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摘 要

摘 要

Goodwillie于 20世纪 90年代提出了 Goodwillie塔，这是同伦论中的一种基本
工具，通过构造同伦函子的逼近，来研究拓扑空间的稳定同伦性质。

Goodwillie塔的核心思想是用一系列的 𝑛-切除逼近来分解同伦函子，从而使
其更易于分析和计算。本文系统阐述了 Goodwillie塔的构造，其中包括 𝑛-切除逼
近 𝑃𝑛𝐹，称为第 𝑛层，以及作为相邻两层自然诱导的同伦纤维 𝐷𝑛𝐹，它是一个 𝑛-齐
性函子。此外，本文还探讨了一些有关 Goodwillie塔的基本理论，包括对称多重线
性函子和 𝑛-齐性函子之间的一一对应关系，这为研究 𝐷𝑛𝐹提供了提供了可计算的
新视角。

此外，本综述介绍了一些应用，例如 Snaith分解。还综述了若干已知结果，包括
Goodwillie塔关于恒等函子在一些特定空间下 𝜈𝑘-周期同伦的表现，以及Goodwillie
塔的收敛性质，其对理解特定空间上同伦函子的行为具有重要意义。

关键词：Goodwillie塔；Snaith分解；恒等函子；𝜈𝑘-周期同伦
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ABSTRACT

ABSTRACT

The Goodwillie tower, introduced by Thomas Goodwillie in the 1990s, is a funda-
mental tool in homotopy theory, designed to study the homotopy properties of topological
spaces and approximate homotopy functors.

The core idea behind the Goodwillie tower is to decompose homotopy functors into a
sequence of 𝑛-excisive approximations, making them easier for analysis and computation.
This survey provides a detailed exploration of the construction of the Goodwillie tower,
including the 𝑛-excisive approximation 𝑃𝑛𝐹, called the 𝑛-th stage, and the homotopy fiber
𝐷𝑛𝐹, an 𝑛-homogeneous functor. We also introduce its theoretical foundations, including
the relationship between symmetric multilinear functors and n-homogeneous functors.
This provides another viewpoint to calculate the 𝐷𝑛𝐹.

Additionally, the survey highlights several key applications and examples, such as
the Snaith splitting. The survey also discusses some results about the 𝜈𝑘-periodic homo-
topy of the Goodwillie tower of the identity functor on some specific spaces, including the
convergence properties of the Goodwillie tower, and its implications for understanding
the behavior of homotopy functors on specific spaces.

Keywords: Goodwillie tower; Snaith splitting; identity funcor; 𝜈𝑘-periodic homotopy
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

The study of functorial approximation in homotopy theory has been profoundly
shaped by the development of tower decompositions, which systematically break down
complex homotopy invariants into more tractable components. One of the earliest and
most influential examples is the Postnikov tower, which is a sequence of spaces

𝑋 ⟵ 𝑋1⟵⋯⟵ 𝑋𝑛 ⟵⋯

such that 𝜋𝑖(𝑋) ≅ 𝜋𝑖(𝑋𝑛) for all 𝑖 ≤ 𝑛. The Postnikov tower was introduced by Mikhail
Postnikov [1], see also [2, 3]. The Postnikov tower provides a sequential approxima-
tion of a topological space by truncating its higher homotopy groups, yielding a series of
homotopy fibrations whose fibers are Eilenberg-MacLane spaces.

The homotopy theory for categories has grown in importance in modern mathemat-
ics. In the 1990s, Thomas Goodwillie [4–6] introduced the Taylor tower (also called
Goodwillie tower) of homotopy functors from (topological) spaces to either spaces or
spectra which takes the form

𝐹 ≃ 𝑃0𝐹 ⟵ 𝑃1𝐹 ⟵ ⋯⟵ 𝑃𝑛𝐹 ⟵ ⋯ ,

where each𝑃𝑛𝐹 is a homotopy functor from spaces to either spaces or spectra. Whereas the
Postnikov tower decomposes spaces by Postnikov stages𝑋𝑛, the Goodwillie tower applies
to functors, approximating them through a sequence of polynomial stages 𝑃𝑛𝐹. For each
𝑛, the 𝑛-th layer 𝐷𝑛𝐹 of the tower, which is the homotopy fiber of 𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹, is
an 𝑛-homogeneous functor (Proposition 2.3). As shown by the formula (3-1), 𝐷𝑛𝐹 can
be treated as a kind of homotopy colimit (homotopy orbit) of a symmetric multilinear
functor with 𝑛 variables. Goodwillie found that the 𝑛-th layer can be determined by the
𝑛-th derivative 𝜕𝑛𝐹, see the formula (3-2). Klein and Rognes [7] proved that the first
derivative of the composition 𝐹 ∘ 𝐺 of functors 𝐹, 𝐺 satisfies the chain rule:

𝜕1(𝐹 ∘ 𝐺) ≃ 𝜕1𝐹 ∧ 𝜕1𝐺.

Arone and Ching [8] showed that the higher order derivatives can be regarded as bimod-
ules over operads. For details of operad, see [9]. For a well-established survey of Taylor
towers, one may consult [10].

Given a homotopy functor 𝐹 ∶ 𝒞/𝑌 ⟶ 𝒟 from category 𝒞/𝑌 of spaces over 𝑌 to the
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CHAPTER 1 INTRODUCTION

category 𝒟 of spaces or spectra, we say that its Goodwillie tower converges on 𝑋 ∈ 𝒞/𝑌
if there is a weak equivalence

𝐹(𝑋) ≃ ℎ𝑜𝑙𝑖𝑚 𝑃𝑛𝐹(𝑋).

In the case of Posnikov tower, there is always a homotopy equivalence 𝑋 ≃ 𝑙𝑖𝑚 𝑋𝑛
for any CW complex 𝑋. A natural question for Goodwillie towers is which classes of
homotopy functors admit convergent Goodwillie towers. When the Goodwillie tower of
a functor converges at a given space, it provides a complete homotopy decomposition
of the functor at that object, effectively breaking it down into its constituent polynomial
approximations of increasing degrees of excision. There are some remarkable results
about the convergence of Goodwillie towers. In 2003, Goodwillie [6] proved that if 𝐹
is 𝜌-analytic and the structural map 𝑋 ⟶ 𝑌 is (𝜌 + 1)-connected, then there is a weak
equivalence

𝐹(𝑋) ≃ ℎ𝑜𝑙𝑖𝑚 𝑃𝑛𝐹(𝑋).

In Arone andMahowald’s work [11], they proved that the Goodwillie tower of the identity
functor 𝐼 on odd-dimensional spheres has only non-trivial layers 𝐷𝑝𝑘𝐼. In works associ-
ated with Anderson and Davis [12], as well as Miller and Wilkerson [13], they proved
that the 𝜈𝑘−1-periodic homotopy of 𝐷𝑝𝑗𝐼(𝑆2𝑠+1) is trivial when 𝑗 ≥ 𝑘. That is, the Good-
willie tower of 𝐼 on an odd-dimensional sphere 𝑆2𝑠+1 converges at an exponential speed,
the unstable 𝜈𝑘-periodic homotopy of an odd-dimensional sphere can be resolved into a
tower of fibrations with 𝑘+1 stages, where the fibers are infinite loop spaces. This shows
that the Goodwillie tower is powerful to study the unstable 𝜈𝑘-periodic homotopy theory.
In Behrens and Rezk’s work [14], they characterized a class of spaces called Φ𝐾(𝑛)-good
spaces, on which the Goodwillie tower of 𝐼 is convergent under 𝜈𝑘-periodic homotopy.
As an example, the sphere is a Φ𝐾(𝑛)-good space, which coincides with Arone and Ma-
howald’s work [11] on spheres. On the other hand, Brantner and Heuts [15] found that
the Goodwillie tower on the wedge sum of spheres, or mod 𝑝Moore spaces, is divergent
under 𝜈𝑘-periodic homotopy.

Goodwillie towers have rich applications in topology and homotopy theory. For ex-
ample, the Snaith splitting [16], which can be used to calculate the stable homotopy groups
of delooping spheres Ω𝑆𝑛. Bödigheimer [17] characterized the Goodwillie tower of sta-
ble homotopy functor 𝑄 = Σ∞Ω∞, on unbased mapping space from an 𝑛-dimensional

2



CHAPTER 1 INTRODUCTION

manifold𝑀 to unreduced suspension space 𝑆𝑚𝑋 by

𝑄Map(𝑀, 𝑆𝑚𝑋) ≃∏
𝑛≥1

𝑄(𝐶(𝑀, 𝜕𝑀; 𝑛) ∧Σ𝑛 𝑋∧𝑛).

The functor 𝑋 ⟼ 𝑄(𝐶(𝑀, 𝜕𝑀; 𝑛) ∧Σ𝑛 𝑋∧𝑛) is 𝑛-homogeneous. Thus, this equiva-
lence also splits. For the based version, Arone [18] described the 𝑛-excisive approx-
imation of this stable homotopy functor on mapping space from a CW complex 𝐾 to
any 𝑋. In the same example, Goodwillie [6] described the 𝑛-th derivative of functor
𝑋 ⟼ Σ∞Map∗(𝐾, 𝑋), thus giving the 𝑛-th layer. On smooth manifolds, Goodwillie tower
can be used to decompose the embeddings between manifolds [19]. Bauer, Burke, and
Ching’s work [20] shows that the 𝑛-excisive functors are the direct analogues of 𝑛-jets of
smooth maps between manifolds. This makes a more useful connection between stable
homotopy and smooth manifolds. On the other hand, Goodwillie towers provide a frame-
work for integrations between localization techniques and chromatic homotopy theory
[10, 21], significantly advancing the study of height decompositions in homotopy theory.
Also, it provides a tool to study the unstable homotopy theory by the stable homotopy the-
ory [22, 23]. This integration enables deeper insights into complex problems in algebraic
topology and related fields.

In this thesis, we adopt the following global notation and convention. All spaces
are supposed to be compactly generated Hausdorff spaces. There are three homotopy
categories frequently used in this thesis: Top is the model category of unbased spaces,
Top∗ is the based spaces, and Sp is the model category of spectra. Unless otherwise
specified, the category𝒞 is usuallyTop orTop∗, the category𝒟 is usuallyTop∗ or Sp. The
homotopy category of homotopy functors between 𝒞 and𝒟 is denoted by Fun(𝒞, 𝒟). The
slice category 𝒞𝑌 is the category of spaces over 𝑌. The constant functor ∗𝐹(𝑌) ∶ 𝒞/𝑌 ⟶𝒟
satisfies ∗𝐹(𝑌)(𝑋) ≃ 𝐹(𝑌) ∈ 𝒟 for all object 𝑋 ∈ 𝒞/𝑌. The notation ℎ𝑜𝑐𝑜𝑙𝑖𝑚 denotes the
homotopy colimit, and ℎ𝑜𝑙𝑖𝑚 denotes the homotopy limit.

This thesis is arranged as follows. In Chapter 2, we introduce the construction of the
Goodwillie tower, including the universal 𝑛-excisive approximation and the 𝑛-th layer.
There is an analogy between ordinary calculus and Goodwillie’s functor calculus, see Sec-
tion 2.1 for details. In Chapter 3, we introduce the one-to-one correspondence between
𝑛-homogeneous functors and multilinear symmetric multivariab functors, which is the
framework developed by Goodwillie [6]. Chapter 4 is devoted to presenting some ex-
amples and applications of Goodwillie towers. Concretely, in Section 4.1, we introduced

3



CHAPTER 1 INTRODUCTION

the Snaith splitting. In Section 4.2, we introduced the Goodwillie tower of the identity
functor between spaces, and some results on spheres.

4



CHAPTER 2 CONSTRUCTION AND BASIC PROPERTIES

CHAPTER 2 CONSTRUCTION AND BASIC
PROPERTIES

This chapter constructs the Goodwillie tower and studies its convergence. Analogous
to the Postnikov tower for spaces, the Goodwillie tower decomposes homotopy functors
into a sequence of 𝑛-excisive approximations. The 𝑛-excisive functor satisfies a universal
homotopy property, yet directly computing its 𝑛-th stage (𝑃𝑛𝐹) is often difficult. Instead,
we analyze the homotopy fiber 𝐷𝑛𝐹 (the 𝑛-th layer) to understand the tower’s behavior
on specific spaces. Primary references include [5, 6].

2.1 Goodwillie Calculus

There is an analogy between ordinary calculus and Goodwillie calculus. We can
approximate homotopy functors between certain homotopy categories by the Goodwillie
tower, as well as use the Taylor series to approximate smooth functions in the ordinary
calculus.

Calculus Goodwillie calculus

Smooth function 𝑓 ∶ (𝑦 − 𝜖, 𝑦 + 𝜖) ⟶ ℝ Homotopy functor 𝐹 ∶ 𝒞/𝑌 ⟶𝒟

𝑛-degree polynomial approximation:
𝑓(𝑥) ⟼ 𝑓(𝑛)(𝑥)

𝑛! (𝑥 − 𝑦)𝑛
𝑛-excisive approximation:
𝐹(𝑋) ⟼ 𝑃𝑛𝐹(𝑋)

Approximation of 𝑛-homogeneous function:
𝑓(𝑘)(𝑥)
𝑘! (𝑥 − 𝑦)𝑘 = 0 for all 𝑘 > 𝑛

Approximation of 𝑛-homogeneous functor:
𝑃𝑘𝐹(𝑋) ≃ ∗ for all 𝑘 < 𝑛

The 𝑛-th derivative of function:
𝑓(𝑛)(𝑥) = lim

𝑥⟶𝑦
𝑓(𝑛−1)(𝑥) − 𝑓(𝑛−1)(𝑦)

𝑥 − 𝑦

The 𝑛-th layer of functor:
𝐷𝑛𝐹 = ℎ𝑜𝑓𝑖𝑏 (𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹)

In the Taylor series, we approximate a smooth function by adding polynomial func-
tions of different degrees. In the Goodwillie tower, we approximate a homotopy functor
by taking the 𝑛-excisive functors as 𝑛 goes to infinity. Besides, the Taylor series are de-
termined by the 𝑛-th derivatives 𝑓(𝑛) of functions 𝑓, as well as the Goodwillie towers are

5



CHAPTER 2 CONSTRUCTION AND BASIC PROPERTIES

determined by the 𝑛-th layers 𝐷𝑛𝐹 of homotopy functors 𝐹.
The Goodwillie calculus is also viewed as the calculus in the infinity category. See

[24] for more details.

2.2 Polynomial Approximation of Functors

Now we recall some related concepts. Consider the small category 𝒫(𝑛) whose
objects are exactly subsets of {1, 2,⋯ , 𝑛}, morphisms are induced by partially ordered
relation “⊆”. We denote

𝑛 = {1,⋯ , 𝑛}

𝒫0(𝑛) = 𝒫(𝑛) − ∅,

𝒫1(𝑛) = 𝒫(𝑛) − {1,⋯ , 𝑛}.

Definition 2.1: An 𝑛-cube 𝒳 in category 𝒞 is a functor 𝒳 ∶ 𝒫(𝑛) ⟶ 𝒞.
（1）An 𝑛-cube 𝒳 is cocartesian if the map

𝒳({1,⋯ , 𝑛}) ⟶ ℎ𝑜𝑐𝑜𝑙𝑖𝑚
𝑆∈𝒫1(𝑛)

𝒳(𝑆)

induced by universal property of homotopy colimits is a weak equivalence.
（2）An 𝑛-cube𝒳 is strongly cocartesian is its every 2-cube surface is cocartesian.
（3）An 𝑛-cube 𝒳 is cartesian if the map

ℎ𝑜𝑙𝑖𝑚
𝑆∈𝒫0(𝑛)

𝒳(𝑆) ⟶ 𝒳(∅)

induced by universal property of homotopy limits is a weak equivalence.
Notice that if 𝑛 = 2, the cocartesian 2-cube is exactly the homotopy pushout, the

cartesian 2-cube is exactly the homotopy pullback. See [25] for more details.
To describe the 𝑛-excisive approximation 𝑃𝑛𝐹 of functor 𝐹, we need to focus on the

slice category 𝒞/𝑌 where 𝑌 is the terminal object instead of ∗ on 𝒞.
Definition 2.2: Let 𝑈 be a finite set with the discrete topology. Given any object 𝑋 ∈
𝒞/𝑌, the fiberwise join 𝑋 ∗𝑌 𝑈 is defined by the homotopy pushout

𝑋 × 𝑈 𝑌 × 𝑈

𝑋 𝑋 ∗𝑌 𝑈

𝑓 × 𝟙𝑈

.
Notice that this diagram

6



CHAPTER 2 CONSTRUCTION AND BASIC PROPERTIES

𝑋 × 𝑈 𝑌 × 𝑈

𝑋 𝑌

𝑓 × 𝟙𝑈

𝑓

𝑝𝑋 𝑝𝑌

is homotopy commutative where 𝑝𝑋 ∶ (𝑥, 𝑢) ⟼ 𝑥, 𝑝𝑌 ∶ (𝑦, 𝑢) ⟼ 𝑦, thus there is an
induced map 𝑋 ∗𝑌 𝑈 ⟶ 𝑌 by the universal property of homotopy colimits. Thus 𝑋 ∗𝑌 𝑈
is also an object in 𝒞/𝑌.
Example 2.1:
（1）If 𝑈 = {1}, then 𝑋 ∗𝑌 {1} = 𝐼𝑓 = 𝑌 ∪𝑓 (𝑋 × 𝐼) is the fiberwise cone.
（2）If 𝑈 = {1, 2}, then 𝑋 ∗𝑌 {1, 2} = Σ𝑌𝑋 is the fiberwise suspension.
（3）If 𝑌 = ∗, the fiberwise suspension is the (reduced) suspension Σ𝑋.
（4）If 𝑌 = ∗, then 𝑋 ∗𝑌 𝑈 is an object gluing |𝑈| mapping cones.
（5）Note that there is a natural isomorphism of spaces over 𝑌

(𝑋 ∗𝑌 𝑈) ∗𝑌 𝑉 ≅ 𝑋 ∗𝑌 (𝑈 ∗ 𝑉)

where 𝑈 ∗ 𝑉 is the where 𝑈 ∗ 𝑉 is the ordinary join of two spaces.
Lemma 2.1: The functor

𝒳 ∶ 𝒫(𝑛 + 1) ⟶ 𝒞/𝑌, 𝑈 ⟼ 𝑋 ∗𝑌 𝑈

is a strongly cocartesian 𝑛-cube in 𝒞/𝑌.
Proof: Every 2-cube in the (𝑛 + 1)-cube 𝒫(𝑛 + 1) is cocartesian, thus it is a strongly
cocartesian (𝑛 + 1)-cube. Since the functor 𝑋 ∗𝑌 − is a homotopy colimit, it preserves
the cocartesian squares. Then the (𝑛 + 1)-cube 𝒳 strongly cocartesian. ∎

The action of the functor 𝒳 for 𝑛 = 2 is given by the following.

∅ {1}

{2}

{3}

{1, 2}

{2, 3}

{1, 3}

{1, 2, 3}

𝒳
𝑋 ∗𝑌 ∅ 𝑋 ∗𝑌 {1}

𝑋 ∗𝑌 {2}

𝑋 ∗𝑌 {3}

𝑋 ∗𝑌 {1, 2}

𝑋 ∗𝑌 {2, 3}

𝑋 ∗𝑌 {1, 3}

𝑋 ∗𝑌 {1, 2, 3}

Strongly cocartesian cube Strongly cocartesian cube

Definition 2.3: A homotopy functor 𝐹 ∶ 𝒞 ⟶ 𝒟 is 𝑛-excisive if 𝐹(𝒳) is an cartesian
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(𝑛 + 1)-cube for any strongly cocartesian (𝑛 + 1)-cube 𝒳 in 𝒞.
Let 𝒞 and 𝒟 be homotopy categories, for each 𝑛, Exc𝑛(𝒞, 𝒟) denotes the homotopy

category of 𝑛-excisive functors from 𝒞 to 𝒟.
Definition 2.4: Given a homotopy functor 𝐹 ∈ Fun(𝒞/𝑌, 𝒟), the homotopy functor
𝑇𝑛𝐹 ∈ Fun(𝒞/𝑌, 𝒟) is defined by

𝑇𝑛𝐹(𝑋) = ℎ𝑜𝑙𝑖𝑚
𝑈∈𝒫0(𝑛+1)

𝐹(𝑋 ∗𝑌 𝑈)

where 𝒫0(𝑛 + 1) is the nonempty set in 𝒫(𝑛 + 1).
Since 𝑋 ∗𝑌 ∅ = 𝑋, there is an induced map 𝑢 ∶ 𝐹(𝑋) ⟶ 𝑇𝑛𝐹(𝑋) by the universal

property of homotopy limit. Also, there is a natural transformation 𝑡𝑛𝐹 ∶ 𝐹 ⟶ 𝑇𝑛𝐹.
If the homotopy functor 𝐹 is 𝑛-excisive, then there is a weak equivalence

𝐹(𝑋) = 𝐹(𝑋 ∗𝑌 ∅) ≃ ℎ𝑜𝑙𝑖𝑚
𝑈∈𝒫0(𝑛+1)

𝐹(𝑋 ∗𝑌 𝑈).

Therefore we have the following lemma.
Lemma 2.2: If the homotopy functor 𝐹 is 𝑛-excisive, then there is an equivalence

𝑡𝑛𝐹 ∶ 𝐹 ⟶ 𝑇𝑛𝐹.

Definition 2.5: For a homotopy functor 𝐹 ∈ Fun(𝒞/𝑌, 𝒟), the 𝑛-excisive approxima-

tion (also called the 𝑛-th polynomial stage) 𝑃𝑛𝐹 ∈ Fun(𝒞, 𝒟) is defined to be sequential
homotopy colimit of

𝐹(𝑋) 𝑡𝑛𝐹(𝑋)−−−−⟶ 𝑇𝑛𝐹(𝑋)
𝑡𝑛𝑇𝑛𝐹(𝑋)−−−−−⟶ 𝑇2𝑛𝐹(𝑋) ⟶ ⋯ ,

which is 𝑃𝑛𝐹(𝑋) = ℎ𝑜𝑐𝑜𝑙𝑖𝑚 𝑇𝑘𝑛 (𝑋).
Given an 𝑛-cube, if every (𝑛−1)-cube in it is cartesian, then it is a cartesian 𝑛-cube.

We have inclusions

Exc0(𝒞, 𝒟) ⊆ Exc1(𝒞, 𝒟) ⊆ Exc2(𝒞, 𝒟) ⊆ ⋯ ⊆ Exc𝑛(𝒞, 𝒟) ⊆ ⋯ .

Lemma 2.3: If the functor 𝐹 is 𝑛-excisive, then there is a weak equivalence

𝑝𝑛𝐹 ∶ 𝐹(𝑋) ⟶ 𝑃𝑛𝐹(𝑋).

Proof: If 𝐹 is 𝑛-excisive, then 𝐹(𝑋) ≃ 𝑇𝑛𝐹(𝑋) by Lemma 2.2, thus 𝑇𝑛𝐹(𝑋) is also 𝑛-
excisive. By induction, we have 𝐹(𝑋) ≃ 𝑇𝑘𝑛 𝐹(𝑋) for all 𝑘, then we take the homotopy
colimit to get 𝐹(𝑋) ≃ 𝑃𝑛𝐹(𝑋). ∎
Definition 2.6: Let 𝒥 be a small category, if:
（1）for any objects 𝑎, 𝑏 ∈ 𝒥, there is an object 𝑐 ∈ 𝒥 such that the set of morphisms

from 𝑎 to 𝑐 and the set of morphisms from 𝑏 to 𝑐 are both nonempty.
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（2）given objects 𝑎, 𝑏, 𝑐 ∈ 𝒥, for anymorphisms 𝑖, 𝑗 ∶ 𝑎 ⟶ 𝑏, there aremorhpisms
𝑖′, 𝑗′ ∶ 𝑏 ⟶ 𝑐 such that 𝑖′ ∘ 𝑖 = 𝑗′ ∘ 𝑗,
then 𝒥 is a filtered category or a filtered diagram.

The homotopy colimit and homotopy limit on a filtered category are called filtered

homotopy colimit and filtered homotopy limit, respectively. We denote the filtered homo-
topy colimit and filtered homotopy limit as ℎ𝑜𝑐𝑜𝑙𝑖𝑚𝑓𝑖𝑙 and ℎ𝑜𝑙𝑖𝑚𝑓𝑖𝑙, respectively.
Proposition 2.1:

(1) For 𝐹𝑘 ∈ Fun(𝒞, 𝒟), we have equivalences between functors

𝑇𝑛(ℎ𝑜𝑙𝑖𝑚 𝐹𝑘) ≃ ℎ𝑜𝑙𝑖𝑚 𝑇𝑛𝐹𝑘 ,

𝑃𝑛( ℎ𝑜𝑙𝑖𝑚𝑘∈ finite 𝐾
𝐹𝑘) ≃ ℎ𝑜𝑙𝑖𝑚

𝑘∈ finite 𝐾
𝑃𝑛𝐹𝑘 .

(2) For 𝐹𝑘 ∈ Fun(𝒞, 𝒟), we have equivalences between functors

𝑇𝑛(ℎ𝑜𝑐𝑜𝑙𝑖𝑚𝑓𝑖𝑙𝐹𝑘) ≃ ℎ𝑜𝑐𝑜𝑙𝑖𝑚𝑓𝑖𝑙𝑇𝑛𝐹𝑘 ,

𝑃𝑛(ℎ𝑜𝑐𝑜𝑙𝑖𝑚𝑓𝑖𝑙𝐹𝑘) ≃ ℎ𝑜𝑐𝑜𝑙𝑖𝑚𝑓𝑖𝑙𝑃𝑛𝐹𝑘 .

(3) For 𝐹𝑘 ∈ Fun(𝒞, Sp), we have equivalences between functors

𝑇𝑛(ℎ𝑜𝑐𝑜𝑙𝑖𝑚 𝐹𝑘) ≃ ℎ𝑜𝑐𝑜𝑙𝑖𝑚 𝑇𝑛𝐹𝑘 ,

𝑃𝑛(ℎ𝑜𝑐𝑜𝑙𝑖𝑚 𝐹𝑘) ≃ ℎ𝑜𝑐𝑜𝑙𝑖𝑚 𝑃𝑛𝐹𝑘 .

Proof: See [6, Proposition 1.7]. ∎
Lemma 2.4: For a strongly cocartesian (𝑛 + 1)-cube 𝒳 and homotopy functor 𝐹,
𝑡𝑛𝐹(𝒳) ∶ 𝐹(𝒳) ⟶ 𝑇𝑛𝐹(𝒳) factors through some cartesian cubes.
Proof: See [6, Lemma 1.9]. ∎

Notice that the following theorem by Goodwillie is called the universal property of
the natural map 𝑝𝑛𝐹.
Theorem 2.1 (Goodwillie [6], Theorem 1.8): For any homotopy functor 𝐹 ∶ 𝒞 ⟶
𝒟, 𝑃𝑛𝐹 is always 𝑛-excisive. Moreover, 𝑝𝑛𝐹 ∶ 𝐹 ⟶ 𝑃𝑛𝐹 is the universal map from 𝐹 to
any 𝑛-excisive functor.
Proof: Suppose 𝒳 is a strongly cocartesian 𝑛-cube, then 𝑃𝑛𝐹(𝒳) can be treated as se-
quential homotopy colimit of cartesian cubes by Lemma 2.4, thus cartesian and 𝑃𝑛𝐹 is
𝑛-exsicive.

𝑃𝑛𝐹(𝑋)
𝑃𝑛(𝑡𝑛𝐹)−−−−−⟶ 𝑃𝑛𝑇𝑛𝐹(𝑋) = 𝑃𝑛( ℎ𝑜𝑙𝑖𝑚𝑆∈𝒫0(𝑛+1)

𝐹(𝑋 ∗𝑌 𝑆)) ≃ ℎ𝑜𝑙𝑖𝑚
𝑆∈𝒫0(𝑛+1)

𝑃𝑛𝐹(𝑋 ∗𝑌 𝑆)
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≃ 𝑃𝑛𝐹(𝑋 ∗𝑌 ∅) = 𝑃𝑛𝐹(𝑋),

thus 𝑃𝑛(𝑝𝑛𝐹) ∶ 𝑃𝑛𝐹 ⟶ 𝑃𝑛𝑃𝑛𝐹 is an equivalence. Consider the diagram for another
𝑛-excisive functor 𝑃.

𝐹

𝑃𝑛𝐹

𝑃

𝑃𝑛𝑃

𝑝𝑛𝐹 ≃

𝑢

𝑃𝑛𝑢

𝑝𝑛𝑃

Thus, there is an induced map 𝑣 = (𝑝𝑛𝑃)−1 ∘ 𝑃𝑛𝑢 which we will prove is unique up
to homotopy. By Proposiyion 2.3, there is an equivalence 𝑝𝑛𝑃𝑛𝐹 ∶ 𝑃𝑛𝐹 ⟶ 𝑃𝑛𝑃𝑛𝐹 since
𝑃𝑛𝐹 is 𝑛-excisive. By the naturality, 𝑃(𝑝𝑛𝐹) ∶ 𝑃𝑛𝐹 ⟶ 𝑃𝑛𝑃𝑛𝐹 is also an equivalence.
Then consider the diagram

𝐹 𝑃𝑛𝐹

𝑃𝑛𝐹

𝑝𝑛𝐹

𝑝𝑛𝐹

𝑃𝑛𝑃𝑛𝐹

𝑝𝑛𝑃𝑛𝐹≃
≃

𝑃𝑛(𝑝𝑛𝐹)

𝑃
𝑣

𝑃𝑛𝑃
𝑃𝑛𝑣

≃ 𝑝𝑛𝑃

and 𝑣 is determined by 𝑃𝑛𝑣 which is determined by 𝑃𝑛𝑣 ∘ 𝑃𝑛(𝑝𝑛𝐹) ≃ 𝑃𝑛(𝑣 ∘ 𝑝𝑛𝐹). ∎
This theorem tells us the 𝑛-excisive approximation is unique up to homotopy. The

uniqueness explains why we choose the 𝑛-excisive functors to approximate the homotopy
functor but not others.
Corollary 2.1: For 0 ≤ 𝑚 ≤ 𝑛, 𝑃𝑚(𝑝𝑛𝐹) ∶ 𝑃𝑚𝐹 ⟶ 𝑃𝑚𝑃𝑛𝐹 is an equivalence.
Proof: By the universal property and the fact that𝑚-excisive functors are also 𝑛-excisive
for𝑚 ≤ 𝑛. ∎

2.3 Homotopy Fiber of 𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹
Lemma 2.5: The 0-th excisive approximation is 𝑃0𝐹 ≃ ∗𝐹(𝑌).
Proof: By Example 2.1 we have 𝑇0𝐹(𝑋) ≃ 𝐹(𝑋 ∗𝑌 {1}) = 𝐹(𝐼𝑓) ≃ 𝐹(𝑌) for any
𝑋 ∈ 𝒞/𝑌. ∎

Since 𝑝𝑛𝐹 is universal, and 𝑃𝑛−1𝐹 is also 𝑛-excisive as an (𝑛 − 1)-excisive functor,
there is an induced map 𝑞𝑛𝐹 ∶ 𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹, then we have the following theorem.
Theorem 2.2 (Goodwillie [6], Theorem 1.13): For a homotopy functor 𝐹 ∶ 𝒞/𝑌 ⟶
𝒟, there is a tower of homotopy functors given by the following.
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𝐹 𝑃0𝐹 ∗𝐹(𝑌)
≃

𝑃1𝐹

𝑞1𝐹
𝑝1𝐹

𝑝0𝐹

𝑃𝑛𝐹

𝑝𝑛𝐹

If there is a weak equivalence

𝐹(𝑋) ≃ ℎ𝑜𝑙𝑖𝑚 𝑃𝑛𝐹(𝑋),

then we say the Goodwillie tower of 𝐹 converges at 𝑋.
To study the convergence of the tower, Goodwillie[5] characterizes the 𝐸𝑛 condition

and the 𝑂𝑛 condition, to measure the approximation of functors.
Definition 2.7: A homotopy functor 𝐹 ∶ 𝒞/𝑌 ⟶ 𝒟 satisfies the 𝐸𝑛(𝑐, 𝜅)-condition (or
𝐹 is stably 𝑛-excisive) if for any strongly cocartesian 𝑛-cube 𝒳 such that
（1）Maps 𝑋 ∗𝑌 ∅ ⟶ 𝑋 ∗𝑌 {𝑖} are 𝑘𝑖-connected,
（2）𝑘𝑖 ≥ 𝜅 for all 1 ≤ 𝑖 ≤ 𝑛,

the cube 𝐹(𝒳) is (
𝑛
∑
𝑖=1
𝑘𝑖 − 𝑐)-cartesian.

A natursl transformation 𝑢 ∶ 𝐹 ⟶ 𝐺 satisfies the 𝑂𝑛(𝑐, 𝜅)-condition if for any
𝑘-connected map 𝑋 ⟶ 𝑌 with 𝑘 ≥ 𝜅, the induced map 𝐹(𝑋) ⟶ 𝐺(𝑋) is ((𝑛+1)𝑘−𝑐)-
connected.
Proposition 2.2: Let 𝐹 be a homotopy functor satisfying the 𝐸𝑛(𝑐, 𝜅)-condition. Then
the following hold:

(1) 𝑇𝑛𝐹 satisfies the 𝐸𝑛(𝑐 − 1, 𝜅 − 1)-condition,
(2) 𝑡𝑛𝐹 ∶ 𝐹 ⟶ 𝑇𝑛𝐹 satisfies the 𝑂𝑛(𝑐, 𝜅)-condition,
(3) 𝑝𝑛𝐹 ∶ 𝐹 ⟶ 𝑃𝑛𝐹 satisfies the 𝑂𝑛(𝑐, 𝜅)-condition,
(4) 𝑃𝑛𝐹 is 𝑛-excisive.

Proof: See [6, Proposition 1.4 and 1.5]. ∎
A natural problem is what kind of functors converge for some certain 𝑋 ∈ 𝐶/𝑌, and

what kind of conditions they should satisfy. Goodwillie described some conditions about
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this. This problem is still an open problem, and we will introduce it later.
Definition 2.8: If 𝐹 satisfies 𝐸𝑛(𝑛𝜌 − 𝑞, 𝜌 + 1)-condition for all 𝑛 and some 𝑞, then 𝐹
is called 𝜌-analytic.

In the following theorem, Goodwillie described that such 𝜌-analytic functors have
convergent Goodwillie towers.
Theorem 2.3 (Goodwillie [5], Theorem 1.13): If the homotopy functor 𝐹 ∶ 𝒞/𝑌 ⟶
𝒟 is 𝜌-analytic and𝑋 ⟶ 𝑌 is (𝜌+1)-connected, then 𝑝𝑛𝐹 satisfies the𝑂𝑛(𝑛𝜌−𝑞, 𝜌+1)-
condition. Thus, as 𝑛 ⟶ ∞, we have a weak equivalence 𝐹(𝑋) ≃ ℎ𝑜𝑙𝑖𝑚 𝑃𝑛𝐹(𝑋).

The polynomial approximation functor 𝑃𝑛𝐹, defined as the sequential homotopy col-
imit of finite homotopy limits, is often computationally intractable. To address this, we
define the homotopy fiber of 𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹, thereby decomposing the 𝑛-excisive ap-
proximation problem into a layer-wise homotopy computation.
Definition 2.9: Given a homotopy functor 𝐹, its 𝑛-th layer 𝐷𝑛𝐹 is defined to be the
homotopy functor

𝐷𝑛𝐹 = ℎ𝑜𝑓𝑖𝑏 (𝑃𝑛𝐹
𝑞𝑛𝐹−−⟶ 𝑃𝑛−1𝐹) = ℎ𝑜𝑙𝑖𝑚 (𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹 ⟵ ∗).

Definition 2.10: A homotopy functor 𝐹 ∶ 𝒞/𝑌 ⟶ 𝒟 is 𝑛-reduced if 𝑃𝑛−1𝐹 ≃ ∗, is
𝑛-homogeneous if it is both 𝑛-excisive and 𝑛-reduced.

We denote byℋ𝑛(𝒞, 𝒟) the homotopy category of 𝑛-homogeneous functors.
Example 2.2:
（1）A 1-homogeneous functor is alternatively termed linear.
（2）A 1-reduced functor is simply called reduced.
By Lemma 2.5, we have the following corollary.

Corollary 2.2: Let 𝐹 ∶ 𝒞/𝑌 ⟶𝒟 be a homotopy functor. The following are equivalent:
（1）𝐹 is 1-reduced,
（2）𝐹(𝑌) ≃ ∗.

Lemma 2.6: Given integers𝑚 ≤ 𝑛 and a homotopy functor 𝐹 ∶ 𝒞/𝑌 ⟶𝒟,
Let 𝐹 ∶ 𝒞/𝑌 ⟶ 𝒟 be a homotopy functor. If 𝐹 is 𝑛-reduced for some 𝑛 ≥ 1, then

for all integers𝑚 ≤ 𝑛, 𝐹 is automatically𝑚-reduced.
Proof: By Corollary 2.1, we have 𝑃𝑚−1𝐹 ≃ 𝑃𝑚−1𝑃𝑛−1𝐹 ≃ ∗. ∎

Thus for any 𝑛-reduced functor 𝐹 ∶ 𝒞/𝑌 ⟶𝒟, we have an equivalence 𝐹(𝑌) ≃ ∗.
Example 2.3: Let 𝑓 ∶ 𝐹𝑎 ⟶ 𝐹𝑏 be a natural transformation from an 𝑎-homogeneous
functor 𝐹𝑎 to a 𝑏-homogeneous functor 𝐹𝑏 where 𝑎 < 𝑏. Then the homotopy fiber 𝐹 =
ℎ𝑜𝑓𝑖𝑏 (𝐹𝑎 ⟶ 𝐹𝑏) of 𝑓 is an 𝑎-homogeneous functor.
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Proof: By Corollary 2.1, we have

𝑃𝑛𝐹𝑎(𝑋) ≃ {
𝑃𝑛𝑃𝑎−1𝐹𝑎(𝑋) ≃ ∗ 𝑛 ≤ 𝑎 − 1

𝐹𝑎(𝑋) 𝑛 ≥ 𝑎
,

𝑃𝑛𝐹𝑏(𝑋) ≃ {
𝑃𝑛𝑃𝑏−1𝐹𝑏(𝑋) ≃ ∗ 𝑛 ≤ 𝑏 − 1

𝐹𝑏(𝑋) 𝑛 ≥ 𝑏
.

Thus we have

𝑃𝑛𝐹 ≃
⎧
⎪
⎨
⎪
⎩

∗ 𝑛 ≤ 𝑎 − 1

𝐹𝑎 𝑎 ≤ 𝑛 ≤ 𝑏 − 1

𝐹 𝑛 ≤ 𝑏

.

∎
Lemma 2.7: For an 𝑛-homogeneous functor 𝐹 ∶ 𝒞/𝑌 ⟶𝒟, we have

𝑃0𝐹 ≃ 𝑃1𝐹 ≃ ⋯ ≃ 𝑃𝑛−1𝐹 ≃ ∗, 𝑃𝑛𝐹 ≃ 𝐹,𝐷𝑛𝐹 ≃ 𝐹.

Proof: Since 𝐹 is 𝑛-reduced, 𝑃𝑛−1𝐹 ≃ ∗. By Corollary 2.1, 𝑃𝑘𝐹 ≃ 𝑃𝑘𝑃𝑛−1𝐹 ≃ ∗ for all
0 ≤ 𝑘 ≤ 𝑛 − 1. 𝐹 is 𝑛-excisive, by 2.3, we have 𝑃𝑛𝐹 ≃ 𝐹, 𝐷𝑛𝐹 = ℎ𝑜𝑓𝑖𝑏 (𝐹 ⟶ ∗) ≃
𝐹. ∎
Proposition 2.3: The 𝑛-th layer 𝐷𝑛𝐹 is always 𝑛-homogeneous.
Proof: By definition, we have

𝑃𝑛−1𝐷𝑛𝐹 = 𝑃𝑛−1ℎ𝑜𝑙𝑖𝑚 (𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹 ⟵ ∗)
≃ ℎ𝑜𝑙𝑖𝑚 (𝑃𝑛−1𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝑃𝑛−1𝐹 ⟵ ∗).

By Corollary Lemma 2.1, 𝑃𝑛−1𝑃𝑛−1𝐹 ≃ 𝑃𝑛−1𝐹 ≃ 𝑃𝑛−1𝑃𝑛𝐹, thus 𝑃𝑛−1𝐷𝑛𝐹 ≃ ∗, 𝐷𝑛𝐹
is 𝑛-reduced. Since 𝑃𝑛𝐹, 𝑃𝑛−1𝐹 and ∗ are all 𝑛-excisive, as a homotopy limit 𝐷𝑛𝐹 =
ℎ𝑜𝑙𝑖𝑚 (𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹 ⟵ ∗) is also 𝑛-excisive. Then we conclude that 𝐷𝑛𝐹 is 𝑛-
homogeneous. ∎

The 𝑛-th layer 𝐷𝑛𝐹 shares key properties with the 𝑛-excisive approximation 𝑃𝑛𝐹
since 𝐷𝑛𝐹 is a homotopy colimit involving 𝑃𝑛𝐹, 𝑃𝑛−1𝐹.
Proposition 2.4:

(1) There are natural isomorphisms

𝑃𝑛(𝐹 ∘ Σ𝑌) ≅ (𝑃𝑛𝐹) ∘ Σ𝑌,

𝐷𝑛(𝐹 ∘ Σ𝑌) ≅ (𝐷𝑛𝐹) ∘ Σ𝑌.
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(2) For 𝐹𝑘 ∈ Fun(𝒞, 𝒟), we have equivalences between functors

𝐷𝑛( ℎ𝑜𝑙𝑖𝑚𝑘∈ finite 𝐾
𝐹𝑘) ≃ ℎ𝑜𝑙𝑖𝑚

𝑘∈ finite 𝐾
𝐷𝑛𝐹𝑘 ,

𝐷𝑛(ℎ𝑜𝑐𝑜𝑙𝑖𝑚𝑓𝑖𝑙𝐹𝑘) ≃ 𝑓𝑖𝑙ℎ𝑜𝑐𝑜𝑙𝑖𝑚 𝐷𝑛𝐹𝑘 .

(3) For 𝐹𝑘 ∈ Fun(𝒞, (Sp)), we have an equivalence between functors

𝐷𝑛(ℎ𝑜𝑐𝑜𝑙𝑖𝑚 𝐹𝑘) ≃ ℎ𝑜𝑐𝑜𝑙𝑖𝑚 𝐷𝑛𝐹𝑘 .

Proof: See [6, Proposition 1.18]. ∎
Lemma 2.8: Let 𝐹 be an (𝑛−1)-excisive functor and 𝐻 be an 𝑛-homogeneous functor,
then the fiber sequence 𝐹 ⟶ 𝐺 ⟶ 𝐻 always splits.
Proof: By Proposition 2.1, 𝑃𝑛𝐹 ⟶ 𝑃𝑛𝐺 ⟶ 𝑃𝑛𝐻 is also a fiber sequence. Since𝑃𝑛−1𝐻 ≃
∗, we have 𝑃𝑛−1𝐹 ≃ 𝑃𝑛−1𝐺. Since 𝐹 is (𝑛 −1)-excisive, we have 𝐹 ≃ 𝑃𝑛−1𝐹 by Lemma
2.3. Consider the following diagrams

𝐹 𝐺

𝑃𝑛−1𝐹 𝑃𝑛−1𝐺

≃

≃

𝑝𝑛𝐺

𝑓

.
It is commutative by the naturality of 𝑃𝑛. Thus, the upper triangle in the diagram

𝐹

≃
𝐹 𝑃𝑛−1𝐺

≃

𝐺
𝑔

𝑝𝑛𝐺
𝑓

is commutative. Then by the universal property of 𝑃𝑛−1𝐺, there is an induced map 𝑔 ∶
𝐺 ⟶ 𝐹 such that 𝑔 ∘ 𝑓 ≃ 𝟙𝐹. Thus, it is splitting. ∎
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CHAPTER 3 EQUIVALENCE OF NATURAL
TRANSFORMATIONS

To compute the 𝑛-th layer, Goodwillie [6] showed that 𝑛-homogeneous functors cor-
respond bijectively to symmetric multilinear functors. This identifies the 𝑛-th layer with
a spectrum (the 𝑛-th differential), carrying a Σ𝑛-action. The result offers a powerful com-
putational tool for the Goodwillie tower. (See [5, 6].)

3.1 Delooping of the 𝑛-th Layer

Now we introduce how to deloop the 𝑛-th layer. Before proceeding, we recall a
fundamental result by Goodwillie.
Lemma 3.1 (Goodwillie [6], Lemma 2.2): Given a reduced homotopy functor 𝐹 ∶
𝒞/𝑌 ⟶ Top∗, up to natural equivalence there is a fiber sequence

𝑃𝑛𝐹
𝑞𝑛𝐹−−⟶ 𝑃𝑛−1𝐹 ⟶ 𝑅𝑛𝐹

where 𝑅𝑛𝐹 is 𝑛-homogeneous.
Proof: When we define the 𝑇𝑛𝐹, we take the (𝑛 + 1)-cube moving out a corner. Then
take the homotopy limit to obtain 𝑇𝑛𝐹. This time we are moving out more to get more
construction.

𝐵𝑛 = 𝒫0(𝑛 + 1) − {𝑛 + 1}

𝑋1

𝑋2

𝑋23

𝑋12

𝑋13

𝑋123

𝑛 = 2

𝐴𝑛 = 𝒫0(𝑛 + 1) − 𝒫0(𝑛)

𝑋23

𝑋13

𝑋123

As the same way as we get 𝑇𝑖𝑛𝐹 by 𝒫0(𝑛 + 1)𝑖,

𝑇𝑖𝑛𝐹(𝑋) = ℎ𝑜𝑙𝑖𝑚
(𝑈1,⋯,𝑈𝑖)∈𝒫0(𝑛+1)𝑖

𝐹(𝑋 ∗𝑌 (𝑈1 ∗ ⋯ ∗ 𝑈𝑖)),

15
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we also define

𝐵𝑖𝑛 = 𝒫0(𝑛 + 1)𝑖 − {𝑛 + 1}𝑖 ,

𝐴𝑛,𝑖 = 𝒫0(𝑛 + 1)𝑖 − 𝒫0(𝑛)𝑖 ,

to get

𝑆𝑖𝑛−1𝐹(𝑋) = ℎ𝑜𝑙𝑖𝑚
(𝑈1,⋯,𝑈𝑖)∈𝐵𝑖𝑛

𝐹(𝑋 ∗𝑌 (𝑈1 ∗ ⋯ ∗ 𝑈𝑖)),

𝐾𝑛,𝑖𝐹(𝑋) = ℎ𝑜𝑙𝑖𝑚
(𝑈1,⋯,𝑈𝑖)∈𝐴𝑛,𝑖

𝐹(𝑋 ∗𝑌 (𝑈1 ∗ ⋯ ∗ 𝑈𝑖)).

Notice that 𝒫0(𝑛) is left cofinal (see [26] for more details) in 𝐵𝑛, we take the homotopy
limit under these index categories

𝒫0(𝑛 + 1) ⊇ 𝐵𝑛 ⊇ 𝒫0(𝑛),

we get

𝑞𝑛,1 ∶ 𝑇𝑛𝐹 ⟶ 𝑆𝑛−1𝐹
≃−⟶ 𝑇𝑛−1𝐹.

Since 𝒫𝑖0(𝑛) is left cofinal in 𝐵𝑖𝑛, we have an equivalence 𝑆𝑖𝑛−1𝐹 ⟶ 𝑇𝑖𝑛−1𝐹 for all 𝑖.
For a sequence of such maps 𝑞𝑛,1, 𝑞𝑛,2, ⋯ , 𝑞𝑛,𝑖 , ⋯, if we take 𝑖 to infinity, we exactly

get the natural transformation 𝑞𝑛𝐹 ∶ 𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹.
If we take the homotopy limit

𝑅𝑛,𝑖𝐹(𝑋) = ℎ𝑜𝑙𝑖𝑚
(𝑈1,⋯,𝑈𝑖)∈𝐴𝑛,𝑖∩𝐵𝑖𝑛

𝐹(𝑋 ∗𝑌 (𝑈1 ∗ ⋯ ∗ 𝑈𝑖)),

we get a cartesian square by [5, Lemma 1.9].

𝒫0(𝑛 + 1)𝑖 𝐵𝑖𝑛

𝐴𝑛,𝑖 𝐴𝑛,𝑖 ∩ 𝐵𝑖𝑛

𝑇𝑖𝑛𝐹 𝑆𝑖𝑛−1𝐹

𝐾𝑛,𝑖𝐹 𝑅𝑛,𝑖𝐹

Homotopy limit

Cartesian cube

We next prove that 𝐾𝑛,𝑖𝐹 ≃ ∗. The diagram 𝐴∗𝑛,𝑖 = 𝒫0(𝑛 + 1)−𝐵𝑖𝑛 is left cofinal in
𝐴𝑛,𝑖. Thus

𝐾𝑛,𝑖𝐹(𝑋) = ℎ𝑜𝑙𝑖𝑚
(𝑈1,⋯,𝑈𝑖)∈𝐴𝑛,𝑖

𝐹(𝑋 ∗𝑌 (𝑈1 ∗ ⋯ ∗ 𝑈𝑖)) = ℎ𝑜𝑙𝑖𝑚
(𝑈1,⋯,𝑈𝑖)∈𝐴∗𝑛,𝑖

𝐹(𝑋 ∗𝑌 (𝑈1 ∗ ⋯ ∗ 𝑈𝑖))

is contractible since there always exists a |𝑈𝑗| = 1 for some 𝑗 and then {1} ∗ 𝑈 ≃ ∗.
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Finally if 𝐹 is reduced, 𝐹(𝑌) ≃ ∗, we have

ℎ𝑜𝑙𝑖𝑚 𝐹(𝑋 ∗𝑌 (𝑈1 ∗ ⋯𝑈𝑖) ≃ ℎ𝑜𝑙𝑖𝑚 𝐹(𝑋 ∗𝑌 ∗) ≃ ℎ𝑜𝑙𝑖𝑚 𝐹(𝑌) ≃ ∗.

We assume that 𝐹 is not (𝑛 − 1)-excisive, then by Proposition 2.1 and Corollary 2.1
we have

𝑃𝑛−1𝑅𝑛,𝑖𝑃𝑛−1𝐹 ≃ 𝑃𝑛−1𝑃𝑛−1𝑅𝑛,𝑖𝐹 ≃ 𝑃𝑛−1𝑅𝑛,𝑖𝐹.

Thus functor 𝑃𝑛−1𝑅𝑛,𝑖 coincides on 𝑃𝑛−1𝐹 and 𝐹, without loss of generality, we assume
that 𝐹 is (𝑛 − 1)-excisive. To prove that 𝑅𝑛,𝑖𝐹 is 𝑛-homogeneous, we need to prove
𝑃𝑛𝑅𝑛,𝑖𝐹 ≃ 𝑅𝑛,𝑖𝐹 and 𝑃𝑛−1𝑅𝑛,𝑖𝐹 ≃ ∗. One way to show this is to prove that, if 𝐹 is
(𝑛 − 1)-excisive, then 𝑅𝑛,𝑖𝐹 ≃ ∗. There is an isomorphism given by

𝐴𝑛,𝑖 ∩ 𝐵𝑖𝑛 ≅ 𝒫0(𝑛)𝑖 × 𝒫0(𝑖), (𝑈1, ⋯ , 𝑈𝑖) ⟼ (𝑉1, ⋯ , 𝑉𝑖 ,𝑊),

where

𝑉𝑖 = 𝑈𝑖 − {𝑛 + 1}, 𝑊 = {𝑖 | 𝑛 + 1 ∈ 𝑈𝑖}.

If 1 ∈ 𝑊, take 𝑒1 = {𝑛 + 1}, if not, take 𝑒1 = ∅. And do for 2, 3,⋯ by induction. Then

𝑅𝑛,𝑖𝐹(𝑋) = ℎ𝑜𝑙𝑖𝑚
(𝑉1,⋯,𝑉𝑖,𝑊)∈𝒫0(𝑛)𝑖×𝒫0(𝑖)

𝐹(𝑋 ∗𝑌 (𝑈1 ∗ ⋯ ∗ 𝑈𝑖))

≃ ℎ𝑜𝑙𝑖𝑚
𝑊∈𝒫0(𝑖)

𝐹(𝑋 ∗𝑌 (𝑒1 ∗ ⋯ ∗ 𝑒𝑖))

≃ ℎ𝑜𝑙𝑖𝑚 𝐹(𝑋 ∗𝑌 𝐷𝑘)

for some 𝑘 ≤ 𝑖 − 1 since the join of 𝑖 1-cells is 𝐷𝑖−1.
At last, take the 𝑖 to infinity in the cartesian cube above, we get a fiber sequence

𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹 ⟶ 𝑅𝑛𝐹. ∎
What the map explicitly looks like before 𝑖 ⟶ ∞ has been given, but it is complex

to describe what the map looks like while 𝑖 ⟶ ∞. For details, see Goodwillie’s origi-
nal article [6]. This theorem means that for the 𝑛-homogeneous functor 𝐷𝑛𝐹, there is a
delooping Ω𝑅𝑛𝐹 ≃ 𝐷𝑛𝐹. Let 𝐵 = 𝑅𝑛𝐷−1𝑛 , then we have

Ω𝑅𝑛𝐹 = Ω𝐵𝐷𝑛𝐹 ≃ 𝐷𝑛𝐹.

Now we recall some concepts. For any spectrum 𝐸 with structure map Σ𝐸𝑛 ⟶ 𝐸𝑛+1
, there is a corresponding map 𝐸𝑛 ⟶Ω𝐸𝑛+1 given by

[Σ𝐸𝑛, 𝐸𝑛+1]∗ ≅ [𝐸𝑛, Ω𝐸𝑛+1]∗.
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Replace the space 𝐸𝑛 by Ω𝑘𝐸𝑛+𝑘 for a 𝑘 ∈ ℕ+, by induction, there is a sequence

⋯⟶ Ω𝑘𝐸𝑛+𝑘 ⟶Ω𝑘+1𝐸𝑛+𝑘+1⟶⋯.

We define the omega spectrification to be the Ω-spectrum 𝐸Ω given by

𝐸Ω𝑛 = 𝑐𝑜𝑙𝑖𝑚 Ω𝑘𝐸𝑛+𝑘 .

It has the same homotopy groups as spectrum 𝐸. We define Ω∞𝐸 = Ω∞𝐸Ω ≃ 𝐸Ω0 , the
0-th space of spectrum 𝐸Ω, to be the infinite loop space, see [27] for more details.
Theorem 3.1 (Goodwillie [6], Theorem 2.1): The homotopy functor

Ω∞ ∶ ℋ𝑛(𝒞, Sp) ⟶ ℋ𝑛(𝒞,Top∗)

has an inverse up to homotopy, we denote by this inverse 𝐵∞.
Proof: By Lemma 3.1, there is a functor 𝐵 such that Ω𝐵𝐹 ≃ 𝐹 for 𝐹 ∈ ℋ𝑛(𝒞,Top∗).
Notice that 𝐹 ≃ 𝐺 ⟺ Ω𝐹 ≃ Ω𝐺, then 𝐹 ≃ 𝐺 ⟺ 𝐵𝐹 ≃ 𝐵𝐺 under weak equivalence
since they have the same homotopy groups for any 𝑋. Thus Ω∞𝐵∞𝐹(𝑋) ≃ 𝐹(𝑋). For
𝐵∞Ω∞𝐹(𝑋) ≃ 𝐹(𝑋) we construct a bispectrum for 𝐹 ∈ ℋ𝑛(𝒞, Sp) and spectrum 𝐹(𝑋).

𝐵0𝐹0(𝑋) 𝐵1𝐹0(𝑋) 𝐵2𝐹0(𝑋)

𝐵0𝐹1(𝑋) 𝐵1𝐹1(𝑋) 𝐵2𝐹1(𝑋)

𝐵0𝐹2(𝑋) 𝐵1𝐹2(𝑋) 𝐵2𝐹2(𝑋)

Then there are two equivalent spectra𝐵0𝐹(𝑋) = 𝐹(𝑋) and𝐵∞𝐹0(𝑋) = 𝐵∞Ω∞𝐹(𝑋)
from this bispectrum. ∎

This will be a huge help in constructing the one-to-one correspondence from 𝑛-
homogeneous functors to symmetric multilinear functors.

3.2 Multivariable Functors

Now we introduce multivariable functors.
Definition 3.1: Let 𝐹 ∶ 𝒞𝑛 ⟶𝒟 be a multivariable functor.
（1）𝐹 is (𝑑1, ⋯ , 𝑑𝑛)-excisive if it is 𝑑𝑘-excisive in the 𝑘-th variable for all 1 ≤

𝑘 ≤ 𝑛.
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（2）𝐹 is (𝑑1, ⋯ , 𝑑𝑛)-reduced if it is 𝑑𝑘-reduced in the 𝑘-th variable for all 1 ≤
𝑘 ≤ 𝑛.
（3）𝐹 is (𝑑1, ⋯ , 𝑑𝑛)-homogeneous if it is both (𝑑1, ⋯ , 𝑑𝑛)-excisive and

(𝑑1, ⋯ , 𝑑𝑛)-reduced.
Proposition 3.1: Given a homotopy functor Δ ∶ 𝑋 ⟼ (𝑋,⋯ , 𝑋), the compositon 𝐹∘Δ ∶
𝒞 ⟶ 𝒞𝑛 ⟶𝒟 is (𝑑1 +⋯+ 𝑑𝑛)-excisive if 𝐹 ∶ 𝒞𝑛 ⟶𝒟 is (𝑑1, ⋯ , 𝑑𝑛)-excisive.
Proof: See [5, Theorem 4.3]. ∎

Let homotopy functor 𝐹 ∶ 𝒞𝑛 ⟶ 𝒟 be (1,⋯ , 1)-excisive. By Proposition 3.1, the
homotopy functor 𝐹 ∘ Δ ∶ 𝒞 ⟶ 𝒟 is 𝑛-excisive.
Proposition 3.2: For any (1,⋯ , 1)-reduced homotopy functor 𝐹, the map

𝑡𝑛−1(𝐹 ∘ Δ)(𝑋) ∶ 𝐹 ∘ Δ(𝑋) ⟶ 𝑇𝑛−1(𝐹 ∘ Δ)

factors through a weakly contractible object for any 𝑋 ∈ 𝒞.
Proof: We define

𝜉 = {(𝑈1, ⋯ , 𝑈𝑛) | 𝑈𝑖 ∈ 𝒫0(𝑛)𝑛, at least one 𝑠 ∈ 𝑛 such that 𝑠 ∈ 𝑈𝑠},

𝜉∗ = {(𝑈1, ⋯ , 𝑈𝑛) | 𝑈𝑖 ∈ 𝒫0(𝑛)𝑛, at least one 𝑠 ∈ 𝑛 such that {𝑠} = 𝑈𝑠}

where 𝜉 is left cofinal in 𝜉∗.
Then the map 𝑡𝑛−1(𝐹∘Δ)(𝑋) ∶ 𝐹∘Δ(𝑋) ⟶ 𝑇𝑛−1𝐹∘Δ(𝑋) factors as the composition

𝐹 ∘ Δ(𝑋) = 𝐹(𝑋,⋯ , 𝑋) ≅−⟶ 𝐹(𝑋 ∗𝑌 ∅,⋯ , 𝑋 ∗𝑌 ∅)
⟶ ℎ𝑜𝑙𝑖𝑚

(𝑈1,⋯,𝑈𝑛)∈𝜉
𝐹(𝑋 ∗𝑌 𝑈1, ⋯ , 𝑋 ∗𝑌 𝑈𝑛)

≃−⟶ ℎ𝑜𝑙𝑖𝑚
(𝑈1,⋯,𝑈𝑛)∈𝜉∗

𝐹(𝑋 ∗𝑌 𝑈1, ⋯ , 𝑋 ∗𝑌 𝑈𝑛)

⟶ ℎ𝑜𝑙𝑖𝑚
𝑈∈𝒫0(𝑛)

𝐹(𝑋 ∗𝑌 𝑈,⋯ , 𝑋 ∗𝑌 𝑈) = 𝑇𝑛−1𝐹 ∘ Δ(𝑋).

Since 𝑈𝑠 = {𝑠}, 𝐹 is (1,⋯ , 1)-reduced, we have

𝐹(𝑋 ∗𝑌 𝑈1, ⋯ , 𝑋 ∗𝑌 𝑈𝑛) = 𝐹(𝑋 ∗𝑌 𝑈1, ⋯ , 𝑌,⋯ , 𝑋 ∗𝑌 𝑈𝑛) = ∗.

Then we have

ℎ𝑜𝑙𝑖𝑚
(𝑈1,⋯,𝑈𝑛)∈𝜉∗

𝐹(𝑋 ∗𝑌 𝑈1, ⋯ , 𝑋 ∗𝑌 𝑈𝑛) = ∗.

∎
Proposition 3.3: Given a (1,⋯ , 1)-reduced homotopy functor 𝐹 ∶ 𝒞𝑛 ⟶𝒟 , we have
an 𝑛-reduced functor 𝐹 ∘ Δ ∶ 𝒞 ⟶ 𝒟.
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Proof: By Proposition 3.2, factor all these maps through weakly contractible objects

𝐹 ∘ Δ(𝑋) ⟶ ⋯⟶ 𝑇𝑖𝑛−1(𝐹 ∘ Δ)(𝑋)
𝑡𝑛−1𝑇𝑖(𝐹∘Δ)−−−−−−−⟶ 𝑇𝑖+1𝑛−1(𝐹 ∘ Δ)(𝑋) ⟶ ⋯ .

Thus, as the homotopy colimit of this, we have 𝑃𝑛−1𝐹 ∘ Δ ≃ ∗. ∎
Definition 3.2: A (1,⋯ , 1)-homogeneous functor 𝐹 ∶ 𝒞𝑛 ⟶𝒟 is called multilinear.

By Proposition 3.1 and 3.3, 𝐹 ∘ Δ is 𝑛-homogeneous for any multilinear functor 𝐹.
This implies that the 𝑛-th layer can be treated as a composition of the diagonal Δ and a
multilinear functor.
Definition 3.3: The multivariable functor 𝐿 ∶ 𝒞𝑛 ⟶𝒟 is symmetric if it has additional
structure consisting of isomorphisms 𝐿(𝜎) ∶ 𝐿(𝑋1, ⋯ , 𝑋𝑛) ⟶ 𝐿(𝑋𝜎(1), ⋯ , 𝑋𝜎(𝑛)) with
𝐿(𝜎 ∘ 𝜋) = 𝐿(𝜋) ∘ 𝐿(𝜎) for 𝜎, 𝜋 ∈ Σ𝑛.

If symmetric functor 𝐿 ∶ 𝒞𝑛 ⟶𝒟 is (1,⋯ , 1)-homogeneous (multilinear), then

𝐿 ∘ Δ ∶ 𝒞 ⟶ 𝒞𝑛 ⟶𝒟, 𝑋 ⟼ (𝑋,⋯ , 𝑋) ⟼ 𝐿(𝑋,⋯ , 𝑋)

is 𝑛-homogeneous, and it has a compactible Σ𝑛-action. We denote the homotopy category
of symmetric multilinear functors as ℒ𝑛(𝒞, 𝒟).
Definition 3.4: The universal covering of topological group 𝐺 is defined as 𝐸𝐺 = ∗∞𝐺
with free action 𝐺 × 𝐸𝐺 ⟶ 𝐸𝐺, by Milnor [28]. Then we define the classifying space to
be

𝐵𝐺 = 𝐸𝐺/𝐺 = {Orb(𝑐) | 𝑥 ∈ 𝐸𝐺}.

Given a space 𝑋 with a 𝐺-action, the homotopy orbit of 𝑋 is

𝑋ℎ𝐺 = (𝐸𝐺 × 𝑋)/𝐺,

or the homotopy colimit

𝑋ℎ𝐺 = ℎ𝑜𝑐𝑜𝑙𝑖𝑚 (𝐵𝐺 ⟵ 𝐸𝐺 × 𝑋 ⟶ ∗).

Proposition 3.4: Given a spectrum-valued symmetric multilinear functor 𝐿 ∶ 𝒞𝑛 ⟶
Sp, there is an 𝑛-homogeneous functor Δ𝑛𝐿 given by

Δ𝑛𝐿(𝑋) = 𝐿(𝑋,⋯ , 𝑋)ℎΣ𝑛 .

Proof: By Proposition 3.1 and 3.3, the functor 𝐿 ∘ Δ ∶ 𝑋 ⟼ (𝑋,⋯ , 𝑋) ⟼ 𝐿(𝑋,⋯ , 𝑋)
is 𝑛-homogeneous. By Proposition 2.1, we know that the homotopy orbit as a homotopy
colimit preserves the property of 𝑛-homogeneous. Then Δ𝑛𝐿 is also 𝑛-homogeneous. ∎

Given a spectrum-valued symmetric multilinear functor, the homotopy orbit con-
struction naturally defines an 𝑛-homogeneous functor. This shows how explicitly the
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spectrum-valued symmetric multilinear functor becomes an 𝑛-homogeneous functor.
Conversely, Goodwillie showed how 𝑛-homogeneous functors become symmetric mul-
tilinear functors, by cross effect. That is exactly the one-to-one correspondence between
𝑛-homogeneous and symmetric multilinear functors.

In the category Top∗/𝑌, the zero object is exactly 𝑌. For any object 𝑓 ∶ 𝑋 ⟶ 𝑌,
there is always a unique map 𝑓′ ∶ 𝑌 ⟶ 𝑋.
Definition 3.5: Given objects 𝑓1 ∶ 𝑋1 ⟶ 𝑌, 𝑓2 ∶ 𝑋2 ⟶ 𝑌 of the category Top∗/𝑌, the
fiberwise whisker is 𝑋1 + 𝑋2 = 𝐼𝑓′1 ∪ 𝐼𝑓′2 .

𝑋1 + 𝑋2 ∶ 𝑌𝑋1
𝑋2

Notice that the whisker 𝑋1 + 𝑋2 is also an object in Top∗/𝑌. With more objects of
Top∗/𝑌, we can also define

𝑘

∑
𝑖=1
𝑋𝑖 = 𝑋1 +⋯+ 𝑋𝑘 .

Example 3.1: If 𝑌 = ∗, then 𝑋1 + 𝑋2 ≃ 𝑋1 ∨ 𝑋2.
Definition 3.6: Given a homotopy functor 𝐹 ∶ Top∗/𝑌 ⟶ 𝒟, we define the 𝑛-th cross

effect to be the multivariable functor 𝑐𝑟𝑛𝐹 ∶ Top∗
𝑛
/𝑌 ⟶𝒟 given by

𝑐𝑟𝑛𝐹(𝑋1, ⋯ , 𝑋𝑛) = ℎ𝑜𝑓𝑖𝑏 (ℎ𝑜𝑙𝑖𝑚 (𝐹(𝑆(𝑋1, ⋯ , 𝑋𝑛)) − 𝐹(
𝑛

∑
𝑖=1
𝑋𝑖)) ⟶ 𝐹(

𝑛

∑
𝑖=1
𝑋𝑖))

where 𝒟 = Sp or Top∗, and 𝑆(𝑋1, ⋯ , 𝑋𝑛) is a strongly cocartesian cube

𝒫(𝑛) ⟶ Top∗/𝑌, 𝑈 ⟼ ∑
𝑖∈{1,⋯,𝑛}−𝑈

𝑋𝑖 .

Acturally, ℎ𝑜𝑓𝑖𝑏 (ℎ𝑜𝑙𝑖𝑚 (𝐹(𝑆(𝑋1, ⋯ , 𝑋𝑛)) − 𝐹(
𝑛
∑
𝑖=1
𝑋𝑖)) ⟶ 𝐹(

𝑛
∑
𝑖=1
𝑋𝑖)) is called

the total fiber, see [25] for more details.
Lemma 3.2: If 𝐹 is (𝑛 − 1)-excisive, then 𝑐𝑟𝑛𝐹 ≃ ∗.
Proof: Since 𝑆(𝑋1, ⋯ , 𝑋𝑛) is a strongly 𝑛-cube, then 𝐹(𝑆(𝑋1, ⋯ , 𝑋𝑛)) is cartesian, thus
the total fiber 𝑐𝑟𝑛𝐹(𝑋1, ⋯ , 𝑋𝑛) ≃ ∗. ∎

The following proposition means that 𝑐𝑟𝑛𝐹 ≃ 𝑐𝑟𝑛𝐷𝑛𝐹 for any 𝑛-excisive functor 𝐹.
That is, the 𝑛-th cross effect only captures the 𝑛-th layers of homotopy functors.
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Proposition 3.5: If 𝐹 is 𝑛-excisive, then 𝑐𝑟𝑛𝐹 ≃ 𝑐𝑟𝑛𝐷𝑛𝐹.
Proof: Since 𝑐𝑟𝑛 is a homotopy limit as the total fiber, by Proposition 2.4, we have

𝑐𝑟𝑛𝐷𝑛𝐹 = 𝑐𝑟𝑛ℎ𝑜𝑓𝑖𝑏 (𝑃𝑛𝐹 ⟶ 𝑃𝑛−1𝐹) ≃ ℎ𝑜𝑓𝑖𝑏 (𝑐𝑟𝑛𝑃𝑛𝐹 ⟶ 𝑐𝑟𝑛𝑃𝑛−1𝐹).

By Lemma 3.6, we have 𝑐𝑟𝑛𝑃𝑛−1𝐹 ≃ ∗. Thus we have 𝑐𝑟𝑛𝐷𝑛𝐹 ≃ 𝑐𝑟𝑛𝑃𝑛𝐹 ≃ 𝑐𝑟𝑛𝐹 since
𝐹 is 𝑛-excisive. ∎

Obviously, there is an isomorphism 𝑆(𝑋1, ⋯ , 𝑋𝑛) ≅ 𝑆(𝑋𝜎(1), ⋯ , 𝑋𝜎(𝑛)) for any 𝜎 ∈
Σ𝑛. Then we have the following lemma.
Lemma 3.3: The 𝑛-th cross effect 𝑐𝑟𝑛𝐹 is symmetric.

The following lemma tells us the 1-st cross effect is always 1-reduced.
Lemma 3.4: The 1-st cross effect 𝑐𝑟1𝐹(𝑋) = ℎ𝑜𝑓𝑖𝑏 (𝐹(𝑋) ⟶ 𝐹(𝑌)) is 1-reduced.
Proof: By Lemma 2.5, we have an equivalence 𝑃0𝑐𝑟1𝐹 ≃ ∗𝑐𝑟1𝐹(𝑌) ≃ ∗. ∎

By this lemma, we know that the 𝑛-th cross effect 𝑐𝑟𝑛𝐹 is (1,⋯ , 1)-reduced.
Proposition 3.6: Give an 𝑛-excisive functor 𝐹 ∶ Top∗/𝑌 ⟶ 𝒟, the 𝑚-th cross effect
𝑐𝑟𝑚𝐹 ∶ Top∗

𝑚
/𝑌 ⟶𝒟 is (𝑛 − 𝑚 + 1,⋯ , 𝑛 − 𝑚 + 1)-excisive for 0 ≤ 𝑚 ≤ 𝑛.

Proof: When𝑚 = 0, this is trivial. We do the induction, assume that it holds for𝑚 = 𝑘,
to prove this holds for𝑚 = 𝑘 + 1. Notice that

𝑐𝑟𝑘+1𝐹(𝑋1, ⋯ , 𝑋𝑘 , 𝐴) ≅ 𝑐𝑟𝑘𝐹+𝐴(𝑋1, ⋯ , 𝑋𝑘)

where 𝐹+𝐴 = ℎ𝑜𝑓𝑖𝑏 (𝐹(𝑋 + 𝐴) ⟶ 𝐹(𝑋)). And 𝐹 is 𝑛-excisive implies 𝐹+𝐴 is (𝑛 − 1)-
excisive. Then we prove this holds for𝑚 = 𝑘 + 1. ∎

By this proposition, we know that 𝑐𝑟𝑛𝐹 is (1,⋯ , 1)-excisive, since it is (1,⋯ , 1)-
reduced, we have the following proposition.
Proposition 3.7: Given a homotopy functor 𝐹, the 𝑛-th cross effect 𝑐𝑟𝑛𝐹 is symmetric
multilinear.
Theorem 3.2 (Goodwillie [6], Proposition 3.4): Given 𝑛-homogeneous functors
𝐹, 𝐺 ∶ 𝒞/𝑌 ⟶𝒟, 𝐹 ≃ 𝐺 if and only if 𝑐𝑟𝑛𝐹 ≃ 𝑐𝑟𝑛𝐺.

By this theorem, with Proposition 3.4 and 3.7 we have this following corollary.
Corollary 3.1:

(1) For 𝒟 = Sp or Top∗, there is a homotopy functor

𝑐𝑟𝑛 ∶ ℋ𝑛(Top∗/𝑌, 𝒟) ⟶ ℒ𝑛(Top∗/𝑌, 𝒟).

(2) For 𝒞 = Top∗/𝑌 or Top/𝑌, there is a homotopy functor

Δ𝑛 ∶ ℒ𝑛(𝒞, Sp) ⟶ ℋ𝑛(𝒞, Sp).
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3.3 The Correspondence

Now we establish the one-to-one correspondence framework through a series of fol-
lowing theorems by Goodwillie. The following theorem tells us that functors 𝑐𝑟𝑛 and Δ𝑛
are inverses of each other.
Theorem 3.3 (Goodwillie [6], Theorem 3.5): There are homotopy functors mutual
inverses up to natural equivalence

𝑐𝑟𝑛 ∶ ℋ𝑛(Top∗/𝑌) ⟶ ℒ𝑛(Top∗/𝑌),

Δ𝑛 ∶ ℒ𝑛(Top∗/𝑌) ⟶ ℋ𝑛(Top∗/𝑌).

We now introduce some definitions coming from the book [29]. Let 𝑉𝑛 be a linear
space, define

𝑆(𝑉𝑛) = {(𝑥1, ⋯ , 𝑥𝑛) | ∑
𝑖
𝑥2𝑖 = 1},

𝐷(𝑉𝑛) = {(𝑥1, ⋯ , 𝑥𝑛) | ∑
𝑖
𝑥2𝑖 ≤ 1}.

Then define the sphere over 𝑉𝑛 as 𝑆𝑉𝑛 ≅ 𝐷(𝑉𝑛)/𝑆(𝑉𝑛). Given a based space 𝑋, define the
space Ω𝑉𝑛𝑋 = Map∗(𝑆𝑉𝑛 , 𝑋). It is a generalization of the loop space Ω𝑛𝑋, corresponding
to the extension of the definition of 𝑆𝑛 to 𝑆𝑉𝑛 .

In the equivariant homotopy theory, Ω𝑉𝑛 serves as an important homotopy functor of
study. Similarly, 𝑆𝑉𝑛 generalizes the classical 𝑆𝑛 by embedding it within the framework of
representation theory, where the group action induces additional structure on the sphere.
These generalized constructions are fundamental in equivariant homotopy theory, see [29,
30] for more details.

There is a delooping for the symmetric multilinear functors. Like we make a deloop-
ing construction for 𝑛-homogeneous functors. This time we treat 𝑛 as 1 +⋯+ 1.
Theorem 3.4 (Goodwillie [6], Proposition 3.7): There exists a homotopy functor
Ω∞∗ ∶ ℒ𝑛(𝒞, Sp) ⟶ ℒ𝑛(𝒞,Top∗). It has an inverse up to homotopy.
Proof: For functor 𝐿 ∶ 𝒞/𝑌1 ×⋯× 𝒞/𝑌𝑛 ⟶𝒟, we can define

𝑇𝑑1,⋯,𝑑𝑛𝐿(𝑋1, ⋯ , 𝑋𝑛) = ℎ𝑜𝑙𝑖𝑚
(𝑈1,⋯,𝑈𝑛)∈𝒫0(𝑑1+1)×⋯×𝒫0(𝑑𝑛+1)

𝐹(𝑋1 ∗𝑌1 𝑈1, ⋯ , 𝑋𝑛 ∗𝑌𝑛 𝑈𝑛).

Thus if 𝐿 is symmetric multilinear, then

𝐿(𝑋1, ⋯ , 𝑋𝑛) ≃ 𝑇1,⋯,1(𝑋1, ⋯ , 𝑋𝑛).
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By definition, 𝑇1𝐹 ≃ Ω𝐹Σ𝑌 for homotopy functor 𝐹. Thus

𝐿(𝑋1, ⋯ , 𝑋𝑛) ≃ 𝑇1,⋯,1𝐿(𝑋1, ⋯ , 𝑋𝑛) ≃ Ω𝑛𝐿(Σ𝑌𝑋1, ⋯ , Σ𝑌𝑋𝑛).

But we need Ω𝑛 to be compatible with symmetric property, thus rewrite Ω𝑛 as Ω𝑉𝑛 where
𝑉𝑛 = {(𝑥1, ⋯ , 𝑥𝑛) | 𝑥1 +⋯+ 𝑥𝑛 = 0} is the standard representation of Σ𝑛. Thus there is
an equivalence 𝐿 ≃ Ω𝐵𝐿 where

𝐵𝐿(𝑋1, ⋯ , 𝑋𝑛) = Ω𝑉𝑛𝐿(Σ𝑌𝑋1, ⋯ , Σ𝑌𝑋𝑛)

and 𝑉𝑛 ≅ ℝ⊕ 𝑉𝑛. Then we consider the same thing with Theorem 3.1 to get the inverse
𝐵∞∗ . ∎
Proposition 3.8: The 𝑛-homogeneous homotopy functor 𝐹 ∶ Top∗/𝑌 ⟶ 𝒟 is deter-
mined by 𝐹 ∘ Σ𝑌.
Proof: By 3.2, 𝐹 is determined by 𝑐𝑟𝑛𝐹, and we have

𝑐𝑟𝑛𝐹(𝑋1, ⋯ , 𝑋𝑛) ≃ Ω𝑉𝑛𝑐𝑟𝑛𝐹(Σ𝑌𝑋1, ⋯ , Σ𝑌𝑋𝑛) ≅ Ω𝑉𝑛𝑐𝑟𝑛(𝐹 ∘ Σ𝑌)(𝑋1, ⋯ , 𝑋𝑛).

∎
Theorem 3.5 (Goodwillie [6], Theorem 4.1): The following four functors all have
inverses up to weak equivalence :

𝜙∗ ∶ ℋ𝑛(Top/𝑌,Sp) ⟶ ℋ𝑛(Top∗/𝑌,Sp),

𝜙∗ ∶ ℋ𝑛(Top/𝑌,Top∗) ⟶ ℋ𝑛(Top∗/𝑌,Top∗),

𝜙∗ ∶ ℒ𝑛(Top/𝑌,Sp) ⟶ ℒ𝑛(Top∗/𝑌,Sp),

𝜙∗ ∶ ℒ𝑛(Top/𝑌,Top∗) ⟶ ℒ𝑛(Top∗/𝑌,Top∗)

where 𝜙 ∶ Top∗/𝑌 ⟶ Top/𝑌 is the forgetful functor.
With these theorems established, we can ultimately construct a comprehensive

framework that establishes a one-to-one correspondence between symmetric multilinear
functors and 𝑛-homogeneous functors across different categories.

The one-to-one correspondence is given by this commutative diagram 3-1.
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ℋ𝑛 (Top∗/𝑌,Sp) ℒ𝑛 (Top∗/𝑌, Sp)

𝑐𝑟𝑛

Δ𝑛

Ω∞∗

ℋ𝑛 (Top∗/𝑌,Top∗) ℒ𝑛 (Top∗/𝑌,Top∗)

Ω∞∗

𝑐𝑟𝑛

Induced

𝐵∞∗

ℋ𝑛 (Top/𝑌, Sp) ℒ𝑛 (Top/𝑌,Sp)

ℋ𝑛 (Top/𝑌,Top∗) ℒ𝑛 (Top/𝑌,Top∗)

𝜙∗ 𝜙∗

𝜙∗ 𝜙∗

Δ𝑛

Induced

Ω∞∗ Ω∞∗
𝐵∞∗

𝐵∞∗ 𝐵∞∗

Figure 3-1

In this diagram, Ω∞∗ between 𝑛-homogeneous functors comes from definition of in-
finity loop space, Ω∞∗ between symmetric multilinear functors comes from Theorem 3.1.
As the inverse, 𝐵∞∗ between 𝑛-homogeneous functors comes from Theorem 3.4, 𝐵∞∗ be-
tween symmetric multilinear functors comes from Theorem 3.1. At last, the inverse of 𝜙∗
is from Theorem 3.5.
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3.4 Differentials and Derivatives

Next, we can investigate how to associate the 𝑛-th layer 𝐷𝑛𝐹 to a symmetric multi-
linear functor explicitly. This approach clarifies the behavior of 𝐷𝑛𝐹.
Definition 3.7: For the 𝑛-homogeneous functor𝐷𝑛𝐹 ∈ ℋ𝑛(𝒞/𝑌, 𝒟), its correspondence
in ℒ𝑛(𝒞/𝑌, 𝒟) is called 𝑛-fold differential, denoted by 𝐷(𝑛)𝐹. The 𝑛-fold differential
𝐷(𝑛)𝐹 ∈ ℒ𝑛(𝒞/𝑌, 𝒟) determines 𝐷𝑛𝐹 by

𝐷𝑛𝐹(𝑋) ≃ Δ𝑛(𝐷(𝑛)𝐹)(𝑋) = (𝐷(𝑛)𝐹)(𝑋,⋯ , 𝑋)ℎΣ𝑛 for 𝒟 = Sp. (3-1)

Then we consider the correspondence framework 3-1, to formularize the 𝑛-fold dif-
ferential when 𝒟 = Top∗. 𝑐𝑟𝑛

Δ𝑛

Ω∞∗ Ω∞∗

𝑐𝑟𝑛

Induced

𝐵∞∗ 𝐵∞∗

Δ𝑛𝐷(𝑛)𝐹 𝐷(𝑛)𝐹

Ω∞Δ𝑛𝐷(𝑛)𝐹 Ω∞𝐷(𝑛)𝐹

There is a weak equivalence

(𝐵∞𝐷𝑛𝐹)(𝑋) ≃ (𝐵∞𝐷(𝑛)𝐹)(𝑋,⋯ , 𝑋)ℎΣ𝑛 .

Thus, we have

𝐷𝑛𝐹(𝑋) ≃ Ω∞(𝐵∞𝐷(𝑛)𝐹)(𝑋,⋯ , 𝑋)ℎΣ𝑛 .

Given a homotopy functor 𝐹, the 𝑛-fold differential 𝐷(𝑛)𝐹 determines the 𝑛-th layer
𝐷𝑛𝐹. On the other hand, the 𝑛-th layer 𝐷𝑛𝐹 also determines the 𝑛-fold differential by

𝐷(𝑛)𝐹 ≃ 𝑐𝑟𝑛𝐷𝑛𝐹.

Definition 3.8: A homotopy functor is finitary if it preserves filtered homotopy colimit.
Lemma 3.5: Given a spectrum 𝐶, the homotopy functor

𝐹 ∶ Top𝑛∗ ⟶ Sp, (𝑋1, ⋯ , 𝑋𝑛) ⟼ 𝐶 ∧ (𝑋1 ∧ ⋯ ∧ 𝑋𝑛)

is multilinear. If 𝐶 has a Σ𝑛-action, then 𝐹 is symmetric multilinear.
Conversely, given a multilinear functor 𝐿 ∶ Top𝑛∗ ⟶ Sp and a spectrum 𝐶 =
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𝐿(𝑆0, ⋯ , 𝑆0), there is an equivalence

𝐿(𝑆0, ⋯ , 𝑆0) ∧ (𝑋1 ∧ ⋯ ∧ 𝑋𝑛) ⟶ 𝐿(𝑋1, ⋯ , 𝑋𝑛)

for finite CW complexes 𝑋1, ⋯ , 𝑋𝑛. If 𝐿 is finitary, then it is an equivalence for any
𝑋1, ⋯ , 𝑋𝑛. If 𝐿 is symmetric, then the spectrum 𝐿(𝑆0, ⋯ , 𝑆0) has a Σ𝑛-action.

By this lemma, if we take 𝐿 = 𝐷(𝑛)𝐹 to be the 𝑛-fold differential, we get a spectrum
𝐷(𝑛)𝐹(𝑆0, ⋯ , 𝑆0) with a Σ𝑛-action. Thus for any homotopy functor 𝐹 ∶ Top∗⟶ Sp, we
have an equivelence

𝐷𝑛𝐹(𝑋) ≃ 𝐷(𝑛)𝐹(𝑋,⋯ , 𝑋)ℎΣ𝑛 ≃ (𝜕(𝑛)𝐹(∗) ∧ 𝑋∧𝑛)ℎΣ𝑛 (3-2)

where 𝜕(𝑛)𝐹(∗) ≃ 𝐷(𝑛)𝐹(𝑆0, ⋯ , 𝑆0).
Morever, for any homotopy functor 𝐹 ∶ Top∗⟶ Top∗, we have an equivalence

𝐷𝑛𝐹(𝑋) ≃ Ω∞(𝐵∞𝐷(𝑛)𝐹)(𝑋,⋯ , 𝑋)ℎΣ𝑛 ≃ Ω∞(𝜕(𝑛)𝐹(∗) ∧ 𝑋∧𝑛)ℎΣ𝑛
where 𝜕(𝑛)𝐹(∗) ≃ (𝐵∞𝐷(𝑛)𝐹)(𝑆0, ⋯ , 𝑆0).
Definition 3.9: Let 𝐹 be a homotopy functor from Top∗ to Top∗ or Sp. The 𝑛-th layer
𝐷𝑛𝐹 is governed by a spectrum 𝜕(𝑛)𝐹(∗) with a Σ𝑛-action, called the 𝑛-th derivative of
𝐹 at ∗.

Define the homotopy functor 𝐹𝑌 to be the composition

𝐹𝑌 = 𝐹 ∘ 𝜙 ∶ Top/𝑌 ⟶ Top⟶𝒟.

For the homotopy functor 𝐹𝑌 ∶ Top/𝑌 ⟶ Sp, we have an equivalence

𝐷𝑛𝐹𝑌(𝑋) ≃ 𝐷(𝑛)𝑌 𝐹(𝑋,⋯ , 𝑋)ℎΣ𝑛 ≃ (𝜕
(𝑛)
𝑦1,⋯,𝑦𝑛(𝑌) ∧ 𝑋∧𝑛)ℎΣ𝑛

where 𝜕(𝑛)𝑦1,⋯,𝑦𝑛𝐹(𝑌) ≃ 𝐷
(𝑛)
𝑌 𝐹(𝑆0 ∨𝑦1 𝑌,⋯ , 𝑆0 ∨𝑦𝑛 𝑌).

Definition 3.10: Let 𝐹 be a homotopy functor from Top to Top∗ or Sp. The 𝑛-th layer
𝐷𝑛𝐹 is governed by a spectrum 𝜕(𝑛)𝑦1,⋯,𝑦𝑛𝐹(𝑌) with a Σ𝑛-action, called the 𝑛-th derivative

of 𝐹 at (𝑌, 𝑦1, ⋯ , 𝑦𝑛).
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CHAPTER 4 APPLICATIONS

In this chapter, we introduce some applications of Goodwillie towers. Notice that
all homotopy functors in this chapter are reduced and finitary. We denote the suspension
spectrum of based space 𝑋 as Σ∞𝑋.

4.1 Snaith Splitting

Snaith [16] gave the decomposition of space Ω𝑛Σ𝑛𝑋 for a connected based space 𝑋.
Goodwillie described the Snaith splitting of spectrum Σ∞ΩΣ𝑋 as the following.
Theorem 4.1 (Goodwillie [6], Example 1.20): Given a connected based sapce 𝑋,
there is a weak equivalence

Σ∞ΩΣ𝑋 ≃∏
𝑛≥1

Σ∞𝑋∧𝑛.

Notice that the functors (𝑋,⋯ , 𝑋) ⟼ Σ∞𝑋∧𝑛 are multilinear for each 𝑛. Thus by
Proposition 3.1 and 3.3, the functors 𝑋 ⟼ Σ∞𝑋∧𝑛 are 𝑛-homogeneous for each 𝑛.
Proposition 4.1: There are weak equivalences for each 𝑛

𝑃𝑛Σ∞ΩΣ𝑋 ≃
𝑛

∏
𝑖=1

Σ∞𝑋∧𝑖 ,

𝐷𝑛Σ∞ΩΣ𝑋 ≃ Σ∞𝑋∧𝑛.

Proof: For the𝑚-homogeneous functor Σ∞𝑋∧𝑚, we have 𝑃𝑚−1Σ∞𝑋∧𝑚 ≃ ∗. By Corol-
lary 2.1, we have

∗ ≃ 𝑃𝑛𝑃𝑚−1Σ∞𝑋∧𝑚 ≃ 𝑃𝑛Σ∞𝑋∧𝑚

for 𝑛 ≤ 𝑚 − 1. Thus 𝑃1Σ∞𝑋∧𝑚 ≃ ⋯ ≃ 𝑃𝑚−1Σ∞𝑋∧𝑚 ≃ ∗. Thus we have a weak
equivalence

𝑃𝑛Σ∞ΩΣ𝑋 ≃
𝑛

∏
𝑖=1

Σ∞𝑋∧𝑖

according to Theorem 4.1. By definitions, we have the weak equivalence

𝐷𝑛Σ∞ΩΣ𝑋 ≃ ℎ𝑜𝑓𝑖𝑏 (
𝑛

∏
𝑖=1

Σ∞𝑋∧𝑖 ⟶
𝑛−1

∏
𝑖=1

Σ∞𝑋∧𝑖) ≃ Σ∞𝑋∧𝑛.
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∎
The Snaith splitting is an important result in algebraic topology that describes the

decomposition properties of spectra. Specifically, certain spectra can be decomposed
into direct sums of simpler spectra, thereby simplifying the analysis of their homotopical
structures.
Example 4.1: Take 𝑋 = 𝑆1, by Theorem 4.1, we have

𝑃𝑛Σ∞Ω𝑆2 ≃
𝑛

∏
𝑖=1

Σ∞𝑆𝑖 =
𝑛

∏
𝑖=1

𝕊(𝑖), ℎ𝑜𝑙𝑖𝑚 𝑃𝑛Σ∞Ω𝑆2 ≃∏
𝑛≥1

𝕊(𝑛) ≃ Σ∞Ω𝑆2,

where 𝕊(𝑖) is the suspension spectrum starts with 𝑖 dimensional sphere 𝑆𝑖.

Σ∞Ω𝑆2

∗

𝑃1Σ∞Ω𝑆2 ≃ 𝕊

𝑃2Σ∞Ω𝑆2 ≃ 𝕊 × 𝕊(2)

𝑃𝑛Σ∞Ω𝑆2 ≃
𝑛

∏
𝑖=1

𝕊(𝑖)

The core idea of the Snaith splitting is to construct the decomposition of spectra.
Through this decomposition, we can break down the homotopical information of complex
infinite loop space spectra into simpler parts, making it easier to compute their homotopy
groups and homology groups.

The Snaith splitting has wide applications in stable homotopy theory. For example,
McCarthy [22] studied the decomposition of relative 𝐾-theory, which has a convergent
Goodwillie tower. Additionally, this splitting offers important tools for understanding the
relationships between objects in generalized homology theories and the stable homotopy
category.
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Proposition 4.2: The 𝑛-th layer of functor 𝐹 ∶ Top∗⟶ Sp, 𝑋 ⟼ Σ∞Ω𝑋 is

𝐷𝑛𝐹 ∶ 𝑋 ⟼ Ω𝑛Σ∞𝑋∧𝑛.

Proof: By Proposition 2.4, there is an equivalence

𝐷𝑛𝐹(Σ𝑋) ≃ 𝐷𝑛(𝐹 ∘ Σ)(𝑋).

By the last example we have Σ∞ΩΣ𝑋 ≃ ∏
𝑛≥1

Σ∞𝑋∧𝑛. Since Σ∞𝑋∧𝑛 is 𝑛-homogeneous,
the 𝑛-th layer of 𝐹 ∘ Σ is Σ∞𝑋∧𝑛.

Thus we have a weak equivalence

𝐷𝑛𝐹(Σ𝑋) ≃ 𝐷𝑛(𝐹 ∘ Σ)(𝑋) ≃ Σ∞𝑋∧𝑛 ≃ Ω𝑛Σ∞(Σ𝑋)∧𝑛

by Σ(𝑋 ∧ 𝑋) ≃ Σ𝑋 ∧ 𝑋 ≃ 𝑋 ∧ Σ𝑋. Then by Proposition 3.8, there is an equivalence

𝐷𝑛𝐹(𝑋) ≃ Ω𝑛Σ∞𝑋∧𝑛,

which completes the proof. ∎

4.2 The Identity Functor

We consider some results for the identity functor 𝐼 ∶ Top∗ ⟶ Top∗. We start with a
famous theorem.
Theorem 4.2 (Johnson [31]): The 𝑛-th derivative 𝜕𝑛𝐼(∗) of the identity functor 𝐼 ∶
Top∗⟶ Top∗ is

𝜕𝑛𝐼(∗) ≃ (𝕊(1−𝑛))∧(𝑛−1)!.

By this theorem, we can calculate the layers of the identity functor 𝐼. By definitions,
we have

𝑇1𝐼(𝑋) ≃ ΩΣ𝑋, 𝑇𝑛1 𝐼(𝑋) ≃ Ω𝑛Σ𝑛𝑋,

𝑃1𝐼(𝑋) ≃ ℎ𝑜𝑐𝑜𝑙𝑖𝑚𝑓𝑖𝑙Ω𝑛Σ𝑛𝑋 ≃ Ω∞Σ∞𝑋.

Since 𝑃0𝐼(𝑋) ≃ 𝐹(∗) = ∗, we have

𝐷1𝐼(𝑋) ≃ 𝑃1𝐼(𝑋) ≃ Ω∞Σ∞𝑋.

By 𝜕2𝐼(∗) ≃ 𝕊(−1), we have

𝐷2𝐼(𝑋) ≃ Ω∞((𝕊(−1) ∧ (𝑋 ∧ 𝑋))ℎΣ2) ≃ Ω∞(Σ−1Σ∞(𝑋 ∧ 𝑋)ℎΣ2).
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By 𝜕3𝐼(∗) ≃ (𝕊(−2))∧2, we have

𝐷3𝐼(𝑋) ≃ Ω∞((𝕊(−2) ∧ 𝑋∧3)ℎΣ3) ≃ Ω∞(Σ−2Σ∞𝑋∧3ℎΣ3).

By Lemma 3.1, there is a fiber sequence 𝑃𝑛𝐼 ⟶ 𝑃𝑛−1𝐼 ⟶ 𝑅𝑛𝐼. Then the 𝑛-excisive
approximation𝑃𝑛𝐼 ≃ ℎ𝑜𝑓𝑖𝑏 (𝑃𝑛−1𝐼 ⟶ 𝐵Ω∞(Σ−1Σ∞𝑋∧𝑛ℎΣ𝑛)).Then by induction, we have
the following Goodwillie tower of the identity functor.

𝐼(𝑋) 𝑃1𝐼(𝑋) 𝐷1𝐼(𝑋) ≃ Ω∞Σ∞𝑋

𝑃2𝐼(𝑋) 𝐷2𝐼(𝑋) ≃ Ω∞ (Σ−1Σ∞𝑋∧2ℎΣ2)

𝑃𝑛𝐼(𝑋) 𝐷𝑛𝐼(𝑋) ≃ Ω∞ (Σ1−𝑛Σ∞𝑋∧𝑛ℎΣ𝑛)

4.2.1 𝜈𝑘-Periodic Homotopy Theory

We recall some concepts. References are [15, 32–34].
Definition 4.1: For each 𝑛 ∈ ℕ, theMorava 𝐾-theory 𝐾(𝑛)• at prime 𝑝 is a generalized
cohomology theory whose coefficient ring is

𝐾(𝑛)•(∗) = 𝔽𝑝[𝑣𝑛, 𝑣−1𝑛 ]

where |𝑣𝑛| = 2(𝑝𝑛 − 1). A based space 𝑉 is of type 𝑘 if 𝐾(𝑛)•(𝑉) = 0 for 𝑛 < 𝑘, and
𝐾(𝑘)•(𝑉) ≠ 0.

Mitchell [35] established that finite type 𝑘 spaces exist for every 𝑘 ≥ 0.
Definition 4.2: A 𝜈𝑘-self map of a finite based space 𝑉 is a map 𝑣 ∶ Σ𝑑𝑉 ⟶ 𝑉 with a
given integer 𝑑 such that

𝐾(𝑛)•(𝑣) ∶ 𝐾(𝑛)•(𝑉) ⟶ 𝐾(𝑛)•(Σ𝑑𝑉)

is an isomorphism for 𝑛 = 𝑘 and nilpotent for all 𝑛 ≠ 𝑘.
Hopkins and Smith [36] showed that every type 𝑘 space which admits a 𝜈𝑘 self-map

after suspending it sufficiently many times.
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Since 𝐾(𝑛)•(𝑉) ≅ 𝐾(𝑛)•+1(Σ𝑉), we have the following lemma.
Lemma 4.1: For a given space 𝑉 of type 𝑘, the 𝑡-times suspension Σ𝑡𝑉 is of type 𝑘.

That is, for a given 𝑘, there always exists a space 𝑉 of type 𝑘 admits a 𝜈𝑘-self map
𝑣𝑘 ∶ 𝑉 ⟶ Σ𝑑𝑉. Then for any other based space 𝑋, there is a sequence

Map∗(𝑉, 𝑋)
𝑣∗𝑘−⟶ Map∗(Σ𝑑𝑉, 𝑋)

𝑣∗𝑘−⟶ Map∗(Σ2𝑑𝑉, 𝑋) ⟶ ⋯ .

By the exponential law

Map∗(𝐴 ∧ 𝐵, 𝑋) ≃ Map∗(𝐵,Map∗(𝐴, 𝑋)),

there is a map 𝑣∗𝑘 ∶ Map∗(𝑉, 𝑋) ⟶ Ω𝑑Map∗(𝑉, 𝑋).
Definition 4.3: The spectrum Φ𝜈𝑋 is defined as (Φ𝜈𝑋)𝑛𝑑 = Map∗(𝑉, 𝑋) for all 𝑛 ≥ 0
with structure map 𝑣∗𝑘 ∶ Map∗(𝑉, 𝑋) ⟶ Ω𝑑Map∗(𝑉, 𝑋). The functorΦ𝜈 ∶ Top∗⟶ Sp is
called the telescopic functor associated to 𝑣𝑘.
Proposition 4.3: Given a based space 𝑋, the homotopy groups of spectrum Φ𝜈𝑋 are
periodic with period 𝑑.
Proof: By definition, we have

𝜋𝑛(Φ𝜈𝑋) ≅ [𝕊𝑛, Φ𝜈𝑋]∗
≅ 𝑐𝑜𝑙𝑖𝑚 𝜋𝑛+𝑚((Φ𝜈𝑋)𝑚)
≅ 𝑐𝑜𝑙𝑖𝑚 𝜋𝑛+𝑑+𝑚((Φ𝜈𝑋)𝑚+𝑑)
≅ 𝑐𝑜𝑙𝑖𝑚 𝜋𝑛+𝑑+𝑚((Φ𝜈𝑋)𝑚)
≅ [𝕊𝑛+𝑑 , Φ𝜈𝑋]∗
≅ 𝜋𝑛+𝑑(Φ𝜈𝑋).

∎
By this proposition, we can define the 𝜈𝑘-periodic homotopy group of the based

space 𝑋.
Definition 4.4: The 𝜈𝑘-periodic homotopy group of a based space 𝑋 is defined as

𝜋•(𝑋; 𝑉) = 𝜋•(Φ𝜈𝑋).

4.2.2 On Spheres

Arone and Mahowald [11] found that the Goodwillie tower of the identity functor on
odd dimensional sphere 𝑆2𝑠+1(𝑝) localized at any prime 𝑝 (see [37] for more details about
localization of spaces), has non-contractible 𝑛-th layer 𝐷𝑛𝐼(𝑆2𝑠+1(𝑝) ) only for 𝑛 = 𝑝𝑘.
This implies the tower converges at an exponential speed. Besides, they proved that all
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the layers after 𝑝𝑘 are trivial in 𝜈𝑘-periodic homotopy. Thus, the only non-trivial layer
appears at 𝑛 = 𝑝0, ⋯ , 𝑝𝑘. Thus the unstable 𝜈𝑘-periodic homotopy of an odd dimensional
sphere can be resolved into a tower of fibrations with 𝑘 + 1 stages.
Theorem 4.3 (Arone-Mahowald [11], Theorem 3.13): For an odd dimensional
sphere 𝑋 = 𝑆2𝑠+1(𝑝) localized at a prime 𝑝, the 𝑛-th layer 𝐷𝑛𝐼(𝑋) is weakly contractible for
𝑛 ≠ 𝑝𝑘, has only 𝑝-primary torsion for 𝑛 = 𝑝𝑘.

The 𝜈0-periodic homotopy is the same as the rational homotopy. Thus, the 𝑛-th layer
𝐷𝑛𝐼(𝑆2𝑠+1) is rationally contractible for all 𝑛 ≥ 2. Moreover, Arone and Mahowald
proved that, for an odd shpere 𝑋 = 𝑆2𝑠+1(𝑝) localized at a prime 𝑝, the layer 𝐷𝑝𝑛𝐼(𝑋) is
trivial in 𝜈𝑘-periodic homotopy for all 𝑛 ≥ 𝑘 + 1, by using vanishing line theorems (see
[38] and [39] for more details). Thus we have the Goodwillie tower of the identity functor
𝐼 on 𝑋 = 𝑆2𝑠+1(𝑝) , where non-trivial layer appear only for 𝑛 = 1,⋯ , 𝑝𝑘.

𝑋 = 𝑆2𝑠+1(𝑝) 𝑃1𝐼(𝑋)

𝑃𝑝𝐼(𝑋)

𝑃𝑝𝑘𝐼(𝑋)

𝑃𝑝2𝐼(𝑋)

𝐷1𝐼(𝑋)

𝐷𝑝𝐼(𝑋)

𝐷𝑝2𝐼(𝑋)

𝐷𝑝𝑘𝐼(𝑋)

Theorem 4.4 (Arone-Mahowald [11], Theorem 4.1): For 𝑋 = 𝑆2𝑠+1(𝑝) , the map
𝑋 ⟶ 𝑃𝑝𝑘𝐼(𝑋) is 𝜈𝑗-periodic equivalence for all 0 ≤ 𝑗 ≤ 𝑘.

Thus the Goodwillie tower of the identity functor 𝐼 on 𝑋 = 𝑆2𝑠+1(𝑝) converges in 𝜈𝑘-
periodic homotopy. Then Arone and Mahowald made this into a fiber sequence (see [11]
Proposition 4.7 for details)

𝑃𝑛𝐼(𝑆2𝑠−1(𝑝) ) ⟶ Ω𝑃𝑛𝐼(𝑆2𝑠(𝑝)) ⟶ Ω𝑃𝑛𝐼(𝑆4𝑠−1(𝑝) )

to deduce that the Goodwillie tower of the identity functor 𝐼 on 𝑋 = 𝑆2𝑠(𝑝) converges in 𝜈𝑘-
periodic homotopy. Thus, the Goodwillie towers of the identity functor on all dimensional
spheres converge in 𝜈𝑘-periodic homotopy.
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Theorem 4.5 (Arone-Mahowald [11], Theorem 4.4): For an even dimensional sh-
pere 𝑋 = 𝑆2𝑠(𝑝) localized at prime 𝑝, the 𝑛-th layer 𝐷𝑛𝐼(𝑋) is weakly contractible for
𝑛 ≠ 𝑝𝑘 or 2𝑝𝑘, has only 𝑝-primary torsion for 𝑛 = 𝑝𝑘 or 2𝑝𝑘.

We have the following Goodwillie tower of the identity functor on 𝑋 = 𝑆2𝑠(𝑝).

𝑋 = 𝑆2𝑠(𝑝) 𝑃1𝐼(𝑋)

𝑃𝑝𝐼(𝑋)

𝑃𝑝𝑘𝐼(𝑋)

𝑃𝑝2𝐼(𝑋)

𝐷1𝐼(𝑋)

𝐷𝑝𝐼(𝑋)

𝐷𝑝2𝐼(𝑋)

𝐷𝑝𝑘𝐼(𝑋)

𝑃2𝐼(𝑋)

𝑃2𝑝𝐼(𝑋)

𝑃2𝑝𝑘𝐼(𝑋)

𝑃2𝑝2𝐼(𝑋)

𝐷2𝐼(𝑋)

𝐷2𝑝𝐼(𝑋)

𝐷2𝑝2𝐼(𝑋)

𝐷2𝑝𝑘𝐼(𝑋)

Theorem 4.6 (Arone-Mahowald [11], Theorem 4.5): For 𝑝 > 2, 𝑋 = 𝑆2𝑠(𝑝), the
map 𝑋 ⟶ 𝑃2𝑝𝑘𝐼(𝑋) is 𝜈𝑘-periodic equivalence. If 𝑝 = 2, then the map 𝑋 ⟶ 𝑃𝑝𝑘+1𝐼(𝑋)
is 𝜈𝑘-periodic equivalence.

4.2.3 Examples of Divergent Towers

We now introduce some results about divergent Goodwillie towers.
Definition 4.5: Given 𝑘 generators 𝑥1, ⋯ , 𝑥𝑘 corresponding based connected spaces
𝑋1, ⋯ , 𝑋𝑘, we say that 𝑥𝑖 is a Lie word. If 𝑢, 𝑣 are Lie words, then the Lie bracket [𝑢, 𝑣]
is also a Lie word. See [40] for more details.

We denote the ordered set of these Lie words with 𝑘 generators as 𝐿𝑘.
Example 4.2: We evaluate these Lie words on a 𝑘-tuple of based connected spaces
𝑋1, ⋯ , 𝑋𝑘 by letting the Lie bracket act as the smash product. For example:

（1）[𝑥1, [𝑥2, 𝑥2]](𝑋1, 𝑋2, 𝑋3) = 𝑋1 ∧ 𝑋2 ∧ 𝑋2,
（2）[𝑥2, [𝑥3, 𝑥3]](𝑋1, 𝑋2, 𝑋3) = 𝑋2 ∧ 𝑋3 ∧ 𝑋3.

Theorem 4.7 (Brantner-Heuts [15], Theorem 2.3): Given based connected spaces
𝑋1, ⋯ , 𝑋𝑘, there is a weak equivalence

∏
𝑤∈𝐿𝑘

′
ΩΣ(𝑤(𝑋1, ⋯ , 𝑋𝑘)) ⟶ ΩΣ(𝑋1 ∨ ⋯ ∨ 𝑋𝑘)
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where ∏′ is the weak infinite product.
Then we need the following two lemmas.

Lemma4.2 (Brantner-Heuts [15], Lemma 2.1): Let𝐺 ∶ Top∗⟶ Top∗ be a reduced
finitary homotopy functor. We denote the iterated wedge sum functor of 𝑘 terms as ⋁ ∶
Top𝑘∗ ⟶ Top, let 𝐹 = 𝐺 ∘ ⋁ ∶ Top∗ ⟶ Top∗. Then there are canonical equivalences of
functors from Top𝑘∗ to Top:

(𝑃𝑛𝐺) ∘⋁⟶ 𝑃𝑛𝐹 ⟶ ℎ𝑜𝑙𝑖𝑚
𝑛1+⋯+𝑛𝑘≤𝑛

𝑃𝑛1,⋯,𝑛𝑘𝐹.

This lemma give an equivalence between homotopy functor (𝑃𝑛𝐺) ∘ ⋁, 𝑃𝑛𝐹 and
multivariable functor 𝑃𝑛1,⋯,𝑛𝑘𝐹.
Lemma 4.3 (Brantner-Heuts [15], Lemma 2.4): Let 𝐺 ∶ Top∗ ⟶ Top∗ be a re-
duced finitary homotopy functor. Given a 𝑘-tuple of natural numbers (𝑎1, ⋯ , 𝑎𝑘), define
a homotopy functor 𝐹 ∶ Top𝑘∗ ⟶ Top∗ as

𝐹(𝑋1, ⋯ , 𝑋𝑘) = 𝐺(𝑋∧𝑎11 ∧ ⋯ ∧ 𝑋∧𝑎𝑘𝑘 ).

Then for any (𝑛1, ⋯ , 𝑛𝑘) there is a weak equivalence

𝑃𝑛1,⋯,𝑛𝑘𝐹(𝑋1, ⋯ , 𝑋𝑘) ⟶ 𝑃𝑚𝑖𝑛{[𝑛1𝑎1 ],⋯,[
𝑛𝑘
𝑎𝑘
]}𝐺(𝑋

∧𝑎1
1 ∧ ⋯ ∧ 𝑋∧𝑎𝑘𝑘 )

where [𝑛𝑖𝑎𝑖 ] is the largest integer no greater than
𝑛𝑖
𝑎𝑖
.

Then associated with the 𝑃𝑛 functor, we have the following.
Theorem 4.8 (Brantner-Heuts [15], Theorem 2.5): Given based connected spaces
𝑋1, ⋯ , 𝑋𝑘, there is a weak equivalence

∏
𝑤∈𝐿𝑘

′
Ω𝑃[ 𝑛|𝑤| ](Σ𝑤)(𝑋1, ⋯ , 𝑋𝑘)) ⟶ Ω𝑃𝑛(Σ𝑋1 ∨ ⋯ ∨ Σ𝑋𝑘)

where [ 𝑛|𝑤|] is the largest integer no greater than
𝑛
|𝑤| .

Proof: By Theorem 4.7, we have a weak equivalence

∏
𝑤∈𝐿𝑘

′
Ω𝑃𝑛1,⋯,𝑛𝑘(Σ𝑤)(𝑋1, ⋯ , 𝑋𝑘)) ⟶ Ω𝑃𝑛1,⋯,𝑛𝑘Σ(𝑋1 ∨ ⋯ ∨ 𝑋𝑘).

By Lemma 4.2, we have a weak equivalence

Ω𝑃𝑛𝐼(Σ𝑋1 ∨ ⋯ ∨ Σ𝑋𝑘) ⟶ ℎ𝑜𝑙𝑖𝑚
𝑛1+⋯+𝑛𝑘≤𝑛

Ω𝑃𝑛1,⋯,𝑛𝑘Σ(𝑋1 ∨ ⋯ ∨ 𝑋𝑘).

By Lemma 4.3, we have a weak equivalence

ℎ𝑜𝑙𝑖𝑚
𝑛1+⋯+𝑛𝑘≤𝑛

∏
𝑤∈𝐿𝑘

′
Ω𝑃𝑛1,⋯,𝑛𝑘(Σ𝑤)(𝑋1, ⋯ , 𝑋𝑘)) ⟶ ℎ𝑜𝑙𝑖𝑚

𝑛1+⋯+𝑛𝑘≤𝑛
∏
𝑤∈𝐿𝑘

′
Ω𝑃[ 𝑛|𝑤| ](Σ𝑤)(𝑋1, ⋯ , 𝑋𝑘),
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which completes the proof. ∎
Theorem 4.9 (Brantner-Heuts [15], Corollary 3.3): Given based connected spaces
𝑋1, ⋯ , 𝑋𝑘, IfΦ𝜈Σ(𝑤(𝑋1, ⋯ , 𝑋𝑘)) is not contractible for infinitely many 𝑤 ∈ 𝐿𝑘, then the
canonical map

Φ𝜈(Σ𝑋1 ∨ ⋯ ∨ Σ𝑋𝑘) ⟶ ℎ𝑜𝑙𝑖𝑚 Φ𝜈𝑃𝑛(Σ𝑋1 ∨ ⋯ ∨ Σ𝑋𝑘)

is not an equivalence.
Brantner and Heuts [15] found that the Goodwillie tower on the wedge sum of

spheres is divergent in 𝜈𝑘-periodic homotopy.
Theorem 4.10 (Brantner-Heuts [15], Theorem 3.4): For given 𝑚, 𝑛 ≥ 2, the
Goodwillie tower of the identity functor on 𝑆𝑚∨𝑆𝑛 is infinite and fails to converge under
𝜈𝑘-periodic homotopy.
Proof: We consider the case where each 𝑋𝑖 is a sphere of dimension at least 1. By
Theorem 4.3 and 4.5, the stages become constant at stage 𝑝𝑘 or 2𝑝𝑘 (meaning the se-
quence becomes constant after 𝑝𝑘 or 2𝑝𝑘) in 𝜈𝑘-periodic homotopy. Then by Theorem
4.8, Ω𝑃[ 𝑛|𝑤| ]Σ(𝑤(𝑋1, ⋯ , 𝑋𝑘)) only becomes constant for |𝑤|𝑝

𝑘 or 2|𝑤|𝑝𝑘 but they has no
bound. Thus, the Goodwillie tower in this case is infinite. Then by Theorem 4.9, for each
𝑋𝑖 is a sphere of dimension at least 1, this Goodwillie tower fails to converge. ∎

Moreover, they also proved, for given 𝑛 ≥ 5 and an odd prime 𝑝, that the Goodwillie
tower of the identity functor 𝐼 is divergent on mod 𝑝 Moore space 𝑆𝑛/𝑝 in 𝜈1-periodic
homotopy. See [15] Theorem 5.4 for details.
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CONCLUSION

The contributions include the following.
（1）Explaining how to construct the Goodwillie tower of a homotopy functor 𝐹.
（2）Explaining how to construct the one-to-one correspondence between 𝑛-

homogeneous functors and symmetric multilinear functors.
（3）Introducing how to calculate the stable homotopy group of Ω𝑆𝑛 by the Snaith

Splitting.
（4）Introducing some applications on the unstable 𝜈𝑘-periodic homotopy.
Further researches include the following.
（1）Construct another kind of approximation for a homotopy functor 𝐹, which is

better to calculate than 𝑛-excisive approximations.
（2）Extend the Goodwillie tower in the negative range, with some new definitions,

where some divergent results become convergent in the negative range.
（3）Explicit calculations with 𝜈𝑘-periodic Goodwillie towers for 𝑘 = 2, analogous

to the 𝑘 = 1 case studied by Arone and Mahowald.
（4）Explore new examples of convergent and divergent Goodwillie towers after

Berehus-Rezk and Brantner-Heuts.
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