the reflective adjunctions

PrL ⇄ PrLAdd ⇄ PrLst

make S[E∞]gl universal among all additive ∞-categories. So we have the following unique
induced functor which is an equivalence.

S

S[E∞]gl Sp≥0

Σ∞
+

Corollary 3.24. (1) By the infinite loop space machine, for any n ≥ 0 the ∞-category of
(n− 1)-connective group-like E∞-spaces S[E∞]gl≥n ⊂ S[E∞]gl is a coreflective subcategory.
(2) Given an (n − 1)-connective covering Xn → X of group-like E∞-spaces, Y ∈ S[E∞]gl≥n
and an arrow f : Y → X, then MapS[E∞]gl

/X
(Y,Xn) is contractible.

proof of (2): It follows from the following homotopy pullback diagram of spaces.

MapS[E∞]gl
/X
(Y,Xn) MapS[E∞]gl(Y,Xn)

∗ MapS[E∞]gl(Y,X)

∼

{f}

The corollary illustrates the n-connective cover of a group like E∞-space is up to contractible
choices.

Proposition 3.25. By the contractiblity above, we get for any group-like E∞-space X the
full sub ∞-category Covn(X) ⊂ S[E∞]gl/X is a contractible Kan complex.

Theorem 3.26 (E∞ structure of MO 〈n〉 and MU 〈2k〉).
By proposition above, we get the contractibility of choices for BO 〈n〉 and BU 〈2k〉 when we
take X = BO and X = BU respectively. Moreover, there is a following homotopy diagram
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in h(S[E∞]gl/BO) determined by the canonical E∞ map BU → BO.

... BU 〈6〉 BSU = BU 〈4〉 BU

... Bstring = BO 〈6〉 = BO 〈8〉 BSpin = BO 〈4〉 BSO BO

Taking the E∞ Thom spectrum functor 3.10 over BO, we get the following homotopy diagram
in h(Sp[E∞]).

... MU 〈6〉 MSU = MU 〈4〉 MU

... Mstring = MO 〈6〉 = MO 〈8〉 MSpin = MO 〈4〉 MSO MO
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4. σ-orientation

We know that any commutative ring spectrum E with Eodd = 0 (actually E2n+1 = 0

for every n ≥ 1 suffices) is complex orientable. So any elliptic cohomology theory is
complex orientable. However we can not find a canonical complex orientation on an elliptic
cohomology theory without extra data.

But this can be done when comes to MU 〈6〉-orientation of an elliptic cohomology theory.
The main result in [3] is that MU 〈6〉-orientations of an EWP(2.27) ring spectrum E

coincides with cubical structures of the bundle I(0) on Spf(E0CP∞).

Remark 4.1. Throughout the whole section 4, E is denoted as an EWP commutative
ring phantom-spectrum. Here we use ring phantom-spectrum because by localizing a ring
(phantom-)spectrum we can only get a phantom spectrum: for any EWP commutative ring
phantom-spectrum E and f ∈ E0, the homology theory E[f−1]∗(−) = E∗[f

−1] ⊗E∗ E∗(−)
induces a commutative ring phantom-spectrum E[f−1].

4.1 n-cocycles

Definition 4.2. Let C be a category admitting finite products. If A and T are commutative
monoid objects in CMon(C), we define C0(A, T ) to be the set

C0(A, T )
def
= HomC(A, T )

and for k ≥ 1 we let Ck(A, T ) be the submonoid of f ∈ HomC(A
k, T ) such that

(a) f (a1, . . .) = 0 when one of {ai} is zero ;
(b) f (a1, . . .) is a symmetric function ;
(c) f satisfies the cocycle condition, that is,

f (a1, a2, a3, . . .) + f (a0, a1 + a2, a3, . . .) = f (a0 + a1, a2, a3, . . .) + f (a0, a1, a3, . . .)

when k ≥ 2.

Remark 4.3. (1) The Cn(A, T ) is commutative monoid set induced by T .
(2) If T is an abelian group object, then in definition (a) can be replaced by (a)’:
f(0, 0, ..., 0) = 0.

Definition 4.4. In the case where G and T are abelian group objects, and for k ≥ 0 with
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f ∈ Ck(G, T ), the transformation δ(f) ∈ Ck+1(G, T ) is defined as follows: for k ≥ 1, the
map is determined by δ(f) (a0, . . .) = f (a0, a2, . . .) + f (a1, a2, . . .)− f (a0 + a1, a2, . . .).
In the special case where k = 0, the map is specified as δ(f)(a) = f (0)− f (a).

Definition 4.5 (Sheafification). From definition we can make n-cocycles a sheaf as the
following: let X,Y are commutative momoid fppf sheaves over S, we define Ck(X,Y )(T ) =

Ck(XT , YT ). It is actually a representable commutative monoid sheaf in Sh(Sch/S)fppf in
certain case [21].

4.2 Even spaces

Before into the topology cocycle, we introduce a useful concept.

Definition 4.6. (1) We say a space X to be “even” iff H∗(X) is concentrated in even degrees
and Hn(X) is free abelian for all n.
(2) An H-space means a monoid object in Ho(Top).

Lemma 4.7 ( [14]4C.1). If X is even and simply-connected, then there exists a CW
approximation W → X so that W only consists of cells of even dimension.

Proposition 4.8. Let E be an EWP commutative ring phantom-spectrum. Then for any
even space X,
(1) The A-T spectral sequence H∗(X;E∗) =⇒ E∗(X) collapses . Therefore E∗(X) is a free
E∗-module and E∗(X)→ Hom∗E∗(E∗X,E∗) is bijective.
(2) The E0(X) is a cocommutative E0-coalgebra by kunneth theorem. Furthermore, If X is
an even H-space, we define XE = SpfE0X, then the natural Cartier morphism SpecE0X →
HomGrp/E(XE,Gm,E) is isomorphic, which is the Cartier duality.

Definition 4.9. To begin, the map ρ0 : CP∞ → 1 × BU ⊂ Z × BU = BU〈0〉 is initially
defined as the mapping that classifies the tautological line bundle L [15].
For t > 0, consider L1, . . . , Lt as the evident line bundles over (CP∞)t. Introduce xi ∈
ku2 ((CP∞)t) as defined by the expression

vxi = 1− Li.

Subsequently, the following isomorphisms hold:

ku∗
(
(CP∞)t

) ∼= Z[v][[x1, . . . , xt]]

The element
∏

i xi ∈ bu2t (P t) yields the map ρt : (CP∞)t → BU〈2t〉.
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4.2 Even spaces

Remark 4.10. The composition (CP∞)t ρt−→ BU〈2t〉 → BU〈0〉 happens to classify the
bundle

∏
i (1− Li).

Proposition 4.11. Let X be an even commutative H-space, we have the following diagram
of commutative monoid sets for any k ≥ 0,

Ck(P,X) Ck
E0−CcoAl(E0P,E0X) HomMon/E(X

E, Ck(PE,Gm,E))

Ck(PE,Mm,E)(SpecE0X) Ck(PE,Gm,E)(SpecE0X)

where P = CP∞ and PE = SpfE0P , XE = SpecE0X. The dashed liftings exist only when
k ≥ 1 or X is an H-group, and in those 2 cases all sets in the diagram are abelian groups.

Definition 4.12. For 0 ≤ t ≤ 3, BU〈2t〉 is an even space [3]. Apply the above to ρt ∈
Ct(P,BU〈2t〉), we get morphisms of commutative group schemes over Spec(E0)

ft : SpecE0BU〈2t〉 → Ck(PE,Gm,E).

Theorem 4.13 (Ando-Hopkins-Strickland [3]). The morphism fk : SpecE0BU〈2k〉 →
Ck(PE,Gm,E) is an isomorphism of commuatative group schemes over SpecE0 when
0 ≤ k ≤ 3.

Proof: Sketch: First, we note that the formation of the map

fk : SpecE0BU〈2k〉 → Ck(PE,Gm,E)

is preserved under base change. Second, by 4.1, locally on SpecE0, we can assume E is
MP -orientable. Thus, it suffices to show fk is an isomorphism for E = MP .
In this case, we have a map of graded rings

OC →MP0BU〈2k〉 = MU∗BU〈2k〉,

both of which are free of finite type over Z. This map is a rational isomorphism by some
easy calculation, so it must be injective, and the source and target must have the same
Poincaré series. It will thus suffice to prove that it is surjective. Recall that I denotes the
kernel of the map

MP0 → Z = HP0

that classifies the additive formal group law, or equivalently, the ideal generated by elements
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4.3 The Line bundle on a formal group

of strictly positive dimension in MU∗. By induction on degrees, it will suffice to prove that
the map

OC/I →MP0BU〈2k〉/I

is surjective.
Base change and the Atiyah-Hirzebruch spectral sequence identify this map with the map

OC3(Ĝa,Gm) → HP0BU〈2k〉,

in other words, the case E = HP of the proposition. This case was proved in Proposition
4.4 (for k = 2) or Corollary 4.14 (for k = 3) of [3].

□

4.3 The Line bundle on a formal group

Now we turn to the connection between n-cocycles for a line bundle and Thom spectrum
orientation.

Firstly we need a well-behavior definition of the line bundle on a formal group.

Definition 4.14. Consider X ∈ Sh(Aff)Zar as a large Zariski sheaf. The category
QCoh(X) is defined as follows:
A quasi-coherent sheaf F ∈ QCoh(X) entails the following elements:
(a) For each (R, x) where R is a commutative ring and x ∈ X(R), we assign an R-module
Mx.
(b) For every map f : (R, x)→ (S, y) , there is an isomorphism φ(f, x) : S ⊗R Mx →My of
S-modules. These isomorphisms φ(f, x) must adhere to the functoriality conditions:
(i) For f = id : (R, x)→ (R, x), the requirement is φ(id, x) = id : Mx →Mx.
(ii) The morphism φ satisfies the associative law.

Remark 4.15. (1) The category QCoh(X) supports direct sums and tensor products which
are defined pointwise.
(2) A line bundle is defined to be a quasi-coherent sheaf on X such that all Mx is a projective
module of rank 1 on R.
(3) It can be checked the definition agrees with the ordinary case when X is a scheme.

Proposition 4.16. Let X ∈ Sh(Aff)Zar be a big Zariski sheaf, then the following statements
hold:
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4.3 The Line bundle on a formal group

(1) There is a natural equivalence pX : Gm,X-tor → PIC(X)≃ between the category of
Gm,X-torsors (on big Zariski site Aff/X) and the maximal groupoid of the full category
PIC(X) ⊂ QCoh(X) of line bundles.
(2) If X = lim←−Iop

Xi is an inverse limit of a filtered diagram I, then we have following
equivalences by homotopy limit(or 2-limit) of categories
(i) QCoh(X) ' lim←−Iop

QCoh(Xi);
(ii) Gm,X-tor ' lim←−Iop

Gm,Xi
-tor ;

(iii) pX = lim←−Iop
pXi

Proof: (1)
Let T ∈ Gm,X-tor, we define pX(T ) ∈ PIC(X)≃ by pX(T )(R, x) = HomGm,R

(TR,A1
R), the

Gm,R-equivariant morphismsm, which is a R-module induced by A1
R.

Conversely, let L ∈ PIC(X)≃, we define the ϕX(L) ∈ Gm,X-tor by ϕX(L)(R, x) =

IsoR(R,L(R, x)), the trivializations of L(R, x). It is not hard to verify pX is the inverse of
ϕX .

□

A Θ3-structure on a line bundles is called by a cubical structure.

Definition 4.17. In this thesis, we denote by Ck(G,L) the collection of Θk-structures on
L over G. It is important to note that C0(G,L) represents the trivializations of L, while
C1(G,L) corresponds to the rigid trivializations of Θ1(L). Additionally, we introduce an
fppf sheaf given by Ck(G,L)(R) = Ck(GR,LR).

Remark 4.18. It is worth mentioning that when considering the trivial line bundle OG,
we have that the set Ck (G;OG) simplifies to the group Ck (G,Gm) of previously introduced
cocycles.

For any pair of line bundles L1,L2, there exists a natural map Ck(G;L1) × Ck(G;L2) →
Ck(G;L1 ⊗ L2) defined by (s1, s2) 7→ s1 ⊗ s2. Consequently, when L1 is trivial, a natural
group action Ck(G;Gm)× Ck(G;L)→ Ck(G;L) can be obtained for any line bundle L.

Proposition 4.19. Furthermore, if L is a line bundle over G where G is a formal group
over S and where L can be trivialized Zariski locally on S (warning: this is not equivalent to
locally trivial on G), then the fppf sheaf Ck(G,L) forms a scheme, which is invariant under
change of base. Moreover, Ck(G,L) acts as a torsor over Ck (G,Gm).
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4.3 The Line bundle on a formal group

Now return to the topology.

Definition 4.20. Let X be a finite even complex and V be a virtual complex vector bundle
classified by a map X → Z × BU . We denote the Thom spectrum of XV . The coaction of
the Thom spectrum results in E0XV being an E0X-module, which, by Thom isomorphism
Zariski locally, can be further understood as a line bundle.

Proposition 4.21. In the master thesis, the proposition labeled as 4.21 discusses the
scenario where X is a finite complex and V is a virtual bundle over X. The notation
L(V ) is used to denote the line bundle Ẽ0XV , and L establishes a functor from vector
bundles over X to line bundles on XE. The proposition outlines the following key points:
(i) The functor L(−) takes the direct sum into the tensor product of line bundles on XE.
(ii) Additionally, let f : Y → X be a continuous map, then a natural isomorphism f ∗L(−) ∼=
L (f ∗(−)) of line bundles over YE is established.

In the case where X is an (infinite) even complex and V is a virtual bundle classified by
f : X → BU〈0〉, L(V ) is considered a quasi-coherent sheaf on SpfE0X through (co)limits.
It is emphasized that the proposition mentioned earlier is applicable even for infinite even
complexes.

Lemma 4.22. If T (ρ0) = Σ∞Th(L) denotes the Thom spectrum associated with ρ0 : P →
Z ×BU by the tautological bundle L, then the Thom sheaf E0T (ρ0) is naturally isomorphic
to I(0) = ker(E0P → E0) in Qcoh(PE). This isomorphism is induced by a homotopy
equivalence of P+-comodule pointed spaces P → Th(L).

Proof: We can see the equivalence P → Th(L) preserved the P+-comodule action by the
following diagram.

P P × P

D(EU1) D(EU1)× P

Th(L) Th(L) ∧ P+

∆

s s×id

(id,p)

p p×id

□

Proposition 4.23. The section sk is a Θk-structure, and hence an element of

Ck (PE; I(0)) (MU〈2k〉E)

Proof: Firstly we have an isomorphism BU〈2k〉E ∼= Ck (PE,Gm), which imparts the
structure of a torsor over the group scheme BU〈2k〉E to Ck (PE; I(0)) when k ≤ 3. The
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4.3 The Line bundle on a formal group

equivariant morphism between torsors is automatically deemed an isomorphism, as observed
in the case of gk.

□

Proposition 4.24. The following diagram is commutative when 0 ≤ k ≤ 3

BU〈2k〉E ×MU〈2k〉E Ck (PE;Gm,E)× Ck (PE; I(0))

MU〈2k〉E Ck (PE; I(0))

which is concluded by the following naturality of coactions on Thom spectra

(P k)V P k
+ ∧ (P k)V

MU〈2k〉 BU〈2k〉+ ∧MU〈2k〉

Theorem 4.25 (Ando-Hopkins-Strickland). The morphism MU〈2k〉E gk−→ Ck (PE; I(0)) is
an isomorphism of BU〈2k〉E-torsors when 0 ≤ k ≤ 3.

Proof: Since any morphism of torsors is an isomorphism, it follows from 4.24.

□

Since MU〈2k〉 is a bounded-below even spectrum when k ≤ 3, we have natural isomorphisms

[MU〈2k〉, E] = E0(MU〈2k〉)→ HomE∗(E∗MU〈2k〉, E∗) = HomE0(E0MU〈2k〉, E0)

and
[MU〈2k〉, E]ring = HomE0−Al(E0MU〈2k〉, E0) = MU〈2k〉E(SE).

Corollary 4.26 (Orientations correspond Θk-structures). When k ≤ 3, the isomorphism gk

induces a bijection
[MU〈2k〉, E]ring → Ck (PE; I(0)) (SE).

By the corollary above we can state our first main theorem as follows.

Theorem 4.27 (Main A). Let E → F be a ring (phantom-)morphism between EWP ring
(phantom-)spectra, and MU〈2k〉 → E and MU〈2k〉 → F be two orientations. Then

MU〈2k〉

E F
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commutes if and only if
SF SE

MU〈2k〉F MU〈2k〉E

commutes for the corresponding sections.

4.4 Cubical structure on elliptic curves

In 4.4, we will see any elliptic cohomology theory has a unique MU〈6〉-orientation.

Lemma 4.28 (Theorem of the cube [8]). Let X → S be an abelian scheme over S. Then
for any L ∈ Pic(X), the Θ3(L) ∼= p∗M for someM∈ Pic(S) where p denote the projection
XS ×XS ×S X → S.
Furthermore, OS

∼= e∗Θ3(L) is naturally rigidificated, so M ∼= e∗p∗M ∼= e∗Θ3(L) ∼= OS is
trivial, and hence Θ3(L) is also trivial.

Lemma 4.29. Let p : X → S be a proper smooth morphism with geometrically connected
fibers, then
(i) [38]28.1H: The natural OS → p∗OX is isomorphic;
(ii) Let e : S → X be a section, and let L1,L2 be trivializable line bundles on X, then

HomOX
(L1,L2)→ HomOS

(e∗L1, e
∗L2)

is bijective.

Theorem 4.30 (Unique cubical structure for abelian schemes). Let p : X → S be an abelian
scheme over S. Then for any L ∈ Pic(X), there exists exactly one Θ3-structure on L.

Proof: Since HomOX3 (OX3 ,Θ3(L)) → HomOS
(OS, e

∗Θ3(L)) is bijective by lemma above.
The natural rigidification OS

1−→ e∗Θ3(L) determines unique trivialization u : OX3 → Θ3(L).
Recall the axioms of cubical structures:
(i) s(0) = 1;
(ii) s(aσ1 , aσ2 , aσ3) = s(a1, a2, a3) is symmetric for any σ ∈ Σ3 ;
(iii) the section s (a1, a2, a3)⊗ s (a0 + a1, a2, a3)

−1 ⊗ s (a0, a1 + a2, a3)⊗ s (a0, a1, a3)
−1 = 1.

However, all conditions automatically hold for u by u(0) = 1 when we pullback to S along
e, which means u is exactly the unique cubical structure.

Now we can state the main theorem of this paper.
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Theorem 4.31 (Main B).
(i) For any elliptic cohomology theories E we have natural σ-orientation MU〈6〉 → E.
(ii) The σ-orientation commutes for any elliptic morphism of elliptic cohomology theories
E → F induced by a morphism C1 → C2 of elliptic curves.

MU〈2k〉

E F

commutes by

MU〈6〉F C3 (PF ; I(0)) C3 (C1; I(0)) SF

MU〈6〉E C3 (PE; I(0)) C3 (C2; I(0)) SE

≃ ≃

≃ ≃

Proof: Combining 4.27 and 4.30 we obtain the result.

□

4.5 Further developments

When comes to E∞-orientation space OrE∞(Mf,R) = MapCAlg(Sp)(Mf,R), combining the

Thom adjunction MonE∞(S)/Pic(Sp) CAlg(Sp)
M(−) and the infinite loop space machine

Mongp
E∞

(S) ' Sp≥0 we can produce many interesting results.

Sp≥0 Mongp
E∞

(S) MonE∞(S) CAlg(Sp)∼

GL1

Σ∞
+

Ω∞

gl1

By this adjunction we can get the following theorem.

Theorem 4.32 (Ando–Blumberg–Gepner–Hopkins–Rezk [1]). Let Mf be the Thom E∞-
spectrum induced by a map f : X → pic(Sp) in Sp≥0 and let R be an E∞-ring. Then
OrE∞(Mf,R) is a torsor over the H-space MapSp(X, gl1(R)), meaning OrE∞(Mf,R) is
either empty or homotopy equivalent to MapSp(X, gl1(R)).

Example 4.33. Particularly, combining with the Chromatic Nullstellensatz [7] and some
further calculations, we can deduce that for any height = n > 0, the OrE∞(MUP,E(Fp)) is
non-empty and hence homotopy equivalent to MapSp(ku, gl1(E(Fp))).

Example 4.34. The following genera for MSO∗ are also examples which can be taken
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consideration by orientation theory.
1. L-genus

logSign(x) =
∑

n≥1
x2n+1

2n+1

2. Â-genus
expÂ(u) = 2 sinh(u/2)

3. Ochanine genus
logOch(x) =

∫ x

0

dt√
1− 2δt2 + εt4

4. Witten genus
u

expWit(u)
=

u/2

sinh(u/2)

∞∏
n=1

(1− qn)2

(1− qneu) (1− qne−u)

5. Witten signature

u

expWSig(u)
=

u/2

tanh(u/2)

∞∏
n=1

(
1 + qneu

1− qneu
· 1 + qne−u

1− qne−u

)
/

(
1 + qn

1− qn

)2

Proposition 4.35. Cobordism spectra From the commutative diagram in Ho(Top[E∞]/BO)

BU〈6〉 BSU BU

BString BSpin BSO BO

we get a natural commutative diagram in Ho(E∞-Sp) by applying Thom spectrum functor

MU〈6〉 MSU MU

MString MSpin MSO MO

Theorem 4.36. Ando–Hopkins–Strickland 2001 [3]
The [MU〈6〉, E]CAl(hSp)

≃−→ C3 (PE; I(0)) can induces a bijection of subsets

[MString, E]CAl(hSp)
≃−→ C3

is (PE; I(0)) = {f ∈ C3 (PE; I(0)) |f(a, b,−(a+ b)) = 1}

if 1/2 ∈ E0. So in the case 2 invertible, the σ-orientation of an elliptic cohomology theory
has a (unique) factorization of homotopy ring spectra

MU〈6〉 MString

E
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which corresponds with the Witten genus.

Theorem 4.37 (Ando–Hopkins–Strickland 2004 [4]).
The σ-orientation MU〈6〉 → E is an H∞-map.

Theorem 4.38 (Ando–Hopkins–Rezk 2010 [2]).

1. There exist, up to homotopy, unique E∞-ring maps

σL, σÂ : MSpin −→ KO

refining the L-genus and Â-genus.

2. The σ-orientation MU〈6〉 → E is an E∞-map, which can be refined to be an E∞ map
MString → tmf , a string orientation to global section of the E∞-sheaf of moduli stack
of elliptic curves.

Theorem 4.39 (Dylan Wilson 2018 [40]).
There exist, up to homotopy, unique E∞-ring maps

σOch, σWSig : MSpin −→ tmf0(2)

refining the Ochanine genus and Witten signature

The road ahead

(1) Could we generalize the σ-orientation to the PEL-type abelian varieties or even further
refine it to be a E∞ morphism MU〈6〉 → TAF ?
(2) The geometric interpretation of higher Thom spectra MU〈2k〉 , MO〈2k〉 and their E∞-
orientations?
(3) Are there higher viewpoints in Spectral Algebraic geometry?
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Conclusion

Conclusion

Main contributions:

1. We provide a bigger category of fppf sheaves than the category of schemes. It can
contain schemes, formal schemes and p-divisible groups.

2. We provide a precise definition of formal Lie groups and formal Lie varieties in the
framework of fppf sheaves. So we can seriously consider the quasi-coherent sheaves on
them.

3. We functorialize the construction of Thom spectra and make it become a left Quillen
adjoint. In this point of view, we can easily gain the desired E∞-structure of a Thom
spectrum.

4. We give a statement that the Thom isomorphism actually comes from a diagonal
comodule structure.

5. Combining the Thom spectrum functor with the infinite loop space machine, we can
endow a canonical E∞-structure to the n-connective cover of an E∞-space.

6. Combining all of the above, we can get the most important theorem in this paper, that
is, the correspondence between cubical structures and MU〈6〉-orientations.
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