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摘 要

摘 要

随着大数据和人工智能的快速发展，从复杂高维数据中提取有意义信息已成

为当前研究热点之一。持续同调作为新兴的数据分析方法，以其独特的视角和强

大的数据表征能力，在处理复杂非线性、非欧氏结构数据方面展现出巨大潜力。而

持续模作为持续同调的理论基础，从持续同调兴起后不久就受到众多数学家的关

注。当前研究者们在理论层面对持续模的关注主要集中于多参数持续模的离散不

变量的寻找以及将持续模的思想与其他数学领域相结合。

在本文中，我们首先介绍了持续同调的基础知识与基本结果，特别是稳定性

定理。之后我们介绍了持续模的相关结果，主要是分类定理和参数化定理。由于对

持续模不能直接使用瓶颈距离，我们进一步介绍了瓶颈距离的推广，即交错距离，

交错距离是持续模中的一个伪度量。

虽然单参数持续模的结构已经得到了完整地刻画，但是对于多参数持续模的

研究还存在诸多挑战。因为多参数持续模可以被看作是多元多项式环 𝕜[𝑥1, ⋯ , 𝑥𝑛]
上的模，而这个模的分解是一个极其复杂的问题。因此研究者们便将目光转向了

寻找多参数持续模的不完全离散不变量以及对一些特殊的持续模做完全分解。作

为本文的一个主要结果，我们将 2参数持续模的强正合性条件推广到 3参数的情
况，并且证明了这个条件是 3参数持续模能够进行块分解的充分必要条件。
同时，研究者们关注的另一个问题就是持续模的稳定性。在这个问题中，科

研工作者们关注的持续模不仅是通常所考虑的持续模，即函子 (ℝ,≤) → Vec𝕜，其
中 Vec𝕜是有限维向量空间的范畴，也会考虑更一般的持续模 𝑃 → 𝐶，其中 𝑃是一
个偏序集，𝐶 是任意范畴。这里的目标范畴 𝐶 可以是拓扑空间的范畴 Top，也可
以是其他代数对象的范畴，例如微分分次 Lie代数的范畴 DGL，交换微分分次代
数的范畴 CDGA等。在持续模的稳定性的研究中，我们的主要贡献是定义了有理
ℝ-空间 𝕏 ∶ (ℝ,≤) → Topℚ的一种代数模型，称为持续自由李模型𝑀𝑄𝑢𝑖(𝕏) ∶ (ℝ,≤
) → DGL，并且我们证明了这个模型的存在性与稳定性。

关键词：持续模；稳定性；强正合性；持续自由李模型
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ABSTRACT

ABSTRACT

With the rapid development of big data and artificial intelligence, extracting mean-
ingful information from complex high-dimensional data has become a current research
hotspot. Persistent homology, as an emerging topological data analysis method, demon-
strates immense potential in handling complex nonlinear and non-Euclidean structured
data through its unique perspective and powerful data characterization capabilities. Per-
sistence modules, serving as the theoretical foundation of persistent homology, have at-
tracted significant attention from mathematicians since the emergence of persistent ho-
mology.

In this paper, we first introduce fundamental knowledge and key results of persistent
homology, particularly the stability theorem. Subsequently, we present core results about
persistence modules, focusing on classification theorems and parameterization theorems.
Since the bottleneck distance cannot be directly applied to persistence modules, we intro-
duce its generalization - the interleaving distance 𝑑𝐼, which serves as a pseudo-metric on
persistence modules.

The structure of 1-parameter persistence modules has been fully characterized; how-
ever, research on multi-parameter persistence modules still presents significant chal-
lenges. This is because multi-parameter persistence modules can be viewed as modules
over the multivariate polynomial ring 𝕜[𝑥1, ⋯ , 𝑥𝑛], and the decomposition of such mod-
ules is an extremely complex problem. Therefore, researchers have shifted their focus
to finding incomplete discrete invariants for multi-parameter persistence modules and to
performing complete decompositions for some special class of multi-parameter persis-
tence modules. One of this paper’s main results of this paper is the extension of the strong
exactness condition for 2-parameter persistence modules to the 3-parameter case. This
condition is a necessary and sufficient condition for the block-decomposition of three-
parameter persistence modules.

Meanwhile, another central question in the study of persistence modules is the sta-
bility of persistence modules. In this context, researchers focus not only on the com-
monly considered persistence modules, that are functors (ℝ,≤) → Vec𝕜 to the category
of finitely dimensional vector spaces, but also on the more general persistence modules
of the form 𝑃 → 𝐶, in which 𝑃 is a poset and 𝐶 is any category. The target category 𝐶

II



ABSTRACT

may be the category of topological spaces Top, or categories of other algebraic objects,
such as the category of differential graded Lie algebras DGL, the category of commu-
tative differential graded algebras CDGA, etc. In the study of the stability of persistent
modules, our main contribution is the definition of an algebraic model for the rational
ℝ-space 𝕏 ∶ ℝ → Topℚ, termed the persistence free Lie model 𝑀𝑄𝑢𝑖(𝕏) ∶ ℝ → DGL,
along with the proof of the existence and stability of this model.

Keywords: Persistence module; Stability; Strong exactness; Persistence free Lie model
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Background

Persistence modules[28,84,106], as algebraic structures encoding the evolution of topo-
logical features across scales, have become central to the mathematical framework of
topological data analysis(TDA)[22,32,41,106]. Their development, applications, and theo-
retical richness bridge pure mathematics, computational topology, and data science. This
section traces the origins of persistence modules, their relationship to persistent homol-
ogy[41,106], their significance in modern mathematics, and recent advances in the field.

The development of multi-parameter persistent homology exemplifies such progress.
Where conventional TDA relies on radius-based filtrations, novel approaches in applied
domains like molecular science[101] now incorporate additional parameters(e.g., curva-
ture). The introduction of multi-parameter approaches creates fundamental challenges:
the decomposition of multi-parameter persistence modules and the identification of their
discrete invariants require new mathematical frameworks. Furthermore, while homology
groups provide coarse topological characterizations, researchers are developing novel al-
gebraic frameworks that preserve finer topological information without compromising
computational traceability.

Within this context, our work makes two critical contributions: the block-
decomposition of multi-parameter persistence modules and the development of a novel
algebra model for the filtration of simplicial complexes. These advances address both
theoretical and practical dimensions of contemporary persistent homology research.

Historical Development of Persistence Modules

The concept of persistence modules emerged in the early 2000s as a formalization
of ideas in persistent homology, but its roots can be traced back to earlier mathematical
frameworks. The early focus of persistent homology research was on what is now known
as persistent Betti numbers, specifically rank (𝐻𝑖(𝕏𝑠) → 𝐻𝑖(𝕏𝑡)). This concept can be
traced back to the work of Frosini[88] in 1992, although he used the term ’size function’
at the time. Independently of Frosini’s research, Robins[93] formally introduced the term
’persistent Betti numbers’ in 1999, aiming to quantify rank (𝐻𝑖(𝕏𝑠) → 𝐻𝑖(𝕏𝑡)). It is

1



CHAPTER 1 INTRODUCTION

worth noting that the stability discussed in Robins’ paper was associated with the Haus-
dorff distance. In Morse theory[81] and spectral sequences[80], the idea of tracking topo-
logical features as varying parameters was implicit, laying the conceptual groundwork for
persistence. Subsequently, the computational turn in the 1990s, driven by Edelsbrunner,
Letscher, and Zomorodian’s work[41] on alpha shapes and persistent homology, crystal-
lized the need for a discrete, computable framework. This shift marked the transition from
theoretical ideas to practical tools, setting the stage for the formalization of persistence
modules.

The foundational work of Zomorodian and Carlsson[106] established persistence
modules as functors (ℕ,≤) → Vec𝕜, effectively modeling them as graded modules over
polynomial rings. This algebraic framework enabled the encoding of topological fea-
tures over filtrations, with their structure theorem[106] asserting that persistence modules
decompose into interval summands under mild assumptions. This result provided the the-
oretical foundation for persistence diagrams and barcodes, which have become ubiquitous
tools in topological data analysis (TDA).

The introduction of the interleaving distance by Chazal et al.[26] further advanced
the field by extending the bottleneck distance, used in persistent homology, to the broader
context of persistence modules. The interleaving distance allowed persistence modules
to be compared and ensured stability under small perturbations, a critical property for
real-world applications.

After Zomorodian and Carlsson defined and studied the 1-parameter persistence
module, they pioneered the study of multi-parameter persistence modules[23], extending
the framework to higher-dimensional parameter spaces. This generalization introduced
new algebraic and computational challenges, particularly in decomposing and compar-
ing such persistence modules. Lesnick[75] later formalized the interleaving distance for
multi-parameter persistencemodules and proved the stability theorem for multi-parameter
persistence modules, establishing theoretical guarantees for their use in data analysis.

In summary, the development of persistence modules reflects a rich interplay of ideas
from algebraic topology, computational geometry, and data science. From their early
roots in Morse theory to their formalization and extension to multi-parameter settings,
persistence modules have become a cornerstone of modern topological data analysis.

2



CHAPTER 1 INTRODUCTION

Persistent Homology and Persistence Modules: A Symbiotic Rela-
tionship

Persistent homology, the computational engine of TDA, relies fundamentally on per-
sistence modules. The process begins with a filtration of simplicial complexes {𝐾𝑡}𝑡∈ℝ,
where each inclusion𝐾𝑠 ↪ 𝐾𝑡 for 𝑠 ≤ 𝑡 induces homologymaps𝐻𝑝(𝐾𝑠; 𝕜) → 𝐻𝑝(𝐾𝑡; 𝕜).
The collection of these homology groups and linear maps forms a persistence module that
can be decomposed into intervals representing the birth and death of topological features
(e.g., connected components, loops).

Such persistence modules have some key properties:
• Stability: The interleaving distance 𝑑𝐼, a pseudo-metric on persistence modules,

ensures that small perturbations in point clouds yield only small changes in persistence
diagrams[3,11].

• Computability: the decomposition theorems and the parameterization theo-
rem[106] enable efficient algorithms for computing persistence diagrams and barcodes,
implemented in libraries like Gudhi[78] and Ripser[4].

• Interpretability: Persistence diagrams summarize topological features of point
clouds, bridging qualitative analysis with quantitative analysis[57,63,90,97].

For multi-parameter persistence modules (ℕ𝑛, ≤) → Vec𝕜, however, decomposi-
tion fails in general, leading to active research into alternative invariants (e.g., rank func-
tions[39], generalized persistence diagrams[68], and Hilbert functions[83]) and algebraic
formulations (e.g., quiver representations[94]).

Applications of Persistence Modules

The versatility of persistence modules has driven their adoption across a wide range
of disciplines, including but not limited to the applications discussed below.

In the field of materials science, persistent homology serves as a powerful tool for
detecting and quantifying the microstructure of materials[87]. Specifically, it enables the
identification of the number, size, distribution, and density of voids within material sam-
ples. Additionally, persistent homology can be applied to structural analysis of materials,
including the study of crystallization in granular systems and the formation of crazes in
polymers[19]. Beyond the applications described here, more extensive applications of per-
sistent homology in materials science can be found in references[64,72,76,99].

In robotics, Adams andCarlsson[2] employed zigzag persistence to investigate the ex-

3



CHAPTER 1 INTRODUCTION

istence of evasion paths in sensor networks. Similarly, Silva and Ghrist[37] utilized persis-
tent homology to address the coverage problem in sensor networks with minimal sensing
capabilities, demonstrating its versatility in solving complex network-related challenges.
In addition, there are also some other works on the application of persistence modules in
robotics[10,56,86,100,104].

In the biomedical field, persistent homology has been effectively applied to a variety
of problems. For instance, Chan et al.[25] used persistent homology to characterize clonal
evolution, reassortment, and recombination in RNA viruses. Meanwhile, Y. Dabaghian
et al.[35] developed a topological framework for hippocampal spatial maps using persis-
tent homology. Additionally, Giusti et al.[53] leveraged persistent homology to identify
meaningful structures in neural activity and connectivity data, showcasing its potential in
advancing neuroscience research. Readers can also find more applications in the refer-
ences[1,16,38].

In time series analysis, persistence modules also play a significant role. By em-
ploying Takens’ embedding, time series data can be reconstructed into geometric spaces,
allowing persistent homology to extract and analyze their topological features[43,67,85].
This approach provides valuable insights into the underlying structure and dynamics of
time-dependent data. At the same time, many scholars have done a lot of research on this
topic[29,58,91,98].

These applications underscore the dual role of persistence modules as mathematical
objects of intrinsic interest and as tools for extracting meaning from complex data.

Recent Theoretical Advances

In recent years, the persistence module has made a lot of progress in theoretical re-
search.

Multi-parameter persistence modules (e.g., indexed by ℝ𝑛) generalize the 1-
parameter case but face algebraic complexity. First, Carlsson et al. showed us the al-
gebraic complexity of multi-parameter persistence modules (ℕ𝑛, ≤) → Vec𝕜. Secondly,
many scholars used different methods to find the incomplete discrete invariants of multi-
parameter persistence modules and the complete discrete invariants of special persistence
modules. Oudot and Scoccola[83] used the Betti number and Hilbert function as the invari-
ants and proved the stability of the invariants. Mémoli et al. used rank invariants as the
invariant and designed pseudo-code to compute rank invariants[39]. Cochoy and Oudot
proved the block-decomposition theorem[31] of special 2-parameter persistence modules

4



CHAPTER 1 INTRODUCTION

satisfying the 2-parameter strong exactness. Additionally, some scholars try to reinterpret
the persistence module with theories other than the quiver representation theory. Kashi-
wara and Schapira[66] interpret some results of persistent homology and barcodes (in any
dimension) with the language of microlocal sheaf theory. Fersztand et al. used the Harder-
Narasimhan filtration to study persistence modules and find invariants[48-49].

When considering the persistence modules (ℕ,≤) → Vec𝕜, the bottleneck distance
𝑑𝐵 is equal to the interleaving distance 𝑑𝐼. However, when the target category we consider
is not Vec𝕜, or when persistence modules cannot be decomposed into the sum of interval
modules, we cannot use the bottleneck distance to describe the difference between the
two persistence modules. Extending the bottleneck distance to the interleaving distance
allows us to compare the differences between two persistence modules. Blumberg and
Lesnick[12] defined the homotopy-interleaving distance 𝑑𝐻𝐼 and proved the stability and
the universality of 𝑑𝐻𝐼 Lesnick[75] discussed the stability of multi-parameter persistence
modules and further extended the definition of interleaving distance. Zhou[105] combined
persistence modules with rational homotopy theory, defined persistence Sullivan models
and proved the stability of persistence Sullivan models.

1.2 Statement of Results

This work establishes several results in the study of persistence modules, with the
main contributions organized into two parts. On the one hand, we introduce the idea of
rational homotopy theory into persistence modules 𝕏 ∶ (ℝ,≤) → Topℚ, define persis-
tence minimal free Lie models 𝑀𝑄𝑢𝑖(𝕏) ∶ (ℝ,≤) → Ho(DGL), and prove the existence
of persistence minimal free Lie models. At the same time, we also discuss the stability of
persistence minimal free Lie models. On the other hand, based on Cochoy and Oudot’s
results[31] on the block-decomposition of 2-parameter persistence modules, we generalize
the 2-parameter strong exactness condition and prove the block-decomposition theorem
of 3-parameter persistence modules𝕄 ∶ ℝ3 → Vec𝕜.

Note: If a persistence module is a functor to Vec𝕜, we call the persistence module
pointwise finite-dimensional and abbreviate it as pfd.

A. Persistence Minimal Free Lie Models

Rational homotopy theory, pioneered by Quillen[89], associates to a rational space
𝑋 ∈ ob Topℚ a minimal free Lie algebra encoding its homotopy type. By integrating per-
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sistence modules into this framework, we define a persistence minimal free Lie model that
is a functor 𝑀𝑄𝑢𝑖(𝕏) ∶ (ℝ,≤) → Ho(DGL) for any rational ℝ-space 𝕏, where a ratio-
nal ℝ-space is a functor from ℝ to the category of simply connected rational topological
spaces of finite type. The persistence module 𝑀𝑄𝑢𝑖(𝕏) ∶ ℝ → Ho(DGL) defined by us
is an algebraic model for the rational ℝ-space 𝕏. Our results provide novel theoretical
frameworks with implications for topological data analysis, which allows us to identify
more topological information about point clouds.

Theorem 1.1: For any rational ℝ-space 𝕏 ∶ (ℝ,≤) → Topℚ, there exists a persistence
minimal free Lie model𝑀𝑄𝑢𝑖(𝕏) ∶ (ℝ,≤) → Ho(DGL) such that𝑀𝑄𝑢𝑖(𝕏)𝑡 is a minimal
free Lie model of 𝕏𝑟 and𝑀𝑄𝑢𝑖(𝕏)(𝑠 ≤ 𝑡) is a Lie representative of 𝕏(𝑠 ≤ 𝑡) up to weak
equivalences.

What’s more, we discuss the stability of persistence minimal free Lie models under
the interleaving distance 𝑑𝐼. The following Theorem tells us that the persistence minimal
free Lie model is a reasonable algebraic model for a rationalℝ-space 𝕏 ∶ ℝ → Topℚ, and
is more refined than the persistence module generated by computing homology groups.

Theorem 1.2: For any rational ℝ-spaces 𝕏 and 𝕐, we have
• 𝑑Ho(DGL)𝐼 (𝑀𝑄𝑢𝑖(𝕏),𝑀𝑄𝑢𝑖(𝕐)) ≤ 𝑑𝐻𝐼(𝕏, 𝕐) ≤ 𝑑𝐼(𝕏, 𝕐)

•
𝑑grVecℚ𝐼 (𝜋∗(𝕏), 𝜋∗(𝕐)) = 𝑑grVecℚ𝐼 (𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕏), 𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕐))

≤ 𝑑Ho(DGL)𝐼 (𝑀𝑄𝑢𝑖(𝕏),𝑀𝑄𝑢𝑖(𝕐))
• 𝑑grVecℚ𝐼 (𝐻∗(𝕏), 𝐻∗(𝕐)) = 𝑑

grVecℚ
𝐼 (𝕍,𝕎) ≤ 𝑑Ho(DGL)𝐼 (𝑀𝑄𝑢𝑖(𝕏),𝑀𝑄𝑢𝑖(𝕐))

Thismeans that𝑀𝑄𝑢𝑖(𝕏) retainsmore topological information than persistencemod-
ules𝐻∗ ∘𝕏 ∶ ℝ → Vecℚ for the rationalℝ-space𝕏. Meanwhile, 𝑑grVecℚ𝐼 (𝜋∗(𝕏), 𝜋∗(𝕐)) =
𝑑grVecℚ𝐼 (𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕏), 𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕐)) and 𝑑

grVecℚ
𝐼 (𝐻∗(𝕏), 𝐻∗(𝕐)) = 𝑑

grVecℚ
𝐼 (𝕍,𝕎) in-

dicate that 𝜋∗(𝕏) ≅ 𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕏) and 𝐻∗(𝕏) ≅ 𝕍 respectively. In fact, we also proved
this conclusion in the proof of the theorem.

B. block-decomposition of 3-Parameter Persistence Modules

Multi-parameter persistent homology has long been a pivotal direction in the devel-
opment of persistent homology. Multi-parameter filtrations can capture richer topological
features of point clouds compared to 1-parameter approaches, yet extracting data features
from multi-parameter persistent homology remains a significant challenge. Our proposed
block-decomposition theorem for 3-parameter persistence modules provides a theoretical
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foundation for feature extraction of 3-parameter persistent homology.
Building on Cochoy and Oudot’s block-decomposition theorems for 2-parameter

strongly exact persistence modules[31], we generalize block-decomposition strategies to
3-parameter conditions.

In 2-parameter persistence modules𝕄 ∶ (ℝ2, ≤) → Vec𝕜, Cochoy and Oudot[31] call
the 2-parameter persistence module𝕄 is 2-parameter strongly exact, if for all (𝑥1, 𝑥2) ≤
(𝑦1, 𝑦2) ∈ ℝ2, the following sequence is exact

𝕄(𝑥1,𝑥2)
(𝜌(𝑥1,𝑦2)(𝑥1,𝑥2) ,𝜌

(𝑦1,𝑥2)
(𝑥1,𝑥2) )−−−−−−−−−−−−→ 𝕄(𝑥1,𝑦2)⊕𝕄(𝑦1,𝑥2)

𝜌(𝑦1,𝑦2)(𝑥1,𝑦2)−𝜌
(𝑦1,𝑦2)
(𝑦1,𝑥2)−−−−−−−−−−−−→ 𝕄(𝑦1,𝑦2)

When considering the 3-dimensional persistence modules𝕄 ∶ ℝ3 → Vec𝕜, for any
(𝑥1, 𝑥2, 𝑥3) ≤ (𝑦1, 𝑦2, 𝑦3) ∈ ℝ3, there is a cubical commutative diagram and the diagram
induces the functor 𝒳(𝑆) ∶ 𝒫(𝑆) → Vec𝕜 with |𝑆| = 3, resulting in two morphisms
𝜓 ∶ 𝒳(∅) → lim

𝑇∈𝒫0(𝑆)
𝒳(𝑇) and 𝜑 ∶ colim

𝑇∈𝒫1(𝑆)
𝒳(𝑇) → 𝒳(𝑆), where 𝒫(𝑆) is the power set of

𝑆, and 𝒫0(𝑆) ∶= 𝒫(𝑆) ∖ {∅} and 𝒫0(𝑆) ∶= 𝒫(𝑆) ∖ {𝑆}.

𝕄(𝑥1,𝑦2,𝑦3)
//𝕄(𝑦1,𝑦2,𝑦3)

𝕄(𝑥1,𝑥2,𝑦3)

77ppppppppppp
//𝕄(𝑦1,𝑥2,𝑦3)

77ppppppppppp

𝕄(𝑥1,𝑦2,𝑥3)

OO

//𝕄(𝑦1,𝑦2,𝑥3)

OO

𝕄(𝑥1,𝑥2,𝑥3)
//

OO

77ppppppppppp
𝕄(𝑦1,𝑥2,𝑥3)

OO

77ppppppppppp

We call𝕄 3-parameter strongly exact, if𝕄 satisfies following conditions:
• for any 𝑟 ∈ ℝ,𝕄|{𝑟}×ℝ×ℝ,𝕄|ℝ×{𝑟}×ℝ,𝕄|ℝ×ℝ×{𝑟} are among 2-parameter strongly

exact.
• for any (𝑥1, 𝑥2, 𝑥3) ≤ (𝑦1, 𝑦2, 𝑦3) ∈ ℝ3, the associated morphisms 𝜓 and 𝜑 is

surjective and injective respectively.
Thus, following Cochoy and Oudot’s proof for the 2-parameter case, we prove the

decomposition theorem for the 3-parameter case.

Theorem 1.3: Let𝕄 be a pointwise finite-dimensional 3-parameter persistence module
satisfying the 3-parameter strong exactness. Then 𝕄 may decompose uniquely (up to
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isomorphism and reordering of the terms) as a direct sum of block modules:

𝕄 ≅ ⨁
𝐵∶blocks

𝕄𝐵

in which𝕄𝐵 ≅ ⨁𝑛𝐵
𝑖=1 𝕜𝐵 in which 𝑛𝐵 are determined by the counting functor 𝒞ℱ.

Remark 1.1: Although Lerch et al.[74] also obtained this result around the same time
independently, and a few months later, they extended the result to the case of any
finite-dimensional persistence module that satisfies certain exact conditions, our research
method has advantages. The main reason is that we use more general language to gen-
eralize the strong exactness, so our conditional generalization method has high mobility.
Through the universal property of limits and colimits, we can understand the reason why
there is no block-decomposition in general persistence modules to some extent.

1.3 Outline

In this chapter, we have introduced the history of persistence modules, the relation-
ship between persistence modules and persistent homology, and the applications and the-
oretical advances of persistence modules. Additionally, we have presented some of our
results.

In Chapter 2, we review the definitions and key results of persistent homology and
persistence modules, including some methods for constructing simplicial complexes from
point clouds. At the end of this chapter, we introduce a novel approach to identifying
invariants of multi-parameter persistence modules: the Harder-Narasimhan filtration. By
introducing persistent homology as a starting point, we aim to clarify the motivations
for studying persistence modules and the significance of extracting invariants from them
in topological data analysis. This chapter establishes both the practical foundation and
theoretical basis for our presentation of one of our results in Chapter 5, which is the block-
decomposition theorem for 3-parameter persistence modules.

In Chapter 3, we begin with the robustness of persistent homology, introducing the
bottleneck distance and the stability theorem for persistent homology. We then present
the interleaving distance, which strictly generalizes the bottleneck distance. Specifically,
when considering 1-parameter interval-decomposable persistencemodules, the bottleneck
distance and interleaving distance coincide. Finally, we introduce the homotopy inter-
leaving distance[12] on the persistence modules ℝ → TopCGWH, which can be viewed as

8
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a generalization of the interleaving distance under homotopy invariance. These concepts
and results discussed in this chapter will be instrumental in Chapter 4, where we present
another main result: the persistence minimal free Lie model.

Chapter 4 initiates with a foundational review of rational homotopy theory, followed
by an exposition of Zhou’s contributions[105]. Zhou’s work defined the persistence Sulli-
van models, with proof of its stability. In this chapter, our results are organized into two
key contributions: the definition and proof of the existence of persistence minimal free
Lie models, which extend the classical minimal free Lie model framework to the context
of persistence modules, and a discussion of the stability of persistence minimal free Lie
models.

In Chapter 5, we began by revisiting Cochoy and Oudot’s work[31] on the block-
decomposition of 2-parameter persistence modules. Subsequently, we generalized the
2-parameter definition of strong exactness to 3-parameter settings and, adapting the proof
strategy developed by Oudot and Cochoy, rigorously established the block-decomposition
theorem for 3-parameter persistence modules.

9
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CHAPTER 2 PERSISTENT HOMOLOGY AND
PERSISTENCE MODULES

In this chapter, we introduce persistent homology and persistence modules. Specif-
ically, we cover the foundational results of persistent homology, excluding the stability
theorem, which will be discussed in Chapter 3. We also introduce persistence modules,
focusing on the correspondence, classification, and parameterization for 1-parameter and
multi-parameter persistence modules. Finally, we present a novel approach to identifying
discrete invariants of persistence modules.

Through this chapter, we aim to demonstrate that studying the decomposition of
persistence modules is a meaningful endeavor, as persistence modules serve as the math-
ematical abstraction of persistent homology. By introducing both 1-parameter and multi-
parameter persistence modules, we provide readers with an intuitive understanding of
the challenges in studying multi-parameter persistence modules compared to their 1-
parameter counterparts.

2.1 Persistent Homology

The principle of persistent homology is to approximate topological spaces through
filtrations of simplicial complexes. We assume that the underlying space of the point cloud
is a topological space, and we can approximate the homology group of the topological
space by constructing the filtration of simplicial complexes and computing the homology
of simplicial complexes, and then inferring the topological properties of the space. Unless
otherwise specified, the coefficients are any field denoted as 𝕜.

In this section, we will first introduce the constructions and properties of filtrations of
simplicial complexes such as Čech complexes, Vietoris-Rips complexes, and others. Sec-
ond, we will introduce persistent homology, persistence diagrams[41], and barcodes[24].
More details can be found in the reference[40].

Constructions of Simplicial Complexes and Nerve Theorem

The common ways to construct a filtration of simplicial complexes include Čech
complexes[51], Vietoris-Rips complexes[92], Alpha complexes[21], Witness complexes[36].

10
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For the purpose of elucidating and showcasing the principle of persistent homology, we
will only introduce the Čech complex and Vietoris-Rips complex in this section, and other
constructions can be found in the reference[40].

To elaborate Čech complexes, we need to state the Nerve theorem.

Definition 2.1: Let 𝐹 be the finite collection of sets. The nerve consists of all non-
empty subcollections whose sets have a non-empty common intersection, Nrv𝐹 = {𝑋 ⊂
𝐹 ∶ ⋂𝐴∈𝑋 𝐴 ≠ ∅}.

Obviously, the nerve Nrv𝐹 is an abstract simplicial complex. Indeed, if⋂𝐴∈𝑋 𝐴 ≠ ∅
and 𝑌 ⊂ 𝑋, then⋂𝐴∈𝑌 𝐴 ≠ ∅. The nerve can be geometrically realized in some Euclidean
space of appropriate dimension, which allows us to meaningfully discuss its topological
and homotopy properties. Due to the geometric realization theorem, we can talk about the
topology and homotopy of Nrv𝐹. The nerve theorem, whose early versions are attributed
to[73],[14], and[103], is a basic result in algebraic and combinatorial topology.

Theorem 2.1: (Nerve)[5] Let 𝐹 be a finite collection of closed, convex sets in Euclidean
space. Then, the nerve of 𝐹 and the union of the sets in 𝐹 have the same homotopy
type. Specifically, if⋃𝐴∈𝐹 𝐴 is triangulable, each set in 𝐹 is closed, and every non-empty
intersection of sets in 𝐹 is contractible, then Nrv𝐹 ∼ ⋃𝐴∈𝐹 𝐴.

Now, we can define Čech complexes and state the rationality of the definition.

Definition 2.2: (Čech Complexes) Let 𝑆 be a finite set of points in ℝ𝑑 and 𝐵𝑥(𝑟) =
𝑥+𝑟𝔹𝑑 for the closed ball whose center is 𝑥 and radius is 𝑟. The Čech complex of points
cloud 𝑆 and radius 𝑟 is the nerve of this collection of 𝐵𝑥(𝑟) for all 𝑥 ∈ 𝑆, but each ball is
substituted with its center point, that is,

𝒞(𝑆)𝑟 ∶= {𝜎 ⊂ 𝑆 | ⋂
𝑥∈𝜎

𝐵𝑥(𝑟) ≠ ∅}.

Based on the definition, we can derive an equivalent description of Čech complexes:
𝜎 ∈ 𝒞(𝑆)𝑟 if and only if there exists a point 𝑦 ∈ ℝ𝑑 such that for any 𝑥 ∈ 𝜎, the distance
𝑑(𝑥, 𝑦) ≤ 𝑟. However, neither of the definitions of Čech complexes is straightforward
to implement computationally. Therefore, we need a construction method for simplicial
complexes that is computationally feasible, namely the Vietoris-Rips complexes.

Definition 2.3: (Vietoris-Rips Complexes) Let 𝑆 be a finite set of points in ℝ𝑑. The
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Vietoris-Rips complex of the point cloud 𝑆 with radius 𝑟 is defined as the collection of all
subsets of 𝑆 whose diameter is at most 2𝑟:

ℛ(𝑆)𝑟 = {𝜎 ⊂ 𝑆 | diam 𝜎 ≤ 2𝑟}.

From both definitions, we can deduce that if 𝑟 ≤ 𝑠, then 𝒞(𝑆)𝑟 and ℛ(𝑆)𝑟 are
simplicial subcomplexes of 𝒞(𝑆)𝑠 and ℛ(𝑆)𝑠, respectively. It is evident that a Čech com-
plex is the subcomplex of a Vietoris-Rips complex, i.e., 𝒞(𝑆)𝑟 ⊂ ℛ(𝑆)𝑟, because the
latter includes every simplex warranted by the given simplices. Meanwhile, we have
ℛ(𝑆)𝑟 ⊂ 𝒞(𝑆)√2𝑟, which can be proven with minimal effort.

The Nerve theorem guarantees that the Čech complex can describe the underly-
ing space of the point cloud. If we assume that the finite point cloud 𝑆 is randomly or
uniformly sampled from a topological space 𝑋, then the topological space, ⋃𝑥∈𝑆 𝐵𝑥(𝑟)
for some 𝑟 ≥ 0, can accurately reconstruct 𝑋. By the Nerve theorem, we know that
𝒞(𝑆)𝑟 ∼ ⋃𝑥∈𝑆 𝐵𝑥(𝑟), implies that the Čech complex is a reasonable combinatorial model
for the underlying space 𝑋.

In addition to these two complexes, there are numerous methods for constructing
simplicial complexes, including Alpha complexes, Witness complexes, and Neighbour-
hood complexes[65].

Persistent Homology and Persistence Diagrams

In the above statement, we can see that for any 𝑟 ≥ 0 and finite point cloud, a
simplicial complex can be constructed, such as the Čech complex. A natural question
arises: What happens to the corresponding simplicial complex as 𝑟 increases? How can
we describe this change? For a simplicial complex, we can use homology groups as an al-
gebraic invariant to characterize its structure[82][55]. Thus, as 𝑟 increases, we can describe
the change of simplicial complexes by analyzing the change of homology groups of these
simplicial complexes.

Let 𝐾 be a filtration of simplicial complexes, that is, an increasing sequence of sim-
plicial complexes:

∅ = 𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ ⊂ 𝐾𝑛.

The inclusions between simplicial complexes are simplicial maps denoted 𝑓𝑖,𝑖+1 ∶ 𝐾𝑖 →
𝐾𝑖+1. Additionally, we can assume that 𝐾𝑖+1 has exactly one more simplex than 𝐾𝑖 for all
𝑖. Then, the filtration induces a sequence of homology groups connected by homomor-
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phisms,

0 = 𝐻𝑝(𝐾0)
𝐻𝑝(𝑓0,1)⟶ 𝐻𝑝(𝐾1)

𝐻𝑝(𝑓1,2)⟶ 𝐻𝑝(𝐾2)
𝐻𝑝(𝑓2,3)⟶ ⋯

𝐻𝑝(𝑓𝑛−1,𝑛)⟶ 𝐻𝑝(𝐾𝑛)

again one for each dimension 𝑝. Note that the meaning of filtration varies slightly in
different scenarios, but the idea is similar.

To describe the change of homology classes, we need to define certain algebraic
invariants.

Definition 2.4: Let the 𝑝-th persistent homology groups 𝐻𝑝(𝑖, 𝑗) ∶= Im 𝐻𝑝(𝑓𝑖,𝑗), for
0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, and the 𝑝-th persistent Betti numbers 𝛽𝑝(𝑖, 𝑗) = rank 𝐻𝑝(𝑖, 𝑗).

In an analogous manner, we may extend the definition of persistent homology to
the reduced setting by utilizing reduced homology groups, thereby obtaining reduced per-
sistent homology groups and their associated reduced persistent Betti numbers. Here,
we adopt the convention that 𝐻𝑝(𝑖, 𝑖) is isomorphic to the 𝑝-th homology group of the
corresponding simplicial complex, that is, 𝐻𝑝(𝑖, 𝑖) ∶= 𝐻𝑝(𝐾𝑖). We know that the ho-
mology group of 𝐾𝑖 is the quotient 𝐻𝑝(𝐾𝑖) = 𝑍𝑝(𝐾𝑖)/𝐵𝑝(𝐾𝑖), in which 𝑍𝑝(𝐾𝑖) and
𝐵𝑝(𝐾𝑖) are the cycle and boundary of chain complexes 𝐶𝑝(𝐾𝑖), respectively. The per-
sistent homology groups comprise those homology classes of the complex 𝐾𝑖 that persist
through the inclusion map to 𝐾𝑗, which can be formally expressed as the quotient group
𝐻𝑝(𝑖, 𝑗) = 𝑍𝑝(𝐾𝑖)/(𝐵𝑝(𝐾𝑗) ∩ 𝑍𝑝(𝐾𝑖)).

Let 𝛼 ∈ 𝐻𝑝(𝐾𝑖) be a homology class. we say it is born at 𝐾𝑖, if 𝛼 ∉ Im 𝐻𝑝(𝑓𝑖−1,𝑖).
Furthermore, we say that it dies 𝐾𝑗 if it merges with another class as it goes from 𝐾𝑗−1 to
𝐾𝑗. The birth and death of homology classes correspond to the addition and merging of
simplices in the simplicial complex, respectively. If a homology class 𝛼 is born at 𝐾𝑖 and
dies when it arrives exactly at 𝐾𝑗, then we call the difference 𝑗 − 𝑖 the persistence of 𝛼.
And if a homology class never dies, then we call that it persists to infinity.

Once we have defined persistent homology groups and persistent Betti numbers,
we can characterize the structure of filtration of homology groups. We will represent
the filtration of homology groups of simplicial complexes by a multiset, which is called
persistence diagram or barcode. The elements of the multiset lie in the extended real
plane ℝ̄2 ∶= (ℝ∪{±∞})2, since some homology classes never die and persist to infinity.

Let

𝜇𝑝(𝑖, 𝑗) ∶= (𝛽𝑝(𝑖, 𝑗 − 1) − 𝛽𝑝(𝑖, 𝑗)) − (𝛽𝑝(𝑖 − 1, 𝑗 − 1) − 𝛽𝑝(𝑖 − 1, 𝑗))
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for all 𝑖 < 𝑗 and all 𝑝. From the above discussion, it can be seen that 𝛽𝑝(𝑖, 𝑗−1)−𝛽𝑝(𝑖, 𝑗)
is the dimension of the linear space consisting of all homology classes that are born at or
before 𝐾𝑖 and die at 𝐾𝑗. Similarly, (𝛽𝑝(𝑖 − 1, 𝑗 − 1)−𝛽𝑝(𝑖 − 1, 𝑗) is the dimension of the
linear space consisting of all homology classes that are born at or before 𝐾𝑖−1 and die at
𝐾𝑗. Thus, 𝜇𝑝(𝑖, 𝑗) is the dimension of the linear space consisting of all homology classes
that are born at 𝐾𝑖 and die at 𝐾𝑗.

Definition 2.5: For a filtration of simplicial complexes 𝐾, we can get a multiset called
𝑝-dimensional persistence diagram (𝑝-dimensional persistence barcode)

𝑑𝑔𝑚(𝐻𝑝(𝐾)) = {((𝑖, 𝑗), 𝑘) | 𝑘 = 𝜇𝑝(𝑖, 𝑗) and (𝑖, 𝑗) ∈ ℝ̄2}

in which (𝑖, 𝑗) is a element of the multiset and (𝑖, 𝑗) appears 𝜇𝑝(𝑖, 𝑗) times.

If we interpret (𝑖, 𝑗) as a point in ℝ̄2, the multiset is called the persistence diagram,
𝑑𝑔𝑚. If we interpret (𝑖, 𝑗) as an interval, the multiset is called the persistence barcode or
barcode ℬ. Due to some technical reasons that will be discussed in the next chapter, we
will include the points on the diagonal in 𝑑𝑔𝑚, assigning them infinite multiplicity.

Lemma 2.1: (Fundamental Lemma of Persistent Homology)[40] For every pair of in-
dices 0 ≤ 𝑘 ≤ 𝑙 ≤ 𝑛 and every dimension 𝑝, the 𝑝-th persistent Betti number is
𝛽𝑝(𝑘, 𝑙) = ∑𝑖≤𝑘 ∑𝑗>𝑙 𝜇𝑝(𝑖, 𝑗).

This is an important result: the lemma states that the persistence diagram encodes all
information about persistent homology groups. In the next section, we will restate per-
sistence diagrams that are complete invariants from an algebraic perspective and provide
an algebraic explanation of persistence diagrams. This will lead to a more intuitive un-
derstanding of the persistence diagram. Meanwhile, from the perspective of persistence
modules, we can more clearly understand the core concept of persistence and the diffi-
culties encountered in generalizing 1-parameter persistent homology to multi-parameter
persistent homology.

2.2 1-Parameter Persistence Modules

Persistence modules are the categorization[17] of persistent homology. The purpose
of studying persistence modules is to identify the discrete invariants of persistent homol-
ogy, enabling its more effective application in topological data analysis.

In general, a persistence module can be defined as a functor 𝐹 ∶ 𝐶 → 𝐷, in which 𝐶
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is a thin category and 𝐷 is any category. A category 𝐶 is said to be thin if, for every pair
of objects 𝑎, 𝑏 ∈ ob 𝐶, there exists at most one morphism from 𝑎 to 𝑏. Sometimes, the
category 𝐶 is defined as a poset 𝒫, where the ob 𝒫 is the set 𝒫, and morphisms are the
partial order of 𝒫. In specific studies, the thin category that we usually consider is (ℝ,≤)
or (ℤ, ≤). In category ℝ, the object is a real number 𝑟 ∈ ℝ, and the morphism 𝑟 → 𝑠
exists if and only if 𝑟 ≤ 𝑠. Similarly, we can define the category (ℤ, ≤).

Example 2.1: Examples of the persistence modules.
• 𝕏 ∶ (ℝ,≤) → Top
• 𝕍 ∶ (ℤ,≤) → Vec𝕜
• 𝕎 ∶ (ℝ𝑚, ≤) → Vec𝕜 in which (𝑎𝑖) ≤ (𝑏𝑖) if 𝑎𝑖 ≤ 𝑏𝑖 for 𝑖 = 1, 2,⋯ ,𝑚.

In the above section, we know that if we have a filtration of topological spaces,
then we can get a family of homology groups. The data of a family of homology groups
contains homology groups and homomorphisms between homology groups. Thus, in this
section and the next section, we will focus only on the family of homology groups over
some field 𝕜, which are vector spaces. Note that if the ground ring of homology groups is
𝑅, then the homology groups are also modules over 𝑅. Some knowledge of commutative
algebra will be used without proof. The details can be found in[28,42,96].

This section mainly introduces the correspondence, classification, and parameter-
ization of 1-parameter persistence modules[106]. For the convenience of discussion, in
this section, we will mainly consider the definition of 1-parameter persistence modules as
follows,

Definition 2.6: A 1-parameter persistence module is a functor 𝕄 ∶ (ℕ,≤) → Mod𝑅
from the category of natural numbers to the category of modules over 𝑅, for some ring 𝑅.
Equivalently, a 1-parameter persistence module𝕄 = {𝑀𝑖 , 𝑚𝑖,𝑗}0≤𝑖≤𝑗 is also a collection
of 𝑅-modules𝑀𝑖 equipped with homomorphisms𝑚𝑖,𝑗 ∶ 𝑀𝑖 → 𝑀𝑗.

We define𝕄𝑖 ∶= 𝕄(𝑖) and𝕄𝑖,𝑗 ∶= 𝕄(𝑖 ≤ 𝑗). In discussion of interleaving, we will
use 𝕄(𝑘) to denote a new functor such that 𝕄(𝑘)𝑖 ∶= 𝕄𝑘+𝑖 and 𝕄(𝑘)𝑖,𝑗 ∶= 𝕄𝑖+𝑘,𝑗+𝑘,
rather than an object in a target category. Sometimes, we use also Σ𝑘𝕄 to denote the
𝑘-shift of𝕄. According to our definition, it is evident that𝕄𝑖 = 𝑀𝑖 and𝕄𝑖,𝑗 = 𝑚𝑖,𝑗.

Reviewing the discussion of persistent homology, this definition of 1-parameter per-
sistence modules is reasonable. Meanwhile, we will suppose the 1-parameter persistence
modules that we will discuss are of finite type, i.e.
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Definition 2.7: A 1-parameter persistence module𝕄 = {𝑀𝑖 , 𝑚𝑖,𝑗}0≤𝑖≤𝑗 is of finite type
if each component 𝑅-module 𝑀𝑖 is a finite generated and if 𝑚𝑖,𝑗 are isomorphic for 𝑘 ≤
𝑖 ≤ 𝑗 for some 𝑘.

Consider a 1-parameter persistence module𝕄 = {𝕄𝑖 , 𝑚𝑖,𝑗}0≤𝑖≤𝑗 over 𝑅. We endow
𝑅[𝑥] with the standard grading and construct a graded module over the polynomial ring
𝑅[𝑥] as follows:

𝛼(𝑀) =
∞

⨁
𝑖=0

𝑀𝑖 ,

where the 𝑅-module structure is defined as the direct sum of the structures in each com-
ponent, and the action of 𝑥 is specified by

𝑥 ⋅ (𝑎0, 𝑎1, 𝑎2, ⋯ , ) = (0,𝑚0,1(𝑎0),𝑚1,2(𝑎1),𝑚2,3(𝑎2),⋯)

in which 𝑎𝑖 ∈ 𝑀𝑖.

Theorem 2.2: (Correspondence)[23] The correspondence 𝛼 defines an equivalence of
categories between the category of 1-parameter persistence modules of finite type over
some ring 𝑅 and the category of finitely generated non-negatively graded modules over
𝑅[𝑥].

The correspondence theorem implies that there exists a simple classification of 1-
parameter persistence modules if 𝑅 is not a field, as in the case of ℤ. This aligns with
fundamental results in commutative algebra, which demonstrate that the classification
of modules over ℤ[𝑥] is inherently complex. Although meaningful invariants can be
assigned to ℤ[𝑥]-modules, a straightforward classification remains unattainable and is
unlikely to ever be achieved. In contrast, when the ground ring is a field 𝕜, the corre-
spondence theorem provides a simple and elegant decomposition. The graded ring 𝕜[𝑥]
is a principal ideal domain (𝑃𝐼𝐷), and its only graded ideals, (𝑥𝑛), are homogeneous.
Consequently, we have the classification theorem of 𝕜[𝑥]-modules.

Theorem 2.3: (Classification)[23] Any finitely generated non-negatively graded module
over 𝕜[𝑥] is isomorphic to

(
𝑛

⨁
𝑖=1

Σ𝛽𝑖𝕜[𝑥])⊕ (
𝑚

⨁
𝑗=1

Σ𝛾𝑗𝕜[𝑥]/(𝑥𝑛𝑗))

where Σ𝛼 denotes an 𝛼-shift upward in grading.
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Thus, the classification theorem of graded modules over 𝕜[𝑥] implies the complete
classification of 1-parameter persistence modules of finite type.

In the above section, the feature of the point cloud we ultimately obtain is a per-
sistence diagram 𝑑𝑔𝑚 or barcode ℬ. Then, we want to obtain the representation of 1-
parameter persistence modules, which is similar to the persistence diagram. This process
is the parameterization of 1-parameter persistence modules.

We call ordered pairs (𝑖, 𝑗) intervals with 0 ≤ 𝑖 < 𝑗 ∈ ℤ ∪ {∞}, and define

𝑄(𝑖, 𝑗) = {
Σ𝑖𝕜[𝑥]/(𝑥𝑗−𝑖), if 𝑗 ≠ ∞,

Σ𝑖𝕜[𝑥], otherwise
(2-1)

If 𝑆 = {(𝑖1, 𝑗1), (𝑖2, 𝑗2),⋯ , (𝑖𝑚, 𝑗𝑚)} is a multi-set of intervals, then we define that

𝑄(𝑆) =
𝑚

⨁
𝑘=1

𝑄(𝑖𝑘 , 𝑗𝑘).

Meanwhile, for any 1-parameter persistence module of finite type 𝕍 ∶ ℕ → Vec𝕜, we
have that 𝛼(𝕍) ≅ (⨁𝑛

𝑖=1 Σ𝛽𝑖𝕜[𝑥]) ⊕ (⨁𝑚
𝑗=1 Σ𝛾𝑗𝕜[𝑥]/(𝑥𝑛𝑗)) for some 𝛽𝑖, 𝛾𝑗 and 𝑛𝑗

by classification theorem. Therefore we can parameterize the 1-parameter persistence
modules 𝕍 ∶ ℕ → Vec𝕜.

Theorem 2.4: (Parameterization)[23] The correspondence 𝑆 ↦ 𝑄(𝑆) establishes a bi-
jection between the finite multisets of intervals and the finitely generated graded mod-
ules over 𝕜[𝑥]. Thus, the isomorphism classes of persistence modules of finite type
𝕍 ∶ ℕ → Vec𝕜 are bijective to the finite multisets of intervals.

We call the multi-set 𝑆 the persistence diagram of 1-parameter persistence module
𝕄 corresponding to 𝑄(𝑆), denoted as 𝑑𝑔𝑚(𝕄) or ℬ𝕄.

Because in specific studies, the point clouds are finite, the family of homology groups
over the field 𝕜 in persistent homology always satisfies the condition of finite type. The
parameterization theorem states the fact that persistence diagrams are an almost perfect
representation of persistent homology without considering the differences in the ways in
which point clouds construct simplicial complexes and the difficulty of vectorization of
persistence diagrams.

We can generalize the discussion on 1-parameter persistence modules ℕ → Vec𝕜 to
persistence modules ℝ → Vec𝕜. We also refer to the latter as the 1-parameter persistent
modules. Indeed, we may define that a 1-parameter persistence module is a functor𝕄 ∶
(𝑇,≤) → Vec𝕜, 𝑇 ⊂ ℝ. An interval in 𝑇 is a subset 𝐽 ⊂ 𝑇 such that if 𝑟, 𝑡 ∈ 𝐽, 𝑠 ∈ 𝑇 and
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𝑟 < 𝑠 < 𝑡 then 𝑠 ∈ 𝐽. In the concept of 1-parameter persistent modules (𝑇, ≤) → Vec𝕜,
we no longer discuss the correspondence theorem in detail, but we can still discuss the
classification and the parameterization. The idea of classification is to decompose a 1-
parameter persistence module into the direct sum of indecomposable components, where
each indecomposable component is simple enough. For any nonempty subset 𝐽 ⊂ 𝑇, the
interval module 𝕜𝐽 is defined to be the 1-parameter persistence module 𝕜𝐽 ∶ 𝑇 → Vec𝕜

(𝕜𝐽)𝑡 = {
𝕜 if 𝑡 ∈ 𝐽,

0 otherwise,
(2-2)

and linear maps

𝑖𝑠,𝑡 = {
𝑖𝑑𝕜 if 𝑡, 𝑠 ∈ 𝐽
0 otherwise

The essence of the classification theorem is to decompose 1-parameter persistence mod-
ules into interval modules.

Theorem 2.5: (Interval Decomposition)[28] Suppose that 𝕍 is a 1-parameter persistence
module 𝑇 → Vec𝕜 with 𝑇 ⊂ ℝ. In either of the following cases, 𝕍 can be decomposed
into a direct sum of interval modules:

• 𝑇 is finite;
• all dim 𝑉𝑡 is finite.

Conversely, there is a persistence module ℤ → Vec𝕜 which does not allow an interval
decomposition.

Example 2.2: [28] Webb provides this example, which is indexed over the nonpositive
integers −ℕ:

𝑊0 = {sequences (𝑥1, 𝑥2, 𝑥3, ⋯) of scalars}
𝑊−𝑛 = {such sequences with 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 0} (𝑛 ≥ 0)

The 𝑤−𝑛−𝑚 are the canonical inclusion maps for any 𝑛 ≤ 𝑚 ≤ 0. This module can be
concisely denoted as an infinite product𝕎 = ∏𝑛≥0 𝕜[−𝑛,0].

Suppose that 𝕎 has an interval decomposition. Because every map 𝑤−𝑛−1−𝑛 is an
inclusion, all of the intervals of the interval decomposition must be of the form [−𝑛, 0] or
[−∞, 0]. Then the multiplicity of [−𝑛, 0] may be calculated by dim(𝑊−𝑛/𝑊−𝑛−1) = 1.
The multiplicity of (−∞, 0] is zero because any summand of that type requires a nonzero
element of 𝑊0 that is in the image of 𝑤−𝑛0 for all 𝑛 ≥ 0. However, there is no such
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element since ⋂𝑛≥0𝑊−𝑛 = 0. All of this seems to indicate that 𝕎 ≅ ⨁𝑛≥0 𝕜[−𝑛, 0].
But dim(𝑊0) is uncountable, which contradicts the results stated above. So𝕎 doesn’t
allow an interval decomposition.

After the interval decomposition theorem is established, parameterization can be
given similar to the previous discussion about persistence modules ℕ → Vec𝕜.

Remark 2.1: The parameterization argues that 1-parameter persistence modules can be
represented by a complete discrete invariant.

In the study of persistence modules, we can roughly divide invariants into discrete
and continuous ones. Discrete invariants refer to invariants such as the Betti number,
which are always integers and come from a set that is independent of the coefficient field
𝕜, giving them a finite parameterization. However, continuous invariants may exhibit
uncountable cardinality or depend fundamentally on the choice of the coefficient field
𝕜. Consequently, such invariants are generally unsuitable for computational purposes
due to their inherent complexity and field dependence. It is crucial to emphasize that the
classification of invariants as discrete or continuous is independent of the coefficient field
𝕜 - that is, this distinction remains valid regardless of whether 𝕜 is a continuous field
(such as ℝ) or a discrete field (such as ℤ/𝑝 for a prime 𝑝).

2.3 Multi-Parameter Persistence Modules

In this section, we will discuss the correspondence, classification, and parameter-
ization of multi-parameter persistence modules. Unfortunately, no satisfactory results
have been found regarding the parameterization of multi-parameter persistence modules.
What’s more, it can be proved that the discrete complete invariant of multi-parameter per-
sistence modules does not exist, even the 2-parameter persistence modules of finite type.
Finally, we will display an enlightening example of a 2-parameter persistence module.
However, we cannot find a discrete complete invariant of the 2-parameter persistence
module. For more details, please refer to the paper[23].

We may regard ℕ𝑛 as a partially ordered set (ℕ𝑛, ≤), with the partial order relation
defined as follows:

𝐯 = (𝑣𝑖) ≤ 𝐰 = (𝑤𝑖), if 𝑣𝑖 ≤ 𝑤𝑖 for all 𝑖.
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Definition 2.8: A 𝑛-parameter persistence module is a functor𝕄 ∶ (ℕ𝑛, ≤) → Mod𝑅,
for some ring 𝑅. Equivalently, a𝑚-parameter persistence module𝕄 = {𝑀𝐯, 𝑚𝐯,𝐰}0≤𝐯≤𝐰
is also a family of 𝑅-modules𝑀𝐯, together with homomorphisms𝑚𝐯,𝐰 ∶ 𝑀𝐯 → 𝑀𝐰.

Since the (ℕ𝑛, ≤) is a thin category,𝑚𝐮,𝐯∘𝑚𝐯,𝐰 = 𝑚𝐮,𝐰 whenever 𝐮 ≤ 𝐯 ≤ 𝐰. Sim-
ilar to 1-parameter persistence modules, we can also define multi-parameter persistence
modules of finite type,

Definition 2.9: A 𝑛-parameter persistence module 𝕄 = {𝑀𝐯, 𝑚𝐯,𝐰}0≤𝐯≤𝐰 is of finite
type if each component 𝑅-module 𝑀𝐯 is a finite generated and if 𝑚𝐯,𝐰 are isomorphic
whenever 𝐯 = (𝑣𝑖) and 𝐰 = (𝑤𝑖) satisfy 𝑣𝑖 = 𝑤𝑖 for 𝑖 ≠ 𝑖0 and 𝑐 ≤ 𝑣𝑖0 ≤ 𝑤𝑖0 for some
𝑐 ∈ ℕ.

A monomial in 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 is a product of the form 𝑥1𝑣1𝑥2𝑣2⋯𝑥𝑛𝑣𝑛 with 𝑣𝑖 ∈ ℕ.
We denote it 𝑥𝐯, where 𝐯 = (𝑣1, 𝑣2, ⋯ , 𝑣𝑛) ∈ ℕ𝑛. Let 𝐴𝑛 = 𝕜[𝑥1, 𝑥2, ⋯ , 𝑥𝑛] be a 𝑛-
graded ring, and𝕄 be any 𝑛-graded 𝐴𝑛-module. We may define a 𝑛-graded 𝐴𝑛-module
Σ𝐯𝕄 for any 𝐯 ∈ ℤ𝑛 by defining its graded components as (Σ𝐯𝕄)𝐰 ∶= 𝑀𝐰−𝐯.

Let 𝕄 be a persistence module, we may construct an 𝑛-graded module over 𝐴𝑛 by
defining

𝛼(𝕄) =⨁
𝐯
𝑀𝐯

where the 𝕜-module structure is given by the direct sum. Additionally, we require that the
multiplication map 𝑥𝐯−𝐮 ∶ 𝑀𝐮 → 𝑀𝐯 coincides with the morphism𝑚𝐮,𝐯 in the persistence
module𝕄 = {𝑀𝐮, 𝑚𝐮,𝐯}𝟎≤𝐮≤𝐯 whenever any 𝐮 ≤ 𝐯 ∈ ℕ𝑛.

The correspondence theorem is similar to the result of 1-parameter persistence mod-
ules.

Theorem 2.6: (Correspondence)[23] The correspondence 𝛼 defines an equivalence of
categories between the category of finite persistence modules over 𝕜 and the category of
finitely generated 𝑛-graded modules over 𝐴𝑛 = 𝕜[𝑥1, ⋯ , 𝑥𝑛].
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Classification

Definition 2.10: A 𝑛-graded set (𝑋, 𝜙) is a set 𝑋 with the grade 𝜙 ∶ 𝑋 → ℤ𝑛. And the
map 𝑓 of 𝑛-graded sets satisfies the commutative diagram

𝑋

𝑓

��

𝜙

&&NN
NNN

NNN
NNN

NN

ℤ𝑛.

𝑌

𝜓
88ppppppppppppp

For any 𝑛-graded module𝕄 = ⨁𝐯𝑀𝐯 over 𝐴𝑛, 𝐻(𝕄) ∶= ⋃𝐯∈ℤ𝑛𝑀𝐯, then 𝐻(𝕄) is
a 𝑛-graded set.

We define the free 𝑛-graded 𝐴𝑛-module on the graded set (𝑋, 𝜙) as an 𝑛-graded
𝐴𝑛-module 𝐹 equipped with an inclusion map of 𝑛-graded sets

𝜂 ∶ (𝑋, 𝜙) ↪ 𝐻(𝐹) ⊂ 𝐹,

satisfying the following universal property: for any 𝑛-graded 𝐴𝑛-module𝕄 and any map
of 𝑛-graded sets 𝜃 ∶ (𝑋, 𝜙) → 𝐻(𝕄), there exists a unique homomorphism 𝜆 ∶ 𝐹 → 𝕄 of
𝑛-graded 𝐴𝑛-modules that makes the diagram

(𝑋, 𝜙) 𝜂 //

𝜃
$$I

II
II

II
II

𝐻(𝐹)
𝐻(𝜆)
��

𝐻(𝕄)
commutes.

Definition 2.11: The type of an 𝑛-graded vector space 𝕍 is defined as the unique mul-
tiset isomorphic to a graded basis for 𝕍, denoted by 𝜉(𝕍). Analogously, for any free
𝑛-graded module 𝐹, we define 𝜉(𝐹) ∶= 𝜉(𝕜⊗𝐴𝑛 𝐹).

Indeed, the type, 𝜉(−), denotes the location and the number of generators of the
object.

Example 2.3: If the type 𝜉(𝕍) = {((0, 1), 2), ((1, 0), 1), ((2, 1), 1)} for some 2-graded
vector space 𝕍, the 𝕍 ≅ 𝑠𝑝𝑎𝑛{𝐮1, 𝐮2, 𝐯, 𝐰} in which deg 𝐮1 = deg 𝐮2 = (0, 1), deg 𝐯 =
(1, 0) and deg 𝐰 = (2, 1).

If the type 𝜉(𝐹) = {((0, 1), 2), ((1, 0), 1), ((2, 1), 1)} for some 2-graded freemodule
𝐹 over 𝐴2, the 𝐹 is isomorphic to the free 𝐴2-module on the graded set {𝑎1, 𝑎2, 𝑏, 𝑐} in
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which deg 𝑎1 = deg 𝑎2 = (0, 1), deg 𝑏 = (1, 0) and deg 𝑐 = (2, 1).

Suppose that 𝕄 is a finitely generated 𝑛-graded 𝐴𝑛-module. We define the finite-
dimensional 𝕜-vector space 𝜌(𝕄) = 𝕜 ⊗𝐴𝑛 𝕄, where 𝕜 is given the module structure
where all the variables 𝑥𝑖 act trivially, i.e., by zero. Let𝕍 be a 𝑛-graded vector space. Then
there exists a free 𝑛-graded module 𝐹(𝕍) satisfying the isomorphism 𝕍 ≅ 𝜌(𝐹(𝕍)) =
𝕜⊗𝐴𝑛𝐹(𝕍). Meanwhile, we can also consider𝕍(𝜉) and 𝐹(𝜉) that are defined 𝜉(𝕍(𝜉)) =
𝜉 and 𝜉(𝐹(𝜉)) = 𝜉, for any multi-set 𝜉.

For any 𝑛-graded module𝕄, we consider the minimal free resolution of𝕄

⋯ → 𝐹1 → 𝐹0 → 𝑀 → 0

𝜉0(𝕄) ∶= 𝜉(𝐹0), 𝜉1(𝕄) ∶= 𝜉(𝐹1). In fact, the free module 𝐹0 is called the free hull of
𝕄. The 𝜉0 and 𝜉1, which are multisets, are invariants of the isomorphism class of𝕄. If
𝕄 is a 1-graded module over 𝐴1 = 𝕜[𝑥], that is the algebraic model of some 1-parameter
persistence module 𝕄, then 𝐹2 = 𝐹3 = ⋯ = 0. Thus, 1-parameter persistence modules
can be decided completely by persistence diagrams.

Suppose two multi-sets 𝜉0 and 𝜉1 satisfying 𝜉0 ∩ 𝜉1 = ∅. We begin by constructing
a free 𝑛-graded 𝐴𝑛-module 𝐹 such that 𝜉(𝜌(𝐹)) = 𝜉0. Then, we define that 𝒮(𝐹, 𝜉) ∶=
{𝐿 | 𝐿 is a 𝐴𝑛-submodule of 𝐹 and 𝜉(𝐿) = 𝜉1} and ℐ(𝜉0, 𝜉1) ∶= {[𝕄] (isomorphic class) |
𝜉0(𝕄) = 𝜉0, 𝜉1(𝕄) = 𝜉1}. Subsequently, we have the map

𝑞 ∶ 𝒮(𝐹, 𝜉1) → ℐ(𝜉0, 𝜉1)
𝐿 ↦ [𝐹/𝐿]

The automorphism group of 𝐹 acts on 𝒮(𝐹, 𝜉1) through the action defined by 𝑔⋅𝐿 = 𝑔(𝐿)
for any 𝑔 ∈ Aut(𝐹). Thus, it is obvious that 𝐹/𝐿 ≅ 𝐹/𝑔(𝐿). We represent the set of the
orbits of action 𝐴𝑢𝑡(𝐹) ↷ 𝒮(𝐹, 𝜉1) as 𝐺𝐹 ∖ 𝒮(𝐹, 𝜉1). The theorem is figured out easily,

Theorem 2.7: (Classification)[23] Let 𝐹 be described as above, 𝜉0 ∩ 𝜉1 = ∅, and let
𝐺𝐹 ∶= 𝐴𝑢𝑡(𝐹). The map 𝑞 satisfies the formula 𝑞(𝑔 ⋅ 𝐿) = 𝑞(𝐿) and thus induces a map
𝑞̄ ∶ 𝐺𝐹 ∖ 𝒮(𝐹, 𝜉1) → 𝐼(𝜉0, 𝜉1). Furthermore, 𝑞̄ is bijective.

Remark 2.2: In the original version of this theorem (Theorem 9 in[23]), there was no
condition 𝜉0∩𝜉1 = ∅. But I made someminormodificationswhen stating it here. Because
if we remove the condition 𝜉0 ∩ 𝜉1 = ∅, we can easily provide a counterexample to state
that the map 𝑞 is not well defined.
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Example 2.4: Given 𝐹 ∶= 𝐴1 ⋅ 𝑎 ⊕ 𝐴1 ⋅ 𝑏 ≅ 𝕜[𝑥] ⊕ Σ1 ⋅ 𝕜[𝑥] is a free 1-graded 𝐴1-
module, 𝑎 and 𝑏 are generators with deg 𝑎 = 0, deg 𝑏 = 1. Let 𝐿1 = 𝐴1⋅𝑏, 𝑀1 = 𝐹/𝐿1 ≅
𝐴1 ≅ 𝕜[𝑥] and 𝐿2 = 𝐴1 ⋅ (𝑥𝑎), 𝑀2 = 𝐹/𝐿2 ≅ 𝐴1/(𝑥)⊕𝐴1 ⋅ 𝑏 ≅ 𝕜[𝑥]/(𝑥)⊕Σ1 ⋅ 𝕜[𝑥].

Obviously, 𝜉(𝐿1) = 𝜉(𝐿2) = {((1), 1)}, then 𝐿1, 𝐿2 ∈ 𝒮(𝐹, 𝜉1)with 𝜉1 = {((1), 1)}.
However 𝜉0(𝑀1) = {((0), 1)} ≠ 𝜉0(𝑀2) = {((0), 1), ((1), 1)} and 𝜉1(𝑀1) = ∅ ≠
𝜉1(𝑀2) = {((1), 1)}.

In summary, for finitely generated 𝑛-graded 𝐴𝑛-modules, we can preliminarily clas-
sify them through 𝜉0 and 𝜉1. Meanwhile, if 𝜉0 and 𝜉1 satisfy the condition, 𝜉0 ∩ 𝜉1 = ∅,
then we may completely classify them by using the above theorem.

Parameterization

Our objective is to demonstrate that, in contrast to its 1-parameter counterpart, multi-
parameter persistence modules do not have complete discrete invariants. Therefore, we
need only to show that there is no complete discrete invariant for a subset of ℐ(𝜉0, 𝜉1).

Remark 2.3: The derivation of parameterization needs to use the theorem of classifica-
tion, so we will suppose 𝜉0∩𝜉1 = ∅. However, the original result[23] of parameterization
has no condition 𝜉0 ∩ 𝜉1 = ∅.

We begin by considering any 𝑛-graded𝐴𝑛-module𝕄. For every 𝐯 ∈ ℤ𝑛, we consider
the 𝕜-vector subspace

(𝐼𝕄)𝐯 = ∑
𝐯>𝐞𝑖

𝑥𝑖𝑀𝐯−𝐞𝑖 ⊂ 𝑀𝐯

where 𝐞𝑖 denotes the 𝑖-th standard basis vector inℤ𝑛. 𝐯 is called a gap of𝕄 if (𝐼𝕄)𝐯 ≠ 𝑀𝐯.
We define that Γ(𝕄) is the set of gaps of𝕄.

Remark 2.4: The gap 𝐯 denotes that𝑀𝐯 contains the generators of𝕄. The module 𝐼𝕄
can be considered as leave, and the generators of𝕄 can be considered as roots.

Theorem 2.8: [23] If𝕄 is finitely generated, then Γ(𝕄) is finite. Additionally, the type
of 𝕜⊗𝐴𝑛 𝕄, denoted by 𝜉(𝕄), corresponds to the multi-set (Γ(𝕄), 𝛼𝕄), where

𝛼𝕄(𝐯) = dim (𝑀𝐯/(𝐼𝕄)𝐯) = dim (𝑀𝐯) − dim ((𝐼𝕄)𝐯).

Theorem 2.9: [23] Suppose that 𝐹 is a free 𝑛-graded 𝐴𝑛-module, and suppose 𝐿 and 𝐿′

are any 𝑛-graded submodules (note that 𝐿 is not necessarily free). Then 𝐿 = 𝐿′ if and only
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if Γ(𝐿) = Γ(𝐿′) and 𝐿𝐯 = 𝐿′𝐯 for any 𝐯 which are gaps of either.

The theorem shows the fact that if one wants to decide a submodule 𝐿 of𝕄, then one
only needs to decide the gaps 𝐯 and 𝐿𝐯.

Let 𝜉 = (𝑉, 𝛼) be an arbitrary multiset, and let 𝛿 ∶ 𝑉 → ℤ be any map. Let 𝐹 be any
finitely generated free 𝑛-graded module over 𝐴𝑛. We define that 𝐴𝑅𝑅𝜉,𝛿(𝐹) denote the
collection of all assignments 𝐯 ↦ 𝐿𝐯, where 𝐯 ∈ 𝑉 and 𝐿𝐯 is a 𝕜-linear subspace of 𝐹𝐯,
subject to the following three conditions:

• 𝐯′ ≤ 𝐯 ⇒ 𝑥𝐯−𝐯′𝐿𝐯′ ⊂ 𝐿𝐯,
• dim𝕜(𝐿𝐯) = 𝛿(𝐯),
• dim𝕜(𝐿𝐯/∑𝐯′≤𝐯 𝑥𝐯−𝐯

′𝐿𝐯′) = 𝛼(𝐯) for all 𝐯 ∈ 𝑉.

Remark 2.5: 𝜉 = (𝑉, 𝛼) denote the multi-set of gaps. Every designment 𝐿 corresponds
a submodule 𝐿 satifying 𝜉(𝐿) = 𝜉. The condition, 𝐯′ ≤ 𝐯 ⇒ 𝑥𝐯−𝐯′𝐿𝐯′ ⊂ 𝐿𝐯, corresponds
to the condition that 𝐿 is a submodule of 𝐹. The condition, dim𝕜(𝐿𝐯/∑𝐯′≤𝐯 𝑥𝐯−𝐯

′𝐿𝐯′) =
𝛼(𝐯) for all 𝐯 ∈ 𝑉, corresponds to the condition that 𝜉(𝐿) = 𝜉. The condition,
dim𝕜(𝐿𝐯) = 𝛿(𝐯), state that 𝐴𝑅𝑅𝜉,𝛿(𝐹) is only a subset of 𝒮(𝐹, 𝜉1) generally.

Obviously, we have 𝐴𝑅𝑅𝜉,𝛿(𝐹) ⊆ ℰ = ∏
𝐯∈𝑉

𝐺𝑟𝛿(𝐯)(𝐹𝐯) from the condition dim𝕜(𝐿𝐯) =
𝛿(𝐯).

Theorem 2.10: [23] The set 𝐴𝑅𝑅𝜉,𝛿(𝐹) is in bijective correspondence with a quasipro-
jective variety.

The theorem asserts that the set 𝒮(𝜉0, 𝜉1) can be viewed as a subset of an algebraic
variety. Moreover, when 𝜉0 ∩𝜉1 = ∅, the action of Aut(𝐹) on elements of 𝒮(𝜉0, 𝜉1) con-
stitutes an algebraic group action. Consequently, this portion of the classification emerges
as a continuous invariant.

An Important Example

In this subsection, we will introduce an example that vividly demonstrates that even a
portion of 2-parameter persistence modules may not possess discrete complete invariants.
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This example was provided by Carlsson and Zomorodian in their paper[23].

• • • • •

76540123𝕜 • • • •

• 76540123𝕜 • • •

• • 76540123𝕜 • •

𝕜⊕ 𝕜 𝑥
//

𝑦
OO

• • 76540123𝕜 •
Consider a set of 2-parameter persistence modules for which

𝜉0 ={((0, 0), 2)},
𝜉1 ={((3, 0), 1), ((2, 1), 1), ((1, 2), 1), ((0, 3), 1)},

as visualized on ℕ2 in the above figure.
It is easy to build a bifiltered simplicial complex whose 1-dimensional homology

groups correspond to this picture, that are persistence modules 𝑀 generated by this 2-
filtration of simplicial complexes satisfies 𝜉0(𝕄) = 𝜉0 and 𝜉1(𝕄) = 𝜉1.

At the point (0, 0), the complex consists of two loops, yielding 𝕜 ⊕ 𝕜. At each
of the marked coordinates, we attach a distinct surface between the two loops, ensuring
that no two complexes are identical. For instance, a cylinder can be attached at (3, 0), a
punctured crosscap at (2, 1), and so forth. Notably, the discrete invariants 𝜉0, 𝜉1 fail to
distinguish the differences between these aforementioned complexes.

To achieve the classification, we utilize the classification theorem. The generators
of 𝐹(𝜉0) are positioned together, enabling the complete group of automorphisms

𝐺𝐿(𝐹(𝜉0)) = 𝐺𝐿(𝕜2) = 𝐺𝐿2(𝕜).

Classification:

𝐹(𝜉0) = 𝐴2⊕𝐴2, 𝐺𝐿(𝐹(𝜉0))) = 𝐺𝐿2(𝕜)
For ∀(𝐯, 𝑖) ∈ 𝜉1, dim 𝐹(𝜉0)𝐯 = 2 and dim 𝐹(𝜉1)𝐯 = 1, then 𝐺𝑟dim 𝐹(𝜉1)(𝐹(𝜉0))𝐯 =

𝐺𝑟1(𝕜2) = ℙ1(𝕜).
⇒ Classification: the orbit space of 𝐺𝐿2(𝕜) ↷ ℙ1(𝕜)4. (The action is evident.)
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Parameterization:

Let Ω be the subspace of the orbits space 𝐺𝐿2(𝕜) ↷ ℙ1(𝕜)4 containing pairwise-
distinct lines 𝐺𝐿2(𝕜) ↷ {(𝑙1, 𝑙2, 𝑙3, 𝑙4) ∈ ℙ1(𝕜)4 | 𝑙𝑖 ≠ 𝑙𝑗 for 𝑖 ≠ 𝑗}.

We can transform the lines using matrices from 𝐺𝐿2(𝕜):
(1) 𝑙1 transform into the 𝑥-axis,
(2) 𝑙2 transform into the 𝑦-axis,
(3) 𝑙3 transform into the line {𝑥 = 𝑦},
Then (𝑙1, 𝑙2, 𝑙3, 𝑙4)

𝐺𝐿2(𝕜)−−−−−→ (𝑥-axis, 𝑦-axis, diagonal, 𝜆4), in which 𝜆4 is 𝑙4 after the
transformations.

⇒ Ω 1−1⟷ ℙ1(𝕜) − {0, 1,∞} = 𝕜 − {0, 1}.
Therefore, it is impossible to obtain a complete discrete invariant in this example.

2.4 Harder-Narasimhan Filtrations of Persistence Modules

As discussed in the prior description, the difficulty in identifying discrete invariants
for multi-parameter persistence modules has led some researchers to seek new approaches
for discovering such invariants. A new method for finding discrete invariants of multi-
parameter persistence modules will be introduced in this section, which involves com-
puting invariants of the Harder-Narasimhan filtration[47-49] of the persistence modules.
This method differs from the previously adopted approaches. Earlier, when discussing
the decomposition of persistence modules, the primary focus was on the direct sum de-
composition of persistence modules. However, this new perspective views the direct sum
decomposition as merely a special case of decomposition. By drawing an analogy to
the decomposition of topological spaces, specifically filtrations of topological spaces, we
can interpret the decomposition of persistence modules as a filtration. Subsequently, by
constructing filtrations for the persistence modules and then computing the invariants as-
sociated with the filtrations, we can get new discrete invariants of persistence modules
ℕ𝑛 → Vec𝕜.

Before discussing filtrations of persistence modules ℕ𝑛 → Vec𝕜, we introduce a
incomplete discrete invariant of persistence modules𝕄 ∶ ℕ𝑛 → Vec𝕜, the rank invariant
𝜌𝕄. Define that ℕ̇ ∶= ℕ ∪ {∞} and 𝔻𝑛 ∶= {(𝐮, 𝐯)|𝐮 ∈ ℕ𝑛, 𝐯 ∈ ℕ̇𝑛, and 𝐮 ≤ 𝐯}.

Definition 2.12: Let 𝕄 ∶ ℕ𝑛 → Vec𝕜 be any 𝑛-parameter persistence module, and be
finitely generated if we regard𝕄 as an 𝑛-graded 𝐴𝑛 module. The rank invariant 𝜌𝕄 is a
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map from 𝔻 to ℕ, defined as

𝜌𝕄(𝐮, 𝐯) = rank (𝑥𝐯−𝐮 ∶ 𝕄𝐮 → 𝕄𝐯).

It is obvious that the map 𝜌𝕄 is an invariant of persistence modules. And we can
easily prove the following results.

Lemma 2.2: [48] If 𝐮 ≤ 𝐮′ ≤ 𝐯′ ≤ 𝐯, Then 𝜌𝕄(𝐮, 𝐯) ≤ 𝜌𝕄(𝐮′, 𝐯′).
Proof: Because 𝐮 ≤ 𝐮′ ≤ 𝐯′ ≤ 𝐯, we have𝕄𝐮 → 𝕄𝐮′ → 𝕄𝐯′ → 𝕄𝐮. ∎

When 𝕄 a multi-parameter persistence modules ℕ𝑛 → Vec𝕜 with 𝑛 ≥ 2, the rank
invariant 𝜌𝕄 is not complete. However, when 𝑛 = 1, the rank invariant 𝜌𝕄 is complete.

Theorem 2.11: [48] The rank invariant 𝜌𝕄 is complete for 1-parameter persistence mod-
ules.
Proof: In the first section of this chapter, we discussed persistent homology and persis-
tence diagrams, and introduced the calculation formula of persistence diagrams

𝜇𝑝(𝑖, 𝑗) = (𝛽𝑝(𝑖, 𝑗 − 1) − 𝛽𝑝(𝑖, 𝑗)) − (𝛽𝑝(𝑖 − 1, 𝑗 − 1) − 𝛽𝑝(𝑖 − 1, 𝑗)),

where 𝛽𝑝(𝑖, 𝑗) = 𝜌𝕄(𝑖, 𝑗) if𝕄 is the persistence module as follows,

0 = 𝐻𝑝(𝐾0)
𝐻𝑝(𝑓0,1)−−−−−→ 𝐻𝑝(𝐾1)

𝐻𝑝(𝑓1,2)−−−−−→ 𝐻𝑝(𝐾2)
𝐻𝑝(𝑓2,3)−−−−−→ ⋯

𝐻𝑝(𝑓𝑛−1,𝑛)−−−−−−−→ 𝐻𝑝(𝐾𝑛).

Meanwhile, we know that the persistence diagrams are complete invariants of persistent
homology. Then the rank invariant 𝜌𝕄 is complete for 1-parameter persistence modules.

∎

We recall that a quiver 𝑄 is a multi-digraph, that is, a directed graph where loops
and multiple arrows are allowed. In other words, a quiver 𝑄 consists of two sets, 𝑄0 and
𝑄1, where the elements of set 𝑄0 are called the vertices of the quiver 𝑄, and the elements
of 𝑄1 are called the edges of 𝑄. Additionally, it is equipped with two maps called the
source map and the target map, denoted as 𝑠, 𝑡 ∶ 𝑄0 → 𝑄1, respectively. Each edge 𝑒 may
be denoted by an arrow 𝑠(𝑒) → 𝑡(𝑒). And we define a path in the quiver 𝑄 is a finite
sequence of edges 𝑝 = (𝑒1, ⋯ , 𝑒𝑛) satisfying 𝑡(𝑒𝑖) = 𝑠(𝑒𝑖+1) for any 𝑖. We call a path
𝑝 = (𝑒1, ⋯ , 𝑒𝑛) is a loop if 𝑠(𝑒1) = 𝑡(𝑒𝑛). If a quiver 𝑄 = (𝑄0, 𝑄1) admits no loops, we
call 𝑄 is acyclic. In this subsection, unless otherwise specified, we always assume that all
quivers are acyclic and have only finitely many vertices and edges.

We recall a finite-dimensional representation 𝕍 of a quiver 𝑄 = (𝑄0, 𝑄1) is a functor
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𝑄 → Vec𝕜, where 𝕍𝑥 is a vector space for any vertex 𝑥 ∈ 𝑄0 and 𝕍𝑒 is a linear map
from 𝕍𝑠(𝑒) to 𝕍𝑡(𝑒). Suppose that 𝕎 is another representation of 𝑄. We say that 𝕎
is a subrepresentation of 𝕍 if there is a monomorphism 𝜙 ∶ 𝕎 ↪ 𝕍. Fix a quiver 𝑄 =
(𝑄0, 𝑄1), a representation of𝑄 is called indecomposable if it does not admit any nontrivial
direct sum decomposition inRep(𝑄), whereRep(𝑄) is the category of representations of
𝑄 = (𝑄0, 𝑄1).

It is well-known[94] that for any finite-dimensional representation 𝕍 of the quiver 𝑄,
there exists a unique multiset (Ind𝑄(𝕍), 𝑑𝕍), where 𝑑𝕍 ∶ Ind𝑄(𝕍) → ℕ is the multiplicity
function, such that the representation 𝕍 can be decomposed as follows:

𝕍 ≅⨁
𝐼
𝐼𝑑𝕍(𝐼)

with 𝐼 ranging over Ind𝑄(𝕍).
For any representation 𝕍 ∶ 𝑄 → Vec𝕜, we can define the dimension vector

dim𝕍 ∶ 𝑄0 → ℕ given by 𝑥 ↦ dim 𝕍𝑥. Gabriel[50] asserted that the collection of in-
decomposable objects within Rep(𝑄), corresponding to a specified dimension vector, is
finite precisely when the undirected graph associated to𝑄 is a finite union of simply laced
Dynkin diagrams.

Next, let’s formally introduce the Harder-Narasimhan filtration. Firstly, we present
the concept of the Grothendieck group of an abelian category 𝐶. For any abelian category
𝐶, its Grothendieck group is an abelian group 𝐾(𝐶) freely generated by the isomorphism
classes [𝑉] in 𝐶 modulo a relation of the form [𝑉] = [𝑈] + [𝑊] if

0 → 𝑈 → 𝑉 → 𝑊 → 0

in 𝐶.
A stability condition on 𝐶 is a group homomorphism

𝑍 ∶ 𝐾(𝐶) → (ℂ,+)

and 𝑍(𝐾(𝐶) ∖ {0}) ⊆ {𝑧 ∈ ℂ|Re 𝑧 > 0}. For a stability condition 𝑍, the 𝑍-slope of an
object 𝑉 ≠ 0 is the real number

𝜇𝑍(𝑉) ∶=
Im 𝑍(𝑉)
Re 𝑍(𝑉).

We call 𝑉 𝑍-semistable if 𝜇𝑍(𝑈) ≤ 𝜇𝑍(𝑉) for any subobject 𝑈 ⊂ 𝑉 and 𝑈 ≠ 0, and 𝑉
𝑍-stable if 𝜇𝑍(𝑈) < 𝜇𝑍(𝑉) for any subobject𝑈 ⊂ 𝑉, and𝑈 ∉ {0, 𝑉}. With these concepts
in place, we can now proceed to elaborate on the Harder-Narasimhan filtration.

28



CHAPTER 2 PERSISTENT HOMOLOGY AND PERSISTENCE MODULES

Theorem 2.12: [48] Suppose 𝐶 is any abelian category satisfying the Noetherian and
Artinian hypotheses. Fix 𝑍 a stability condition on 𝐶. If 𝑉 ≠ 0, there is a unique filtration
𝑉• of finite length 𝑛 ≥ 1

0 = 𝑉0 ⊊ 𝑉1 ⊊ ⋯ ⊊ 𝑉𝑛 = 𝑉

whose successive quotients 𝑆𝑖 ∶= 𝑉𝑖/𝑉𝑖−1 are 𝑍-semistable and strictly decreaing slopes:

𝜇𝑍(𝑆1) > 𝜇𝑍(𝑆2) > ⋯ > 𝜇𝑍(𝑆𝑛).

The filtration that appears in this theorem is precisely the Harder-Narasimhan filtra-
tion of 𝑉. And for any representation 𝕍 ≠ 0 inRep(𝑄), the Harder-Narasimhan filtration
of 𝕍 along a stability condition 𝑍 is denoted by HN•𝑍(𝕍). If the stability condition 𝑍 is a
standard stability condition, HN•𝑍(𝕍) denoted by HN•𝛼(𝕍).

For any fixed quiver 𝑄 = (𝑄0, 𝑄1), we consider the Harder-Narasimhan filtration of
the object of category Rep(𝑄), since the category Rep(𝑄) is abelian. For any stability
condition on Rep(𝑄), 𝑍 ∶ 𝐾(Rep(𝑄)) → (ℂ,+), we may decide it by two functions
𝛼, 𝛽 ∶ 𝑄0 → ℝ, that is 𝑍(𝕍) = ∑𝑥∈𝑄0(𝛽(𝑥) + √−1𝛼(𝑥)) ⋅ dim 𝕍𝑥. Thus the 𝑍-slope
of 𝕍, 𝜇𝑍(𝕍) =

Im 𝑍(𝕍)
Re 𝑍(𝕍) =

∑𝑥∈𝑄0 𝛼(𝑥)⋅dim 𝕍𝑥
∑𝑥∈𝑄0 𝛽(𝑥)⋅dim 𝕍𝑥

. If 𝛽 = 1, then the 𝑍-slope of 𝕍, 𝜇𝑍(𝕍) =
∑𝑥∈𝑄0 𝛼(𝑥)⋅dim 𝕍𝑥
∑𝑥∈𝑄0 dim 𝕍𝑥

, is determined by 𝛼 and is denoted as 𝜇𝛼(𝕍). Therefore, we call that the
stability condition 𝑍 is a standard stability condition and call 𝛼 the central charge of 𝑍.

Lemma 2.3: [48] Let 𝛼 ∶ 𝑄0 → ℝ be a function, and three objects 𝕌,𝕍,𝕎 ∈ ob Rep(𝑄)
satisfying the following short exact sequence

0 → 𝕌 → 𝕍 → 𝕎 → 0.

Then, one of the following inequalities must hold. Either
• 𝜇𝛼(𝕌) > 𝜇𝛼(𝕍) > 𝜇𝛼(𝕎), or
• 𝜇𝛼(𝕌) = 𝜇𝛼(𝕍) = 𝜇𝛼(𝕎), or
• 𝜇𝛼(𝕌) < 𝜇𝛼(𝕍) < 𝜇𝛼(𝕎).

And when 𝜇𝛼(𝕌) = 𝜇𝛼(𝕍) = 𝜇𝛼(𝕎), 𝕍 is 𝛼-semistable if and only if 𝕌,𝕎 are 𝛼-
semistable.

Corollary 2.1: [48] If 𝕌,𝕎 are 𝛼-semistable with the same 𝛼-slope 𝜇, then 𝕌 ⊕𝕎 is
also.

For any representation 𝕍 of 𝑄, we have defined the dimension vector dim𝕍. Indeed,
we may regard dim as a group homomorphism 𝐾(Rep(𝑄)) → ℤ𝑄0 , that assigns a repre-
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sentation 𝕍 to its dimension vector dim𝕍.

Definition 2.13: The Harder-Narasimhan type of 𝕍 ≠ 0 in Rep(𝕍) along 𝛼 ∶ 𝑄0 → ℝ
is 𝑇[𝕍; 𝛼], defined as

𝑇[𝕍; 𝛼] ∶= (dim𝑆1 , dim𝑆2 , ⋯ , dim𝑆𝑛)

where 𝑛 is the length of the Harder-Narasimhan filtration HN•𝛼(𝕍) of 𝕍, and 𝑆𝑖 =
HN𝑖𝛼(𝕍)/HN𝑖+1𝛼 (𝕍).

On the other hand, the Harder-Narasimhan type 𝑇[𝕍; 𝛼] may be regarded as a map
𝑇[𝕍; 𝛼] ∶ ℝ → ℤ𝑄0 , defined as follows

𝑇[𝕍; 𝛼](𝜆) = {
dim𝑆𝑖 , 𝜆 = 𝜇𝛼(𝑆𝑖)

(0, 0,⋯ , 0), otherwise.
(2-3)

Proposition 2.1: [48] If we regard 𝑇[𝕍; 𝛼] as a map from ℝ to ℤ𝑄0 , then for any repre-
sentations 𝕍,𝕎 in Rep(𝑄), 𝑇[𝕍⊕𝕎;𝛼] = 𝑇[𝕍; 𝛼] + 𝑇[𝕎; 𝛼].

We have previously mentioned that the standard stability conditions are solely deter-
mined by 𝛼, and while there are various choices for 𝛼, we can prioritize the most distinc-
tive ones, which are the delta functions.

Definition 2.14: we call the delta functions 𝛿𝑥 for any 𝑥 ∈ 𝑄0 the skyscraper central
charge at 𝑥 ∈ 𝑄0, as follows

𝛿𝑥(𝑦) = {
1, if 𝑦 = 𝑥,

0, otherwise.
(2-4)

Meanwhile, we can define the skyscraper invariant 𝛿• on Rep𝑄 that assigns each
representation 𝕍 in Rep(𝑄) to the collection of HN types 𝛿𝕍 ∶= {𝑇[𝕍; 𝛿𝑥]|𝑥 ∈ 𝑄0} along
all skyscraper central charges 𝛿𝛼 for all 𝑥 ∈ 𝑄0.

Theorem 2.13: [48] The skyscraper invariant 𝛿• is strictly more discriminative than the
rank invariant 𝜌• in Rep(𝑄). Details are as follows

• Let 𝕍 be any representation in Rep(𝑄) and 𝑥 ∈ 𝑄0 be any a vertex. Suppose
0 = HN0𝛼(𝕍) ⊊ HN1𝛼(𝕍) ⊊ ⋯ ⊊ HN𝑛𝛼(𝕍) = 𝕍 is the HN filtration of 𝕍 along 𝛿𝑥. Then
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for any vertex 𝑦 ≥ 𝑥 in 𝑄, we have

𝜌𝕍(𝑥, 𝑦) =
𝑗

∑
𝑘=1

dim 𝑆𝑘𝑦

where 𝑆𝑘 = 𝕍𝑘/𝕍𝑘−1 and 𝑗 is the smallest index satisfying HN𝑗𝛼(𝕍)𝑥 equals 𝕍𝑥.
• There are two representations𝕎,𝕎′ in Rep(𝑄) of the quiver 𝑄

𝑐 // 𝑑

𝑎

OO

// 𝑏

OO

such that 𝜌𝕎 = 𝜌𝕎′ but 𝛿𝕎 ≠ 𝛿𝕎′ .

Example 2.5: Let a quiver 𝑄 be as follows,

𝑐 // 𝑑

𝑎

OO

// 𝑏

OO

We define the representations𝕎(left) and𝕎′(right) as follows

𝕜 // 0

𝕜2
[0,1]

OO

[1,0]
// 𝕜

OO 𝕜 // 0

𝕜2
[1,0]

OO

[1,0]
// 𝕜

OO

By computing the rank invariants of𝕎,𝕎′, we know that 𝜌𝕎 = 𝜌𝕎′ .
Subsequently, we compute the skyscraper invariants 𝛿𝕎 and 𝛿𝕎′ .
Given

𝛿𝕎 = {𝑇[𝕎; 𝛿𝑎], 𝑇[𝕎; 𝛿𝑏], 𝑇[𝕎; 𝛿𝑐], 𝑇[𝕎; 𝛿𝑑]},

𝛿𝕎′ = {𝑇[𝕎′; 𝛿𝑎], 𝑇[𝕎′; 𝛿𝑏], 𝑇[𝕎′; 𝛿𝑐], 𝑇[𝕎′; 𝛿𝑑]}.

We only check 𝑇[𝕎; 𝛿𝑎] and 𝑇[𝕎′; 𝛿𝑎]. Firstly, we know that 𝜇𝛿𝑎(𝕎) =
1
2 and

𝜇𝛿𝑎(𝕌) ≤
1
2 for all subrepresentations 𝕌 of 𝕎. Then 𝕎 is 𝛿𝑎-semistable, we have

HN•𝛿𝑎(𝕎) ∶ 0 ⊊ 𝕎. So,

𝑇[𝕎; 𝛿𝑎] = (dim𝕎) = (
1 0
2 1

) .

Similarly, we can compute 𝑇[𝕎′; 𝛿𝑎]. But the Harder-Narasimhan filtration of𝕎′
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is not trivial, as follows,

0 ⊊ 𝕍 ⊊ 𝕎′

where 𝕍 is the subrepresentation of𝕎′,

0 // 0

𝕜 //

OO

0

OO

Therefore, through calculation, we have

𝑇[𝕎′; 𝛿𝑎] = (dim𝕍 , dim𝕎′/𝕍) = ((
0 0
1 0

) , (
1 0
1 1

)).

Clearly, 𝑇[𝕎; 𝛿𝑎] ≠ 𝑇[𝕎′; 𝛿𝑎], then 𝛿𝕎 ≠ 𝛿𝕎′ .
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CHAPTER 3 THE STABILITY OF PERSISTENCE
MODULES

In this chapter, we introduce the most fundamental results in persistent homology
theory: stability theorems[27]. Stability theorems assert that under small perturbations of
the original dataset, the topological descriptors, which are persistence diagrams, do not
undergo significant changes. Here, we employ the bottleneck distance 𝑑𝐵 and Gromov-
Hausdorff 𝑑𝐺𝐻 distance to quantify the differences between persistence diagrams and
datasets, respectively. Subsequently, we discuss the generalization of the bottleneck dis-
tance 𝑑𝐵 in the context of persistence modules, known as the interleaving distance 𝑑𝐼[44].
We demonstrate that for interval-decomposable 1-parameter persistence modules, the in-
terleaving distance coincides entirely with the bottleneck distance. Finally, we will intro-
duce a significant result by Blemberg and Lesnick[12] in the study of persistence modules:
the homotopy interleaving distance 𝑑𝐻𝐼. The homotopy interleaving distance serves as a
homotopy-theoretic refinement of the interleaving distance.

The content of this chapter lays the groundwork for Chapter 4, where we will define
and investigate persistence minimal free Lie models and discuss their stability results
under 𝑑𝐼 and 𝑑𝐻𝐼.

3.1 Stability of Persistent Homology

Mathematicians developed persistent homology to identify the topological space
from which a point cloud is sampled. When two different point clouds are sampled from
distinct underlying spaces, we aim to distinguish these spaces by defining a metric or dis-
tance that quantifies the difference between the filtrations of simplicial complexes through
the computation of homology groups. Furthermore, once a metric between two families
of homology groups is defined, how can we justify that the definition of this metric is rea-
sonable? The stability theorem[27] in persistent homology establishes criteria to evaluate
whether the chosen metric is valid.

In this section, we will elaborate on the stability theorem of persistent homology, that
is, the robustness of persistent homology[32][26][95].

Let ℛ(𝑆) = {ℛ(𝑆)𝑟}𝑟≥0 be a collection of Vietoris-Rips complexes constructed by
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a finite set 𝑆 of points in ℝ𝑑. Due to the finiteness of point cloud 𝑆, as 𝑟 increases, ℛ(𝑆)𝑟
only changes at a finite number of values 𝑟. We call these values critical values or critical
points. Thus, the filtration ℛ(𝑆) can be reduced to

𝑆 = ℛ(𝑆)𝑟0 ⊂ ℛ(𝑆)𝑟1 ⊂ ℛ(𝑆)𝑟2 ⊂ ⋯ ⊂ ℛ(𝑆)𝑟𝑛
where 𝑓𝑟𝑖,𝑟𝑗 ∶ ℛ(𝑆)𝑟𝑖 → ℛ(𝑆)𝑟𝑗 is a simplicial inclusion.

By computing the homology group ofℛ(𝑆)𝑟 over some field𝕜, we obtain a sequence
of finite-dimensional vector spaces 𝐻𝑝(ℛ(𝑆)),

𝐻𝑝(ℛ(𝑆)𝑟0)
𝐻𝑝(𝑓𝑟0,𝑟1)−−−−−−−→ 𝐻𝑝(ℛ(𝑆)𝑟1)

𝐻𝑝(𝑓𝑟1,𝑟2)−−−−−−−→ 𝐻𝑝(ℛ(𝑆)𝑟2)
𝐻𝑝(𝑓𝑟2,𝑟3)−−−−−−−→ ⋯

𝐻𝑝(𝑓𝑟𝑛−1,𝑟𝑛)−−−−−−−−−→ 𝐻𝑝(ℛ(𝑆)𝑟𝑛).

From this, we can construct the persistence diagram 𝑑𝑔𝑚(𝐻𝑝(ℛ(𝑆))) = {(𝑟𝑖 , 𝑟𝑗) ∶ 𝑖 < 𝑗}.
For two different persistence diagrams, we use the bottleneck distance to quantify the
extent of their difference.

Definition 3.1: Let 𝑋 and 𝑌 be two persistence diagrams, and the bottleneck distance

𝑑𝐵(𝑋, 𝑌) ∶= inf
𝜂∶𝑋→𝑌

sup
𝑥∈𝑋
||𝑥 − 𝜂(𝑥)||∞

in which 𝜂 is any bijection.

If 𝑋 does not include the points on the diagonal with infinite multiplicity, then the
bijection 𝜂 ∶ 𝑋 → 𝑌 may not exist. Obviously, the bottleneck distance is only an extended
pseudometric, as 𝑑𝐵 does not satisfy the positivity condition.

Theorem 3.1: (Stability)[27] Let 𝑆 and 𝑇 be two finite set of points in ℝ𝑑, then we have

𝑑𝐵(𝑑𝑔𝑚(𝐻𝑝(ℛ(𝑆))), 𝑑𝑔𝑚(𝐻𝑝(ℛ(𝑇)))) ≤ 𝑑𝐺𝐻(𝑆, 𝑇)

in which 𝑑𝐺𝐻 is the Gromov-Hausdorff distance.

The Gromov-Hausdorff distance measures how far two compact metric spaces are
from being isometric. Since 𝑆 and 𝑇 are finite sets of points in ℝ𝑑, they are compact
metric spaces.

The same argument also holds for Čech complexes. That is, if we construct simplicial
complexes through Čech complexes, the stability theorem still applies. In fact, there is a
general statement about the stability theorem of persistent homology. Let𝐾 be a simplicial
complex and 𝑓 ∶ 𝐾 → ℝ be a function. We call 𝑓monotonic if 𝑓(𝜏) ≤ 𝑓(𝜎)whenever 𝜏 is
a face of 𝜎 for any simplex 𝜎 and 𝜏. Themonotonicity 𝑓 ensures that for every real number
𝑎 ∈ ℝ, the sublevel set 𝑓−1(−∞, 𝑎] forms a subcomplex of the simplicial complex 𝐾.
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Definition 3.2: Given a simplicial complex 𝐾 and a monotonic function 𝑓 ∶ 𝐾 →
ℝ, then we define the sublevel set filtration 𝒮(𝑓) = {𝒮(𝑓)𝑟}𝑟∈ℝ, where 𝒮(𝑓)𝑟 =
𝑓−1(−∞, 𝑎].

For simplicity of description, we define 𝑑𝑔𝑚𝑝(𝑓) ∶= 𝑑𝑔𝑚(𝐻𝑝(𝒮(𝑓))) the 𝑝-
dimensional persistence diagram of 𝒮(𝑓) for monotonic function 𝑓 ∶ 𝐾 → ℝ.

Theorem 3.2: (Stability)[40] Suppose that 𝐾 is a simplicial complex and 𝑓, 𝑔 ∶ 𝐾 → ℝ
are two monotonic functions. For each dimension 𝑝, we have inequality

𝑑𝐵(𝑑𝑔𝑚𝑝(𝑓), 𝑑𝑔𝑚𝑝(𝑔)) ≤ ||𝑓 − 𝑔||∞.

The stability reflects the resistance of persistent homology to noise. When noise is
present in the original point cloud, the stability ensures that the difference between the
persistence diagrams of the point clouds with and without noise remains small.

3.2 Interleaving Distance

In this section, we will consider morphisms and ’distance’ between persistence mod-
ules, that is, the interleaving distance. The interleaving distance[44] between persistence
modules can be seen as a generalization of the bottleneck distance between persistence
diagrams. Note that unless otherwise specified, the persistence modules considered are
always functors ℝ → 𝐶, in which 𝐶 is any category.

Recall that a persistence module 𝕏 is a functor from a thin category 𝐶 to a category
𝐷, 𝕏 ∶ 𝐶 → 𝐷. For a morphism 𝑎 → 𝑏 in 𝐶, we denote 𝕏(𝑎 → 𝑏) as 𝕏𝑎,𝑏 and denote
𝕏(𝑎) as 𝕏𝑎.

Definition 3.3: For persistence modules 𝕏 and 𝕐, a morphism between 𝕏 and 𝕐 is a
natural transformation between 𝕏 and 𝕐, 𝑓 ∶ 𝕏 ⇒ 𝕐.

The collection of all functors from 𝐶 to 𝐷 and all natural transformations between
the functors is the category 𝐷𝐶.

If 𝐶 = ℝ, we may think that persistence modules depict the evolution of objects in𝐷
over time. For instance, if persistence modules 𝕏, 𝕐 satisfying 𝕏(𝑡) = 𝕐(𝑡 +𝛿) for some
constant 𝛿, then 𝕏 and 𝕐 are same by shifting time 𝛿. However, there is no isomorphism
between persistence modules 𝕏 and 𝕐, even any nontrivial morphism. Then, we need to
expand the notations of morphisms and isomorphisms between persistence modules to the
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new version that contains the information of 𝜖-shifting.
For 𝛿 ≥ 0, we define that the 𝛿-interleaving category 𝐼𝛿 is the thin category such

that ob 𝐼𝛿 ∶= ℝ × {0, 1} and there is the morphism (𝑟, 𝑖) → (𝑠, 𝑗) if and only if either
(1) 𝑟 + 𝛿 ≤ 𝑠, or
(2) 𝑖 = 𝑗 and 𝑟 ≤ 𝑠.

There exist two functors

𝐸0, 𝐸1 ∶ ℝ → 𝐼𝛿

mapping 𝑟 ∈ ℝ to (𝑟, 0) and (𝑟, 1), respectively.

Definition 3.4: Let 𝐶 be any category and 𝕏, 𝕐 ∶ ℝ → 𝐶 be any two functors. A 𝛿-
interleaving between 𝕏 and 𝕐 is a functor

𝑍 ∶ 𝐼𝛿 → 𝐶

satisfying 𝑍 ∘ 𝐸0 = 𝕏 and 𝑍 ∘ 𝐸1 = 𝕐.

We call persistence modules 𝕏, 𝕐 ∶ ℝ → 𝐶 are 𝛿-interleaved, if there exists a functor
𝑍 ∶ 𝐼𝛿 → 𝐶 that is a 𝛿-interleaving between 𝕏 and 𝕐.

Let 𝕏(𝛿) ∶ ℝ → 𝐶 be the functor by shifting 𝕏 downward by 𝛿, i.e., 𝕏(𝛿)𝑟 ∶= 𝕏𝑟+𝛿
and 𝕏(𝛿)𝑟,𝑠 ∶= 𝕏𝑟+𝛿,𝑠+𝛿 for all 𝑟 ≤ 𝑠 ∈ ℝ. Similarly, 𝑓(𝛿) ∶ 𝕏(𝛿) → 𝕐(𝛿) is defined
by 𝑓(𝛿)𝑡,𝑠 ∶= 𝑓𝑡+𝛿,𝑠+𝛿, where 𝑓 ∶ 𝕏 → 𝕐 is a morphism between persistence modules.
Specially, we define the morphism 𝜙𝕏,𝛿 ∶ 𝕏 → 𝕏(𝛿) for any 𝕏 ∶ ℝ → 𝐶, in which
𝜙𝕏,𝛿𝑡 = 𝕏𝑡,𝑡+𝛿. A 𝛿-interleaving 𝑍 between 𝕏 and 𝕐 is characterized by a pair of nat-
ural transformations 𝑓 ∶ 𝕏 → 𝕐(𝛿) and 𝑔 ∶ 𝕐 → 𝕏(𝛿) , satisfying the compatibility
conditions 𝑔(𝛿)𝑓 = 𝜙𝕏,2𝛿 and 𝑓(𝛿)𝑔 = 𝜙𝕐,2𝛿. On the other hand, 𝑍 ∶ 𝐼𝛿 → 𝐶 is en-
tirely determined by these natural transformations, which are referred to as 𝛿-interleaving
morphisms. When 𝛿 = 0, these morphisms reduce to a pair of mutually inverse natural
isomorphisms.

Definition 3.5: We define the interleaving distance 𝑑𝐼 as a binary function

𝑑𝐼 ∶ ob 𝐶ℝ × ob 𝐶ℝ → [0,∞],

by taking

𝑑𝐼(𝕏, 𝕐) ∶= inf {𝛿 |𝕏 and 𝕐 are 𝛿-interleaved}.

It is straightforward to verify that if 𝕏 and𝕎 are 𝛿-interleaved, and𝕎 and 𝕐 are
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𝜖-interleaved, then 𝕏 and 𝕐 are 𝛿 + 𝜖-interleaved. Thus, we know that 𝑑𝐼 satisfies the
triangle inequality. Therefore, the 𝑑𝐼 is obviously a pseudo-distance. What’s more, if
𝕏,𝕏′, 𝕐 ∈ ob 𝐶ℝ with 𝕏 ≅ 𝕏′, then 𝑑𝐼(𝕏, 𝕐) = 𝑑𝐼(𝕏′, 𝕐), so function 𝑑𝐼 defines a
pseudo-distance on the isomorphism classes of objects in the category 𝐶ℝ.

The interleaving distance 𝑑𝐼 is a generalization of the bottleneck distance 𝑑𝐵.

Theorem 3.3: (Algebraic Stability[6]) Given a pair of persistence modules𝕄,ℕ ∶ ℝ →
Vec𝕜 satisfying the condition each𝕄𝑡, ℕ𝑡 are finite-dimensional for all 𝑡 ∈ ℝ, then

𝑑𝐵(ℬ𝕄, ℬℕ) = 𝑑𝐼(𝕄,ℕ).

One of the most useful aspects of the categorical view of interleavings is that if we
apply a functor to 𝛿-interleaving, then the resulting diagrams are also 𝛿-interleaving. That
is,

Proposition 3.1: [18] Let 𝕏, 𝕐 ∶ ℝ → 𝐶 and 𝐻 ∶ 𝐶 → 𝐷. If 𝕏 and 𝕐 are 𝛿-interleaved,
then so are 𝐻𝕏 and 𝐻𝕐. Thus,

𝑑𝐼(𝐻𝕏,𝐻𝕐) ≤ 𝑑𝐼(𝕏, 𝕐).

The process of composition of functors can be seen as the process of processing in-
formation, and information may be lost after processing, so the difference between the
two persistence modules may be reduced. From this perspective, it is also easy to un-
derstand the actual meaning of the previous proposition. Meanwhile, there are scholars
studying similar topics in this discussion, which is the change of interleaving distance
when persistence modules compose some functors[7-9,52,77].

3.3 Homotopy Interleaving Distance

In this section, we will focus on the persistence modules ℝ → TopCGWH, in which
the category TopCGWH refers to the category of compactly-generated weakly Hausdorff
(CGWH) topological spaces. These persistence modules are called ℝ-spaces. Note that
there is a model structure on TopCGWH, namely the Quillen-Serre model structure[62], and
also a model structure on TopℝCGWH, which is the projective model structure[61]. The two
model structures are the primary ones discussed in this section.

The main results of this section come from the work of Blumberg and Lesnick[12].
For more details of model categories, please refer to references[30,59,79].
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Review Theorem3.1, let 𝑆, 𝑇 ∈ ℝ𝑛 be two finite sets of points. Then we have the
inequality

𝑑𝐵(𝑑𝑔𝑚(𝐻𝑝(ℛ(𝑆))), 𝑑𝑔𝑚(𝐻𝑝(ℛ(𝑆)))) ≤ 𝑑𝐺𝐻(𝑆, 𝑇)

in which 𝑑𝐺𝐻 is the Gromov-Hausdorff distance. A natural question arises as to whether
the results for point clouds can derive a consequence of a topological result regarding the
filtrations of simplicial complexes ℛ(𝑆) and ℛ(𝑇).

We hope to find out the pseudo-distance 𝑑 defined on theℝ-spaces that satisfies these
conditions:

(1) For any metric spaces 𝑆 and 𝑇,

𝑑(ℛ(𝑆), ℛ(𝑇)) ≤ 𝑑𝐺𝐻(𝑆, 𝑇)

(2) [homology bounding] For nay ℝ-spaces 𝕏, 𝕐 and integer 𝑖 ≥ 0 satisfying 𝐻𝑖(𝕏)
and 𝐻𝑖(𝕐) are functors (ℝ,≤) → Vec𝕜,

𝑑𝐵(𝑑𝑔𝑚(𝐻𝑖(𝕏)), 𝑑𝑔𝑚(𝐻𝑖(𝕐))) ≤ 𝑑(𝕏, 𝕐).

Definition 3.6: Let 𝑇 be a topological space and 𝛾 ∶ 𝑇 → ℝ be a (not necessarily
continuous) function. The sublevel set filtration 𝒮(𝛾) ∶ ℝ → TopCGWH is constructed by
defining

𝒮(𝛾)𝑡 ∶= 𝛾−1(−∞, 𝑡]

for each 𝑡 ∈ ℝ, where 𝒮(𝛾)𝑡 is endowed with the subspace topology induced by its am-
bient space.

Definition 3.7: For any small category 𝐶 and functors 𝕏, 𝕐 ∶ 𝐶 → TopCGWH, a natural
transformation 𝑓 ∶ 𝕏 → 𝕐 is called an (objectwise) weak equivalence if, for any 𝑎 ∈ ob 𝐶,
the morphism 𝑓𝑎 ∶ 𝕏𝑎 → 𝕐𝑎 is a weak homotopy equivalence.

A weak equivalence from 𝕏 to 𝕐 is denoted by 𝕏 ≃−→ 𝕐.
If there exists a zigzag of weak equivalences

𝕎1
≃

~~}}
}}
}}
}} ≃

!!D
DD

DD
DD

D
⋯

≃
~~||
||
||
|| ≃

""E
EE

EE
EE

EE
𝕎𝑛

≃
{{www

ww
ww
ww ≃

  A
AA

AA
AA

A

𝕏 𝕎2 𝕎𝑛−1 𝕐
connecting 𝕏 and 𝕐 for some 𝑛, we call that 𝕏 and 𝕐 are weakly equivalent, written as
𝕏 ≃ 𝕐.
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This defines an equivalence relation on objects, though it is often cumbersome to
work with. Indeed, in any model category 𝐷, 𝕏 ≃ 𝕐 holds precisely when there is the
following diagram,

𝕎1 𝕎2
≃oo

≃
!!C

CC
CC

CC

𝕏

≃
>>||||||||

𝕐.
Furthermore, it is straightforward to verify that if every object in 𝐷 is fibrant or every
object is cofibrant, then 𝕏 ≃ 𝕐 holds exactly when there exists the following diagram of
weak equivalences connecting 𝕏 and 𝕐

𝕎
≃
~~}}
}}
}}
}} ≃

  B
BB

BB
BB

B

𝕏 𝕐.
InTopℝCGWHwith the projectivemodel structure, all objects are cofibrant, and this property
holds.

Proposition 3.2: [12] For any ℝ-spaces 𝕏 and 𝕐 which are 𝛿-interleaved, there is a
topological space 𝑇 and two functions 𝛾𝕏, 𝛾𝕏 ∶ 𝑇 → ℝ such that 𝒮(𝛾𝕏) ≃ 𝕏, 𝒮(𝛾𝕐) ≃ 𝕐,
and 𝑑∞(𝛾𝑋, 𝛾𝑌) ≤ 𝛿.

Indeed, the topological space 𝑇 ≅ lim
⟵
𝕏 ≅ lim

⟵
𝕐. Thus the fact states that for 𝛿-

interleaved ℝ-spaces 𝕏 and 𝕐, topological spaces 𝕏𝑡 and 𝕐𝑡 are homoemorphic, when
𝑡 = ∞.

In the above section, we know that 𝑑𝐵 satisfies the general stability result about the
filtration of sublevel simplicial complexes, Theorem3.2, and we believe that this property
is worth preserving. Therefore, we hope that the pseudo-distance 𝑑 we are looking for
also satisfies this property. Meanwhile, 𝑑 should be invariant under some continuous
deformations.

Definition 3.8: We say a pseudo-distance 𝑑 on ℝ-spaces is
(1) stable: if for any 𝑇 ∈ ob TopCGWH and functions 𝛾, 𝜅 ∶ 𝑇 → ℝ,

𝑑(𝒮(𝛾), 𝒮(𝜅)) ≤ 𝑑∞(𝛾, 𝜅),

(2) homotopy invariant: if 𝑑(𝕏, 𝕐) = 0 whenever 𝕏 ≃ 𝕐.

Based on previous discussions and results, we can infer that if 𝑑 satisfies the stability,
then it satisfies the inequality 𝑑(ℛ(𝑆), ℛ(𝑇)) ≤ 𝑑𝐺𝐻(𝑆, 𝑇).
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Proposition 3.3: [12] For any stable and homotopy invariant pseudo-distance 𝑑 on ℝ-
spaces and for any metric spaces 𝑆 and 𝑇, we have 𝑑(ℛ(𝑆), ℛ(𝑇)) ≤ 𝑑𝐺𝐻(𝑆, 𝑇), gener-
alizing the Rips stability theorem (Theorem3.1) to a result at the filtration-level.

We will introduce the pseudo-distance that satisfies the stability, homotopy invari-
ance, and homology bounding axiom, which is called the homotopy interleaving distance
𝑑𝐻𝐼.

Definition 3.9: For any 𝛿 ≥ 0, ℝ-spaces 𝕏 and 𝕐 are called 𝛿-homotopy-interleaved if
there are ℝ-spaces 𝕏′ and 𝕐′, so that 𝕏′ ≃ 𝕏, 𝕐′ ≃ 𝕐, and 𝕏′ and 𝕐′ are 𝛿-interleaved.

Definition 3.10: The homotopy interleaving distance between ℝ-spaces 𝕏 and 𝕐 is de-
fined as

𝑑𝐻𝐼(𝕏, 𝕐) ∶= inf {𝛿 | 𝕏, 𝕐 are 𝛿-homotopy-interleaved}

Theorem 3.4: [12] 𝑑𝐻𝐼 defines a pseudodistance onℝ-spaces and satisfies the homotopy
invariance, stability, and homology bounding.

There are several pseudo-distances on ℝ-spaces, besides 𝑑𝐻𝐼. However, the inter-
leaving distance 𝑑𝐻𝐼 is a canonical choice of such a pseudo-distance.

Theorem 3.5: (Universality)[12] If 𝑑 is any stable and homotopy invariant distance on
ℝ-spaces, then 𝑑 ≤ 𝑑𝐻𝐼.

The homotopy interleaving distance and the concept of homotopy coherent diagrams
are deeply interconnected. Homotopy coherent diagrams, intuitively, extend the notion
of homotopy commutative diagrams by including specific choices of homotopies, higher-
order homotopies between these homotopies, and so forth. Formally, homotopy coherent
diagrams may be defined within the framework of simplicially enriched functors. For a
small category I, the category Cho(I) consists of homotopy coherent diagrams indexed
by I, with morphisms being homotopy classes of homotopy coherent natural transfor-
mations. Homotopy coherent diagrams address the critical question of what additional
structure is needed to rectify a homotopy commutative diagram into a strictly commuta-
tive diagram[33][102].

Let H̃o(TopICGWH) denote the localization ofTop
I
CGWHwith respect to objectwise ho-

motopy equivalences, and recall that Ho(TopICGWH) denotes the localization of Top
I
CGWH

with respect to objectwise weak homotopy equivalences. Using Whitehead’s theorem,
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it can be checked that two diagrams in TopICGWH taking values in cofibrant spaces (e.g.,
CW complexes) are isomorphic in H̃o(TopICGWH) if and only if they are isomorphic in
Ho(TopICGWH).

Vogt’s theorem[102] gives an equivalence of categories

Coh(I) → H̃o(TopICGWH).

The theorem implies that homotopy coherent diagrams can be analyzed through strict
commutative diagrams combined with zigzags of objectwise homotopy equivalences.
Motivated by these insights, the homotopy-coherent definition of interleavings is pro-
posed.

Definition 3.11: [12] For two ℝ-spaces 𝕏 and 𝕐, we define a homotopy coherent 𝛿-
interleaving between 𝕏 and 𝕐 as a homotopy coherent diagram 𝑍 ∈ Coh(I𝛿) satisfying
𝑍 ∘ 𝐸0 ≅ 𝕏 and 𝑍 ∘ 𝐸1 ≅ 𝕐 in Coh(ℝ).

By leveraging fundamental properties of the equivalence Coh(I𝛿) → Ho(TopI
𝛿

CGWH)
established by Vogt’s theorem, the following comparison can be readily verified.

Proposition 3.4: [12] The existence of homotopy coherent 𝛿-interleaving between ℝ-
spaces 𝕏 and 𝕐 implies the existence of 𝛿-homotopy-interleaving between 𝕏 and 𝕐. The
converse holds as well if 𝕏 and 𝕐 are objectwise cofibrant.

Building on Andrew’s foundational work, several researchers have continued to in-
vestigate homotopy interleaving distances[13,70].
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CHAPTER 4 PERSISTENCE RATIONAL HOMOTOPY

We know that persistence modules are functors (𝒫,≤) → 𝐶, in which 𝒫 is a poset
and𝐶 is a category, where𝒫 denotes amore general filteringmethod and𝐶 denotes a set of
more general filtering objects. Thus, persistence modules can be seen as a generalization
of the filtration of topological spaces.

In persistent homology, if we have already determined the method for constructing
simplicial complexes from discrete point clouds, then the remaining issue is to establish
algebraic models for these simplicial complexes. Currently, the most frequently used al-
gebraic model is the homology groups over 𝕜 for simplicial complexes. When we specify
the coefficient field to be a field of characteristic 0, we can employ rational homotopy
theory to establish a more refined algebraic model for simplicial complexes.

In rational homotopy theory, there are two significant algebraic models: the minimal
Sullivan model and the minimal free Lie model. These serve as the associative algebra
model and the Lie algebra model for simply connected rational spaces with homology
groups of finite type, respectively. Next, we will introduce the essential knowledge of
rational homotopy theory, as well as persistence rational homotopy theory.

A simply connected space 𝑋 is called a rational space if 𝑋 satisfies one of following
equivalent conditions(Theorem 9.3 of the reference[45]):

• 𝜋∗(𝑋) ≅ 𝜋∗(𝑋) ⊗ℤ ℚ
• 𝐻∗(𝑋, 𝑝𝑡; ℤ) ≅ 𝐻∗(𝑋, 𝑝𝑡; ℤ) ⊗ℤ ℚ
• 𝐻∗(Ω𝑋, 𝑝𝑡; ℤ) ≅ 𝐻∗(Ω𝑋, 𝑝𝑡; ℤ) ⊗ℤ ℚ

If 𝐻𝑖(𝑋, 𝑝𝑡; ℤ) ⊗ℤ ℚ is a finitely dimensional vector space for all 𝑖 ∈ ℕ, we call 𝑋 is of
finite type.

Definition 4.1: For a simply connected space 𝑋, a rationalization of 𝑋 is a continuous
map 𝜑 ∶ 𝑋 → 𝑋ℚ satisfying that 𝜑 induces an isomorphism

𝜋∗(𝑋) ⊗ℤ ℚ → 𝜋∗(𝑋ℚ),

where 𝑋ℚ is a simply connected rational space.

For any simply connected topological space 𝑋, we can always find a rational space
𝑋ℚ such that 𝑋ℚ is the rationalization of 𝑋.
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Theorem 4.1: [45] (i) Let𝑋 be a simply connected space. Then there exists a relative CW
complex (𝑋ℚ, 𝑋) that lacks 0-dimensional and 1-dimensional cells so that the inclusion
𝜑 ∶ 𝑋 → 𝑋ℚ is a rationalization.

(ii) Given (𝑋ℚ, 𝑋) as described in (i) and 𝑌 as any simply connected rational space.
For any continuous map 𝑓 ∶ 𝑋 → 𝑌, we may extend 𝑓 to a continuous map 𝑔 ∶ 𝑋ℚ → 𝑌.
Furthermore, if 𝑔′ ∶ 𝑋ℚ → 𝑌 extends 𝑓′ ∶ 𝑋 → 𝑌 then any homotopy between 𝑓 and 𝑓′

can be extended to a homotopy between 𝑔 and 𝑔′.
(iii) The rationalization specified in (i) is unique up to homotopy equivalence relative

to 𝑋.

The theorem told us that every simply connected space can be rationalized and every
continuous map 𝜑 ∶ 𝑋 → 𝑌 between simply connected spaces can induce the continuous
map 𝜑̃ ∶ 𝑋ℚ → 𝑌ℚ.

In this chapter, we will focus on the category Topℚ of simply connected rational
spaces of finite type, and objects inTopℚ, that is simply connected rational spaces of finite
type. Therefore, unless otherwise stated, all topological spaces encountered in this chapter
are assumed to be simply connected rational spaces of finite type, and all numerical fields
involved are assumed to be the field of rational numbers, ℚ.

Specifically, we may notice that for any 𝑋 ∈ ob Topℚ, 𝜋∗(𝑋) is a vector space over
ℚ. Then for a functor 𝕏 ∶ (ℝ,≤) → Topℚ, 𝜋∗(𝕏), 𝐻∗(𝕏), 𝐻∗(𝕏) ∶ (ℝ,≤) → grVecℚ are
persistence modules, which is the most commonly encountered persistence module. In
rational homotopy theory, we have more refined algebraic models than homotopy groups
and homology groups, minimal Sullivan models, and minimal free Lie models.

4.1 Persistence Minimal Sullivan Models

Wewill introduce the basic definition and results of minimal Sullivan models[45] and
persistence minimal Sullivan models[105].

Firstly, we will recall some definitions and results of commutative differential graded
algebras (𝑐𝑑𝑔𝑎) and Sullivan algebras.

Definition 4.2: • A graded ring 𝑅 = ⊕𝑖∈ℤ𝑅𝑖 is a ring satisfying 𝑅𝑖 ⋅ 𝑅𝑗 ⊆ 𝑅𝑖+𝑗.
• A graded module 𝑀 = ⊕𝑖∈ℤ𝑀𝑖 over a graded ring 𝑅 is a module satisfying 𝑅𝑖 ⋅

𝑀𝑗 ⊆ 𝑀𝑖+𝑗.
• A graded algebra 𝐴 = ⊕𝑖∈ℤ𝐴𝑖 is both a graded module and a graded ring with
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1 ∈ 𝐴0.
• A differential graded algebra (𝑑𝑔𝑎) 𝐴 is a graded algebra, equipped with a deriva-

tion 𝑑 ∶ 𝐴 → 𝐴, that is of degree +1, satisfying 𝑑2 = 0 and 𝑑(𝑎𝑏) = (𝑑𝑎)𝑏 +
(−1)deg (𝑎)𝑎(𝑑𝑏) for any 𝑎, 𝑏 ∈ 𝐴.

• A commutative differential graded algebra (𝑐𝑑𝑔𝑎) is a 𝑑𝑔𝑎 𝐴 that is graded com-
mutative: 𝑎𝑏 = (−1)deg 𝑎 deg 𝑏𝑏𝑎 for any homogeneous elements 𝑎, 𝑏 ∈ 𝐴.

• A 𝑐𝑑𝑔𝑎 (𝐴, 𝑑) is path-connected if 𝐻0(𝐴, 𝑑) ≅ ℚ, and is simply connected if
𝐻0(𝐴, 𝑑) = ℚ and 𝐻1(𝐴, 𝑑) = 0.

• A morphism 𝜑 ∶ 𝐴 → 𝐵 of graded algebras is a degree-preserving homomorphism
and satisfies 𝜑(1) = 1.

The 𝑐𝑑𝑔𝑎we focus on and deal with is mostly path-connected, so we assumeCDGA
is a category of path-connected 𝑐𝑑𝑔𝑎.

Example 4.1: Let 𝑉 be a free graded module. Then, we define the tensor algebra 𝑇𝑉 as
follows:

𝑇𝑉 =
∞

∑
𝑞=0

𝑇𝑞𝑉, 𝑇𝑞𝑉 = ⊗𝑞𝑉

Multiplication is given by 𝑎 ⋅ 𝑏 = 𝑎 ⊗ 𝑏. Note that 𝑞 is not the degree: elements 𝑣1⊗
⋯⊗𝑣𝑞 ∈ 𝑇𝑞𝑉 have degree = Σdeg 𝑣𝑖 and word length 𝑞.

The elements 𝑣 ⊗ 𝑤 − (−1)deg 𝑣 deg 𝑤𝑤 ⊗ 𝑣(𝑣,𝑤 ∈ 𝑉) generate an ideal 𝐼 ∈ 𝑇𝑉.
The quotient

Λ𝑉 = 𝑇𝑉/𝐼

is called the exterior algebra (also the free commutative graded algebra) on 𝑉.

In homotopy theory, we focus more on homotopy relationships rather than simple
equality or isomorphism, so we need the definition of quasi-isomorphism. A morphism
𝜑 ∶ (𝐴, 𝑑) → (𝐴′, 𝑑) of 𝑑𝑔𝑎 is called a quasi-isomorphism, denoted by ≃, if 𝐻(𝑓) ∶
𝐻∗(𝐴, 𝑑) → 𝐻∗(𝐴′, 𝑑) is an isomorphism.

4.1.1 Minimal Sullivan Models

A Sullivan algebra is an external algebra that satisfies the certain nilpotence con-
dition, which ensures that we can construct a Sullivan model for any 𝑐𝑑𝑔𝑎 (𝐴, 𝑑) with
𝐻0(𝐴, 𝑑) = ℚ.
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Definition 4.3: A Sullivan algebra is a 𝑐𝑑𝑔𝑎 of the form (Λ𝑉, 𝑑) with 𝑉0 = 0, where
𝑉 = ⋃𝑖=0 𝑉(𝑖), and𝑉(0) ⊆ 𝑉(1) ⊆ ⋯ forms an ascending sequence of graded subspaces
satisfying 𝑑 = 0 in 𝑉(0) and 𝑑𝑉(𝑖) ⊆ Λ𝑉(𝑖 − 1) with 𝑖 ≥ 1.

A Sullivan algebra is called minimal if Im 𝑑 ⊆ Λ≥2𝑉.

Definition 4.4: ASullivanmodel for a 𝑐𝑑𝑔𝑎 (𝐴, 𝑑) is a homomorphism of commutative
differential graded algebras

𝑚 ∶ (Λ𝑉, 𝑑) → (𝐴, 𝑑)

satisfying𝑚 is a quasi-isomorphism.
Let𝑋 be a space in ob Topℚ. Then we define that a Sullivan model for𝑋 is a Sullivan

model for 𝐴𝑃𝐿(𝑋)

𝑚 ∶ (Λ𝑉, 𝑑) → 𝐴𝑃𝐿(𝑋).

If (Λ𝑉, 𝑑) is minimal, we call that𝑚 is a minimal Sullivan model, which we denote
𝑚𝑋 ∶ 𝑀𝑆𝑢(𝑋) → 𝐴𝑃𝐿(𝑋).

This definition utilizes the 𝐴𝑃𝐿, which is a contravariant functor from the spaces to
commutative differential graded algebras. Its specific structure will be introduced later.

Example 4.2: [46]

𝑀𝑆𝑢(𝕊2𝑛+1) = (Λ𝑢, 0), deg 𝑢 = 2𝑛 + 1,
𝑀𝑆𝑢(𝕊2𝑛) = (Λ(𝑎, 𝑏), 𝑑), 𝑑𝑎 = 0, 𝑑𝑏 = 𝑎2, deg 𝑎 = 2𝑛,
𝑀𝑆𝑢(𝑋 × 𝑌) ≅ 𝑀𝑆𝑢(𝑋) ⊗𝑀𝑆𝑢(𝑌), if one of 𝐻(𝑋) or 𝐻(𝑌) is of finite type,
𝑀𝑆𝑢(𝑋 ∨ 𝑌) ≃ 𝑀𝑆𝑢(𝑋) ⊕𝑀𝑆𝑢(𝑌),
𝑀𝑆𝑢(𝐾(ℤ, 𝑛)) = (Λ𝑎, 0), deg 𝑎 = 𝑛.

Define augmentations 𝜖0, 𝜖1 ∶ Λ(𝑡, 𝑑𝑡) → ℚ by 𝜖0(𝑡) = 0, 𝜖1(𝑡) = 1. Then, we
may define the homotopy in commutative differential graded algebras.

Definition 4.5: A homotopy between two morphisms 𝜑0, 𝜑1 ∶ (𝐴, 𝑑) → (𝐴′, 𝑑) of
commutative differential graded algebras is a morphism

Φ ∶ (𝐴, 𝑑) → (𝐴′, 𝑑) ⊗ (Λ(𝑡, 𝑑𝑡), 𝑑)

such that (𝑖𝑑 ⋅ 𝜖𝑖) ∘ Φ = 𝜑𝑖, 𝑖 = 0, 1. We call that 𝜑0 and 𝜑1 are homotopic and denote
this by 𝜑0 ∼ 𝜑1.
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In order to construct a Sullivan model of 𝑋 ∈ ob Topℚ, we first need to establish an
algebraic model for 𝑋. Therefore, we will briefly introduce the definition and properties
of the 𝐴𝑃𝐿 functor in the following.

Definition 4.6: A simplicial differential algebra𝐴 is defined as a simplicial object within
the category of differential algebras. More precisely, 𝐴 is composed of a family of dif-
ferential algebras {𝐴𝑛}𝑛≥0 equipped with face and degeneracy morphisms that satisfy the
necessary compatibility conditions.

The simplicial commutative cochain algebra, denoted by 𝐴𝑃𝐿, is defined as follow-
ing:

• differential graded algebra (𝐴𝑃𝐿)𝑛 is given by

(𝐴𝑃𝐿)𝑛 =
Λ(𝑡0, ⋯ , 𝑡𝑛, 𝑦0, ⋯ , 𝑦𝑛)
(∑ 𝑡𝑖 − 1,∑𝑦𝑗)

in which deg 𝑡𝑖 = 0, deg 𝑦𝑗 = 1 and 𝑑𝑡𝑖 = 𝑦𝑖 , 𝑑𝑦𝑗 = 0.
• The face and degeneracy morphisms are the morphisms of differential graded al-

gebras

𝜕𝑖 ∶ (𝐴𝑃𝐿)𝑛+1 → (𝐴𝑃𝐿)𝑛 and 𝑠𝑗 ∶ (𝐴𝑃𝐿)𝑛 → (𝐴𝑃𝐿)𝑛+1

satisfying

𝜕(𝑡𝑘) =
⎧⎪
⎨⎪⎩

𝑡𝑘 , 𝑘 < 𝑖
0 , 𝑘 = 𝑖
𝑡𝑘−1 , 𝑘 > 𝑖

and 𝑠𝑗(𝑡𝑘) =
⎧⎪
⎨⎪⎩

𝑡𝑘 , 𝑘 < 𝑗
𝑡𝑘 + 𝑡𝑘+1 , 𝑘 = 𝑗
𝑡𝑘+1 , 𝑘 > 𝑗

The definition of 𝐴𝑃𝐿 is actually a simulation of polynomial differential forms on the
Euclidean simplex Δ𝑛 = {(𝑡0, ⋯ , 𝑡𝑛) ∈ ℝ𝑛+1 ∶ ∑ 𝑡𝑖 = 1 and 𝑡𝑖 ≥ 0}.

Note that if we fix the degree 𝑝 ∈ ℕ, the (𝐴𝑃𝐿)𝑝 ∶= {(𝐴𝑃𝐿)𝑝𝑛}𝑛≥0 ∈ SSet is a
simplicial set. in which SSet is the category of simplicial sets.

Let 𝐾 be a simplicial set. Then 𝐴𝑃𝐿(𝐾) = {(𝐴𝑃𝐿)𝑝(𝐾)}𝑝≥0 is defined as the collec-
tion of simplicial set morphisms from 𝐾 to (𝐴𝑃𝐿)𝑝. Define

𝐴𝑃𝐿(𝐾) ∶=⨁
𝑝≥0

HomSSet(𝐾, (𝐴𝑃𝐿)𝑝),

which admits the structure of commutative differential graded algebra. In fact, we get a
contravariant functor 𝐴𝑃𝐿 from simplicial sets to commutative differential algebras. In
particular, for any topological space 𝑋 and any continuous map 𝑓 we apply this construc-
tion to the simplicial set 𝑆∗(𝑋) and 𝑆∗(𝑓), that is 𝐴𝑃𝐿(𝑋) ∶= 𝐴𝑃𝐿(𝑆∗(𝑋)).
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Proposition 4.1: [45] Let (𝐴, 𝑑) be a commutative differential graded algebra.
• If (𝐴, 𝑑) is path-connected, that is 𝐻0(𝐴, 𝑑) = ℚ, then there exists a Sullivan

model

𝑚 ∶ (Λ𝑉, 𝑑) ≃−→ (𝐴, 𝑑).

• If (𝐴, 𝑑) is a simply connected, that is𝐻0(𝐴, 𝑑) = ℚ and𝐻1(𝐴, 𝑑) = 0, then there
is a minimal Sullivan model

𝑚 ∶ (Λ𝑊, 𝑑) ≃−→ (𝐴, 𝑑)

and minimal Sullivan models of (𝐴, 𝑑) are all isomorphic.

Corollary 4.1: [45] For any simply connected rational space 𝑋, there exists a minimal
Sullivan model of 𝑋

𝑚 ∶ (Λ𝑉, 𝑑) ≃−→ 𝐴𝑃𝐿(𝑋).

Proposition 4.2: [45] Let 𝜑 ∶ (𝐴, 𝑑) → (𝐵, 𝑑) be a morphism between two simply
connected commutative differential graded algebras, and let 𝑚𝐴 ∶ (Λ𝑉, 𝑑) → (𝐴, 𝑑) and
𝑚𝐵 ∶ (Λ𝑊, 𝑑) → (𝐵, 𝑑) be their respective minimal Sullivan models. Then there is a
morphism𝑚𝜑 ∶ (Λ𝑉, 𝑑) → (Λ𝑊, 𝑑) such that

(Λ𝑉, 𝑑)
𝑚𝐴

��

𝑚𝜑 // (Λ𝑊, 𝑑)
𝑚𝐵
��

(𝐴, 𝑑) 𝜑
// (𝐵, 𝑑)

commutes up to homotopy. The morphism𝑚𝜑 is referred to as the Sullivan representative
of 𝜑.

Corollary 4.2: [45] Suppose that 𝑓 ∶ 𝑋 → 𝑌 is a continuous map of rational spaces, and
𝑚𝑋 ∶ (Λ𝑉, 𝑑) → 𝐴𝑃𝐿(𝑋) and 𝑚𝑌 ∶ (Λ𝑊, 𝑑) → 𝐴𝑃𝐿(𝑌) are minimal Sullivan models.
Then there is a morphism𝑚𝑓 ∶ (Λ𝑊, 𝑑) → (Λ𝑉, 𝑑) such that

(Λ𝑊, 𝑑)
𝑚𝑌

��

𝑚𝑓 // (Λ𝑉, 𝑑)
𝑚𝑋
��

𝐴𝑃𝐿(𝑌) 𝐴𝑃𝐿(𝑓)
// 𝐴𝑃𝐿(𝑋)

commutes up to homotopy. We call the morphism 𝑚𝑓 the Sullivan representative of 𝑓,
and the homotopy class 𝑓 uniquely determines the homotopy class of𝑚𝑓.
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Remark 4.1: [45] The above results actually tell us these maps

{
rational homotopy

type
} → {

isomorphism classes of

minimal Sullivan algebras over ℚ
}

and

{
homotopy classes of

map 𝑋 → 𝑌
} → {

homotopy classes of

morphisms (Λ𝑊, 𝑑) → (Λ𝑉, 𝑑)
}

Indeed, these maps are bijective, and we get a contravariant functor 𝑀𝑆𝑢 ∶ Ho(Topℚ) →
Ho(CDGA). Therefore, in the framework of rational homotopy theory, the study of ho-
motopy classes of spaces can be reduced to the study of minimal Sullivan models.

4.1.2 Persistence Minimal Sullivan Models

In this subsection, we will introduce these results[105] of Ling Zhou, persistence min-
imal Sullivan models, and their interleaving distance.

In the past, when scholars researched the persistence modules, the persistence mod-
ules mostly considered the functor 𝑇 → Vecℚ from ℝ or ℕ to the category of finite-
dimensional vector spaces over 𝕜. However, Zhou Ling combined persistence with mini-
mal Sullivan models to obtain the persistence minimal Sullivan models and discussed the
stability of the persistence minimal Sullivan models, which brought new directions for
the development of persistence homology.

Definition 4.7: Let 𝕏 ∶ (ℝ,≤) → Topℚ be a persistence module, which is called ra-
tional ℝ-space, in which we denote 𝕏(𝑟) as 𝕏𝑟 and 𝕏(𝑠 ≤ 𝑡) as 𝕏𝑠≤𝑡. We define the
persistence minimal Sullivan model of 𝕏 to be a persistence minimal Sullivan algebra
𝑀𝑆𝑢(𝕏) together with 𝑐𝑑𝑔𝑎 quasi-isomorphisms 𝑚𝕏 ∶= {𝑚𝕏𝑡 ∶ 𝑀𝑆𝑢(𝕏𝑡) → 𝐴𝑃𝐿(𝕏𝑡)}
such that

• for each 𝑡,𝑚𝕏𝑡 ∶ 𝑀𝑆𝑢(𝕏𝑡) → 𝐴𝑃𝐿(𝕏𝑡) is a minimal Sullivan model for 𝕏𝑡
• for any 𝑠 ≤ 𝑡 ∈ ℝ, the following diagram commutes up to homotopy

𝑀𝑆𝑢(𝕏𝑡)
𝑚𝕏𝑡 ≃

��

𝑀𝑆𝑢(𝕏𝑠≤𝑡)//𝑀𝑆𝑢(𝕏𝑠)
≃ 𝑚𝕏𝑠
��

𝐴𝑃𝐿(𝕏𝑡)𝐴𝑃𝐿(𝕏𝑠≤𝑡)
// 𝐴𝑃𝐿(𝕏𝑠)

Indeed,𝑚𝕏 induces a natural isomorphism between the functorsHo ∘𝑀𝑆𝑢 ∘ 𝐴𝑃𝐿 ∘ 𝕏
and Ho ∘ 𝐴𝑃𝐿 ∘ 𝕏 ∶ (ℝ,≤) → Ho(CDGA)𝑜𝑝.
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Next, Ling Zhou’s results describe the stability of 𝑑Ho(CDGA)𝐼 and provide upper and
lower bounds for 𝑑Ho(CDGA)𝐼 .

Theorem 4.2: [105] Suppose that 𝕏 and 𝕐 are two persistence spaces, and 𝑀𝑆𝑢(𝕏) and
𝑀𝑆𝑢(𝕐) are persistence minimal Sullivan models of 𝕏 and 𝕐, respectively. Then

𝑑Ho(CDGA)𝐼 (𝑀𝑆𝑢(𝕏),𝑀𝑆𝑢(𝕐)) ≤ 𝑑𝐻𝐼(𝕏, 𝕐).

If 𝕏 and 𝕐 are Vietoris-Rips filtrations of points clouds 𝑋 and 𝑌, respectively. Then

𝑑Ho(CDGA)𝐼 (𝑀𝑆𝑢(𝑉𝑅•(𝑋),𝑀𝑆𝑢(𝑉𝑅•(𝑌))) ≤ 2 ⋅ 𝑑𝐺𝐻(𝑋, 𝑌).

Theorem 4.3: [105] Suppose that 𝔸 and 𝔹 are two persistence 𝑐𝑑𝑔𝑎, then

𝑑grVecℚ𝐼 (𝐻(𝔸), 𝐻(𝔹)) ≤ 𝑑Ho(CDGA)𝐼 (𝔸,𝔹).

Suppose thatΛ𝕍 andΛ𝑊 are two simply connected persistenceminimal Sullivan algebras.
Then

𝑑grVecℚ𝐼 (𝕍,𝕎) ≤ 𝑑Ho(CDGA)𝐼 (Λ𝕍, Λ𝕎)(≤ 𝑑CDGA𝐼 (Λ𝕍, Λ𝕎)).

These results show that persistence minimal Sullivan models are an effective tool
that promotes topological data analysis, although many challenges need to be overcome
in practical applications.

4.2 Persistence Minimal Free Lie Models

In this section, wewill first recall the properties and the definition of minimal free Lie
models, which is another important algebraic model in rational homotopy theory. Then,
we will generalize the persistence modules to persistence minimal free Lie models and
discuss their properties.

In Quillen’s paper[89], Quillen defined and used a sequence of functors that are
Quillen equivalent, respectively, to assign to a simply connected rational space of finite
type a differential graded Lie algebra (𝑑𝑔𝑙),

𝑋 ↦ 𝜆𝑋.

We call the functor

𝜆 ∶ Topℚ → DGL

Quillen functor where DGL is the category of connected 𝑑𝑔𝑙, that is 𝐿 = {𝐿𝑖}𝑖>0.

49



CHAPTER 4 PERSISTENCE RATIONAL HOMOTOPY

Before starting a detailed introduction to the free Lie model of rational spaces, we
will first introduce the functors defined by Quillen and their main properties in homotopy
theory.

We need to recall some notions of coalgebras and Lie algebras.

Definition 4.8: A graded coalgebra 𝐶 consists of a graded module 𝐶 equipped with two
degree-preserving linear maps, one of which is called the comultiplication Δ ∶ 𝐶 → 𝐶⊗𝐶,
and the other is referred to as the augmentation 𝜖 ∶ 𝐶 → ℚ. These maps satisfy the
coassociativity condition (Δ⊗ 𝑖𝑑)Δ = (𝑖𝑑 ⊗Δ)Δ and the counit condition(𝑖𝑑 ⊗ 𝜖)Δ =
(𝜖 ⊗ 𝑖𝑑)Δ = 𝑖𝑑𝐶.

A graded coalgebra is called cocommutative if

𝜏Δ = Δ

where 𝜏 ∶ 𝐶 ⊗ 𝐶 → 𝐶 ⊗ 𝐶 is the involution 𝑎 ⊗ 𝑏 ↦ (−1)deg 𝑎 deg 𝑏𝑏 ⊗ 𝑎. We call a
graded coalgebra co-augmented by the choice of an element 1 ∈ 𝐶0 so that 𝜖(1) = 1 and
Δ(1) = 1⊗ 1. We can also say that co-augmentation is an embedding ℚ ↪ 𝐶. For such
coalgebra 𝐶, we write 𝐶̄ = Ker 𝜖, so that 𝐶 = ℚ⊕ 𝐶̄ and define Δ̄ ∶ 𝐶̄ → 𝐶̄ ⊗ 𝐶̄ with
Δ̄𝑐 = Δ𝑐 − 𝑐 ⊗ 1 − 1⊗ 𝑐.

Example 4.3: The coalgebra Λ𝑉 is an instructive example, where comultiplication Δ is
explicitly defined by the formula Δ𝑣 = 𝑣 ⊗ 1 + 1⊗ 𝑣, 𝑣 ∈ 𝑉. And the augmented by
𝜖 ∶ Λ+𝑉 → 0, 1 ↦ 1 and co-augmented by ℚ = Λ0𝑉.

Definition 4.9: A graded Lie algebra 𝐿 consists of a graded vector space 𝐿 = {𝐿𝑖}𝑖∈ℤ
and a linear map of degree zero, 𝐿 ⊗ 𝐿 → 𝐿, denoted by 𝑥 ⊗ 𝑦 ↦ [𝑥, 𝑦] which satisfies
the following conditions:

• [𝑥, 𝑦] = −(−1)deg 𝑥 deg 𝑦[𝑦, 𝑥]
• [𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] + (−1)deg 𝑥 deg 𝑦[𝑦, [𝑥, 𝑧]]

The product [ , ] is called the Lie bracket.

We say a linear map of degree 𝑘, 𝜃 ∶ 𝐿 → 𝐿, is a A derivation of 𝐿 of degree 𝑘 if
𝜃[𝑥, 𝑦] = [𝜃𝑥, 𝑦] + (−1)𝑘 deg 𝑥[𝑥, 𝜃(𝑦)].

Example 4.4: Let𝑉 be a graded vector space. The tensor algebra𝑇𝑉 on𝑉 carries a natu-
ral graded Lie algebra structure via the bracket operation [𝑥, 𝑦] ∶= 𝑥𝑦−(−1)deg 𝑥 deg 𝑦𝑦𝑥.
Then, the free graded Lie algebra 𝕃𝑉 is defined as the smallest graded Lie subalgebra of
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𝑇𝑉 containing 𝑉. This object satisfies a universal property: any degree-preserving linear
map 𝑓 ∶ 𝑉 → 𝐿 into another graded Lie algebra 𝐿 may extend uniquely to a graded Lie
algebra homomorphism 𝕃𝑉 → 𝐿.

The free graded Lie algebra 𝕃𝑉 naturally inherits a grading structure from the tensor
algebra 𝑇𝑉, which decomposes as the direct sum ⨁∞

𝑘=0 𝑇𝑘𝑉. Here, each homogeneous
component 𝑇𝑘𝑉 consists of tensors of degree 𝑘. Since 𝕃𝑉 is generated by iterated Lie
brackets of elements in 𝑉, its elements can be stratified by bracket length, defined as the
number of generators (from 𝑉) involved in their construction.

• 𝕃𝑉 = ⨁𝑘≥1(𝕃𝑉 ∩ 𝑇𝑘𝑉);
• 𝑥 ∈ 𝕃𝑉 has bracket length 𝑘 if and only if 𝑥 ∈ 𝕃𝑘𝑉 ∶= 𝕃𝑉 ∩ 𝑇𝑘𝑉.

Then we may decompose 𝕃𝑉 = ⨁𝑖≥1 𝕃𝑖𝑉the differential 𝑑 = 𝑑0 + 𝑑1 + ⋯, in which
𝑑𝑘 ∶ 𝑉 → 𝕃𝑉 ∩ 𝑇𝑘+1𝑉.

For any free Lie algebra (𝕃𝑉 , 𝑑 = 𝑑0 +⋯), if 𝑑0 = 0, then we call it minimal.

Next, we will review the two functors 𝐶∗ ∶ DGL → CDGC and ℒ ∶ CDGC →
DGL where CDGA is the category of 1-connected cocommutative differential graded
coalgebras (𝑐𝑑𝑔𝑐), which played important roles in Quillen’s work[89].

Suppose that (𝐿, 𝑑𝐿) is a differential graded Lie algebra. The coderivations in Λ𝑠𝐿,
where 𝑠𝐿 denotes the shift of degrees that is (𝑠𝐿)𝑖 = 𝐿𝑖−1 for all 𝑖, are determined by the
differential 𝑑𝐿 and the Lie bracket [ , ] ∶ 𝐿 ⊗ 𝐿 → 𝐿

𝑑0(𝑠𝑥1 ∧ ⋯ ∧ 𝑠𝑥𝑘) = −
𝑘

∑
𝑖=1
(−1)𝑛𝑖𝑠𝑥1 ∧ ⋯ ∧ 𝑠𝑑𝐿𝑥𝑖 ∧ ⋯ ∧ 𝑠𝑥𝑘 ,

and

𝑑1(𝑠𝑥1 ∧ ⋯ ∧ 𝑠𝑥𝑘) = ∑
1≤𝑖<𝑗≤𝑘

(−1)deg 𝑥𝑖+1(−1)𝑛𝑖𝑗𝑠[𝑥𝑖 , 𝑥𝑗] ∧ 𝑠𝑥1⋯𝑠𝑥̂𝑖⋯𝑠𝑥̂𝑗⋯𝑠𝑥𝑘

where 𝑛𝑖 = ∑𝑗<𝑖 deg 𝑠𝑥𝑗, and 𝑠𝑥1∧⋯∧𝑠𝑥𝑘 = (−1)
𝑛𝑖𝑗𝑠𝑥𝑖∧𝑠𝑥𝑗∧𝑠𝑥1⋯𝑠𝑥̂𝑖⋯𝑠𝑥̂𝑗⋯∧𝑠𝑥𝑘.

(Here, symbol ̂ means ’deleted’. )
By simple computation, we can know that 𝑑 = 𝑑0 + 𝑑1 is a coderivation. In other

words, (Λ𝑠𝐿, 𝑑 = 𝑑0 + 𝑑1) is a differential graded coalgebra.

Definition 4.10: The Cartan-Eilenberg-Chevalley construction on a 𝑑𝑔𝑙 (𝐿, 𝑑𝐿) is the
𝑐𝑑𝑔𝑐 𝐶∗(𝐿, 𝑑𝐿) = (Λ𝑠𝐿, 𝑑 = 𝑑0 + 𝑑1).

The functor 𝐶∗ assigns a 𝑑𝑔𝑙 (𝐿, 𝑑𝐿) a 𝑐𝑑𝑔𝑐 (Λ𝑠𝐿, 𝑑), and if 𝐸 = {𝐸𝑖}𝑖>0 and
𝐿 = {𝐿𝑖}𝑖>0, then 𝜑 ∶ 𝐸 → 𝐿 is a quasi-isomorphism if and only if 𝐶∗(𝜑) is a quasi-
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isomorphism[45].
There are some methods for constructing free Lie algebras, but we will introduce

one that is closely related to 𝐶∗, Quillen’s functor ℒ, which is the analog of the cobar
construction.

Let (𝐶, 𝑑) = (𝐶̄, 𝑑) ⊕ ℚ be any co-augmented 𝑐𝑑𝑔𝑐. By the cobar consturction,
Ω𝐶 = 𝑇𝑠−1𝐶̄. The differential has the form 𝑑 = 𝑑0 + 𝑑1 with 𝑑0 ∶ 𝑠−1𝐶̄ → 𝑠−1𝐶̄
and 𝑑1 ∶ 𝑠−1𝐶̄ → 𝑠−1𝐶̄ ⊗ 𝑠−1𝐶̄ that derives from the comultipliaction Δ of 𝐶. Since 𝐶
is cocommutative, then we always express the 𝑑1(𝑠−1𝑐) as the sum of commutators in
𝑇𝑠−1𝐶̄. Let Δ̄𝑐 = ∑𝑎𝑖⊗𝑏𝑖, then Δ̄𝑐 = ∑ (−1)deg 𝑎𝑖 deg 𝑏𝑖𝑏𝑖⊗𝑎𝑖. So

𝑑1(𝑠−1𝑐) =
1
2∑

𝑖
(−1)deg 𝑎𝑖[𝑠−1𝑎𝑖 , 𝑠−1𝑏𝑖]

through simple calculations, then we can know that 𝑑1 ∶ 𝑠−1𝐶̄ → 𝕃𝑠−1𝐶̄ ⊆ 𝑇𝑠−1𝐶̄. Hence,
we have proven that 𝑑 = 𝑑0 + 𝑑1 is the Lie derivation of the free Lie algebra 𝕃𝑠−1𝐶.

Definition 4.11: The 𝑑𝑔𝑙 (𝕃𝑠−1𝐶̄ , 𝑑) is referred to as the Quillen construction on the
co-augmented 𝑐𝑑𝑔𝑐 (𝐶, 𝑑) and it is denoted by ℒ(𝐶, 𝑑).

Theorem 4.4: [45] Let (𝐿 = {𝐿𝑖}𝑖≥1, 𝑑) be a connected 𝑑𝑔𝑙 and (𝐶 = ℚ⊕ 𝐶≥2, 𝑑) is a
𝑐𝑑𝑔𝑐. Then, there exist natural quasi-isomorphisms

𝜑 ∶ (𝐶, 𝑑) → 𝐶∗ℒ(𝐶, 𝑑) and 𝜓 ∶ ℒ𝐶∗(𝐿, 𝑑) → (𝐿, 𝑑)

of 𝑐𝑑𝑔𝑐’s (respectively, of 𝑑𝑔𝑙’s).

The two functors, 𝐶∗ and ℒ, we introduced above are adjoint to each other:

ℒ ⊣ 𝐶∗.

What’s more, the adjunction (ℒ ⊣ 𝐶∗) is a Quillen adjunction between the projective
model structure on DGL and the model structure on CDGC.

For the category DGL, there is a model category structure (DGL)𝑝𝑟𝑜𝑗 on the cate-
gory DGL over ℚ so that

• the fibrations: surjective maps
• weak equivalences: the quasi-isomorphisms on the underlying chain complexes.

Meanwhile, for the category CDGC, there is a model category structure (CDGC)𝑄𝑢𝑖𝑙𝑙𝑒𝑛
on the category CDGC over ℚ so that

• the cofibrations are the (degreewise) injections;
• the weak equivalences are those morphisms that become quasi-isomorphisms un-
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der the functor ℒ, that is, quasi-isomorphisms if 𝑑𝑔𝑐 is 1-connected.
Furthermore, Vladimir Hinich proved that the Quillen adjunction (ℒ ⊣ 𝐶∗) is a Quillen
equivalence[60]. More generally, Quillen proved the following theorem

Theorem 4.5: [89] There exist equivalences of categories

Ho(Topℚ)
𝜆−→ Ho(DGL) 𝐶∗−→ Ho(CDGC).

4.2.1 Free Lie Models

In the previous section, we introduced functor 𝐶∗ ∶ DGL → CDGC, which assigns
a 𝑑𝑔𝑙 to 𝑐𝑑𝑔𝑐, and we know that Hom(𝐶∗(𝐿), ℚ) naturally becomes a 𝑐𝑑𝑔𝑎. Therefore,
we define the functor 𝐶∗(−) = Hom(𝐶∗(−),ℚ). Moreover, we have an important fact
that 𝐶∗(𝐿) is a commutative 𝑐𝑑𝑔𝑎 because 𝐶∗(𝐿) is cocommutative. Moreover, if (𝐿, 𝑑𝐿)
is connected, then 𝐶∗(𝐿, 𝑑𝐿) = Λ𝑠𝐿 = ℚ ⊕ {𝐶𝑖}𝑖≥2. The assertion that 𝐶∗(𝐿, 𝑑𝐿) is
a Sullivan algebra follows from dualizing the Cartan-Eilenberg-Chevalley construction
and leveraging properties of differential graded Lie algebras and Sullivan models.

Next, we will introduce the definition of the free Lie model for rational spaces, which
is actually a Lie algebra model (𝐿, 𝑑𝐿) for rational spaces 𝑋 with the property𝐻∗(𝐿, 𝑑𝐿) ≅
(𝜋∗(Ω𝑋), [ , ]) where [ , ] is determined by the Whitehead product [ , ]𝑊.

Definition 4.12: A free model of (𝐿, 𝑑) ∈ ob DGL is a quasi-isomorphism of differen-
tial graded Lie algebras

𝑛 ∶ (𝕃𝑉 , 𝑑)
≃−→ (𝐿, 𝑑)

with 𝑉 = {𝑉𝑖}𝑖≥1.
If (𝕃𝑉 , 𝑑) is minimal, we call 𝑚 ∶ (𝕃𝑉 , 𝑑)

≃−→ (𝐿, 𝑑) a minimal free Lie model of
(𝐿, 𝑑).

Definition 4.13: Let 𝑋 ∈ ob Topℚ. A Lie model for 𝑋 is a quasi-isomorphism of dif-
ferential graded algebras

𝑛𝑋 ∶ 𝐶∗(𝐿, 𝑑𝐿)
≃−→ 𝐴𝑃𝐿(𝑋).

where (𝐿, 𝑑𝐿) is a connected 𝑑𝑔𝑙 of finite type. Sometimes, we also say that 𝐿 is the Lie
model of 𝑋. If 𝐿 = 𝕃𝑉, a free graded Lie algebra, we say (𝐿, 𝑑𝐿) is a free Lie model for
𝑋.

Let 𝑛𝑌 ∶ 𝐶∗(𝐸, 𝑑𝐸)
≃−→ 𝐴𝑃𝐿(𝑌) be a Lie model for the space 𝑌, and 𝑓 ∶ 𝑋 → 𝑌 be a
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continuous map. Then, a Lie representative for 𝑓 is a morphism 𝜑 of differential graded
Lie algebras such that 𝑛𝑋𝐶∗(𝜑) ∼ 𝐴𝑃𝐿(𝑓)𝑛𝑌.

In fact, the functor 𝜆 ∶ Topℚ → DGL, which is constructed by Quillen, assigns a
space 𝑋 a Lie algebra 𝜆𝑋 which is a free Lie algebra. Thus, we call 𝜆𝑋 the free Lie model
of 𝑋, and if a free Lie model (𝕃𝑉 , 𝑑) of 𝑋 is minimal, then we call (𝕃𝑉 , 𝑑) a minimal free
Lie model of 𝑋.

Example 4.5: The free Lie model of a sphere 𝕊𝑛+1 with 𝑛 = 2𝑘 or 2𝑘 + 1

𝕃(𝑣) = {
ℚ𝑣, deg 𝑣 = 2𝑘

ℚ𝑣 ⊕ℚ[𝑣, 𝑣], deg 𝑣 = 2𝑘 + 1.
and 𝑑𝐿 = 0.

Proposition 4.3: [45] Any space 𝑋 ∈ ob Topℚ has a minimal free Lie model (𝕃𝑉 , 𝑑),
unique up to isomorphism. Suppose that𝑚𝑋 ∶ 𝐶∗(𝕃𝑉) → 𝐴𝑃𝐿(𝑋) is the minimal free Lie
model of 𝑋 and 𝑚𝑌 ∶ 𝐶∗(𝕃𝑊) → 𝐴𝑃𝐿(𝑌) is the minimal free Lie model of 𝑌. For any
continuous map 𝑓 ∶ 𝑋 → 𝑌, there is a Lie representative 𝑛𝑓 ∶ (𝕃𝑉 , 𝑑) → (𝕃𝑊, 𝑑).

In rational homotopy theory, the following theorem establishes a correspondence
between differential graded Lie algebras and the rational homotopy types of simply con-
nected spaces:

Theorem 4.6: (Quillen’s equivalence)[89] Every connected differential graded Lie alge-
bra (𝐿, 𝑑𝐿) of finite type serves as a Lie model for a simply connected CW complex 𝑋 of
finite rational type. Furthermore, this association is unique: two such CW complexes are
rationally homotopy equivalent if and only if their corresponding differential graded Lie
algebras are quasi-isomorphic.

4.2.2 Persistence Free Lie Models

Definition 4.14: Let 𝕏 ∶ (ℝ,≤) → Topℚ be a rational ℝ-space. The persistence free
Lie model of 𝕏 is the functor 𝜆𝕏 ∶ (ℝ,≤) → DGL with (𝜆𝕏)𝑡 ∶= 𝜆𝕏𝑡.

Indeed, through Theorem4.5, we can know that 𝜆 induces a functor Ho(Topℚ)ℝ →
Ho(DGL)ℝ, since the morphism 𝜑 in Ho(Topℚ)ℝ is a set of {𝜑𝑎}𝑎∈ℝ, in which all 𝜑𝑎
are morphisms inHo(Topℚ) and 𝜆 induces the functor fromHo(Topℚ) toHo(DGL)[89].
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Definition 4.15: Let 𝕏 ∶ (ℝ,≤) → Topℚ be a rational ℝ-space. The persistence mini-
mal free Lie model of 𝕏 is the functor 𝑀𝑄𝑢𝑖(𝕏) ∶ (ℝ,≤) → DGL with 𝑀𝑄𝑢𝑖(𝕏)𝑡 is the
minimal free Lie model of 𝕏𝑡, and for any 𝑠 ≤ 𝑡, 𝑀𝑄𝑢𝑖(𝑋)𝑠≤𝑡 is a Lie representative of
𝕏𝑠≤𝑡.

Note that the definition of persistence minimal free Lie model is not well defined
because we cannot promise the equation𝑀𝑄𝑢𝑖(𝑋)𝑟≤𝑡 = 𝑀𝑄𝑢𝑖(𝑋)𝑠≤𝑡 ∘𝑀𝑄𝑢𝑖(𝑋)𝑟≤𝑠. How-
ever, if we focus on the homotopy category of DGL,Ho(DGL), then the definition of the
persistence minimal free Lie model is meaningful.

Lemma 4.1: Let 𝑛𝑋 ∶ 𝐶∗(𝕃𝑉) → 𝐴𝑃𝐿(𝑋) and 𝑛𝑌 ∶ 𝐶∗(𝕃𝑊) → 𝐴𝑃𝐿(𝑌) be free Lie
models of𝑋 and𝑌 respectively. For any continuousmap 𝑓 ∶ 𝑋 → 𝑌, the Lie representative
𝑛𝑓 ∶ (𝕃𝑉 , 𝑑) → (𝕃𝑊, 𝑑) is unique up to weak equivalence.
Proof: Given the following diagram

𝐴𝑃𝐿(𝑌)
𝐴𝑃𝐿(𝑓)// 𝐴𝑃𝐿(𝑋)

𝐶∗(𝕃𝑊)
≃𝑛𝑌
OO

𝐶∗(𝑛𝑓)
// 𝐶∗(𝕃𝑉)

𝑛𝑋≃
OO

is commutative up to homotopy. If there is another Lie representative of 𝑓, 𝑚𝑓, then
𝐶∗(𝑛𝑓) ∼ 𝐶∗(𝑚𝑓). Because 𝐶∗(𝕃𝑉) and 𝐶∗(𝕃𝑊) are Sullivan models, 𝐶∗(𝑛𝑓) and
𝐶∗(𝑚𝑓) are two Sullivan representatives of 𝑓, 𝐶∗(𝑛𝑓) ∼ 𝐶∗(𝑚𝑓).

Note that 𝐶∗ ∶ Ho(DGL) → Ho(CDGC) is a equivalence of categories, 𝐶∗ induces
a equivalence of categories Ho(DGL) → Ho(CDGA) and we still use 𝐶∗ to represent it.
What’s more, we know that if two morphisms in CDGA are homotopic, then these two
morphisms are equivalent in Ho(CDGA), which is the homotopy category of CDGA,
where weak equivalences are quasi-isomorphisms.

Therefore 𝑛𝑓 = 𝑚𝑓 in Ho(DGL). ∎

So, for any morphisms 𝑋 𝑓−→ 𝑌 𝑔−→ 𝑍 in Topℚ, we have proven that 𝑛𝑔 ∘ 𝑛𝑓 =
𝑛𝑔𝑓 in Ho(DGL), where 𝑛𝑓 ∶ 𝕃𝑈 → 𝕃𝑉 , 𝑛𝑔 ∶ 𝕃𝑉 → 𝕃𝑊, 𝑛𝑔𝑓 ∶ 𝕃𝑈 → 𝕃𝑊 are Lie
representatives of 𝑓, 𝑔, 𝑔𝑓 respectively, and 𝕃𝑈, 𝕃𝑉 , 𝕃𝑊 are minimal free Lie models of
𝑋, 𝑌, 𝑍 respectively.

Theorem 4.7: For any rational ℝ-space 𝕏 ∶ (ℝ,≤) → Topℚ, there exists a persistence
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minimal free Lie model𝑀𝑄𝑢𝑖(𝕏) ∶ (ℝ,≤) → Ho(DGL) such that𝑀𝑄𝑢𝑖(𝕏)𝑡 is a minimal
free Lie model of 𝕏𝑟 and𝑀𝑄𝑢𝑖(𝕏)(𝑠 ≤ 𝑡) is a Lie representative of 𝕏(𝑠 ≤ 𝑡) up to weak
equivalences.

For the persistence minimal free Lie model we construct, the post-composition of𝐻∗
and 𝜋∗ computing the lower bound of the persistence minimal free Lie model 𝑀𝑄𝑢𝑖(𝕏)
respectively, that is𝐻∗(𝑀𝑄𝑢𝑖(𝕏)) and𝜋∗(𝑀𝑄𝑢𝑖(𝕏)) are persistencemodules that are func-
tors from (ℝ,≤) → grVecℚ. Therefore, we can get the bounds of persistence minimal
free Lie models. For any rational ℝ-space 𝕏, we have the persistence minimal free Lie
model𝑀𝑄𝑢𝑖(𝕏). Here, we assume that 𝑄 is a map from free Lie algebras to vector spaces,
𝑄(𝕃𝑉) = 𝑉. Obviously, any morphism of free Lie algebras 𝜑 ∶ 𝕃𝑉 → 𝕃𝑊 can induces a
morphism of vector spaces 𝑄(𝜑) ∶ 𝑉 → 𝑊 such that the diagram

𝕃𝑉
𝑄
��

𝜑 // 𝕃𝑊
𝑄
��

𝑉 𝑄(𝜑)
//𝑊

is commutative.
Given 𝑓 ∶ 𝕏 → 𝕐, then we have commutative diagram

𝑀𝑄𝑢𝑖(𝕏)
𝑛𝑓 //

𝑄
��

𝑀𝑄𝑢𝑖(𝕐)
𝑄
��

𝕍 𝑄(𝑛𝑓)
//𝕎

where 𝕍𝑟 ∶= 𝑄(𝑀𝑄𝑢𝑖(𝕏𝑟)) and 𝕍𝑠≤𝑡 ∶= 𝑄(𝑀𝑄𝑢𝑖(𝕏)𝑠≤𝑡).

Theorem 4.8: For any rational ℝ-spaces 𝕏 and 𝕐, we have
• 𝑑Ho(DGL)𝐼 (𝑀𝑄𝑢𝑖(𝕏),𝑀𝑄𝑢𝑖(𝕐)) ≤ 𝑑𝐻𝐼(𝕏, 𝕐) ≤ 𝑑𝐼(𝕏, 𝕐)

•
𝑑grVecℚ𝐼 (𝜋∗(𝕏), 𝜋∗(𝕐)) = 𝑑grVecℚ𝐼 (𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕏), 𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕐))

≤ 𝑑Ho(DGL)𝐼 (𝑀𝑄𝑢𝑖(𝕏),𝑀𝑄𝑢𝑖(𝕐))
• 𝑑grVecℚ𝐼 (𝐻∗(𝕏), 𝐻∗(𝕐)) = 𝑑

grVecℚ
𝐼 (𝕍,𝕎) ≤ 𝑑Ho(DGL)𝐼 (𝑀𝑄𝑢𝑖(𝕏),𝑀𝑄𝑢𝑖(𝕐))

To prove the theorem, we need some extra results.

Lemma 4.2: [45] Let (𝐿, 𝑑) be a Lie model for 𝑋 ∈ ob Topℚ. There exists a natural

isomorphism 𝐻∗(𝐿)
≅−→ 𝜋∗(Ω𝑋) of graded Lie algebras, which converts the Lie bracket

in 𝐻∗(𝐿) to the Whitehead product in 𝜋∗(𝑋) up to sign.

For any free Lie algebra (𝕃𝑉 , 𝑑), let 𝑑𝑉 ∶ 𝑉 → 𝑉 be the linear part of the differential
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𝑑, and 𝑑̄ ∶ 𝑠𝑉 → 𝑠𝑉 be the suspension of 𝑑𝑉. And for any continuous map 𝑓 ∶ 𝑋 → 𝑌,
respective free Lie models (𝕃𝑉 , 𝑑) and (𝕃𝑊, 𝑑) of 𝑋 and 𝑌, and a Lie representative 𝑛𝑓
of 𝑓, we have know that 𝑠𝐻(𝑉, 𝑑𝑉) ⊕ ℚ ≅ 𝐻∗(𝑋)[45] and consider the linear part of the
Lie representative 𝑛𝑓, 𝑄(𝑛𝑓) ∶ (𝑠𝑉 ⊕ℚ, 𝑑𝑉) → (𝑠𝑊 ⊕ℚ, 𝑑𝑊).

We naturally pose the question: Is themorphism𝐻(𝑄(𝑛𝑓)) induced by𝑄(𝑛𝑓) ‘equal’
to the morphism 𝐻∗(𝑓) ? The following lemma provides an answer to our question.

Proposition 4.4: Suppose (𝕃𝑉 , 𝑑) is a free Lie model for 𝑋, then 𝑠𝐻(𝑉, 𝑑𝑉) ⊕ ℚ ≅
𝐻∗(𝑋) is a natural isomorphism of graded vector spaces.

To be more detailed, we have the following commutative diagram.

𝐻∗(𝑋)
𝐻∗(𝑓) //

≅
��

𝐻∗(𝑌)
≅
��

𝑠𝐻(𝑉, 𝑑𝑉) ⊕ ℚ𝐻(𝑄(𝑛𝑓))
// 𝑠𝐻(𝑊, 𝑑𝑊) ⊕ ℚ

Specially, if (𝕃𝑉 , 𝑑) is minimal, then 𝐻∗(𝑋) ≅ 𝑠𝑉 ⊕ℚ.
Proof: First, the morphism 𝐶∗(𝕃𝑉 , 𝑑)

≃−→ 𝐴𝑃𝐿(𝑋) induces a cohomology isomorphism,
that dualizes to an isomorphism𝐻∗(𝑋)

≅−→ 𝐻∗(𝐶∗(𝕃𝑉), 𝑑). Given that 𝑛𝑓 is a Lie represen-
tative of 𝑓 ∶ 𝑋 → 𝑌, then we have the following commutative diagram up to homotopy.

𝐶∗(𝕃𝑉)
𝑛𝑋

��

𝐶∗(𝕃𝑊, 𝑑)
𝑛𝑌
��

𝐶∗(𝑛𝑓)oo

𝐴𝑃𝐿(𝑋) 𝐴𝑃𝐿(𝑌)𝐴𝑃𝐿(𝑓)
oo

Thus the diagram

𝐻(𝐶∗(𝕃𝑉 , 𝑑))
≅
��

𝐻(𝐶∗(𝕃𝑊, 𝑑))
≅
��

𝐻∘𝐶∗(𝑓)oo

𝐻(𝐴𝑃𝐿(𝑋))
≅
��

𝐻(𝐴𝑃𝐿(𝑌))𝐻∘𝐴𝑃𝐿(𝑓)
oo

≅
��

𝐻∗(𝑋) 𝐻∗(𝑌)𝐻∗(𝑓)
oo

is commutative. Then, we get the following commutative diagram.

𝐻(𝐶∗(𝕃𝑉 , 𝑑))
𝐻∘𝐶∗(𝑛𝑓)// 𝐻(𝐶∗(𝕃𝑊, 𝑑))

𝐻∗(𝑋)

OO

𝐻∗(𝑌)

OO

𝐻∗(𝑓)
oo

Note that in[45], one provides a quasi-isomorphism 𝐶∗(𝕃𝑉 , 𝑑) → (𝑠𝑉⊕ℚ, 𝑑̄) for any
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free Lie algebra (𝕃𝑉 , 𝑑). The quasi-isomorphism 𝐶∗(𝕃𝑉 , 𝑑) → (𝑠𝑉 ⊕ℚ, 𝑑̄) is

𝐶∗(𝕃𝑉 , 𝑑) = Λ𝑠𝕃𝑉 → 𝑠𝕃𝑉⊕ℚ → 𝑠𝑉 ⊕ℚ,

where the first morphism annihilatesΛ≥2𝑠𝕃𝑉 and the secondmorphism annihilates 𝑠𝕃(≥2)𝑣 .
We obviously have the following commutative diagram

𝐶∗(𝕃𝑉)
=
��

𝐶∗(𝑛𝑓) // 𝐶∗(𝕃𝑊)
=
��

Λ𝑠𝕃𝑉

��

Λ𝑠𝕃𝑊

��
𝑠𝕃𝑉⊕ℚ

��

𝑛𝑓 // 𝑠𝕃𝑊⊕ℚ

��
𝑠𝑉 ⊕ℚ

𝑄(𝑛𝑓) // 𝑠𝑊 ⊕ℚ

So we eventually get the following commutative diagram, which shows that 𝐻∗(𝑋)
≅−→

𝑠𝐻(𝑉, 𝑑𝑉) is natural.
It is also easy to prove that 𝑠𝐻(𝑉, 𝑑𝑉) ⊕ ℚ ≅−→ 𝐻∗(𝑋) is natural. ∎

With the two lemmas established above, we can now readily proceed to prove my
theorem.

Proof: of Theorem4.8. This inequality 𝑑𝐻𝐼(𝕏, 𝕐) ≤ 𝑑𝐼(𝕏, 𝕐) is obvious and also an
existing result. Suppose 𝑑𝐻𝐼(𝑋, 𝑌) = 𝛿, then there is persistence spaces𝕏′ and 𝕐′ ∶ (ℝ,≤
) → Topℚ such that 𝕏 ≃ 𝕏′, 𝕐 ≃ 𝕐′, and 𝑑𝐼(𝕏′, 𝕐′) = 𝛿.

•
≃
����
��
��
� ≃

  @
@@

@@
@@

𝕏 𝕏′

•
≃
~~~~
~~
~~
~ ≃

��?
??

??
??

𝕐′ 𝕐
Consider their persistence minimal free Lie models in Ho(𝐷𝐺𝐿),

•
≅

zzvvv
vv
vv
vv
v

≅
$$I

II
II

II
II

I

𝑀𝑄𝑢𝑖(𝕏) 𝑀𝑄𝑢𝑖(𝕏′)

•
≅

zzuuu
uu
uu
uu
u

≅
$$H

HH
HH

HH
HH

H

𝑀𝑄𝑢𝑖(𝕐′) 𝑀𝑄𝑢𝑖(𝕐)

where 𝑀𝑄𝑢𝑖(𝕏) is a object in category Ho(𝐷𝐺𝐿)ℝ, 𝑀𝑄𝑢𝑖(𝕏′), so are 𝑀𝑄𝑢𝑖(𝕐), and
𝑀𝑄𝑢𝑖(𝕐′).

Suppose that 𝕏′ and 𝕐′ are (𝛿 + 𝜖)-interleaved for any 𝜖 > 0, a (𝛿 + 𝜖)-
interleaving between 𝕏′ and 𝕐′ induces a (𝛿 + 𝜖)-interleaving between 𝑀𝑄𝑢𝑖(𝕏′) and
𝑀𝑄𝑢𝑖(𝕐′). Then 𝑀𝑄𝑢𝑖(𝕏) and 𝑀𝑄𝑢𝑖(𝕐) are (𝛿 + 𝜖)-interleaved. Thus we have proven
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that 𝑑Ho(DGL)𝐼 (𝑀𝑄𝑢𝑖(𝕏),𝑀𝑄𝑢𝑖(𝕐)) ≤ 𝑑𝐻𝐼(𝕏, 𝕐).
For the other two inequalities, 𝑑Vec𝐼 (𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕏), 𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕐)) ≤

𝑑Ho(DGL)𝐼 (𝑀𝑄𝑢𝑖(𝕏),𝑀𝑄𝑢𝑖(𝕐)) and 𝑑Vec𝐼 (𝕍,𝕎) ≤ 𝑑Ho(DGL)𝐼 (𝑀𝑄𝑢𝑖(𝕏),𝑀𝑄𝑢𝑖(𝕐))
are obvious. Lemma4.2 show that 𝑑Vec𝐼 (𝜋∗(𝕏), 𝜋∗(𝕐)) = 𝑑Vec𝐼 (𝐻∗ ∘ 𝑀𝑄𝑢𝑖(𝕏)) and
Proposition4.4 show that 𝑑Vec𝐼 (𝐻∗(𝕏), 𝐻∗(𝕐)) = 𝑑Vec𝐼 (𝕍,𝕎). ∎

From the proof process, we can see that apart from proving 𝑑Vec𝐼 (𝐻∗(𝕏), 𝐻∗(𝕐)) =
𝑑Vec𝐼 (𝕍,𝕎), we did not use the properties of the minimal free Lie model. Therefore, for
any persistence free Lie model 𝕃𝕍 and 𝕃𝕎 of rational ℝ-spaces 𝕏 and 𝕐 respectively, we
have the following results:

• 𝑑Ho(DGL)𝐼 (𝕃𝕍, 𝕃𝕎) ≤ 𝑑𝐻𝐼(𝕏, 𝕐),
• 𝑑Vec𝐼 (𝜋∗(𝕏), 𝜋∗(𝕐)) = 𝑑Vec𝐼 (𝐻∗ ∘ 𝕃𝕍, 𝐻∗ ∘ 𝕃𝕎) ≤ 𝑑Ho(DGL)𝐼 (𝕃𝕍, 𝕃𝕎),
• 𝑑Vec𝐼 (𝐻∗(𝕏), 𝐻∗(𝕐)) ≤ 𝑑Vec𝐼 (𝕍,𝕎) ≤ 𝑑Ho(DGL)𝐼 (𝕃𝕍, 𝕃𝕎).

What’s more, we can prove easily that 𝑑Ho(Topℚ)𝐼 (𝕏, 𝕐) = 𝑑Ho(DGL)𝐼 (𝕃𝕍, 𝕃𝕎).
In persistent homology, the persistence free Lie models have some special advan-

tages.

Example 4.6: Let 𝕏 ∶ (ℕ,≤) → Topℚ be the filtration of skeletons of CW complex 𝑋
satisfying 𝕏𝑟 = 𝑋𝑟 for 𝑟 ≥ 2 and 𝕏0 = 𝕏1 = ∅, where 𝑋 is a simply connected 𝐶𝑊
complex so that 𝐻∗(𝑋;ℚ) is of finite type, and 𝑋𝑟 is the 𝑟-dim skeleton of 𝑋. We know
that 𝑋𝑟+1 = 𝑋𝑟 ∪𝑓𝑟 (∐𝛼 𝐷𝑟+1𝛼 ), in which 𝑓𝑟 ∶= ∐𝛼 𝑓𝑟,𝛼 ∶ ∐𝛼 𝕊𝑟𝛼 → 𝑋𝑟. Next, we will
construct a persistence free Lie model 𝐿𝑖𝑒(𝕏) for 𝕏.

First, define 𝐿𝑖𝑒(𝕏)0 = 𝐿𝑖𝑒(𝕏)1 = 0 and 𝐿𝑖𝑒(𝕏)2 = 𝜆𝑋2. Suppose that we have
got 𝐿𝑖𝑒(𝕏)𝑟 which is a free Lie model of 𝑋𝑟, that is 𝑛𝑟 ∶ 𝐶∗(𝐿𝑖𝑒(𝕏)𝑟)

≃−→ 𝐴𝑃𝐿(𝑋𝑟) is a
quasi-isomorphism.

Without loss of generality, we assume that 𝐿𝑖𝑒(𝕏)𝑟 = 𝕃𝑉. Because we have the
isomorphism

𝜏 ∶ 𝑠𝐻(𝕃𝑉)
≅−→ 𝜋∗(𝑋𝑟),

then the classes [𝑓𝑟,𝛼] ∈ 𝜋∗(𝑋𝑟) determine the classes 𝑠[𝑧𝛼] = 𝜏−1[𝑓𝑟,𝛼] ∈ 𝑠𝐻(𝕃𝑉),
where 𝑧𝛼 ∈ 𝕃𝑉 are cycles.

We define that 𝐿𝑖𝑒(𝕏)𝑟+1 ∶= 𝕃𝑉⊕𝑊 and 𝑑𝑤𝛼 = 𝑧𝛼, in which𝑊 is a graded vector
space with basis {𝑤𝛼} with deg 𝑤𝛼 = 𝑟. We assert that 𝕃𝑉⊕𝑊 is a free Lie model for
𝑋𝑟+1[45]. Therefore, we define a free Liemodel 𝐿𝑖𝑒(𝕏) for𝕏, denoted as𝕃𝕍with (𝕃𝕍)𝑟 =
𝕃𝕍𝑟 = 𝐿𝑖𝑒(𝕏)𝑟, where 𝕍 ∶ (ℕ,≤) → Vecℚ is a persistence module and any morphism
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𝕍𝑠≤𝑡 is an embedding.

In addition to constructing persistence Lie models, we can also consider the per-
sistence versions of Lie-infinity models[20,60] for rational spaces. Lie-infinity algebras
inherently align more closely with the homotopy theory of topological spaces than classi-
cal Lie algebras. Indeed, while Quillen’s construction provides a Lie-infinity model for a
rational space 𝑋, bridging the gap to establish persistence Lie-infinity models and discuss
their stability properties remains an open challenge. In fact, although Quillen’s construc-
tion provides a Lie-infinity model for a rational space 𝑋, we still need a little work to
overcome the difficulties if we consider persistence Lie-infinity models and the stability
of persistence Lie-infinity models. And if we can construct minimal Lie-infinity mod-
els[69] for rational ℝ-spaces and prove that this construction satisfies functoriality, then I
believe this model will have a unique advantage in theory and application of persistence
modules.

60



CHAPTER 5 BLOCK-DECOMPOSABLE PERSISTENCE MODULES

CHAPTER 5 BLOCK-DECOMPOSABLE PERSISTENCE
MODULES

Given ℝ3 as a poset with the product order:

(𝑥1, 𝑥2, 𝑥3) ≤ (𝑦1, 𝑦2, 𝑦3) ∈ ℝ3 ⇔ 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖.

In the chapter, we consider 3-dimensional persistence modules are functors ℝ3 →
Vec𝕜, where Vec𝕜 is the category of finitely dimensional vector spaces over 𝕜.

To state our results, we need to define some notations. A cut on the real numbers
ℝ is a partition of ℝ into two disjoint subsets 𝑐+ and 𝑐− such that for every 𝑥 ∈ 𝑐− and
𝑦 ∈ 𝑐+, the inequality 𝑥 < 𝑦 holds. This definition formalizes the idea of ”splitting” ℝ
into a lower set 𝑐− and an upper set 𝑐+, where every element of 𝑐− lies strictly below
every element of 𝑐+.

Example 5.1: Showing two different cuts:
• 𝑐 = (𝑐−, 𝑐+) with 𝑐− = (−∞, 1] and 𝑐+ = (1,+∞);
• 𝑐 = (𝑐−, 𝑐+) with 𝑐− = (−∞, 1) and 𝑐+ = [1,+∞)

If 𝑐− = ∅ or 𝑐+ = ∅, we call the cut 𝑐 trivial.
In ℝ3, we can determine a cuboid 𝐶 by 3 pairing cuts (𝑐1, 𝑐1), (𝑐2, 𝑐2), (𝑐3, 𝑐3) in

which 𝑐1, 𝑐1, 𝑐2, 𝑐2, 𝑐3, 𝑐3 are cuts, so 𝐶 = (𝑐1+ ∩ 𝑐1
−) × (𝑐2+ ∩ 𝑐2

−) × (𝑐3+ ∩ 𝑐3
−).

Every cuboid does not necessarily have to be open or closed. Some special cuboids, called
blocks, will be detailed in the following.

These blocks can be divided into three major classes: layer block, birth block, and
death block. The first major class is further divided into 3 sub-classes, each shown below.
Let 𝐶 = (𝑐1+ ∩ 𝑐1

−) × (𝑐2+ ∩ 𝑐2
−) × (𝑐3+ ∩ 𝑐3

−),
• If all cuts except 𝑐𝑖 , 𝑐𝑖 are trivial, we call 𝐶 a 𝑖-layer block;
• If 𝑐1, 𝑐2, 𝑐3 are trivial, we call 𝐶 a birth block;
• If 𝑐1, 𝑐2, 𝑐3 are trivial, we call 𝐶 a death block.
In this chater, we define 𝕄𝐭 ∶= 𝕄(𝐭) and 𝜌𝐭𝐬 ∶= 𝕄(𝐬 ≤ 𝐭) for any persistence

module ℝ𝑛 → Vec𝕜 and any 𝐬 ≤ 𝐭 ∈ ℝ𝑛.
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Figure 5-1 From left to right: three classes of layer blocks, birth blocks, death blocks

5.1 The Block-Decomposition of 2-Parameter Persistence Mod-
ules

Before continuing the discussion, we need to review some of Cochoy and Oudot’s
definitions and results[31]. Cochoy and Oudot considered the block-decomposition of
2-parameter persistence modules and proved the theorem of decomposition of pfd and
strongly exact 2-parameter persistence modules.

Inℝ2, we may also define 2-dimensional cuboids, rectangles 𝑅, by two pairing cuts,
𝑅 = (𝑐1+ ∩ 𝑐1

−) × (𝑐2+ ∩ 𝑐2
−). What’s more, the special rectangles, which are blocks,

are as follows:

Figure 5-2 From left to right: birth blocks, death blocks, horizontal blocks, vertical blocks

In 2-parameter persistence modules 𝕄 ∶ (ℝ2, ≤) → Vec𝕜, for any (𝑥1, 𝑥2) ≤
(𝑦1, 𝑦2) ∈ ℝ2, we have following commutative diagram:

𝕄(𝑥1,𝑦2)
𝜌(𝑦1,𝑦2)(𝑥1,𝑦2)//𝕄(𝑦1,𝑦2)

𝕄(𝑥1,𝑥2)
𝜌(𝑦1,𝑥2)(𝑥1,𝑥2)//

𝜌(𝑥1,𝑦2)(𝑥1,𝑥2)

OO

𝕄(𝑦1,𝑥2)

𝜌(𝑦1,𝑦2)(𝑦1,𝑥2)

OO

If for all (𝑥1, 𝑥2) ≤ (𝑦1, 𝑦2) ∈ ℝ2, the following sequence is exact, we call the 2-
parameter persistence module𝕄 2-parameter strongly exact.

𝕄(𝑥1,𝑥2)
(𝜌(𝑥1,𝑦2)(𝑥1,𝑥2) ,𝜌

(𝑦1,𝑥2)
(𝑥1,𝑥2) )−−−−−−−−−−−−→ 𝕄(𝑥1,𝑦2)⊕𝕄(𝑦1,𝑥2)

𝜌(𝑦1,𝑦2)(𝑥1,𝑦2)−𝜌
(𝑦1,𝑦2)
(𝑦1,𝑥2)−−−−−−−−−−−−→ 𝕄(𝑦1,𝑦2)
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Theorem 5.1: [31] Let 𝕄 be a pointwise finite-dimensional and strongly exact 2-
parameter persistence module. Then, 𝕄 decomposes uniquely (up to isomorphism and
reordering of the terms) as a direct sum of block modules:

𝕄 ≅ ⨁
𝐵∈ℬ(𝕄)

𝕜𝐵

where 𝕜𝐵 is the block module associated with a block 𝐵, and ℬ(𝕄) is a multiset of blocks
determined by𝕄.

For a block 𝐵, a block module 𝕜𝐵 is defined as follows

(𝕜𝐵)𝐭 = {
𝕜, 𝐭 ∈ 𝐵

0, 𝐭 ∉ 𝐵
(5-1)

and for any 𝐬 ≤ 𝐭, the morphisms 𝜌𝐭𝐬 in 𝕜𝐵 are

𝜌𝐭𝐬 = {
𝑖𝑑, if 𝐬, 𝐭 ∈ 𝐵

0, otherwise.
(5-2)

5.2 The Block-Decomposition of 3-Parameter Persistence Mod-
ules

Before we begin this section, it is necessary to explain that the results presented in
this section were obtained by us at the end of 2023, and at that time, we chose not to
make them public. However, in 2024, Lerch et al.[71] published a more general solution
to block-decomposability for multi-parameter persistence modules on arXiv. Despite this,
I have decided to retain this content in my thesis because my proof method follows the
approach[31] used by Oudot in solving the block-decomposability for 2-parameter per-
sistence modules, and I believe this approach can be applied to the proof of the block-
decomposition theorem for multi-parameter persistence modules. Additionally, our per-
spective on the generalization of the high-dimensional exactness condition differs from
Lerch’s, which is why I believe it is meaningful to include this part.

To solve the block-decomposition of 3-parameter persistence modules, we first need
to generalize the strong exactness to 3-parameter cases.
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Let the following diagram be a commutative diagram in Vec𝕜

𝐵 𝑔1 // 𝐷

𝐴
𝑓1

OO

𝑓2 // 𝐶
𝑔2

OO

and deduce two commutative diagrams

𝐵 𝑔1 // 𝐷

𝐵∏𝐷 𝐶

OO

// 𝐶
𝑔2

OO

𝐴

𝑓1

??

∃!
𝑓 ;;xxxxxxxxx 𝑓2

99

𝐷

𝐵

𝑔1
22

// 𝐵∐𝐴 𝐶
∃!

𝑔
;;xxxxxxxxx

𝐴
𝑓1

OO

𝑓2 // 𝐶

𝑔2

II

OO

in which 𝐵∏𝐷 𝐶 = {𝑏 + 𝑐 ∈ 𝐵 ⊕ 𝐶 ∶ 𝑔1(𝑏) = 𝑔2(𝑐)} and 𝐵∐𝐴 𝐶 = 𝐵 ⊕ 𝐶/ ∼, which
∼ is a deduced equivalent relation by 𝑓1(𝑎) ∼ 𝑓2(𝑎) for any 𝑎 ∈ 𝐴.

Lemma 5.1: The following conditions are equivalence
• The sequence 𝐴 (𝑓1,𝑓2)−−−−→ 𝐵⊕ 𝐶 𝑔1−𝑔2−−−−→ 𝐷 is exact;
• 𝑓 is surjective;
• 𝑔 is injective.

Proof: (1)⇒(2): For any (𝑏, 𝑐) ∈ 𝐵∏𝐷 𝐶, we can find a vector 𝑎 ∈ 𝐴 such that 𝑓1(𝑎) =
𝑏 and 𝑓2(𝑎) = 𝑐 due to the strong exactness. So 𝑓(𝑎) = (𝑏, 𝑐), 𝑓 is surjective.

(2)⇒(3): For any 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶 such that [𝑏 + 𝑐] ∈ 𝐵∐𝐴 𝐶, if 𝑔([𝑏 + 𝑐]) = 0,
then we have 𝑔([𝑏]) = 𝑔([−𝑐]), that is 𝑔1(𝑏) = 𝑔2(−𝑐). So (𝑏, −𝑐) ∈ 𝐵∏𝐷 𝐶, and we
can find out 𝑎 ∈ 𝐴 such that 𝑓1(𝑎) = 𝑏 and 𝑓2(𝑎) = −𝑐. So [𝑏 + 𝑐] = 0 ∈ 𝐵∐𝐴 𝐶. 𝑔 is
injective.

(3)⇒(1): For any 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶 with 𝑔1(𝑏) = 𝑔2(𝑐), 𝑔([𝑏 − 𝑐]) = 𝑔1(𝑏) −
𝑔2(𝑐) = 0. Since 𝑔 is injective, [𝑏] = [𝑐]. Thus there is a vector 𝑎 ∈ 𝐴 such that
𝑓1(𝑎) = 𝑏 and 𝑓2(𝑎) = 𝑐. ∎

In the general case, we may also consider computing 𝑓 and 𝑔 similarly to the two-

64



CHAPTER 5 BLOCK-DECOMPOSABLE PERSISTENCE MODULES

dimensional case. Let 𝑆 be a finite set with |𝑆| = 𝑛. The power set of 𝑆,𝒫(𝑆) = {𝑇 ∶ 𝑇 ⊆
𝑆}, is partially ordered set via inclusion. Let 𝒫0(𝑆) = 𝒫 ∖ {∅} and 𝒫1(𝑆) = 𝒫(𝑆) ∖ {𝑆}.
A functor𝒳 ∶ 𝒫(𝑆) → Vec𝕜 is a commutative diagram shaped like a 𝑛-dim cube. What’s
more, we can get two morphisms 𝜓 ∶ 𝒳(∅) → lim

𝑇∈𝒫0(𝑆)
𝒳(𝑇) and 𝜑 ∶ colim

𝑇∈𝒫1(𝑆)
𝒳(𝑇) →

𝒳(𝑆) naturally.
Consider 2-parameter persistence modules 𝑀, then any (𝑥1, 𝑥2) ≤ (𝑦1, 𝑦2) ∈ ℝ2,

we can get a commutative diagram

𝕄(𝑥1,𝑦2)
𝜌(𝑦1,𝑦2)(𝑥1,𝑦2)//𝕄(𝑦1,𝑦2)

𝕄(𝑥1,𝑥2)
𝜌(𝑦1,𝑥2)(𝑥1,𝑥2)//

𝜌(𝑥1,𝑦2)(𝑥1,𝑥2)

OO

𝕄(𝑦1,𝑥2)

𝜌(𝑦1,𝑦2)(𝑦1,𝑥2)

OO

and the diagram deduces to a functor 𝒳 ∶ 𝒫(𝑆) → Vec𝕜 with |𝑆| = 2. Thus for any
functor 𝒳 ∶ 𝒫(𝑆) → Vec𝕜 obtained by the above method, 𝜓 ∶ 𝒳(∅) → lim

𝑇∈𝒫0(𝑆)
𝒳(𝑇)

and 𝜑 ∶ colim
𝑇∈𝒫1(𝑆)

𝒳(𝑇) → 𝒳(𝑆) generated by the functor 𝒳 are surjective and injective

respectively if and only if𝑀 is strongly exact.
Now, we are considering block-decomposition of 3-dimensional persistencemodules

𝕄 ∶ ℝ3 → Vec𝕜, so we need to extend the strong exactness about 2-parameter persistence
modules to the conditions about 3-dimensional persistencemodules. Similar to the case of
2-parameter persistence modules, when considering the 3-dimensional persistence mod-
ules, for any (𝑥1, 𝑥2, 𝑥3) ≤ (𝑦1, 𝑦2, 𝑦3) ∈ ℝ3, there is a commutative diagram like 3-dim
cube and the diagram induces the functor 𝒳(𝑆) ∶ 𝒫(𝑆) → Vec𝕜 with |𝑆| = 3, resulting
in two morphisms 𝜓 ∶ 𝒳(∅) → lim

𝑇∈𝒫0(𝑆)
𝒳(𝑇) and 𝜑 ∶ colim

𝑇∈𝒫1(𝑆)
𝒳(𝑇) → 𝒳(𝑆).

𝕄(𝑥1,𝑦2,𝑦3)
//𝕄(𝑦1,𝑦2,𝑦3)

𝕄(𝑥1,𝑥2,𝑦3)

77ppppppppppp
//𝕄(𝑦1,𝑥2,𝑦3)

77ppppppppppp

𝕄(𝑥1,𝑦2,𝑥3)

OO

//𝕄(𝑦1,𝑦2,𝑥3)

OO

𝕄(𝑥1,𝑥2,𝑥3)
//

OO

77ppppppppppp
𝕄(𝑦1,𝑥2,𝑥3)

OO

77ppppppppppp

Thus, whenwe consider the block-decomposition of 3-parameter persistencemodules, the
strong exactness of 2-parameter block-decomposable persistence modules can be gener-
alized to the following condition: the 3-parameter strong exactness.

65



CHAPTER 5 BLOCK-DECOMPOSABLE PERSISTENCE MODULES

Example 5.2: Consider the following 3-parameter persistence module 𝕄 ∶ {0, 1}3 →
Vec𝕜

𝕜 𝑓 // 𝕜⊕ 𝕜

0

@@��������
// 𝕜

𝑔
<<xxxxxxxxx

0

OO�
�
�
�
�
�
�

//________ 𝕜

ℎ

OO

0 //

OO

??��������
0

OO

;;wwwwwwwwww

where 𝑓 = (
1
0
), 𝑔 = (

0
1
), and ℎ = (

1
1
). It is obvious that the 3-parameter persistence

module𝕄 is not block-decomposable.

In the previous example, we know that only requiring 𝜑 to be injective does not
guarantee that 3-parameter persistence modules are block-decomposable. What’s more,
in 3-parameter cases, the two conditions that 𝜑 is injective and 𝜓 is subjective are not
equivalent. Therefore, it is reasonable to assume that𝜑 and𝜓 are injective and subjective,
respectively.

Definition 5.1: We say that a 3-parameter persistence module 𝕄 ∶ ℝ3 → Vec𝕜 is 3-
parameter strongly exact if the following conditions are satisfied

• for any 𝑟 ∈ ℝ,𝕄|{𝑟}×ℝ×ℝ,𝕄|ℝ×{𝑟}×ℝ,𝕄|ℝ×ℝ×{𝑟} are among 2-parameter strongly
exact.

• for any (𝑥1, 𝑥2, 𝑥3) ≤ (𝑦1, 𝑦2, 𝑦3) ∈ ℝ3, the associated morphisms 𝜓 and 𝜑 is
surjective and injective respectively.

We want to prove that if a 3-parameter persistence module𝕄 is strongly exact, then
𝕄 can be decomposed as a direct sum of block modules. So we need to define the block
modules and find all submodules of𝕄, which live exactly in blocks.

Definition 5.2: A persistence module𝕄 is called a block module if there is a block𝕄
such that𝕄 ≅ 𝕜𝐵.
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5.2.1 Some Basic Definitions and Results

In the 1-dimensional case, the interval modules of 𝕄 ∶ ℝ → Vec𝕜 can be easily
found since ℝ is a totally ordered set. By computing 𝑉+𝐼,𝑡 ∶= Im+𝐼,𝑡 ∩ Ker+𝐼,𝑡 and 𝑉−𝐼,𝑡 ∶=
Im+𝐼,𝑡 ∩ Ker−𝐼,𝑡 + Im−𝐼,𝑡 ∩ Ker+𝐼,𝑡 in which 𝐼 ∋ 𝑡 is a interval of ℝ and

Im+𝐼,𝑡 =⋂
𝑠∈𝐼
𝑠≤𝑡

Im𝜌𝑡𝑠 , Im−𝐼,𝑡 =∑
𝑠∉𝐼
𝑠≤𝑡

Im𝜌𝑡𝑠

Ker+𝐼,𝑡 =⋂
𝑢∉𝐼
𝑢≥𝑡

Ker𝜌𝑢𝑡 , Ker−𝐼,𝑡 =∑
𝑢∈𝐼
𝑢≥𝑡

Ker𝜌𝑢𝑡
(5-3)

we can get 𝑉+𝐼,𝑡/𝑉−𝐼,𝑡 ≅ (𝕜𝐼)𝑡. For 𝐼 = [𝑎, 𝑏], 𝑉+𝐼,𝑡/𝑉−𝐼,𝑡 denotes the vector space whose
dimension equals the number of generators, which were born at 𝑎 and died at 𝑏.

Howeverℝ𝑛, for 𝑛 ≥ 2, is not the totally ordered set, which results in Im−𝐵,𝑡 ⊆ Im+𝐵,𝑡
and Ker−𝐵,𝑡 ⊆ Ker+𝐵,𝑡, which hold in 1-dimensional persistence modules, not holding in
high-dimensional persistence modules, in which 𝐵 ∋ 𝑡 is any block. Thus we need to
redefine Im±𝐵,𝑡 and Ker

±
𝐵,𝑡 in which 𝐵 ⊆ ℝ3 is any block and 𝑡 ∈ 𝐵 .

Firstly, we can establish the following notation in any persistence modules𝕄 ∶ 𝑃 →
Vec𝕜 in which 𝑃 is a poset:

𝐼+𝑃,𝑡 ∶=⋂
𝑠∈𝑃
𝑠≤𝑡

Im 𝜌𝑡𝑠 , 𝐼−𝑃,𝑡 ∶=∑
𝑠∉𝑃
𝑠≤𝑡

Im 𝜌𝑡𝑠

𝐾+𝑃,𝑡 ∶= ⋂
𝑢∉𝑃
𝑢≥𝑡

Ker 𝜌𝑢𝑡 , 𝐾−𝑃,𝑡 ∶= ∑
𝑢∈𝑃
𝑢≥𝑡

Ker 𝜌𝑢𝑡
(5-4)

But we know that 𝐼+𝑃,𝑡 ⊈ 𝐼+𝑃,𝑡 and 𝐾−𝑃,𝑡 ⊈ 𝐾+𝑃,𝑡 from the above discussion. Thus, we define
that

Im+𝑃,𝑡 ∶= 𝐼+𝑃,𝑡 , Im−𝑃,𝑡 ∶= 𝐼−𝑃,𝑡 ∩ 𝐼+𝑃,𝑡 ,
Ker+𝑃,𝑡 ∶= 𝐾+𝑃,𝑡 + 𝐾−𝑃,𝑡 , Ker−𝑃,𝑡 ∶= 𝐾−𝑃,𝑡 .

(5-5)

Obviously, Im−𝐶,𝐭 ⊂ Im+𝐶,𝐭 and Ker
−
𝐶,𝐭 ⊂ Ker+𝐶,𝐭.

When we consider the pfd 3-parameter persistence module 𝕄 ∶ ℝ3 → Vec𝕜, the
poset 𝑃 is a cuboid in ℝ3, which is determined by three pairing cuts {𝑐1, 𝑐1, 𝑐2, 𝑐2, 𝑐3, 𝑐3}
that is 𝐶 = (𝑐1+ ∩ 𝑐1

−) × (𝑐2+ ∩ 𝑐2
−) × (𝑐3+ ∩ 𝑐3

−).
For any 𝐭 = (𝑡1, 𝑡2, 𝑡3) ∈ 𝐶, We construct these limits by considering the restrictions
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of the module𝕄 along 𝑥-axis, 𝑦-axis, and 𝑧-axis, respectively

Im+𝑐1,𝐭 = ⋂
𝑥∈𝑐1+
𝑥≤𝑡1

Im 𝜌𝐭(𝑥,𝑡2,𝑡3) Im−𝑐1,𝐭 = ∑
𝑥∈𝑐1−

Im 𝜌𝐭(𝑥,𝑡2,𝑡3)

Im+𝑐2,𝐭 = ⋂
𝑥∈𝑐2+
𝑥≤𝑡2

Im 𝜌𝐭(𝑡1,𝑥,𝑡3) Im−𝑐2,𝐭 = ∑
𝑥∈𝑐2−

Im 𝜌𝐭(𝑡1,𝑥,𝑡3)

Im+𝑐3,𝐭 = ⋂
𝑥∈𝑐3+
𝑥≤𝑡3

Im 𝜌𝐭(𝑡1,𝑡2,𝑥) Im−𝑐3,𝐭 = ∑
𝑥∈𝑐3−

Im 𝜌𝐭(𝑡1,𝑡2,𝑥)

Ker+𝑐1,𝐭 = ⋂
𝑥∈𝑐1+

Ker 𝜌(𝑥,𝑡2,𝑡3)𝐭 Ker−𝑐1,𝐭 = ∑
𝑥∈𝑐1−
𝑥≥𝑡1

Ker 𝜌(𝑥,𝑡2,𝑡3)𝐭

Ker+𝑐2,𝐭 = ⋂
𝑥∈𝑐2+

Ker 𝜌(𝑡1,𝑥,𝑡3)𝐭 Ker−𝑐2,𝐭 = ∑
𝑥∈𝑐2−
𝑥≥𝑡2

Ker 𝜌(𝑡1,𝑥,𝑡3)𝐭

Ker+𝑐3,𝐭 = ⋂
𝑥∈𝑐3+

Ker 𝜌(𝑡1,𝑡2,𝑥)𝐭 Ker−𝑐3,𝐭 = ∑
𝑥∈𝑐3−
𝑥≥𝑡3

Ker 𝜌(𝑡1,𝑡2,𝑥)𝐭

(5-6)

Through simple computation, we can get

Im+𝐶,𝐭 = Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭

Im−𝐶,𝐭 = Im−𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 + Im+𝑐1,𝐭 ∩ Im−𝑐2,𝐭 ∩ Im+𝑐3,𝐭 + Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im−𝑐3,𝐭

Ker+𝐶,𝐭 = Ker−𝑐1,𝐭 + Ker−𝑐2,𝐭 + Ker−𝑐3,𝐭 + Ker+𝑐1,𝐭 ∩ Ker+𝑐2,𝐭 ∩ Ker+𝑐3,𝐭
Ker−𝐶,𝐭 = Ker−𝑐1,𝐭 + Ker−𝑐2,𝐭 + Ker−𝑐3,𝐭

(5-7)
Note: If we do not make any special explanation, all the persistence modules we will
discuss later are pfd 3-parameter persistence modules 𝕄 ∶ ℝ3 → Vec𝕜 satisfying the
3-parameter strong exactness.

The following lemma allows these concepts, such as Im±𝑐1,𝐭, Ker
±
𝑐1,𝐭, involving infin-

ity to be discussed concretely

Lemma 5.2: 𝕄 can be extended to the persistence module over [−∞,+∞]3 by defining
𝕄(∞,⋅,⋅) = 𝕄(⋅,∞,⋅) = 𝕄(⋅,⋅,∞) = 0. Then

Im+𝑐1,𝐭 = Im 𝜌𝐭(𝑥,𝑡2,𝑡3) for some 𝑥 ∈ 𝑐1+ ∩ (−∞, 𝑡1] and any lower 𝑥 ∈ 𝑐1+,

Im−𝑐1,𝐭 = Im 𝜌𝐭(𝑥,𝑡2,𝑡3) for some 𝑥 ∈ 𝑐1− ∪ {∞} and any greater 𝑥 ∈ 𝑐1−,
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Ker+𝑐1,𝐭 = Ker 𝜌(𝑥,𝑡2,𝑡3)𝐭 for some 𝑥 ∈ 𝑐1+ ∪ {+∞} and any lower 𝑥 ∈ 𝑐1+,

Ker−𝑐1,𝐭 = Ker 𝜌(𝑥,𝑡2,𝑡3)𝐭 for some 𝑥 ∈ 𝑐1− ∩ [𝑡1, +∞) and any greater 𝑥 ∈ 𝑐𝑥−.

The results for the cuts 𝑐2, 𝑐2, 𝑐3, 𝑐3 are similar to those for 𝑐1, 𝑐1, so we will not elaborate
on them further.

Due to the 3-parameter strong exactness, we can decompose the image and kernel in
the 3-parameter persistence module𝕄 ∶ ℝ3 → Vec𝕜 into a simpler form.

Lemma 5.3: For any 𝐬 ≤ 𝐭 ∈ ℝ3, we have
Im 𝜌𝐭𝐬 = Im 𝜌𝐭(𝑠1,𝑡2,𝑡3) ∩ Im 𝜌𝐭(𝑡1,𝑠2,𝑡3) ∩ Im 𝜌𝐭(𝑡1,𝑡2,𝑠3),
Ker 𝜌𝐭𝐬 = Ker 𝜌(𝑡1,𝑠2,𝑠3)𝐬 + Ker 𝜌(𝑠1,𝑡2,𝑠3)𝑠 + Ker 𝜌(𝑠1,𝑠2,𝑡3)𝐬 .

Proof: Let the following commutative diagram satisfy the 3-parameter strong exactness.
We only need to prove Im 𝜌𝑌𝑋 = Im 𝜌𝑌𝐴∩Im 𝜌𝑌𝐵∩Im 𝜌𝑌𝐶 and Ker 𝜌𝑌𝑋 = Ker 𝜌𝐷𝑋 +Ker 𝜌𝐸𝑋+
Ker 𝜌𝐹𝑋.

𝐴 // 𝑌

𝐷

??�������
// 𝐵

??�������

𝐸

OO

// 𝐶

OO

𝑋 //

OO

??��������
𝐹

OO

??�������

(1) Obviously, Im 𝜌𝑌𝑋 ⊆ Im 𝜌𝑌𝐴 ∩ Im 𝜌𝑌𝐵 ∩ Im 𝜌𝑌𝐶 . If 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶 such
that 𝜌𝑌𝐴(𝑎) = 𝜌𝑌𝐵(𝑏) = 𝜌𝑌𝐶(𝑐) = 𝑦, we may find out 𝑑 ∈ 𝐷, 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐹 by the 2-
parameter strong exactness. Note that the construction of lim

𝑇∈𝒫0(𝑆)
𝒳(𝑇) and 𝜓 ∶ 𝒳(∅) →

lim
𝑇∈𝒫0(𝑆)

𝒳(𝑇) is surjective, we can find out 𝑥 ∈ 𝑋 so that 𝜌𝐴𝑋(𝑥) = 𝑎, 𝜌𝐵𝑋(𝑥) = 𝑏 and

𝜌𝐶𝑋(𝑥) = 𝑐. Thus Im 𝜌𝑌𝐴 ∩ Im 𝜌𝑌𝐵 ∩ Im 𝜌𝑌𝐶 ⊆ Im 𝜌𝑌𝑋. Im 𝜌𝑌𝑋 = Im 𝜌𝑌𝐴 ∩ Im 𝜌𝑌𝐵 ∩ Im 𝜌𝑌𝐶 .
(2)We can directly obtain that Ker 𝜌𝐷𝑋+Ker 𝜌𝐸𝑋+Ker 𝜌𝐹𝑋 ⊆ Ker 𝜌𝑌𝑋. Let 𝑥 ∈ Ker 𝜌𝑌𝑋,
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and the image of 𝑥 at 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 be 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 respectively.

𝑎 // 0

𝑑

??�������
// 𝑏

@@��������

𝑒

OO

// 𝑐

O O

𝑥 //

OO

@@�������� 𝑓

OO

@@��������

By the 2-parameter strong exactness, we can find out 𝑓̃ ∈ 𝐹 and 𝑒̃ ∈ 𝐸 such that 𝜌𝐴𝐸(𝑒̃) =
𝑎, 𝜌𝐶𝐸(𝑒̃) = 0 and 𝜌𝐵𝐹 (𝑓̃) = 𝑏, 𝜌𝐶𝐹(𝑓̃) = 0. Then ∃𝑥̃ ∈ 𝑋 satisfies 𝜌𝐷𝑋 (𝑥̃) = 𝑑, 𝜌𝐸𝑋(𝑥̃) = 𝑒̃
and 𝜌𝐹𝑋(𝑥̃) = 𝑓̃. So 𝑥 − 𝑥̃ ∈ 𝐾𝑒𝑟𝜌𝐷𝑋 .

𝑎 // 0

𝑑

??�������
// 𝑏

@@��������

𝑒̃

OO

// 0

OO

𝑥̃ //

OO

@@��������
𝑓̃

OO

AA��������

Similarly, we can find out 𝑑̂ ∈ 𝐷 and 𝑥̂ ∈ 𝑋 by 0 ∈ 𝐴, 𝑏 ∈ 𝐵, 0 ∈ 𝐸, 0 ∈ 𝐶 and 𝑓̃ ∈ 𝐹.
So 𝑥̂ ∈ Ker 𝜌𝐸𝑋 .

0 / / 0

𝑑̂

@@��������
// 𝑏

@@��������

0

OO

// 0

OO

𝑥̂ //

OO

@@��������
𝑓̃

OO

AA��������

Finally, we can easily prove that 𝑥̃ − 𝑥̂ ∈ Ker 𝜌𝐹𝑋.
Thus 𝑥 = (𝑥 − 𝑥̃) + 𝑥̂ + (𝑥̃ − 𝑥̂). So Ker 𝜌𝑌𝑋 ⊆ Ker 𝜌𝐷𝑋 + Ker 𝜌𝐸𝑋 + Ker 𝜌𝐹𝑋, then

Ker 𝜌𝑌𝑋 = Ker 𝜌𝐷𝑋 + Ker 𝜌𝐸𝑋 + Ker 𝜌𝐹𝑋. ∎

With the decomposition of Im 𝜌𝐭𝐬 and Ker 𝜌𝐭𝐬 in the Lemma5.3, we can obtain the
following crucial properties, which play an important role in finding submodules of 𝑀,
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which are block modules.

Lemma 5.4: Let 𝐬 ≤ 𝐭 ∈ ℝ3 and ♣, ♠, � ∈ {+,−}. Then
𝜌𝐭𝐬(Im♣𝑐1,𝐬 ∩ Im♠𝑐2,𝐬 ∩ Im�𝑐3,𝐬) = Im♣𝑐1,𝐭 ∩ Im♠𝑐2,𝐭 ∩ Im�𝑐3,𝐭,
(𝜌𝐭𝐬)

−1(Ker♣𝑐1,𝐭 + Ker♠𝑐2,𝐭 + Ker�𝑐3,𝐭) = Ker♣𝑐1,𝐬 + Ker♠𝑐2,𝐬 + Ker�𝑐3,𝐬.
Proof: (1) The Lemme5.2 tells us that there exist 𝑥 ≤ 𝑠1 ≤ 𝑡1, 𝑦 ≤ 𝑠2 ≤ 𝑡2 and
𝑧 ≤ 𝑠3 ≤ 𝑡3 (possibly equal to −∞) such that

Im♣𝑐1,𝐬 = Im 𝜌𝑠(𝑥,𝑠2,𝑠3) and Im
♣
𝑐1,𝐭 = Im 𝜌𝐭(𝑥,𝑡2,𝑡3)

Im♠𝑐2,𝐬 = Im 𝜌𝐬(𝑠1,𝑦,𝑠3) and Im
♠
𝑐2,𝐭 = Im 𝜌𝐭(𝑡1,𝑦,𝑡3)

Im�𝑐3,𝐬 = Im 𝜌𝐬(𝑠1,𝑠2,𝑧) and Im
�
𝑐3,𝐭 = Im 𝜌𝐭(𝑡1,𝑡2,𝑧)

Then, we can directly compute

Im♣𝑐1,𝐭 ∩ Im 𝛽
𝑐2,𝐭 ∩ Im�𝑐3,𝐭 = Im 𝜌𝐭(𝑥,𝑡2,𝑡3) ∩ Im𝜌𝐭(𝑡1,𝑦,𝑡3) ∩ Im 𝜌𝐭(𝑡1,𝑡2,𝑧)

= Im 𝜌𝐭(𝑥,𝑦,𝑧) = 𝜌𝐭𝐬(Im 𝜌𝐬(𝑥,𝑦,𝑧))
= 𝜌𝐭𝐬(Im 𝜌𝑠(𝑥,𝑠2,𝑠3) ∩ Im 𝜌𝐬(𝑠1,𝑦,𝑠3) ∩ Im 𝜌𝐬(𝑠1,𝑠2,𝑧))
= 𝜌𝐭𝐬(Im𝛼𝑐1,𝐬 ∩ Im𝛽𝑐2,𝐬 ∩ Im�𝑐3,𝐬)

(2) Similar to (1), we can find out (𝑥, 𝑦, 𝑧) ≥ 𝐭 ≥ 𝐬 ∈ ℝ3 (possibly 𝑥, 𝑦, 𝑧 equal to +∞)
such that

Ker♣𝑐1,𝐬 = Ker 𝜌(𝑥,𝑠2,𝑠3)𝐬 and Ker♣𝑐1,𝐭 = Ker 𝜌(𝑥,𝑡2,𝑡3)𝐭

Ker𝛽𝑐2,𝐬 = Ker𝜌(𝑠1,𝑦,𝑠3)𝐬 and Ker𝛽𝑐2,𝐭 = Ker 𝜌(𝑡1,𝑦,𝑡3)𝐭

Ker�𝑐3,𝐬 = Ker 𝜌(𝑠1,𝑠2,𝑧)𝐬 and Ker�𝑐3,𝐭 = Ker 𝜌(𝑡1,𝑡2,𝑧)𝐭

Then

(𝜌𝐭𝐬)
−1(Ker 𝜌(𝑥,𝑡2,𝑡3)𝐭 + Ker 𝜌(𝑡1,𝑦,𝑡3)𝐭 + Ker 𝜌(𝑡1,𝑡2,𝑧)𝐭 )

=(𝜌𝐭𝐬)
−1(𝜌(𝑥,𝑦,𝑧)𝐭 ) = Ker 𝜌(𝑥,𝑦,𝑧)𝐬

=Ker 𝜌(𝑥,𝑠2,𝑠3)𝐬 + Ker 𝜌(𝑠1,𝑦,𝑠3)𝑠 + Ker 𝜌(𝑠1,𝑠2,𝑧)𝐬

∎

From the above Lemma, we may easily prove the following result.

Corollary 5.1:

𝜌𝐭𝐬(Im±𝐶,𝐬) = Im±𝐶,𝐭 and (𝜌𝐭𝐬)
−1(Ker±𝐶,𝐭) = Ker±𝐶,𝐬

Proof: We only need to pay attention to the facts that 𝑓(𝑈 + 𝑉) = 𝑓(𝑈) + 𝑓(𝑉) and
𝑓−1(𝑈 ∩ 𝑉) = 𝑓−1(𝑈) ∩ 𝑓−1(𝑉). ∎
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The following lemma states the relation between Ker and Im.

Lemma 5.5: If a 3-parameter persistence module𝕄 is pfd and satisfies the 3-parameter
strong exactness, then

Ker♣𝑐1,𝐭 ⊆ Im♠𝑐2,𝐭 ∩ Im�𝑐3,𝐭

in which
• if 𝑐1+ ≠ ∅, then ♣ = +, else ♣ = −;
• if 𝑐2− ≠ ∅, then ♠ = −, else ♠ = +;
• if 𝑐3− ≠ ∅, then � = −, else � = +.
Similarly, we have Ker♣𝑐2,𝐭 ⊆ Im♠𝑐1,𝐭 ∩ Im�𝑐3,𝐭 and Ker

♣
𝑐3,𝐭 ⊆ Im♠𝑐1,𝐭 ∩ Im�𝑐2,𝐭.

Proof: We only prove Ker−𝑐1,𝐭 ⊆ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭, others are similar to Ker−𝑐1,𝐭 ⊆ Im+𝑐2,𝐭 ∩
Im+𝑐3,𝐭.

Let 𝐭 = (𝑡1, 𝑡2, 𝑡3) ∈ ℝ3. From the Lemma5.2, we can find out 𝑥 ∈ 𝑐1− and 𝑦 ∈ 𝑐2+

such that Ker−𝑐1,𝐭 = Ker 𝜌(𝑥,𝑡2,𝑡3)𝐭 and Im+𝑐2,𝐭 = Im 𝜌𝐭(𝑡1,𝑦,𝑡3). Because𝕄|ℝ×ℝ×{𝑡3} satisfies
2-parameter strong exactness, we may consider the following commutative diagram

𝕄(𝑡1,𝑡2,𝑡3)
//𝕄(𝑥,𝑡2,𝑡3)

𝕄(𝑡1,𝑦,𝑡3)
//

OO

𝕄(𝑥,𝑦,𝑡3)

OO

For any 𝛼 ∈ Ker−𝑐1,𝐭, we can find out a common antecedent 𝛽 ∈ 𝕄(𝑡1,𝑦,𝑡3) with 0 ∈
𝕄(𝑥,𝑦,𝑡3), then 𝛼 ∈ Im+𝑐2,𝐭. So Ker

−
𝑐1,𝐭 ⊆ Im+𝑐2,𝐭.

Similarly, we easily prove Ker−𝑐1,𝐭 ⊆ Im+𝑐3,𝐭. Therefore, Ker
−
𝑐1,𝐭 ⊆ Im+𝑐2,𝐭∩Im

+
𝑐3,𝐭. ∎

5.2.2 Find Block Submodules in 𝕄

Next, we will try to find out all the block modules 𝕜𝐵, which are submodules of𝕄.
If𝕄may be decomposed as a direct sum of block modules 𝕜𝐵, the block modules 𝕜𝐵 are
exactly the submodules of𝕄, which the elements are born at the birth boundary of 𝐵 and
die at death boundary of 𝐵.

For any cuboid 𝐶 = (𝑐1+ ∩ 𝑐1
−) × (𝑐2+ ∩ 𝑐2

−) × (𝑐3+ ∩ 𝑐3
−), we define 𝑉+𝐶,𝐭 =

Im+𝐶,𝐭 ∩ Ker+𝐶,𝐭 and 𝑉−𝐶,𝐭 = Im+𝐶,𝐭 ∩ Ker−𝐶,𝐭 + Im−𝐶,𝐭 ∩ Ker+𝐶,𝐭. Obviously, 𝑉−𝐶,𝐭 ⊆ 𝑉+𝐶,𝐭.
According to our supposition, 𝑉+𝐶,𝐭/𝑉−𝐶,𝐭 is isomorphic to the vector space, whose

elements are exactly survive in 𝐶, and combined with the previous results, we can obtain
the following lemma.
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Lemma 5.6: If a 3-parameter persistence module𝕄 is pfd and satisfies the 3-parameter
strong exactness, then 𝜌𝐭𝐬(𝑉±𝐶,𝐬) = 𝑉±𝐶,𝐭 and the induced morphism ̄𝜌𝐭𝐬 ∶ 𝑉+𝐶,𝐬/𝑉−𝐶,𝐬 →
𝑉+𝐶,𝐭/𝑉+𝐶,𝐭 is an isomorphism.
Proof: We can easily prove that

𝜌𝐭𝐬(𝑉+𝐶,𝐬) = 𝜌𝐭𝐬(Im+𝐶,𝐬 ∩ Ker+𝐶,𝐬)
⊆ 𝜌𝐭𝐬(Im+𝐶,𝐬) ∩ 𝜌𝐭𝐬(Ker+𝐶,𝐬)
= Im+𝐶,𝐭 ∩ Ker+𝐶,𝐭 = 𝑉+𝐶,𝐭,

𝜌𝐭𝐬(𝑉−𝐶,𝐬) = 𝜌𝐭𝐬(Im+𝐶,𝐬 ∩ Ker−𝐶,𝐬 + Im−𝐶,𝐬 ∩ Ker+𝐶,𝐬)
⊆ 𝜌𝐭𝐬(Im+𝐶,𝐬) ∩ 𝜌𝐭𝐬(Ker−𝐶,𝐬) + 𝜌𝐭𝐬(Im−𝐶,𝐬) ∩ 𝜌𝐭𝐬(Ker+𝐶,𝐬)
= Im+𝐶,𝐭 ∩ Ker−𝐶,𝐭 + Im−𝐶,𝐭 ∩ Ker+𝐶,𝐬 = 𝑉−𝐶,𝐭.

So we have 𝜌𝐭𝐬(𝑉±𝐶,𝐬) ⊆ 𝑉±𝐶,𝐭 and ̄𝜌𝐭𝐬 ∶ 𝑉+𝑅,𝐬/𝑉−𝑅,𝐬 → 𝑉+𝑅,𝐭/𝑉+𝑅,𝐭. Sequently, we prove that ̄𝜌𝐭𝐬 is
injective and surjective.

Surjectivity: For any 𝛽 ∈ 𝑉+𝐶,𝐭 = Im+𝐶,𝐭 ∩Ker+𝐶,𝐭, we can find out 𝛼 ∈ Im+𝐶,𝐬 such that
𝛽 = 𝜌𝐭𝐬(𝛼). Note that 𝛼 ∈ (𝜌𝐭𝐬)

−1(𝛽) ⊆ (𝜌𝐭𝐬)
−1(Ker+𝐶,𝐭) = Ker+𝐶,𝐬, then 𝛼 ∈ 𝑉+𝐶,𝐬. Thus ̄𝜌𝐭𝐬

is surjective.
Injectivity: Let 𝛽 = 𝜌𝐭𝐬(𝛼) ∈ 𝑉−𝑅,𝐭 in which 𝛼 ∈ 𝑉+𝐶,𝐬. We have 𝛽 = 𝛽1 + 𝛽2 with

𝛽1 ∈ Im−𝐶,𝐭∩Ker+𝐶,𝐭 and 𝛽2 ∈ Im+𝐶,𝐭∩Ker−𝐶,𝐭. By the same argument as before, 𝛽1 = 𝜌𝐭𝐬(𝛼1)
for some 𝛼1 ∈ Im−𝐶,𝐬 ∩Ker+𝐶,𝐬. Because 𝜌𝐭𝐬(𝛼 − 𝛼1) = 𝛽2 ∈ Ker−𝐶,𝐭, then 𝛼 −𝛼1 ∈ Ker−𝐶,𝐬.
Note that 𝛼, 𝛼1 ∈ Im+𝐶,𝐬, then 𝛼 − 𝛼1 ∈ Im+𝐶,𝐬. So 𝛼 ∈ 𝑉−𝐶,𝐬 and ̄𝜌𝐭𝐬 is injective. It implies
that ̄𝜌𝐭𝐬(𝑉−𝐶,𝐬) = 𝑉−𝐶,𝐭. ∎

The above lemma tells us that we can find out the vectors that exactly live in the
cuboid 𝐶 by using 𝑉+𝐶,𝑡/𝑉−𝐶,𝑡. However, we do not want to the vector space 𝑉+𝐶,𝐭/𝑉−𝐶,𝐭 to
depend on the selection of position 𝐭. So we need to define 𝒞ℱ𝐶(𝕄) ∶= lim

⟵
𝐭∈𝐶
𝑉+𝐶,𝐭/𝑉−𝐶,𝐭. The

counting functor 𝒞ℱ plays a central role in the decomposition of persistence modules.
Specifically, it is an additive functor[31] that determines the multiplicity of the summand
𝕜𝐶 in the decomposition of the module𝕄 into a direct sum.

Lemma 5.7: Let𝕄 be pfd and decompose into a direct sum of cuboid modules. For any
cuboid 𝐶, the dimension of the vector space 𝒞ℱ𝐶(𝕄) precisely equals the multiplicity of
the summand 𝕜𝐶 in the decomposition of𝕄 into a direct sum.
Proof: Because 𝒞ℱ is an additive functor, the proof can be reduced to demonstrating the
result for a single summand 𝕜𝐶′ . Suppose 𝐶 = (𝑐1+∩𝑐1

−)×(𝑐2+∩𝑐2
−)×(𝑐3+∩𝑐3

−),
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𝐶′ = (𝑐1′+∩𝑐1
′−)×(𝑐2′+∩𝑐2

′−)×(𝑐3′+∩𝑐3
′−), and 𝐶 ≠ 𝐶′. We can find a cut that is

different between 𝐶 and 𝐶′. Without loss of generality, let 𝑐1 ≠ 𝑐1′ . For any 𝐭 ∈ 𝐶 ∩ 𝐶′,
Im+𝑐1,𝑡(𝕜𝐶′) = Im−𝑐1,𝑡(𝕜𝐶′), then Im

−
𝐶,𝐭(𝕜𝐶′) = Im+𝐶,𝐭(𝕜𝐶′). Thus 𝑉−𝐶,𝐭(𝕜𝐶′) = 𝑉+𝐶,𝐭(𝕜𝐶′),

that is 𝑉+𝐶,𝐭(𝕜𝐶′)/𝑉−𝐶,𝐭(𝕜𝐶′) = 0. What’s more, for any 𝐭 ∈ 𝐶 − 𝐶′, we have (𝕜𝐶′)𝐭 = 0,
then 𝑉+𝐶,𝐭(𝕜𝐶′)/𝑉−𝐶,𝐭(𝕜𝐶′) = 0. So 𝒞ℱ𝐶(𝕜𝐶′) = 0. If we consider that 𝑐1 ≠ 𝑐1

′ , then we
may get the same result by computing Ker±𝐶,𝐭(𝕜𝐶′).

Secondly, we suppose that 𝐶 = 𝐶′. For any 𝐭 ∈ 𝐶, we easily get 𝑉+𝐶,𝐭 = 𝕜 and
𝑉−𝐶,𝐭 = 0, thus 𝒞ℱ𝐶(𝕜𝐶′) = 𝕜. ∎

In order to obtain the submodule 𝕄𝐵, which is a submodule of 𝕄 and exactly dis-
tribute in the block 𝐵, we need to define 𝑉±𝐵 (𝕄) ∶= lim

⟵
𝐭∈𝐵
𝑉±𝐵,𝐭 that is independent of the

selection of position 𝐭.

Lemma 5.8: If the 3-parameter persistence module 𝕄 is pfd and satisfies the 3-
parameter strong exactness, then 𝒞ℱ𝐵(𝕄) ≅ 𝑉+𝐵 /𝑉−𝐵 .
Proof: Obviously, 𝑉−𝐵,𝐬 ⊆ 𝑉−𝐵,𝐭 for all 𝐬 ≤ 𝐭 ∈ 𝐵. We easily know that {𝑉−𝐵,𝐬, 𝜌𝐭𝐬}𝐬≤𝐭∈𝐵
is an inverse system, and the Mittag-Leffler condition holds for the inverse system since
every space 𝑉−𝐵,𝐬 is finite-dimensional. Meanwhile, 𝐵 contains a countable subset that is
coinitial for the product order ≤, and the collection of sequences is exact

0 → 𝑉−𝐵,𝐭 → 𝑉+𝐵,𝐭 → 𝑉+𝐵,𝐭/𝑉−𝐵,𝐭 → 0.

Thus, the limit sequence

0 → 𝑉−𝐵 (𝕄) → 𝑉+𝐵 (𝕄) → 𝒞ℱ𝐵(𝕄) → 0

is exact by Proposition 13.2.2 of the reference[54]. ∎

Let 𝜋𝐭 ∶ 𝑉+𝐵 (𝕄) → 𝑉+𝐵,𝐭 denote the natural morphism induced by the universal prop-
erty of lim

⟵
𝐭∈𝐵
𝑉+𝐵,𝐭. Then we may get 𝑉−𝐵 (𝕄) = ⋂

𝐭∈𝐵
𝜋−1𝐭 (𝑉−𝐵,𝐭) and 𝑉+𝐵 (𝕄) = ⋂

𝐭∈𝐵
𝜋−1𝐭 (𝑉+𝐵,𝐭).

Thus we have 𝑉−𝐵 (𝕄) ⊂ 𝑉+𝐵 (𝕄).

Lemma 5.9: If a 3-parameter persistence module𝕄 is pfd and satisfies the 3-parameter
strong exactness, then

𝜋̄𝐭 ∶ 𝑉+𝐵 (𝕄)/𝑉−𝐵 (𝕄) → 𝑉+𝐵,𝐭/𝑉−𝐵,𝐭
is isomorphic.
Proof: Referring to the proof of Lemma 5.2 of[31]. ∎
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After obtaining the previous results, we can select the appropriate subspace𝑀0
𝐵 from

𝑉+𝐵 , so that the submodules𝕄𝐵 are generated through 𝜋𝐭(𝑀0
𝐵).

Proposition 5.1: If the 3-parameter persistence module 𝕄 is pfd and satisfies the 3-
parameter strong exactness, then the subspace 𝑉−𝐵 has a complementary space 𝑀0

𝐵 in 𝑉+𝐵
such that the following persistence module

(𝕄𝐵)𝐭 = {
𝜋𝐭(𝑀0

𝐵), 𝐭 ∈ 𝐵

0, 𝐭 ∉ 𝐵
(5-8)

is a submodule𝕄𝐵 of𝕄.
Proof: We will discuss the proof of the results in three cases: birth blocks, death blocks,
and layer blocks. For a fixed block 𝐵, regardless of the choice of subspace𝑀0

𝐵 satisfying
the decomposition 𝑉+𝐵 (𝕄) = 𝑀0

𝐵⊕𝑉−𝐵 (𝕄), the following statements will hold:
• for any 𝐬, 𝐭 ∈ 𝐵 satisfying 𝐬 ≤ 𝐭, 𝜌𝐭𝐬((𝕄𝐵)𝐭) ⊆ (𝕄𝐵)𝐭, since 𝜌𝐭𝐬 ∘ 𝜋𝐬 = 𝜋𝐭 by the

definition of 𝜋.
• for any 𝐬 ∉ 𝐵, 𝐭 ∈ 𝐵 satisfying 𝐬 ≤ 𝐭, 𝜌𝐭𝐬((𝕄𝐵)𝐬) = 𝜌𝐭𝐬(0) = 0 ⊆ (𝕄𝐵)𝐭.

There only remains to show that, for any 𝐬 ≤ 𝐭, 𝐬 ∈ 𝐵 and 𝐭 ∉ 𝐵, 𝜌𝐭𝐬((𝕄𝐵)𝐬) = 0.
Therefore, we need to choose a suitable subspace𝑀0

𝐵 that satisfies the condition.
Case 𝐵 is birth block: 𝐶 = (𝑐1+ ∩ 𝑐1

−) × (𝑐2+ ∩ 𝑐2
−) × (𝑐3+ ∩ 𝑐3

−) in which
𝑐1+ = 𝑐2+ = 𝑐3+ = ∅.

For any choice of subspace𝑀0
𝐵, the condition can be satisfied.

Case 𝐵 is death block: 𝐶 = (𝑐1+ ∩ 𝑐1
−) × (𝑐2+ ∩ 𝑐2

−) × (𝑐3+ ∩ 𝑐3
−) in which

𝑐1− = 𝑐2− = 𝑐3− = ∅.
Let 𝐾+𝐵,𝐬 = Ker+𝑐1,𝐬 ∩ Ker+𝑐2,𝐬 ∩ Ker+𝑐3,𝐬 for all 𝐬 ∈ 𝐵. The collection of these vector

spaces, combined with the transition maps 𝜌𝐭𝐬 for 𝐬 ≤ 𝐭 ∈ 𝐵 forms an inverse system.
Because 𝐾+𝐵,𝐬 ⊆ Im+𝐵,𝐬 by Lemma5.4 and 𝐾+𝐵,𝐬 ⊆ Ker+𝐵,𝐬, then 𝐾+𝐵,𝐬 ⊆ 𝑉+𝐵,𝐬. Thus

𝐾+𝐵 (𝕄) = lim
⟵
𝐬∈𝐵
𝐾+𝐵,𝐭 =⋂

𝐬∈𝐵
𝜋−1𝐬 (𝐾+𝐵,𝐬) ⊆ 𝑉+𝐵 (𝕄).

And for any 𝐬 ∈ 𝐵, following equation holds:

𝑉+𝐵,𝐬 = Im+𝐵,𝐬 ∩ Ker+𝐵,𝐬 = Im+𝐵,𝐬 ∩ (Ker−𝐵,𝐬 + 𝐾+𝐵,𝐬)
= Im+𝐵,𝐬 ∩ Ker−𝐵,𝐬 + Im+𝐵,𝐬 ∩ 𝐾+𝐵,𝐬 = 𝑉−𝐵,𝐬 + 𝐾+𝐵,𝐬.

In other words, for any 𝐬 ∈ 𝐵, the following sequence is exact:

0 → 𝑉−𝐵,𝐬 ∩ 𝐾+𝐵,𝐬
𝛼↦(𝛼,−𝛼)−−−−−−−→ 𝑉−𝐵,𝐬⊕𝐾+𝐵,𝐬

(𝛼,𝛽)↦𝛼+𝛽−−−−−−−−→ 𝑉+𝐵,𝐬 → 0.
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This system of exact sequences satisfies the Mittag-Leffler condition, since every space
𝑉−𝐵,𝐬 ∩ 𝐾+𝐵,𝐬 is finite-dimensional, and so, by Proposition13.2.2 of[54], the limit sequence
is exact. Note that lim

⟵
𝐬∈𝐵
𝑉−𝐵,𝐬 ∩ 𝐾+𝐵,𝐬 = 𝑉−𝐵 (𝕄) ∩ 𝐾+𝐵 (𝕄) in 𝑉+𝐵 (𝕄), and the canonical

morphism 𝑉−𝐵 (𝕄) ⊕ 𝐾+𝐵 (𝕄) → lim
⟵
𝐬∈𝐵
𝑉−𝐵,𝐬 ⊕ 𝐾+𝐵,𝐬 is an isomorphism, then the following

sequence is exact:

0 → 𝑉−𝐵 (𝕄) ∩ 𝐾+𝐵 (𝕄)
𝛼↦(𝛼,−𝛼)−−−−−−−→ 𝑉−𝐵 (𝕄)⊕ 𝐾+𝐵 (𝕄)

(𝛼,𝛽)↦𝛼+𝛽−−−−−−−−→ 𝑉+𝐵 (𝕄) → 0

which implies that 𝑉−𝐵 (𝕄) + 𝐾+𝐵 (𝕄) = 𝑉+𝐵 (𝕄). Thus we only need to choose a comple-
ment subspace𝑀0

𝐵 of 𝑉−𝐵 (𝕄) inside 𝐾+𝐵 (𝕄).
Case 𝐵 is strict layer block: We only need to consider one case that is 𝑐2− = 𝑐2

+ =
𝑐3− = 𝑐3

+ = ∅ and 𝑐1− ≠ ∅ ≠ 𝑐1
+, the rest are similar. Let 𝐾+𝐵,𝐬 = Im+𝑐1,𝐬 ∩ 𝐾𝑒𝑟+𝑐1,𝐬 for

any 𝐬 ∈ 𝐵.
We have𝑉+𝐵,𝐬 = Im+𝐵,𝐬∩Ker+𝐵,𝐬 = Im+𝑐1,𝐬∩Im

+
𝑐2,𝐬∩Im

+
𝑐3,𝐬∩(Ker

+
𝑐1,𝐬+Ker−𝑐2,𝐬+Ker−𝑐3,𝐬).

Because Ker−𝑐2,𝐬 ⊆ Im+𝑐1,𝐬 ∩ Im+𝑐3,𝐬, Ker
−
𝑐3,𝐬 ⊆ Im+𝑐1,𝐬 ∩ Im+𝑐2,𝐬 and Ker−𝑐1,𝐬 ⊆ Ker+𝑐1,𝐬 ⊆

Im+𝑐2,𝐬 ∩ Im+𝑐3,𝐬 by Lemma5.4, then we get

𝑉+𝐵,𝐬 = Im+𝑐1,𝐬 ∩ Im+𝑐2,𝐬 ∩ Im+𝑐3,𝐬 ∩ (Ker
+
𝑐1,𝐬 + Ker−𝑐2,𝐬 + Ker−𝑐3,𝐬)

= Im+𝑐1,𝐬 ∩ Ker+𝑐1,𝐬 + Im+𝑐2,𝐬 ∩ Ker−𝑐2,𝐬 + Im+𝑐3,𝐬 ∩ Ker−𝑐3,𝐬

= 𝐾+𝐵,𝐬 + Im+𝑐2,𝐬 ∩ Ker−𝑐2,𝐬 + Im+𝑐3,𝐬 ∩ Ker−𝑐3,𝐬
And we have

𝑉−𝐵,𝐬 = Im+𝐵,𝐬 ∩ Ker−𝐵,𝐬 + Im−𝐵,𝐬 ∩ Ker+𝐵,𝐬

= Im+𝑐1,𝐬 ∩ Ker−𝑐1,𝐬 + Im+𝑐2,𝐬 ∩ Ker−𝑐2,𝐬 + Im+𝑐3,𝐬 ∩ Ker−𝑐3,𝐬 + Im−𝐵,𝐬 ∩ Ker+𝐵,𝐬
Thus 𝑉+𝐵,𝐬 = 𝑉−𝐵,𝐬+𝐾+𝐵,𝐬. Following a similar argument to the preceding case, we conclude
that the limits satisfy 𝑉+𝐵 (𝕄) = 𝑉−𝐵 (𝕄) + 𝐾+𝐵 (𝕄). Therefore, we may select the vector
space complement 𝑀0

𝐵 inside 𝐾+𝐵 (𝕄), guaranteeing that 𝜋𝐬(𝑀0
𝐵) ⊆ 𝐾+𝐵,𝐬 for any 𝐬 ∈

𝐵. ∎

Because 𝑉+𝐵 (𝕄) = 𝑉−𝐵 ⊕𝑀0
𝐵, and 𝜋𝐭 and 𝜋𝐭|𝑉−𝐵 are isomophisms,𝑀0

𝐵 ≅ (𝕄𝐵)𝐭 and
𝑉+𝐵,𝐭 ≅ 𝑉−𝐵,𝐭⊕ (𝕄𝐵)𝐭.

Corollary 5.2: For every block 𝐵,𝕄𝐵 ≅ ⨁
dim 𝒞ℱ𝐵(𝕄)

𝕜𝐵.
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5.2.3 The Direct Sum Decomposition

Before we prove the direct sum decomposition of 𝕄 ∶ ℝ3 → Vec𝕜, which satisfies
the 3-parameter strong exactness, we need to introduce some definitions and results of
disjointness and covering of sections[34].

In a vector space 𝑈, a section consists of two subspaces (𝐹−, 𝐹+) such that 𝐹− ⊂
𝐹+ ⊂ 𝑈. First, we introduce the notations of the disjointness of sections. We call that a
collection of sections {(𝐹−𝜆 , 𝐹+𝜆 )}𝜆∈Λ in 𝑈 is said to be disjoint, if whenever 𝜆 ≠ 𝜇, one of
the inclusions 𝐹+𝜆 ⊆ 𝐹−𝜇 or 𝐹+𝜇 ⊆ 𝐹−𝜆 is satisfied.

Lemma 5.10: [34] Let {(𝐹−𝜆 , 𝐹+𝜆 )}𝜆∈Λ be a collection of sections in𝑈, that is disjoint. For
any 𝜆 ∈ Λ, suppose that 𝑉𝜆 is a subspace satisfying 𝐹+𝜆 = 𝑀𝜆⊕𝐹−𝜆 , then ∑𝑉𝜆 ≅ ⨁𝑉𝜆.

Lemma 5.11: [34] Given a fixed 𝐭 ∈ ℝ3, each of the collections
{(Im−𝑐1,𝐭, Im

+
𝑐1,𝐭)}𝑐1∶𝑡1∈𝑐1+ , {(Ker−𝑐1,𝐭,Ker+𝑐1,𝐭)}𝑐1∶𝑡1∈𝑐1− , {(Im−𝑐2,𝐭, Im

+
𝑐2,𝐭)}𝑐2∶𝑡2∈𝑐2+ ,

{(Ker−𝑐2,𝐭,Ker+𝑐2,𝐭)}𝑐2∶𝑡2∈𝑐2− , {(Im
−
𝑐3,𝐭, Im

+
𝑐3,𝐭)}𝑐3∶𝑡3∈𝑐3+ and {(Ker−𝑐3,𝐭,Ker+𝑐3,𝐭)}𝑐3∶𝑡3∈𝑐3−

is disjoint in𝑀𝐭.

Lemma 5.12: [34] Let the collection of sections in 𝑈, ℱ = {(𝐹−𝜆 , 𝐹+𝜆 )}𝜆∈Λ, be disjoint,
and 𝒢 = {(𝐺−𝜎 , 𝐺+𝜎 )}𝜎∈Σ be any collection of sections in𝑈. Then the collection of sections
in 𝑈

{(𝐹−𝜆 + 𝐺−𝜎 ∪ 𝐹+𝜆 , 𝐹−𝜆 + 𝐺+𝜎 ∪ 𝐹+𝜆 )}(𝜆,𝜎)∈Λ×Σ

is disjoint.

Because 𝒱𝐭 ∶= {(𝑉−𝐵,𝐭, 𝑉+𝐵,𝐭)}𝐵∶𝑏𝑙𝑜𝑐𝑘∋𝐭 is not disjoint, we cannot directly study the
direct sum decomposition of 𝕄 by considering 𝒱𝐭. Thus, we define the disjoint section
ℱ𝐭 ∶= {𝐹−𝐵,𝐭, 𝐹+𝐵,𝐭}𝐵∶𝑏𝑙𝑜𝑐𝑘∋𝐭

𝐹+𝐵,𝐭 = Im−𝐵,𝐭 + 𝑉+𝐵,𝐭 = Im−𝐵,𝐭 + Ker+𝐵,𝐭 ∩ Im+𝐵,𝐭,
𝐹−𝐵,𝐭 = Im−𝐵,𝐭 + 𝑉−𝐵,𝐭 = Im−𝐵,𝐭 + Ker−𝐵,𝐭 ∩ Im+𝐵,𝐭.

Lemma 5.13: 𝐹+𝐵,𝐭 = 𝐹−𝐵,𝐭⊕ (𝕄𝐵)𝐭
Proof: From the definition of 𝐹±𝐵,𝐭, we can easily know that 𝐹+𝐵,𝐭 = 𝐹−𝐵,𝐭 + (𝕄𝐵)𝐭. And,
we have (𝕄𝐵)𝐭 ⊆ 𝑉+𝐵,𝐭, so

𝐹−𝐵,𝐭 ∩ (𝕄𝐵)𝐭 = 𝐹−𝐵,𝐭 ∩ 𝑉+𝐵,𝐭 ∩ (𝕄𝐵)𝐭 = 𝑉−𝐵,𝐭 ∩ (𝕄𝐵)𝐭 = 0
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∎

From this lemma, we see that we can study the direct sum of𝕄 by considering ℱ𝐭.
We divide these type of blocks 𝐵 = (𝑐1+ ∩ 𝑐1

−) × (𝑐2+ ∩ 𝑐2
−) × (𝑐3+ ∩ 𝑐3

−) into
following 5 types:

• ℬ1 = {𝐵|𝑐2− = 𝑐2+ = 𝑐3− = 𝑐2
+ = ∅ and 𝑐1+ ≠ ∅};

• ℬ2 = {𝐵|𝑐1− = 𝑐1+ = 𝑐3− = 𝑐2
+ = ∅ and 𝑐2+ ≠ ∅};

• ℬ3 = {𝐵|𝑐1− = 𝑐1+ = 𝑐2− = 𝑐2
+ = ∅ and 𝑐3+ ≠ ∅};

• ℬ4 = the set of all death blocks ∖ ⋃3𝑖=1 ℬ𝑖;
• ℬ5 = the set of all birth blocks.
We first prove that in each individual type, the decomposition is a direct sum decom-

position. The proof process for the first four types is easy, but we need to make some
small efforts to prove the fifth type.

Proposition 5.2: Let ℬ𝑖 be a fixed block type. The submodules 𝕄𝐵, where 𝐵 ranges
over all blocks of the block type ℬ𝑖, are in direct sum, that is ∑

𝐵∈ℬ𝑖
𝕄𝐵 ≅ ⨁

𝐵∈ℬ𝑖
𝕄𝐵.

Proof: Let 𝐭 ∈ ℝ3. We only need to prove the equation, ∑
𝐵∈ℬ𝑖

(𝕄𝐵)𝐭 ≅ ⨁
𝐵∈ℬ𝑖

(𝕄𝐵)𝐭
Case ℬ𝑖 with 𝑖 = 1, 2, 3: We only need to prove the case of 𝑖 = 1, and the proof

for 𝑖 = 2, 3 is similar. From Lemma5.11, we can know that {(Im−𝑐1,𝐭, Im
+
𝑐1,𝐭)}𝑐1+∋𝑡1 is

disjoint. Taking the intersection of all the spaces in this collection with Im+𝑐2,𝐭∩ Im
+
𝑐3,𝐭, we

deduce that

{(Im−𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭, Im
+
𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭)}𝑐1+∋𝑡1 = {(Im

−
𝐵,𝐭, Im+𝐵,𝐭)}𝐵∶ℬ1∋𝐭

is also disjoint. Hence, by Lemma5.12, the collection of subspaces {(𝕄𝐵)𝐭}𝐵∶ℬ1∋𝐭 is in
direct sum.

Case ℬ4: Consider any finite collection of distinct death quadrants 𝐵1, 𝐵2, ⋯ , 𝐵𝑚
that contain 𝐭. Since all of them are distinct, there must exist one (denoted as 𝐵1) that is
not contained within the union of the others. Therefore, there exists some 𝐮 ≥ 𝐭 such
that 𝐮 ∈ 𝐵1 − ⋃𝑖≥2 𝐵𝑖. Suppose there is some relation ∑𝑚𝑖=1 𝛼𝑖 = 0 with 𝛼𝑖 ∈ (𝕄𝐵𝑖)𝐭
non-zero for all 𝑖. Due to the linearity of 𝜌𝐮𝐭 , it follows that ∑

𝑚
𝑖=1 𝜌𝐮𝐭 (𝛼𝑖) = 0. However,

𝜌𝐮𝐭 (𝛼𝑖) = 0 for any 𝑖 ≥ 2 and 𝜌𝐮𝐭 (𝛼1) ≠ 0 due to 𝐮 ∈ 𝐵1 − ⋃𝑖≥2 𝐵𝑖. This raises a
contradiction.

Caseℬ5: It suffices to show that, for any finite collection of different birth quadrants
𝐵1, 𝐵2, ⋯ , 𝐵𝑚, there exists at least one of them ( e.g., 𝔹1) whose corresponding subspace
(𝕄𝐵1)𝐭 ⊆ 𝑀𝐭 is in direct sum with the subspaces corresponding to the other blocks in the
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collection. Therefore, the result is obtained by a straightforward induction on the size 𝑚
of the collection.

Let 𝐵1, 𝐵2, ⋯ , 𝐵𝑚 be such a collection and each block 𝐵𝑖 = 𝑐1,𝑖+×𝑐2,𝑖+×𝑐3,𝑖+. By
reordering if necessary, we can suppose that 𝐵1 satisfies

𝑐1,1+ ⊆⋂
𝑖>1
𝑐1,𝑖+, 𝑐2,1+ ⊆ ⋂

𝑖>1
𝑐1,𝑖=𝑐1,1

𝑐2,𝑖+, 𝑐3,1+ ⊆ ⋂
𝑖>1

𝑐1,𝑖=𝑐1,1
𝑐2,𝑖=𝑐2,1

𝑐3,𝑖+.

From the assumption of 𝐵1, we can get that 𝐵1 does not contain any other blocks.
Therefore, by reordering, we can divide these blocks into two subcollections: the ones
(denoted as 𝐵2, ⋯ , 𝐵𝑘) contain 𝐵1, while the others (denoted as 𝐵𝑘+1, ⋯ , 𝐵𝑚) neither
contain 𝐵1 nor are not contained by 𝐵1.

In a manner analogous to the proof of Proposition 6.6 in Cochoy and Oudot’s
work[31], we deduce that (𝕄𝐵1)𝐭 ∩ (∑

𝑚
𝑖=2(𝕄𝐵𝑖)𝐭) ⊆ 𝐹−𝐵1,𝐭. Note (𝕄𝐵1)𝐭 ∩ 𝐹−𝐵1,𝐭 = 0,

then the result follows. ∎

Proposition 5.3: The submodules ⨁
𝐵∶ℬ1

𝕄𝐵, ⨁𝐵∶ℬ2
𝕄𝐵, ⨁𝐵∶ℬ3

𝕄𝐵, ⨁𝐵∶ℬ4
𝕄𝐵 and ⨁

𝐵∶ℬ5
𝕄𝐵 are

in direct sum, that is

⨁
𝐵∶ℬ1

𝕄𝐵 +⨁
𝐵∶ℬ2

𝕄𝐵 +⨁
𝐵∶ℬ3

𝕄𝐵 +⨁
𝐵∶ℬ4

𝕄𝐵 +⨁
𝐵∶ℬ5

𝕄𝐵 ≅ ⨁
𝐵∶blocks

𝕄𝐵

Proof: We will divide the proof into four parts,
• ( ⨁

𝐵∶ℬ5
(𝕄𝐵)𝐭) ∩ ( ⨁𝐵∶ℬ1

(𝕄𝐵)𝐭 + ⨁
𝐵∶ℬ2

(𝕄𝐵)𝐭 + ⨁
𝐵∶ℬ3

(𝕄𝐵)𝐭 + ⨁
𝐵∶ℬ4

(𝕄𝐵)𝑡) = 0
• ( ⨁

𝐵∶ℬ1
(𝕄𝐵)𝐭) ∩ ( ⨁𝐵∶ℬ2

(𝕄𝐵)𝐭 + ⨁
𝐵∶ℬ3

(𝕄𝐵)𝐭 + ⨁
𝐵∶ℬ4

(𝕄𝐵)𝐭) = 0
• ( ⨁

𝐵∶ℬ2
(𝕄𝐵)𝐭) ∩ ( ⨁𝐵∶ℬ3

(𝕄𝐵)𝐭 + ⨁
𝐵∶ℬ4

(𝕄𝐵)𝐭) = 0
• ( ⨁

𝐵∶ℬ3
(𝕄𝐵)𝐭) ∩ ( ⨁𝐵∶ℬ4

(𝕄𝐵)𝐭) = 0
(1) prove that ( ⨁

𝐵∶ℬ5
(𝕄𝐵)𝐭)∩( ⨁𝐵∶ℬ1

(𝕄𝐵)𝐭+ ⨁
𝐵∶ℬ2

(𝕄𝐵)𝐭+ ⨁
𝐵∶ℬ3

(𝕄𝐵)𝐭+ ⨁
𝐵∶ℬ4

(𝕄𝐵)𝐭) = 0

Note that if 𝐮 = (𝑢1, 𝑢2, 𝑢3) ∈ ℝ3 is large enough, then we can know that 𝐮 ∈ 𝐵 for
any block 𝐵 ∈ ℬ5 but 𝐮 is not in any other blocks. we only need demand 𝑢1, 𝑢2, 𝑢3 are
large enough.

Let 𝛼 be a non-zero vector and be in the intersection. It can be decomposed as a
linear combination of non-zero vectors𝛼1, ⋯ , 𝛼𝑛 from the summands of a finite number of
blocks𝐵1, 𝐵2, ⋯ , 𝐵𝑛 inℬ5. Simultaneously, 𝛼 can be decomposed as a linear combination
of non-zero vectors 𝛽1, ⋯ , 𝛽𝑚 from the summands of a finite number of blocks 𝐵′1, ⋯ , 𝐵′𝑚
of other types: ∑𝑛𝑖=1 𝛼𝑖 = 𝛼 = ∑

𝑚
𝑗=1 𝛽𝑗.
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Select a point𝐮 ∈ ℝ3 so that𝐮 is sufficiently large to lie outside the blocks𝐵′1, ⋯ , 𝐵′𝑛.
What’s more, 𝐮 still lies in the birth quadrants 𝐵1, ⋯ , 𝐵𝑛. Thus 𝜌𝐮𝐭 (∑

𝑛
𝑖=1 𝛼𝑖) ≠ 0 but

𝜌𝐮𝐭 (∑
𝑚
𝑗=1 𝛽𝑖) = 0. This is a contradiction.
(2) prove that ( ⨁

𝐵∶ℬ1
(𝕄𝐵)𝐭) ∩ ( ⨁

𝐵∶ℬ2
(𝕄𝐵)𝐭 + ⨁

𝐵∶ℬ3
(𝕄𝐵)𝐭 + ⨁

𝐵∶ℬ4
(𝕄𝐵)𝐭) = 0,

( ⨁
𝐵∶ℬ2

(𝑀𝐵)𝐭) ∩ ( ⨁𝐵∶ℬ3
(𝑀𝐵)𝐭⊕ ⨁

𝐵∶ℬ4
(𝑀𝐵)𝐭) = 0 and ( ⨁𝐵∶ℬ3

(𝕄𝐵)𝐭) ∩ ( ⨁𝐵∶ℬ4
(𝕄𝐵)𝐭) = 0.

Similar to (1), we can also choose a point 𝐮 ∈ ℝ3 so that it lies outside the blocks in
ℬ1 but is not in the blocks in ℬ2, ℬ3, ℬ4. we need only to demand 𝑢1, 𝑢2 are large enough.
The remaining processes are almost identical to (1).

(3) prove that ( ⨁
𝐵∶ℬ2

(𝕄𝐵)𝐭) ∩ ( ⨁𝐵∶ℬ3
(𝕄𝐵)𝐭 + ⨁

𝐵∶ℬ4
(𝕄𝐵)𝐭) = 0 and ( ⨁

𝐵∶ℬ3
(𝕄𝐵)𝐭) ∩

( ⨁
𝐵∶ℬ4

(𝕄𝐵)𝐭) = 0.
They are treated similarly to (2). ∎

Subsequently, we will prove that 𝕄 = ∑
𝐵∶𝑏𝑙𝑜𝑐𝑘

𝕄𝐵. Then we need the notation

of covering of sections[34]. For any collection of sections {(𝐹−𝜆 , 𝐹−𝜆 )}𝜆∈Λ, we say that
{(𝐹−𝜆 , 𝐹−𝜆 )}𝜆∈Λ covers a vector space 𝑈 if for every proper subspace 𝑋 ⊊ 𝑈 there exists a
𝜆 ∈ Λ satisfying

𝑋 + 𝐹−𝜆 ≠ 𝑋 + 𝐹+𝜆 .

This collection is said to strongly cover 𝑈, if for all subspaces 𝑋 ⊊ 𝑈 and 𝑍 ⊈ 𝑋 there
exists a 𝜆 ∈ Λ so that

𝑋 + (𝐹−𝜆 ∩ 𝑍) ≠ 𝑋 + (𝐹+𝜆 ∩ 𝑍).

The validity of employing covering sections is substantiated by the subsequent lemma
from the reference[34].

Lemma 5.14: [34] Let {(𝐹−𝜆 , 𝐹+𝜆 )}𝜆∈Λ be a collection of sections that covers 𝑈. For
every 𝜆 ∈ Λ, suppose 𝑉𝜆 is a subspace of 𝑈 satisfying 𝐹+𝜆 = 𝑉𝜆 ⊕ 𝐹−𝜆 . It follows that,
𝑈 = ∑𝜆∈Λ 𝑉𝜆.

Lemma 5.15: [34] Let {(𝐹−𝜆 , 𝐹+𝜆 )}𝜆∈Λ and {𝐺−𝜎 , 𝐺+𝜎 }𝜎∈Σ be two collections of sections,
where the former covers 𝑈 and the latter strongly covers 𝑈. Then the following collection
covers 𝑈:

{(𝐹−𝜆 + 𝐺−𝜎 ∩ 𝐹+𝜆 , 𝐹−𝜆 + 𝐺+𝜎 ∩ 𝐹+𝜆 )}(𝜆×𝜎)∈Λ×Σ.

Lemma 5.16: [34] Given a fixed 𝐭 = (𝑡1, 𝑡2, 𝑡3) ∈ ℝ3, for any subsets 𝑋 ⊊ 𝕄𝐭 and
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𝑍 ⊈ 𝑋, there is a cut 𝑐1 with 𝑡1 ∈ 𝑐1+ such that Im−𝑐1,𝐭 ∩ 𝑍 ⊆ 𝑋 ⊉ Im+𝑐1,𝐭 ∩ 𝑍. Similarly,
there are cuts 𝑐2 with 𝑡2 ∈ 𝑐2+ and 𝑐3 with 𝑡3 ∈ 𝑐3+ such that Im−𝑐2,𝐭∩𝑍 ⊆ 𝑋 ⊉ Im+𝑐2,𝐭∩𝑍
and Im−𝑐3,𝐭 ∩ 𝑍 ⊆ 𝑋 ⊉ Im+𝑐3,𝐭 ∩ 𝑍. Same for kernels.

Next, we will prove that the 3-parameter persistence module 𝕄, which is pfd and
satisfies the 3-parameter strong exactness, is the direct sum of block modules.

Before proving the main theorem, we need to redivide blocks.
• ℬ1 = {𝐵|𝑐2− = 𝑐2

+ = 𝑐3− = 𝑐3
+ = ∅ and 𝑐1− ≠ ∅ ≠ 𝑐1

+};
• ℬ2 = {𝐵|𝑐1− = 𝑐1

+ = 𝑐3− = 𝑐3
+ = ∅ and 𝑐2− ≠ ∅ ≠ 𝑐2

+};
• ℬ3 = {𝐵|𝑐1− = 𝑐1

+ = 𝑐2− = 𝑐2
+ = ∅ and 𝑐3− ≠ ∅ ≠ 𝑐3

+};
• ℬ4 = the set of all death blocks ∖ {ℝ𝑛}
• ℬ5 = the set of all birth blocks
To prove that the direct sum decomposition of 𝕄, we need to define a new 3-

parameter persistence module 𝕄̃ ∶ (ℝ3, ≤) → Vec𝕜, which is a submodule of𝕄, defined
as 𝕄̃𝐭 ∶= 𝐹−ℝ3,𝐭 = 𝑉−ℝ3,𝐭 = Im+ℝ3,𝐭 ∩ Ker−ℝ3,𝐭. Let 𝑋 = 𝕄̃𝐭 + ∑

𝐵∶birth and layer
(𝕄𝐵)𝐭. Based

on the definition of 𝕄̃, it is natural to conjecture that the submodule 𝕄̃ is spanned by the
block modules corresponding to with death blocks that are proper subsets of ℝ3.

Proposition 5.4: 𝕄 = 𝕄̃ + ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3∪ℬ5

𝕄𝐵.

Proof: Given a fixed 𝐭 ∈ ℝ3, let 𝑋 = 𝕄̃𝐭 + ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3∪ℬ5

(𝕄𝐵)𝐭. Suppose for a

contraction that 𝑋 ⊊ 𝕄𝐭. Then apply Lemma5.16 with 𝑍 = 𝕄𝐭 to get a cut 𝑐1 such
that 𝑡1 ∈ 𝑐1+ and Im−𝑐1,𝐭 ⊆ 𝑋 ⊉ Im+𝑐1,𝐭. Again, use Lemma5.16 with 𝑍 = Im+𝑐1,𝐭 to
get a cut 𝑐2 such that 𝑡2 ∈ 𝑐2+ and Im+𝑐1,𝐭 ∩ Im−𝑐2,𝐭 ⊆ 𝑋 ⊉ Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭. Again,
use Lemma5.16 with 𝑍 = Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 to find a cut 𝑐3 so that 𝑡3 ∈ 𝑐3+ and
Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im−𝑐3,𝐭 ⊆ 𝑋 ⊉ Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭.

If 𝑐1− = 𝑐2− = 𝑐3− = ∅, then

Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 = Im+ℝ3,𝐭 = 𝐹+ℝ3,𝐭 = 𝐹−ℝ3,𝐭 + (𝕄ℝ3)𝐭 = 𝕄̃𝐭 + (𝕄ℝ3)𝐭 ⊆ 𝑋.

However, our selection of 𝑐1, 𝑐2, 𝑐3 ensures that Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 ⊈ 𝑋. This is a
contradiction. Thus 𝑐1− ≠ ∅ or 𝑐2− ≠ ∅ or 𝑐3− ≠ ∅.

We distinguish these cases below: These cases are divided as follows:
Case 𝑐1− ≠ ∅, 𝑐2− ≠ ∅, 𝑐3− ≠ ∅. Let the block 𝐵 = 𝑐1+ × 𝑐2+ × 𝑐3+. We have
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Im+𝐵,𝐭 = Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 = 𝐹+𝐵,𝐭 ⊈ 𝑋. But

𝐹−𝐵,𝐭 = Im−𝐵,𝐭 + Ker−𝐵,𝐭 ∩ Im+𝐵,𝐭

⊆ Im−𝐵,𝐭 + (Im−𝑐2,𝐭 ∩ Im−𝑐3,𝐭 + Im−𝑐1,𝐭 ∩ Im−𝑐3,𝐭 + Im−𝑐1,𝐭 ∩ Im−𝑐2,𝐭) ∩ Im+𝐵,𝐭

⊆ Im−𝐵,𝐭 ⊆ Im−𝑐1,𝐭 + Im+𝑐1,𝐭 ∩ Im−𝑐2,𝐭 + Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im−𝑐3,𝐭 ⊆ 𝑋
by Lemma5.4. Note that 𝐹+𝐵,𝐭 = 𝐹−𝐵,𝐭⊕(𝕄𝐵)𝐭. Then we get a contradiction, (𝕄𝐵)𝐭 ⊈ 𝑋.

Case 𝑐1− ≠ ∅, 𝑐2− ≠ ∅, 𝑐3− = ∅. Let the block 𝐵 = 𝑐1+ × 𝑐2+ × 𝑐3+. We have
Im+𝐵,𝐭 = Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 = 𝐹+𝐵,𝐭 ⊈ 𝑋, but 𝐹−𝐵,𝐭 = Im−𝐵,𝐭 + Ker−𝐵,𝐭 ∩ Im+𝐵,𝐭 ⊆
Im−𝐵,𝐭 + (Im−𝑐2,𝐭 ∩ Im+𝑐3,𝐭 + Im−𝑐1,𝐭 ∩ Im+𝑐3,𝐭 + Im−𝑐1,𝐭 ∩ Im−𝑐2,𝐭) ∩ Im+𝐵,𝐭 ⊆ Im−𝐵,𝐭 ⊆ 𝑋 by
Lemma5.4. Note that 𝐹+𝐵,𝐭 = 𝐹−𝐵,𝐭⊕ (𝕄𝐵)𝐭. Thus, (𝕄𝐵)𝐭 ⊈ 𝑋. This is a contradiction.

Similarly, we can prove these cases that 𝑐1− ≠ ∅, 𝑐2− = ∅, 𝑐3− ≠ ∅ and 𝑐1− =
∅, 𝑐2− ≠ ∅, 𝑐3− ≠ ∅.

Case 𝑐1− ≠ ∅, 𝑐2− = ∅, 𝑐3− = ∅. By Lemma5.16, applied with 𝑍 = Im+𝑐1,𝐭 ∩
Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭, there is a cut 𝑐1 such that 𝐭 ∈ 𝑐1

− and

Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 ∩ Ker−𝑐1,𝐭 ⊆ 𝑋 ⊉ Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 ∩ Ker+𝑐1,𝐭.

Let the block 𝐵 = (𝑐1+ ∩ 𝑐1
−) × 𝑐2 × 𝑐3. Using Lemma5.4, we have Ker+𝑐1,𝐭 ⊆ Im+𝑐2,𝐭 ∩

Im+𝑐3,𝐭, Ker
−
𝑐2,𝐭 ⊆ Im−𝑐1,𝐭 ∩ Im+𝑐3,𝐭 and Ker

−
𝑐3,𝐭 ⊆ Im−𝑐1,𝐭 ∩ Im+𝑐2,𝐭. Then

Im−𝐵,𝐭 = Im−𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 ⊆ 𝑋

Ker+𝐵,𝐭 ∩ Im+𝐵,𝐭 ⊇ Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 ∩ Ker+𝑐1,𝐭 ⊈ 𝑋

Im+𝐵,𝐭 ∩ Ker−𝐵,𝐭 = Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 ∩ (Ker
−
𝑐1,𝐭 + Ker−𝑐2,𝐭 + Ker−𝑐3,𝐭)

⊆ Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 ∩ (Ker
−
𝑐1,𝐭 + Im−𝑐1,𝐭 ∩ Im+𝑐3,𝐭 + Im−𝑐1,𝐭 ∩ Im+𝑐2,𝐭)

= Im+𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 ∩ Ker−𝑐1,𝐭 + Im−𝑐1,𝐭 ∩ Im+𝑐2,𝐭 ∩ Im+𝑐3,𝐭 ⊆ 𝑋
Thus, 𝐹−𝐵,𝐭 ⊆ 𝑋 ⊉ 𝐹+𝐵,𝐭. Hence, (𝕄𝐵)𝐭 ⊈ 𝑋. This is a contradiction.

Similarly, we can prove these cases that 𝑐1− = ∅, 𝑐2− ≠ ∅, 𝑐3− = ∅ and 𝑐1− =
∅, 𝑐2− = ∅, 𝑐3− ≠ ∅. ∎

Lemma 5.17: (𝕄̃ + ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3

𝕄𝐵) + ⨁
𝐵∶ℬ5

𝕄𝐵 = (𝕄̃ + ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3

𝕄𝐵) ⊕ ⨁
𝐵∶ℬ5

𝕄𝐵

Proof: Assume the opposite, and let 𝐭 ∈ ℝ3 so that (𝕄̃+ ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3

𝕄𝐵)𝐭∩( ⨁𝐵∶ℬ5
𝕄𝐵)𝐭 ≠

∅. Then there exist 𝛼 ∈ 𝕄̃𝐭, 𝛼1 ∈ (𝕄𝐵1)𝐭, ⋯ , 𝛼𝑟 ∈ (𝕄𝐵𝑟)𝐭 and 𝛼𝑟+1 ∈
(𝕄𝐵𝑟+1)𝐭, ⋯ , 𝛼𝑛 ∈ (𝕄𝐵𝑛)𝐭, such that 𝐵1, ⋯ , 𝐵𝑟 are in ℬ1 ∪ ℬ2 ∪ ℬ3, 𝐵𝑟+1, ⋯ , 𝐵𝑛 are
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in ℬ5, and we have

𝛼 +
𝑟

∑
𝑖=1
𝛼𝑖 =

𝑛

∑
𝑗=𝑟+1

𝛼𝑗 ≠ 0.

Because of the shape of these blocks in ℬ1 ∪ ℬ2 ∪ ℬ3, we may find out some 𝐮 ≥ 𝐭
such that 𝐮 ∉ ⋃𝑟𝑖=1 𝐵𝑖. What’s more, since 𝛼 ∈ 𝕄̃𝐭 = Im+ℝ3,𝐭 ∩ Ker−ℝ3,𝐭 ⊆ Ker−ℝ3,𝐭 =
Ker−𝑐1,𝐭+Ker−𝑐2,𝐭+Ker−𝑐3,𝐭, we have 𝛼 = 𝛼′1+𝛼′2+𝛼′3 for some 𝛼′1 ∈ Ker−𝑐1,𝐭, 𝛼′2 ∈ Ker−𝑐2,𝐭
and 𝛼′3 ∈ Ker−𝑐3,𝐭. By Lemma5.2, there are finite coordinates 𝑥 ≥ 𝑡1, 𝑦 ≥ 𝑡2 and 𝑧 ≥ 𝑡3
such that 𝛼′1 ∈ Ker 𝜌(𝑥,𝑡2,𝑡3)𝐭 , 𝛼′2 ∈ Ker 𝜌(𝑡1,𝑦,𝑡3)𝐭 and 𝛼′3 ∈ Ker 𝜌(𝑡1,𝑡2,𝑧)𝐭 . Let 𝐯 be a point
with coordinates (max{𝑢1, 𝑥},max{𝑢2, 𝑦},max{𝑢3, 𝑧}). Then we obtain

𝜌𝐯𝐭 (𝛼 +
𝑟

∑
𝑖=1
𝛼𝑖) = 0.

However, because 𝜌𝐯𝐭 restricted to⨁𝑛
𝑟+1(𝕄𝐵𝑖)𝑟 is injective, we have 𝜌𝐯𝐭 (∑

𝑛
𝑖=𝑟+1)𝛼𝑖 ≠ 0.

This is a contradiction. Thus (𝕄̃ + ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3

𝕄𝐵) ∩ ⨁
𝐵∶ℬ5

𝕄𝐵 = 0. ∎

Lemma 5.18: 𝕄̃ + ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3

𝕄𝐵 = 𝕄̃⊕ ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3

𝕄𝐵

Proof: Assume the opposite, and let 𝐭 ∈ ℝ3 so that (𝕄̃)𝐭 ∩ ( ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3

𝕄𝐵)𝐭 ≠ ∅.

Then there exist 𝛼 ∈ 𝕄̃𝐭, 𝛼𝑖 ∈ (𝕄𝐵𝑖)𝐭 with 𝑖 = 1, 2,⋯ , 𝑛 such that 𝐵1, 𝐵2, ⋯ , 𝐵𝑛 are in
ℬ1 ∪ ℬ2 ∪ ℬ3 and

𝛼 =
𝑛

∑
𝑖
𝛼𝑖 ≠ 0.

Assume that 𝐵1, ⋯ , 𝐵𝑘 are in ℬ1, 𝐵𝑘+1, ⋯ , 𝐵𝑟 are in ℬ2 and 𝐵𝑟+1, ⋯ , 𝐵𝑛 are in ℬ3. And
assume that none of the 𝛼𝑖’s are zero. Because of the shape of these blocks, we may find a
point 𝐮 = (𝑢1, 𝑢2, 𝑢3) = (𝑥, 𝑦, 𝑡3) ∈ ℝ3 such that 𝐮 ∉ ⋃𝑛𝑖=𝑘+1 𝐵𝑖, then 𝜌𝐮𝐭 (∑

𝑛
𝑖=𝑘+1 𝛼𝑖) =

0. Since the restriction of 𝜌𝐮𝐭 to⨁𝑘
𝑖=1(𝕄𝐵𝑖)𝐭 is injective, 𝜌𝑢𝑡 (∑

𝑘
𝑖=1 𝛼𝑖) ≠ 0.

Let 𝛽 = 𝜌𝐮𝐭 (𝛼) ∈ 𝕄̃𝐮 and 𝛽𝑖 = 𝜌𝐮𝐭 (𝛼𝑖) ∈ (𝕄𝐵𝑖)𝐮 for 𝑖 = 1,⋯ , 𝑘

𝛽 =
𝑘

∑
𝑖=1
𝛽𝑖 ≠ 0.

Now, we have 𝕄̃𝐮 ⊆ Im+ℝ3,𝐮 = 𝐹+ℝ3,𝐮. From the proof of Lemma5.2, the collection of
sections {(𝐹−𝐵1,𝐮, 𝐹+𝐵1,𝐮),⋯ , (𝐹−𝐵𝑘,𝐮, 𝐹+𝐵𝑘,𝐮)} is disjoint. Note that 𝐹+ℝ3,𝐮 ⊂ 𝐹−𝐵𝑖,𝐮 for every
𝑖, then the collection of sections {(0, 𝐹+ℝ3,𝐮), (𝐹−𝐵1,𝐮, 𝐹+𝐵1,𝐮),⋯ , (𝐹−𝐵𝑘,𝐮, 𝐹+𝐵𝑘,𝐮)} is disjoint.
Then according to Lemma5.10, 𝐹+ℝ3,𝐮 is in direct sum with ⨁𝑘

𝑖=1(𝕄𝐵𝑖)𝐮. Because 𝕄̃𝑢

is a subspace of 𝐹+ℝ3,𝐮 and 𝐹+ℝ3,𝐮 is in direct sum with ⨁𝑘
𝑖=1(𝕄𝐵𝑖)𝐮, the result contradicts
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𝛽 = ∑𝑟𝑖=1 𝛽𝑖 ≠ 0. ∎

Corollary 5.3: 𝕄 = 𝕄̃⊕ ⨁
𝐵∶ℬ1∪ℬ2∪ℬ3∪ℬ5

𝕄𝐵

Through the above discussion, we have extracted all the block submodules of 𝕄
except for dead blocks and proved that they are in direct sum. To prove the main theorem,
we only need to prove that the submodule 𝕄̃ can also be decomposed as the direct sum
of block modules.

However, we do not directly decompose 𝕄̃ but rather decompose the duality 𝕄̃∗.
Let 𝕄̃∗ be the pointwise dual of 𝕄̃, that is (𝕄̃∗)𝐭 = 𝐻𝑜𝑚(𝕄̃𝐭, 𝕜). Since the duality is
a contravariant functor, 𝕄̃∗ ∶ ((ℝ𝑜𝑝)3, ≥) → Vec𝕜 is a persistence module, where ℝ𝑜𝑝

denoted the poset ℝ with the opposite order ≥.
So we need the following result.

Lemma 5.19: 𝕄̃∗ is pfd and satisfies the 3-parameter strong exactness.
Proof: Our proof is mainly divided into two parts. The first part is to prove that for
any 𝑟 ∈ ℝ, 𝕄̃{𝑟}×ℝ×ℝ satisfies 2-parameter strong exactness, and the proof method
for 𝕄̃|ℝ×{𝑟}×ℝ and 𝕄̃|ℝ×ℝ×{𝑟} are similar. The second part is to prove that for any
(𝑠1, 𝑠2, 𝑠3) ≤ (𝑡1, 𝑡2, 𝑡3) ∈ ℝ3, the morphism 𝜑 and 𝜓 associated with the persistence
module 𝕄̃ are injective and surjective respectively.

Obviously, 𝕄̃ is pfd, then 𝕄̃∗ is pfd.

𝑁(𝑟,𝑠2,𝑡3) // 𝑁(𝑟,𝑡2,𝑡3)

𝑁(𝑟,𝑠2,𝑠3) //

OO

𝑁(𝑟,𝑡2,𝑠3)

OO

Firstly, let (𝑟, 𝑠2, 𝑠3) ≤ (𝑟, 𝑡2, 𝑡3) ∈ ℝ3 and take an element 𝛿 ∈ 𝕄̃(𝑟,𝑡2,𝑡3) that
has preimages 𝛽 ∈ 𝕄̃(𝑟,𝑡2,𝑠3) and 𝛾 ∈ 𝕄̃(𝑟,𝑠2,𝑡3). Then, by the 3-parameter strong
exactness of 𝕄, 𝛽 and 𝛾 have a shared preimage 𝛼 ∈ 𝕄(𝑟,𝑠2,𝑠3). Indeed, we can
prove that 𝛼 ∈ 𝕄̃(𝑟,𝑠2,𝑠3). Obviously, we know that 𝛼 ∈ (𝜌(𝑟,𝑡2,𝑡3)(𝑟,𝑠2,𝑠3))

−1𝕄̃(𝑟,𝑡2,𝑡3) ⊆
(𝜌(𝑟,𝑡2,𝑡3)(𝑟,𝑠2,𝑠3))

−1(Ker−ℝ3,(𝑟,𝑡2,𝑡3)) = Ker−ℝ3,(𝑟,𝑠2,𝑠3). What’s more, because of 𝛽 ∈ 𝕄̃(𝑟,𝑡2,𝑠3) ⊆
Im+ℝ3,(𝑟,𝑡2,𝑠3), for any 𝐮 < (𝑟, 𝑡2, 𝑠3) ∈ ℝ3 with 𝑢1 = 𝑟 and 𝑢2 = 𝑡2 there is some preim-
age 𝛽𝐮 of 𝛽 in 𝕄(𝑟,𝑡2,𝑢3) by the 3-parameter strong exactness, implies that there exists a
shared preimage 𝛼𝐮 of 𝛼 and 𝛽𝐮 in𝕄𝐮. Thus 𝛼 ∈ Im+𝑐3,(𝑟,𝑠2,𝑠3), where 𝑐3 is the trivial cut
that is 𝑐3− = ∅. Similarly, we can know that 𝛼 ∈ Im+𝑐1,(𝑟,𝑠2,𝑠3) and 𝛼 ∈ Im+𝑐2,(𝑟,𝑠2,𝑠3), in
which 𝑐1− = 𝑐2− = ∅. So 𝛼 ∈ Im+ℝ3,(𝑟,𝑠2,𝑠3), and therefore 𝛼 ∈ 𝕄̃(𝑟,𝑠2,𝑠3).
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In other words, 𝕄̃|{𝑟}×ℝ×ℝ satisfies the 2-parameter strong exactness. Thus,
𝕄̃∗|{𝑟}×ℝ𝑜𝑝×ℝ𝑜𝑝 satisfies the 2-parameter strong exactness[31].

Secondly, for any (𝑠1, 𝑠2, 𝑠3) ≤ (𝑡1, 𝑡2, 𝑡3) ∈ ℝ3, we get a commutative diagram

𝕄̃(𝑠1,𝑡2,𝑡3)
// 𝕄̃(𝑡1,𝑡2,𝑡3)

𝕄̃(𝑠1,𝑠2,𝑡3)

88qqqqqqqqqq
// 𝕄̃(𝑡1,𝑠2,𝑡3)

88qqqqqqqqqq

𝕄̃(𝑠1,𝑡2,𝑠3)

OO

// 𝕄̃(𝑡1,𝑡2,𝑠3)

OO

𝕄̃(𝑠1,𝑠2,𝑠3)
//

OO

88qqqqqqqqqq
𝕄̃(𝑡1,𝑠2,𝑠3)

OO

88qqqqqqqqqq

We will denote it as𝒳 ∶ 𝒫(𝑆) → Vec𝕜 that 𝑆 is a set with |𝑆| = 3, and get the morphism
𝜑 ∶ colim

𝑇∈𝒫1(𝑆)
𝒳(𝑇) → 𝒳(𝑆) and morphism 𝜓 ∶ 𝒳(∅) → lim

𝑇∈𝒫0(𝑆)
𝒳(𝑇).

Note that for any 𝐬 ≤ 𝐭 ∈ ℝ3, we have 𝕄̃𝐭 = Im+ℝ3,𝐭∩Ker−ℝ3,𝐭, 𝜌𝐭𝐬(Im+ℝ,𝐬) = Im+ℝ,𝐭 and
(𝜌𝐭𝐬)−1(Ker−ℝ3,𝐭) = Ker−ℝ3,𝐬. Thus for any 𝛼 ∈ 𝕄̃𝐭, we always can find out some 𝛽 ∈ 𝕄̃𝐬

such that 𝜌𝐭𝐬(𝛽) = 𝛼. Given colim
𝑇∈𝒫1(𝑆)

𝒳(𝑇) = 𝕄̃(𝑠1,𝑡2,𝑡3) ⊕ 𝕄̃(𝑡1,𝑠2,𝑡3) ⊕ 𝕄̃(𝑡1,𝑡2,𝑠3)/ ∼.
Then for any [𝛼 + 𝛽 + 𝛾] ∈ colim

𝑇∈𝒫1(𝑆)
𝒳(𝑇) satisfying 𝜑([𝛼 + 𝛽 + 𝛾]) = 0 in which

𝛼 ∈ 𝕄̃(𝑠1,𝑡2,𝑡3), 𝛽 ∈ 𝕄̃(𝑡1,𝑠2,𝑡3) and 𝛾 ∈ 𝕄̃(𝑡1,𝑡2,𝑠3), we may find out some 𝛾̃ ∈ 𝕄̃(𝑡1,𝑡2,𝑠3)

such that [𝛼 + 𝛽 + 𝛾] = [𝛾̃]. Since 𝜑([𝛾̃]) = 0, then 𝜌(𝑡1,𝑡2,𝑡3)(𝑡1,𝑡2,𝑠3)(𝛾̃) = 0. Therefore, we
can find out some common preimage of 𝛾̃ and 0 ∈ 𝕄̃(𝑡1,𝑠2,𝑡3), then [𝛼 + 𝛽 + 𝛾] = [𝛾̃] =
0 ∈ colim

𝑇∈𝒫1(𝑆)
𝒳(𝑇). Thus, 𝜑 is injective. Obviously, 𝜑∗ is surjective.

To proving that 𝜓 is surjective, suppose 𝛼1 ∈ 𝕄̃(𝑡1,𝑠2,𝑠3), 𝛼2 ∈ 𝕄̃(𝑠1,𝑡2,𝑠3), 𝛼3 ∈
𝕄̃(𝑠1,𝑠2,𝑡3). Because of the 3-parameter strong exactness of 𝕄, we may find out 𝛼 ∈
𝕄(𝑠1,𝑠2,𝑠3) such that 𝛼 is the common preimage of 𝛼1, 𝛼2, 𝛼3. Given that

𝛼1 ∈ 𝕄̃(𝑡1,𝑠2,𝑠3) = Im+ℝ3,(𝑡1,𝑠2,𝑠3) ∩ Ker−ℝ3,(𝑡1,𝑠2,𝑠3),

𝜌(𝑡1,𝑠2,𝑠3)(𝑠1,𝑠2,𝑠3)
−1
Ker−ℝ3,(𝑡1,𝑠2,𝑠3) = Ker−ℝ3,(𝑠1,𝑠2,𝑠3),

Im+ℝ3,(𝑡1,𝑠2,𝑠3) = Im+𝑐1,(𝑡1,𝑠2,𝑠3) ∩ Im+𝑐2,(𝑡1,𝑠2,𝑠3) ∩ Im+𝑐3,(𝑡1,𝑠2,𝑠3).

Because of Lemma5.2, we may prove that 𝜌(𝑡1,𝑠2,𝑠3)(𝑠1,𝑠2,𝑠3)
−1
Im+𝑐2,(𝑡1,𝑠2,𝑠3) = Im+𝑐2,(𝑠1,𝑠2,𝑠3).

Lemma5.2 told us that there exists some 𝑦 ≤ 𝑠2 such that

Im+𝑐2,(𝑡1,𝑠2,𝑠3) = 𝜌
(𝑡1,𝑠2,𝑠3)
(𝑡1,𝑦,𝑠3) 𝕄(𝑡1,𝑦,𝑠3),

Im+𝑐2,(𝑠1,𝑠2,𝑠3) = 𝜌
(𝑠1,𝑠2,𝑠3)
(𝑠1,𝑦,𝑠3) 𝕄(𝑠1,𝑦,𝑠3).
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For any 𝛽 ∈ 𝜌(𝑡1,𝑠2,𝑠3)(𝑠1,𝑠2,𝑠3)
−1
Im+𝑐2,(𝑡1,𝑠2,𝑠3), we may find out 𝛾 ∈ 𝕄(𝑡1,𝑦,𝑠3) such that

𝜌(𝑠1,𝑠2,𝑠3)(𝑡1,𝑦,𝑠3) (𝛾) = 𝜌(𝑡1,𝑠2,𝑠3)(𝑠1,𝑠2,𝑠3)(𝛽). By the 2-parameter strong exactness, there is a preim-
age 𝛿 ∈ 𝕄(𝑠1,𝑦,𝑠3) of 𝛽 and 𝛾, then 𝛽 ∈ 𝜌(𝑠1,𝑠2,𝑠3)(𝑠1,𝑦,𝑠3) 𝑀(𝑠1,𝑦,𝑠3) = Im+𝑐2,(𝑠1,𝑠2,𝑠3). So we

have proven 𝜌(𝑡1,𝑠2,𝑠3)(𝑠1,𝑠2,𝑠3)
−1
Im+𝑐2,(𝑡1,𝑠2,𝑠3) = Im+𝑐2,(𝑠1,𝑠2,𝑠3). Similarly, we can prove that

𝜌(𝑡1,𝑠2,𝑠3)(𝑠1,𝑠2,𝑠3)
−1
Im+𝑐3,(𝑡1,𝑠2,𝑠3) = Im+𝑐3,(𝑠1,𝑠2,𝑠3), then 𝛼 ∈ Im+𝑐2,(𝑠1,𝑠2,𝑠3) ∩ Im+𝑐3,(𝑠1,𝑠2,𝑠3). In

the same way, by considering 𝛼 as a preimage of 𝛼2 and 𝛼3 respectively, we can prove
that 𝛼 ∈ Im+𝑐1,(𝑠1,𝑠2,𝑠3) ∩ Im+𝑐3,(𝑠1,𝑠2,𝑠3) and 𝛼 ∈ Im+𝑐1,(𝑠1,𝑠2,𝑠3) ∩ Im+𝑐2,(𝑠1,𝑠2,𝑠3). We have
proven that 𝛼 ∈ Im+𝑐1,(𝑠1,𝑠2,𝑠3) ∩ Im+𝑐2,(𝑠1,𝑠2,𝑠3) ∩ Im+𝑐3,(𝑠1,𝑠2,𝑠3) = Im+ℝ3,(𝑠1,𝑠2,𝑠3). Thus
𝛼 ∈ Im+ℝ3,𝐬 ∩ Ker−ℝ3,𝐬 = 𝕄̃𝐬, and the morphism 𝜓 is surjective. Obviously, the duality of
𝜓, 𝜓∗, is injective.

So 𝕄̃∗ satisfies the 3-parameter strong exactness.
∎

By the above lemma, we know that 𝕄̃∗ can also be decomposed like the above de-
composition of𝕄.

Lemma 5.20: For any 𝐭 ∈ (ℝ𝑜𝑝)3, Im+(ℝ𝑜𝑝)3,𝐭(𝕄̃∗) = 0.
Proof: Let 𝑋⟂ denote the annihilator of any subspace 𝑋 ⊆ 𝕄̃𝐭:

𝑋⟂ = {𝜙(𝛼) = 0 for all 𝛼 ∈ 𝑋}.

Because the annihilator operation transforms sums into intersections and kernels into im-
ages, then

(Ker−ℝ3,𝐭(𝕄̃))⟂ = (Ker−𝑐1,𝐭(𝕄̃) + Ker−𝑐2,𝐭(𝕄̃) + Ker−𝑐3,𝐭(𝕄̃))⟂

= Im+𝑐1,𝐭(𝕄̃∗) ∩ Im+𝑐2,𝐭(𝕄̃∗) ∩ Im+𝑐3,𝐭(𝕄̃∗) = Im+(ℝ𝑜𝑝)3,𝐭(𝕄̃∗)

Note that 𝕄̃𝐭 = Im+ℝ3,𝐭(𝕄) ∩ Ker−ℝ3,𝐭(𝕄), so Ker−ℝ3,𝐭(𝕄̃) = 𝕄̃𝐭. Thus Im
+
(ℝ𝑜𝑝)3,𝐭(𝕄̃∗) =

(𝕄̃𝐭)⟂ = 0. ∎

Based on the previous results, we know that the module 𝕄̃∗ can be decomposed
into the direct sum of block modules, which are of the type ℬ1, ℬ2, ℬ3, ℬ5. Then the
submodule 𝕄̃ can be decomposed into the direct sum of block modules, which are the
type of ℬ1, ℬ2, ℬ3, ℬ4.

Thus, we have proved our main theorem.

Theorem 5.2: 𝕄 ≅ ⨁
𝐵∶block

𝕄𝐵 in which𝑀𝐵 ≅ ⨁𝑛𝐵
𝑖=1 𝕜𝐵 in which 𝑛𝐵 are determined by

the counting functor 𝒞ℱ, i.e. Corollary5.2.
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CONCLUSION

In this chapter, we will review the main contributions of our work on persistence
modules. Our research addresses two central topics in persistence modules: decomposi-
tion and stability. These results can advance our understanding of persistent modules.

Our main contributions are summarized below:
(1) Using the language of category theory, we have reformulated the strong exactness

condition for 2-parameter persistence modules, which allows us to effortlessly generalize
the strong exactness condition for 2-parameter persistence modules to the 3-parameter
case.

(2) Prove the block-decomposition theorem of 3-parameter persistence modules𝕄 ∶
ℝ3 → Vec𝕜. This laid the foundation for our future research on the rectangle decomposi-
tion of 3-parameter persistence modules.

(3) Define the persistence minimal free Lie model𝑀𝑄𝑢𝑖(𝕏) for any rationalℝ-space
𝕏 ∶ ℝ → Topℚ and prove the existence of persistence minimal free Lie models. This
result indicates that we can consider more algebraic models for ℝ-spaces, and such alge-
braic models are also persistent modules, which are more refined than the algebraic mod-
els obtained by directly computing the homology or homotopy groups of these spaces.
Moreover, as demonstrated by the examples we provided, we can concretely construct
persistence free Lie models for some rational ℝ-spaces.

(4) Discuss and prove the stability of persistence free Lie models.
We still have some issues that we haven’t discussed yet. Botnan et al.[15] have pro-

posed and demonstrated the necessary and sufficient conditions for the rectangle decom-
position of 2-parameter persistencemodules. However, we still do not know the necessary
and sufficient conditions for the rectangle decomposition of higher-dimensional persis-
tence modules, and even the 3-parameter case. Therefore, our next step is to investigate
the rectangle decomposition of 3-parameter persistence modules and attempt to extend
this research to the case of 𝑛-parameter with any 𝑛 ≥ 3.

On the other hand, for rational ℝ-space 𝕏 ∶ ℝ → Topℚ, we have defined and proven
the existence of the persistence minimal free Lie model𝑀𝑄𝑢𝑖(𝕏) ∶ ℝ → DGL. However,
we are aware that 𝐿∞-algebras are algebraic models that are closer to homotopy than Lie
algebras. We aim to attempt the construction of a persistence 𝐿∞ model for rational ℝ-
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spaces and to discuss its stability.
Moreover, regarding the decomposition problem of multi-parameter persistence

modules, since the direct sum decomposition is a special case of filtration, some scholars
believe that we can consider the filtration of persistence modules like howwe consider the
filtration of topological spaces. By doing so, we hope to obtain decomposition theorems
for persistence modules, thereby deriving discrete invariants of persistence modules.
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