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摘 要

摘 要

拓扑数据分析作为一项新兴的数学工具，近年来在深度学习领域展现了巨大

的潜力，尤其在神经网络的设计与优化方面表现出色。在本论文中，我们用提取

拓扑信息的卷积核来构造卷积神经网络，其在多个语音数据集均表现出高准确率。

首先，研究详细分析了以 Klein瓶特征初始化的卷积核在 CNN中的独特表现，

这种设计能够高效捕获数据中的拓扑信息，显著提升网络的表征能力与泛化性能。

在复现基础实验的同时，本研究还优化了实验条件，为探讨这些方法的广泛适用

性奠定了基础。同时，本研究结合 Gabrielsson与 Carlsson提出的理论框架，尝试

提取了卷积权重分布的拓扑特征。

进一步，也是本文的核心内容是，对卷积核进行正交群作用，然后通过获得的

轨道空间与矩阵空间之间的关系，获得了近似纤维丛的结构，从而将矩阵空间分

解成底空间与正交群两部分，为生成滤波器提供了理论基础。

之后，我们生成了正交特征层 (OF)，其在音素识别任务中的性能显著优于传

统方法，尤其在低噪声环境下展现出极高的生命力。此外，这些卷积核在单词分类

和图像分类任务中同样表现出良好的适应性，展示了拓扑方法跨领域应用的潜力。

最后，研究初步将构造卷积核的理论推广至黎曼几何框架下，提出基于几何

正则化的优化策略，为后续研究提供理论基础与实验支撑。本研究通过复现与拓

展现有成果，进一步揭示了拓扑工具在神经网络优化中的可能性，为跨数学与深

度学习的交叉领域开辟了新的研究方向。

关键词：拓扑数据分析；卷积神经网络；语音识别；群作用
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ABSTRACT

ABSTRACT

Topological data analysis, as a burgeoning mathematical tool, has demonstrated im-

mense potential in the field of deep learning in recent years, particularly excelling in the

design and optimization of neural networks. In this dissertation, convolutional kernels that

extract topological information are employed to construct convolutional neural networks,

achieving high accuracy across multiple speech datasets.

The study begins with a detailed analysis of the unique performance of convolu-

tional kernels initialized using Klein bottle features within CNNs. This design effectively

captures the topological structures in data, significantly enhancing the representational ca-

pability and generalization performance of the network. Alongside reproducing founda-

tional experiments, this work optimizes experimental conditions, laying the groundwork

for exploring the broader applicability of these methods. Additionally, the research in-

corporates the theoretical framework proposed by Gabrielsson and Carlsson, attempting

to extract topological features from the distribution of convolutional weights.

Furthermore, as the core contribution, the study explores orthogonal group actions

on convolutional kernels. By uncovering the relationship between orbit space and ma-

trix space, a structure approximating fiber bundles is established, decomposing matrix

space into a base space and orthogonal group components, thus providing a theoretical

foundation for filter generation.

Subsequently, the Orthogonal Feature Layer (OF) is developed, which demonstrates

significantly superior performance in phoneme recognition tasks compared to traditional

methods, particularly excelling in low-noise environments. Additionally, these kernels

exhibit robust adaptability in word classification and image classification tasks, highlight-

ing the cross-domain application potential of topological methods.

Finally, the study preliminarily extends the kernel construction theory into the Rie-

mannian geometry framework, proposing geometry-regularized optimization strategies.

This provides a theoretical and experimental foundation for subsequent research. By re-

producing and expanding upon existing results, the work further unveils the potential of

topological tools in neural network optimization, paving the way for new research direc-

tions in the intersection of mathematics and deep learning.
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

Topological Data Analysis provides a foundational exploration of TDA’s core con-

cepts, such as simplicial complexes and persistent homology, making it an essential re-

source for understanding multi-scale topological features in data analysis. (Bass et al.[4])

1.1 Research Backgrounds and Motivations

1.1.1 Historical Evolution of Topological Data Analysis

From Algebraic Topology to Data Science

The mathematical foundations of Topological Data Analysis (TDA) trace back to

classical algebraic topology, where concepts such as homology groups and Betti num-

bers were developed to characterize the connectivity of abstract spaces. Early attempts to

apply these ideas to data analysis were largely theoretical, focusing on combinatorial rep-

resentations of point clouds through simplicial complexes. However, the lack of scalable

algorithms limited practical adoption until the early 2000s, when computational geometry

intersected with topology to address real-world data challenges.

The Birth of Persistent Homology

A pivotal advancement occurred with the formalization of persistent homology by

Edelsbrunner et al.[19], which introduced a multi-scale framework for analyzing topolog-

ical features. Persistent homology uses a filtration process to incrementally construct

nested simplicial complexes, enabling the systematic tracking of topological structures,

such as clusters and cycles, across multiple spatial resolutions. Zomorodian and Carls-

son[100] further refined this framework, demonstrating its stability under noise through

algebraic representations. The publication of seminal review by Carlsson[7] in 2009

marked the transition of TDA from a nichemathematical tool to a mainstream data science

methodology.

Algorithmic and Theoretical Maturation

Subsequent research focused on enhancing computational efficiency and theoretical

robustness. Chazal et al.[11] established stability theorems, proving that small perturba-
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tions in input data yield bounded changes in persistence diagrams, a critical property for

noisy real-world datasets. Meanwhile, Oudot[56] developed efficient algorithms for com-

puting persistence modules, enabling applications to large-scale datasets. These advances

laid the groundwork for modern TDA software libraries, such as Gudhi and Ripser, which

handle millions of data points in domains ranging from genomics to materials science.

The theoretical maturation of TDA also bridged gaps between pure mathematics

and applied statistics. Concepts like the Euler characteristic curve and Mapper algorithm

emerged as interpretable tools for high-dimensional data visualization, further expanding

the utility of TDA beyond homology-based methods.

1.1.2 Applications of Topological Data Analysis

Materials Science and Chemistry

In materials science, TDA has revolutionized the characterization of porous struc-

tures. For instance, Kramar et al.[41] used persistence diagrams to quantify the con-

nectivity of nanopore networks in catalytic materials, while Nakamura et al.[54] applied

Morse theory to classify crystal defects. Recent work by Pike et al.[60] demonstrated

how TDA-guided simulations predict polymer phase separation dynamics, offering in-

sights for designing advanced composites. In drug design, Liu et al.[52] developed a

hypergraph-based persistent cohomology model to capture complex protein-ligand inter-

actions through atomic-level topological representations, showing superior performance

in binding affinity prediction compared to traditional geometric and chemical descriptors.

Building on this, Liu et al.[51] introduced persistent spectral hypergraphs to enhance ma-

chine learning predictions of molecular binding thermodynamics. Knot theory-based in-

novations by Shen et al.[74] further expanded the utility of TDA through multiscale Gauss

link integrals for analyzing molecular entanglement and polymer chain dynamics.

Biomedical Imaging and Genomics

Medical applications leverage the ability of TDA to detect subtle structural anoma-

lies. Qaiser et al.[61] employed persistent homology to distinguish malignant tumors from

benign tissues in histopathology images, achieving higher specificity than traditional tex-

ture analysis. Similarly, Dindin et al.[16] utilized TDA for pathological pattern recognition

in medical imaging. In genomics, Carrière and Rabadán[10] analyzed RNA sequencing

data through topological descriptors to identify nonlinear gene interactions linked to can-
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cer progression, extending earlier work by Yao et al.[95] on modeling gene expression

dynamics via topological networks.

Sensor Networks and Transportation

De Silva and Ghrist[15] pioneered the use of Vietoris–Rips complexes to monitor

connectivity in wireless sensor networks, enabling fault detection in harsh environments.

Li et al.[49] extended these ideas to urban transportation, using TDA to model traffic flow

patterns and optimize route planning in real time. TDA also addresses multivariate time

series challenges: Seversky et al.[73] developed anomaly detectionmethods based on topo-

logical features, while Umeda[91] analyzed dynamical systems using evolving topological

descriptors.

3D Shape and Image Analysis

In 3D shape analysis, Skraba et al.[77] introduced topological signatures for shape

matching, Turner et al.[90] proposed persistent homology frameworks to quantify shape

complexity, and Tralie and Perea[89] combined geometric-topological features for robust

shape classification. The recent Zhuo et al.[102] advanced this field with PHTNet, a neural

network architecture integrating multi-perspective topological features for enhanced 3D

object recognition. For 2D image analysis, Rieck et al.[64] leveraged TDA to generate

topological descriptors that enhance texture and structural feature representation. Finally,

Tinarrage[87] contributed to the computation of persistent Stiefel–Whitney classes of line

bundles, expanding the applicability of topological methods by providing novel tools that

intersect algebraic topology with computational frameworks for 2D analysis.

Emerging and Niche Applications

Beyond these domains, TDA has found niche applications in art restora-

tion,analyzing brushstroke patterns in paintings, and climate science, where persistent

homology detects recurring atmospheric patterns in spatiotemporal data. Its versatility

continues to inspire interdisciplinary innovations across mathematical physics, materials

informatics, and computational biology.
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1.1.3 The Rise of Convolutional Neural Networks

Biological Inspiration and Early Models

The development of CNNs was inspired by Hubel and Wiesel’s[36] discovery of hi-

erarchical visual processing in the mammalian cortex. Fukushima’s[22] neocognitron, the

first CNN-like architecture, mimicked this hierarchy with alternating layers of simple

and complex cells. However, limited computational power and training data hindered

progress until the 1990s, when LeCun et al.[44] introduced LeNet-5 for handwritten digit

recognition, leveraging backpropagation (Rumelhart and McClelland[67]) for end-to-end

training.

The Deep Learning Revolution

The 2012 ImageNet competition marked a turning point. Krizhevsky et al.[43]

demonstrated that a deep CNN (AlexNet) could outperform traditional computer vision

methods by a significant margin, catalyzing a paradigm shift. Subsequent architectures

like ResNet (He et al.[32]) and Inception addressed vanishing gradients and overfitting,

while applications expanded to object detection (Faster R-CNN (Sultana et al.[81]) and

semantic segmentation (U-Net (Zaitoun and Aqel[96])).

Modern CNNs exploit spatial locality through convolutional kernels, pooling layers

for translation invariance, and skip connections for gradient flow. These innovations en-

abled state-of-the-art performance in tasks ranging from medical image segmentation to

autonomous driving, as evidenced by their adoption in FDA-approved diagnostic tools

(Qaiser et al.[61]) and Tesla’s Autopilot system.

1.1.4 Challenges and Limitations of CNNs

Interpretability and Robustness

The breakthrough of CNNs in image classification, catalyzed by the ILSVRC chal-

lenge (Russakovsky et al.[68]) and architectural innovations like those in (Sultana et al.[82]),

has been tempered by critical limitations. Despite their hierarchical feature abstraction

capabilities (Rawat and Wang[63]), CNNs remain vulnerable to adversarial attacks-subtle

input perturbations that induce high-confidence misclassifications (Zheng et al.[98]). This

fragility stems from their texture-biased feature learning, as demonstrated through styl-

ized ImageNet experiments (Geirhos et al.[25]), where models failed to recognize shape-

preserving texture-altered objects.
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Data and Computational Demands

While CNNs revolutionized video analysis through benchmarks like UCF101

(Soomro et al.[79]) and KTH (Schuldt et al.[72]), their reliance on massive labeled datasets

and GPU clusters creates barriers in resource-constrained domains. Medical imaging

studies (Guo et al.[29]) reveal catastrophic performance drops when training data falls be-

low critical thresholds. Even foundational spatiotemporal modeling approaches (Gorelick

et al.[27]) require unsustainable computational resources, raising environmental concerns

about the carbon footprint of large-scale training.

1.1.5 Synergizing TDA and CNNs: A Topological Deep Learning
Paradigm

Topological Regularization and Interpretability

Integrating TDA with CNNs addresses both interpretability and robustness. By us-

ing persistence diagrams as regularizers (Adams et al.[2]), networks learn features aligned

with topologically meaningful structures (e.g., loops in texture analysis), overcoming the

texture bias observed in pure CNN architectures (Geirhos et al.[25]). This approach en-

hances model introspection while maintaining the hierarchical abstraction strengths of

CNNs (Rawat and Wang[63]).

Hybrid Architectures for Video and Speech Analysis

Building on CNN-based video analysis foundations (Soomro et al.; Schuldt et al.;

Gorelick et al.[27,72,79]), TDA-enhanced frameworks now track topological dynamics

across frames. The sliding window persistence method (Khasawneh and Munch[39]) im-

proves action recognition by encoding temporal coherence in sports analytics videos.

Similarly, speech processing systems combine Mel-frequency cepstral coefficients with

persistent homology (Brown and Knudson[6]), preserving harmonic structures in noisy

environments while leveraging CNN spectral analysis capabilities. Liu et al.[50] explores

the innovative integration of topological persistence with convolutional neural networks

(CNNs), demonstrating its effectiveness in feature extraction and classification tasks for

music audio signals. Robinson[65] highlights how persistent homology can be utilized in

signal analysis to uncover structural patterns, bridging topology and signal dynamics in

practical applications.
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Future Directions: Topological Attention and Generative Models

Emerging architectures integrate topological attention mechanisms with CNN

feature maps, guiding focus toward structurally critical regions identified through

persistence-based saliency. In generative modeling, GANs trained with topological loss

functions (Smith et al.; Lee et al.[47,78]) produce synthetic data with geometrically realis-

tic properties, potentially overcoming data scarcity limitations that plague conventional

CNNs (Guo et al.[29]).

1.1.6 Research Significance

This study advances both theoretical foundations and methodological frameworks in

neural network analysis, with dual contributions articulated as follows.

Bridging the Mathematical Gap in Neural Network Interpretability

The rapid evolution of deep learning has precipitated a critical disconnect between

empirical success and theoretical understanding. While convolutional neural networks

(CNNs) have attained human-level proficiency in speech recognition tasks[3], the intrica-

cies of their decision-making processes continue to elude comprehensive understanding.

This ”black box” dilemma not only hinders model optimization but also forces architec-

tural improvements to rely on heuristic trial-and-error approaches. Our work addresses

this gap by establishing a mathematical scaffolding through TDA. Specifically, we:

• Develop a hybrid framework integrating persistent homology (Edelsbrunner and

Harer[17]) and Morse theory to characterize convolutional operations in speech CNNs

• Quantify topological invariants (Betti numbers, persistence barcodes) of convolu-

tional kernels in Mel-spectrogram space

• Reveal the geometric preservation of phonemic features through ℤ/2ℤ-homology
analysis of pitch contour manifolds

This mathematical formalization provides unprecedented insights into how CNNs

hierarchically extract speech patterns, moving beyond traditional statistical learning

paradigms.

Cross-Modal Extension of TDA Methodology

While Carlsson et al.[8] pioneered TDA applications in visual CNNs, significant chal-

lenges emerge when adapting this approach to speech processing:
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𝒞speech = Time-frequency entanglement⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
Non-Euclidean structure

+Non-stationary articulation dynamics⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
Topological instability

. (1-1)
Our key innovations include

• Designing temporal persistence modules for analyzing 1D convolutional filters in

raw waveform processing

• Developing spiral barcode descriptors to capture formant transitions in vowel

spaces

• Establishing a stability theorem for speech-specific topological signatures under𝜖-perturbations
This methodological transfer enables direct comparison of feature learning mecha-

nisms across auditory and visual modalities, creating new opportunities for cross-domain

neural architecture design.

1.2 Statement of Results

The main focus of this dissertation is the application of convolutional kernels, con-

structed using the newly defined Orthogonal Feature Layer (OF), to phoneme recogni-

tion. Furthermore, the approach is generalized to word recognition and image recognition,

demonstrating its versatility and adaptability across multiple domains.

First, in Chapter 4, inspired by Love et al.[53], we transform the speech data to spec-

trogram by Short-Time Fourier Transform (STFT).

Second, in Chapter 5, we consider the space 𝑀3×3(ℝ), which is the most common
space of convolutional kernels, as {[𝒗1, 𝒗2, 𝒗3]}. Without loss of generality, define the

subspace𝑀 = {[𝒗1, 𝒗2, 𝒗3]|𝒗1 + 𝒗2 + 𝒗3 = 0} with the Frobenius form of𝑀 is equal to

one. Next, we define a group action on𝑀 by𝜃(𝑸,𝒎) = 𝑸𝒎 for 𝑸 ∈ SO(3) and𝒎 ∈ 𝑀.
Thus, denote the quotient map from𝑀 to𝑀/SO(3) by 𝜋, then the orbit space𝑀/SO(3),
denoted as𝐵, is homeomorphic to a disk𝐷2. Moreover, there exist a stratified fiber bundle

on 𝐵. The fiber is SO(3)/(SO(2) ⋊ ℤ2) ≅ ℝ𝑃2 on the case when 𝒗1 + 𝒗3 = 0, and
SO(3)/SO(2) ≅ 𝑆2 on the case when 𝒗1 and 𝒗3 are collinear, and SO(3)/ℤ2 ≅ 𝐿(4, 1)
on the case when 𝒗1 and 𝒗3 are have equal magnitudes, and SO(3) on the other cases.
The above provides a representation of𝑀 by special orthogonal group action.
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Third, in Chapter 6, we define the Orthogonal Feature Layer (OF) by selecting ele-

ment in 𝐵 and SO(3). Then, we compare neural networks constructed using OF convolu-
tional kernels to traditional neural networks and the networks proposed by Love et al. on

phoneme datasets. The results indicate that OF achieves the highest accuracy under low

noise conditions. However, in high noise environments, OF’s performance declines, with

KF (kernel filters) emerging as the superior approach.

Fourth, in Chapter 7, the applicability of OF convolutional kernels is further explored

by extending their use to word datasets and image datasets. Results demonstrate consis-

tent generalization properties, showcasing the versatility and robustness of the proposed

methodology.

Finally, also in Chapter 7, this research attempts to generalize the convolutional ker-

nel theory within the framework of Riemannian geometry.

1.3 Outline

To integrate the diverse theories, methodologies, and applications discussed through-

out this dissertation, the structure is organized into eight chapters, each focusing on dis-

tinct aspects of topological deep learning. The detailed organization is as follows:

Chapter 2: Mathematical Tools for Topological Deep Learning This chapter

develops the foundational concepts of topological data analysis (TDA) and its mathe-

matical framework. It explores simplicial complexes, persistent homology, graph-based

adaptations, and group actions, establishing the theoretical basis for integrating topology

into convolutional neural networks.

Chapter 3: Interdisciplinary Tools for Topological Deep Learning This chapter

investigates deep learning architectures, particularly CNNs, and their extension to topo-

logical convolutional neural networks (TCNNs). Additionally, it addresses linguistic con-

cepts for phoneme analysis, enabling the seamless integration of topology with speech

tasks.

Chapter 4: Topological Deep Learning: From Image Data to Speech Data

This chapter examines topological properties in image datasets, such as MNIST and

CIFAR10, while expanding analyses into spectrogram representations of speech data. It

leverages both persistent homology and CNN architectures to evaluate the effectiveness

of topological insights.

Chapter 5: The Space of Spectrogram Convolution Kernel This chapter con-
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structs the kernel space for spectrogram convolution using mathematical constraints, such

as contrast maximization and group actions. A geometric analysis highlights the kernel

space’s topological structure and its applicability in speech processing tasks.

Chapter 6: New Spectrogram Convolutional Kernel Building upon Chapter 5,

this chapter introduces novel kernel designs optimized for phoneme recognition through

CNN architectures. Experimental results demonstrate enhanced accuracy and noise ro-

bustness across multiple datasets.

Chapter 7: Further Applications and Extensions This chapter begins by exam-

ining the experimental results of various models under conditions where phonemes are not

filtered. It further evaluates the models on words and images, demonstrating the strong

generalization capability of the proposed model. Additionally, the chapter explores the

extension of group action theory from Euclidean geometry to Riemannian geometry. Fi-

nally, the chapter concludes by addressing the limitations of this study.

Throughout the paper, every claim is supported by a robust set of references. In this

dissertation, we treat the weight vector and convolutional kernel interchangeably, without

differentiating between the two concepts. The integration of TDA and CNN is presented

not only as a promising research direction but also as a practical solution that addresses

some of the key challenges in modern data science. For details, all experiments can be

seen at (https://github.com/ZhiwangYu/OrthogonalityFeatures).
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CHAPTER 2 MATHEMATICAL TOOLS FOR
TOPOLOGICAL DEEP LEARNING

This chapter presents a cohesive framework for topological analysis spanning dis-

crete structures and continuous dynamical systems. Beginning with the mathematical

bedrock, we first develop the core machinery of topological data analysis through sim-

plicial complexes, combinatorial representations of topological spaces, and their multi-

scale interrogation via persistent homology. These foundational constructs naturally ex-

tend to graph-structured data through the lens of adjacency complexes, where relational

connectivity patterns are translated into hierarchical topological signatures, an approach

pioneered by Grigoryan et al.[28] in their work on persistent path homology.

Temporal dynamics enter the framework through sliding window embeddings, a

technique that transforms time-evolving systems into geometrically structured point

clouds. This methodology bridges discrete topology with continuous data streams, en-

abling the analysis of phenomena ranging from neural activity patterns (as demonstrated

by Giusti et al.[26]) to social network evolution (per Sizemore et al.[76]). The progression

culminates in the study of group actions on manifolds, where Horak et al.’s[35] insights

into spectral invariants inform the analysis of symmetry-driven dynamics in homogeneous

spaces.

By interweaving discrete combinatorial topology with geometric flows, this chapter

establishes a unified scaffold for multiscale data analysis-from static graphs to tempo-

rally evolving networks and beyond. Each conceptual layer (simplicial complexes §1,

persistent homology §2, graph adaptations §3, temporal embeddings §4, and geometric

dynamics §5) builds dialectically upon its predecessor, creating an analytical continuum

that respects both discrete data structures and continuous system behaviors.

2.1 Simplicial Complex

Datasets are often represented as collections of points, commonly referred to as point

clouds. To understand the intrinsic shape of these data, one approximates the point cloud

by constructing families of simplicial complexes. These abstract complexes serve as com-

binatorial representations of the underlying geometry. Different methods for ”filling in”

10



CHAPTER 2 MATHEMATICAL TOOLS FOR TOPOLOGICAL DEEP LEARNING

higher-dimensional simplices in the proximity graph yield different global representa-

tions. These three methodologically fundamental frameworks emerge through rigorous

analytical derivation:

Definition 2.1 (Čech Complex): Consider a finite family of points {𝑥𝛼}𝛼∈𝒜 in the

Euclidean space𝔼𝑛. TheČech complex 𝒞𝜖, parameterized by a scale 𝜖 > 0, is an abstract
simplicial complex. Its 𝑘-simplices are formed by subsets {𝑥𝛼0, 𝑥𝛼1, … , 𝑥𝛼𝑘} that satisfy
the geometric criterion: the intersection of closed balls𝑘⋂𝑖=0 𝐵 (𝑥𝛼𝑖, 𝜖2)
contains at least one common point in 𝔼𝑛. The Čech complex captures the topological
connectivity of the point cloud at scale 𝜖/2 through the nerve theorem, which establishes
a homotopy equivalence between the union of these balls and the abstract complex 𝒞𝜖.
Compared to the Vietoris-Rips complex — which only requires pairwise distances be-

tween points to be less than 𝜖 — the Čech complex imposes a stricter condition by de-

manding a global intersection of all 𝜖/2-neighborhoods.
Definition 2.2 (Vietoris–Rips Complex): The Vietoris–Rips complex ℛ𝜖 is algo-
rithmically generated from a discrete point cloud via the following steps: A 𝑘-simplex{𝑥𝛼0, … , 𝑥𝛼𝑘} is included in ℛ𝜖 if every pair of points in the set satisfies‖𝑥𝛼𝑖 − 𝑥𝛼𝑗‖ ≤ 𝜖, ∀ 0 ≤ 𝑖 < 𝑗 ≤ 𝑘.
This method is computationally more efficient but less accurate in preserving intricate

topological details compared to Čech complexes.

Definition 2.3 (Alpha Complex): For a set of points in 𝔼𝑛, the Alpha complex 𝒜𝜖
is constructed using the Delaunay triangulation. A simplex is included in𝒜𝜖 if the inter-
section of the closed balls 𝐵(𝑥𝑖, 𝜖/2) with the corresponding Voronoi cells is non-empty
(Edelsbrunner and Mucke[18]).

2.1.1 Mapper Method and Simplicial Complex Construction

The Mapper algorithm is widely recognized as a powerful technique in topological

data analysis, particularly effective for summarizing and visualizing high-dimensional

complex data structures. It combines clustering, filtration, and graph construction to ex-

tract topological insights from high-dimensional datasets. Simplicial complexes gener-

ated in Mapper often employ techniques such as discrete Morse theory to simplify and
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compute homological features.

Steps in the Mapper Algorithm

（1）Filter Function: Apply a continuous filter function 𝑓 ∶ 𝑋 → ℝ to segment

the dataset 𝑋. Common filter functions include density measures, principal components,
or scalar features derived from data.

（2）Overlapping Cover: Divide the range of 𝑓 into overlapping intervals. For

each interval [𝑎, 𝑏], identify corresponding data subsets 𝑓−1([𝑎, 𝑏]).
（3）Clustering within Subsets: Perform clustering (e.g., 𝑘-means or DBSCAN)

on each subset 𝑓−1([𝑎, 𝑏]). Nodes in the Mapper graph correspond to clusters.

（4）Graph Construction: Connect nodes (clusters) if they share data points in

overlapping intervals. This step yields a simplicial complex that approximates the topol-

ogy of the original data.

Simplicial Complex Construction via Discrete Morse Theory

To optimize homological computations, Mapper frequently incorporates discrete

Morse theory. This framework simplifies the topology of a dataset while preserving its

essential features. Below are formal definitions that highlight its application:

Definition 2.4 (Discrete Morse Function): Let 𝐾 be a simplicial complex. A map-

ping 𝑓 ∶ 𝐾 → ℝ qualifies as a discrete Morse function if ∀𝜎(𝑝) ∈ 𝐾, the conditions:
• At most one lower-dimensional simplex 𝜏(𝑝−1) ≺ 𝜎 satisfies 𝑓(𝜏) ≥ 𝑓(𝜎).
• At most one higher-dimensional simplex 𝜈(𝑝+1) ≻ 𝜎 satisfies 𝑓(𝜈) ≤ 𝑓(𝜎).

This formulation establishes a pairingmechanism that simplifies homology computations.

Detailed theoretical discussions on these functions can be found in Knudson et al.[40],

which addresses algorithmic applications, and Gyulassy[30], which focuses on combina-

torial constructions. For additional structural insights, refer to Rote[66].

Definition 2.5 (Discrete Morse Complex): The quotient complexℳ𝐾, known as a
discrete Morse complex, is constructed by collapsing gradient-adjacent simplices:ℳ𝐾 = 𝐾/ ∼ where 𝜎 ∼ 𝜏 if 𝜎 is paired with 𝜏 via 𝑓.
This operation preserves the homotopy type of 𝐾 while significantly reducing the number

of simplices[21].
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Advantages of Čech and Vietoris-Rips Complexes

Mapper typically utilizes Čech or Vietoris-Rips complexes for filtration:

• Čech Complex: Constructs simplices based on intersections of data-point neigh-

borhoods. This method ensures homotopy equivalence under the Nerve theorem, offering

precise topological representations.

• Vietoris-Rips Complex: Constructs simplices by linking points whose pairwise

distances fall below a threshold. While computationally efficient, this method may over-

estimate topological features in dense regions.

Connecting Persistent Homology and Mapper

After constructing simplicial complexes, Mapper enables persistent homology com-

putations. Persistent homology captures the evolution of topological features across fil-

tration scales, providing invariants such as Betti numbers and persistence diagrams.

Remark 2.1: The discrete Morse construction integrated into Mapper facilitates effi-

cient computation of persistent homology by reducing the complexity of simplicial com-

plexes without altering their homotopy type.

A natural question is: How should one select the parameter 𝜖? Various strategies

have been proposed, including local adaptive methods and statistical thresholding, to best

capture the intrinsic geometry of the data. In practice, one often considers a range of 𝜖
values in order to construct a filtration.

2.2 Persistent Homology

Persistent homology, a foundational technique in topological data analysis, provides

a robust framework for examining how topological structures evolve and persist across

different scales. Central to this approach is the construction of an 𝜖-filtration — an or-

dered family {𝒦𝜖}𝜖≥0 of nested simplicial complexes — which enables the continuous

monitoring of homological features. Within this filtration, each topological attribute (e.g.,

connected components, 1-dimensional cycles, or higher-dimensional cavities) is assigned

a pair (𝜖birth, 𝜖death) quantifying.
Example 2.1 (Persistence): Let𝒳 = {𝑥𝛼}𝛼∈𝒜 be a stationary point cloud in 𝔼𝑛, and
let (𝜖𝑖)𝑁𝑖=1 denote a strictly ascending sequence of scale parameters where 0 < 𝜖1 < 𝜖2 <⋯ < 𝜖𝑁. For each 𝜖𝑖, we construct a Vietoris–Rips complex ℛ𝑖. The complexes are
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linked by natural inclusions ℛ1 𝜄↪ ℛ2 𝜄↪ ⋯ 𝜄↪ ℛ𝑁.
Rather than studying the homology of eachℛ𝑖 individually, we examine the induced

homomorphisms 𝜄∗ ∶ 𝐻∗(ℛ𝑖) → 𝐻∗(ℛ𝑗), 𝑖 < 𝑗,
to identify persistent topological features across varying scales.

Lemma 2.1: At every scale parameter 𝜖 > 0, there is a canonical hierarchy of simplicial
embeddings ℛ𝜖 𝜄1↪ 𝒞𝜖 𝜄2↪ ℛ√2𝜖,
where 𝜄1 and 𝜄2 denote the natural inclusion maps between Rips and Čech complexes.
This sandwich structure arises from the relationship diam(𝜎) ≤ √2𝜖 for any simplex 𝜎
in 𝒞𝜖, guaranteeing the rightmost inclusion.
Definition 2.6 (Persistent Complex): A persistent complexC in algebraic topology

is defined as a tower of chain complexes {𝐶𝑖∗}𝑖∈ℕ equipped with connecting morphisms𝑥(𝑖) ∶ 𝐶𝑖∗ → 𝐶𝑖+1∗
that form a directed system under composition, i.e., satisfying 𝑥(𝑖+1) ∘ 𝑥(𝑖) = 𝑥(𝑖+1) for
all 𝑖. These structure-preserving homomorphisms encode the evolutionary dynamics of
filtration construction across scale parameters, ensuring the commutativity of differentials𝑑𝑖+1 ∘ 𝑥(𝑖) = 𝑥(𝑖) ∘ 𝑑𝑖 throughout the persistence hierarchy.
Definition 2.7 (Persistent Homology): Given a persistent complex C and indices𝑖 < 𝑗, the (𝑖, 𝑗)-**persistent homology group** is algebraically realized as the persistent
image

Im (𝑥(𝑖,𝑗)∗ ∶ 𝐻𝑘(𝐶𝑖∗) → 𝐻𝑘(𝐶𝑗∗ )) ,
where 𝑥(𝑖,𝑗)∗ denotes the homomorphism induced by the composition of chain maps 𝐶𝑖∗ →𝐶𝑖+1∗ → ⋯ → 𝐶𝑗∗ through the filtration. This subgroup of 𝐻𝑘(𝐶𝑗∗ ) precisely captures

homological features born before scale 𝑖 and surviving until at least scale 𝑗. We denote

this by 𝐻 𝑖→𝑗∗ (C).
Remark 2.2: A key result in this theory is the Structure Theorem for persistence mod-

ules over a field, which guarantees a unique decomposition into interval modules. This

theorem underlies the barcode representation, where each interval corresponds to a topo-
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logical feature that persists over a range of scales.

Theorem 2.1: For a finite persistence module over a field 𝐹, the homology 𝐻∗(C; 𝐹)
decomposes as𝐻∗(C; 𝐹) ≅⨁𝑖 (𝑥𝑖 ⋅ 𝐹[𝑥]) ⊕⨁𝑗 (𝑥𝑟𝑗𝐹[𝑥]/(𝑥𝑠𝑗𝐹[𝑥])).
This decomposition is the theoretical foundation of the persistent barcode.

Definition 2.8 (Barcode): In topological data analysis, a barcode serves as a multiset
of closed intervals [𝑏𝑑, 𝑑𝑑) ⊆ ℝ that encodes the persistence of homological features:

the left endpoint of each interval 𝑏𝑑 marks the birth scale of a 𝑑-dimensional topologi-
cal structure, while the right endpoint 𝑑𝑑 > 𝑏𝑑 signifies its disappearance scale. This

graphical representation provides a multiscale summary of feature longevity across the

filtration.

Theorem 2.2: The algebraic rank of the persistent homology group 𝐻 𝑖→𝑗𝑘 (C; 𝐹) corre-
sponds precisely to the cardinality of 𝑘-dimensional barcode intervals whose persistence
windows contain [𝑖, 𝑗]. Specially, dim𝐻∗(𝐶𝑖∗; 𝐹) equals the number of intervals covering
the parameter corresponding to 𝑖.
2.2.1 Stability of Persistent Homology as Topological Features

An essential advantage of persistent homology is its stability against perturbations in

input data, a trait rigorously established through stability theorems. These results ensure

that small changes in data, such as noise or measurement errors, yield correspondingly

small variations in persistence diagrams, making persistent homology a reliable tool for

analyzing real-world data.

Stability of Persistence Diagrams

Let 𝑋 and 𝑌 be two metric spaces, and let 𝑑𝐵 represent the bottleneck distance that
measures the disparity between the persistence diagrams 𝐷𝑋 and 𝐷𝑌. For any continuous
function 𝑓 ∶ 𝑋 → ℝ and 𝑔 ∶ 𝑌 → ℝ with finite sublevel set filtrations, the following

holds: 𝑑𝐵(𝐷𝑋, 𝐷𝑌) ≤ ||𝑓 − 𝑔||∞,
where ||𝑓 − 𝑔||∞ = sup𝑥∈𝑋∪𝑌 |𝑓(𝑥) − 𝑔(𝑥)| is the 𝐿∞ norm. This theorem, proven

by Cohen-Steiner et al.[13], guarantees that persistent homology features are stable under

bounded perturbations of the filtration function.
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Implications for Topological Features.

The stability of persistence diagrams implies that topological features derived from

noisy or perturbed datasets retain their significance over small perturbations:

• Noise Robustness: Persistent homology captures meaningful topological struc-

tures that persist across multiple scales, while ignoring transient features introduced by

noise.

• Feature Reproducibility: The robustness of persistence diagrams allows consis-

tent extraction of key topological features from different subsamples of the same under-

lying dataset.

• Computational Reliability: Algorithms for computing persistence are designed

to efficiently handle perturbations without compromising accuracy, enhancing their utility

for large-scale applications.

Practical Considerations in Data Analysis.

When applying persistent homology in real-world scenarios, stability ensures the

following:

（1）Parameter Selection: Stability justifies the use of parameter sweeps (e.g.,

varying scale thresholds 𝜖) to construct filtration complexes, as small changes in 𝜖 do not
drastically alter the results.

（2）Handling Imperfect Data: For datasets with inherent noise or measurement

errors, stability enables the extraction of reliable topological descriptors.

（3）Cross-Domain Applicability: Stability theorems are particularly valuable in

interdisciplinary applications, such as neural network weight analysis (Chapter 5) or audio

feature extraction (Chapter 6).

This theoretical assurance underpins the use of persistent homology as a foundation

for robust topological data analysis and further enhances its applicability in fields ranging

from computational geometry to machine learning.

2.3 Graph Persistent Homology

While classical persistent homology applies to simplicial complexes derived from

point clouds, many datasets are naturally represented as graphs. Graph persistent ho-

mology extends the ideas of persistent homology to graph-structured data by converting

graphs into simplicial complexes via the construction of the adjacency complex.
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2.3.1 Graph Filtration

Define𝐺 = (𝑉, 𝐸) as a graph equippedwith edgeweights via𝑤 ∶ 𝐸 → ℝ≥0, enabling
weighted adjacency analysis. A common approach is to define a filtration by thresholding

the edge weights.

Definition 2.9 (Graph Filtration): For each threshold 𝜏 ∈ ℝ, define the subgraph𝐺𝜏 = (𝑉, {𝑒 ∈ 𝐸 ∣ 𝑤(𝑒) ≤ 𝜏}).
The collection {𝐺𝜏}𝜏∈ℝ forms a graph filtration since if 𝜏1 ≤ 𝜏2, then 𝐺𝜏1 ⊆ 𝐺𝜏2 .
2.3.2 Adjacency Complex

The persistent homology framework requires a simplicial complex. For graph data,

one common method is to associate each subgraph 𝐺𝜏 with its adjacency complex. This
complex encodes higher-order interactions by including every clique as an abstract sim-

plex.

Definition 2.10 (Adjacency Complex): Let 𝐺 = (𝑉, 𝐸) be an undirected graph.

The adjacency complex 𝒳(𝐺) is constructed from the vertex set 𝑉 such that a subset{𝑣0, … , 𝑣𝑘} ⊂ 𝑉 constitutes a 𝑘-simplex if every pair {𝑣𝑖, 𝑣𝑗} forms an edge in 𝐸.
2.3.3 Definition and Computation of Graph Persistent Homology

Once a graph filtration {𝐺𝜏} is established, each subgraph 𝐺𝜏 is converted into its
corresponding adjacency complex 𝒳(𝐺𝜏). Graph persistent homology is then defined as
follows.

Definition 2.11 (Graph Persistent Homology): Let𝐺 = (𝑉, 𝐸) be aweighted graph
with filtration {𝐺𝜏}. For each threshold 𝜏, construct the associated adjacency complex𝒳(𝐺𝜏). The graph persistent homology consists of the homology groups𝐻𝑘(𝒳(𝐺𝜏)), 𝜏 ∈ ℝ,
together with the linear maps induced by the inclusions𝒳(𝐺𝜏1) ↪ 𝒳(𝐺𝜏2), 𝜏1 ≤ 𝜏2.
The persistence barcode, as a central object in persistent homology theory, provides

a complete combinatorial encoding of the  birth and  death parameters for homological

features (e.g., 𝐻0-type connected components and 𝐻1-type cycles) across the filtration{𝐾𝑡}𝑡∈ℝ.
17
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2.3.4 Computational Procedure

The computation of graph persistent homology typically involves the following

steps:

（1）Filtration Construction: For the given weighted graph 𝐺, construct the fil-
tration {𝐺𝜏} by varying the edge weight threshold 𝜏.

（2）Adjacency Complex Construction: For each subgraph 𝐺𝜏, compute its adja-
cency complex𝒳(𝐺𝜏). In practice, maximal complete subgraphs are enumerated through
algorithms like the Bron–Kerbosch method, with all subsets of each resulting clique sub-

sequently added as simplices.

（3）Persistent Homology Computation: Apply standard persistent homology al-

gorithms (typically based on matrix reduction methods) to the nested sequence {𝒳(𝐺𝜏)}
in order to compute the persistence barcode.

2.3.5 Example: Social Network Analysis

Example 2.2 (Graph Persistent Homology in Social Networks): Consider a
weighted social network 𝐺 = (𝑉, 𝐸), where nodes represent individuals and edge weights
quantify interaction frequency. Construct the graph filtration {𝐺𝜏} by retaining edges with
weight no more than 𝜏. For low 𝜏, the network is sparse, and the corresponding adjacency
complex exhibits many isolated vertices (reflected in 0-dimensional homology). As 𝜏 in-
creases, groups of nodes form cliques and cycles emerge, corresponding to overlapping

communities (captured by 1-dimensional homology). The resulting persistence barcode

provides multi-scale topological architecture of complex networks and offers insights into

its robustness.

Remark 2.3: Recent studies have further advanced these techniques. For instance, Ho-
rak et al.[35] demonstrated the application of persistent homology to complex networks,

while Giusti et al.[26] and Sizemore et al.[76] employed clique topology to reveal intrin-

sic geometric structure in neural and social data. In addition, the work by Grigoryan et

al.[28] on homologies of path complexes and digraphs has provided a novel perspective

that continues to inspire further developments in graph persistent homology.

In summary, graph persistent homology bridges classical TDA and network science

by converting graph data into adjacency complexes and then computing persistent homol-

ogy on the resulting filtrations. This approach provides a powerful tool for investigating

the multi-scale topological features of networks in domains ranging from neuroscience to

18



CHAPTER 2 MATHEMATICAL TOOLS FOR TOPOLOGICAL DEEP LEARNING

social network analysis.

2.4 Time Series and Sliding Window Embedding

In modern data analysis, temporal dynamics embed critical invariants reflecting the

structural organization of complex systems. This section establishes a mathematical

framework for analyzing video, audio, and other time-dependent data through the lens

of nonlinear dynamics and manifold learning (Perea and Harer; Perea et al.,[59];[58]). By

combining time-delay embeddings with topological methods, we reveal how transient

measurements can capture persistent geometric features of hidden state spaces.

2.4.1 Dynamical Foundation

Definition 2.12: (Global Continuous Time Dynamical System) A topological space𝑀 (state manifold) endowed with a continuous flow Φ ∶ ℝ ×𝑀 → 𝑀 satisfying:

• Initial Condition: Φ(0, 𝑝) = 𝑝 for all 𝑝 ∈ 𝑀
• Evolution Law: Φ(𝑠,Φ(𝑡, 𝑝)) = Φ(𝑠 + 𝑡, 𝑝) for all 𝑠, 𝑡 ∈ ℝ and 𝑝 ∈ 𝑀

termed a global continuous-time dynamical system. The system generates trajectories𝛾𝑝(𝑡) = Φ(𝑡, 𝑝) that foliate 𝑀 into non-intersecting orbits (Perea et al.[58]). Common

examples include Hamiltonian systems on symplectic manifolds and gradient flows on

energy landscapes.

Definition 2.13: (Observation andTime Series) Given a dynamical system (𝑀,Φ), an
observation function 𝐹 ∈ 𝐶1(𝑀,ℝ) maps states to scalar measurements. For an initial
condition 𝑝 ∈ 𝑀, the induced time series is the composition𝜑𝑝 ∶ ℝ →ℝ𝑡 ↦𝐹 ∘ Φ(𝑡, 𝑝)
Practical implementations sample 𝜑𝑝 at discrete times 𝑡𝑘 = 𝑘Δ𝑡, yielding {𝜑𝑝(𝑡𝑘)}𝑁𝑘=0.
The measurement 𝐹 often represents partial observations (e.g., a single sensor output),

making state reconstruction essential (Gakhar and Perea[24]).

2.4.2 Delay Embedding Theory

Takens’ theorem[84] provides a principled approach to reconstructing hidden state

spaces from scalar time series. The key insight is that successive measurements contain

implicit information about the the history of system.
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Theorem 2.3 (Takens’ Embedding Theorem): Let𝑀 be a smooth 𝑚-dimensional
compact manifold, 𝜏 > 0 a delay time, and 𝑑 ≥ 2𝑚 an embedding dimension. For

generic,

• Dynamics Φ ∈ 𝐶2(ℝ ×𝑀,𝑀) with non-degenerate periodic orbits
• Observation function 𝐹 ∈ 𝐶2(𝑀,ℝ) transverse to system trajectories

the delay coordinate map 𝜑 ∶ 𝑀 →ℝ𝑑+1𝑝 ↦(𝜑𝑝(0), 𝜑𝑝(𝜏), … , 𝜑𝑝(𝑑𝜏))
is a diffeomorphic embedding of𝑀 into ℝ𝑑+1. Here, ”generic” means the property holds
for an open dense set of pairs (Φ, 𝐹) in the 𝐶2 Whitney topology.

Remark 2.4: Each delayed measurement𝜑𝑝(𝑘𝜏) encodes information about the state of
system at time 𝑘𝜏. The embedding dimension 𝑑+1must be sufficiently large to ”unfold”
the manifold, with 2𝑚 being the minimal requirement to avoid self-intersections (Perea

and Harer[59]). The delay parameter 𝜏 should be chosen to balance between redundancy
(𝜏 too small) and decorrelation (𝜏 too large).
2.4.3 Sliding Window Implementation

Practical applications require adapting Takens’ theorem to finite, noisy data streams

(Kennel et al.[38]). The sliding window embedding operationalizes delay reconstruction

through local averaging and overlap.

Definition 2.14: (SlidingWindow Embedding) Given a time series 𝑓 ∶ ℝ → ℝ, define
the sliding window operator with parameters 𝑑 ∈ ℕ (window length) and 𝜏 > 0 (stride)
as 𝑆𝑊𝑑,𝜏𝑓 ∶ ℝ →ℝ𝑑+1𝑡 ↦ (𝑓(𝑡), 𝑓(𝑡 + 𝜏), … , 𝑓(𝑡 + 𝑑𝜏))
For discrete sampling times 𝑇 = {𝑡0, 𝑡0 + Δ𝑡, … , 𝑡0 + 𝑁Δ𝑡}, the sliding window point

cloud, as formulated in (Salas[71]), is expressed as𝕊𝕎𝑑,𝜏𝑓 = {(𝑓(𝑡𝑘), 𝑓(𝑡𝑘 + 𝜏), … , 𝑓(𝑡𝑘 + 𝑑𝜏)) ∈ ℝ𝑑+1 | 𝑡𝑘 ∈ 𝑇} .
The product 𝑤 = 𝑑𝜏 is the window size, controlling the temporal context captured by

each vector.

Parameter Selection Guidelines:
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• Embedding Dimension (𝑑): Start with 𝑑 = ⌈2𝑚⌉ where𝑚 is the estimated man-

ifold dimension. In practice, use false nearest neighbor methods (Kennel et al.[38]) to

determine minimal 𝑑.
• Delay (𝜏): Choose using mutual information (first minimum of 𝐼(𝑓(𝑡), 𝑓(𝑡 + 𝜏)))

or autocorrelation time.

• Window Size (𝑤): Should span characteristic system timescales. For quasiperi-

odic signals, 𝑤 must exceed the beat frequency between incommensurate periods (Perea

et al.[58]).

2.4.4 Case Study: Quasiperiodic Dynamics on Torus

Example 2.3 (Irrational Flow on Torus): Consider angular coordinates (𝜃1, 𝜃2) ∈𝕋2 = ℝ2/(2𝜋ℤ)2 with dynamics
d𝜃1
d𝑡 = 1, d𝜃2

d𝑡 = 𝜔 (𝜔 ∉ ℚ).
The observation function 𝐹(𝜃1, 𝜃2) = cos𝜃1 + cos𝜃2 generates a quasiperiodic time
series 𝑓(𝑡) = cos 𝑡 + cos(𝜔𝑡).
Applying 𝑆𝑊𝑑,𝜏 with 𝑑 = 4, 𝜏 = 𝜋/2 yields a 5-dimensional point cloud 𝕊𝕎4,𝜋/2𝑓 ⊂ℝ5. Despite the high ambient dimension, persistent homology reveals the topology of
point cloud matches 𝕋2 (Betti numbers 𝛽0 = 1, 𝛽1 = 2, 𝛽2 = 1), successfully recovering
the hidden state space structure (Perea et al.[58]).

2.5 Group Action on Manifolds and Homogeneous Space

The study of group actions on manifolds provides a unifying framework for under-

standing symmetry and geometric structure in differential geometry and topology. A ho-

mogeneous space is a topological space 𝑋 endowed with a continuous transitive action

by a topological group 𝐺. This section develops the theory of group actions, homoge-
neous spaces, and their canonical examples, such as Stiefel manifolds. (See Pelliott and

Dawber[57]; Lee and Lee[46])

2.5.1 Group Actions and Basic Definitions

Definition 2.15 (Smooth Group Action): Given a Lie group 𝐺 and smooth manifold𝑀, a smooth (left) action of 𝐺 on𝑀 is a smooth map 𝜃 ∶ 𝐺 × 𝑀 → 𝑀 satisfying
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（1）𝜃(𝒆, 𝑥) = 𝑥 for all 𝑥 ∈ 𝑀, where 𝒆 is the identity in 𝐺.
（2）𝜃(𝒈, 𝜃(𝒉, 𝑥)) = 𝜃(𝒈𝒉, 𝑥) for all 𝒈, 𝒉 ∈ 𝐺 and 𝑥 ∈ 𝑀.

We often write 𝒈 ⋅ 𝑥 instead of 𝜃(𝒈, 𝑥).
Definition 2.16 (Orbit and Stabilizer): For a group action 𝜃 ∶ 𝐺 × 𝑀 → 𝑀 and a

point 𝑥 ∈ 𝑀:
• The orbit of 𝑥 is the set 𝐺 ⋅ 𝑥 = {𝒈 ⋅ 𝑥 ∣ 𝒈 ∈ 𝐺} ⊂ 𝑀.
• The stabilizer (or isotropy subgroup) of 𝑥 is the subgroup 𝐺𝑥 = {𝒈 ∈ 𝐺 ∣ 𝑔 ⋅𝑥 =𝑥} ⊂ 𝐺.

Definition 2.17 (Transitive Action): Agroup action is transitive if for any two points𝑥, 𝑦 ∈ 𝑀, ∃𝒈 ∈ 𝐺 with 𝒈 ⋅ 𝑥 = 𝑦. Equivalently,𝑀 consists of a single orbit: 𝑀 = 𝐺 ⋅ 𝑥.
2.5.2 Homogeneous Spaces

A manifold𝑀 is called a homogeneous space if it admits a transitive smooth action

by a Lie group 𝐺. Homogeneous spaces are central to geometry because they provide a
”uniform” structure where every point is geometrically indistinguishable.

Theorem 2.4 (Structure of Homogeneous Spaces): Let 𝐺 act transitively on𝑀,
and fix 𝑥 ∈ 𝑀. Then the map𝜙 ∶ 𝐺/𝐺𝑥 → 𝑀, 𝜙(𝒈𝐺𝑥) = 𝒈 ⋅ 𝑥
is a 𝐺-equivariant diffeomorphism. Here, 𝐺/𝐺𝑥 is the quotient manifold of left cosets.
Proof: The map 𝜙 is well-defined because 𝒈𝐺𝑥 = 𝒉𝐺𝑥 implies 𝒉−1𝒈 ∈ 𝐺𝑥, so 𝒉−1𝒈 ⋅𝑥 = 𝑥, hence 𝒈 ⋅ 𝑥 = 𝒉 ⋅ 𝑥. Transitivity ensures surjectivity, and smoothness follows
from the quotient manifold structure. Equivariance is immediate: 𝜙(𝒈 ⋅ 𝒉𝐺𝑥) = 𝒈 ⋅𝜙(𝒉𝐺𝑥). ∎
Example 2.4 (Sphere as a Homogeneous Space): The sphere 𝑆𝑛 is a homoge-
neous space under the transitive action of 𝑆𝑂(𝑛 + 1). For any 𝑥 ∈ 𝑆𝑛, the stabilizer𝑆𝑂(𝑛 + 1)𝑥 is isomorphic to 𝑆𝑂(𝑛), yielding𝑆𝑛 ≅ 𝑆𝑂(𝑛 + 1)/𝑆𝑂(𝑛).
Similarly, 𝑆2𝑛+1 ≅ 𝑆𝑈(𝑛 + 1)/𝑆𝑈(𝑛).
2.5.3 Orbit Spaces and Quotient Manifolds

When a group action is not transitive, the manifold partitions into orbits. The family

of orbits constitutes the orbit space𝑀/𝐺, which carries the quotient topology. However,
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Definition 2.18 (Free and Proper Action): • An action is free if 𝒈 ⋅ 𝑥 = 𝑥
implies 𝒈 = 𝒆 (i.e., all stabilizers are trivial).

• A proper action requires the mapΦ ∶ 𝐺 ×𝑀 → 𝑀×𝑀 withΦ(𝒈, 𝑥) = (𝑥, 𝒈 ⋅ 𝑥)
to be proper, i.e., Φ−1(𝐾) remains compact for all compact 𝐾 ⊆ 𝑀 ×𝑀.
Theorem 2.5 (Quotient Manifold): If 𝐺 acts freely and properly on𝑀, the orbit space𝑀/𝐺 becomes a smooth manifold. The map 𝜋 ∶ 𝑀 → 𝑀/𝐺 establishes a smooth submer-

sion.

Example 2.5 (Real Projective Space): The group ℤ2 acts freely and properly on 𝑆𝑛
by antipodal maps. The orbit space is the real projective spaceℝℙ𝑛 ≅ 𝑆𝑛/ℤ2.
2.5.4 Stiefel Manifolds

Stiefel manifolds are fundamental examples of homogeneous spaces arising in the

study of frame bundles and Grassmannians.

Definition 2.19 (Stiefel Manifold): The Stiefel manifold 𝑉𝑘(ℝ𝑛) is the set of all or-
thonormal 𝑘-frames in ℝ𝑛𝑉𝑘(ℝ𝑛) = {(𝒗1, … , 𝒗𝒌) ∈ (ℝ𝑛)𝑘 | 𝒗𝒊 ⟂ 𝒗𝒋 ∀𝑖 ≠ 𝑗, and ‖𝒗𝒊‖ = 1 ∀𝑖} .
Similarly, the complex Stiefel manifold 𝑉𝑘(ℂ𝑛) consists of unitary 𝑘-frames.
Theorem 2.6 (Stiefel Manifold as a Homogeneous Space): The orthogonal

group 𝑂(𝑛) acts transitively on 𝑉𝑘(ℝ𝑛). For a fixed frame (𝒆1, … , 𝒆𝒌), the stabilizer
is 𝑂(𝑛 − 𝑘), yielding 𝑉𝑘(ℝ𝑛) ≅ 𝑂(𝑛)/𝑂(𝑛 − 𝑘).
Similarly, 𝑉𝑘(ℂ𝑛) ≅ 𝑈(𝑛)/𝑈(𝑛 − 𝑘).
Proof: The action 𝐴 ⋅ (𝒗1, … , 𝒗𝒌) = (𝑨𝒗1,… , 𝑨𝒗𝒌) is transitive, as every orthonormal
frame can form part of an orthonormal basis. The stabilizer of the standard frame consists

of matrices in 𝑂(𝑛) with a block identity matrix in the first 𝑘 columns, isomorphic to𝑂(𝑛 − 𝑘). ∎
Remark 2.5: The Stiefel manifold𝑉𝑘(ℝ𝑛) is a compact manifold of dimension 12𝑘(2𝑛−𝑘 − 1). It fibers over the Grassmann manifold 𝐺𝑟𝑘(ℝ𝑛) with fiber 𝑂(𝑘).
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2.5.5 Applications and Further Examples

Example 2.6 (Grassmann Manifold): The Grassmann manifold 𝐺𝑟𝑘(ℝ𝑛), consist-
ing of 𝑘-dimensional subspaces of ℝ𝑛, is a homogeneous space𝐺𝑟𝑘(ℝ𝑛) ≅ 𝑂(𝑛)/(𝑂(𝑘) × 𝑂(𝑛 − 𝑘)).
The action 𝑨 ⋅𝑾 = 𝑨𝑾 is transitive, and the stabilizer of ℝ𝑘 ⊂ ℝ𝑛 is 𝑂(𝑘) ×𝑂(𝑛 − 𝑘).
Example 2.7 (Flag Manifolds): A flag manifold parameterizes nested sequences of

subspaces 𝑉1 ⊂ 𝑉2 ⊂ ⋯ ⊂ 𝑉𝑘 ⊂ ℝ𝑛. It generalizes Grassmannians and admits a

homogeneous structureℱ𝓁(𝑛; 𝑘1, … , 𝑘𝑚) ≅ 𝑂(𝑛)/(𝑂(𝑘1) × ⋯ × 𝑂(𝑘𝑚)).
2.5.6 Principal Bundles and Geometry of Homogeneous Spaces

Homogeneous spaces often arise as base spaces of principal fiber bundles. A key

example is the frame bundle.

Theorem 2.7 (Frame Bundle as a Principal Bundle): Let 𝑀 be a smooth 𝑛-
manifold. The frame bundle 𝐹(𝑀), consisting of all bases for tangent spaces 𝑇𝑝𝑀, is
a principal 𝐺𝐿(𝑛,ℝ)-bundle over 𝑀. If 𝑀 is Riemannian, the orthonormal frame bundle𝐹𝑂(𝑀) is a principal 𝑂(𝑛)-bundle.
Example 2.8 (Hopf Fibration): The Hopf fibration 𝑆3 → 𝑆2 is a principal 𝑈(1)-
bundle, where 𝑆3 ≅ 𝑆𝑈(2) and 𝑆2 ≅ 𝑆𝑈(2)/𝑈(1).
2.5.7 Invariant Metrics and Geodesics

A Riemannian metric on the homogeneous space 𝐺/𝐻 is 𝐺-invariant whenever the
left 𝐺-action preserves the metric through isometries. Such metrics are determined by
their value at the identity coset 𝑒𝐻.
Theorem 2.8: There exists a bijection between𝐺-invariant metrics on𝐺/𝐻 and Ad(𝐻)-
invariant inner products on 𝔪.
Example 2.9 (Symmetric Spaces): A symmetric space is realized as 𝐺/𝐻 with in-

volution 𝜎 ∈ Aut(𝐺) satisfying 𝐻 = {𝒈 ∈ 𝐺 ∣ 𝜎(𝒈) = 𝒈}. Examples include spheres,
Grassmannians, and classical Lie groups.

2.5.8 Manifold-Frequency Duality Theorem

Theorem 2.9 (Manifold-Spectral Isomorphism): Based on the high-contrast anal-
ysis framework from Lee et al.[45] and the stability theory from Chazal et al.[11], let (𝑀, 𝑔)
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be a compact Riemannian manifold of convolutional features with Laplace-Beltrami oper-

ator Δ𝑔, and ℱ the Fourier transform over 𝐿2(𝑀). There exists an isometric isomorphism:
Φ ∶ Γ(𝑇𝑀) → ∞⨁𝑘=0 ℋ𝑘, (2-1)

whereℋ𝑘 = {𝑓 ∈ 𝐶∞(𝑀) ∣ Δ𝑔𝑓 = 𝜆𝑘𝑓} are eigenspaces, satisfying:||∇𝑔𝑓||2𝐿2(𝑀) = ∞∑𝑘=0 𝜆𝑘|ℱ(𝑓)(𝑘)|2.
Proof: Let {𝜙𝑘} be orthonormal eigenfunctions of Δ𝑔. For any 𝑓 ∈ 𝐶∞(𝑀), expand:𝑓 = ∞∑𝑘=0⟨𝑓, 𝜙𝑘⟩𝜙𝑘.
Compute gradient energy:||∇𝑔𝑓||2 = ∫𝑀 𝑔(∇𝑔𝑓, ∇𝑔𝑓)𝑑𝑉𝑔= ∫𝑀 𝑓Δ𝑔𝑓𝑑𝑉𝑔 (Green’s identity)

= ∞∑𝑘=0 𝜆𝑘|⟨𝑓, 𝜙𝑘⟩|2.
Define ℱ(𝑓)(𝑘) = ⟨𝑓, 𝜙𝑘⟩, then:||∇𝑔𝑓||2 = ∞∑𝑘=0 𝜆𝑘|ℱ(𝑓)(𝑘)|2. ∎

ℳ𝑇𝑝ℳ
ℱ(∇𝑓) ℱ(∇𝑓) ℱ(∇𝑓) ℱ(∇𝑓)

Φ

Figure 2-1 Manifold-spectral duality: Gradient flows on feature manifoldℳ correspond to
high-frequency components in Fourier domain

2.5.9 Orthogonal Basis on Feature Manifolds

Building upon the metric 𝑔 in Theorem 2.9, we construct orthogonal bases through

geometric Gram-Schmidt process:
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（1）Project raw kernels {𝐾𝑖} onto tangent space 𝑇𝑝ℳ.

（2）Iterative orthogonalization: For each 𝐾𝑖,𝐾⟂𝑖 = 𝐾𝑖 − 𝑘−1∑𝑗=1 ⟨𝐾𝑖, 𝐵𝑗⟩𝑔⟨𝐵𝑗, 𝐵𝑗⟩𝑔𝐵𝑗,
where ⟨⋅, ⋅⟩𝑔 is induced by Theorem 2.9.

（3）Retain 𝐵𝑘 = 𝐾⟂𝑖 /||𝐾⟂𝑖 ||𝑔 if ||𝐾⟂𝑖 ||𝑔 > 𝜖
Proposition 2.1 (Approximation Completeness): [45] For any 𝛿 > 0, ∃ orthogo-
nal basis {𝐵𝑗}𝑚𝑗=1 such that:

min𝑐𝑗 ‖𝐾 −∑𝑐𝑗𝐵𝑗‖𝑔 < 𝛿, ∀𝐾 ∈ ℳ.
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CHAPTER 3 INTERDICIPLINARY TOOLS FOR
TOPOLOGICAL DEEP LEARNING

This chapter examines the intersection of topological data analysis and speech recog-

nition through two methodological perspectives.

The first section introduces the fundamental concepts of neural networks.

The second section explores various topological neural networks, with a primary

focus on Topological Convolutional Neural Networks (TCNNs), a framework proposed

by Love et al.[53]. TCNNs integrate persistent homology with convolutional operations

to analyze multiscale topological features of spectrograms. This approach aims to en-

hance feature extraction capabilities within non-Euclidean data spaces, as theorized in

their foundational study.

The third section outlines the core components of speech recognition technology.

Beginning with the linguistic basis of phonemes—the discrete sound units that constitute

spoken language—the discussion transitions into computational methods. Established ar-

chitectures, including GMM-HMM, Recurrent Neural Networks (RNNs) (Hochreiter and

Schmidhuber[33]) and Deep Fully Convolutional Neural Networks (DFCNNs) (Abdel-

Hamid et al.[1]), are reviewed to highlight their roles in modeling temporal dependencies

and hierarchical acoustic patterns.

While TCNNs propose novel interactions between topology and speech processing,

their practical effectiveness remains an active subject of research. This chapter synthe-

sizes these concepts while maintaining a focus on rigorously documented mechanisms,

avoiding assumptions of unvalidated synergies.

3.1 Neural Networks Architectures

3.1.1 Convolutional Neural Network

Definition 3.1: (Feed-Forward Neural Network (FFNN)) The Feed-Forward Neu-
ral Network (FFNN) is abstractly characterized by a directed acyclic graph Γwith vertex
set 𝑉(Γ), formally defined through three structural axioms:

（1）The vertex set 𝑉(Γ) is partitioned into disjoint layers:𝑉(Γ) = 𝑉0(Γ) ⊔ 𝑉1(Γ) ⊔ ⋯ ⊔ 𝑉𝑟(Γ).
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（2）For any vertex 𝑣 ∈ 𝑉𝑖(Γ), every edge (𝑣, 𝑤) in Γ satisfies 𝑤 ∈ 𝑉𝑖+1(Γ).
（3）For any non-initial node 𝑤 ∈ 𝑉𝑖(Γ) where 𝑖 > 0, at least one vertex 𝑣 ∈𝑉𝑖−1(Γ) is required to form an edge (𝑣, 𝑤) within Γ.

The elements of𝑉(Γ), when viewed as graph components, are alternatively termed nodes.
Each𝑉𝑖(Γ) denotes layer-𝑖 nodes, with𝑉0(Γ) and𝑉𝑟(Γ) being the input and output layers
respectively.

The edge connections between adjacent layers 𝑉𝑖 and 𝑉𝑖+1 are encoded by a corre-
spondence 𝐶𝑖 ⊆ 𝑉𝑖 × 𝑉𝑖+1, where (𝑣, 𝑤) ∈ 𝐶𝑖⟺(𝑣 → 𝑤) ∈ 𝐸(Γ). The neighborhood
mappings are defined through:𝐶(𝑣0) ∶= {𝑤 ∈ 𝑉𝑖+1 ∣ (𝑣0, 𝑤) ∈ 𝐶𝑖} (Forward activation domain)𝐶−1(𝑤0) ∶= {𝑣 ∈ 𝑉𝑖 ∣ (𝑣, 𝑤0) ∈ 𝐶𝑖} (Backward dependency set).
Definition 3.2: (Fully Connected Layer) Within the FFNN architecture, a layer 𝑉𝑖+1 is
fully connected precisely when its edge correspondence 𝐶 ⊆ 𝑉𝑖×𝑉𝑖+1 becomes maximal,
i.e., 𝐶𝑐 = 𝑉𝑖 × 𝑉𝑖+1. This complete bipartite connectivity pattern implies:

• Every node 𝑣 ∈ 𝑉𝑖 connects to all nodes 𝑤 ∈ 𝑉𝑖+1
• The adjacency matrix A𝑖 ∈ {0, 1}|𝑉𝑖|×|𝑉𝑖+1| has all entries equal to 1.

Definition 3.3: (Normal One Layer (NOL)) A layer 𝑉𝑖+1 in an FFNN attains the struc-

ture of a convolutional layer (termed normal one layer) under the following conditions:

• Vertex decompositions: 𝑉𝑖 = 𝜒 × ℤ𝑁 and 𝑉𝑖+1 = 𝜒′ × ℤ𝑁 for finite channel sets𝜒, 𝜒′ and spatial dimension 𝑁 ∈ ℕ∗
• Edge correspondence: Determined by a spatial radius parameter 𝑠 ≥ 0, with𝐶 = 𝐶𝑐 × 𝐶𝑑,𝑁(𝑠) ⊂ (𝜒 × 𝜒′) × (ℤ𝑁 × ℤ𝑁),

where:

– 𝐶𝑐 = 𝜒 × 𝜒′ enforces full channel-wise connectivity.
– 𝐶𝑑,𝑁(𝑠) constrains spatial neighbors via𝐶𝑑,𝑁(𝑠)(𝒙′) ∶= {𝒙 ∈ ℤ𝑁 | max1≤𝑘≤𝑁 |𝑥𝑘 − 𝑥′𝑘| ≤ 𝑠}.

The 𝐿∞-metric governing spatial proximity is canonically defined as:𝑑ℤ𝑁(𝒙, 𝒙′) ∶= max1≤𝑘≤𝑁 |𝑥𝑘 − 𝑥′𝑘|.
Definition 3.4: (Pooling Layer) A layer 𝑉𝑖+1 in a FFNN is termed a pooling layer if𝑉𝑖 = 𝜒 ×ℤ𝑁 and 𝑉𝑖+1 = 𝜒 ×ℤ𝑁 for some finite set 𝜒, and positive integers 𝑁 and 𝑠. The
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edge-defining correspondence 𝐶 ⊂ 𝑉𝑖 × 𝑉𝑖+1 is defined by𝐶 = 𝐶𝑖𝑑 × 𝐶𝑁,𝑠,
where 𝐶𝑖𝑑 = 𝜒 × 𝜒 is the identity correspondence, given by𝐶−1𝑖𝑑 (𝜅) = {𝜅}
for all 𝜅 ∈ 𝜒, and 𝐶𝑁,𝑠 ⊂ ℤ𝑁 × ℤ𝑁 is defined as𝐶−1𝑁,𝑠(𝑥′1, 𝑥′2, … , 𝑥′𝑁) ∶= {(𝑥1, 𝑥2, … , 𝑥𝑁) ∈ ℤ𝑁 ∣ 0 ≤ 𝑥𝑖 − 𝑠𝑥′𝑖 ≤ 𝑠 − 1 for 1 ≤ 𝑖 ≤ 𝑁}
for all (𝑥′1, 𝑥′2, … , 𝑥′𝑁) ∈ ℤ𝑁.

A Convolutional Neural Network (CNN) is a feedforward architecture where hi-

erarchical feature extraction governs layer composition:

• Feature Encoding Phase: Layers 𝑉0, 𝑉1, … , 𝑉𝑖 implement convolutional opera-
tions

• Decision Phase: Layers 𝑉𝑖+1, 𝑉𝑖+2, … , 𝑉𝑟−1 establish full connectivity
Remark 3.1: In standard CNN architectures, pooling layers are systematically inter-

leaved with convolutional layers to perform spatial downsampling. This dimensional

reduction serves dual purposes: decreasing computational load through dimensionality

contraction while simultaneously enhancing feature abstraction by enforcing local trans-

lation invariance. The combined effect yields hierarchical representations invariant to mi-

nor spatial perturbations. In the context of Topological Convolutional Neural Networks

(TCNNs), pooling layers can be utilized in the same manner and for similar purposes as

in traditional CNNs.

Information propagation in the network is governed by a dual mathematical frame-

work operating over Γ:
• Weight parameters Λ = {𝜆𝑣,𝑤 ∈ ℝ ∣ (𝑣, 𝑤) ∈ 𝐸(Γ), 𝑣 ∈ 𝑉𝑖−1, 𝑤 ∈ 𝑉𝑖}modulate

inter-layer signal transmission

• Activation functions {𝑓𝑤}𝑤∈𝑉(Γ) assigned to nodes transform propagated signals

In the context of a CNN, let 𝑉𝑖−1 = 𝜒 × ℤ𝑁 and 𝑉𝑖 = 𝜒′ × ℤ𝑁. We denote nodes as𝑣 = (𝜅, 𝒙) ∈ 𝑉𝑖−1 and 𝑤 = (𝜅′, 𝒙′) ∈ 𝑉𝑖. A hallmark of CNNs is the homogeneity of

weights, expressed through translational invariance𝜆(𝜅,𝒙), (𝜅′,𝒙′) = 𝜆(𝜅,𝒙+𝒛), (𝜅′,𝒙′+𝒛).
The activation system 𝒜 = {(𝑢𝑣, 𝑓𝑣)}𝑣∈𝑉(Γ) associates each node 𝑣 with a scalar

state 𝑢𝑣 ∈ ℝ and a nonlinear transform 𝑓𝑣 ∶ ℝ → ℝ. Data propagation from 𝑉𝑖−1 to 𝑉𝑖
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entails calculating states 𝑢𝑤 at nodes 𝑤 ∈ 𝑉𝑖 through the synaptic integration formula:
𝑢𝑤 = 𝑓𝑤 ⎛⎜⎝ ∑𝑣∈𝑉𝑖−1(𝑣,𝑤)∈Γ 𝜆𝑣,𝑤𝑢𝑣⎞⎟⎠ .

In neural networks, the activation functions 𝑓𝑣 typically map real numbers 𝑥 ∈ ℝ to

ranges such as 0 < 𝑥 < 1 or 𝑥 ≥ 0. The output layer activations are constrained to form
a probability distribution over 𝑉𝑟(Γ), necessitating non-negativity (𝑢𝑣 ≥ 0) and normal-
ization (∑𝑣∈𝑉𝑟 𝑢𝑣 = 1). For hidden layer computations, the Rectified Linear Unit (ReLU)𝑓(𝑥) = max(0, 𝑥) serves as the canonical activation function, introducing sparsity by
thresholding negative pre-activations while preserving linear response in the positive do-

main. This piecewise-linear nonlinearity balances expressivity with gradient stability dur-

ing backpropagation. For the terminal layer, we use the softmax function𝜎(𝑥𝑖) = 𝑒𝑥𝑖∑𝑗 𝑒𝑥𝑗 , 𝑖, 𝑗 ∈ {1, … , 𝑛}, 𝑥𝑖 ∈ ℝ+,
to produce a probability distribution over the outputs.

3.2 Topological Convolutional Neural Network

Consider a manifold𝑀, and let 𝜒, 𝜒′ ⊂ 𝑀 be two finite subsets serving as discretiza-

tions of𝑀. Given successive FFNN layers 𝑉𝑖 = 𝜒×ℤ𝑁 and 𝑉𝑖+1 = 𝜒′×ℤ𝑁 equipped with
a metric 𝑑 ∶ 𝜒×𝜒′ → ℝ+, the 𝑠-threshold correspondence 𝐶(𝑠) ⊆ 𝜒×𝜒′ is characterized
by its inverse images:∀𝜅′ ∈ 𝜒′, 𝐶(𝑠)−1(𝜅′) ∶= {𝜅 ∈ 𝜒 | 𝑑(𝜅, 𝜅′) ≤ 𝑠}.
This constructs a parameterized family of adjacency relations where 𝑠 controls the recep-
tive field radius in the feature space 𝜒.

By introducing dual thresholds 𝑠 ≥ 0 (channel) and 𝑠′ ≥ 0 (spatial), the composite
correspondence 𝐶 ⊂ 𝑉𝑖 × 𝑉𝑖+1 emerges as a tensor product:𝐶 = 𝐶(𝑠) × 𝐶𝑑,𝑁(𝑠′),
where 𝐶(𝑠) ⊂ 𝜒×𝜒′ governs channel-wise connectivity throughmetric 𝑑, and 𝐶𝑑,𝑁(𝑠′) ⊂ℤ𝑁 × ℤ𝑁 controls spatial locality via 𝐿∞-metric. For any output node (𝜅′, 𝒙′) ∈ 𝜒′ × ℤ𝑁,
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the pre-image decomposes orthogonally:𝐶−1(𝜅′, 𝒙′) = {𝜅 ∈ 𝜒 | 𝑑(𝜅, 𝜅′) ≤ 𝑠}⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝
channel filter

× {𝒙 ∈ ℤ𝑁 | max𝑘 |𝑥𝑘 − 𝑥′𝑘| ≤ 𝑠′}⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
spatial patch

.
This Cartesian product structure simultaneously enforces feature similarity in 𝜒-space
and spatial proximity in ℤ𝑁, creating a convolutional template that slides across the input
lattice while maintaining channel-specific pattern matching.

3.2.1 Sheaf-Theoretic Foundations

Sheaf Neural Networks: A sheaf ℱ on a graph 𝐺 assigns data spaces to vertices

and edges, with restriction maps 𝜌𝑢𝑣 ∶ ℱ(𝑢) → ℱ(𝑣) for edges (𝑢, 𝑣). This framework
generalizes graph neural networks by enforcing local consistency through sheaf cohomol-

ogy[31].

Speech Sheaf Construction: For spectrogram patches 𝑈 ⊂ ℝ2, define the sheaf 𝒮
as: 𝒮(𝑈) = {𝑓 ∶ 𝑈 → ℂ ∣ 𝑓 is locally stationary}
with restriction maps 𝜌𝑈𝑉(𝑓) = 𝑓|𝑉. Cohomology groups 𝐻1(𝒮) classify topological
obstructions in speech dynamics[14].

3.2.2 Topological Signatures in Speech

Persistence Landscapes: Given a spectrogram 𝒢, compute its persistence landscapeΛ𝒢(𝑡) as: Λ𝒢(𝑡) = sup{𝜆 ∣ (𝑡 − 𝜆, 𝑡 + 𝜆) ∈ Barcode(𝐻1(𝒢))}.
This signature provides multiscale topological features for phoneme classification[34].

Regularization via Signatures: Augment the loss function with:

ℒtopo = 𝑛∑𝑖=1‖Λ𝒢𝑖 − Λ𝒢clean𝑖 ‖2
penalizing deviations from clean topological profiles[34].
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3.2.3 Klein Bottle Convolution

2D Images

Definition 3.5: (Circle Correspondence) Let 𝜒, 𝜒′ ⊂ 𝑆1 constitute finite discrete

approximations of the base circle. Define adjacent network layers in the FFNN as𝑉𝑖 = 𝜒 × ℤ2 and 𝑉𝑖+1 = 𝜒′ × ℤ2. Fix a threshold 𝑠 ≥ 0.
The circle correspondence 𝐶𝑆(𝑠) ⊂ 𝜒 × 𝜒′ is defined by𝐶𝑆(𝑠)−1(𝜅′) = {𝜅 ∈ 𝜒 ∣ 𝑑𝑆(𝜅, 𝜅′) ≤ 𝑠}

for all 𝜅′ ∈ 𝜒′, where the metric 𝑑𝑆 is given by𝑑𝑆(𝜅, 𝜅′) = cos−1(𝜅 ⋅ 𝜅′), 𝜅, 𝜅′ ∈ 𝑆1.
A vertex set 𝑉𝑖+1 attains the circle one layer (COL) designation when, given an

auxiliary threshold parameter 𝑠′ ≥ 0, its edge correspondence 𝐶 ⊂ 𝑉𝑖 × 𝑉𝑖+1 exhibits the
product structure: 𝐶 = 𝐶𝑆(𝑠) × 𝐶𝑑,2(𝑠′),
where 𝐶𝑑,2(𝑠′) denotes the convolutional component performing neighborhood aggrega-
tion in ℤ2. This implies that for all (𝜅′, 𝑥′, 𝑦′) ∈ 𝜒′ × ℤ2,𝐶−1(𝜅′, 𝑥′, 𝑦′) = 𝐶𝑆(𝑠)−1(𝜅′) × 𝐶𝑑,2(𝑠′)−1(𝑥′, 𝑦′)= {(𝜅, 𝑥, 𝑦) ∈ 𝜒 × ℤ2 ∣ 𝑑𝑆(𝜅, 𝜅′) ≤ 𝑠 and 𝑑ℤ2((𝑥, 𝑦), (𝑥′, 𝑦′)) ≤ 𝑠′} .

We subsequently establish a weight localization mechanism on the Klein bottle 𝒦,

leveraging its geometric structure through coordinate-dependent parametrization to con-

strain network parameters. Recall that 𝒦 is the two-dimensional manifold formed by

taking ℝ2 and applying the identifications (𝜃1, 𝜃2) ∼ (𝜃1 + 2𝑘𝜋, 𝜃2 + 2𝑙𝜋) for 𝑘, 𝑙 ∈ ℤ
and (𝜃1, 𝜃2) ∼ (𝜃1 + 𝜋,−𝜃2).

We construct a geometric embedding 𝐹𝒦 ∶ 𝒦 ↪ 𝒬([−1, 1]2), where 𝒬([−1, 1]2)
denotes the space of quadratic functions over the unit square, extending the framework

for manifold representations in CNNs established by (Carlsson and Gabrielsson; Carlsson

et al.[8-9]). Each image patch 𝐹𝒦(𝜃1, 𝜃2) encodes orientation information parameterized
by the angular coordinate 𝜃1 ∈ 𝑆1. Geometrically, this manifests as directional features
orthogonal to the central axis of 𝜃1, with visual representations exhibiting line patterns
rotated by 𝜃1 + 𝜋/2 radians relative to the image plane.
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The embedding is defined by𝐹𝒦(𝜃1, 𝜃2)(𝑥, 𝑦) = sin(𝜃2)(cos(𝜃1)𝑥 + sin(𝜃1)𝑦) + cos(𝜃2)𝑄 (cos(𝜃1)𝑥 + sin(𝜃1)𝑦) ,
where 𝑄(𝑡) = 2𝑡2 − 1.

This mapping 𝐹𝒦 is inherently a function on the torus 𝕋2, parameterized by 𝜃1 and𝜃2. However, due to the identifications𝐹𝒦(𝜃1, 𝜃2) = 𝐹𝒦(𝜃1+2𝑘𝜋, 𝜃2+2𝑙𝜋) and𝐹𝒦(𝜃1+𝜋,−𝜃2) = 𝐹𝒦(𝜃1, 𝜃2), it naturally descends to a function on the Klein bottle𝒦.

Definition 3.6: (Klein Correspondence) Consider finite discrete samplings 𝜒, 𝜒′ ⊂ 𝒦
of the parameter space of Klein bottle. Within a feed-forward neural architecture, we

define adjacent vertex layers 𝑉𝑖 = 𝜒 × ℤ2 and 𝑉𝑖+1 = 𝜒′ × ℤ2. Let 𝑠 ≥ 0 specify the
neighborhood radius for connection establishment.

The Klein correspondence 𝐶𝒦(𝑠) ⊂ 𝜒 × 𝜒′ is defined by𝐶𝒦(𝑠)−1(𝜅′) = {𝜅 ∈ 𝜒 ∣ 𝑑𝒦(𝜅, 𝜅′) ≤ 𝑠}
for all 𝜅′ ∈ 𝜒′, where the metric 𝑑𝒦 is given by

𝑑𝒦(𝜅, 𝜅′) = (∫[−1,1]2 [𝐹𝒦(𝜅)(𝑥, 𝑦) − 𝐹𝒦(𝜅′)(𝑥, 𝑦)]2 d𝑥 d𝑦)12
for 𝜅, 𝜅′ ∈ 𝒦.

We designate 𝑉𝑖+1 as a Klein one layer (KOL) when the edge correspondence 𝐶 ⊂𝑉𝑖 × 𝑉𝑖+1 admits the decomposition𝐶 = 𝐶𝒦(𝑠) × 𝐶𝑑,2(𝑠′),
where 𝑠, 𝑠′ ≥ 0 are distance thresholds. For any node (𝜅′, 𝑥′, 𝑦′) ∈ 𝜒′×ℤ2, the preimage
satisfies 𝐶−1(𝜅′, 𝑥′, 𝑦′) = ⋃𝜅∈𝜒𝑑𝒦(𝜅,𝜅′)≤𝑠

{𝜅} × 𝐶𝑑,2(𝑠′)−1(𝑥′, 𝑦′)
= {(𝜅, 𝑥, 𝑦) ∈ 𝜒 × ℤ2 | 𝑑𝒦(𝜅, 𝜅′) ≤ 𝑠∧ 𝑑ℤ2((𝑥, 𝑦), (𝑥′, 𝑦′)) ≤ 𝑠′} .

Definition 3.7: (CF or KF Layer) Let the base manifold𝑀 be either 𝑆1 or𝒦, equipped

with a finite discrete sampling 𝜒 ⊂ 𝑀. In a feed-forward neural architecture, we construct
adjacent layers 𝑉𝑖 = ℤ2 (input grid) and 𝑉𝑖+1 = 𝜒 × ℤ2 (output layer). The layer 𝑉𝑖+1
attains convolutional functionality when endowed with a neighborhood radius parameter𝑠 ≥ 0.
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We define 𝑉𝑖+1 as a Circle Features (CF) layer when𝑀 = 𝑆1, or aKlein Features
(KF) layer when 𝑀 = 𝒦, if the weights 𝜆−,(𝜅,−,−) for 𝜅 ∈ 𝜒 are derived via convolution
over 𝑉𝑖. Specifically, the filter of size (2𝑠 + 1) × (2𝑠 + 1) has values

Filter(𝜅)(𝑛,𝑚) = ∫−1+2(𝑚+1)2𝑠+1−1+ 2𝑚2𝑠+1 ∫−1+2(𝑛+1)2𝑠+1−1+ 2𝑛2𝑠+1 𝐹𝑀(𝜅)(𝑥, 𝑦) d𝑥 d𝑦
for integers 0 ≤ 𝑛,𝑚 ≤ 2𝑠.
A Reason for the Klein Bottle

To contextualize our analytical framework (cf. Carlsson[7]), we adopt a function-

theoretic viewpoint of the Klein bottle. The 3×3 image patches are interpreted as discrete
samples obtained by evaluating smooth functions 𝑓 ∶ 𝐷 → ℝ at nine predetermined

grid points {𝑝𝑘}9𝑘=1 ⊂ 𝐷. Our investigation focuses on identifying closed subspacesℱ ⊂ 𝐶(𝐷,ℝ) that satisfy the approximation property:
sup𝑓∈ℱ ||𝑓||𝐿2({𝑝𝑘}) ≈ ||𝑓||𝐿2(𝐷),

where the left-hand norm corresponds to patch space measurements.

Let 𝒬 denote the space of bivariate quadratic polynomials, explicitly parametrized

as 𝑓(𝑥, 𝑦) = 𝐴 + 𝐵𝑥 + 𝐶𝑦 + 𝐷𝑥2 + 𝐸𝑥𝑦 + 𝐹𝑦2 (𝐴,… , 𝐹 ∈ ℝ).
This constitutes a six-dimensional real vector space. Our analysis focuses on the con-

strained subspace 𝒫 ⊆ 𝒬 defined by the conditions∫𝐷 𝑓(𝑥, 𝑦) d𝑥d𝑦 = 0 (mean centering), ∫𝐷 𝑓(𝑥, 𝑦)2 d𝑥d𝑦 = 1 (contrast normalization).
The linear constraint alone reduces 𝒬 to a five-dimensional affine subspace, while the

quadratic normalization further restricts 𝒫 to a four-dimensional ellipsoid embedded

within this subspace.

We subsequently characterize the submanifold 𝒫0 ⊆ 𝒫 consisting of functions with

the specialized form 𝑓(𝑥, 𝑦) = 𝑞(𝜆𝑥 + 𝜇𝑦),
where 𝑞 is a single-variable quadratic function, and 𝜆2 + 𝜇2 = 1. The space of such

functions within 𝒬 is 4-dimensional-three parameters define 𝑞, and (𝜆, 𝜇) lies on the unit
circle, which is one-dimensional. Incorporating the two additional constraints reduces

this to a 2-dimensional complex 𝒫0.
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We demonstrate that 𝒫0 is homeomorphic to the Klein bottle 𝒦 via the following

construction. Define the function space 𝐴 as containing all univariate quadratic polyno-

mials of the form 𝑞(𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 (𝑐𝑖 ∈ ℝ)
subject to the integral constraints∫1−1 𝑞(𝑡)d𝑡 = 0 (zero mean), ∫1−1 𝑞2(𝑡)d𝑡 = 1 (unit energy).

These lead to the equations𝑐0 + 𝑐23 = 0 and 𝑐20 + 2𝑐0𝑐2 + 𝑐213 + 𝑐225 = 12.
Simplifying, we obtain3𝑐0 + 𝑐2 = 0 and

8𝑐205 + 2𝑐213 = 1.
The constrained solution set constitutes an elliptical manifold in ℝ3, exhibiting cir-

cular topology through standard diffeomorphism.

Given a direction vector𝒗 ∈ ℝ2with ||𝒗|| = 1 and a polynomial 𝑞 ∈ 𝐴, we construct
the directional function 𝑞𝒗 ∶ ℝ2 → ℝ via the parameterization𝑞𝒗(𝒘) = 𝑞(𝒗 ⋅ 𝒘) ∀𝒘 ∈ ℝ2,
where 𝒗 ⋅ 𝒘 denotes the Euclidean inner product. For a unit vector 𝒗 and 𝑞 ∈ 𝐴, this
statement is verifiable with straightforward reasoning,∫𝐷 𝑞𝒗 = 0 and ∫𝐷 𝑞2𝒗 ≠ 0.

Thus, the mapping (𝑞, 𝒗) ↦ 𝑞𝒗||𝑞𝒗||2
defines a continuous function 𝜃 from 𝐴×𝑆1 to 𝒫0. However, 𝜃 is not a homeomorphism.
The normalized mapping 𝜃 ∶ 𝐴 × 𝑆1 → 𝒫0, (𝑞, 𝒗) ↦ 𝑞𝒗||𝑞𝒗||2
is continuous but fails to be a homeomorphism due to the non-injective nature of the

parameterization. This can be seen by introducing the involution 𝜌 ∶ 𝐴 → 𝐴 defined by𝜌(𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2) = 𝑐0 − 𝑐1𝑡 + 𝑐2𝑡2.
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The mapping 𝜃 exhibits the symmetry relation𝜃(𝑞, 𝒗) = 𝜃(𝜌(𝑞), −𝒗),
which induces a well-defined quotient mapping over the orbit space 𝒪 = (𝐴 × 𝑆1)/ ∼,
where ∼ denotes equivalence under the involution (𝑞, 𝒗) ∼ (𝜌(𝑞), −𝒗).

The quotient mapping 𝜃̄ ∶ 𝒪 → 𝒫0 satisfies two fundamental properties:
(a)𝜃̄ constitutes a homeomorphism preserving the quotient topology,

(b)The orbit space 𝒪 exhibits the topological structure 𝒪 ≅ 𝒦.

Remark 3.2: There is an alternative way to consider the 𝒦 by quotient maps. The

original space 𝒬 is homeomorphic to ℝ3 × 𝑆1. The mean centering can be considered as
a quotient 𝜃1 as 𝜃1(𝑞) = 𝑞1,
where 𝑞(𝑡) = 𝑐0+𝑐1𝑡+𝑐2𝑡2 and 𝑞1(𝑡) = 𝑐01+𝑐1𝑡+𝑐2𝑡2 satisfying the mean centering
condition. The unit energy can be considered as a quotient 𝜃2 as𝜃1(𝑞) = 𝑞2,
where 𝑞2 = 𝑞||𝑞||2 .

Define the involution 𝑓 ∶ 𝒬 → 𝒬 by𝑓(𝑞)(𝑡) = 𝑞0(𝑡) = 𝑐0 − 𝑐1𝑡 + 𝑐2𝑡2,
which reverses the sign of the linear term 𝑐1. This satisfies 𝑓2 = id.

The quotient 𝜃1 enforces ∫𝑆1 𝑞(𝑡)𝑑𝑡 = 0, eliminating 𝑐0. The reduced space is:𝜃1(𝒬) ≅ ℝ2 × 𝑆1 (parameters (𝑐1, 𝑐2) ∈ ℝ2, 𝑡 ∈ 𝑆1).
Under 𝑓, the coefficients transform as (𝑐1, 𝑐2) ↦ (−𝑐1, 𝑐2).

The quotient 𝜃2 normalizes the energy:𝜃2(𝑞) = (𝑐1, 𝑐2)||(𝑐1, 𝑐2)||2 ∈ 𝑆1 (unit circle).
The resulting space after 𝜃2 is a fiber bundle over 𝑆1 with fiber 𝑆1.

The involution 𝑓 acts on the normalized coefficients as:𝑓 ∶ (𝑐1, 𝑐2) ↦ (−𝑐1, 𝑐2)⟹( cos𝜃, sin𝜃) ↦ (cos(𝜋 − 𝜃), sin(𝜋 − 𝜃)).
This corresponds to a reflection 𝜃 ↦ 𝜋 − 𝜃 on 𝑆1. Simultaneously, the base 𝑆1 (original𝑡 ∈ 𝑆1) is twisted by a half-period shift 𝑡 ↦ 𝑡 +𝜋 due to the phase dependency in 𝒬. The
total space is constructed by gluing the fibers 𝑆1 over the base 𝑆1 with a reflection map.
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This gluing is equivalent to the Klein bottle:𝒦 ≅ (𝑆1 × 𝑆1)/ ∼, (𝜃, 𝑡) ∼ (𝜋 − 𝜃, 𝑡 + 𝜋).
Since the involution 𝑓 introduces a non-orientable twist in both the fiber and base, the

quotient space is the Klein bottle.

Videos

Let us denote coordinates in ℝ3 ×ℝ3 by the variables (𝜃1, 𝜃2, 𝑟, 𝑢, 𝑣, 𝑤). The triplet(𝜃1, 𝜃2, 𝑟) parameterizes𝒦𝑡, while (𝑢, 𝑣, 𝑤) parameterize its tangent spaces. Specifically,𝒦𝑡 is defined as the quotient of ℝ3 under the relations (𝜃1, 𝜃2, 𝑟) ∼ (𝜃1 + 2𝑘𝜋, 𝜃2 +2𝑙𝜋, 𝑟) for all 𝑘, 𝑙 ∈ ℤ, and (𝜃1, 𝜃2, 𝑟) ∼ (𝜃1 + 𝜋, −𝜃2, −𝑟). Similarly, A quotient

construction over ℝ3 × ℝ3 characterizes the tangent bundle 𝑇(𝒦𝑡). We omit further

discussion of these identifications, as they are relevant only insofar as they are preserved

by the embeddings 𝐹𝒦𝑡 and 𝐹𝑇(𝒦𝑡).
Define 𝐼 = [−1, 1]. Let 𝐶(𝐼2, 𝐼) denote the space of continuous functions from 𝐼2 to𝐼, representing image patches at infinite resolution. Similarly, let 𝐶(𝐼2 × 𝐼, 𝐼) denote the

space of video patches. The embeddings𝐹𝒦𝑡 ∶ 𝒦𝑡 → 𝐶(𝐼2, 𝐼)
and 𝐹𝑇(𝒦𝑡) ∶ 𝑇(𝒦𝑡) → 𝐶(𝐼2 × 𝐼, 𝐼)
are defined by𝐹𝒦𝑡(𝜃1, 𝜃2, 𝑟)(𝑥, 𝑦) = sin(𝜃2) (cos(𝜃1)(𝑥 + 𝑟 cos(𝜃1)) + sin(𝜃1)(𝑦 + 𝑟 sin(𝜃1)))+ cos(𝜃2)𝑄 (cos(𝜃1)(𝑥 + 𝑟 cos(𝜃1)) + sin(𝜃1)(𝑦 + 𝑟 sin(𝜃1))) ,
and 𝐹𝑇(𝒦𝑡)(𝜃1, 𝜃2, 𝑟, 𝑢, 𝑣, 𝑤)(𝑥, 𝑦, 𝑡) = 𝐹𝒦𝑡(𝜃1 + 𝑡𝑢, 𝜃2 + 𝑡𝑣, 𝑟 + 𝑡𝑤),
where 𝑄(𝑧) = 2𝑧2 − 1.

The embedding 𝐹𝑇(𝒦𝑡) induces a metric structure
𝑑𝑇(𝒦𝑡)(𝜅, 𝜅′) = (∫𝐼2×𝐼 (𝐹𝑇(𝒦𝑡)(𝜅)(𝑥, 𝑦, 𝑡) − 𝐹𝑇(𝒦𝑡)(𝜅′)(𝑥, 𝑦, 𝑡))2 d𝑥 d𝑦 d𝑡)12

for 𝜅, 𝜅′ ∈ 𝑇(𝒦𝑡) on 𝑇(𝒦𝑡) via pullback of the 𝐿2-metric defined on the function space𝐶(𝐼2 × 𝐼, 𝐼). This metric 𝑑𝑇(𝒦𝑡) enables us to define a new type of layer in a neural
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network.

Definition 3.8: (6DMoving Klein Correspondence and 6MKOL) Let 𝜒, 𝜒′ ⊂ 𝑇(𝒦𝑡)
be two finite subsets. For consecutive layers 𝑉𝑖 = 𝜒×ℤ3 and 𝑉𝑖+1 = 𝜒′ ×ℤ3 in a FFNN,
given a fixed threshold 𝑠 ≥ 0, the 6D Moving Klein correspondence𝐶𝑇(𝒦𝑡)(𝑠) ⊂ 𝜒 × 𝜒′
is characterized by the correspondence condition𝐶𝑇(𝒦𝑡)(𝑠)−1(𝜅′) ∶= {𝜅 ∈ 𝜒 | 𝑑𝑇(𝒦𝑡)(𝜅, 𝜅′) ≤ 𝑠}
holding for all 𝜅′ ∈ 𝜒′, where the metric 𝑑𝑇(𝒦𝑡) is induced by the pullback construction
discussed previously.

A vertex set 𝑉𝑖+1 is designated as a 6DMoving Klein one layer (6MKOL) provided

an auxiliary threshold 𝑠′ ≥ 0 exists, with its edge correspondence 𝐶 ⊂ 𝑉𝑖 × 𝑉𝑖+1 defined
via 𝐶 = 𝐶𝑇(𝒦𝑡)(𝑠) × 𝐶𝑑,3(𝑠′),
specifically requiring that for every (𝜅′, 𝑥′, 𝑦′, 𝑡′) ∈ 𝜒′ × ℤ3,𝐶−1(𝜅′, 𝑥′, 𝑦′, 𝑡′) = 𝐶𝑇(𝒦𝑡)(𝑠)−1(𝜅′) × 𝐶𝑑,3(𝑠′)−1(𝑥′, 𝑦′, 𝑡′)= {(𝜅, 𝑥, 𝑦, 𝑡) ∈ 𝜒 × ℤ3 | 𝑑𝑇(𝒦𝑡)(𝜅, 𝜅′) ≤ 𝑠∧ 𝑑ℤ3((𝑥, 𝑦, 𝑡), (𝑥′, 𝑦′, 𝑡′)) ≤ 𝑠′ } .

Submanifold Selection Principle. Within the fiber bundle 𝑇(𝒦𝑡), there exist dis-
tinguished submanifolds ℳ𝛼 ↪ 𝑇(𝒦𝑡) whose associated video patches Ψ(ℳ𝛼) ⊂𝐶(𝐼2 × 𝐼, 𝐼) are hypothesized to be critical for spatiotemporal pattern recognition. The
6MKOL architecture implements this geometrically through the layer design:𝜒 = ⋃𝛼∈𝐴𝒟(ℳ𝛼), 𝜒′ = ⋃𝛽∈𝐵𝒟(ℳ𝛽),
where 𝒟 denotes adaptive discretization operators preserving topological invariants ofℳ𝛼.

Complexity-accuracy Tradeoff. Full discretization of 𝑇(𝒦𝑡) leads to computation-
ally prohibitive filter cardinalities. For example, with parameter quantization:𝜃1, 𝜃2 ∈ {0, 𝜋4 , 𝜋2 , 3𝜋4 }, 𝜉𝑗 ∈ {−1, 0, 1} (𝑗 = 1, ..., 4)
yields 𝜒with |𝜒| = 42×34 = 1296 coordinate charts. Each chart encodes spatiotemporal
features as 5×5×5 tensors (spatial resolution × temporal depth), totaling 125 pixels per
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filter.

Regularization through Geometry. This submanifold focus is philosophically

aligned with our geometric Occam’s razor: Minimal sufficient parameterization of ob-

servable dynamics via

dimℳ𝛼 ≪ dim𝑇(𝒦𝑡) = 6
intrinsically controls model capacity while preserving discriminative power, thereby mit-

igating overfitting in video classification tasks.

We focus on five significant 2-dimensional submanifolds of 𝑇(𝒦𝑡), defined as:𝒦̃ ∶= {(𝜃1, 𝜃2, 0, 0, 0, 0) ∈ 𝑇(𝒦𝑡)} ,𝑆±𝜏 ∶= {(𝜃1, 𝜃2, 0, 0, 0, ±1) ∈ 𝑇(𝒦𝑡)} ,𝑆±𝜌 ∶= {(𝜃1, 𝜃2, 0, ±1, 0, 0) ∈ 𝑇(𝒦𝑡)} .
Through the embedded parametrization 𝐹𝑇(𝒦𝑡), the submanifold 𝒦̃ is parameterized

by temporally invariant Klein bottle embeddings. The dynamical regimes 𝑆±𝜏 encode rigid

translations of Klein bottle configurations orthogonal to their primary symmetry axis,

where the superscript ± specifies the translation polarity. Analogously, 𝑆±𝜌 characterizes

axial rotation with chirality determined by the ± index.

Definition 3.9: (M-F Layer) Given an admissible subset 𝑀 ⊂ 𝑇(𝒦𝑡) (topologically
characterized as submanifolds 𝒦̃, 𝑆±𝜏 , 𝑆±𝜌 , or their stratified unions), the discrete config-
uration space 𝜒 is defined as a finite discretization 𝜒 ∶= 𝐷(𝑀) ⊂ 𝑀 via an operator 𝐷
with cardinality constraints, where 𝐷 preserves key topological invariants of𝑀.

For a FFNN with adjacent layers 𝑉𝑖 = ℤ3 and 𝑉𝑖+1 = 𝜒×ℤ3, where 𝑉𝑖 operates as a
convolutional module with activation threshold 𝑠 ≥ 0, the subsequent layer 𝑉𝑖+1 acquires
the classification of aManifold-Features (M-F) layer if the weights 𝜆−,(𝜅,−,−,−) for each𝜅 ∈ 𝜒 are determined by convolving over 𝑉𝑖 using a filter of dimensions (2𝑠+1)×(2𝑠+1) × (2𝑠 + 1), where the filter values are defined as
Filter(𝜅)(𝑛,𝑚, 𝑝) = ∫−1+2(𝑛+1)2𝑠+1−1+ 2𝑛2𝑠+1 ∫−1+2(𝑚+1)2𝑠+1−1+ 2𝑚2𝑠+1 ∫−1+2(𝑝+1)2𝑠+1−1+ 2𝑝2𝑠+1 𝐹𝑇(𝒦𝑡)(𝜅)(𝑥, 𝑦, 𝑡) d𝑥 d𝑦 d𝑡

for integers 0 ≤ 𝑛,𝑚, 𝑝 ≤ 2𝑠.
3.2.4 Equivariant Neural Network Architectures

Equivariant neural networks incorporate symmetry constraints directly into the archi-

tecture. Taco Cohen and Max Welling’s work[12] formalized 𝐺-equivariance for arbitrary
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groups 𝐺, enabling advanced feature extraction in neural networks. These architectures
ensure that features transform predictably under group actions, making them highly ef-

fective for structured data.

Definition 3.10 (Equivariance): A function 𝑓 ∶ 𝒳 → 𝒴 is 𝐺-equivariant if:𝑓(𝑔 ⋅ 𝑥) = 𝑔 ⋅ 𝑓(𝑥), ∀𝑔 ∈ 𝐺, 𝑥 ∈ 𝒳,
where 𝐺, acting on input space 𝒳, is a symmetry group. This property enforces consis-
tency in transformations, ensuring that structural relationships in the data are preserved.

Theoretical Foundations

Group-equivariant architectures extend classical convolutional layers by encoding

group symmetries such as rotations, reflections, or translations into the network’s struc-

ture. Representation theory plays a critical role here by enabling the decomposition of

high-dimensional inputs into invariant components under group actions ([12]). This leads

to more efficient computations and improved generalization.

Applications in Computer Vision and Physics

Equivariant neural networks have demonstrated remarkable success in domains re-

quiring symmetry-aware analysis:

• Pose Estimation: Effectively identifying object orientations and spatial align-

ments in images.

• Molecular Dynamics: Modeling physical interactions where symmetry groups

like SO(3) describe rotational behaviors.
• Astronomical Data Processing: Classifying galaxies and analyzing trajectories

in datasets with inherent rotational and translational symmetries.

• Medical Imaging: Detecting rotationally invariant patterns in 3D scans and other

volumetric data.

Advantages Over Traditional Architectures

Equivariant neural networks offer significant advantages over standard architectures,

including:

• Reduced parameter count by sharing weights across symmetric transformations.

• Enhanced robustness to perturbations by preserving invariance under group ac-

tions.
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• Improved efficiency in extracting features from high-dimensional data.

3.2.4.1 Future Directions

Future advancements in equivariant neural networks may include:

• Integration with attention mechanisms to refine symmetry-aware processing.

• Extending equivariant principles to graph neural networks, enabling symmetry

analysis on relational data structures.

• Application to dynamic systems using non-compact groups such as SE(3) tomodel
continuous transformations.

Equivariant neural networks remain a cornerstone in bridging mathematical theory

with practical applications, paving the way for innovations across disciplines ([12]).

3.3 Foundations of Speech Recognition Technology

As a core research pillar in intelligent systems, speech signals, paralleling visual

data modalities like images and videos, underpin critical applications ranging from auto-

matic recognition to noise suppression and synthetic generation. Notable breakthroughs

include: visual-assisted speech enhancement through lip movement analysis (Zheng et

al.[99]), The optimized end-to-end recognition pipeline achieving benchmark performance

of Microsoft (Li[48]), and their contemporaneous innovations in neural speech synthesis

architectures (Tan et al.[85]). The convergence of articulatory phonetics with deep learning

has enabled systems achieving 95%+ word accuracy on clean speech, though challenges

persist in noisy environments and low-resource languages.

3.3.1 Phonetic Building Blocks

Phonemes are systematically classified into vowels and consonants according to ar-

ticulatory characteristics. The rhythmic interplay between these units forms the structural

basis of spoken language. This hierarchical organization drives research emphasis toward

suprasegmental analysis (words/sentences), where expanded contextual dependencies en-

able more reliable pattern identification.

Modern systems employ a three-tiered processing hierarchy:

• Phoneme Level: 40-60 basic units (English: 44 phonemes) with 50-200ms dura-

tion

• Syllable Level: 10,000+ possible combinations through phoneme concatenation
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• Prosodic Level: Pitch contours and stress patterns conveying semantics

The precise alignment between transient acoustic features and discrete phonetic sym-

bols remains challenging, particularly for coarticulated phonemes where adjacent sounds

blend spectrally.

3.3.2 Phonetic Classification via IPA Standards

The International Phonetic Alphabet (IPA) categorizes phonemes into three primary

classes: pulmonic consonants, non-pulmonic consonants, and vowels. Our analysis fo-

cuses exclusively on pulmonic consonants and vowels, as non-pulmonic consonants ex-

hibit negligible prevalence in English. Pulmonic consonants are produced by constricting

airflow at the glottis (the space between vocal folds) or oral cavity while coordinating

pulmonary airflow, exemplified by symbols such as [b], [p], [m], and [n].

Consonants are further specified through three articulatory dimensions:

（1）Place: Bilabial [p], Alveolar [t], Velar [k]

（2）Manner:

•Plosives [ptk]

•Fricatives [szf]

•Nasals [mnN]

•Approximants [jw]

（3）Voicing: Vocal fold vibration (e.g., [z] vs. [s])

Vowels are systematically mapped in IPA based on lingual positioning (Figure 3-1),

quantified through:

• Height:

– High [i]

– Mid [e]

– Low [a]

• Backness:

– Front [i]

– Central [@]

– Back [u]

• Roundedness:

– Rounded [y]

– Unrounded [i]

To streamline English phonetic notation, ARPABET emerged as a practical alterna-
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tive, mapping 39 English phonemes to ASCII combinations (Figure 3-2). This system

enables efficient computational processing through:

• Single-letter vowels: AA [A], AE [ae]

• Two-letter consonants: SH [S], TH [T]

• Stress markers: Primary ("), secondary (­)

Figure 3-1 Positioning of vowels in oral cavity

(a) ARPABET
vowel-phoneme mapping

table
(b) ARPABET consonant

mapping table I
(c) ARPABET consonant

mapping table II

Figure 3-2 ARPABET phonetic notation system

The above two figures (see Figure 3-1 and Figure 3-2) are both from Wikipidea (ht
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tps://en.wikipedia.org/wiki/International_Phonetic_Alphabet; https://en.wikipedia.org/w

iki/ARPABET).

3.3.3 Historical Context: GMM-HMM Frameworks

Before the rise of deep learning, the GMM-HMM framework, combining Gaussian

Mixture Models and Hidden Markov Models, was considered the benchmark for speech

recognition, as highlighted by Rabiner in his foundational work[62]. Additionally, this

classical framework has been further extended and analyzed in various robust speech

recognition contexts, as discussed by Sun et al.[83]. These models characterized sequential

relationships between phonemes and acoustic features via probabilistic state transitions:

• Gaussian Mixture Models (GMMs): Modeled frame-level acoustic feature dis-

tributions using parameterized mean and covariance.

• Hidden Markov Models (HMMs): Captured temporal dynamics of phoneme se-

quences through state-based Markov chains.

Although GMM-HMM achieved early success in simple recognition tasks, its limitations

included:

• Ineffectiveness in capturing long-term temporal dependencies.

• Reliance on hand-crafted features like MFCCs, which constrained generalizability

to broader contexts.

The introduction of Recurrent Neural Networks revolutionized this paradigm by enabling

end-to-end learning and integrating sequential memory propagation directly into model

architectures.

3.3.4 Recurrent Neural Networks (RNNs)

Prior to computational advancements, GMM-HMM frameworks dominated speech

recognition systems, despite their mechanistic divergence from human neural processing.

Recurrent Neural Networks (RNNs) revolutionized this paradigm by inherently modeling

sequential dependencies through contextual memory propagation. The temporal charac-

teristics of speech signals can be observed through their waveforms, which exhibit ampli-

tude variations over time. These patterns serve as the initial step in processing raw audio

data for further analysis, such as phoneme recognition or spectrogram generation. The fol-

lowing figure displays waveforms corresponding to nine spoken commands in the Mini

Speech Commands dataset, offering a visual representation of the differences in acoustic

patterns.
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Figure 3-3 Waveforms of Mini Speech Commands

The LSTM variant introduced gated memory cells:𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓),
where 𝑓𝑡 is forget gate activation, enabling selective retention of phonetic context across
hundreds of time steps. Bidirectional LSTMs further improved phone error rates (PER)

to < 15% by processing sequences forwards and backwards.

Transformer Integration: The self-attention mechanism in Transformers (Vaswani

et al.[93]) revolutionized phonetic modeling through:

Attention(𝑄, 𝐾, 𝑉) = softmax(𝑄𝐾𝑇√𝑑𝑘 )𝑉,
where 𝑄, 𝐾, 𝑉 represent query, key, and value matrices. This enables:

• Parallel processing of entire utterances

• Direct modeling of phoneme-syllable-word dependencies

• State-of-the-art PER < 8% on TIMIT benchmark

3.3.5 Time Delay Embedding for Speech Signals

The transformation of raw speech signals into structured representations often em-

ploys time delay embedding, a method rooted in Takens’ Theorem[59]. This technique

reconstructs the hidden state space of dynamic systems from scalar time series, enabling

the analysis of phonetic structures.
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Let 𝑠(𝑡) denote a speech signal over time. A time-delay embedding constructs vec-

tors s𝑘 as:
s𝑘 = [𝑠(𝑡𝑘), 𝑠(𝑡𝑘 + 𝜏), … , 𝑠(𝑡𝑘 + (𝑑 − 1)𝜏)],

where 𝜏 is the delay parameter, 𝑑 is the embedding dimension, and 𝑡𝑘 represents discrete
sample times. This framework captures temporal dependencies and is foundational in

generating time-frequency representations for spectrogram computation.

Applications:

• Phoneme Dynamics: Capturing periodic and quasi-periodic behaviors in articu-

latory signals.

• Feature Generation: Creating meaningful point clouds for time-frequency anal-

ysis.

3.3.6 Speech Signal to Image Representation

Convolutional Neural Networks (CNNs) offer effective feature extraction paradigms

for acoustic processing. The Time Delay Neural Network (TDNN), among the earliest

CNN-based speech recognition architectures, performs simultaneous convolutions along

both frequency and temporal axes, thereby capturing variable-length contextual depen-

dencies (Sainath et al.[69];[70]).

The Deep Fully Convolutional Neural Network (DFCNN) introduced by iFLYTEK

processes spectrograms as 2D images through:

• Frequency-axis convolution: Learns Mel-filterbank equivalents

• Time-axis convolution: Discovers triphone patterns

• Residual blocks: 40+ convolutional layers

As shown in Figure 3-1 and Figure 3-2, this resembles spectral analysis methodolo-

gies in phonetics. Zhang et al.[97] achieved 4.7%WER on Switchboard using:

• 128-channel log-Mel inputs (300ms context)
• 15 convolutional blocks with batch normalization
• Connectionist Temporal Classification (CTC) output

Short-Time Fourier Transform (STFT) for Speech Signals

The conversion of raw speech waveforms into spectrograms begins with the Short-

Time Fourier Transform (STFT), which decomposes the signal into its frequency compo-

nents across time intervals[55].
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Formally, the STFT of a signal 𝑥(𝑡) is given by:𝑋(𝑓, 𝑡) = ∫∞−∞ 𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏 d𝜏,
where𝑤(𝑡) denotes a window function (such as Hamming or Gaussianwindows) centered

at each temporal point 𝑡, and 𝑓 corresponds to the frequency domain. This approach

captures localized frequency content while preserving temporal resolution.

To illustrate the transformation of speech signals from waveforms to spectrograms,

we apply the Short-Time Fourier Transform (STFT). This process captures temporal and

frequency-domain features, providing a foundation for subsequent audio analysis. The

following figure demonstrates an example of a speech waveform (top) and its correspond-

ing spectrogram (bottom), offering a clear visualization of how sound evolves across time

and frequency domains.

Figure 3-4 Waveform and Corresponding Spectrogram on mini speech commands

Spectrograms are widely used in speech recognition to capture unique frequency

patterns associated with spoken commands. For instance, in the Mini Speech Commands

dataset[94], spectrograms reveal distinct features for commands such as ”go”, ”stop”, and

”yes”. The following figure provides a comparison of spectrograms for nine different

commands, arranged in a 3×3 grid, highlighting the frequency characteristics that aid in
differentiating these spoken instructions.

Applications in Speech Recognition:
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Figure 3-5 Spectrograms of Mini Speech Commands

• Feature Extraction: Capturing pitch, formant, and harmonic structures.

• Spectrogram Analysis: Enabling input preparation for convolutional neural net-

works (CNNs).

3.4 Topological Fusion of Audio Features

MFCC-HPCP Fusion: For a time-frequency patch 𝑃, compute both MFCCs m ∈ℝ13 and HPCPs h ∈ ℝ12, then concatenate into a topological descriptor:
v𝑃 = [m,h, pers(𝐻1(𝑃))] ∈ ℝ25+𝑛,

where pers(𝐻1(𝑃)) encodes the persistence of harmonic loops[88].
Cover Song Analogy: The fusion method is inspired by cover song identification,

where topological consistency across variations is critical[88].
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CHAPTER 4 TOPOLOGICAL DEEP LEARNING: FROM
IMAGE DATA TO SPEECH DATA

In this chapter, we aim to replicate partial experimental results and explore the role

of topological information in both image and speech data. Although the overall outcomes

are somewhat modest, this chapter serves as an important bridge between conventional

performance evaluations and the discovery of intrinsic data structures.

We begin by replicating experiments on widely used image datasets such as

MNIST[5] and CIFAR10[42]. In these sections, we conduct a comparative analysis of

the representational efficacy between canonical Convolutional Neural Networks (CNNs)

and that of Topologically Configured CNNs (TCNNs) by analyzing loss curves and ac-

curacy metrics. This replication confirms existing findings and establishes a baseline for

understanding the potential benefits of integrating topological methods.

The chapter then shifts focus to the domain of speech processing using the Speech-

Box dataset. Here, we detail the process of phoneme segmentation and spectrogram gen-

eration, followed by training CNNs for phoneme recognition. By examining confusion

matrices and utilizing an ensemble of network weight vectors, we employ Principal Com-

ponent Analysis (PCA) alongside persistent homology to uncover latent topological struc-

tures within the data.

While the direct impact of infusing topological insights on model accuracy remains

modest, the exploratory analyses presented herein lay a promising foundation for future

work. This investigation not only replicates prior results but also offers a novel perspective

by linking traditional performance metrics with the underlying topology of the data.

4.1 Topological Data Analysis in Natural Images

This section delves into Carlsson’s seminal works (De Silva andCarlsson[75]), (Carls-

son et al.[9]), which explore the local topological properties of spaces formed by natural

images. By investigating these spaces, we aim to uncover the underlying geometric and

topological structures that shape natural image datasets.
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4.1.1 Datasets and Preprocessing

The primary dataset under consideration, denoted asℳ, comprises 4 × 106 high-
contrast image patches of size 3 × 3, sampled from the still image database curated us-

ing the van Hateren-Schaaf natural image ensemble ([92]). Additionally,ℳ constitutes a

proper subcollection within the ambient superset ℳ̃ containing approximately 8 × 106
patches, provided by Pedersen. To extract high-contrast patches, the following multi-step

procedure was implemented:

（1）Initial Sampling:

•Randomly select 5000 image patches of size 3 × 3 from a chosen image.

•Embed local image regions into a 9-dimensional Euclidean space via vec-
torization of pixel intensities.

（2）Intensity Transformation:

•Perform pixel-wise logarithmic mapping log ∶ ℐ → ℝ on the intensity

domain ℐ ⊂ ℝ≥0.
•Perform component-wise demeaning through the linear transformation

v ↦ v − 𝜇v1, where 𝜇v ∶= 1𝑛 ∑𝑛𝑖=1 𝑣𝑖 denotes the empirical mean, and
1 ∈ ℝ𝑛 denotes the canonical basis vector with all components equal to
unity (explicitly 1 = (1, 1, … , 1)⊤).

（3）Contrast Selection:

•For each mean-centered vector, calculate its contrast (or ”𝑫-norm”) de-
fined as ||𝒙||𝑫 = √𝒙𝑇𝑫𝒙,
where 𝑫 is a 9 × 9 matrix that is both symmetric and positive-definite.
•Retain only the patches that rank in the top 20% in terms of 𝑫-norm.

（4）Normalization and Embedding:

•Spatiotemporal patches are normalized onto a 7-dimensional ellipsoidal

manifold through quadratic constraints, embedding the data inℝ8while in-
trinsically reducing dimensionality via curvature-driven parametrization.

•Apply a coordinate transformation to project the data onto the unit sphere

in ℝ8.
This process yields the curated datasetℳ, optimized for topological analysis. In the

following sections, we examine the local and global topological characteristics embedded

in this dataset.
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4.1.2 Persistent Homology Analysis

To uncover robust topological features, persistent homology provides a framework

for studying local density variations and global connectivity within ℳ. The focus is

on leveraging density filtration, denoising techniques, and the construction of witness

complexes to compute and interpret homological invariants.

Density Filtration

The density of a data point 𝑥 ∈ 𝑋 is estimated using the 𝑘-nearest neighbor method.
For a given 𝑘 > 0, let 𝜌𝑘(𝑥) represent the distance to the 𝑘-th nearest neighbor. Smaller
values of 𝜌𝑘 correspond to higher local density. The dataset is filtered by ordering points
by density and extracting the top 𝑝 percent for analysis, forming subsets 𝑋(𝑘, 𝑝). This
method highlights core regions of the data, which often contain significant topological

information that may be obscured in the full dataset.

Denoising

To improve computational efficiency and minimize noise in the data, the following

denoising process was applied:

（1）Nearest Neighbor Averaging:

•Replace each data point with the mean value of its neighboring points.

（2）Iterative Smoothing:

•Perform the averaging process iteratively, typically repeating it twice, to

generate a cleaner and more refined representation of the data.

Witness Complex Construction

The witness complex𝑊∞(𝐷) is utilized as a primary tool for constructing simplicial
complexes by leveraging the distances between 𝑛 landmarks and 𝑁 data points. The key

steps in this process are as follows:

（1）Construction of Edges and Higher-Dimensional Simplices:

•Edges and simplices are built based on the ordering of distances between

data points and landmarks.

（2）Efficient Approximation Using Lazy Witness Complexes:

•Computationally efficient approximations, such as the lazy witness com-

plex𝑊1(𝐷), are employed to reduce complexity in practical applications.
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Landmarks are selected through random sampling or themaxmin algorithm, ensuring

representative coverage of the dataset.

4.1.3 Homological Insights

By applying the methodologies outlined above, we computed the persistent homol-

ogy of subsets withinℳ. The key findings are summarized as follows:

（1）Smaller Subset Analysis:

•Using 𝑛 = 50 landmarks and 𝑘 = 15, the first Betti number (𝛽1) was
calculated as 5, consistent with the three-circle model 𝐶3.
•When 𝑘 was increased to 300, the structure simplified, resulting in a single
dominant feature with a first Betti number of 1.

（2）Larger Dataset Insights:

•The persistent homology of the subset 𝑋(100, 10)∪𝑄 ⊂ ℳ revealed two

prominent a set of 1-cycles {𝛾𝑖}𝑛𝑖=1 forming a free abelian group basis,

together with a 2-cocycle 𝜔 spanning the second cohomology.

•This result aligns with the topological structure of a Klein bottle rather than

a torus, as suggested by experimental and theoretical considerations.

Remark 4.1: The three-circle model 𝐶3 can be embedded into the Klein bottle𝒦, pro-

viding a theoretical link between local and global topological phenomena.

4.2 Reproduction of Main Image Results

This methodological segment faithfully replicates the experimental findings docu-

mented in the source study, applying both CNN and TCNN to the MNIST and CIFAR10

datasets. The outcomes are depicted in Figure 4-1, with all experimental parameters

aligned with those described in (Love et al.[53]).

(a) MNIST Loss and Accuracy (b) CIFAR10 Loss and Accuracy

Figure 4-1 Comparison of Loss and Accuracy between CNN and TCNN on Two Datasets
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4.2.1 Observations and Analysis

MNIST Dataset

For the MNIST dataset, all TCNN configurations demonstrated noticeable improve-

ments in accuracy compared to conventional CNNs. These improvements were consistent

across various setups, suggesting that TCNNs effectively capture the critical features of

simpler datasets with lower complexity, such as MNIST. The enhanced performance un-

derscores the capacity of TCNN for achieving better generalization and optimization.

CIFAR10 Dataset

When applied to the more complex CIFAR10 dataset, the performance trends dif-

fered significantly. The accuracy of all configurations experienced a drop due to the in-

creased data diversity and complexity of dataset. However, among the TCNN variants,

the combination corresponding to COL exhibited the most significant accuracy gains, out-

performing both the other TCNN configurations and the baseline CNN. Notably, the KOL

configuration, despite achieving relatively lower accuracy within the TCNN family, still

matched or slightly exceeded the performance of the standard CNN. This finding high-

lights the resilience and adaptability of TCNNwhen applied to datasets with higher visual

and structural complexity.

4.2.2 Conclusions

The experimental results illustrate that TCNN offers effective and tangible improve-

ments over conventional CNN models. For simpler datasets like MNIST, TCNN con-

sistently outperforms traditional methods, demonstrating its robustness in extracting key

features. On the more challenging CIFAR10 dataset, TCNN continues to show poten-

tial, with certain configurations achieving substantial gains. This supports the argument

that TCNN, as a novel architecture, offers an advantage in performance across a range of

scenarios, making it a promising direction for further exploration and optimization.

4.3 Exploration of Topological Information in Speech Data

We begin by addressing the task of phoneme recognition within the domain of speech

processing. Using the SpeechBox dataset provided by Northwestern University (Speech-

Box[80]), which comprises recordings from 26 volunteers reading various passages, we
embarked on a detailed experiment. The dataset is remarkable in its level of annotation,
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providing not only timestamps for sentences and words but also for individual phonemes

through specialized tools. This granularity allowed us to segment the original English

recordings into distinct phoneme fragments. Subsequently, these segments were con-

verted into spectrogram representations via customized programming pipelines.

In our experimental framework, a convolutional neural network (CNN) was trained

on these spectrograms. The CNN architecture consisted of three convolutional layers

with a kernel size of 3× 3 and feature maps of sizes 64, 128, and 256, respectively. The
training process yielded confusion matrices that characterize the performance of network

on phoneme classification. Figure 4-2 displays these confusion matrices for two distinct

scenarios.

(a) SpeechBox Phoneme Confusion Matrix
(Stress Not Distinguished)

(b) SpeechBox Phoneme Confusion Matrix
(Stress Not Distinguished and Merged Easily

Confused Items)

Figure 4-2 SpeechBox Phoneme Confusion Matrices

We observe that in the confusion matrix, the column corresponding to the vowel𝐴𝐻 shows a significant number of misclassifications. The reason lies in the imbalance

of phoneme distributions during segmentation of speech into phonemes. The frequency

of phonemes depends on the occurrence rates provided by words and sentences, and 𝐴𝐻
happens to be the most frequent phoneme. This results in the neural network being more

inclined to predict 𝐴𝐻 to achieve higher accuracy. For the confusion matrix shown in

Figure 4-2(b), certain phoneme categories were merged to address frequent misclassifi-

cations. The specific merges are outlined as follows.

（1）Vowels:

•The following groups of vowels were merged. The first element in each
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group represents the merged class𝑎 𝐴𝐴 𝐴𝑂𝑎1 𝐴𝐸 𝐴𝐻 𝐸𝐻 𝐼𝐻𝑖𝑟 𝐸𝑅 𝐼𝑅 𝑅𝑙𝑜𝑤 𝐿 𝑂𝑊𝑥𝑦 𝐸𝑌 𝐼𝑌 𝑌
.

（2）Consonants:

•Similarly, for consonants, the following groupings were merged𝑏𝑝𝑑𝑡 𝐵 𝑃 𝐷 𝑇𝑘𝑔 𝐾 𝐺𝑚𝑛 𝑀 𝑁 𝑁𝐺
.

After merging, our experiments indicate that recognition accuracy increased mod-

estly from approximately 81% to around 83%. Analysis of the confusion matrices further
revealed that the CNN tends to perform better on consonant identification than vowels,

and its ability to discriminate between voiced and voiceless consonants shared at the same

articulatory position remains only moderate.

Inspired by the work presented in (Gabrielsson and Carlsson[23]), we extended our

analysis by running the CNN 100 times to create an ensemble of weight vectors across the

replicates. Focusing on the first and third convolutional layers, we applied de-meaning

and normalization to their respective weight vectors. After a subsequent density filtering

step, we visualized the resulting datasets using principal component analysis (PCA) and

Vietoris–Rips complex computations. Through a rounding process of the three principal

component scores for each weight vector, three representative vectors emerged⎡⎢⎢⎢⎣
−1 −1 −10 0 01 1 1

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
−3 0 3−2 0 2−1 0 1

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
1 1 1−2 −2 −21 1 1

⎤⎥⎥⎥⎦
PCA revealed that, among the first three components, the first and third jointly cap-

ture features associated with horizontal line detection, whereas the second component ap-

pears to encode vertical structures. To further isolate high-contrast features, we projected

all weight vectors onto these three principal directions. Specifically, using a parameter𝑛 to denote the number of farthest points considered and a parameter 𝑝 (defined as the
55



CHAPTER 4 TOPOLOGICAL DEEP LEARNING: FROM IMAGE DATA TO SPEECH DATA

proportion of points relative to the distance from the 𝑛-th farthest point), we extracted
subsets of high-contrast points. Figure 4-3 shows the results with 𝑝 = 10% and Figure 4-

4 presents the outcomes for 𝑝 = 30%. In each figure, the left panels correspond to the
PCA visualizations of the first convolutional layer, while the right panels represent those

of the third layer. Moreover, the upper rows use 𝑛 = 15 and the lower rows use 𝑛 = 300.

Figure 4-3 Principal Component Analysis of Weight Vectors within the Top 10% Distance

Figure 4-4 Principal Component Analysis of Weight Vectors within the Top 30% Distance

Inspection of these PCA plots reveals a gradual transition in the weight vector rep-

resentations from being concentrated near two distinct points to adopting a distribution
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that approximates a spherical surface. This transition is largely a consequence of the

normalization applied during preprocessing. In particular, the PCA visualization of the

first convolutional layer shows that the weight vectors are relatively concentrated. When

considering only the top 10% of the data points based on distance, the vectors primar-

ily cluster into two disjoint circular regions. However, when extending the selection to

include the top 30%, these circular regions expand and gradually connect at the origin,
forming a more unified structure. In contrast, the third convolutional layer exhibits sig-

nificantly more dispersed representations, with weight vectors spreading broadly across

the spherical surface. This divergence highlights the evolution of feature representation

across layers, where deeper layers encode increasingly complex and diverse patterns.

Following this geometric visualization, we computed the persistent homology of the

filtered, high-contrast weight vector datasets. Due to constraints related to computational

memory and complexity, we display results from only four representative scenarios in

Figure 4-5. Among these, three cases exhibit a first Betti number (𝛽1) of 2 and a second
Betti number (𝛽2) of 1; in the remaining scenario, both 𝛽1 and 𝛽2 are identified as 1.

Based on these topological invariants, a toroidal structure is a plausible interpretation,

especially as varying the homology coefficients produced no noticeable differences that

might indicate a Klein bottle.

Finally, Figures 4-6 and 4-7 illustrate comparisons of loss and accuracy for different

model variants. In these experiments, ”Normal” refers to the baseline CNN; ”Sphere” de-

notes amodel where the initial convolution kernels are distributed on a spherical manifold;

”Torus” indicates that the kernels are selected along a torus; and ”W-Torus” represents the

configuration in which kernels are chosen on a torus with an increased density along two

circular trajectories. Unfortunately, based on these performance metrics, the incorpora-

tion of topological information in kernel selection does not yet lead to improvements that

are as compelling as those achieved with the conventional CNN architecture.

This expanded exposition not only details the experimental setup and observations

but also contextualizes the topological analyses within broader challenges in speech pro-

cessing. Additional inquiries might explore alternative density filtering parameters, more

refined persistent homology computations, or even extended architectures that better har-

ness topological prior information for improved performance.
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n=15, p=0.1

n=100, p=0.1

n=15, p=0.2

n=300, p=0.1

Figure 4-5 Persistent Homology of Weight Vectors

Figure 4-6 Loss and Accuracy
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Figure 4-7 Loss and Accuracy (After Merging Confusing Items)
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CHAPTER 5 THE SPACE OF SPECTROGRAM
CONVOLUTION KERNELS

In this chapter, we consider the group action of the third-order special orthogonal

group on the space of 3 × 3 real matrices. By leveraging the invariance properties of the
group action, we first reduce the dimensionality of the matrix space to five. Subsequently,

a new representation of the matrix space is introduced through orbit spaces and the special

orthogonal group.

5.1 The Space of High-Contrast Spectrogram Convolution Ker-
nels

Spectrograms, unlike ordinary images, lose their semantic interpretation under rota-

tion. Thus, when considering convolution kernels for spectrograms, which we interpret as

local fragments of speech where the variation is predominantly along the temporal axis,

it is natural to restrict our attention to kernels that reflect this asymmetry.

Definition 5.1 (Kernel Norm): Let𝑨 = [𝒗1, 𝒗2, 𝒗3] ∈ 𝑀3×3(ℝ)
be a 3 × 3 convolution kernel with column vectors 𝒗1, 𝒗2, 𝒗3 ∈ ℝ3. Define the norm of𝑨 by ||𝑨|| = √||𝒗1||2 + ||𝒗2||2 + ||𝒗3||2.
Note that this norm is equivalent to the standard 𝐿2-norm up to a constant factor.

Definition 5.2 (Contrast): The contrast of a convolution kernel𝑨 = [𝒗1, 𝒗2, 𝒗3] ∈ 𝑀
is defined by

con(𝑨) = √||𝒗1 − 𝒗2||2 + ||𝒗2 − 𝒗3||2.
Remark 5.1: The use of the contrast measure is motivated by the observation that spec-
trograms are inherently directional. Since rotation typically destroys the temporal struc-

ture of a spectrogram, a high-contrast convolution kernel (with respect to the temporal

axis) is desirable for effectively capturing local speech features.

We now introduce a constrained space of convolution kernels that are both normal-
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ized and optimized for high contrast.

Definition 5.3 (Normalized Convolution Kernels): We consider the subspace of𝑀3×3(ℝ) consisting of convolution kernels 𝑨 = [𝒗1, 𝒗2, 𝒗3] satisfying the unit norm

condition ||𝑨|| = 1.
Definition 5.4 (Contrast-Maximizing Constraint): In order to maximize contrast,
we further impose the constraint that the kernel belongs to the orthogonal complement of

the zero-contrast subspace. Concretely, we require𝒗1 + 𝒗2 + 𝒗3 = 0.
Definition 5.5 (The Kernel Space 𝑀): Let𝑀 denote the set of all 3× 3 convolution
kernels satisfying ||𝑨|| = 1 and 𝒗1 + 𝒗2 + 𝒗3 = 0.
Then, 𝑀 = {𝑨 ∈ 𝑀3×3(ℝ) ∣ ||𝑨|| = 1, 𝒗1 + 𝒗2 + 𝒗3 = 0 }.
Theorem 5.1: The space𝑀 is homeomorphic to the 5-dimensional sphere 𝑆5.
Sketch of Proof: The constraints ||𝑨|| = 1 and 𝒗1+𝒗2+𝒗3 = 0 define a smooth sub-
manifold of 𝑀3×3(ℝ). One may show via dimension counting and the implicit function

theorem that this submanifold has dimension 9 − 3 − 1 = 5 (since 𝑀3×3(ℝ) ≅ ℝ9, and
the two constraints remove 4 degrees of freedom). An explicit construction or application

of known results then shows that this 5-dimensional manifold is in fact diffeomorphic to

(and hence homeomorphic to) the standard sphere 𝑆5. ∎
5.2 Group Action and Quotient Space

Since𝑀 ⊂ 𝑀3×3(ℝ), the group of orthogonal transformations acts naturally on𝑀.
Definition 5.6 (Orthogonal Group Action): Let 𝜃 ∶ SO(3)×𝑀 → 𝑀 be defined by𝜃(𝑸,𝒎) = 𝑸𝒎, for 𝑸 ∈ SO(3) and𝒎 ∈ 𝑀.
Then 𝜃 is a smooth group action.
Theorem 5.2 (Contrast Projection for General Matrices): For any matrix 𝑨 ∈𝑀3×3(ℝ3) except when the three column vectors are identical, in which case the contrast
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is defined as 0, such as the matrix ⎡⎢⎢⎢⎣
1 1 10 0 0−1 −1 −1

⎤⎥⎥⎥⎦, the following procedure projects it
onto the constrained subspace𝑀:

（1）Orthogonal Transformation: Apply an orthogonal matrix 𝑸 ∈ SO(3) to
transform the sum of column vectors into a uniform vector:𝑸(𝒗1 + 𝒗2 + 𝒗3) = 𝜆1, 𝜆 ∈ ℝ, 1 = (1, 1, 1)⊤. (5-1)

（2）Centering: Subtract the mean value from each component:𝑨̃ = 𝑸𝑨 − 𝜆311⊤. (5-2)

The resulting matrix 𝑨̃ satisfies 𝒗̃1 + 𝒗̃2 + 𝒗̃3 = 0, i.e., 𝑨̃ ∈ 𝑀.
Rationale: This projection ensures:

• Invariance under orthogonal transformations: ‖𝑸𝒗‖ = ‖𝒗‖.
• Translation invariance: 𝒗𝑖 ↦ 𝒗𝑖 + 𝒄 cancels in (2).

The contrast con(𝑨̃) = √‖𝒗̃1 − 𝒗̃2‖2 + ‖𝒗̃2 − 𝒗̃3‖2 on𝑀 inherits these properties. ∎
Note that for any𝒎 ∈ 𝑀, and for any 𝑸 ∈ SO(3), the group action defined above is

compatible with the previously defined contrast, that is,

con(𝑸𝒎) = con(𝒎).
Definition 5.7 (Quotient Space 𝐵): Define the homogeneous space (or orbit space)𝐵 = 𝑀/SO(3),
i.e., two kernels in𝑀 are identified if one can be obtained from the other by an orthogonal

transformation.

Given coordinates derived from the columns of a kernel, let𝑥 = ||𝒗1||2, 𝑦 = ||𝒗3||2, 𝑧 = 𝒗1 ⋅ 𝒗3.
Then the constraints in𝑀 imply the following relations:𝑥 + 𝑦 + 𝑧 = 12,𝑧2 ≤ 𝑥𝑦.

Proposition 5.1: The quotient space 𝐵 = 𝑀/SO(3) is homeomorphic to the closed
disk 𝐷2.
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Sketch of Proof: By introducing the coordinates (𝑥, 𝑦, 𝑧) and considering the relations𝑥 + 𝑦 + 𝑧 = 12 and 𝑧2 ≤ 𝑥𝑦, (5-3)

one can show that the set of equivalence classes is parametrized by two independent pa-

rameters satisfying inequalities that define a closed 2-dimensional disk. A more detailed

study of the invariants associated with the SO(3)-action yields the claim that 𝐵 is home-

omorphic to 𝐷2. ∎
In particular, the boundary of𝐵, called 𝜕𝐵, corresponds to the casewhere the equality𝑧2 = 𝑥𝑦 holds in the relation (5-3).

Remark 5.2: For an element
⎡⎢⎢⎢⎣ 1√6

⎡⎢⎢⎢⎣
1 0 −11 0 −11 0 −1

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ ∈ 𝐵, the preimage set in 𝑀 is

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣
𝑎 0 −𝑎𝑏 0 −𝑏𝑐 0 −𝑐

⎤⎥⎥⎥⎦||𝑎2 + 𝑏2 + 𝑐2 = 12
⎫⎪⎬⎪⎭. However, the dimension of preimage is two, not

three, which shows that𝑀 → 𝐵 is not a fiber bundle.

Fortunately, there exists a stratified fiber bundle over 𝐵. Specifically:
• On the boundary of 𝐵, denoted 𝜕𝐵, the fiber is SO(3)/SO(2) ≅ 𝑆2, quotienting

out rotations around a fixed axis.

• On the region where 𝑥 = 𝑦, the fiber is SO(3)/ℤ2 ≅ 𝐿(4, 1), quotienting out
rotations by 180∘ about a fixed axis. Here 𝐿(4, 1) is a Lens space.

• On the intersection of the two aforementioned cases, i.e.  𝒗1 + 𝒗3 = 0, the fiber is
given by  SO(3)/(SO(2) ⋊ ℤ2) , which is isomorphic to  ℝ𝑃2 (the real projective plane).

• On the remaining portion, the structure forms a principal SO(3)-bundle.
Proposition 5.2: For any (𝑥, 𝑦) satisfying the relations (5-3), one corresponding kernel
can be selected by [𝒗1 −𝒗1 − 𝒗2 𝒗2], where 𝒗1 = √𝑥3 ⎡⎢⎢⎢⎣

111
⎤⎥⎥⎥⎦ and 𝒗2 = √𝑦3 cos𝜙

⎡⎢⎢⎢⎣
111
⎤⎥⎥⎥⎦ +

√𝑦6 sin𝜙 ⎡⎢⎢⎢⎣
1−21
⎤⎥⎥⎥⎦, where sin𝜙 = √1 − cos2 𝜙 and cos𝜙 = 12−𝑥−𝑦√𝑥𝑦 for 𝑥, 𝑦 ≠ 0. In particu-

lar, 𝑦 = 12 for 𝑥 = 0 and 𝑥 = 12 for 𝑦 = 0.
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Remark 5.3: (𝑥, 𝑦) satisfying the relations (5-3) if and only if9(𝑥 + 𝑦 − 23)2 + 3(𝑥 − 𝑦)2 ≤ 1.
5.3 Summary

To summarize, we have defined a notion of contrast for spectrogram convolution

kernels and introduced rigid constraints (unit norm and zero-sum of column vectors) to

define a space 𝑀 of kernels that are well-suited for processing spectrograms. We have

established that𝑀 is homeomorphic to 𝑆5 and that the natural SO(3)-action on𝑀 induces

a quotient space 𝐵 that is homeomorphic to a disk 𝐷2. These results lay the foundation
for further analysis and applications in spectrogram-based speech processing.
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CHAPTER 6 NEW SPECTROGRAM CONVOLUTION
FILTERS

As in Lee et al.[45], there exist 8 basic vectors in the image patch. However, up to
constant factors, they will be reduced to just two, since two of them are of zero contrast,

and the other of them can be reduced to two vectors through group actions.

We consider taking the orbit space of these two vectors under group actions as con-

volution kernels, i.e.,

𝑨1 = 𝑸 ⎡⎢⎢⎢⎣
1 0 −11 0 −11 0 −1

⎤⎥⎥⎥⎦ /√6, and 𝑨2 = 𝑸
⎡⎢⎢⎢⎣
1 −2 11 −2 11 −2 1

⎤⎥⎥⎥⎦ /√18.
Additionally, this chapter focuses exclusively on phoneme-level recognition, as also

mentioned in Chapter 4. Regarding the dataset, we cannot directly obtain phoneme-level

annotations but instead employ segmentation tools. The Montreal Forced Aligner (MFA)

tool from the SpeechBox dataset[80] is utilized in this study. All segmented phonemes

undergo appropriate merging processes: stress variations are not differentiated and are

combined, open/close vowel distinctions are eliminated, and highly similar vowel vari-

ants are merged. Notably, post-segmentation analysis revealed that certain phonemes

with extremely low frequencies tend to be overlooked in prediction models, while over-

represented phonemes create prediction biases. Therefore, all experiments in this chapter

employ a balanced subset of 500 samples per phoneme class for classification tasks. Fi-

nally, the primary datasets used in this chapter are derived from the SpeechBox corpus,

TIMIT[101] and LJSpeech[37] with specific implementation details provided in the exper-

imental section. We selected only half of the LJSpeech dataset because the complete

dataset contains a large number of speech signals, which exceeds the processing capabil-

ity of my computer.

The overall procedure for all experiments in this chapter is as follows: First, seg-

ment the audio from the dataset into phonemes through STFT spectrograms (Short-Time

Fourier Transform). Subsequently, convert the audio corresponding to each phoneme

into spectrograms. These spectrograms are then fed into a convolutional neural network

(CNN) for training, where the network architecture contains two convolutional layers with
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64 filters each, ultimately yielding the classification accuracy.

6.1 Orthogonal Feature Layer Construction

Given two initial matrices {𝑨1, 𝑨2} ∈ 𝑀3×3(𝑅), the layer is constructed through the
following mathematical operations:

6.1.1 Matrix Augmentation

Extend the matrix set to ensure algebraic closure under inversion:ℳ = {𝑨1, 𝑨2, −𝑨1, −𝑨2}.
6.1.2 SO(3)-Informed Kernel Generation

Let 𝔰𝔬(3) denote the Lie algebra with basis generators:
𝑳𝑥 = ⎛⎜⎝

0 0 00 0 −10 1 0 ⎞⎟⎠ , 𝑳𝑦 =
⎛⎜⎝
0 0 10 0 0−1 0 0⎞⎟⎠ , 𝑳𝑧 =

⎛⎜⎝
0 −1 01 0 00 0 0⎞⎟⎠ .

For stochastic kernel generation:

（1）Sample 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 ∼ 𝒩(0, 𝜎2) independently.
（2）Construct Lie algebra element:𝜽 = ∑𝑖=𝑥,𝑦,𝑧 𝜃𝑖𝑳𝑖 ∈ 𝔰𝔬(3).
（3）Apply exponential map:𝑹 = exp(𝜽) ∈ SO(3), where exp(𝜽) = 𝑰 + sin ||𝜽||||𝜽|| 𝜽 + 1 − cos ||𝜽||||𝜽||2 𝜽2,

where ||𝜽|| = √∑𝑖=𝑥,𝑦,𝑧 𝜃2𝑖 .
6.1.3 Convolutional Layer Definition

Definition 6.1 (Orthogonal Features(OF) Convolutional Layer): Given the ker-
nel space 𝑀, each conlutional kernel of untrained Orthogonal Features Convolutional
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Layer can be defined by

𝑾𝑘 = 𝛼 ⋅ 𝑹𝑘𝑴𝑘, ⎧⎪⎨⎪⎩
𝑹𝑘 ∈ SO(3),𝑴𝑘 ∈ ℳ,𝛼 ∈ ℝ+ (adjustable scaling factor).

6.2 Experimental Result I

In this section, we conducted experiments using the Speechbox dataset to compare

the newly proposed OF convolutional layers with multiple other convolutional neural net-

work architectures. The comparative results are presented in the accompanying Figure 6-

1.

Figure 6-1 Comparisons of Loss and Accuracy on SpeechBox

The comparative analysis reveals two key observations. First, both KF and CF mod-

els demonstrate significantly superior performance in phoneme-balanced segmentation

compared to traditional CNNswhen evaluated against word-level phoneme frequency dis-

tributions. Second, and more critically, the proposed OF architecture exhibits marginally

better effectiveness than both KF and CF configurations in these phoneme-aware classi-

fication tasks.
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6.3 Experimental Result II

However, if we relax the orthogonality condition to the zero-contrast space, we can

obtain a more canonical set of convolution kernels

𝑸 ⎡⎢⎢⎢⎣
1 0 −11 0 −11 0 −1

⎤⎥⎥⎥⎦ /√6, and 𝑸
⎡⎢⎢⎢⎣
1 0 11 0 11 0 1

⎤⎥⎥⎥⎦ /√6. (6-1)

In essence, this set of convolution kernels corresponds to vertical stripe detectors with

the middle column set to zero, structured as [𝒗1, 0, ±𝒗1], with which the sphere shares a
homeomorphism. For simplicity, the neural network architectures constructed using this

set of convolution kernels will retain the nomenclature OF convolutional layers.

First, let us analyze the performance of these convolutional kernel space on the

Speechbox dataset (see Figure 6-2).

Figure 6-2 Comparisons of Loss and Accuracy on SpeechBox(Non-Orthogonal)

Here, we observe that the accuracy has approached 70%, outperforming both the
previous orthogonal components and other comparative models.

Experimental results on the two additional datasets, TIMIT and LJSpeech, are also

reported, yielding consistent findings (see Figure 6-3, Figure 6-4).

6.4 Noise

Analysis of the figure reveals that the datasets exhibit descending accuracy rankings:

LJSpeech > SpeechBox > TIMIT, which is likely attributed to variations in acoustic clarity

across the datasets. This section investigates the impact of introducing additive white
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Figure 6-3 Comparisons of Loss and Accuracy on TIMIT(Non-Orthogonal)

Figure 6-4 Comparisons of Loss and Accuracy on LJSpeech(Non-Orthogonal)

Gaussian noise (AWGN) on model performance.

The additive white Gaussian noise (AWGN) is systematically introduced under con-

trolled signal-to-noise ratio (SNR) conditions, where SNR is mathematically expressed

as:

SNR (dB) = 10 log10 (𝑃signal/𝑃noise)
with 𝑃signal and 𝑃noise representing the power of the original speech signal and the injected
Gaussian noise, respectively. The implementation protocol comprises three phases:

（1）Data Partitioning: Split the speech corpus into training and validation subsets.

（2）Noise Injection: Apply AWGN exclusively to the training set across SNR lev-

els ranging from 0 dB to 20 dB.
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（3）Feature Extraction: Convert the noise-augmented training data into STFT

spectrograms for downstream processing, while the validation set remains unaltered to

preserve evaluation integrity.

Experimental results on the SpeechBox dataset under varying SNR conditions are as

follows (see Figure 6-5, Figure 6-6).

Figure 6-5 Comparisons of Loss and Accuracy on SpeechBox(SNR= 20)

Figure 6-6 Comparisons of Loss and Accuracy on SpeechBox(SNR= 0)
The graphical comparison between the aforementioned diagrams demonstrates con-

gruence between the SNR= 20 measurements and their noise-free counterparts. When

SNR= 0, OF demonstrates moderate performance, CF exhibits inferior results, whereas
KF achieves the optimal performance. This phenomenon might arise from the severe

degradation of vertical stripe structures caused by additive noise, leading to reduced ac-
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curacy. Consequently, in anti-noise experiments, KF manifests enhanced stability, while

OF maintains superior accuracy under low-noise scenarios.

As for the convolutional kernel corresponding to this orthogonal group action, there

exist multiple generation approaches, which we omit further elaboration here. In practice,

our experiments with several such methods revealed accuracy rates nearly identical to

those of the OF+NOL configuration across all aforementioned experimental groups.
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CHAPTER 7 FURTHER APPLICATIONS AND
EXTENSIONS

This chapter focuses on addressing gaps and extending prior experimental findings.

It begins by supplementing earlier experiments with an analysis of scenarios where no

phoneme filtering is applied, providing insights into performance under realistic condi-

tions. Subsequently, it examines how different convolutional neural network architectures

perform in word and image classification tasks, showcasing their versatility and efficiency

across domains. The discussion then progresses to theoretical advancements, where the

analysis of convolutional kernels is extended into the framework of Riemannian geom-

etry, offering a novel perspective on optimization and robustness. Finally, the chapter

concludes with an in-depth review of the study’s limitations, acknowledging constraints

in scope and methodology while outlining directions for future improvement. The con-

volutional neural network architecture discussed in this chapter is identical to the one in

Chapter 6, consisting of two convolutional layers with 64 filters each.

7.1 Supplements on Phonemes

While previous noise robustness evaluations were conducted under phoneme-

averaged conditions, an idealized scenario deviating from empirical requirements, this

section implements dataset-averaged noise testing (without phoneme-level data filtering)

to assess performance under more realistic conditions.

The following four figures illustrate the training performance of various neural net-

work architectures across four datasets, SpeechBox (Figure 7-1),  SpeechBox (SNR=0)

(Figure 7-2),  TIMIT (Figure 7-3), and  LJSpeech (Figure 7-4), under conditions where no

phoneme count filtering was applied.

The experimental results align with expectations in that our proposed convolutional

kernel remains optimal, particularly under noise-free conditions. However, it is notewor-

thy that neural networks incorporating  circular features and  Klein features unexpectedly

outperformed traditional architectures, despite prior assertions of their incompatibility

with audio tasks. This apparent contradiction may stem from an overlooked preprocess-

ing step:  audio normalization was omitted in earlier implementations. Upon revisiting the
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Figure 7-1 Comparisons of Loss and Accuracy on SpeechBox without Selection.

Figure 7-2 Comparisons of Loss and Accuracy on SpeechBox(SNR=0) without Selection.

codebase, we identified this omission as a plausible root cause for the previously observed

accuracy degradation.

7.2 Applications to Words

Notably, the proposed convolutional layer demonstrates cross-linguistic efficacy,

achieving excellent recognition accuracy not only for phoneme-level tasks but also in

word-level classification. To systematically validate this capability, this section utilizes

the full Speech Commands benchmark dataset[94], a dedicated word-level corpus explic-

itly designed with approximately balanced frequency distributions across all lexical en-

tries, for comprehensive evaluation.
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Figure 7-3 Comparisons of Loss and Accuracy on TIMIT without Selection.

Figure 7-4 Comparisons of Loss and Accuracy on LJSpeech without Selection.

Figure 7-5 demonstrates that our neural network model exhibits robust adaptability

to word-level tasks, further validating its versatility across lexical processing challenges.

7.3 Applications to Images

Applying these findings retroactively to image processing tasks demonstrates per-

formance metrics comparable to those achieved with Klein bottle configurations, validat-

ing the cross-domain adaptability of method. We selected the CIFAR10 dataset for its

higher complexity relative to MNIST, providing a more challenging benchmark to eval-

uate model robustness in handling intricate feature representations (see Figure 7-6).

Figure 7-6 demonstrates that our model achieves superior performance over conven-
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Figure 7-5 Comparisons of Loss and Accuracy on SpeechCommands.

Figure 7-6 Comparisons of Loss and Accuracy on CIFAR10.

tional neural networks on image-based tasks, while maintaining parity with architectures

utilizing Klein features, underscoring its cross-modal versatility.

7.4 Riemannian Geometric Theoretical Framework for Kernel
Space Analysis

In Chapters 5 and 6, we examined the topological properties of the spectrogram con-

volution kernel space and proposed novel kernel constructions. In this section, we extend

the discussion by integrating a Riemannian geometric perspective. This enriched frame-

work not only reinforces our previous analyses but also introduces new tools to quantify

kernel variations, assess noise robustness, and inspire advanced optimization strategies in
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neural network architectures.

7.4.1 Differential Geometric Interpretation of Kernel Contrast

Building on the metric tensor 𝑔 established in Theorem 2.9, we now provide a dif-

ferential geometric perspective on the contrast dynamics in the kernel space.

Definition 7.1 (Contrast Form): For any kernel 𝑨 ∈ 𝑀, define the contrast 1-form𝜔con ∈ Ω1(𝑀) as: 𝜔con|𝑨 = 1‖𝑨‖ 2∑𝑖=1 (𝒗𝑖 − 𝒗𝑖+1) ⊗ 𝑑𝒗𝑖,
where 𝑑𝒗𝑖 denotes the exterior derivative of the column vector 𝒗𝑖, and ‖⋅‖ is an appro-
priate norm on𝑀.
Proposition 7.1 (O(3)-Invariance): The contrast form defined above is invariant un-

der the action of the orthogonal group:𝑄∗𝜔con = 𝜔con, ∀𝑄 ∈ O(3),
where 𝑄∗ denotes the pullback via the group action 𝜃(𝑄, ⋅).
Proof: Let 𝑄𝑨 = [𝑄𝒗1, 𝑄𝒗2, 𝑄𝒗3]. Using the O(3)-invariance of the norm ‖⋅‖, we
have:𝑄∗𝜔con|𝑨 = 1‖𝑄𝑨‖ 2∑𝑖=1 (𝑄𝒗𝑖 − 𝑄𝒗𝑖+1) ⊗ 𝑑 (𝑄𝒗𝑖) ,

= 1‖𝑨‖ 2∑𝑖=1 𝑄 (𝒗𝑖 − 𝒗𝑖+1) ⊗ 𝑄 (𝑑𝒗𝑖) , (by group action properties)

= 1‖𝑨‖ 2∑𝑖=1 (𝒗𝑖 − 𝒗𝑖+1) ⊗ 𝑑𝒗𝑖 (since 𝑄𝑇𝑄 = 𝐼)
= 𝜔con|𝑨. ∎

7.4.2 Differential Geometric Analysis of Noise Robustness

In practical scenarios, convolution kernels encounter noise perturbations that can af-

fect performance. To incorporate noise into our framework, consider a small perturbation𝛿𝑨 applied to a kernel 𝑨 ∈ 𝑀. The resulting variation in the contrast form is expressed

via the Lie derivative: 𝛿𝜔con = ℒ𝛿𝑨𝜔con,
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where ℒ𝛿𝑨 denotes the Lie derivative along the vector field generated by 𝛿𝑨. This for-
mulation captures the sensitivity of the kernel’s contrast dynamics to perturbations.

Proposition 7.2 (Noise Robustness Criterion): If for each admissible noise per-
turbation 𝛿𝑨, it holds that ‖ℒ𝛿𝑨𝜔con‖ ≤ 𝜖,
for some small constant 𝜖 > 0, then the kernel space 𝑀 demonstrates inherent noise

robustness, maintaining stable contrast properties under such perturbations.

Proof: By linearizing 𝜔con around 𝑨 via a Taylor expansion and invoking the O(3)-
invariance, we achieve a bound on the first-order variation of the contrast form. This

ensures that directional perturbations induced by 𝛿𝑨 remain controlled, thereby implying
robustness of the kernel configuration. ∎
7.4.3 Sectional Curvature and its Implications for Regularization

A key geometric quantity in assessing local stability is the sectional curvature. Given

a 2-dimensional subspace of the tangent space 𝑇𝑨𝑀 spanned by vectors 𝑋, 𝑌, the sectional
curvature is defined as: 𝐾(𝑋, 𝑌) = ⟨𝑅(𝑋, 𝑌)𝑌, 𝑋⟩‖𝑋‖2‖𝑌‖2 − ⟨𝑋, 𝑌⟩2 ,
where 𝑅(⋅, ⋅) is the Riemannian curvature tensor. Regions in 𝑀 with low sectional cur-

vature indicate a locally “flat” geometry, often associated with improved stability and

robustness in the optimization landscape.

Regularization via Curvature Control

High curvature regions may signal sensitive or unstable kernel configurations.

Therefore, one may augment the training loss with a regularization term penalizing high

curvature: ℒreg = 𝜆∫𝑀 𝜙(𝐾(𝑋, 𝑌)) 𝑑𝜇,
where 𝜙 is an appropriate penalty function, 𝜆 > 0 a regularization parameter, and 𝑑𝜇 the
measure on𝑀. This approach promotes smoother variations in the kernel space, aligning
with the qualitative insights from Chapters 5 and 6.
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7.4.4 Advanced Riemannian Optimization Perspectives

The geometric framework naturally motivates the use of Riemannian optimization

techniques. In contrast to standard gradient descent, Riemannian gradient descent respects

the manifold structure of𝑀. The update rule is given by:𝑘𝑛+1 = exp𝑘𝑛(−𝜂 grad𝑀 𝑓(𝑘𝑛)),
where exp𝑘𝑛 denotes the Riemannian exponential map at 𝑘𝑛, 𝜂 is the learning rate, and
grad𝑀 𝑓(𝑘𝑛) represents the gradient of the objective function on the Riemannian man-
ifold, specifically evaluated at the point 𝑘𝑛, as discussed in[86]. This procedure moves
along geodesic paths, inherently incorporating both the metric and curvature information,

and potentially yielding more stable convergence behavior.

7.4.5 Unified Theoretical Insights and Future Directions

To summarize, the integration of Riemannian geometric tools into the analysis of the

kernel space achieves the following:

• Quantitative Contrast Analysis: The contrast form provides a differential geo-

metric measure of kernel variation, extending the topological descriptions fromChapter 5.

• Noise Robustness: The Lie derivative-based noise analysis establishes rigorous

criteria for the stability of kernel contrast under perturbations, reinforcing the discussions

of Chapter 6.

• Curvature-Aware Regularization: Sectional curvature insights offer a basis for

developing regularization strategies that penalize unstable, highly curved regions in the

kernel space.

• Advanced Optimization: The use of Riemannian gradient descent and related

techniques leverages the manifold structure of𝑀, opening avenues for more efficient and
stable training algorithms.

These unified insights not only enrich the theoretical framework presented in earlier

chapters but also suggest several promising directions for future research:

（1）Developing hybrid topological-geometric regularizers to improve kernel sta-

bility.

（2）Empirically validating Riemannian optimization techniques in neural network

training.

（3）Extending the noise analysis to encompass adversarial perturbations and more

general noise models.
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（4）Investigating the interplay between sectional curvature and generalization per-

formance in deep learning.

Such endeavors could lead to a more robust, theoretically grounded approach to neural

network optimization and design.

7.5 Limitations

Despite the promising results demonstrated in this dissertation, certain limitations

constrain its current scope and highlight directions for further improvement. These limi-

tations are categorized below:

• Scope Constraint inMultimodal Analysis: While the research framework aimed

to incorporate video data for multimodal learning, technical constraints such as real-time

video processing challenges and insufficient alignment between audio and visual data

pipelines restricted the implementation. Addressing these challenges will require deeper

exploration of synchronized audiovisual models.

• Incomplete Spatial Characterization in Speech Processing: Although opti-

mized convolutional kernels demonstrated improvements for speech tasks, the framework

lacks tools to fully characterize spatial dynamics in speech patterns, such as incorporating

3D vocal tract modeling or airflow dynamics. Such limitations reduce the precision of

phoneme distribution mapping, particularly in high-dimensional acoustic spaces.

• Restricted Topological Applicability in Kernel Construction: The study pri-

marily focused on leveraging SO(3)-informed kernels and persistence-based topological
tools. However, the integration of advanced topological frameworks, such as graph persis-

tent homology, remains underexplored. Expanding these methods could enhance kernel

versatility for non-Euclidean data domains.

• Limited Robustness Under Adversarial Noise: While the proposed methods

showed moderate resilience against white Gaussian noise, their performance under ad-

versarial perturbations has not been systematically evaluated. This restricts the general-

izability of the kernels in highly noisy environments and adversarial settings.

• Computational Resource Dependency: The mathematical complexity of kernel

optimization and the high-dimensional manifold structures necessitate significant com-

putational resources. This reliance may hinder scalability for large-scale applications or

lower-resource settings, limiting real-world deployability.

Future work addressing these limitationswill focus on expanding the currentmethod-
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ologies to encompass multimodal learning, advanced topological features, and robustness

measures while improving computational efficiency and scalability.
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CONCLUSION

Main Results

This dissertation integrates topological methods into neural network architectures,

with a specific focus on convolutional kernels, achieving the following main results:

（1）Reproduction of Core Experimental Results: This study successfully repli-

cates key experimental results from Love and Carlsson’s work on MNIST and CIFAR10

datasets, validating their proposed methodologies and demonstrating their robustness.

The systematic replication process not only confirms the effectiveness of topologically-

informed convolutional kernels but also provides a baseline for extending these methods

to new data modalities.

（2）Exploration of Topological Characteristics in Speech Signals: By lever-

aging persistent homology and principal component analysis, this research pioneers the

extraction of topological structures from weight vectors in speech signal datasets. The

integration of such topological insights marks an initial step towards bridging the gap

between speech recognition models and topological data analysis, fostering innovative

approaches for phoneme-based feature extraction.

（3）SO(3)-Inspired Convolution Kernels: By leveraging the group action of the

special orthogonal group 𝑆𝑂(3), the study introduces a structured framework for con-
volutional kernels tailored to spectrogram analysis. These kernels effectively capture

symmetry and hierarchical data properties, demonstrating utility across tasks like speech

recognition.

（4）Topological Representations in Neural Networks: The work extends ex-

isting methodologies by embedding neural weight vectors into a topological framework,

highlighting the interpretive potential of persistence diagrams and adjacency complexes

in analyzing weight distributions.

（5）Theoretical Basis for Manifold Analysis: A theoretical framework is es-

tablished to bridge geometric representations and spectral optimization, laying a foun-

dation for integrating manifold-based methods into feature extraction and optimization

processes.

（6）Supplemental Exploration of Riemannian Geometry: The supplementary
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integration of Riemannian geometry tools into kernel analysis paves the way for potential

advancements in geometric regularization and kernel optimization. These initial explo-

rations suggest promising directions for future work on stability and robustness in kernel-

based neural architectures.

Innovation points

（1）Leveraging topological information for speech signal recognition: In-

spired by the successful application of convolutional kernels in image analysis by Love

et al.[53], this work introduces the spectrogram as a crucial analytical tool for speech data.

By treating speech data as two-dimensional spectrograms, this approach bridges method-

ologies from image processing to the domain of speech.

（2）Theoretical Definition of Orthogonal Feature Layer (OF) for Speech:

Based on the unique properties of speech data, this research formulates representations

for speech contrast and develops principal bundle representations of speech convolutional

kernels. The resulting filters, termedOrthogonal Feature Layer(OF), form a novel class

of convolutional kernels designed specifically for speech data.

（3）Higher Performance on Phoneme Data: Neural networks constructed us-

ing OF convolutional kernels are rigorously compared to traditional neural networks and

the networks proposed by Love et al. on phoneme datasets. The results indicate that OF

achieves the highest accuracy under low noise conditions. However, in high noise envi-

ronments, OF’s performance declines, with KF (kernel filters) emerging as the superior

approach.

（4）Extension to Word and Image Data: The applicability of OF convolutional

kernels is further explored by extending their use to word datasets and image datasets.

Results demonstrate consistent generalization properties, showcasing the versatility and

robustness of the proposed methodology.

（5）Theoretical Extensions to Riemannian Geometry: To enhance the theo-

retical foundations, this research attempts to generalize the convolutional kernel theory

within the framework of Riemannian geometry. This extension provides deeper insights

and opens avenues for further exploration and application.
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Future Work

Building on the contributions of this dissertation, future research could explore the

following directions:

（1）Multimodal Learning: Investigate the application of topological methods in

multimodal tasks, such as synchronized audio-visual recognition or sensor data integra-

tion, aiming to evaluate the adaptability of topology-enhanced architectures.

（2）Advanced Adversarial Robustness: Explore the role of topological kernels

in defending against adversarial attacks, focusing on their capacity to preserve model

integrity under perturbations.

（3）Extended Topological Applications: Extend the use of persistent homology

and other invariants to non-Euclidean data, such as graph and point cloud structures, fur-

ther validating their versatility.

（4）Optimization in High-Dimensional Spaces: Employ advanced Riemannian

optimization strategies to refine kernel parameterizations, leveraging geometric con-

straints to improve convergence and generalization.

（5）Topological-Geometric Feature Extraction: Combine persistent homology

and geometric data analysis more systematically to uncover latent features across diverse

data types (e.g., dynamic networks, manifolds), adapting methodologies to their intrinsic

topological and geometric properties. In fact, in other work by our research group[20], the

results of persistent homology have been used as topological features input into machine

learning and neural networks.
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