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ABSTRACT

ABSTRACT

With the rapid development of big data and artificial intelligence, extracting mean-
ingful information from complex high-dimensional data has become a current research
hotspot. Persistent homology, as an emerging topological data analysis method, demon-
strates immense potential in handling complex nonlinear and non-Euclidean structured
data through its unique perspective and powerful data characterization capabilities. Per-
sistence modules, serving as the theoretical foundation of persistent homology, have at-
tracted significant attention from mathematicians since the emergence of persistent ho-
mology.

In this paper, we first introduce fundamental knowledge and key results of persistent
homology, particularly the stability theorem. Subsequently, we present core results about
persistence modules, focusing on classification theorems and parameterization theorems.
Since the bottleneck distance cannot be directly applied to persistence modules, we intro-
duce its generalization - the interleaving distance d;, which serves as a pseudo-metric on
persistence modules.

The structure of 1-parameter persistence modules has been fully characterized; how-
ever, research on multi-parameter persistence modules still presents significant chal-
lenges. This is because multi-parameter persistence modules can be viewed as modules
over the multivariate polynomial ring k[x4, -+, x,,], and the decomposition of such mod-
ules is an extremely complex problem. Therefore, researchers have shifted their focus
to finding incomplete discrete invariants for multi-parameter persistence modules and to
performing complete decompositions for some special class of multi-parameter persis-
tence modules. One of this paper’s main results of this paper is the extension of the strong
exactness condition for 2-parameter persistence modules to the 3-parameter case. This
condition is a necessary and sufficient condition for the block-decomposition of three-
parameter persistence modules.

Meanwhile, another central question in the study of persistence modules is the sta-
bility of persistence modules. In this context, researchers focus not only on the com-
monly considered persistence modules, that are functors (R, <) — Vecy to the category
of finitely dimensional vector spaces, but also on the more general persistence modules

of the form P — C, in which P is a poset and C is any category. The target category C

II



ABSTRACT

may be the category of topological spaces Top, or categories of other algebraic objects,
such as the category of differential graded Lie algebras DGL, the category of commu-
tative differential graded algebras CDGA, etc. In the study of the stability of persistent
modules, our main contribution is the definition of an algebraic model for the rational
R-space X : R = TopQ, termed the persistence free Lie model My,,;(X) : R —» DGL,

along with the proof of the existence and stability of this model.

Keywords: Persistence module; Stability; Strong exactness; Persistence free Lie model
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Background

Persistence modules[?3341%6] a5 algebraic structures encoding the evolution of topo-
logical features across scales, have become central to the mathematical framework of

topological data analysis(TDA)[?232:41,106]

Their development, applications, and theo-
retical richness bridge pure mathematics, computational topology, and data science. This
section traces the origins of persistence modules, their relationship to persistent homol-
ogyl*-196] their significance in modern mathematics, and recent advances in the field.

The development of multi-parameter persistent homology exemplifies such progress.
Where conventional TDA relies on radius-based filtrations, novel approaches in applied
domains like molecular sciencel!®!l now incorporate additional parameters(e.g., curva-
ture). The introduction of multi-parameter approaches creates fundamental challenges:
the decomposition of multi-parameter persistence modules and the identification of their
discrete invariants require new mathematical frameworks. Furthermore, while homology
groups provide coarse topological characterizations, researchers are developing novel al-
gebraic frameworks that preserve finer topological information without compromising
computational traceability.

Within this context, our work makes two critical contributions: the block-
decomposition of multi-parameter persistence modules and the development of a novel
algebra model for the filtration of simplicial complexes. These advances address both

theoretical and practical dimensions of contemporary persistent homology research.

Historical Development of Persistence Modules

The concept of persistence modules emerged in the early 2000s as a formalization
of ideas in persistent homology, but its roots can be traced back to earlier mathematical
frameworks. The early focus of persistent homology research was on what is now known
as persistent Betti numbers, specifically rank (H;(Xs) — H;(X;)). This concept can be
traced back to the work of Frosinil®®! in 1992, although he used the term ’size function’
at the time. Independently of Frosini’s research, Robins!®?} formally introduced the term

‘persistent Betti numbers’ in 1999, aiming to quantify rank (H;(X;) — H;(X;)). It is
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worth noting that the stability discussed in Robins’ paper was associated with the Haus-
dorff distance. In Morse theory!®!! and spectral sequences®], the idea of tracking topo-
logical features as varying parameters was implicit, laying the conceptual groundwork for
persistence. Subsequently, the computational turn in the 1990s, driven by Edelsbrunner,
Letscher, and Zomorodian’s workl*! on alpha shapes and persistent homology, crystal-
lized the need for a discrete, computable framework. This shift marked the transition from
theoretical ideas to practical tools, setting the stage for the formalization of persistence
modules.

The foundational work of Zomorodian and Carlsson['%! established persistence
modules as functors (N, <) = Vecy, effectively modeling them as graded modules over
polynomial rings. This algebraic framework enabled the encoding of topological fea-
tures over filtrations, with their structure theorem!!%! asserting that persistence modules
decompose into interval summands under mild assumptions. This result provided the the-
oretical foundation for persistence diagrams and barcodes, which have become ubiquitous
tools in topological data analysis (TDA).

The introduction of the interleaving distance by Chazal et al.l*®! further advanced
the field by extending the bottleneck distance, used in persistent homology, to the broader
context of persistence modules. The interleaving distance allowed persistence modules
to be compared and ensured stability under small perturbations, a critical property for
real-world applications.

After Zomorodian and Carlsson defined and studied the 1-parameter persistence
module, they pioneered the study of multi-parameter persistence modules?*], extending
the framework to higher-dimensional parameter spaces. This generalization introduced
new algebraic and computational challenges, particularly in decomposing and compar-
ing such persistence modules. Lesnickl’>) later formalized the interleaving distance for
multi-parameter persistence modules and proved the stability theorem for multi-parameter
persistence modules, establishing theoretical guarantees for their use in data analysis.

In summary, the development of persistence modules reflects a rich interplay of ideas
from algebraic topology, computational geometry, and data science. From their early
roots in Morse theory to their formalization and extension to multi-parameter settings,

persistence modules have become a cornerstone of modern topological data analysis.
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Persistent Homology and Persistence Modules: A Symbiotic Rela-
tionship

Persistent homology, the computational engine of TDA, relies fundamentally on per-
sistence modules. The process begins with a filtration of simplicial complexes {K; };cR>
where each inclusion K © K; for s < t induces homology maps Hy, (K; k) — H, (K¢; k).
The collection of these homology groups and linear maps forms a persistence module that
can be decomposed into intervals representing the birth and death of topological features
(e.g., connected components, loops).

Such persistence modules have some key properties:

+ Stability: The interleaving distance d;, a pseudo-metric on persistence modules,
ensures that small perturbations in point clouds yield only small changes in persistence
diagrams!>11],

* Computability: the decomposition theorems and the parameterization theo-
rem!'%] enable efficient algorithms for computing persistence diagrams and barcodes,
implemented in libraries like Gudhil’®! and Ripser!*l.

* Interpretability: Persistence diagrams summarize topological features of point
clouds, bridging qualitative analysis with quantitative analysis!>7-63:9097],

For multi-parameter persistence modules (N, <) — Vecy, however, decomposi-
tion fails in general, leading to active research into alternative invariants (e.g., rank func-

tionsl3%), generalized persistence diagrams!®®!, and Hilbert functions!®*!) and algebraic

formulations (e.g., quiver representations!®#).

Applications of Persistence Modules

The versatility of persistence modules has driven their adoption across a wide range
of disciplines, including but not limited to the applications discussed below.
In the field of materials science, persistent homology serves as a powerful tool for

detecting and quantifying the microstructure of materials!®7],

Specifically, it enables the
identification of the number, size, distribution, and density of voids within material sam-
ples. Additionally, persistent homology can be applied to structural analysis of materials,
including the study of crystallization in granular systems and the formation of crazes in
polymers[!®]. Beyond the applications described here, more extensive applications of per-
sistent homology in materials science can be found in references[6472:76.991,

In robotics, Adams and Carlsson[?! employed zigzag persistence to investigate the ex-



CHAPTER 1 INTRODUCTION

istence of evasion paths in sensor networks. Similarly, Silva and Ghrist!*”! utilized persis-
tent homology to address the coverage problem in sensor networks with minimal sensing
capabilities, demonstrating its versatility in solving complex network-related challenges.
In addition, there are also some other works on the application of persistence modules in
robotics!10-36,86,100,104]

In the biomedical field, persistent homology has been effectively applied to a variety
of problems. For instance, Chan et al.I>’] used persistent homology to characterize clonal
evolution, reassortment, and recombination in RNA viruses. Meanwhile, Y. Dabaghian
et al.[33] developed a topological framework for hippocampal spatial maps using persis-
tent homology. Additionally, Giusti et al.l’3) leveraged persistent homology to identify
meaningful structures in neural activity and connectivity data, showcasing its potential in
advancing neuroscience research. Readers can also find more applications in the refer-
ences!!-16-38],

In time series analysis, persistence modules also play a significant role. By em-
ploying Takens’ embedding, time series data can be reconstructed into geometric spaces,
allowing persistent homology to extract and analyze their topological features(43-67-3%1,
This approach provides valuable insights into the underlying structure and dynamics of
time-dependent data. At the same time, many scholars have done a lot of research on this
topicl29-58.91.98]

These applications underscore the dual role of persistence modules as mathematical

objects of intrinsic interest and as tools for extracting meaning from complex data.

Recent Theoretical Advances

In recent years, the persistence module has made a lot of progress in theoretical re-
search.

Multi-parameter persistence modules (e.g., indexed by R™) generalize the 1-
parameter case but face algebraic complexity. First, Carlsson et al. showed us the al-
gebraic complexity of multi-parameter persistence modules (N, <) — Vecy. Secondly,
many scholars used different methods to find the incomplete discrete invariants of multi-
parameter persistence modules and the complete discrete invariants of special persistence
modules. Oudot and Scoccolal®*] used the Betti number and Hilbert function as the invari-
ants and proved the stability of the invariants. Mémoli et al. used rank invariants as the
invariant and designed pseudo-code to compute rank invariantsi*®. Cochoy and Oudot

proved the block-decomposition theoremP!l of special 2-parameter persistence modules

4
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satisfying the 2-parameter strong exactness. Additionally, some scholars try to reinterpret
the persistence module with theories other than the quiver representation theory. Kashi-
wara and Schapiral®®l interpret some results of persistent homology and barcodes (in any
dimension) with the language of microlocal sheaf theory. Fersztand et al. used the Harder-
Narasimhan filtration to study persistence modules and find invariants[43-49].

When considering the persistence modules (N, <) — Veey, the bottleneck distance
dp is equal to the interleaving distance d;. However, when the target category we consider
is not Vecy, or when persistence modules cannot be decomposed into the sum of interval
modules, we cannot use the bottleneck distance to describe the difference between the
two persistence modules. Extending the bottleneck distance to the interleaving distance
allows us to compare the differences between two persistence modules. Blumberg and
Lesnick!!?! defined the homotopy-interleaving distance dj; and proved the stability and
the universality of dy; Lesnickl’®] discussed the stability of multi-parameter persistence
modules and further extended the definition of interleaving distance. Zhou!'% combined
persistence modules with rational homotopy theory, defined persistence Sullivan models

and proved the stability of persistence Sullivan models.

1.2 Statement of Results

This work establishes several results in the study of persistence modules, with the
main contributions organized into two parts. On the one hand, we introduce the idea of
rational homotopy theory into persistence modules X : (R, <) = TopQ, define persis-
tence minimal free Lie models My,,;(X) : (R, <) - Ho(DGL), and prove the existence
of persistence minimal free Lie models. At the same time, we also discuss the stability of
persistence minimal free Lie models. On the other hand, based on Cochoy and Oudot’s
resultsl*!] on the block-decomposition of 2-parameter persistence modules, we generalize
the 2-parameter strong exactness condition and prove the block-decomposition theorem
of 3-parameter persistence modules M : R3 — Veey,.

Note: If a persistence module is a functor to Vecy, we call the persistence module

pointwise finite-dimensional and abbreviate it as pfd.

A. Persistence Minimal Free Lie Models

Rational homotopy theory, pioneered by Quillen®], associates to a rational space

X € ob Topg, a minimal free Lie algebra encoding its homotopy type. By integrating per-
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sistence modules into this framework, we define a persistence minimal free Lie model that
is a functor My,,;(X) : (R,<) - Ho(DGL) for any rational R-space X, where a ratio-
nal R-space is a functor from R to the category of simply connected rational topological
spaces of finite type. The persistence module My,,;(X) : R - Ho(DGL) defined by us
is an algebraic model for the rational R-space X. Our results provide novel theoretical
frameworks with implications for topological data analysis, which allows us to identify

more topological information about point clouds.

Theorem 1.1: For any rational R-space X : (R, <) — Topgy, there exists a persistence
minimal free Lie model My,,; (X) : (R, <) - Ho(DGL) such that My,,; (X); is a minimal
free Lie model of X;. and My,,; (X)(s < t) is a Lie representative of X(s < t) up to weak

equivalences.

What’s more, we discuss the stability of persistence minimal free Lie models under
the interleaving distance d;. The following Theorem tells us that the persistence minimal
free Lie model is a reasonable algebraic model for a rational R-space X : R — TopQ, and

is more refined than the persistence module generated by computing homology groups.

Theorem 1.2: For any rational R-spaces X and Y, we have
Ho(DGL
o di P (Mgui (X), Mgui (V) < dpyy (X, Y) < dy (X, Y)
ngecQ ngecQ
di  “(@X),m.(Y)) =d;  “(Hio Mgyui(X), Hi o Mgy (Y))
Ho(DGL
< P (Mgui (%), Moui (V)

grVec grVec
H,(X), H () =d; 2V, W) < d P (Mg (%), Mgy (Y))

. d,
This means that M,,; (X) retains more topological information than persistence mod-
Vi
ules H,oX : R — Vec, for the rational R-space X. Meanwhile, dfr “ (m.(X), m.(Y)) =
ngecQ ngec(Q ngecQ .
df O (H, © Mgyi(X), H. © Mgys(Y)) and df  (H.(X), H.(Y)) = df  °(V, W) in-
dicate that 7, (X) = H, o My,;(X) and H,(X) = V respectively. In fact, we also proved

this conclusion in the proof of the theorem.

B. block-decomposition of 3-Parameter Persistence Modules

Multi-parameter persistent homology has long been a pivotal direction in the devel-
opment of persistent homology. Multi-parameter filtrations can capture richer topological
features of point clouds compared to 1-parameter approaches, yet extracting data features
from multi-parameter persistent homology remains a significant challenge. Our proposed

block-decomposition theorem for 3-parameter persistence modules provides a theoretical

6
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foundation for feature extraction of 3-parameter persistent homology.

Building on Cochoy and Oudot’s block-decomposition theorems for 2-parameter
strongly exact persistence modules®!], we generalize block-decomposition strategies to
3-parameter conditions.

In 2-parameter persistence modules M : (R?, <) — Vecy,, Cochoy and Oudot!*!] call
the 2-parameter persistence module M is 2-parameter strongly exact, if for all (x, x;) <
(v1,¥,) € R?, the following sequence is exact

(*1,¥2) (y1.xz)) Y1.y2) _  (¥1.y2)

(p(x1.x2)' (x1,x2) Pix1,y2) TP(y1.x2)
M(xbxz) M(x1'3/2) @ M()ﬁ,xz) 1.y2)

When considering the 3-dimensional persistence modules M : R3 — Vecy,, for any
(%1, %2, %3) < (¥1,V2,¥3) € R3, there is a cubical commutative diagram and the diagram
induces the functor X'(S) : P(S) = Vecy with |S| = 3, resulting in two morphisms
Y X(0) - Teljljlg%s)x (T) and ¢ : Tce(;lln(l;)x (T) - X(S), where P(S) is the power set of
S, and Py(S) := P(S) \ {@} and Py(S) := P(S) \ {S}.

M(XLYZ,}%) M(Jﬁ:yz:)@)
M(xl,xz,y3) M()ﬁﬂzd’s)

M(x1J/2rx3) M(Y1J2'x3)
M(xl,xz,x3) M(J’l,xz,x3)

We call M 3-parameter strongly exact, if M satisfies following conditions:

* foranyr € R, M|gyxrxr> MIrxrixrs M|rxrx(r} ar€ among 2-parameter strongly
exact.

o for any (xq,%,%3) < (V1,¥2,¥3) € R3, the associated morphisms 1 and ¢ is
surjective and injective respectively.

Thus, following Cochoy and Oudot’s proof for the 2-parameter case, we prove the

decomposition theorem for the 3-parameter case.

Theorem 1.3: Let M be a pointwise finite-dimensional 3-parameter persistence module

satisfying the 3-parameter strong exactness. Then M may decompose uniquely (up to
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isomorphism and reordering of the terms) as a direct sum of block modules:
s D,
B:blocks

in which Mz = @?fl kg in which ng are determined by the counting functor CF.

Remark 1.1: Although Lerch et al.l’*] also obtained this result around the same time
independently, and a few months later, they extended the result to the case of any
finite-dimensional persistence module that satisfies certain exact conditions, our research
method has advantages. The main reason is that we use more general language to gen-
eralize the strong exactness, so our conditional generalization method has high mobility.
Through the universal property of limits and colimits, we can understand the reason why

there is no block-decomposition in general persistence modules to some extent.

1.3 Outline

In this chapter, we have introduced the history of persistence modules, the relation-
ship between persistence modules and persistent homology, and the applications and the-
oretical advances of persistence modules. Additionally, we have presented some of our
results.

In Chapter 2, we review the definitions and key results of persistent homology and
persistence modules, including some methods for constructing simplicial complexes from
point clouds. At the end of this chapter, we introduce a novel approach to identifying
invariants of multi-parameter persistence modules: the Harder-Narasimhan filtration. By
introducing persistent homology as a starting point, we aim to clarify the motivations
for studying persistence modules and the significance of extracting invariants from them
in topological data analysis. This chapter establishes both the practical foundation and
theoretical basis for our presentation of one of our results in Chapter 5, which is the block-
decomposition theorem for 3-parameter persistence modules.

In Chapter 3, we begin with the robustness of persistent homology, introducing the
bottleneck distance and the stability theorem for persistent homology. We then present
the interleaving distance, which strictly generalizes the bottleneck distance. Specifically,
when considering 1-parameter interval-decomposable persistence modules, the bottleneck
distance and interleaving distance coincide. Finally, we introduce the homotopy inter-

leaving distance!'?! on the persistence modules R — Top ;> Which can be viewed as
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a generalization of the interleaving distance under homotopy invariance. These concepts
and results discussed in this chapter will be instrumental in Chapter 4, where we present
another main result: the persistence minimal free Lie model.

Chapter 4 initiates with a foundational review of rational homotopy theory, followed
by an exposition of Zhou’s contributions!!?*). Zhou’s work defined the persistence Sulli-
van models, with proof of its stability. In this chapter, our results are organized into two
key contributions: the definition and proof of the existence of persistence minimal free
Lie models, which extend the classical minimal free Lie model framework to the context
of persistence modules, and a discussion of the stability of persistence minimal free Lie
models.

In Chapter 5, we began by revisiting Cochoy and Oudot’s work!*!! on the block-
decomposition of 2-parameter persistence modules. Subsequently, we generalized the
2-parameter definition of strong exactness to 3-parameter settings and, adapting the proof
strategy developed by Oudot and Cochoy, rigorously established the block-decomposition

theorem for 3-parameter persistence modules.
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CHAPTER 2 PERSISTENT HOMOLOGY AND
PERSISTENCE MODULES

In this chapter, we introduce persistent homology and persistence modules. Specif-
ically, we cover the foundational results of persistent homology, excluding the stability
theorem, which will be discussed in Chapter 3. We also introduce persistence modules,
focusing on the correspondence, classification, and parameterization for 1-parameter and
multi-parameter persistence modules. Finally, we present a novel approach to identifying
discrete invariants of persistence modules.

Through this chapter, we aim to demonstrate that studying the decomposition of
persistence modules is a meaningful endeavor, as persistence modules serve as the math-
ematical abstraction of persistent homology. By introducing both 1-parameter and multi-
parameter persistence modules, we provide readers with an intuitive understanding of
the challenges in studying multi-parameter persistence modules compared to their 1-

parameter counterparts.

2.1 Persistent Homology

The principle of persistent homology is to approximate topological spaces through
filtrations of simplicial complexes. We assume that the underlying space of the point cloud
is a topological space, and we can approximate the homology group of the topological
space by constructing the filtration of simplicial complexes and computing the homology
of simplicial complexes, and then inferring the topological properties of the space. Unless
otherwise specified, the coefficients are any field denoted as k.

In this section, we will first introduce the constructions and properties of filtrations of
simplicial complexes such as Cech complexes, Vietoris-Rips complexes, and others. Sec-
ond, we will introduce persistent homology, persistence diagrams!*!l, and barcodes®*..

More details can be found in the referencel4?].

Constructions of Simplicial Complexes and Nerve Theorem

The common ways to construct a filtration of simplicial complexes include Cech

complexesl®!l, Vietoris-Rips complexes!®?!, Alpha complexes[?!, Witness complexes!3®!.

10
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For the purpose of elucidating and showcasing the principle of persistent homology, we
will only introduce the Cech complex and Vietoris-Rips complex in this section, and other
constructions can be found in the referencel*’].

To elaborate Cech complexes, we need to state the Nerve theorem.

Definition 2.1: Let F be the finite collection of sets. The nerve consists of all non-
empty subcollections whose sets have a non-empty common intersection, NrvF = {X C
F: Ngex A # 0}

Obviously, the nerve NrvF is an abstract simplicial complex. Indeed, if Nyex A # @
andY c X, then Nyey A # @. The nerve can be geometrically realized in some Euclidean
space of appropriate dimension, which allows us to meaningfully discuss its topological
and homotopy properties. Due to the geometric realization theorem, we can talk about the
topology and homotopy of NrvF. The nerve theorem, whose early versions are attributed

tol731,114] andl19] s a basic result in algebraic and combinatorial topology.

Theorem 2.1: (Nerve)l®l Let F be a finite collection of closed, convex sets in Euclidean
space. Then, the nerve of F and the union of the sets in F have the same homotopy
type. Specifically, if U 4¢r A 1s triangulable, each set in F is closed, and every non-empty

intersection of sets in F is contractible, then NrvF ~ U 4¢f A.
Now, we can define Cech complexes and state the rationality of the definition.

Definition 2.2: (Cech Complexes) Let S be a finite set of points in R% and B, (r) =
x + B¢ for the closed ball whose center is x and radius is 7. The Cech complex of points
cloud S and radius 7 is the nerve of this collection of B, (r) for all x € S, but each ball is
substituted with its center point, that is,
cS) i=to eS| [ |Br) = 0}
X€Eo

Based on the definition, we can derive an equivalent description of Cech complexes:
o € C(S), if and only if there exists a point y € R? such that for any x € o, the distance
d(x,y) < r. However, neither of the definitions of Cech complexes is straightforward
to implement computationally. Therefore, we need a construction method for simplicial

complexes that is computationally feasible, namely the Vietoris-Rips complexes.

Definition 2.3: (Vietoris-Rips Complexes) Let S be a finite set of points in R?. The

11
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Vietoris-Rips complex of the point cloud S with radius r is defined as the collection of all

subsets of S whose diameter is at most 27

R(S), = {o € § | diam o < 2r).

From both definitions, we can deduce that if r < s, then C(S), and R(S), are
simplicial subcomplexes of C(S) and R(S)s, respectively. It is evident that a Cech com-
plex is the subcomplex of a Vietoris-Rips complex, i.e., C(S),, € R(S),, because the
latter includes every simplex warranted by the given simplices. Meanwhile, we have
R(S)r € C(S)z,» Which can be proven with minimal effort.

The Nerve theorem guarantees that the Cech complex can describe the underly-
ing space of the point cloud. If we assume that the finite point cloud S is randomly or
uniformly sampled from a topological space X, then the topological space, U,es By (7)
for some r = 0, can accurately reconstruct X. By the Nerve theorem, we know that
C(S), ~ Uyes By (1), implies that the Cech complex is a reasonable combinatorial model
for the underlying space X.

In addition to these two complexes, there are numerous methods for constructing
simplicial complexes, including Alpha complexes, Witness complexes, and Neighbour-

hood complexesl6>].

Persistent Homology and Persistence Diagrams

In the above statement, we can see that for any » = 0 and finite point cloud, a
simplicial complex can be constructed, such as the Cech complex. A natural question
arises: What happens to the corresponding simplicial complex as r increases? How can
we describe this change? For a simplicial complex, we can use homology groups as an al-
gebraic invariant to characterize its structurel®?1133], Thus, as r increases, we can describe
the change of simplicial complexes by analyzing the change of homology groups of these
simplicial complexes.

Let K be a filtration of simplicial complexes, that is, an increasing sequence of sim-

plicial complexes:
0=K,cK, cK,c- cK,.

The inclusions between simplicial complexes are simplicial maps denoted f; ;41 : K; —
K; ;. Additionally, we can assume that K; ,; has exactly one more simplex than K; for all

i. Then, the filtration induces a sequence of homology groups connected by homomor-

12
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phisms,

Hy(fo,1) Hyp(f1,2) Hyp(f2;3)  Hp(fan-1n)
Osz(KO) - Hp(Kl) - Hp(KZ) - - Hp(Kn)

again one for each dimension p. Note that the meaning of filtration varies slightly in
different scenarios, but the idea is similar.
To describe the change of homology classes, we need to define certain algebraic

invariants.

Definition 2.4: Let the p-th persistent homology groups H,(i,j) := Im Hy(f;;), for
0 <i <j < n, and the p-th persistent Betti numbers £, (i, j) = rank H, (i, j).

In an analogous manner, we may extend the definition of persistent homology to
the reduced setting by utilizing reduced homology groups, thereby obtaining reduced per-
sistent homology groups and their associated reduced persistent Betti numbers. Here,
we adopt the convention that Hy({, i) is isomorphic to the p-th homology group of the
corresponding simplicial complex, that is, Hy,(i,i) := Hp(K;). We know that the ho-
mology group of K; is the quotient H,(K;) = Z,(K;)/By(K;), in which Z,(K;) and
By, (K;) are the cycle and boundary of chain complexes Cy,(K;), respectively. The per-
sistent homology groups comprise those homology classes of the complex K; that persist
through the inclusion map to Kj, which can be formally expressed as the quotient group
Hy(1,)) = Z,(KD) /(B () 0 Z (K)).

Let & € H,(K;) be a homology class. we say it is born at K, if @ € Im H, (fi_q,).
Furthermore, we say that it dies K; if it merges with another class as it goes from K;_; to
K;. The birth and death of homology classes correspond to the addition and merging of
simplices in the simplicial complex, respectively. If a homology class « is born at K; and
dies when it arrives exactly at K;, then we call the difference j — i the persistence of a.
And if a homology class never dies, then we call that it persists to infinity.

Once we have defined persistent homology groups and persistent Betti numbers,
we can characterize the structure of filtration of homology groups. We will represent
the filtration of homology groups of simplicial complexes by a multiset, which is called
persistence diagram or barcode. The elements of the multiset lie in the extended real
plane R? := (R U {£})?, since some homology classes never die and persist to infinity.

Let

tp (L)) = Bp(t,j = 1) = Bp(L,7)) = (Bp(i = 1,j = 1) = B (i = 1,)))

13
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foralli < jand all p. From the above discussion, it can be seen that 8, (i, j — 1) — B, (i, J)
is the dimension of the linear space consisting of all homology classes that are born at or
before K; and die at K;. Similarly, (B,(i —1,j — 1) — B, (i — 1, ) is the dimension of the
linear space consisting of all homology classes that are born at or before K;_; and die at
K;. Thus, u, (i, ) is the dimension of the linear space consisting of all homology classes

that are born at K; and die at K;.

Definition 2.5: For a filtration of simplicial complexes K, we can get a multiset called

p-dimensional persistence diagram (p-dimensional persistence barcode)

dgm(H,(K)) = {((0. ). k) | k = up(i,)) and (i, /) € R?}

in which (i, j) is a element of the multiset and (i, j) appears u, (i, j) times.

If we interpret (i, j) as a point in R?, the multiset is called the persistence diagram,
dgm. If we interpret (i, j) as an interval, the multiset is called the persistence barcode or
barcode B. Due to some technical reasons that will be discussed in the next chapter, we

will include the points on the diagonal in d gm, assigning them infinite multiplicity.

Lemma 2.1: (Fundamental Lemma of Persistent Homology)“”) For every pair of in-

dices 0 < k < | < n and every dimension p, the p-th persistent Betti number is
Bp (k1) = ek Xjsi Hp(ih])-

This is an important result: the lemma states that the persistence diagram encodes all
information about persistent homology groups. In the next section, we will restate per-
sistence diagrams that are complete invariants from an algebraic perspective and provide
an algebraic explanation of persistence diagrams. This will lead to a more intuitive un-
derstanding of the persistence diagram. Meanwhile, from the perspective of persistence
modules, we can more clearly understand the core concept of persistence and the diffi-
culties encountered in generalizing 1-parameter persistent homology to multi-parameter

persistent homology.

2.2 1-Parameter Persistence Modules

Persistence modules are the categorization!!”) of persistent homology. The purpose
of studying persistence modules is to identify the discrete invariants of persistent homol-
ogy, enabling its more effective application in topological data analysis.

In general, a persistence module can be defined as a functor F : C — D, in which C

14
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is a thin category and D is any category. A category C is said to be thin if, for every pair
of objects a, b € ob C, there exists at most one morphism from a to b. Sometimes, the
category C is defined as a poset P, where the ob P is the set P, and morphisms are the
partial order of P. In specific studies, the thin category that we usually consider is (R, <)
or (Z,<). In category R, the object is a real number r € R, and the morphism r — s

exists if and only if r < s. Similarly, we can define the category (Z, <).

Example 2.1: Examples of the persistence modules.
* X: (R <) - Top
* V: (Z <) - Vecy
« W: (R™, <) - Vecy in which (a;) < (b;) ifa; < b; fori =1,2,---,m.

In the above section, we know that if we have a filtration of topological spaces,
then we can get a family of homology groups. The data of a family of homology groups
contains homology groups and homomorphisms between homology groups. Thus, in this
section and the next section, we will focus only on the family of homology groups over
some field k, which are vector spaces. Note that if the ground ring of homology groups is
R, then the homology groups are also modules over R. Some knowledge of commutative
algebra will be used without proof. The details can be found inl?8:42-96],

This section mainly introduces the correspondence, classification, and parameter-
ization of 1-parameter persistence modulest'%?l. For the convenience of discussion, in
this section, we will mainly consider the definition of 1-parameter persistence modules as

follows,

Definition 2.6: A 1-parameter persistence module is a functor M : (N, <) —» Modg
from the category of natural numbers to the category of modules over R, for some ring R.
Equivalently, a 1-parameter persistence module Ml = {M;, m; j}o<;<; is also a collection

of R-modules M; equipped with homomorphisms m; ; : M; - M;.

We define M; := M(i) and M; ; := M(i < j). In discussion of interleaving, we will
use M(k) to denote a new functor such that Mi(k); := M; and M(k); j := M g jik,
rather than an object in a target category. Sometimes, we use also Z¥M to denote the
k-shift of M. According to our definition, it is evident that M; = M; and M; ; = m; ;.

Reviewing the discussion of persistent homology, this definition of 1-parameter per-
sistence modules is reasonable. Meanwhile, we will suppose the 1-parameter persistence

modules that we will discuss are of finite type, i.e.
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Definition 2.7: A 1-parameter persistence module Ml = {M;, m; j}o<;<; is of finite type
if each component R-module M; is a finite generated and if m; ; are isomorphic for k <

i < j for some k.

Consider a 1-parameter persistence module Ml = {M;, m; j}o<;<; over R. We endow

R[x] with the standard grading and construct a graded module over the polynomial ring

a(M) = é M;,
i=0

where the R-module structure is defined as the direct sum of the structures in each com-

R[x] as follows:

ponent, and the action of x is specified by

X - (ag,aq,az,+,) = (0,mg 1(ap), my2(ay), my3(az), )

in which a; € M;.

Theorem 2.2: (Correspondence)®’] The correspondence a defines an equivalence of
categories between the category of 1-parameter persistence modules of finite type over
some ring R and the category of finitely generated non-negatively graded modules over
R[x].

The correspondence theorem implies that there exists a simple classification of 1-
parameter persistence modules if R is not a field, as in the case of Z. This aligns with
fundamental results in commutative algebra, which demonstrate that the classification
of modules over Z[x] is inherently complex. Although meaningful invariants can be
assigned to Z[x]-modules, a straightforward classification remains unattainable and is
unlikely to ever be achieved. In contrast, when the ground ring is a field Kk, the corre-
spondence theorem provides a simple and elegant decomposition. The graded ring k[x]
is a principal ideal domain (PID), and its only graded ideals, (x™), are homogeneous.

Consequently, we have the classification theorem of k[x]-modules.

Theorem 2.3: (Classification)?*] Any finitely generated non-negatively graded module
over k[x] is isomorphic to

n m

D »win | @ | D rimix/am)

i=1 j=1

where £% denotes an a-shift upward in grading.
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Thus, the classification theorem of graded modules over k[x] implies the complete
classification of 1-parameter persistence modules of finite type.

In the above section, the feature of the point cloud we ultimately obtain is a per-
sistence diagram dgm or barcode B. Then, we want to obtain the representation of 1-
parameter persistence modules, which is similar to the persistence diagram. This process
is the parameterization of 1-parameter persistence modules.

We call ordered pairs (i, ) intervals with 0 < i < j € Z U {o0}, and define

i j—i Ly
06.j) = Z.]k[x]/(xf ), ifj # oo, @)
Itk[x], otherwise

IfS = {(i1, j1), (i2,J2), =+, (im, jm) } 1s @ multi-set of intervals, then we define that

0 = EP 0o
k=1

Meanwhile, for any 1-parameter persistence module of finite type V : N — Vecy, we
have that a(V) = (@i, Zfik[x]) ® (EB;-n:l TVik[x]/(x™)) for some B;, y; and n;
by classification theorem. Therefore we can parameterize the 1-parameter persistence

modules V : N - Vecy.

Theorem 2.4: (Parameterization)>’] The correspondence S — Q(S) establishes a bi-
jection between the finite multisets of intervals and the finitely generated graded mod-
ules over k[x]. Thus, the isomorphism classes of persistence modules of finite type

V : N — Vecy are bijective to the finite multisets of intervals.

We call the multi-set S the persistence diagram of 1-parameter persistence module
M corresponding to Q(S), denoted as dgm(M) or Byy.

Because in specific studies, the point clouds are finite, the family of homology groups
over the field k in persistent homology always satisfies the condition of finite type. The
parameterization theorem states the fact that persistence diagrams are an almost perfect
representation of persistent homology without considering the differences in the ways in
which point clouds construct simplicial complexes and the difficulty of vectorization of
persistence diagrams.

We can generalize the discussion on 1-parameter persistence modules N — Vecy, to
persistence modules R — Veey,. We also refer to the latter as the 1-parameter persistent
modules. Indeed, we may define that a 1-parameter persistence module is a functor M :

(T, <) = Vec, T c R. Aninterval in T is a subset ] © T such thatifr,t € J,s € T and
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r < s < t then s € J. In the concept of 1-parameter persistent modules (T, <) — Vecy,
we no longer discuss the correspondence theorem in detail, but we can still discuss the
classification and the parameterization. The idea of classification is to decompose a 1-
parameter persistence module into the direct sum of indecomposable components, where
each indecomposable component is simple enough. For any nonempty subset /] € T, the

interval module k; is defined to be the 1-parameter persistence module k; : T — Vecy

k ifte],
k), = (2-2)
0 otherwise,

and linear maps

) id, ift,s€]j
lst = .
0 otherwise

The essence of the classification theorem is to decompose 1-parameter persistence mod-

ules into interval modules.

Theorem 2.5: (Interval Decomposition)?®] Suppose that V is a 1-parameter persistence
module T — Veey with T c R. In either of the following cases, V can be decomposed
into a direct sum of interval modules:

T is finite;

* all dim V; is finite.
Conversely, there is a persistence module Z — Vecy which does not allow an interval

decomposition.

Example 2.2: 28] Webb provides this example, which is indexed over the nonpositive

integers —N:
W, = {sequences (x4, x5, X3, :-+) of scalars}
W_,, = {such sequences with x; = x, = - =x, =0} (n = 0)

The w2}, are the canonical inclusion maps for any n < m < 0. This module can be
concisely denoted as an infinite product W =[], Kj—n,0-

Suppose that W has an interval decomposition. Because every map wZ2"1 is an
inclusion, all of the intervals of the interval decomposition must be of the form [—n, 0] or
[—o0,0]. Then the multiplicity of [—n, 0] may be calculated by dim(W_,,/W_,,_1) = 1.
The multiplicity of (—oo, 0] is zero because any summand of that type requires a nonzero

element of W that is in the image of wy™ for all n = 0. However, there is no such
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element since N,59 W_,, = 0. All of this seems to indicate that W = @,,5¢ k[—n, 0].
But dim(W,) is uncountable, which contradicts the results stated above. So W doesn’t

allow an interval decomposition.

After the interval decomposition theorem is established, parameterization can be

given similar to the previous discussion about persistence modules N — Vecy,.

Remark 2.1: The parameterization argues that 1-parameter persistence modules can be
represented by a complete discrete invariant.

In the study of persistence modules, we can roughly divide invariants into discrete
and continuous ones. Discrete invariants refer to invariants such as the Betti number,
which are always integers and come from a set that is independent of the coefficient field
k, giving them a finite parameterization. However, continuous invariants may exhibit
uncountable cardinality or depend fundamentally on the choice of the coefficient field
k. Consequently, such invariants are generally unsuitable for computational purposes
due to their inherent complexity and field dependence. It is crucial to emphasize that the
classification of invariants as discrete or continuous is independent of the coefficient field
k - that is, this distinction remains valid regardless of whether Kk is a continuous field

(such as R) or a discrete field (such as Z/p for a prime p).

2.3 Multi-Parameter Persistence Modules

In this section, we will discuss the correspondence, classification, and parameter-
ization of multi-parameter persistence modules. Unfortunately, no satisfactory results
have been found regarding the parameterization of multi-parameter persistence modules.
What’s more, it can be proved that the discrete complete invariant of multi-parameter per-
sistence modules does not exist, even the 2-parameter persistence modules of finite type.
Finally, we will display an enlightening example of a 2-parameter persistence module.
However, we cannot find a discrete complete invariant of the 2-parameter persistence
module. For more details, please refer to the paper!?3].

We may regard N" as a partially ordered set (N, <), with the partial order relation

defined as follows:

v=(v;) <w=w),ifv; < w; forall i.
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Definition 2.8: A n-parameter persistence module is a functor M : (N, <) - Modg,
for some ring R. Equivalently, a m-parameter persistence module Ml = {My, my w}o<v<w

is also a family of R-modules My, together with homomorphisms my, ,, : My — M,,.

Since the (N™, <) is a thin category, my, yomy w = My w Wheneveru < v < w. Sim-
ilar to 1-parameter persistence modules, we can also define multi-parameter persistence

modules of finite type,

Definition 2.9: A n-parameter persistence module Ml = {My, my y}o<y<w is of finite
type if each component R-module My is a finite generated and if my,, are isomorphic
whenever v = (v;) and w = (w;) satisfy v; = w; for i # iy and ¢ < v; | < w; for some

c € N.

A monomial in x4, X5, -+, X, is a product of the form x;"1x,"2 --- x,,V* with v; € N.
We denote it x¥, where v = (v, v,,:-,1,) € N Let 4, = Kk[xq,x5,:+,x,] be a n-
graded ring, and M be any n-graded A,,-module. We may define a n-graded A,,-module
VM for any v € Z™ by defining its graded components as (ZYM)y, := My _y.

Let M be a persistence module, we may construct an n-graded module over A,, by

a(M) = @ M,

where the k-module structure is given by the direct sum. Additionally, we require that the

defining

multiplication map xV™" : M, —» M, coincides with the morphism m,, ,, in the persistence
module M = {M,, my y}o<usvy Whenever any u < v € N™.
The correspondence theorem is similar to the result of 1-parameter persistence mod-

ules.

Theorem 2.6: (Correspondence)®’] The correspondence a defines an equivalence of
categories between the category of finite persistence modules over k and the category of

finitely generated n-graded modules over 4,, = k[xq, -+, xp,].
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Classification

Definition 2.10: A n-graded set (X, ¢) is a set X with the grade ¢ : X = Z". And the

map f of n-graded sets satisfies the commutative diagram

For any n-graded module M = @, M,, over 4,,, H(M) := Uyezn My, then H(M) is
a n-graded set.
We define the free n-graded A,-module on the graded set (X, ¢) as an n-graded

Ap-module F equipped with an inclusion map of n-graded sets
n:X,¢) > H(F) cF,

satisfying the following universal property: for any n-graded A,-module M and any map
of n-graded sets 8 : (X, ¢) - H(M), there exists a unique homomorphism A : F — M of

n-graded A, -modules that makes the diagram

(X, ) —— H(F)
X lH(A)
H(M)

commutes.

Definition 2.11: The type of an n-graded vector space V is defined as the unique mul-
tiset isomorphic to a graded basis for V, denoted by £(V). Analogously, for any free
n-graded module F, we define §(F) := ¢(k &4, F).

Indeed, the type, £(—), denotes the location and the number of generators of the

object.

Example 2.3: Ifthe type £(V) = {((0, 1), 2),((1,0),1),((2,1),1)} for some 2-graded
vector space V, the V = span{u,, u,, v, w} in which deg u; = degu, = (0,1),degv =
(1,0) and degw = (2,1).

Ifthe type E(F) = {((0,1),2),((1,0),1),((2,1),1)} for some 2-graded free module

F over A,, the F is isomorphic to the free A,-module on the graded set {a, a,, b, c} in
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which deg a; = dega, = (0,1),degb = (1,0) and deg c = (2,1).

Suppose that M is a finitely generated n-graded A,,-module. We define the finite-
dimensional kk-vector space p(M) = k ®,, M, where k is given the module structure
where all the variables x; act trivially, i.e., by zero. Let V be a n-graded vector space. Then
there exists a free n-graded module F (V) satisfying the isomorphism V = p(F(V)) =
k&4, F(V). Meanwhile, we can also consider V() and F (§) that are defined §(V($)) =
Eand E(F(&)) = €&, for any multi-set &.

For any n-graded module M, we consider the minimal free resolution of M
o F->F->M-0

Eo(M) := E(Fp), & (M) := &(F;). In fact, the free module Fj is called the free hull of
M. The &, and &;, which are multisets, are invariants of the isomorphism class of M. If
M is a 1-graded module over A; = k[x], that is the algebraic model of some 1-parameter
persistence module M, then F, = F; = .-+ = 0. Thus, 1-parameter persistence modules
can be decided completely by persistence diagrams.

Suppose two multi-sets &, and &; satisfying £, N &; = @. We begin by constructing
a free n-graded A,,-module F such that {(p(F)) = &,. Then, we define that S(F,§) :=
{L|LisaA,-submodule of F and {(L) = &;} and 7(&,, &;) := {[M] (isomorphic class) |
Eo(M) = &y, & (M) = &;}. Subsequently, we have the map

q:8F, &) = I, 861)
Lw [F/L]

The automorphism group of F acts on S (F, £;) through the action defined by g-L = g(L)
for any g € Aut(F). Thus, it is obvious that F /L = F /g(L). We represent the set of the
orbits of action Aut(F) ~ S(F,&;) as Gr \ S(F,&;). The theorem is figured out easily,

Theorem 2.7: (Classification)[?3! Let F be described as above, §, N & = @, and let
Gr := Aut(F). The map g satisfies the formula q(g - L) = q(L) and thus induces a map
q:Gp \S(F, &) — 1(&,&). Furthermore, q is bijective.

Remark 2.2: In the original version of this theorem (Theorem 9 in!?*!), there was no
condition §;N&; = @. But I made some minor modifications when stating it here. Because
if we remove the condition £, N &; = @, we can easily provide a counterexample to state

that the map q is not well defined.
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Example 2.4: Given F := A; -a @ A; - b = k[x] @ X! - k[x] is a free 1-graded A, -
module, a and b are generators withdeg a = 0,degb = 1. LetL; = A;b, My = F/L, =
Ay =Kk[x]and L, = Ay - (xa), My = F/L, = A;/(x) ® A, - b = K[x]/(x) B! - Kk[x].

Obviously, §(L1) = §(Lz) = {((1), 1)}, then Ly, L, € S(F, &) with &y = {((1), 1)}.
However §o(M;) = {((0), D} # §o(Mz) = {((0),1),((1),1)} and & (M) = @ #
$1(Mz) = {((1), D}.

In summary, for finitely generated n-graded A,,-modules, we can preliminarily clas-
sify them through &, and ;. Meanwhile, if &, and &; satisfy the condition, &, N & = @,

then we may completely classify them by using the above theorem.

Parameterization

Our objective is to demonstrate that, in contrast to its 1-parameter counterpart, multi-
parameter persistence modules do not have complete discrete invariants. Therefore, we

need only to show that there is no complete discrete invariant for a subset of 7(&;, &;).

Remark 2.3: The derivation of parameterization needs to use the theorem of classifica-
tion, so we will suppose &, N &; = @. However, the original result?3] of parameterization

has no condition é, N &; = @.

We begin by considering any n-graded 4,,-module M. For every v € Z™, we consider

the k-vector subspace

(IM)y = Z xin—ei c M,

v>e;
where e; denotes the i-th standard basis vector in Z". v is called a gap of Ml if (IM), # M,,.
We define that ['(M) is the set of gaps of M.

Remark 2.4: The gap v denotes that M,, contains the generators of M. The module /M

can be considered as leave, and the generators of M can be considered as roots.

Theorem 2.8: [23] If M is finitely generated, then I'(M) is finite. Additionally, the type
of k ®,4, M, denoted by & (M), corresponds to the multi-set (I'(MD), apg), where

ay (V) = dim (My/(IM)y) = dim (My) — dim ((IM)y).

Theorem 2.9: 23] Suppose that F is a free n-graded A,,-module, and suppose L and L’

are any n-graded submodules (note that L is not necessarily free). Then L = L' if and only
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if (L) =T(L") and L, = L', for any v which are gaps of either.

The theorem shows the fact that if one wants to decide a submodule L of M, then one
only needs to decide the gaps v and Ly,.

Let £ = (V, @) be an arbitrary multiset, and let § : V — Z be any map. Let F be any
finitely generated free n-graded module over A,. We define that ARR; s(F) denote the
collection of all assignments v = L, where v € V and Ly is a k-linear subspace of F,,
subject to the following three conditions:

v Z<v= x"“”LV: C Ly,

* dimy(Ly) = §(v),

o dimy(Ly/Yyrcy X"V Lyr) = (V) forall v € V.

Remark 2.5: ¢ = (V, @) denote the multi-set of gaps. Every designment L corresponds
a submodule L satifying £(L) = &. The condition, v < v = x"_"’LV/ c Ly, corresponds
xV—V,LVI) —
a(v) for all v € V, corresponds to the condition that £(L) = ¢&. The condition,
dimy (Ly) = 8(v), state that ARR¢ 5(F) is only a subset of S (F, §;) generally.

to the condition that L is a submodule of F. The condition, dimy (Ly/ 3;

v/sv

Obviously, we have ARR; s(F) € € = [] Grs)(F,) from the condition dimy(Ly) =
VEV
S(v).

Theorem 2.10: 23] The set ARRg 5(F) is in bijective correspondence with a quasipro-

jective variety.

The theorem asserts that the set S(&p, £;) can be viewed as a subset of an algebraic
variety. Moreover, when & N &; = @, the action of Aut(F) on elements of S(&,, {;) con-
stitutes an algebraic group action. Consequently, this portion of the classification emerges

as a continuous invariant.

An Important Example

In this subsection, we will introduce an example that vividly demonstrates that even a

portion of 2-parameter persistence modules may not possess discrete complete invariants.
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This example was provided by Carlsson and Zomorodian in their paper!?3].

k®k——e .

Consider a set of 2-parameter persistence modules for which

$o ={((0,0),2)},
1 ={((3,0),1),((2,1), 1), ((1,2),1),((0,3), D},

as visualized on N? in the above figure.

It is easy to build a bifiltered simplicial complex whose 1-dimensional homology
groups correspond to this picture, that are persistence modules M generated by this 2-
filtration of simplicial complexes satisfies £y (M) = &, and &; (M) = &;.

At the point (0, 0), the complex consists of two loops, yielding k @ k. At each
of the marked coordinates, we attach a distinct surface between the two loops, ensuring
that no two complexes are identical. For instance, a cylinder can be attached at (3, 0), a
punctured crosscap at (2, 1), and so forth. Notably, the discrete invariants &, &; fail to
distinguish the differences between these aforementioned complexes.

To achieve the classification, we utilize the classification theorem. The generators

of F (&) are positioned together, enabling the complete group of automorphisms

GL(F($0)) = GL(k?) = GL, (k).

Classification:

F($o) = A2 @ Ay, GL(F($0))) = GLy(k)

For V(v,i) € {;, dim F(&p)y = 2 and dim F(&;)y = 1, then G7gin, p(g,) (F($0))yv =
Gr,(K2) = P1(K).

= Classification: the orbit space of GL, (k) ~ P!(k)*. (The action is evident.)
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Parameterization:

Let Q be the subspace of the orbits space GL, (k) ~ P(k)* containing pairwise-
distinct lines GLy () ™~ {(I1, 15, 13,1,) € P*(k)* | [; # [ for i # j}.

We can transform the lines using matrices from G L, (k):

(1) 4 transform into the x-axis,

(2) I, transform into the y-axis,

(3) 5 transform into the line {x = y},

Then (14,15, 13,14) GL2—®> (x-axis, y-axis, diagonal, A4), in which 4, is [, after the
transformations.

= Q5 PL(k) — {0, 1,0} = k — {0, 1}.

Therefore, it is impossible to obtain a complete discrete invariant in this example.

2.4 Harder-Narasimhan Filtrations of Persistence Modules

As discussed in the prior description, the difficulty in identifying discrete invariants
for multi-parameter persistence modules has led some researchers to seek new approaches
for discovering such invariants. A new method for finding discrete invariants of multi-
parameter persistence modules will be introduced in this section, which involves com-

[47-49] of the persistence modules.

puting invariants of the Harder-Narasimhan filtration
This method differs from the previously adopted approaches. Earlier, when discussing
the decomposition of persistence modules, the primary focus was on the direct sum de-
composition of persistence modules. However, this new perspective views the direct sum
decomposition as merely a special case of decomposition. By drawing an analogy to
the decomposition of topological spaces, specifically filtrations of topological spaces, we
can interpret the decomposition of persistence modules as a filtration. Subsequently, by
constructing filtrations for the persistence modules and then computing the invariants as-
sociated with the filtrations, we can get new discrete invariants of persistence modules
N" — Vecy,.

Before discussing filtrations of persistence modules N* — Vecy, we introduce a

incomplete discrete invariant of persistence modules M : N — Vecy, the rank invariant

pu. Define that N := N U {00} and D™ := {(u,v)|u € N?, v € N”, and u < v}.

Definition 2.12: Let M : N — Vec be any n-parameter persistence module, and be

finitely generated if we regard M as an n-graded A,, module. The rank invariant py; is a
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map from D to N, defined as

pm(u,v) = rank (x¥V7% : M, » M,).

It is obvious that the map py; is an invariant of persistence modules. And we can

easily prove the following results.

Lemma 2.2: Ml Ifu <u’ <v' <v, Then py(u,v) < py(u,v").

Proof: Becauseu < u’ < v’ <v, we have M, » M, » My - M. |

When M a multi-parameter persistence modules N® — Vecy with n > 2, the rank

invariant py; is not complete. However, when n = 1, the rank invariant py; is complete.

Theorem 2.11: 8] The rank invariant py; is complete for 1-parameter persistence mod-
ules.
Proof: In the first section of this chapter, we discussed persistent homology and persis-

tence diagrams, and introduced the calculation formula of persistence diagrams

(L)) = Bp(Lj = 1) = Bp(L,7)) = Bp(E = 1L,j = 1) = Bp(i = 1, /)),
where B, (i,j) = pm(i,j) if M is the persistence module as follows,

Hy(fo,1) Hy(f1,2) Hy(f2,3) Hy(fn-1n)
0= Hp(KO) I Hp(Kl) B Hp(KZ) Hp(Kn)-

Meanwhile, we know that the persistence diagrams are complete invariants of persistent
homology. Then the rank invariant py; is complete for 1-parameter persistence modules.

We recall that a quiver Q is a multi-digraph, that is, a directed graph where loops
and multiple arrows are allowed. In other words, a quiver Q consists of two sets, Q, and
Q4, where the elements of set Q are called the vertices of the quiver @, and the elements
of Q4 are called the edges of Q. Additionally, it is equipped with two maps called the
source map and the target map, denoted as s, t : Q, = Q4, respectively. Each edge e may
be denoted by an arrow s(e) — t(e). And we define a path in the quiver Q is a finite
sequence of edges p = (eq,*, e,) satisfying t(e;) = s(e;41) for any i. We call a path
p = (eq,+,e,) isaloopifs(e;) = t(e,). Ifa quiver Q = (Qy, Q1) admits no loops, we
call Q is acyclic. In this subsection, unless otherwise specified, we always assume that all
quivers are acyclic and have only finitely many vertices and edges.

We recall a finite-dimensional representation V of a quiver Q = (Qq, @4) is a functor
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Q — Vecy, where V, is a vector space for any vertex x € Qy and V,, is a linear map
from V) to Vi(ey. Suppose that W is another representation of Q. We say that W
is a subrepresentation of V if there is a monomorphism ¢ : W & V. Fix a quiver Q =
(Qop, Q1), arepresentation of Q is called indecomposable if it does not admit any nontrivial
direct sum decomposition in Rep(Q), where Rep(Q) is the category of representations of
Q = (Qo, Q).

It is well-known!# that for any finite-dimensional representation V of the quiver Q,
there exists a unique multiset (Ind (V), dy), where dy : Indy (V) — N is the multiplicity

function, such that the representation V can be decomposed as follows:

=P
I

For any representation V : @ — Vecy, we can define the dimension vector

with I ranging over Ind, (V).

di_mW : Qo — N given by x = dim V,. Gabriel®” asserted that the collection of in-
decomposable objects within Rep(Q), corresponding to a specified dimension vector, is
finite precisely when the undirected graph associated to Q is a finite union of simply laced
Dynkin diagrams.

Next, let’s formally introduce the Harder-Narasimhan filtration. Firstly, we present
the concept of the Grothendieck group of an abelian category C. For any abelian category
C, its Grothendieck group is an abelian group K (C) freely generated by the isomorphism
classes [V] in € modulo a relation of the form [V] = [U] + [W] if

0-U->V->W->0
inC.
A stability condition on C is a group homomorphism
Z:K(C) - (CH+)
and Z(K(C) \ {0}) € {z € C|Re z > 0}. For a stability condition Z, the Z-slope of an
object IV # 0 is the real number

We call V Z-semistable if u(U) < pz(V) for any subobject U € V and U # 0, and V
Z-stable if uz(U) < uz (V) for any subobject U € V,and U € {0, V}. With these concepts

in place, we can now proceed to elaborate on the Harder-Narasimhan filtration.
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Theorem 2.12: 81 Suppose C is any abelian category satisfying the Noetherian and
Artinian hypotheses. Fix Z a stability condition on C. If V' # 0, there is a unique filtration
V* of finite lengthn > 1

0=VgVlig..gvr=V
whose successive quotients St := V! /Vi=1 are Z-semistable and strictly decreaing slopes:

pz(S) > pz(S?) > -+ > pz (S™).

The filtration that appears in this theorem is precisely the Harder-Narasimhan filtra-
tion of V. And for any representation V # 0 in Rep(Q), the Harder-Narasimhan filtration
of V along a stability condition Z is denoted by HN (V). If the stability condition Z is a
standard stability condition, HN (V) denoted by HN_, (V).

For any fixed quiver Q = (Qq, @1), we consider the Harder-Narasimhan filtration of
the object of category Rep(Q), since the category Rep(Q) is abelian. For any stability
condition on Rep(Q), Z : K(Rep(Q)) — (C,+), we may decide it by two functions

a,fB : Qy — R, thatis Z(V) = ZxEQo (B(x) + Vv=1a(x)) - dim V,. Thus the Z-slope
ImZ(\V) _ erQo a(x)-dim Vy

of V, u; (V) = ReZO) — Txeq, FGOdMVy’ If § = 1, then the Z-slope of V, u, (V) =
S regy @0 Vy N~ .
5 . TR determined by a and is denoted as u, (V). Therefore, we call that the
xX€Qo x

stability condition Z is a standard stability condition and call a the central charge of Z.

Lemma 2.3: 8 Leta : Q, —» R be a function, and three objects U, V, W € ob Rep(Q)

satisfying the following short exact sequence
0-U-V->W-0.

Then, one of the following inequalities must hold. Either
* Ug(U) > pg (V) > pg (W), or
* Ug(U) = pg (V) = pg (W), or
* Ue(U) < ug(V) < po(W).
And when p,(U) = pe(V) = ua(W), V is a-semistable if and only if U, W are a-

semistable.

Corollary 2.1: 3 If U, W are a-semistable with the same a-slope u, then U @ W is

also.

For any representation V of @, we have defined the dimension vector dim, . Indeed,

we may regard dim as a group homomorphism K (Rep(Q)) — Z<, that assigns a repre-
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sentation V to its dimension vector dimv.

Definition 2.13: The Harder-Narasimhan type of V # 0 in Rep(V) along @ : Qg —» R
is T[V; a], defined as

T[V; a] := (dimsl,dimsz,---,dimsn)

where n is the length of the Harder-Narasimhan filtration HN, (V) of V, and S¢ =
HN, (V)/HNS (V).

On the other hand, the Harder-Narasimhan type T[V; «] may be regarded as a map
T[V;a] : R - Z%, defined as follows

dimsi’ A= .ua(Sl)

TV; a](A) = (2-3)

(0,0,---,0), otherwise.

Proposition 2.1: 8 If we regard T[V; a] as a map from R to Z%, then for any repre-
sentations V, W in Rep(Q), T[V D W; a] = T[V; a] + T[W; «a].

We have previously mentioned that the standard stability conditions are solely deter-
mined by «a, and while there are various choices for @, we can prioritize the most distinc-

tive ones, which are the delta functions.

Definition 2.14: we call the delta functions &, for any x € Q, the skyscraper central

charge at x € Q,, as follows

1, ify=x,
8x(y) = (2-4)
0, otherwise.

Meanwhile, we can define the skyscraper invariant 5, on Rep,, that assigns each

representation V in Rep(Q) to the collection of HN types 8y := {T[V; §,]|x € Qo} along

all skyscraper central charges &, for all x € Q.

Theorem 2.13: [*8] The skyscraper invariant 8, is strictly more discriminative than the
rank invariant p, in Rep(Q). Details are as follows

* Let V be any representation in Rep(Q) and x € Q, be any a vertex. Suppose
0= HNg W < HN; (V) G -+ © HN, (V) = V is the HN filtration of V along &,. Then
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for any vertex y = x in Q, we have
J
pux,y) = ) dim s}
k=1

where S¥ = V¥ /V%~1 and j is the smallest index satisfying HN, (V) equals V.
* There are two representations W, W’ in Rep(Q) of the quiver Q

|

—sd

|

l

such that pyy = py but Sy # Syy.

Example 2.5: Let a quiver Q be as follows,

We define the representations W(left) and W' (right) as follows

k——0 k——0

% I A
2 —_— 2 —_—

k o] k k o] k

By computing the rank invariants of W, W', we know that pyy = pyy-.
Subsequently, we compute the skyscraper invariants dyy and Syyr.

Given

Sy = {T[W; 6], T[W; 6p], T[W; 8], T[W; 641},

Sy = {T[W'; 8], T[W'; 8], T[W'; 8], T[W'; 841}

We only check T[W; ;] and T[W'; 84]. Firstly, we know that ps, (W) = % and
us,(U) < % for all subrepresentations U of W. Then W is §,-semistable, we have
HN; (W) : 0 € W. So,

T[W; 6,] = (dim, ) =

Similarly, we can compute T[W'; §,]. But the Harder-Narasimhan filtration of W'
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1s not trivial, as follows,
OESVew

where V is the subrepresentation of W',

Therefore, through calculation, we have

T[W'; 8] = (dim,,, dim,, ) = ( Lol ).

Clearly, T[W; 6,] = T[W'; 6,], then Sy # Syyr.
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CHAPTER 3 THE STABILITY OF PERSISTENCE
MODULES

In this chapter, we introduce the most fundamental results in persistent homology
theory: stability theorems!?”]. Stability theorems assert that under small perturbations of
the original dataset, the topological descriptors, which are persistence diagrams, do not
undergo significant changes. Here, we employ the bottleneck distance dp and Gromov-
Hausdorff d;y distance to quantify the differences between persistence diagrams and
datasets, respectively. Subsequently, we discuss the generalization of the bottleneck dis-
tance dp in the context of persistence modules, known as the interleaving distance d;4*].
We demonstrate that for interval-decomposable 1-parameter persistence modules, the in-
terleaving distance coincides entirely with the bottleneck distance. Finally, we will intro-
duce a significant result by Blemberg and Lesnick[!?] in the study of persistence modules:
the homotopy interleaving distance dy;. The homotopy interleaving distance serves as a
homotopy-theoretic refinement of the interleaving distance.

The content of this chapter lays the groundwork for Chapter 4, where we will define
and investigate persistence minimal free Lie models and discuss their stability results

under d; and dy;.

3.1 Stability of Persistent Homology

Mathematicians developed persistent homology to identify the topological space
from which a point cloud is sampled. When two different point clouds are sampled from
distinct underlying spaces, we aim to distinguish these spaces by defining a metric or dis-
tance that quantifies the difference between the filtrations of simplicial complexes through
the computation of homology groups. Furthermore, once a metric between two families
of homology groups is defined, how can we justify that the definition of this metric is rea-
sonable? The stability theorem!?”) in persistent homology establishes criteria to evaluate
whether the chosen metric is valid.

In this section, we will elaborate on the stability theorem of persistent homology, that
is, the robustness of persistent homology!321[261193],

Let R(S) = {R(S),}rs0 be a collection of Vietoris-Rips complexes constructed by
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a finite set S of points in R%. Due to the finiteness of point cloud S, as r increases, R(S),
only changes at a finite number of values r. We call these values critical values or critical

points. Thus, the filtration R(S) can be reduced to
S = :R(S)ro c :R(S)rl c :R(S)rz c-C :R(S)rn

where frl.,r]. RSy, > R(S )Tj is a simplicial inclusion.
By computing the homology group of R(S),- over some field k, we obtain a sequence
of finite-dimensional vector spaces Hy,(R(S)),

Hy(R(S)r) =00, 5 (R(),) 2222, 1 (R(S),,) s Hy(RES)r,).

From this, we can construct the persistence diagram dgm(H, (R(S))) = {(r;, ;) : i < j}.

Hp(sz,T3) Hp(frn_l,rn

For two different persistence diagrams, we use the bottleneck distance to quantify the

extent of their difference.
Definition 3.1: Let X and Y be two persistence diagrams, and the bottleneck distance
dp(X,Y) := inf sup||x —n(x)|le
n:X->Yxex
in which 7 is any bijection.

If X does not include the points on the diagonal with infinite multiplicity, then the
bijectionn : X — Y may not exist. Obviously, the bottleneck distance is only an extended

pseudometric, as dg does not satisfy the positivity condition.
Theorem 3.1: (Stability)?” Let S and T be two finite set of points in R%, then we have

dg(dgm(Hy(R(5))), dgm(Hy(R(T)))) < du(S,T)

in which dgy is the Gromov-Hausdorff distance.

The Gromov-Hausdorff distance measures how far two compact metric spaces are
from being isometric. Since S and T are finite sets of points in R, they are compact
metric spaces.

The same argument also holds for Cech complexes. That s, if we construct simplicial
complexes through Cech complexes, the stability theorem still applies. In fact, there is a
general statement about the stability theorem of persistent homology. Let K be a simplicial
complex and f : K — R be a function. We call f monotonicif f(7) < f (o) whenever 7 is
a face of o for any simplex o and t. The monotonicity f ensures that for every real number

a € R, the sublevel set f ~1(—oo, a] forms a subcomplex of the simplicial complex K.

34



CHAPTER 3 THE STABILITY OF PERSISTENCE MODULES

Definition 3.2: Given a simplicial complex K and a monotonic function f : K —
R, then we define the sublevel set filtration S(f) = {S(f),}rer, Where S(f), =

fH (=0, al.

For simplicity of description, we define dgm,(f) := dgm(H,(S(f))) the p-

dimensional persistence diagram of S (f) for monotonic function f : K — R.

Theorem 3.2: (Stability)?! Suppose that K is a simplicial complex and f,g : K - R

are two monotonic functions. For each dimension p, we have inequality

dg(dgmy(f), dgmy(9)) < |If = gllo-

The stability reflects the resistance of persistent homology to noise. When noise is
present in the original point cloud, the stability ensures that the difference between the

persistence diagrams of the point clouds with and without noise remains small.

3.2 Interleaving Distance

In this section, we will consider morphisms and ’distance’ between persistence mod-
ules, that is, the interleaving distance. The interleaving distance!** between persistence
modules can be seen as a generalization of the bottleneck distance between persistence
diagrams. Note that unless otherwise specified, the persistence modules considered are
always functors R — C, in which C is any category.

Recall that a persistence module X is a functor from a thin category C to a category
D,X : C - D. For amorphism a — b in C, we denote X(a — b) as X, and denote
X(a) as X,.

Definition 3.3: For persistence modules X and Y, a morphism between X and Y is a

natural transformation between X and Y, f : X = Y.

The collection of all functors from C to D and all natural transformations between
the functors is the category DC.

If C = R, we may think that persistence modules depict the evolution of objects in D
over time. For instance, if persistence modules X, Y satisfying X(t) = Y(t + §) for some
constant &, then X and Y are same by shifting time §. However, there is no isomorphism
between persistence modules X and Y, even any nontrivial morphism. Then, we need to

expand the notations of morphisms and isomorphisms between persistence modules to the
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new version that contains the information of e-shifting.
For § > 0, we define that the -interleaving category I is the thin category such
that ob I® := R x {0, 1} and there is the morphism (r, i) — (s, ) if and only if either
(Hr+d6<s,or
2)i=jandr <s.
There exist two functors
EQE':R-I°
mapping r € Rto (r,0) and (7, 1), respectively.

Definition 3.4: Let C be any category and X,Y : R — C be any two functors. A §-

interleaving between X and Y is a functor
Z:19>¢C
satisfying Z o E® = Xand Z o E1 = V.

We call persistence modules X, Y : R — C are §-interleaved, if there exists a functor
Z : 1% - C that is a §-interleaving between X and Y.

Let X(4) : R — C be the functor by shifting X downward by 6, i.e., X(6), := X, 45
and X(6),s := Xy45545 forallr < s € R. Similarly, f(§) : X(§) - Y(8) is defined
by f(6)¢s = fe+ss+s> Where f : X — Y is a morphism between persistence modules.
Specially, we define the morphism ¢X% : X — X(6) for any X : R — C, in which
¢)§’6 = Xtt4+s. A S-interleaving Z between X and Y is characterized by a pair of nat-
ural transformations f : X = Y(d) and g : Y — X(6) , satisfying the compatibility
conditions g(8)f = $*2% and f(6)g = ¢¥?3. On the other hand, Z : I — C is en-
tirely determined by these natural transformations, which are referred to as §-interleaving

morphisms. When § = 0, these morphisms reduce to a pair of mutually inverse natural

isomorphisms.

Definition 3.5: We define the interleaving distance d; as a binary function
d; : ob CR x ob CR - [0, 0],
by taking

d;(X,Y) := inf {6 |X and Y are §-interleaved}.

It is straightforward to verify that if X and W are §-interleaved, and W and Y are
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e-interleaved, then X and Y are § + e-interleaved. Thus, we know that d; satisfies the
triangle inequality. Therefore, the d; is obviously a pseudo-distance. What’s more, if
X, X, Y € ob C®R with X = X/, then d;(X,Y) = d;(X',Y), so function d; defines a
pseudo-distance on the isomorphism classes of objects in the category CR.

The interleaving distance d; is a generalization of the bottleneck distance dp.

Theorem 3.3: (Algebraic Stability!®!) Given a pair of persistence modules M, N : R —

Vecy, satisfying the condition each M, N; are finite-dimensional for all ¢ € R, then

dg(By, By) = d;(M, N).

One of the most useful aspects of the categorical view of interleavings is that if we
apply a functor to §-interleaving, then the resulting diagrams are also §-interleaving. That
18,

Proposition 3.1: 81 LetX,Y: R > Cand H : C —» D. If X and Y are §-interleaved,
then so are HX and HY. Thus,

d;(HX, HY) < d;(X,Y).

The process of composition of functors can be seen as the process of processing in-
formation, and information may be lost after processing, so the difference between the
two persistence modules may be reduced. From this perspective, it is also easy to un-
derstand the actual meaning of the previous proposition. Meanwhile, there are scholars
studying similar topics in this discussion, which is the change of interleaving distance

when persistence modules compose some functorsl’-%%771,

3.3 Homotopy Interleaving Distance

In this section, we will focus on the persistence modules R — Top .y, in Which
the category Top .y refers to the category of compactly-generated weakly Hausdorff
(CGWH) topological spaces. These persistence modules are called R-spaces. Note that
there is a model structure on Top ;> namely the Quillen-Serre model structurel®?!, and
also a model structure on TopHC{{GWH, which is the projective model structure!®!). The two
model structures are the primary ones discussed in this section.

The main results of this section come from the work of Blumberg and Lesnick!'?!,

For more details of model categories, please refer to references>%3%7°1,
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Review Theorem3.1, let S,T € R" be two finite sets of points. Then we have the

inequality

dg(dgm(Hy(R(S))), dgm(Hy(R(5)))) < dgu(S,T)

in which d;y is the Gromov-Hausdorff distance. A natural question arises as to whether
the results for point clouds can derive a consequence of a topological result regarding the
filtrations of simplicial complexes R(S) and R(T).

We hope to find out the pseudo-distance d defined on the R-spaces that satisfies these
conditions:

(1) For any metric spaces S and T,
d(R(S), R(T)) < dgu(S,T)
(2) [homology bounding] For nay R-spaces X, Y and integer i > 0 satisfying H; (X)
and H;(Y) are functors (R, <) — Vecy,

dg(dgm(H;(X)), dgm(H;(Y))) = d(X, Y).

Definition 3.6: Let T be a topological space and y : T — R be a (not necessarily
continuous) function. The sublevel set filtration §(y) : R = Top .y is constructed by

defining

SW)e =y (oo, t]
for each t € R, where S(y); is endowed with the subspace topology induced by its am-

bient space.

Definition 3.7: For any small category C and functors X, Y : C — Top_y . @ natural
transformation f : X — Y is called an (objectwise) weak equivalence if, for any a € ob C,
the morphism f, : X, = Y, is a weak homotopy equivalence.

A weak equivalence from X to Y is denoted by X Sy

If there exists a zigzag of weak equivalences

W, W,
X W, W,,_, Y
connecting X and Y for some n, we call that X and Y are weakly equivalent, written as

X =Y.
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This defines an equivalence relation on objects, though it is often cumbersome to
work with. Indeed, in any model category D, X = Y holds precisely when there is the

following diagram,

Wl <i Wz
X Y.
Furthermore, it is straightforward to verify that if every object in D is fibrant or every

object is cofibrant, then X = Y holds exactly when there exists the following diagram of

weak equivalences connecting X and Y

X /WX Y.

In Topéli}GWH with the projective model structure, all objects are cofibrant, and this property
holds.

Proposition 3.2: ['?] For any R-spaces X and Y which are §-interleaved, there is a
topological space T and two functions yX,¥* : T - R such that S(y*) = X, S¢¥¥) = Y,
and do, (¥ %,yY) < 6.

Indeed, the topological space T = l(iinX =~ li(_mY. Thus the fact states that for §-
interleaved R-spaces X and Y, topological spaces X; and Y; are homoemorphic, when
t = co.

In the above section, we know that dp satisfies the general stability result about the
filtration of sublevel simplicial complexes, Theorem3.2, and we believe that this property
is worth preserving. Therefore, we hope that the pseudo-distance d we are looking for
also satisfies this property. Meanwhile, d should be invariant under some continuous

deformations.

Definition 3.8: We say a pseudo-distance d on R-spaces is

(1) stable: if for any T € ob Top gy and functions v,k : T - R,

d($(¥),8(0)) < deo(¥, k),

(2) homotopy invariant: if d(X,Y) = 0 whenever X = Y.

Based on previous discussions and results, we can infer that if d satisfies the stability,
then it satisfies the inequality d(R(S), R(T)) < dgu(S,T).
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Proposition 3.3: ['?] For any stable and homotopy invariant pseudo-distance d on R-
spaces and for any metric spaces S and T, we have d(R(S), R(T)) < d¢y(S,T), gener-
alizing the Rips stability theorem (Theorem3.1) to a result at the filtration-level.

We will introduce the pseudo-distance that satisfies the stability, homotopy invari-
ance, and homology bounding axiom, which is called the homotopy interleaving distance
dHI .

Definition 3.9: Forany § > 0, R-spaces X and Y are called §-homotopy-interleaved if
there are R-spaces X’ and Y’', so that X' =~ X, Y’ = Y, and X’ and Y’ are §-interleaved.

Definition 3.10: The homotopy interleaving distance between R-spaces X and Y is de-

fined as

dy;(XY) :=inf {6 | X, Y are §-homotopy-interleaved}

Theorem 3.4: (2] 4, defines a pseudodistance on R-spaces and satisfies the homotopy

invariance, stability, and homology bounding.

There are several pseudo-distances on R-spaces, besides dy;. However, the inter-

leaving distance dy; is a canonical choice of such a pseudo-distance.

Theorem 3.5: (Universality)!!?! If d is any stable and homotopy invariant distance on

R-spaces, then d < dy;.

The homotopy interleaving distance and the concept of homotopy coherent diagrams
are deeply interconnected. Homotopy coherent diagrams, intuitively, extend the notion
of homotopy commutative diagrams by including specific choices of homotopies, higher-
order homotopies between these homotopies, and so forth. Formally, homotopy coherent
diagrams may be defined within the framework of simplicially enriched functors. For a
small category I, the category Cho(I) consists of homotopy coherent diagrams indexed
by I, with morphisms being homotopy classes of homotopy coherent natural transfor-
mations. Homotopy coherent diagrams address the critical question of what additional
structure is needed to rectify a homotopy commutative diagram into a strictly commuta-
tive diagram!3311102],

Let ﬁB(TopICGWH) denote the localization of ToplCGWH with respect to objectwise ho-

motopy equivalences, and recall that Ho(TopICGWH) denotes the localization of TopICGWH

with respect to objectwise weak homotopy equivalences. Using Whitehead’s theorem,
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it can be checked that two diagrams in ToplCGWH taking values in cofibrant spaces (e.g.,
CW complexes) are isomorphic in ﬁvo(TopICGWH) if and only if they are isomorphic in

1
Ho(Topqgwi)-
Vogt’s theorem!!%%] gives an equivalence of categories

Coh(I) - Ho(Topg.yy)-

The theorem implies that homotopy coherent diagrams can be analyzed through strict
commutative diagrams combined with zigzags of objectwise homotopy equivalences.
Motivated by these insights, the homotopy-coherent definition of interleavings is pro-

posed.

Definition 3.11: [2] For two R-spaces X and Y, we define a homotopy coherent &-
interleaving between X and Y as a homotopy coherent diagram Z € Coh(I‘S) satisfying
ZoE®%=XandZ o E! =Y in Coh(R).

5
By leveraging fundamental properties of the equivalence Coh(Ia) - Ho(TopICGWH)

established by Vogt’s theorem, the following comparison can be readily verified.

Proposition 3.4: [?] The existence of homotopy coherent §-interleaving between R-
spaces X and Y implies the existence of §-homotopy-interleaving between X and Y. The

converse holds as well if X and Y are objectwise cofibrant.

Building on Andrew’s foundational work, several researchers have continued to in-

vestigate homotopy interleaving distances!!3701,
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CHAPTER 4 PERSISTENCE RATIONAL HOMOTOPY

We know that persistence modules are functors (P, <) — C, in which P is a poset
and C is a category, where P denotes a more general filtering method and C denotes a set of
more general filtering objects. Thus, persistence modules can be seen as a generalization
of the filtration of topological spaces.

In persistent homology, if we have already determined the method for constructing
simplicial complexes from discrete point clouds, then the remaining issue is to establish
algebraic models for these simplicial complexes. Currently, the most frequently used al-
gebraic model is the homology groups over k for simplicial complexes. When we specify
the coefficient field to be a field of characteristic 0, we can employ rational homotopy
theory to establish a more refined algebraic model for simplicial complexes.

In rational homotopy theory, there are two significant algebraic models: the minimal
Sullivan model and the minimal free Lie model. These serve as the associative algebra
model and the Lie algebra model for simply connected rational spaces with homology
groups of finite type, respectively. Next, we will introduce the essential knowledge of
rational homotopy theory, as well as persistence rational homotopy theory.

A simply connected space X is called a rational space if X satisfies one of following
equivalent conditions(Theorem 9.3 of the referencel**]):

* LX) =m.(X) Q2 Q

* H.(X,pt;Z) = H.(X,pt; Z) Q7 Q

* H.(QOX,pt;Z) = H,(QX,pt; Z) Q7 Q
If H;(X,pt; Z) @z Q is a finitely dimensional vector space for all i € N, we call X is of
finite type.

Definition 4.1: For a simply connected space X, a rationalization of X is a continuous

map ¢ : X - X satisfying that ¢ induces an isomorphism
. (X) @z Q = m.(Xg),

where X is a simply connected rational space.

For any simply connected topological space X, we can always find a rational space

Xo such that X, Q is the rationalization of X.
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Theorem 4.1: %] (i) Let X be a simply connected space. Then there exists a relative CW
complex (Xgq, X) that lacks 0-dimensional and 1-dimensional cells so that the inclusion
@ + X - Xq is a rationalization.

(ii) Given (X, X) as described in (i) and Y as any simply connected rational space.
For any continuous map f : X - Y, we may extend f to a continuous map g : Xo = V.
Furthermore, if g’ : Xq — Y extends f' : X — Y then any homotopy between f and f”
can be extended to a homotopy between g and g'.

(ii1) The rationalization specified in (1) is unique up to homotopy equivalence relative
to X.

The theorem told us that every simply connected space can be rationalized and every
continuous map ¢ : X — Y between simply connected spaces can induce the continuous
map ¢ : Xo = Yo.

In this chapter, we will focus on the category Top(Q of simply connected rational
spaces of finite type, and objects in Topy, that is simply connected rational spaces of finite
type. Therefore, unless otherwise stated, all topological spaces encountered in this chapter
are assumed to be simply connected rational spaces of finite type, and all numerical fields
involved are assumed to be the field of rational numbers, Q.

Specifically, we may notice that for any X € ob Topg, . (X) is a vector space over
Q. Then for a functor X : (R, <) — Topg, m,(X), H.(X), H*'(X) : (R, <) —» grVec are
persistence modules, which is the most commonly encountered persistence module. In
rational homotopy theory, we have more refined algebraic models than homotopy groups

and homology groups, minimal Sullivan models, and minimal free Lie models.

4.1 Persistence Minimal Sullivan Models

We will introduce the basic definition and results of minimal Sullivan models!*’] and
persistence minimal Sullivan models!'%3].
Firstly, we will recall some definitions and results of commutative differential graded

algebras (cdga) and Sullivan algebras.

Definition 4.2: A gradedring R = @;ezR; 1s aring satisfying R; - R; © R;4 ;.
* A graded module M = @;czM; over a graded ring R is a module satisfying R; -
* A graded algebra A = @;z4; 1s both a graded module and a graded ring with
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1 € A.

» A differential graded algebra (dga) A is a graded algebra, equipped with a deriva-
tiond : A — A, that is of degree +1, satisfying d> = 0 and d(ab) = (da)b +
(-1)*¢@q(db) for any a, b € A.

* A commutative differential graded algebra (cdga) is a dga A that is graded com-

mutative: ab = (_1)deg a degb

ba for any homogeneous elements a, b € A.

« A cdga (A,d) is path-connected if H°(4,d) = Q, and is simply connected if
H°(A,d) = Qand H1(A,d) = 0.

* A morphism ¢ : A — B of graded algebras is a degree-preserving homomorphism

and satisfies ¢(1) = 1.

The cd ga we focus on and deal with is mostly path-connected, so we assume CDGA

is a category of path-connected cdga.

Example 4.1: LetV be a free graded module. Then, we define the tensor algebra TV as

follows:

TV = z TV, T =Q
q=0
Multiplication is given by a - b = a @ b. Note that g is not the degree: elements v; &
-+ @ vy € TV have degree = Zdeg v; and word length g.
The elements v Q w — (—1)degv degwy, ® v(v,w € V) generate an ideal I € TV.

The quotient
AV =TV/I
is called the exterior algebra (also the free commutative graded algebra) on V.

In homotopy theory, we focus more on homotopy relationships rather than simple
equality or isomorphism, so we need the definition of quasi-isomorphism. A morphism
@ : (A, d) - (A',d) of dga is called a quasi-isomorphism, denoted by =, if H(f) :
H*(A,d) - H*(A’,d) is an isomorphism.

4.1.1 Minimal Sullivan Models

A Sullivan algebra is an external algebra that satisfies the certain nilpotence con-
dition, which ensures that we can construct a Sullivan model for any cdga (4, d) with
H°(A,d) = Q.
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Definition 4.3: A Sullivan algebra is a cdga of the form (AV, d) with V° = 0, where
V =U;z V(i),and V(0) € V(1) < --- forms an ascending sequence of graded subspaces
satisfyingd = 0in V(0) and dV (i) € AV(i — 1) withi > 1.

A Sullivan algebra is called minimal if Im d € A>2V.
Definition 4.4: A Sullivan model foracdga (4, d) is a homomorphism of commutative
differential graded algebras
m: (AV,d) - (A,d)

satisfying m is a quasi-isomorphism.
Let X be a space in ob Top, Then we define that a Sullivan model for X is a Sullivan
model for Ap; (X)
m: (AV,d) - Ap,.(X).
If (AV, d) is minimal, we call that m is a minimal Sullivan model, which we denote

my : Mgy, (X) = Apr(X).

This definition utilizes the Ap;, which is a contravariant functor from the spaces to

commutative differential graded algebras. Its specific structure will be introduced later.

Example 4.2: [40]
Mg, (S?™*1) = (Au,0), degu =2n+1,
Mg, (S2n) = (A(a,b),d), da=0,db=a? dega=2n,
Mg, (X XY) = Mg, (X) @ Mg, (Y), if one of H(X) or H(Y) is of finite type,
Mg, (X VY) = Mgy, (X) © Mgy (Y),
Mg, (K(Z,n)) = (Aa,0), dega=n.

Define augmentations €y, €1 : A(t,dt) — Q by €o(t) = 0, €1(t) = 1. Then, we

may define the homotopy in commutative differential graded algebras.

Definition 4.5: A homotopy between two morphisms ¢q, ¢, : (4,d) = (4',d) of

commutative differential graded algebras is a morphism
D:(4,d) - (4,d)Q (A(t,dt),d)

such that (id - €;) e ® = ¢;, i = 0,1. We call that ¢, and ¢, are homotopic and denote
this by @y ~ ¢;.
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In order to construct a Sullivan model of X € ob Topg, we first need to establish an
algebraic model for X. Therefore, we will briefly introduce the definition and properties

of the Ap; functor in the following.

Definition 4.6: A simplicial differential algebra A is defined as a simplicial object within
the category of differential algebras. More precisely, A is composed of a family of dif-
ferential algebras {4, },,>¢ equipped with face and degeneracy morphisms that satisfy the

necessary compatibility conditions.

The simplicial commutative cochain algebra, denoted by Ap;, is defined as follow-
ing:
« differential graded algebra (4p; ), is given by

A(tO""ftn'yO""’yn)
Gti—1XYy)
in which deg t; = 0, deg y; = 1 and dt; = y;, dy; = 0.

(App)n =

* The face and degeneracy morphisms are the morphisms of differential graded al-

gebras
0; : (ApL)n+1 = (ApL)n and Sj ¢ (ApL)n = (ApL)n+1
satisfying
tx k< ty k<
d(ty) =4 0 k=1 andsj(ty) =9 tp+tger k=]
thr k> et k>

The definition of Ap; is actually a simulation of polynomial differential forms on the
Euclidean simplex A, = {(to,***,t,) € R*™1: ¥ t; = 1 and t; = 0}.

Note that if we fix the degree p € N, the (4p.)P := {(Apy)h}ns0 € SSet is a
simplicial set. in which SSet is the category of simplicial sets.

Let K be a simplicial set. Then Ap; (K) = {(Ap.)P (K)}pso is defined as the collec-
tion of simplicial set morphisms from K to (Ap;)P. Define

Ap () 1= D) Homssa (K, (4p,)7),
p=0

which admits the structure of commutative differential graded algebra. In fact, we get a
contravariant functor Ap; from simplicial sets to commutative differential algebras. In
particular, for any topological space X and any continuous map f we apply this construc-
tion to the simplicial set S, (X) and S, (f), that is Ap; (X) := Ap; (S.(X)).
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Proposition 4.1: 4] Let (4, d) be a commutative differential graded algebra.
« If (4,d) is path-connected, that is H°(4,d) = Q, then there exists a Sullivan

model
m: (AV,d) — (4,d).
« If (4, d) is a simply connected, that is H°(4,d) = Q and H'(4, d) = 0, then there
is a minimal Sullivan model
m: (AW,d) = (4,d)
and minimal Sullivan models of (4, d) are all isomorphic.

Corollary 4.1: * For any simply connected rational space X, there exists a minimal

Sullivan model of X

m: (AV,d) — Ap,(X).

Proposition 4.2: ] Let ¢ : (4,d) - (B,d) be a morphism between two simply
connected commutative differential graded algebras, and let my : (AV,d) - (4,d) and
mg : (AW,d) — (B,d) be their respective minimal Sullivan models. Then there is a
morphism m,, : (AV,d) - (AW, d) such that

(AV,d) 2 (AW, d)

mAl imB

(4,d) —5—(B,d)
commutes up to homotopy. The morphism m,, is referred to as the Sullivan representative

of ¢.

Corollary 4.2: %] Suppose that f : X — Y is a continuous map of rational spaces, and
my : (AV,d) = Ap;(X) and my : (AW,d) — Ap;(Y) are minimal Sullivan models.
Then there is a morphism my : (AW, d) — (AV, d) such that

(AW, d) L~ (AV, d)

myl lmx

Ap(Y) i Ap(X)

commutes up to homotopy. We call the morphism my the Sullivan representative of f,

and the homotopy class f uniquely determines the homotopy class of my.
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Remark 4.1: I The above results actually tell us these maps

rational homotopy isomorphism classes of
%

type minimal Sullivan algebras over Q
and

homotopy classes of homotopy classes of

mapX - Y - morphisms (AW, d) — (AV,d)

Indeed, these maps are bijective, and we get a contravariant functor Mg, : Ho(TopQ) -
Ho(CDGA). Therefore, in the framework of rational homotopy theory, the study of ho-

motopy classes of spaces can be reduced to the study of minimal Sullivan models.

4.1.2 Persistence Minimal Sullivan Models

s!103] of Ling Zhou, persistence min-

In this subsection, we will introduce these result
imal Sullivan models, and their interleaving distance.

In the past, when scholars researched the persistence modules, the persistence mod-
ules mostly considered the functor T — Vecg from R or N to the category of finite-
dimensional vector spaces over k. However, Zhou Ling combined persistence with mini-
mal Sullivan models to obtain the persistence minimal Sullivan models and discussed the
stability of the persistence minimal Sullivan models, which brought new directions for

the development of persistence homology.

Definition 4.7: LetX : (R, <) —» Topg, be a persistence module, which is called ra-
tional R-space, in which we denote X(7) as X, and X(s < t) as Xg<;. We define the
persistence minimal Sullivan model of X to be a persistence minimal Sullivan algebra
Mg, (X) together with cdga quasi-isomorphisms my := {my, : Mg, (X;) = Ap, (X¢)}
such that

« foreach t, my, : Mg, (X;) = Ap(X;) is a minimal Sullivan model for X;

» forany s < t € R, the following diagram commutes up to homotopy

My (Xs<
Mgy, (X¢) ™5 Moy (Xs)

mxti: :lmxs

Ap(Xp) — = ApL(Xs)

Indeed, my induces a natural isomorphism between the functors Ho o Mg, 0c Ap; o X
and Ho o Ap;, o X : (R, <) » Ho(CDGA)?.
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Next, Ling Zhou’s results describe the stability of d,HO(CDGA) and provide upper and

lower bounds for d?o(CDGA).

Theorem 4.2: [195] Syppose that X and Y are two persistence spaces, and M, (X) and

Mg, (Y) are persistence minimal Sullivan models of X and Y, respectively. Then
Ho(CDGA
P (M, (%), Moo (V) < iy (X, V).
If X and Y are Vietoris-Rips filtrations of points clouds X and Y, respectively. Then

di PN (Mg, (VR.(X), Mg, (VR.(Y))) < 2 dg (X, Y).

Theorem 4.3: [1%] Suppose that A and B are two persistence cdga, then
v
i C(HA),H(B)) < d PV @, B).

Suppose that AV and AW are two simply connected persistence minimal Sullivan algebras.
Then

Vi
di eV, W) < dICPEN Ay AW) (< dEPCA(AY, AW)).

These results show that persistence minimal Sullivan models are an effective tool
that promotes topological data analysis, although many challenges need to be overcome

in practical applications.

4.2 Persistence Minimal Free Lie Models

In this section, we will first recall the properties and the definition of minimal free Lie
models, which is another important algebraic model in rational homotopy theory. Then,
we will generalize the persistence modules to persistence minimal free Lie models and
discuss their properties.

In Quillen’s papert®®), Quillen defined and used a sequence of functors that are
Quillen equivalent, respectively, to assign to a simply connected rational space of finite

type a differential graded Lie algebra (dgl),
X - AX.
We call the functor
A: Topg — DGL

Quillen functor where DGL is the category of connected dgl, that is L = {L;};~¢-
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Before starting a detailed introduction to the free Lie model of rational spaces, we
will first introduce the functors defined by Quillen and their main properties in homotopy
theory.

We need to recall some notions of coalgebras and Lie algebras.

Definition 4.8: A graded coalgebra C consists of a graded module C equipped with two
degree-preserving linear maps, one of which is called the comultiplication A : C = CQC,
and the other is referred to as the augmentation € : € — Q. These maps satisfy the
coassociativity condition (A @ id)A = (id @ A)A and the counit condition(id & €)A =
(e®id)A =id..

A graded coalgebra is called cocommutative if
TA=A

where T : CQ®Q C - C @ C is the involutiona @ b — (—1)degadegbb X a. We call a
graded coalgebra co-augmented by the choice of an element 1 € C, so that e(1) = 1 and
A(1) =1 @ 1. We can also say that co-augmentation is an embedding Q < C. For such
coalgebra C, we write C = Kere,sothat C = Q @ C and define A : € - C ® C with
Ac=Ac—-c®R1-1QRc.

Example 4.3: The coalgebra AV is an instructive example, where comultiplication A is
explicitly defined by the formula Av = v @ 1+ 1 ® v, v € V. And the augmented by
€ : ATV - 0, 1 » 1 and co-augmented by Q = A°V.

Definition 4.9: A graded Lie algebra L consists of a graded vector space L = {L;};ez
and a linear map of degree zero, L @ L — L, denoted by x @ y + [x, y] which satisfies
the following conditions:

s [yl =~ (D" ]

* [yl = [yl 2]+ D™y, [x, 2]
The product [, ] is called the Lie bracket.

We say a linear map of degree k, 8 : L — L, is a A derivation of L of degree k if
k d
0[x,y] = [6%,y] + (=1)" “*[x,6(»)].

Example 4.4: LetV be a graded vector space. The tensor algebra TV on V carries a natu-
ral graded Lie algebra structure via the bracket operation [x, y] := xy—(— 1)deg xdegy VX.

Then, the free graded Lie algebra Ly is defined as the smallest graded Lie subalgebra of
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TV containing V. This object satisfies a universal property: any degree-preserving linear
map f : V — L into another graded Lie algebra L may extend uniquely to a graded Lie
algebra homomorphism Ly, — L.

The free graded Lie algebra Ly, naturally inherits a grading structure from the tensor
algebra TV, which decomposes as the direct sum @y, T*V. Here, each homogeneous
component T*V consists of tensors of degree k. Since Ly is generated by iterated Lie
brackets of elements in V, its elements can be stratified by bracket length, defined as the
number of generators (from V') involved in their construction.

* Ly = @zt (Ly NTFV);

* x € Ly has bracket length k if and only if x € LX := L, n T*V.

Then we may decompose Ly, = @;>1 ]L{,the differential d = dy + d; + -+, in which
dy :V > Ly nTFY,

For any free Lie algebra (Ly,d = dy + +++), if dy = 0, then we call it minimal.

Next, we will review the two functors C, : DGL — CDGC and £ : CDGC —
DGL where CDGA is the category of 1-connected cocommutative differential graded
coalgebras (cdgc), which played important roles in Quillen’s work[®].

Suppose that (L,d;) is a differential graded Lie algebra. The coderivations in AsL,
where sL denotes the shift of degrees that is (sL); = L;_; for all i, are determined by the
differential d; and the Lie bracket [, | : LQ L = L

k
do(sxy A= Asxy) = —z (=1)"sxy A Asdpx; A A sxy,
i=1

and
di(sxq A= Asxy) = z (—1)%® xi+1(—1)nijs[xi,xj] A Sxy - SRy ee SRj e SXy,
1<i<js<k
wheren; = 3, ; deg sx;, and sx; A+ Asxy, = (=)™ sx;ASXjASXy -+ SR - SR} -+ ASX.
(Here, symbol " means ’deleted’. )
By simple computation, we can know that d = d + d; is a coderivation. In other

words, (AsL,d = dy + d,) is a differential graded coalgebra.

Definition 4.10: The Cartan-Eilenberg-Chevalley construction on a dgl (L, d;) is the
cdgc C,(L,d;) = (AsL,d =dy + dq).

The functor C, assigns a dgl (L,d;) a cdgc (AsL,d), and if E = {E;};>¢ and
L = {L;}i>0, then ¢ : E — L is a quasi-isomorphism if and only if C,(¢) is a quasi-
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isomorphism![*3].

There are some methods for constructing free Lie algebras, but we will introduce
one that is closely related to C,, Quillen’s functor £, which is the analog of the cobar
construction.

Let (C,d) = (C,d) @ Q be any co-augmented cdgc. By the cobar consturction,
QC = Ts™1C. The differential has the form d = d, + d; withd, : s71C - s71C
andd; : s71C - s71C ® s~1C that derives from the comultipliaction A of C. Since C
is cocommutative, then we always express the d; (s~ 1c) as the sum of commutators in
Ts~1C. LetAc = Y a; @ by, then Ac = ¥ (—1)*€ % *€%ip & .. So

1 .
d,(s"tc) = EZ (—1)deg “s™a;, s71h;]
i

through simple calculations, then we can know thatd; : s1C — Lg-14 € Ts~1C. Hence,

we have proven that d = d + d; is the Lie derivation of the free Lie algebra Lg-1.

Definition 4.11: The dg! (Ls-14,d) is referred to as the Quillen construction on the
co-augmented cdgc (C,d) and it is denoted by L(C, d).

Theorem 4.4: 1 Let (L = {L;};>1,d) be a connected dgl and (C = Q @ Cs,,d) isa

cdgc. Then, there exist natural quasi-isomorphisms
p:(C,d) - CL(C,d)andy : LC,(L,d) = (L, d)
of cdgc’s (respectively, of dgl’s).
The two functors, C, and £, we introduced above are adjoint to each other:
L4 C,.

What’s more, the adjunction (£ 4 C,) is a Quillen adjunction between the projective
model structure on DGL and the model structure on CDGC.

For the category DGL, there is a model category structure (DGL),,; on the cate-
gory DGL over Q so that

* the fibrations: surjective maps

» weak equivalences: the quasi-isomorphisms on the underlying chain complexes.
Meanwhile, for the category CDGC, there is a model category structure (CDGC) gyi11en
on the category CDGC over Q so that

* the cofibrations are the (degreewise) injections;

* the weak equivalences are those morphisms that become quasi-isomorphisms un-
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der the functor £, that is, quasi-isomorphisms if dgc is 1-connected.
Furthermore, Vladimir Hinich proved that the Quillen adjunction (£ 4 C,) is a Quillen

equivalencel®”). More generally, Quillen proved the following theorem

Theorem 4.5: 3% There exist equivalences of categories

A *
Ho(Topg) > Ho(DGL) —> Ho(CDGC).

4.2.1 Free Lie Models

In the previous section, we introduced functor C, : DGL — CDGC, which assigns
adglto cdgc, and we know that Hom(C, (L), Q) naturally becomes a cdga. Therefore,
we define the functor C*(—) = Hom(C,(—), Q). Moreover, we have an important fact
that C*(L) is a commutative cd ga because C, (L) is cocommutative. Moreover, if (L, d; )
is connected, then C,(L,d;) = AsL = Q @ {C;}i>,. The assertion that C*(L,d;) is
a Sullivan algebra follows from dualizing the Cartan-Eilenberg-Chevalley construction
and leveraging properties of differential graded Lie algebras and Sullivan models.

Next, we will introduce the definition of the free Lie model for rational spaces, which
is actually a Lie algebra model (L, d;) for rational spaces X with the property H,(L,d;) =
(m.(QX),[, ]) where [, ] is determined by the Whitehead product [, ]y .

Definition 4.12: A free model of (L, d) € ob DGL is a quasi-isomorphism of differen-
tial graded Lie algebras
n: (Ly,d) = (Ld)

with V = {Vi}iz1-

If (Ly, d) is minimal, we call m : (Ly, d) = (L,d) a minimal free Lie model of
(L, d).
Definition 4.13: Let X € ob Topg,. A Lie model for X is a quasi-isomorphism of dif-
ferential graded algebras

ny : C*(L,dy) — Ap (X).

where (L, d;) is a connected d gl of finite type. Sometimes, we also say that L is the Lie
model of X. If L = Ly, a free graded Lie algebra, we say (L, d;) is a free Lie model for

X.
Letny : C*(E,dg) = Ap; (Y) be a Lie model for the space Y,and f : X - Y be a
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continuous map. Then, a Lie representative for f is a morphism ¢ of differential graded

Lie algebras such that nyC* (@) ~ Ap. (f)ny.

In fact, the functor 4 : Topg, — DGL, which is constructed by Quillen, assigns a
space X a Lie algebra AX which is a free Lie algebra. Thus, we call AX the free Lie model
of X, and if a free Lie model (Ly, d) of X is minimal, then we call (Ly, d) a minimal free
Lie model of X.

Example 4.5: The free Lie model of a sphere $**1 with n = 2k or 2k + 1

Qu, degv = 2k
L(v) =
Qv Q[v,v], degv=2k+1.

and dL =0.

Proposition 4.3: [*! Any space X € ob Top, has a minimal free Lie model (Ly, d),
unique up to isomorphism. Suppose that my : C*(Ly) — Apy (X) is the minimal free Lie
model of X and my : C*(Ly,) = Ap,(Y) is the minimal free Lie model of Y. For any

continuous map f : X — Y, there is a Lie representative ns : (Ly, d) - (Ly, d).

In rational homotopy theory, the following theorem establishes a correspondence
between differential graded Lie algebras and the rational homotopy types of simply con-

nected spaces:

Theorem 4.6: (Quillen’s equivalence)!®®! Every connected differential graded Lie alge-
bra (L, d;) of finite type serves as a Lie model for a simply connected CW complex X of
finite rational type. Furthermore, this association is unique: two such CW complexes are
rationally homotopy equivalent if and only if their corresponding differential graded Lie

algebras are quasi-isomorphic.

4.2.2 Persistence Free Lie Models

Definition 4.14: LetX : (R, <) —» Top, be a rational R-space. The persistence free
Lie model of X is the functor AX : (R, <) - DGL with (A1X), := AX,.

Indeed, through Theorem4.5, we can know that A induces a functor Ho(TopQ)R -
Ho(DGL)®, since the morphism ¢ in Ho(TopQ)R is a set of {¢,}qer, in Which all ¢,
are morphisms in Ho(TopQ) and A induces the functor from Ho(TopQ) to Ho(DGL)®1.
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Definition 4.15: Let X : (R, <) - Top, be a rational R-space. The persistence mini-
mal free Lie model of X is the functor My,,;(X) : (R, <) —» DGL with My,,;(X); is the
minimal free Lie model of X;, and for any s < t, M, (X)s<; is a Lie representative of

Xsst-

Note that the definition of persistence minimal free Lie model is not well defined
because we cannot promise the equation Mgy, (X)r<r = Mgyi(X)s<t ©Moui(X)r<s. How-
ever, if we focus on the homotopy category of DGL, Ho(DGL), then the definition of the

persistence minimal free Lie model is meaningful.

Lemma 4.1: Letny : C*(LLy) — Ap,(X) and ny : C*(Ly) — Ap,(Y) be free Lie
models of X and Y respectively. For any continuous map f : X — Y, the Lie representative
ng : (Ly,d) = (Ly, d) is unique up to weak equivalence.

Proof: Given the following diagram

Apr(f)
Ap(Y) LA Ap(X)

nyT: :Tnx

C* (L) g € (1)

is commutative up to homotopy. If there is another Lie representative of f, my, then
C*(ng) ~ C*(mys). Because C*(Ly) and C*(Ly ) are Sullivan models, C*(ns) and
C*(my) are two Sullivan representatives of f, C*(ng) ~ C*(my).

Note that C, : Ho(DGL) —» Ho(CDGC) is a equivalence of categories, C* induces
a equivalence of categories Ho(DGL) — Ho(CDGA) and we still use C* to represent it.
What’s more, we know that if two morphisms in CDGA are homotopic, then these two
morphisms are equivalent in Ho(CDGA), which is the homotopy category of CDGA,
where weak equivalences are quasi-isomorphisms.

Therefore ny = my in Ho(DGL). ]

So, for any morphisms X L Y 5 Zin TopQ, we have proven that ng o ny =
ngr in Ho(DGL), where ng : Ly - Ly, ng : Ly - Ly, ngr : Ly — Ly are Lie
representatives of f, g, gf respectively, and Ly, Ly, Ly, are minimal free Lie models of

X,Y, Z respectively.

Theorem 4.7: For any rational R-space X : (R, <) - Topg, there exists a persistence
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minimal free Lie model My,,; (X) : (R, <) - Ho(DGL) such that My,,; (X); is a minimal
free Lie model of X;. and Mj,,; (X)(s < t) is a Lie representative of X(s < t) up to weak

equivalences.

For the persistence minimal free Lie model we construct, the post-composition of H,
and 7, computing the lower bound of the persistence minimal free Lie model M,,; (X)
respectively, thatis H, (Mg,,; (X)) and 7, (M,,; (X)) are persistence modules that are func-
tors from (R, <) — ngecQ. Therefore, we can get the bounds of persistence minimal
free Lie models. For any rational R-space X, we have the persistence minimal free Lie
model Mg,,;(X). Here, we assume that Q is a map from free Lie algebras to vector spaces,
Q(Ly) = V. Obviously, any morphism of free Lie algebras ¢ : L, = Ly, can induces a

morphism of vector spaces Q(¢) : V = W such that the diagram

]LVLILW

Ql lo

i

1S commutative.

Given f : X = Y, then we have commutative diagram

nyg
MQui X) — MQui (Y)

Qi le
V" omy W
where V,. := Q(MQui(Xr)) and Vo, 1= Q(MQui(X)sst)-
Theorem 4.8: For any rational R-spaces X and Y, we have
Ho(DGL
o d P (Mg (%), Moui (V) < dir(X,Y) < d; (X, Y)
ngecQ ngecQ
di - C(m(X), (YY) =d;  C(H.o Mgy (X), H, o Mgy (Y))
Ho(DGL
< d;° PV (M1 (X), Mgy (V)
grVec grvec Ho(DGL
e d; C(H.X)H.(Y) =d; SV, W) < df PV (Mo, (X), Moo (V)

To prove the theorem, we need some extra results.

Lemma 4.2: %] Let (L, d) be a Lie model for X € ob Topg. There exists a natural

isomorphism H, (L) 5 . (QX) of graded Lie algebras, which converts the Lie bracket
in H, (L) to the Whitehead product in m, (X) up to sign.

For any free Lie algebra (Ly, d), let d, : V — V be the linear part of the differential
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d,and d : sV — sV be the suspension of d,,. And for any continuous map f : X — Y,
respective free Lie models (Ly, d) and (L, d) of X and Y, and a Lie representative nys
of f, we have know that sH(V,dy) @ Q = H,(X)*! and consider the linear part of the
Lie representative nsg, Q(ns) : (sV @ Q,dy) —» (sW D Q,dy ).

We naturally pose the question: Is the morphism H (Q (n¢)) induced by Q (ns) ‘equal’

to the morphism H,(f) ? The following lemma provides an answer to our question.

Proposition 4.4: Suppose (LLy, d) is a free Lie model for X, then sH(V,dy,) @ Q =
H,(X) is a natural isomorphism of graded vector spaces.
To be more detailed, we have the following commutative diagram.

HX) — . Hv)

Ei lg

sH(V,dy) ® @H(T(nfﬁH W,dy) @ Q

Specially, if (Ly, d) is minimal, then H,(X) = sV & Q.

Proof: First, the morphism C, (Ly, d) = Ap; (X) induces a cohomology isomorphism,
that dualizes to an isomorphism H, (X) 5 H,(C.(Ly), d). Given that n; is a Lie represen-
tative of f : X — Y, then we have the following commutative diagram up to homotopy.

. C*(nf) .
C*(Ly) =— C"(Lw, d)

nxl lny

Ap(X) m Ap(Y)

Thus the diagram

H(C" Ly, ) <Ll (C* Ly, d))

Ei ig

H(APJ (X)) fm H(APJ ¥))
H ()~ H')

is commutative. Then, we get the following commutative diagram.

H(C* (Ly, d)) —H(C* (L, d))

! !

H.(X) ) H.00)
Note that in**], one provides a quasi-isomorphism C, (Ly, d) = (sV @ Q, d) for any
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free Lie algebra (Ly, d). The quasi-isomorphism C, (L, d) — (sV @ Q,d) is

Ci(Ly,d) = AsLy » sLy @ Q- sV S Q,

22 (22).

where the first morphism annihilates A*“sLLy, and the second morphism annihilates sy,
We obviously have the following commutative diagram

C*(nf)
C.(Ly) — C.(Ly)

AsLy AsLy,

SLy @ Q> 5Ly ® Q

o sweq

So we eventually get the following commutative diagram, which shows that H, (X) 5
sH(V,dy) is natural.
It is also easy to prove that sH(V,dy,) @ Q > H, (X) is natural. ]

With the two lemmas established above, we can now readily proceed to prove my

theorem.

Proof: of Theorem4.8. This inequality dy;(X,Y) < d;(X,Y) is obvious and also an
existing result. Suppose dy;(X,Y) = &, then there is persistence spaces X' and Y’ : (R, <
) = Topg, such that X = X', Y = Y', and d; (X", Y') = 6.

N N

Consider their persistence minimal free Lie models in Ho(DGL),

MQui(X) MQui(X’) MQui(Y’) MQui(Y)
where My,,;(X) is a object in category Ho(DGL)R, Mgyi(X), so are Mp,;(Y), and
MQui(Y’)-
Suppose that X' and Y’ are (§ + €)-interleaved for any € > 0, a (§ + €)-

!

interleaving between X' and Y’ induces a (6 + €)-interleaving between My,;(X’) and
Moyi(Y"). Then My,,;(X) and My,,;(Y) are (8 + €)-interleaved. Thus we have proven
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that d;"* ) Moy (%), Mous (V) < dps (X, Y.

For the other two inequalities, d)**(H, o Mgy ;(X),H, © My, (Y)) <
d PN (Mg (X0, Mg (V) and dY*(V,W) < d " (Mg (X), Mgus (1)
are obvious. Lemma4.2 show that d)*(mr,(X), 7. (Y)) = d)**(H, o Mgy,i(X)) and
Proposition4.4 show that dY*¢(H, (X), H,(Y)) = d,)**(V, W). ]

From the proof process, we can see that apart from proving d*¢(H,(X), H,(Y)) =
d)**(V, W), we did not use the properties of the minimal free Lie model. Therefore, for
any persistence free Lie model Ly and Lyy of rational R-spaces X and Y respectively, we
have the following results:

¢ dp " Ly, L) < du(X V),

© Y (. (X), m.(Y)) = dY*C(H, o Ly, H. o L) < d; " (Ly, Lyy),

o dY(H(X), H(Y)) < dYes(V, W) < d; P (Ly, Lyy).

What’s more, we can prove easily that d,HO(TOpQ)(X, Y) = d?O(DGL) (Ly, Lyw).
In persistent homology, the persistence free Lie models have some special advan-

tages.

Example 4.6: LetX: (N, <) —» Top, be the filtration of skeletons of CW complex X
satisfying X,, = X" forr > 2 and Xy = X; = @, where X is a simply connected CW
complex so that H,(X; Q) is of finite type, and X" is the r-dim skeleton of X. We know
that X™*1 = X" Ug. (I, D&*1), in which f; := 11, fro * L, Sh = X". Next, we will
construct a persistence free Lie model Lie(X) for X.

First, define Lie(X), = Lie(X); = 0 and Lie(X), = AX2. Suppose that we have
got Lie(X), which is a free Lie model of X", that is n,. : C*(Lie(X),) 5 Ap (X" isa
quasi-isomorphism.

Without loss of generality, we assume that Lie(X),, = L;. Because we have the

isomorphism
T: SH(Lv) i T[*(Xr)J

then the classes [f;.o] € m.(X") determine the classes s[zq] = T [f o] € sH(Ly),
where z, € Ly are cycles.

We define that Lie(X),4+1 := Lygw and dw, = z,, in which W is a graded vector
space with basis {w,} with deg w, = r. We assert that Ly is a free Lie model for
X7 +1] Therefore, we define a free Lie model Lie(X) for X, denoted as Ly with (ILy), =

Ly, = Lie(X),, where V : (N, <) — Vec is a persistence module and any morphism
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V<t 1s an embedding.

In addition to constructing persistence Lie models, we can also consider the per-
sistence versions of Lie-infinity models!?®% for rational spaces. Lie-infinity algebras
inherently align more closely with the homotopy theory of topological spaces than classi-
cal Lie algebras. Indeed, while Quillen’s construction provides a Lie-infinity model for a
rational space X, bridging the gap to establish persistence Lie-infinity models and discuss
their stability properties remains an open challenge. In fact, although Quillen’s construc-
tion provides a Lie-infinity model for a rational space X, we still need a little work to
overcome the difficulties if we consider persistence Lie-infinity models and the stability
of persistence Lie-infinity models. And if we can construct minimal Lie-infinity mod-
elsl®] for rational R-spaces and prove that this construction satisfies functoriality, then I
believe this model will have a unique advantage in theory and application of persistence

modules.
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CHAPTER 5 BLOCK-DECOMPOSABLE PERSISTENCE
MODULES

Given R3 as a poset with the product order:
(x1,%2,%3) < (V1,V2,V3) E R3 © x; < y; forall i.

In the chapter, we consider 3-dimensional persistence modules are functors R3 —
Vecy, where Vecy is the category of finitely dimensional vector spaces over k.

To state our results, we need to define some notations. A cut on the real numbers
R is a partition of R into two disjoint subsets ¢* and ¢~ such that for every x € ¢~ and
y € c*, the inequality x < y holds. This definition formalizes the idea of splitting” R
into a lower set ¢~ and an upper set ¢*, where every element of ¢~ lies strictly below

every element of ¢ ™.

Example 5.1: Showing two different cuts:
e c=(c,ct)withc™ = (—o,1] and c* = (1, +00);
e c=(c,ct)withc™ = (—o,1) and c* = [1, +»)

Ifc™ =@orct =@, we call the cut c trivial.

In R3, we can determine a cuboid C by 3 pairing cuts (cq, cl), (¢3,¢?), (¢c3,¢3) in
which ¢y, ¢t, ¢y, ¢2, ¢3¢ arecuts, s0 C = (¢;T Nel ) x ("N ) x (e ned).
Every cuboid does not necessarily have to be open or closed. Some special cuboids, called
blocks, will be detailed in the following.

These blocks can be divided into three major classes: layer block, birth block, and
death block. The first major class is further divided into 3 sub-classes, each shown below.
LetC = (c;tnect )x(c;TNne? ) x(estned),

« If all cuts except c;, ¢! are trivial, we call C a i-layer block;

e If c1,c?, 2 are trivial, we call C a birth block;

* If ¢y, ¢y, c3 are trivial, we call C a death block.

In this chater, we define M := M(t) and p{ := M(s < t) for any persistence

module R™ — Vecy and any s < t € R™.
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1] =

Figure 5-1 From left to right: three classes of layer blocks, birth blocks, death blocks

5.1 The Block-Decomposition of 2-Parameter Persistence Mod-
ules

Before continuing the discussion, we need to review some of Cochoy and Oudot’s
definitions and resultsi*!. Cochoy and Oudot considered the block-decomposition of
2-parameter persistence modules and proved the theorem of decomposition of pfd and
strongly exact 2-parameter persistence modules.

In R2, we may also define 2-dimensional cuboids, rectangles R, by two pairing cuts,
R=(c;* nc' ) x (c;* nc? ). What’s more, the special rectangles, which are blocks,

are as follows:

Figure 5-2 From left to right: birth blocks, death blocks, horizontal blocks, vertical blocks

In 2-parameter persistence modules M : (R%,<) — Vecy, for any (xq,x,) <
(y1,Y2) € R?, we have following commutative diagram:
1.y2)

M Px1.y2)
(x1,¥2) 1y2)

(x1,¥2) 1.52)
P(x1.x2) (Y1.x2) Py1.x2)
(x1.x2)

(xler) (leXZ)

If for all (xq,%,) < (v1,¥,) € R2?, the following sequence is exact, we call the 2-
parameter persistence module M 2-parameter strongly exact.
(x1,¥2) (Y1.x2) 01.y2)_  (¥1.y2)

(p(x1rx2)'p(x1.x2)) Pix1,y2) TP(y1.x2)
M(xbxz) > M(xl'YZ) @ M()ﬁ,xz) 1.y2)

62



CHAPTER 5 BLOCK-DECOMPOSABLE PERSISTENCE MODULES

Theorem 5.1: B!l Let M be a pointwise finite-dimensional and strongly exact 2-
parameter persistence module. Then, M decomposes uniquely (up to isomorphism and
reordering of the terms) as a direct sum of block modules:
M = @ Ky
BEB(M)
where kp is the block module associated with a block B, and B(M) is a multiset of blocks
determined by M.

For a block B, a block module kp is defined as follows

k, teB
(kg)e = (5-1)
O: t $ B

and for any s < t, the morphisms p! in kg are

. id, ifs,teB
pt = (5-2)
0, otherwise.

5.2 The Block-Decomposition of 3-Parameter Persistence Mod-
ules

Before we begin this section, it is necessary to explain that the results presented in
this section were obtained by us at the end of 2023, and at that time, we chose not to
make them public. However, in 2024, Lerch et al.l’!l published a more general solution
to block-decomposability for multi-parameter persistence modules on arXiv. Despite this,
I have decided to retain this content in my thesis because my proof method follows the
approachP!l used by Oudot in solving the block-decomposability for 2-parameter per-
sistence modules, and I believe this approach can be applied to the proof of the block-
decomposition theorem for multi-parameter persistence modules. Additionally, our per-
spective on the generalization of the high-dimensional exactness condition differs from
Lerch’s, which is why I believe it is meaningful to include this part.

To solve the block-decomposition of 3-parameter persistence modules, we first need

to generalize the strong exactness to 3-parameter cases.
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Let the following diagram be a commutative diagram in Vecy,

and deduce two commutative diagrams

B—>
A
/]
7/ B, C—

P

3!/
B=—BIl,C /.

f1T T //

At ¢’
inwhichB[[,C={b+c€B®C:g;(b) =g(c)}and B][,C =B @ C/ ~, which
~ is a deduced equivalent relation by f; (a) ~ f,(a) for any a € A.

|

Lemma 5.1: The following conditions are equivalence

* The sequence A —— Vit2) B® c 22, p s exact;

* f is surjective;

* g is injective.

Proof: (1)=(2): For any (b, c) € B[], C, we can find a vector a € A such that f; (a) =
b and f,(a) = c due to the strong exactness. So f(a) = (b, c), f is surjective.

(2)=(3): Forany b € B and c € C such that[b+c] € B][,C,if g([b +c]) =0,
then we have g([b]) = g([—c]), thatis g;(b) = g,(—c). So (b,—c) € B[], C, and we
can find out a € A such that f;(a) = b and f,(a) = —c. So[b+c] =0€B][,C. gis
injective.

(3)=(1): Forany b € B and ¢ € C with g;(b) = g,(c), g([b — c]) = g1(b) —
g2(c) = 0. Since g is injective, [b] = [c]. Thus there is a vector a € A such that

fi(a) =band fr(a) =c. n

In the general case, we may also consider computing f and g similarly to the two-

64



CHAPTER 5 BLOCK-DECOMPOSABLE PERSISTENCE MODULES

dimensional case. Let S be a finite set with |S| = n. The powersetof S, P(S) ={T : T S
S}, is partially ordered set via inclusion. Let Py(S) = P \ {@} and P;(S) = P(S) \ {S}.
A functor X : P(S) — Vecy is a commutative diagram shaped like a n-dim cube. What’s
more, we can get two morphisms P : X (@) — TeljiDrOn(s)X (T) and ¢ : Tcecgli{rsl)x () -
X (S) naturally.

Consider 2-parameter persistence modules M, then any (xq,%;) < (v1,V2) € R2,

we can get a commutative diagram

p(O’LJ/z))

xX1,Y2

M(’%Yz) M(J’LYZ)
(x1,y2) 1.y2)
(*1.%2) (Y1.x2) Ply1.x2)

(x1.%2)
(xler) (yllx2)

and the diagram deduces to a functor X' : P(S) — Vecy with |S| = 2. Thus for any
functor X : P(S) — Vecy obtained by the above method, ¢ : X (@) — Telji)ror%s)x (M)
and ¢ : Tce(%ff?)x (T) —» X(S) generated by the functor X are surjective and injective
respectively if and only if M is strongly exact.

Now, we are considering block-decomposition of 3-dimensional persistence modules
M : R3 - Veey, so we need to extend the strong exactness about 2-parameter persistence
modules to the conditions about 3-dimensional persistence modules. Similar to the case of
2-parameter persistence modules, when considering the 3-dimensional persistence mod-
ules, for any (xq, x5, x3) < (V1, V2, V3) € R3, there is a commutative diagram like 3-dim
cube and the diagram induces the functor X' (S) : P(S) = Vecy with |S| = 3, resulting
in two morphisms ¢ : X (@) — TElji)I(‘Jn(S)X (T) and ¢ : Tcecgli%)x (T) - X(S).

M(x,,,,33) M(y,.,.33)
My .73 My, xz.73)
M(x,,,,x3) M(y,,,.x3)
/ /
M (x; x5,23) My, xz,23)

Thus, when we consider the block-decomposition of 3-parameter persistence modules, the
strong exactness of 2-parameter block-decomposable persistence modules can be gener-

alized to the following condition: the 3-parameter strong exactness.
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Example 5.2: Consider the following 3-parameter persistence module M : {0,1}3 -

Vecy,

1 1
where f = o) g= L) and h = L) It is obvious that the 3-parameter persistence

module M is not block-decomposable.

In the previous example, we know that only requiring ¢ to be injective does not
guarantee that 3-parameter persistence modules are block-decomposable. What’s more,
in 3-parameter cases, the two conditions that ¢ is injective and i is subjective are not
equivalent. Therefore, it is reasonable to assume that ¢ and 1 are injective and subjective,

respectively.

Definition 5.1: We say that a 3-parameter persistence module M : R3 — Vecy, is 3-
parameter strongly exact if the following conditions are satisfied

o foranyr € R, M|pyxrxrs MIrxrjxr> M|RxRX({r} 8r€ amoOng 2-parameter strongly
exact.

o for any (xq,%,%3) < (V1,¥2,¥3) € R3, the associated morphisms 1 and ¢ is

surjective and injective respectively.

We want to prove that if a 3-parameter persistence module M is strongly exact, then
M can be decomposed as a direct sum of block modules. So we need to define the block

modules and find all submodules of M, which live exactly in blocks.

Definition 5.2: A persistence module M is called a block module if there is a block M
such that M = kp.
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5.2.1 Some Basic Definitions and Results

In the 1-dimensional case, the interval modules of Ml : R — Vecy can be easily
found since R is a totally ordered set. By computing V%, := Im;ft N Ker;ft and Vj, :=

Im;ft N Ker; ¢ +Im;, N Ker;:t in which I 3 t is a interval of R and

Im/, = ﬂlmpg, Im;, = ZImpSt

S€l S&I
S<t S<t
(5-3)
+ p—
Ker;s = ﬂKerp}‘, Ker; ¢ = ZKerp}‘
Uuél u€l
uzt uzt

we can get V', /V[, = (k;);. For I = [a,b], V;,/V;, denotes the vector space whose
dimension equals the number of generators, which were born at a and died at b.
However R™, forn > 2, is not the totally ordered set, which results in Imp ; & Im,;t
and Kerg; © Ker;f’t, which hold in 1-dimensional persistence modules, not holding in
high-dimensional persistence modules, in which B 3 t is any block. Thus we need to
redefine Im;?r't and Kerg‘t in which B € R3 is any block and t € B .
Firstly, we can establish the following notation in any persistence modules M : P —

Vecy, in which P is a poset:

Ig; = ﬂlm P, Ipy i= Zlm ps

SEP SEP
sst sst
(5-4)
Kp, = ﬂKer pt, Kpy = ZKer pr
u¢p UuepP
uzt uzt

But we know that I, & I3, and Ky, & K, from the above discussion. Thus, we define
that
Imp, = I, Imp, =I5, N I3,

+ _ (5-5)
Kerp, := Kg + Kp, Kerp := Kp ;.

Obviously, Im¢y © Img,t and Kerg © KerJC’,t.

When we consider the pfd 3-parameter persistence module M : R® — Vecy, the
poset P is a cuboid in R3, which is determined by three pairing cuts {c;, ¢!, ¢,, c?, c3, 3}
thatis C = (c; T Necl )X (c;* Ne? ) x (3t ned).

Forany t = (¢4, t,,t3) € C, We construct these limits by considering the restrictions
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of the module M along x-axis, y-axis, and z-axis, respectively

+ _ () t - E t
ImCl,t - Im p(x,tz,t3) Imcllt - Im p(xrt21t3)
xEC1+ xECl_
xSt1
+ _ () t - E t
Img, ¢ = Im Pty x,t5) Img, ¢ = Im Pty x,ts)
x€ecyt X€Cy™
xstz
+ _ () t - E t
Imcs,t - Im P(ty,ts%) Imc3't - Im P(ty.t2.20)
x€cz*t X€cz™
xSt3
(5-6)
+ X,tp,t - x,t,t
Kergi, = r Ker pt( 2t3) Kerg1, = E Ker pt( 2t3)
xect” xect”
x2t1
+ t1xt - t1,xt
Kerg2y = F Ker pt( 15t3) Kergz2y = E Ker pt( vts)
xecz® x€ec?
thZ
+ t1,t2,x - t1,t2,x
Kergsy = r Ker pt( vt2X) Kergsy = E Ker pt( iz )
xec3” xecd”
x2t3

Through simple computation, we can get
+ o+ + +
Im¢¢ = Im¢, ¢ N Ime, ¢ N Ime, ¢
- - + + + - + + + -
Im¢, = Imcl,t N ImCZ't N Imcs,t + Imcl,t N ImCZ‘t N Imca't + Imcl't N ImCZ,t N Imc3‘t
Kerg, = Kerg1, + Keryz , + Kerzs ¢ 4+ Kerj1 . N Ker)z . N Ker,-
erc,t — erc1’t el‘cz't erc3‘t Crc1lt erCZ,t erc3,t

Kercy = Kerg1y + Kerg2y + Kers
(5-7)

Note: If we do not make any special explanation, all the persistence modules we will
discuss later are pfd 3-parameter persistence modules M : R3 — Vecy, satisfying the

3-parameter strong exactness.

The following lemma allows these concepts, such as Imcil‘t, Kerfl ¢» iInvolving infin-

ity to be discussed concretely

Lemma 5.2: M can be extended to the persistence module over [—o0, +0]3 by defining
M(oo‘.‘.) = M(.‘oo‘.) = M(.‘.‘oo) = 0. Then

Imjllt =Im pgx,tz'm for some x € ¢;t N (—oo,t;] and any lower x € ¢; T,

Im; ; = Im pEX,tz,tg) for some x € ¢;~ U {0} and any greater x € ¢;~,
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+ +
Kerj1, = Ker pt21) for some x € ¢! U {+00} and any lower x € ¢!,

Ker,1y = Ker pt(x’tz't3) for some x € ¢! N [t;,+0) and any greater x € c* .

The results for the cuts ¢, c?, c3, ¢3 are similar to those for ¢y, ¢!, so we will not elaborate

on them further.

Due to the 3-parameter strong exactness, we can decompose the image and kernel in

the 3-parameter persistence module M : R® — Vecy, into a simpler form.

Lemma 5.3: Forany s <t € R3, we have
Im P; =Im pzsl,tz,t3) N Im pEtl,Sz,ts) NIm pgtbtz'sz)'
Ker p! = Ker p§t1'52’53) + Ker pgsl'tz‘%) + Ker p§51'52't3).
Proof: Let the following commutative diagram satisfy the 3-parameter strong exactness.

We only need to prove Im p% = Im p} NIm p§ NIm pf and Ker p} = Ker p? +Ker p& +

Ker p¥%.
A Y
D T B ‘
E—— | ——C

(1) Obviously, Im p%¥ € Im p} NIm p} NIm p¥. Ifa € A, b € B and ¢ € C such

that p¥ (a) = p5(b) = pf(c) =y, we may findout d € D, e € E and f € F by the 2-

parameter strong exactness. Note that the construction of TeljiDn%S)x (T)and ¢ : X (@) -
0

TEI%H%S)X (T) is surjective, we can find out x € X so that p{(x) = a, pZ(x) = b and
0

p%(x) = c. Thus Im p} N Im p% N Im pX € Im p¥. Im p¥ = Im p} N Im p} N Im pf.

(2) We can directly obtain that Ker p? +Ker pE +Ker p¥ € Ker p¥. Let x € Ker p¥,
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and the image of x at A,B,C,D,E,F be a, b, c,d, e, f respectively.
—F 0
e
d
l .
X

By the 2-parameter strong exactness, we can find out f € F and é € E such that pa(é) =
a, pS(é) = 0 and pE(f) = b, p&(f) = 0. Then 3% € X satisfies pR(X) = d, pE (%) = é
and p¥ (%) = f. Sox — % € KerpZ.

d
5(
Similarly,wecanﬁndoutcAlEDandchbeOEA,bEB,OEE,OECandeF.
& b
I 0 ‘
% f

Finally, we can easily prove that ¥ — £ € Ker p¥.

N

|\

b

|

N

N

So % € Ker pE.

|

-]

\
N\

Thus x = (x — %) + £ + (¥ — £). So Ker p¥ € Ker p? + Ker p£ + Ker p¥, then
Ker p¥ = Ker p2 + Ker p£ + Ker p¥. ]

With the decomposition of Im p! and Ker p! in the Lemma5.3, we can obtain the

following crucial properties, which play an important role in finding submodules of M,
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which are block modules.

Lemma5.4: Lets<tceR3and % 4,0 € {+,—}. Then
p}(Imﬁljs N Irnzz,s N Imﬂc3,s) = Imﬁljt N Imzz‘t N Imucs,t,
(pg)_l(Kerzl’t + Kergz + Kerucs't) = Kerg1 ¢ + Kerfz g + Ker[(l:s’s.
Proof: (1) The Lemme5.2 tells us that there exist x < s; < t1, y < 5, < t, and
z < s3 < t3 (possibly equal to —o0) such that
Img, ¢ = Im Plesysy) and Img , = Im pEX,fz'ts)
Imzz,s =1Im pf; ¢,y and Imzz,t =Im pgtpy,ts)
Imﬂ%s = Im p?sl,sz,z) and Imﬂ%t = Im pgtl,tz.Z)
Then, we can directly compute

» B a _ t t t
Imcl't N Im et N Imc3't =Im P(x,ty ts) N Imp(tl'y‘tzg) N Im Pt t5,2)

= Im pEx,y,z) = ,0; (Im p?x,y,z))

= p; (Im pgx,sz,s3) N Im pgsl,y,s3) N Im pgsl,sz,z))
I

= P§ (Imgl,s n Imgz,s n Ing,S)

(2) Similar to (1), we can find out (x,y,z) =t > s € R3 (possibly x, y, z equal to +00)

such that
Ker?l,s = Ker pgx'sz'%) and Ker‘él’t = Ker pt(x'tz't3)
Kerfz's = Kerp™?*®) and Kerfz't = Ker pl1?1)
Kerl]c3,s = Ker pgsl'sz'z) and Kerﬂc3,t = Ker pt(tl‘tz’z)
Then

(pé)_l(Ker pt(x,tz.ts) + Ker pt(t1'}’.t3) + Ker pt(tl,tz,z))
=) (&) = Ker p&¥?)
:Ker pgx’52!53) + Ker pgsllypSS) + Ker pgsl,SZ,Z)

From the above Lemma, we may easily prove the following result.
Corollary 5.1:
+ + -1 + +
ps(Img5) = Img and (ps) —~(Kergy) = Kergs

Proof: We only need to pay attention to the facts that f(U + V) = f(U) + f(V) and
fRUNV) =)W .
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The following lemma states the relation between Ker and Im.

Lemma 5.5: Ifa 3-parameter persistence module M is pfd and satisfies the 3-parameter

strong exactness, then
* s 0
Kere1e © Img, ¢ N Img, ¢

in which

e ifclt 2 @,then # = +, elsc # = —;

e ifc,”™ # @, then 4 = —, else & = +;

e ifc;” # @, thenll = —, else | = +.

Similarly, we have Ker?z't C Im} N Imﬂc&t and Kerz'a't C Im? LN ImDCZ,t.
Proof: We only prove Ker.1, € Img,t N Ing,t, others are similar to Ker.1, © Im;rz,t N
Im;,t.

Lett = (t;,t,, t3) € R3. From the Lemma5.2, we can findout x € ¢ andy € c,*
such that Ker,1, = Ker pt(x’tz’t3) and Imé;t = Im pftl’y'%). Because M| gy rxqt,} satisfies

2-parameter strong exactness, we may consider the following commutative diagram

M(tl't2:t3) M(x't2;t3)

M(tl'ylt3) M(x'thS)
For any @ € Ker.1;, we can find out a common antecedent § € M, 5.y wWith 0 €
M (x,y,t,), then a € Imjz‘t. SoKerg1y € Imjz‘t.

L . - + - + +
Similarly, we easily prove Ker.1 ¢ S Imc,_ ;. Therefore, Kerg1 ¢ S Img, (NIme, ;. =

5.2.2 Find Block Submodules in M

Next, we will try to find out all the block modules kg, which are submodules of M.
If M may be decomposed as a direct sum of block modules kg, the block modules kg are
exactly the submodules of M, which the elements are born at the birth boundary of B and
die at death boundary of B.

For any cuboid € = (c;* nct ) X (7 Ne? ) x (c37 nc?), we define Vi, =
Imz‘t n Ker;t and Vg, = ImJCr't NKercy +Imce N KerJCrlt. Obviously, V¢ € V.

According to our supposition, Vc+, t/Vc ¢ 1s isomorphic to the vector space, whose
elements are exactly survive in C, and combined with the previous results, we can obtain

the following lemma.
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Lemma 5.6: If a 3-parameter persistence module M is pfd and satisfies the 3-parameter
strong exactness, then pt (VCJ—TS) = VCJ—ft and the induced morphism p_§ s VEs/Ves =
Vit/VEy is an isomorphism.

Proof: We can easily prove that
p;(V(}F’S) = pg(lmz,s n Kerg,s)
c Pé(lmg,s) N p;(Kerz,s)

+ +
= Im¢, N Kergy = Vi,

pg(VC_,s) = pg (Imz‘-,s n KCI‘E‘S + ImE,s n Ker-IC-,s)

c p§ (Img,s) N p;(KerE,s) + p§ (Img,s) n pg(KerZ,s)

= Im¢, N Kerg, + Img N Kergg = Vg,

So we have pf(V) € V&, and pt: Vis/Vis = Vii/Vir. Sequently, we prove that ptis
injective and surjective.

Surjectivity: For any g € Vi, = Imz,t N Kerg,t, we can find out a € Imzr,s such that
B = pt(a). Note that a € (pg)_l(,[?) c (pg)_l(KerEt) = Kerg.g, then a € V7. Thus ot
is surjective.

Injectivity: Let B = pé(a) € Vg, in which @ € V{s. We have B = B; + B, with
f1 € Im¢, ﬂKerZ}t and 5, € ImJC',t NKerg (. By the same argument as before, B; = p&(a;)
for some a; € Im¢ g N KerJCr’s. Because p(a — a1) = B, € Kergy, then a — a; € Kergg.
Note that a, a; € Imz,s, then ¢ — a; € Imz,s. Soa € Vg4 and p_g is injective. It implies

that p§(Ves) = Vi n

The above lemma tells us that we can find out the vectors that exactly live in the
cuboid C by using VC+, ¢/Vc¢. However, we do not want to the vector space VC?': t/Vcy to

depend on the selection of position t. So we need to define CF¢ (M) := limV¢/V,,. The

tec
counting functor CF plays a central role in the decomposition of persistence modules.

Specifically, it is an additive functor®!] that determines the multiplicity of the summand

k¢ in the decomposition of the module M into a direct sum.

Lemma 5.7: Let M be pfd and decompose into a direct sum of cuboid modules. For any
cuboid C, the dimension of the vector space CF-(M) precisely equals the multiplicity of
the summand k. in the decomposition of M into a direct sum.

Proof: Because CF is an additive functor, the proof can be reduced to demonstrating the
result for a single summand k.. Suppose C = (c;* et )x (e Nec? )x(cz37ne3),

73



CHAPTER 5 BLOCK-DECOMPOSABLE PERSISTENCE MODULES

C'=(cptnect I)x(cptne? )x(cytned ), and C # C'. We can find a cut that is
different between C and C’. Without loss of generality, let ¢; # ¢y/. Foranyt € C n C’,
Im?, o (ko) = Img, , (ker). then Img e (her) = Imfe(ligr). Thus Vy(ker) = Ve,
that is V¢ (Ikcr) /Vi¢(Ier) = 0. What’s more, for any t € C — €', we have (k¢/)y = 0,
then V¢ (ker) /Ve(er) = 0. So CF¢(Ik¢r) = 0. If we consider that ct# cll, then we
may get the same result by computing Kera(kcr).

Secondly, we suppose that C = C'. For any t € C, we easily get V/, = k and
Ver = 0, thus CFc(ker) = k. |

In order to obtain the submodule My, which is a submodule of M and exactly dis-

tribute in the block B, we need to define Vi (M) := limV,;—r,t that is independent of the

teB
selection of position t.

Lemma 5.8: If the 3-parameter persistence module M is pfd and satisfies the 3-
parameter strong exactness, then CFg(M) = V7 /V5.

Proof: Obviously, Vg3 € Vg, forall s < t € B. We easily know that {Vz, P8 ecten
is an inverse system, and the Mittag-Leffler condition holds for the inverse system since
every space Vg g is finite-dimensional. Meanwhile, B contains a countable subset that is

coinitial for the product order <, and the collection of sequences is exact
0 Vg = Vi = Vge/Vge = 0.
Thus, the limit sequence
0 = V3 (M) — Vi (M) - CF5(M) - 0
is exact by Proposition 13.2.2 of the referencel>*. n

Let 7ty : Vi (M) — Vg denote the natural morphism induced by the universal prop-
erty of limVZ,. Then we may get Vg (M) = Ny (Vg,) and Vi (M) = N o (V).
— teB ’ teB ’

teB
Thus we have V5 (M) c VF (M).

Lemma 5.9: Ifa 3-parameter persistence module M is pfd and satisfies the 3-parameter

strong exactness, then
iy : Vg (M)/Vg (M) - Vg,t/VB_,t
is isomorphic.

Proof: Referring to the proof of Lemma 5.2 oft3!], ]
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After obtaining the previous results, we can select the appropriate subspace M from

V3, so that the submodules M are generated through m (M3).

Proposition 5.1: If the 3-parameter persistence module M is pfd and satisfies the 3-
parameter strong exactness, then the subspace V5 has a complementary space M2 in V3

such that the following persistence module

m(M3), t€B
(Mp)e = (5-8)
0, t¢B

is a submodule Mz of M.
Proof: We will discuss the proof of the results in three cases: birth blocks, death blocks,
and layer blocks. For a fixed block B, regardless of the choice of subspace M) satisfying
the decomposition V§ (M) = M3 @ V5 (M), the following statements will hold:

« for any s,t € B satisfying s < t, pf((Mp),) S (Mp),, since pf o Ty = m by the
definition of m.

« forany s & B, t € B satisfying s < t, pf((Mz)s) = pL(0) = 0 € (Mp)s.
There only remains to show that, forany s < t,s € Band t € B, pi((Mg)s) = 0.
Therefore, we need to choose a suitable subspace M} that satisfies the condition.

Case B is birth block: C = (c;  nct ) x (¥ N c? ) x (c37 nc? ) in which
2T _ 3T .
For any choice of subspace M), the condition can be satisfied.

Case B is death block: C = (c;* nct ) x (c;¥ Nc? ) X (c37 N3 ) in which

1t

Cc =cC

- =¢C =c¢3” =0.

Let Kg g = Kerj1,S N Ker;rz_S N Kerjg‘s for all s € B. The collection of these vector
spaces, combined with the transition maps pf for s < t € B forms an inverse system.
Because K s © Imj ¢ by Lemma5.4 and K3 € Kerg s, then K3 ¢ € Vg . Thus

K5 () = limkE, = Yo () € Vi ().
SEB SEB

And for any s € B, following equation holds:
Vis = Impg s N Kerg g = Imp g N (Kergs + Kz )
= Imps NKergs + Imp s N Kis = Vi + Ki .

In other words, for any s € B, the following sequence is exact:
(a.B)~a+p
_—

0 - Vis N K7y e

Vis ® Ki Vis = 0.
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This system of exact sequences satisfies the Mittag-Leffler condition, since every space

Vgs N K 5 s is finite-dimensional, and so, by Proposition13.2.2 ofi>*], the limit sequence

is exact. Note that limVgs N Kgs = Vg (M) n Kz (M) in V5 (M), and the canonical

morphism Vg (M) Gselig (M) - limVgs @ K3 ¢ is an isomorphism, then the following
) SEB

sequence is exact:

a,—a)

_ o epn @O yoa+p
0- V(M) NKg(M) —

vy (M) @ K (M) 222 ey 5 0

which implies that V5 (M) + K7 (M) = V7 (M). Thus we only need to choose a comple-
ment subspace M3 of V5 (M) inside K7 (M).

. . +
Case B is strict layer block: We only need to consider one case thatis c,”™ = ¢? =
+ + -
cs”=c3 =@andc;” # @ # ¢t , the rest are similar. Let K¢ = Im;, ¢ N Ker} _for
any S € B.

Wehave Vg = Irn;,f,S nKer;f,s = Imzl‘sﬂlmjz,sﬂlmg'sﬂ(Ker:1'5+Ker;z,s +Kersg).
Because Ker.2 g © Imjl‘S N Im;‘s, Kergsg € Imjlls N Im;rz,S and Kerg1 4 Ker;'S c
Im:Z’s N Img's'S by Lemma5.4, then we get

V,;f s = Imzrl‘S N Im;rz‘S N Ing,s N (Ker:l's + Ker2 g + Kergs )

= Im;rl,S n Keréﬁ,s + Imiz,S NKergz g + Imé;s N Kergs g

=Kgs+ Im;,s NKergz ¢ + Im;,S N Kergs g
And we have

Vgs = Im,}"S N Kergg +Impg N Kerfg’S
= Im;rl,S N Ker1 g+ Imzrz,S NKergz g + Im;rg,S N Kergs g+ Impg N Kerg,S

Thus V5 s = Vg s+ Kz . Following a similar argument to the preceding case, we conclude
that the limits satisfy Vi (M) = V5 (M) + Kz (M). Therefore, we may select the vector

space complement M3 inside K7 (M), guaranteeing that mg(MJ) < K5 for any s €

B. [ ]

Because Vi (M) = V5 @ M9, and 7, and Te|y; are isomophisms, M3 = (Mp), and

Vit = Vg @ (Mp)y.

Corollary 5.2: F block B, Mp = kg.
ry or every block B, Mg dimC?B(M) B
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5.2.3 The Direct Sum Decomposition

Before we prove the direct sum decomposition of M : R3 — Vecy,, which satisfies
the 3-parameter strong exactness, we need to introduce some definitions and results of
disjointness and covering of sections!34,

In a vector space U, a section consists of two subspaces (F~,F*1) such that F~ c
F* c U. First, we introduce the notations of the disjointness of sections. We call that a
collection of sections {(F; , F; )} ea in U is said to be disjoint, if whenever 1 # u, one of

the inclusions F;" € E; or Fu+ C Fj is satisfied.

Lemma5.10: B4 Let {(F o+, F; ) }aen be a collection of sections in U, that is disjoint. For

any A € A, suppose that V, is a subspace satisfying F;" = My @ F; ,then X V) = @ V.

Lemma 5.11: B4 Given a fixed t € R3, each of the collections

{(Imgl,t’ Im:‘;,t)}Cl:tlECl-'- > {(Kergl,t’ Kerzl,t)}clztlecl_ > {(Imgz,t’ Im:z,t)}C25t2€C2+ >
- + - + - +

{(Kercz,t' Kercz,t)}CZ:tZECZ_a {(Imc3,b Imc3,t)}c3:t3ec3+ and {(Kerc-”,t' Kerc3,t)}c3:t3EC3_

is disjoint in M.
Lemma 5.12: B4 Let the collection of sections in U, F = {(F;, F;)}aea, be disjoint,
and G = {(G;,G})}sex be any collection of sections in U. Then the collection of sections
inU
{(Fy + G5 UF, Fi 4+ G5 UF)}0)enaxs
is disjoint.
Because Vy = {(Vgp V5 )}B:blockst is not disjoint, we cannot directly study the

direct sum decomposition of M by considering V4. Thus, we define the disjoint section

.— — +
‘?t T {FB,t' FB,t}B:blockat

- - + +
Fg¢ =1Img, + Vg = Imp, + Kerg, N Impy,

Fge = Img, + V5, = Img + Kerg N Img .

Lemma 5.13: Fg, = F5 @ (M),
Proof: From the definition of Fg,t, we can easily know that Fg‘ t = Fg¢ + (Mp)¢. And,

we have (M), € Vg, so

FB_,t N Mpg) = FB_,t n Vg,t N (Mpg), = VB_,t N(Mpg)e=0
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From this lemma, we see that we can study the direct sum of M by considering F.

We divide these type of blocks B = (c;* nel ) x (¥ Nec? )X (3t Nned ) into
following 5 types:

e By ={Blc, =yt =¢c37 = 2" =@andc!’ 2 0};

« B,={Ble,"=c;"=cs" =c? =@andc?" #0);

e B;={Blc;,” =1t =¢,” = c2+ =@ and c3+ * 0};

* B, = the set of all death blocks \ Ui3=1 B;;

» Bs = the set of all birth blocks.

We first prove that in each individual type, the decomposition is a direct sum decom-
position. The proof process for the first four types is easy, but we need to make some

small efforts to prove the fifth type.

Proposition 5.2: Let B; be a fixed block type. The submodules Mz, where B ranges

over all blocks of the block type B;, are in direct sum, thatis ), Mgz = @ Mj.
BEB; BEB;

Proof: Lett € R3. We only need to prove the equation, BgB'(M Bt = B?B (Mp)¢

Case B; with i = 1,2,3: We only need to prove the ce{se ofi =1, a:nd the proof
for i = 2,3 is similar. From Lemma5.11, we can know that {(Im._, Imat)}c *at, 18
disjoint. Taking the intersection of all the spaces in this collection with Im;’t N Im;,t, we

deduce that
- + + + + + - +
{dm¢ ¢ NIme, ¢ N Ime, ¢, Ime ¢ N Ime, ¢ N Ime, e, +5¢, = {(Impy, Imp ) }p.3, 5t

is also disjoint. Hence, by LemmaS5.12, the collection of subspaces {(Mg)}p.,5¢ is in
direct sum.

Case B,: Consider any finite collection of distinct death quadrants By, By, -+, By,
that contain t. Since all of them are distinct, there must exist one (denoted as B;) that is
not contained within the union of the others. Therefore, there exists some u = t such
that u € B; — U;>, B;. Suppose there is some relation Z?Ll a; = 0 with a; € (Mp,),
non-zero for all i. Due to the linearity of p¢', it follows that Zﬁl pi(a;) = 0. However,
pit(a;) = 0 forany i > 2 and p{!(@;) # 0 due to u € B; — U;», B;. This raises a
contradiction.

Case Bs: It suffices to show that, for any finite collection of different birth quadrants
B4, By, -++, By, there exists at least one of them ( e.g., B;) whose corresponding subspace

(Mp,)¢ € M, is in direct sum with the subspaces corresponding to the other blocks in the
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collection. Therefore, the result is obtained by a straightforward induction on the size m
of the collection.
Let By, By, -+, By, be such a collection and each block B; = ¢1;+ X ¢p;* X ¢c3;". By

reordering if necessary, we can suppose that B; satisfies

+ l l + + [ | + + [ l +
C11° S| [C1i 021 & Cai ,C31" & C3i -

i>1 i>1 i>1
€1,i=C1,1 €1,i=C1,1
€2,i=C21

From the assumption of B, we can get that B; does not contain any other blocks.
Therefore, by reordering, we can divide these blocks into two subcollections: the ones
(denoted as B,, -+, B,) contain B;, while the others (denoted as Bj,q,, B;;) neither
contain B; nor are not contained by B;.

In a manner analogous to the proof of Proposition 6.6 in Cochoy and Oudot’s
workB!, we deduce that (Mg, )¢ N (ZﬁZ(MBi)t) € Fg t Note (Mp )¢ N Fg , = 0,

then the result follows. [}

Proposition 5.3: The submodules @ Mg, @ Mg, @ Mg, @ Mg and @ My are
B:Bq B:B, B:Bs B:B, B:Bs

in direct sum, that is
Ports + Prts + P + P + P = ) ms
B:B,; B:B, B:Bs BB, B:Bs B:blocks
Proof: We will divide the proof into four parts,

* (@ (Me)) N (© Mp)e+ @ (Mp)e+ & (Ma)e+ @ (Mp)) =0

* (@ (Ma)) N (@ (Mp)e+ @ (Ma)e+ @ (Mp)o) =0

* (@ (Ma)) N ( (Mp)e+ @ (Mg)y) =0

* (@ (Ma)) N (@ (Mg)) =0

(1prove that (@ (Ma))N (@ Ma)et @ Ma)et © (M)t © (My)) =0

Note that if u = (uy,u,, u3) € R3 is large enough, then we can know that u € B for
any block B € Bg but u is not in any other blocks. we only need demand u4, u,, u; are
large enough.

Let a be a non-zero vector and be in the intersection. It can be decomposed as a
linear combination of non-zero vectors a4, :*+, @, from the summands of a finite number of
blocks By, B, **+, By, in Bs. Simultaneously, a can be decomposed as a linear combination
of non-zero vectors 81, :**, B, from the summands of a finite number of blocks By, -+, By,

of other types: Z:Ll a;=a= 271:1 Bj-
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Select a pointu € R3 so that u is sufficiently large to lie outside the blocks By, -+, B;,.
What’s more, u still lies in the birth quadrants By, -+, B,,. Thus p{‘(Z?zl a;) # 0 but
Jo)s (27;1 B:) = 0. This is a contradiction.

(2) prove that (@ (Mp)e) N (O (Mp)e + & (Mp)e + & (Mp)y) = 0,

B:Bl B:BZ B:Bg B:B4
(O Mp))N (S (M) D & (Mp)y) =0and (& (Mp)) N( & (Mp)e) = 0.
BiBz BZB3 BiB4_ B:B3 B:B4

Similar to (1), we can also choose a point u € R so that it lies outside the blocks in

B, but is not in the blocks in B,, B3, B,. we need only to demand u4, u, are large enough.

The remaining processes are almost identical to (1).
(3) prove that ( @ (Mp)e) N ( ® (Mp)e + & (Mp)y) = 0and ( © (Mp)e) N
B:Bz B:Bg B:B4 B:B3
(@© (Mpg)e) = 0.
3334
They are treated similarly to (2). |

Subsequently, we will prove that M = ) Mjp. Then we need the notation
B:block

of covering of sections®¥. For any collection of sections {(F; ) F{ )}aen, we say that
{(Fy, F1 )}aen covers a vector space U if for every proper subspace X & U there exists a

A € A satisfying
X+F #X+F

This collection is said to strongly cover U, if for all subspaces X & U and Z & X there
exists a A € A so that

X+(FrnZ)y=X+F n2).

The validity of employing covering sections is substantiated by the subsequent lemma

from the referencel4],

Lemma 5.14: B4 Let {(F;, F;)}aea be a collection of sections that covers U. For

every 1 € A, suppose V; is a subspace of U satisfying F;” = V; @ F; . It follows that,
U = ZAEA V/l.

Lemma 5.15: B Let {(F;, F;)}aea and {G;, GJ }sex be two collections of sections,
where the former covers U and the latter strongly covers U. Then the following collection

covers U:

{(F)L_ + G; n FA+'F)L_ + G; n F):l-)}(AXJ)EAXZ-

Lemma 5.16: 1> Given a fixed t = (t;,t,,t3) € R3, for any subsets X & M, and
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Z & X, there is a cut c; with t; € ¢;* such thatIm, , NZ S X 2 Im; ,t N Z. Similarly,
there are cuts ¢, with t, € ¢, and c3 with t3 € c3* such thatIm,, NZ € X 2 Imjz,t aV4

andIm,,;NZ S X2 Im:&t N Z. Same for kernels.

Next, we will prove that the 3-parameter persistence module M, which is pfd and
satisfies the 3-parameter strong exactness, is the direct sum of block modules.

Before proving the main theorem, we need to redivide blocks.
e By ={Blc,” =c? =c¢c37 = 3" =@andc,” £ 0 # c1+};
«B,={Ble,"=c" =c; =c3" =@andc,m =0 £ 2" };

e By ={Blc;"=c! =¢,” = 2" = ¢ and 3T FQ# c3+};

» B, = the set of all death blocks \ {R"}

* Bs = the set of all birth blocks

To prove that the direct sum decomposition of M, we need to define a new 3-
parameter persistence module M : (R3, <) — Vecy, which is a submodule of M, defined

as M, := = Imps, N Kergs,. Let X = M + > (M),. Based
’ ’ B:birth and layer

on the definition of M, it is natural to conjecture that the submodule M is spanned by the

R3,t = 'R3t

block modules corresponding to with death blocks that are proper subsets of R3.

Proposition 5.4: M = M + @ Mp.
B:B]_UBzUB:gUBS
Proof: Given a fixed t € R3, let X = M, + &%) (Mp)¢. Suppose for a

B:B]_UBzuB3UBS
contraction that X & M;. Then apply Lemma5.16 with Z = M, to get a cut ¢; such

that t; € ¢;* and Im, ; € X 2 Im;'t. Again, use Lemma5.16 with Z = Imjl’t to
get a cut ¢, such that t, € c,* and Imi’llt Nlmg,; € X 2 Im; N Imgz,t. Again,
use Lemma5.16 with Z = Imzrl't N Imz'z't to find a cut c3 so that t; € c3t and
Im! NIm. ,NIm,, € X 2Im; NIm. ;N Im ,.

Ifc;” =c¢;” =c37 =0, then

+ + + 1t _ ot
Imcllt N Imczlt N Imcg't — Im]R3‘t — FR3,t

= Fgs o + (Mp3) = M + (Mp3)¢ € X.
However, our selection of ¢y, ¢,, c3 ensures that Im. N Irn;rz’t N Im;;,t ¢ X. Thisis a
contradiction. Thus ¢;~ # @ orc,” # Qorc3~ # Q.

We distinguish these cases below: These cases are divided as follows:

Casec;” # @,c,~ # @,c3~ # 0. Letthe block B = ¢;7 X ¢, X ¢37. We have

81



CHAPTER 5 BLOCK-DECOMPOSABLE PERSISTENCE MODULES

Imp, = Im, N Im. , NIm, , = F3 & X. But
Fge = Img, + Kerg, N Imj,
€ Img¢ + (Img, ¢ N Img, ¢ + Img ¢ N Img, ¢ + Img ¢ N Img, ) N Im;,t
S Imp, S Im,  + Im. , N Im_ , + Im} N Im. , NIm_ , S X
by Lemma5.4. Note that Fg, = F5 @ (Mp),. Then we get a contradiction, (Mp); & X.
Casec;” # @,c,~ # @,c5~ = 0. Letthe block B = ¢;7 X c;* X ¢37. We have
Img, = Imzl,t N Imzz,t N Im;,t = Fg, € X, but F5, = Impg, + Kerg, N Imp, S
Img + (Img, ¢ N ImS ¢ + Img, N Img ¢ + Img N Im ) N Imp, S Imp, S X by
Lemma5.4. Note that Fg, = Fz, @ (Mp),. Thus, (Mp); € X. This is a contradiction.
Similarly, we can prove these cases that ¢c;~ # @,c,” = @,c3~ # @ and ¢~ =
D,c;” #FD,c3” Q.
Case c;~ # 0,c,- = 0,c3- = 0. By Lemma5.16, applied with Z = Im;rl’t N
Im} N Im,, ,, thereisacut ¢! such thatt € ¢! and
Im:bt N Imjz,t N Im;,t NKerp1, X 2 Imjl,t N Imé’zjt N Imjg,t N Kerjllt.

Let the block B = (¢;* N ¢’ ) X ¢, X c3. Using Lemma5.4, we have Keréﬁlt c Im;,t N

+ - - + - - +
Img, ¢, Kergzy © Img ¢ N Ime, ¢ and Kergs ¢ © Img, ¢ N Ime, ;. Then

- - + +
ImB’t = Imcllt N Imcz‘t N Imcs’t cX
+ + + - + +
Kerg, NImg; 2 Im¢ ¢ N Img, ¢ N Img, N Kergry & X

Img,t N Kergy = Imzl,t N Imzz‘t N Im;,t N (Kerg1y + Kergz ¢ + Kerga )
CIm} ,NnIm. NnIm N (Kerziy + Im ¢ N Im),  + ImZ ¢ N Im,
= Mc, ¢ ot cat erc1 e + Img, ¢ N Ime, ¢ +Ime ¢ N Ime, )
= Im;rl,t N Imzrz,t N Im:&t NKerg1y +1Img ¢ N Im;rz't N Im:&t cX

Thus, F5, € X 2 Fg. Hence, (M) € X. This is a contradiction.

Similarly, we can prove these cases that c;~ = @,¢c,~ # @,c3~ = @ and ¢;” =
@, Cz_ = @, C3_ * @ |
Lemma5.17: (M+ @ Mp)+ @Mz=M+ & My)PD & My
BzgluBzuBg BZBS B:BluBzuB3 B:Bs
Proof: Assume the opposite, andlett € R3sothat (M+ @  Mp)n( ® Mp), #
B:BluBzuB3 B:Bs

@. Then there exist « € M, ay € (Mp)p-,ar € (Mp); and ayyq €
(Mp,, Jv,an € (Mg, )y, such that By, -+, B, are in B; U B, U Bs, Byyq,+, By are
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in Bs, and we have

r n
a+2ai= 2 a; # 0.
i=1

j=r+1
Because of the shape of these blocks in B; U B, U B3, we may find out some u > t
such that u & Uj_; B;. What’s more, since a« € M, = Imﬂ-%3‘t N Kergsy € Kergs, =
Ker1¢+Kergz2, +Kergs g, we have a = aj +a; +aj forsome a; € Kerg, ¢, a; € Kerg, ¢
and a3 € Ker., ;. By Lemma5.2, there are finite coordinates x > t1,y = t; and z > t3
such that a; € Ker pt(x'tz’t3), a; € Ker pt(tl’y ) and as € Ker pt(tl’tz'z). Let v be a point

with coordinates (max{u,, x}, max{u,, y}, max{us, z}). Then we obtain
T
pY(@+ ) @) =0,
i=1

However, because py restricted to @, ; (M B;)r 1s injective, we have py (Z?zr +pa; 0.

This is a contradiction. Thus (M + D Mp)n & Mg =0. [
B:B:LUBzUBQ' B:BS
Lemma5.18: M+ & Mz=M@® & M,
3331U32U33 B3BluBzuBg
Proof: Assume the opposite, and let t € R3 so that (M), n ( @ Mp): # 0.

B:BluBzuﬂ3
Then there exist o € I\‘7llt, a; € (MBi)t with i = 1, 2, -, n such that By, B, -+, B, are in

Bl V) BZ V) B3 and

n

0(=Zai¢0.

i
Assume that By, -+, By, are in By, By,1,*, B, are in B, and B, 1, **, B, are in Bz. And
assume that none of the ;’s are zero. Because of the shape of these blocks, we may find a
point u = (uy, Uy, u3) = (x,¥,t3) € R3 such thatu & Uz, B;, then pf(Tiepy; @) =
. .o k .. . k
0. Since the restriction of pg' to @;—1 (Mp,); is injective, pt' (X;—; ;) # 0.
Let B = p{(a) € M, and B; = p{'(a;) € (Mg,)y fori =1,-,k

B =Zk:ﬁi # 0.
=1

N v
Now, we have M, € Imgs, = K

R3u- FrOm the proof of Lemma5.2, the collection of

sections {(Fg, w Fg, ), "> (Fz,w F3,u)} is disjoint. Note that iz | < Fg, ,, for every
i, then the collection of sections {(0, Fgs ), (F5,w F5,u) = (Fg,w Fg,u)} is disjoint.
Then according to Lemma5.10, F]R;g 4 18 in direct sum with EB?=1(M B;)u- Because M,

is a subspace of Fﬂgg 4 and F]R:; 4 18 in direct sum with @{-‘zl(M B;)u» the result contradicts
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,322:=1ﬁi # 0. u

Corollary 5.3: M = M @ @ Mp
B:BluBZUB3U735

Through the above discussion, we have extracted all the block submodules of M
except for dead blocks and proved that they are in direct sum. To prove the main theorem,
we only need to prove that the submodule M can also be decomposed as the direct sum
of block modules.

However, we do not directly decompose M but rather decompose the duality M*.
Let M* be the pointwise dual of M, that is (M*), = Hom(M,, k). Since the duality is
a contravariant functor, M* : ((R°?)3,>) — Vecy is a persistence module, where R°P
denoted the poset R with the opposite order >.

So we need the following result.

Lemma 5.19: M* is pfd and satisfies the 3-parameter strong exactness.

Proof: Our proof is mainly divided into two parts. The first part is to prove that for
any r € R, M{r}xRxR satisfies 2-parameter strong exactness, and the proof method
for M|gxgjxr and M|gxgx(r} are similar. The second part is to prove that for any
(51,52,53) < (t1,tz t3) € R3, the morphism ¢ and 1 associated with the persistence
module M are injective and surjective respectively.

Obviously, M is pfd, then M* is pfd.

N(T!SZ!t3) N(T,tz,t3)

| T

N(T!52r53) N(T't2!53)

Firstly, let (1, 5,,83) < (7.t t3) € R3 and take an element § € M(r,tz,tg) that
has preimages f € I\‘7[[(r,t2's3) and y € M(T'Sz,m. Then, by the 3-parameter strong
exactness of M, B and y have a shared preimage « € M, ¢.y. Indeed, we can
prove that @ € M5, 5,). Obviously, we know that a € (p((;"ﬁ;;;;g)-lm(mzm c

(r,ta,t3)\— - _ - , o~
P sesay) L(Kergs (¢, t,)) = Kergs 1,5, 5,)- What’s more, because of f € M1, 5.y €
Imﬂgg’(mzl%), for any u < (7, t,, s3) € R3 with u; = r and u, = t, there is some preim-
age Py of B in My ¢, ..y by the 3-parameter strong exactness, implies that there exists a
shared preimage a,, of a and 8, in M. Thus a € Im:3,(r,52,53)’ where c3 is the trivial cut
that is c3~ = @. Similarly, we can know that a € Im;,(mz,sS) and a € Im;'(mz,ss), in
whichc;” =¢c,” =0. Soa € Imﬂgs

(r5y.55)> and therefore a € M., ..
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In other words, Ml{r}xRxR satisfies the 2-parameter strong exactness. Thus,

M| (r}xRopxRop satisfies the 2-parameter strong exactnesst!l,

Secondly, for any (sq, S2,53) < (t1,t5, t3) € R3, we get a commutative diagram

M(Sl,tz,tg) M(tl,tz,tg)
e —
M(Sl,SZ,t3) M(t1,52,t3)
M(Sl,t2,53) M(tl,tz,s3)
7 7
M(51:52r53) M(tLSZ:SB)

We will denote it as X : P(S) — Vecy that S is a set with |S| = 3, and get the morphism

Q: Tcec;};?g)x (T) = X(S) and morphism ¢ : X (@) — Teljljrol%s)x (7).

Note that forany s < t € R3, we have M, = Im]{{s'tnKer{&s‘t, p}(Imﬁ,s) = Imﬂ{glt and
(p$) "' (Kergs ) = Kergs . Thus for any a € M, we always can find out some 8 € M
such that pt(B) = a. Given Tcecglli?;)X(T) = M5, t,t0) D© Me 5,60y @ Mg, t,55)/ ~
Then for any [a¢ + f + y] € Tcecgi?;)x (T) satisfying ¢([a¢ + f + y]) = 0 in which

1
a € Mg, t,6) B € Mt 5,t,) andy € M ¢ 5.y, we may find out some 7 € M, ¢ 5.9
such that [a + 8 + y] = [7]. Since @([y]) = 0, then p((gigstzg (#) = 0. Therefore, we
can find out some common preimage of ¥ and 0 € M(t Lsyts)s then [a + B +y] =[] =
0 € colim X (T). Thus, ¢ is injective. Obviously, ¢™ is surjective.

TEP, (S)

To proving that ¥ is surjective, suppose oy € Mr 5, 5. @2 € Mg ¢, 5., a3 €
M(S Lsyts)- Because of the 3-parameter strong exactness of M, we may find out @ €

Mi(s, s,.55) Such that a is the common preimage of @y, @, a3. Given that

- _ i _
a, € M(t1,52:53) - ImR?’.(tLSers) n KerR3,(t1rSz,53)’

-1
(t1,52,53)

(51,52,53) = KerR3

KerR3r(t1'52'53) ,(51,52,83)

+ oyt + +
ImR3r(f1'52'53) - ImCl'(tLSz:Ss) n Imcz:(t1152,53) n ImC3:(f1r52'53)'

-1
t1,52,S + +
Because of Lemma5.2, we may prove that Pgsi,s;,s:g IMe, (t,5055) = IMe, (sp,55.5)-

Lemma5.2 told us that there exists some y < s, such that

+ _ (t1,52,53)
ImCZr(f1;52:S3) = P(ty,y.s3) M(f1r3’,53)'

+ _ (51,52,53)
ImCz,(S1.52'53) = P(sy,y.s3) M(s1,y.83)"
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For any B € pgi:jj:::g_1Im:2,(t1,52'53), we may find out y € M, 5,y such that
pgll;zs?)) (y) = pgizizg (B). By the 2-parameter strong exactness, there is a preim-
age § € M, 5,y of B and y, then § € pgi‘;fs‘g)M(Sl‘y&) = Imz'-z,(51.52,53)' So we
have proven pgiggg _1Im2'2,(t1’52,53) = Imjz,(sl,spsg)- Similarly, we can prove that
pg;’j;’jgg_1Im:3'(t1,52,53) = Im:3,(51,52,53), then ¢ € ImZZr(51r52'53) N Im;’(sl’sb%). In

the same way, by considering a as a preimage of a, and a5 respectively, we can prove
+ + + +
that @ € Im¢, (5, 5,5, N IMe, (s, 5,5, and @ € Img, (5, 50 oy N IMe, (5 6 6. We have

+ + + +
proven that @ € Im¢ (s 5, ) N IMe, (5 o o) N IMe, (5 5,5y = Imps Thus

/(51,52,53)"
a € Imﬂgs,s N Kergs g = M, and the morphism v is surjective. Obviously, the duality of
Y, Y™, is injective.

So M* satisfies the 3-parameter strong exactness.

By the above lemma, we know that M* can also be decomposed like the above de-

composition of M.

Lemma 5.20: For any t € (R°P)3, Imz_Rop)3't(M*) =0.
Proof: Let X+ denote the annihilator of any subspace X € M;:
X+ ={¢(a) =0 forall a € X}.
Because the annihilator operation transforms sums into intersections and kernels into im-
ages, then
(Kergs «(M))* = (Kerz1 (M) + Kerz (M) + Ker_z ((M))*
= Im1 ((M*) N Imyz  (M*) N ImJz  (M*) = Imgopys (V")

Note that M, = Im£3’t(M) N Kergs (M), so Kergs (M) = M. Thus Img-Rop)s't(M*) =
(Mt)J— = O |

Based on the previous results, we know that the module M* can be decomposed
into the direct sum of block modules, which are of the type By, B;, B3, Bs. Then the
submodule M can be decomposed into the direct sum of block modules, which are the

type OfBl,Bz,B3, 34.

Thus, we have proved our main theorem.

Theorem 5.2: M = Sla kMB in which Mg = @;%, kg in which ng are determined by
B:bloc

the counting functor CF, i.e. Corollary5.2.
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CONCLUSION

In this chapter, we will review the main contributions of our work on persistence
modules. Our research addresses two central topics in persistence modules: decomposi-
tion and stability. These results can advance our understanding of persistent modules.

Our main contributions are summarized below:

(1) Using the language of category theory, we have reformulated the strong exactness
condition for 2-parameter persistence modules, which allows us to effortlessly generalize
the strong exactness condition for 2-parameter persistence modules to the 3-parameter
case.

(2) Prove the block-decomposition theorem of 3-parameter persistence modulesM :
R3 - Veey. This laid the foundation for our future research on the rectangle decomposi-
tion of 3-parameter persistence modules.

(3) Define the persistence minimal free Lie model M,,; (X) for any rational R-space
X : R — Topg and prove the existence of persistence minimal free Lie models. This
result indicates that we can consider more algebraic models for R-spaces, and such alge-
braic models are also persistent modules, which are more refined than the algebraic mod-
els obtained by directly computing the homology or homotopy groups of these spaces.
Moreover, as demonstrated by the examples we provided, we can concretely construct
persistence free Lie models for some rational R-spaces.

(4) Discuss and prove the stability of persistence free Lie models.

We still have some issues that we haven’t discussed yet. Botnan et al.['>] have pro-
posed and demonstrated the necessary and sufficient conditions for the rectangle decom-
position of 2-parameter persistence modules. However, we still do not know the necessary
and sufficient conditions for the rectangle decomposition of higher-dimensional persis-
tence modules, and even the 3-parameter case. Therefore, our next step is to investigate
the rectangle decomposition of 3-parameter persistence modules and attempt to extend
this research to the case of n-parameter with any n > 3.

On the other hand, for rational R-space X : R — Topy, we have defined and proven
the existence of the persistence minimal free Lie model My,,;(X) : R — DGL. However,
we are aware that L,-algebras are algebraic models that are closer to homotopy than Lie

algebras. We aim to attempt the construction of a persistence L., model for rational R-
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spaces and to discuss its stability.

Moreover, regarding the decomposition problem of multi-parameter persistence
modules, since the direct sum decomposition is a special case of filtration, some scholars
believe that we can consider the filtration of persistence modules like how we consider the
filtration of topological spaces. By doing so, we hope to obtain decomposition theorems

for persistence modules, thereby deriving discrete invariants of persistence modules.

88



REFERENCES

[5]

[6]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

ABDULLAHI M S, SURATANEE A, PIRO R M, et al. Persistent Homology Identifies Path-
ways Associated with Hepatocellular Carcinoma from Peripheral Blood Samples[J]. Mathe-
matics, 2024, 12(5): 725.

ADAMS H, CARLSSON G. Evasion paths in mobile sensor networks[J]. The International
Journal of Robotics Research, 2015, 34(1): 90-104.

BAKKE BJERKEVIK H. On the stability of interval decomposable persistence modules[J].
Discrete & Computational Geometry, 2021, 66(1): 92-121.

BAUER U. Ripser: efficient computation of Vietoris—Rips persistence barcodes[J]. Journal of
Applied and Computational Topology, 2021, 5(3): 391-423.

BAUER U, KERBER M, ROLL F, et al. A unified view on the functorial nerve theorem and
its variations[J]. Expositiones Mathematicae, 2023, 41(4): 125503.

BAUER U, LESNICK M. Induced matchings and the algebraic stability of persistence bar-
codes[J]. arXiv preprint arXiv:1311.3681, 2013.

BELCHI F. Optimising the Topological Information of the A_ oo Aco-Persistence Groups[J].
Discrete & Computational Geometry, 2019, 62:29-54.

BELCHI F, MURILLO A. Aco-persistence[J]. Applicable Algebra in Engineering, Commu-
nication and Computing, 2015, 26(1): 121-139.

BELCHI F, STEFANOU A. A persistent homology estimates detailed topology from point-
cloud datasets[J]. Discrete & Computational Geometry, 2022, 68(1): 274-297.

BHATTACHARYA S, GHRIST R, KUMAR V. Persistent homology for path planning in
uncertain environments[J]. IEEE Transactions on Robotics, 2015, 31(3): 578-590.

BJERKEVIK H B. Stability of higher-dimensional interval decomposable persistence modules
[J]. arXiv preprint arXiv:1609.02086, 2016.

BLUMBERG A, LESNICK M. Universality of the homotopy interleaving distance[J]. Trans-
actions of the American Mathematical Society, 2023, 376(12): 8269-8307.

BLUMBERG A J, LESNICK M. Stability of 2-parameter persistent homology[J]. Foundations
of Computational Mathematics, 2024, 24(2): 385-427.

BORSUK K. On the imbedding of systems of compacta in simplicial complexes[J]. Funda-
menta Mathematicae, 1948, 35(1):217-234.

BOTNAN M B, LEBOVICI V, OUDOT S. On rectangle-decomposable 2-parameter persis-
tence modules[J]. Discrete & Computational Geometry, 2022, 68(4): 1078-1101.

BRITO-PACHECO D A, REYES-ALDASORO C C, GIANNOPOULOS P. Persistent Ho-
mology in Medical Image Processing: A Literature Review[J]. medRxiv, 2025:2025-02.

BUBENIK P, SCOTT J A. Categorification of persistent homology[J]. Discrete & Computa-
tional Geometry, 2014, 51(3): 600-627.

89



REFERENCES

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

BUBENIK P, SCOTT J A. Categorification of Persistent Homology[J/OL]. Discrete & Com-
putational Geometry, 2014, 51(3): 600-627. http://dx.doi.org/10.1007/s00454-014-9573-x.
DOI: 10.1007/s00454-014-9573-x.

BUCHET M, HIRAOKA Y, OBAYASHI I. Persistent homology and materials informatics[J].
Nanoinformatics, 2018: 75-95.

BUIIS U, FELIX Y, MURILLO A. rational homotopy of mapping spaces[J]. Revista
Matematica Complutense, 2013, 26(2): 573-588.

CARLSSON E, CARLSSON J. Computing the alpha complex using dual active set quadratic
programming[J]. Scientific Reports, 2024, 14(1): 19824.

CARLSSON G. Topology and data[J]. Bulletin of the American Mathematical Society, 2009,
46(2): 255-308.

CARLSSON G, ZOMORODIAN A. The theory of multidimensional persistence[C]/ /
Proceedings of the twenty-third annual symposium on Computational geometry. 2007: 184-
193.

CARLSSON G, ZOMORODIAN A, COLLINS A, et al. Persistence barcodes for shapes[C]
/ /Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry pro-
cessing. 2004: 124-135.

CHAN J M, CARLSSON G, RABADAN R. Topology of viral evolution[J]. Proceedings of
the National Academy of Sciences, 2013, 110(46): 18566-18571.

CHAZAL F, COHEN-STEINER D, GLISSE M, et al. Proximity of persistence modules and
their diagrams[C]/ /Proceedings of the twenty-fifth annual symposium on Computational ge-
ometry. 2009:237-246.

CHAZAL F, COHEN-STEINER D, GUIBAS L J, et al. Gromov-Hausdorff stable signatures
for shapes using persistence[C]/ / Computer Graphics Forum: vol. 28: 5. 2009: 1393-1403.
CHAZAL F, DE SILVA V, GLISSE M, et al. The structure and stability of persistence mod-
ules: vol. 10[M]. Springer, 2016.

CHUNG Y M, CRUSE W, LAWSON A. A persistent homology approach to time series clas-
sification[J]. arXiv preprint arXiv:2003.06462, 2020.

CISINSKI D C. Higher categories and homotopical algebra: vol. 180[M]. Cambridge Univer-
sity Press, 2019.

COCHOY J, OUDOT S. Decomposition of exact pfd persistence bimodules[J]. Discrete &
Computational Geometry, 2020, 63(2): 255-293.

COHEN-STEINER D, EDELSBRUNNER H, HARER J. Stability of persistence diagrams
[C]/ /Proceedings of the twenty-first annual symposium on Computational geometry. 2005:
263-271.

CORDIER J M, PORTER T. Vogt’s theorem on categories of homotopy coherent diagrams
[C]/ /Mathematical Proceedings of the Cambridge Philosophical Society: vol. 100: 1. 1986:
65-90.

CRAWLEY-BOEVEY W. Decomposition of pointwise finite-dimensional persistence mod-
ules[J]. Journal of Algebra and its Applications, 2015, 14(05): 1550066.

90


http://dx.doi.org/10.1007/s00454-014-9573-x
https://doi.org/10.1007/s00454-014-9573-x

REFERENCES

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

DABAGHIAN Y, MEMOLI F, FRANK L, et al. A topological paradigm for hippocampal
spatial map formation using persistent homology[J]. 2012.

DE SILVA V, CARLSSON G E. Topological estimation using witness complexes.[C]/ /PBG.
2004: 157-166.

DE SILVA V, GHRIST R. Coverage in sensor networks via persistent homology[J]. Algebraic
& Geometric Topology, 2007, 7(1): 339-358.

De ROSE S, MEYER P, BERTRAND F. Human Body Shapes Anomaly Detection and Clas-
sification Using Persistent Homology[J]. Algorithms, 2023, 16(3): 161.

DEY T K, KIM W, MEMOLI F. Computing generalized rank invariant for 2-parameter per-
sistence modules via zigzag persistence and its applications[J]. Discrete & Computational Ge-
ometry, 2024, 71(1): 67-94.

EDELSBRUNNER H, HARER J L. Computational topology: an introduction|M]. American
Mathematical Society, 2022.

Edelsbrunner, Letscher, Zomorodian. Topological persistence and simplification[J]. Discrete
& computational geometry, 2002, 28: 511-533.

EISENBUD D. Commutative algebra: with a view toward algebraic geometry: vol. 150[M].
Springer Science & Business Media, 2013.

EMRANI S, GENTIMIS T, KRIM H. Persistent homology of delay embeddings and its ap-
plication to wheeze detection[J]. IEEE Signal Processing Letters, 2014, 21(4): 459-463.

ESCOLAR E G, MEEHAN K, YOSHIWAKI M. Interleavings and matchings as represen-
tations[J]. Applicable Algebra in Engineering, Communication and Computing, 2023, 34(6):
965-993.

FELIX Y, HALPERIN S, THOMAS J C. Rational homotopy theory: vol. 205[M]. Springer
Science & Business Media, 2012.

FELIX Y, HALPERIN S. Rational homotopy theory via Sullivan models: a survey[J]. arXiv
preprint arXiv:1708.05245, 2017.

FERSZTAND M. Harder-Narasimhan filtrations of persistence modules: metric stability[J].
arXiv preprint arXiv:2406.05069, 2024.

FERSZTAND M, JACQUARD E, NANDA V, et al. Harder—Narasimhan filtrations of persis-
tence modules[J]. Transactions of the London Mathematical Society, 2024, 11(1): €70003.

FERSZTAND M, NANDA V, TILLMANN U. Harder-Narasimhan filtrations and zigzag per-
sistence[J]. Advances in Applied Mathematics, 2024, 153: 102634.

GABRIEL P. Unzerlegbare darstellungen I[J]. Manuscripta mathematica, 1972, 6: 71-103.
GHRIST R W. Elementary applied topology: vol. 1[M]. Createspace Seattle, 2014.

GINOT G, LERAY J. Multiplicative persistent distances[J]. arXiv preprint arXiv:1905.12307,
2019.

GIUSTI C, PASTALKOVA E, CURTO C, et al. Clique topology reveals intrinsic geometric
structure in neural correlations[J]. Proceedings of the National Academy of Sciences, 2015,
112(44): 13455-13460.

91



REFERENCES

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

GROTHENDIECK A. Eléments de géométrie algébrique: III. Etude cohomologique des fais-
ceaux cohérents, premiére partie[J]. Publications Mathématiques de I’'THES, 1961, 11: 5-167.
HATCHER A. Algebraic topology[M]. i H K Hi il R A =], 2005.

HAWASLY M, RAMAMOORTHY S8, et al. Multiscale topological trajectory classification
with persistent homology[G]/ /Proceedings of Robotics: Science and Systems X 2014. 2014.
HENSEL F, MOOR M, RIECK B. A survey of topological machine learning methods[J].
Frontiers in Artificial Intelligence, 2021, 4: 681108.

HEO E, JUNG J H. Persistent homology of featured time series data and its applications[J].
arXiv preprint arXiv:2405.04796, 2024.

HILL M A, HOPKINS M J, RAVENEL D C. Equivariant Stable Homotopy Theory and the
Kervaire Invariant Problem: vol. 40[M]. Cambridge University Press, 2021.

HINICH V. DG coalgebras as formal stacks[J]. Journal of pure and applied algebra, 2001,
162(2-3):209-250.

HIRSCHHORN P S. Model categories and their localizations|[M]. American Mathematical
Soc., 2003.

HOVEY M. Model categories[M]. American Mathematical Soc., 2007.

HUBER 8. Persistent homology in data science[C]/ /Data Science—Analytics and Applica-
tions: Proceedings of the 3rd International Data Science Conference—iDSC2020. 2021: 81-88.
JIANG Y, CHEN D, CHEN X, et al. Topological representations of crystalline compounds for

the machine-learning prediction of materials properties[J]. npj computational materials, 2021,
7(1):28.

KAHLE M. The neighborhood complex of a random graph[J]. Journal of Combinatorial The-
ory, Series A, 2007, 114(2): 380-387.

KASHIWARA M, SCHAPIRA P. Persistent homology and microlocal sheaf theory[J]. Journal
of Applied and Computational Topology, 2018, 2(1): 83-113.

KHASAWNEH F A, MUNCH E. Chatter detection in turning using persistent homology[J].
Mechanical Systems and Signal Processing, 2016, 70: 527-541.

KIM W, MEMOLI F. Generalized persistence diagrams for persistence modules over posets
[J]. Journal of Applied and Computational Topology, 2021, 5(4): 533-581.

KONTSEVICH M. Deformation quantization of Poisson manifolds[J]. Letters in Mathemati-
cal Physics, 2003, 66: 157-216.

LANARIE, SCOCCOLA L. Rectification of interleavings and a persistent Whitehead theorem
[J]. Algebraic & Geometric Topology, 2023, 23(2): 803-832.

LEBOVICI V, LERCH J P, OUDOT S. Local characterization of block-decomposability for
3-parameter persistence modules[J]. arXiv preprint arXiv:2402.16624, 2024.

LEE Y, BARTHEL S D, DLOTKO P, et al. Quantifying similarity of pore-geometry in

nanoporous materials[J]. Nature communications, 2017, 8(1): 1-8.

LERAY J. Sur la forme des espces topologiques et sur les points fixes des representations[J].
J. Math. Pures Appl., 1945, 9: 95-248.

92



REFERENCES

[74]

[75]

[76]

[77]

[78]

[86]

[87]

[88]
[89]
[90]

[91]

[92]

LERCH JP. A generalised block decomposition theorem([J]. arXiv preprint arXiv:2402.19228,
2024.

LESNICK M. The theory of the interleaving distance on multidimensional persistence mod-

ules[J]. Foundations of Computational Mathematics, 2015, 15(3): 613-650.

LIS, LIU Y, CHEN D, et al. Encoding the atomic structure for machine learning in materials
science[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12(1):
e1558.

LUPO U, MEDINA-MARDONES A M, TAUZIN G. Persistence Steenrod modules[J]. Jour-
nal of Applied and Computational Topology, 2022, 6(4): 475-502.

MARIA C, BOISSONNAT J D, GLISSE M, et al. The gudhi library: Simplicial complexes and
persistent homology[C]/ /Mathematical Software—ICMS 2014: 4th International Congress,
Seoul, South Korea, August 5-9, 2014. Proceedings 4. 2014: 167-174.

MAY J P, PONTO K. More concise algebraic topology: localization, completion, and model
categories[M]. University of Chicago Press, 2011.

MCCLEARY J. A user’s guide to spectral sequences|M]. Cambridge University Press, 2001.
MILNOR J W. Morse theory[M]. Princeton university press, 1963.

MUNKRES J R. Elements of algebraic topology[M]. CRC press, 2018.

OUDOT S, SCOCCOLA L. On the stability of multigraded Betti numbers and Hilbert func-
tions[J]. SIAM Journal on Applied Algebra and Geometry, 2024, 8(1): 54-88.
OUDOT S Y. Persistence theory: from quiver representations to data analysis: vol. 209[M].

American Mathematical Society Providence, 2015.

PEREA J A, DECKARD A, HAASE S B, et al. SW1PerS: Sliding windows and 1-persistence
scoring; discovering periodicity in gene expression time series data[J]. BMC bioinformatics,
2015, 16: 1-12.

POKORNY F T, GOLDBERG K, KRAGIC D. Topological trajectory clustering with relative
persistent homology[C]/ /2016 TEEE International Conference on Robotics and Automation
(ICRA). 2016: 16-23.

PRITCHARD Y, SHARMA A, CLARKIN C, et al. Persistent homology analysis distin-
guishes pathological bone microstructure in non-linear microscopy images[J]. Scientific Re-
ports, 2023, 13(1): 2522.

PROSINTI P. Discrete computation of size functions[J]. 1992.

QUILLEN D. Rational homotopy theory[J]. Annals of Mathematics, 1969, 90(2): 205-295.

RATHORE A. Topological Data Analysis and Visualization for Interpretable Machine Learn-
ing[D]. The University of Utah, 2023.

RAVISHANKER N, CHEN R. An introduction to persistent homology for time series[J]. Wi-
ley Interdisciplinary Reviews: Computational Statistics, 2021, 13(3): e1548.

REITBERGER H. Leopold Vietoris (1891-2002)[J]. NOTICES-AMERICAN MATHEMAT-
ICAL SOCIETY, 2002, 49(10): 1232-1236.

93



REFERENCES

[93]

[94]
[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]
[103]
[104]

[105]

[106]

ROBINS V. Towards computing homology from finite approximations[C]/ / Topology pro-
ceedings: vol. 24: 1. 1999: 503-532.

SCHIFFLER R. Quiver representations: vol. 1[M]. Springer, 2014.
SHIKHMAN V. Topological aspects of nonsmooth optimization: vol. 64[M]. Springer Science
& Business Media, 2011.

SKRABA P, VEIDEMO-JOHANSSON M. Persistence modules: algebra and algorithms[J].
arXiv preprint arXiv:1302.2015, 2013.

SPANNAUS A, HANSON H A, TOURASSI G, et al. Topological Interpretability for Deep
Learning[C]/ /Proceedings of the Platform for Advanced Scientific Computing Conference.
2024:1-11.

TAN E, ALGAR S, CORREA D, et al. Selecting embedding delays: An overview of embed-
ding techniques and a new method using persistent homology[J]. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 2023, 33(3).

TOWNSEND J, MICUCCI C P, HYMEL J H, et al. Representation of molecular structures
with persistent homology for machine learning applications in chemistry[J]. Nature commu-
nications, 2020, 11(1): 3230.

VIEIRA E R, NAKHIMOVICH D, GAO K, et al. Persistent homology for effective non-
prehensile manipulation[C]/ /2022 International Conference on Robotics and Automation
(ICRA). 2022:1918-1924.

VIPOND O, BULL J A, MACKLIN P S, et al. Multiparameter persistent homology landscapes
identify immune cell spatial patterns in tumors[J]. Proceedings of the National Academy of
Sciences, 2021, 118(41):e2102166118.

VOGT R M. Homotopy limits and colimits[J]. Mathematische Zeitschrift, 1973, 134: 11-52.
WEIL A. Sur les théorémes de de Rham[J]. Comment. Math. Helv, 1952, 26(1): 119-145.

YAN Z,MA T, GAO L, et al. Neural approximation of graph topological features[J]. Advances
in neural information processing systems, 2022, 35:33357-33370.

ZHOU L. Persistent Sullivan Minimal Models of Metric Spaces[J]. arXiv preprint
arXiv:2310.06263, 2023.

ZOMORODIAN A, CARLSSON G. Computing persistent homology[C]/ /Proceedings of
the twentieth annual symposium on Computational geometry. 2004: 347-356.

94



ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my family, espe-
cially my spouse and my mother. Throughout the long years of my doctoral studies, they
have consistently provided me with unwavering support and encouragement. It is their
companionship and understanding that have kept me steadfast on my academic journey.
Secondly, I am profoundly grateful to my doctoral advisors, Professor Fang Fuquan and
Assistant Professor Zhu Yifei. They have offered me meticulous guidance and selfless
assistance in my research and studies, not only helping me achieve academic growth but
also providing invaluable advice and support during critical moments of my job search.
Additionally, I would like to thank my classmates and friends, whose companionship and
encouragement have filled my research path with warmth and joy.

Lastly, I want to extend a special thanks to my child, Yi Weihang. Your arrival has
illuminated my entire world like a gentle boat docking into the harbor of life, filling me

with courage and hope like never before.

95



RESUME AND ACADEMIC ACHIEVEMENTS

RESUME AND ACADEMIC ACHIEVEMENTS

Resume

Yi Siheng was born in August 1994, in Leshan, Sichuan, China.

Education Experience

* In August 2013, he was admitted to Chengdu University of Technology (CDUT).
In June 2017, He obtained a Bachelor of Science in Information and Computing Science
from the College of Management Science, CDUT.

* In September 2017, he began his graduate studies in the School of Mathematical
Sciences at Nankai University (NKU) and earned a Master of Science (M.S.) degree in
Mathematics in July 2020.

* Since September 2021, he has been pursuing a Doctor of Science (D.Sc.) degree
in Mathematics at the Department of Mathematics, Southern University of Science and

Technology (SUStech).

Work Experience

* Electric Energy Trading Center (under establishment) of China Three Gorges Cor-
poration, Intern (June 2019 - July 2019).

 Hainan Micro-City Future School, Math Teacher (October 2020 - December 2020).

* Southern University of Science and Technology, Research Assistant (December

2020 - July 2021).

Awards and Fellowships

* Gongneng Scholarship, Nankai University, December 2019.
* Excellence Scholarship, Nankai University, November 2018.
* National Encouragement Scholarship, Sichuan Provincial Department of Educa-

tion, December 2014.

96



RESUME AND ACADEMIC ACHIEVEMENTS

Academic Achievements during the Study for an Academic
Degree

Academic Articles

* Pingyao Feng, Siheng Yi, Qingrui Qu, Zhiwang Yu, Yifei Zhu. Topology com-
bined machine learning for consonant recognition. arXiv:2311.15210 [cs.LG], 2023.

» Siheng Yi.  Block-Decomposition for 3-Parameter Persistence Modules.
arXiv:2505.08391 [math.AT], 2025.

» Siheng Yi. Persistence Minimal Free Lie Model. arXiv:2505.08373 [math.AT],
2025.

Research Projects Involved In

* National Natural Science Foundation of China (NSFC) General Program grant
12371069, Methods of algebraic topology to study moduli spaces: with applications to

homotopy theory, condensed matter physics, and time series analysis (participant).

97



	关于持续模结构的研究
	学位论文公开评阅人和答辩委员会名单
	摘要
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF SYMBOLS AND ACRONYMS
	Chapter 1 Introduction
	1.1 Background
	1.2 Statement of Results
	1.3 Outline

	Chapter 2 Persistent Homology and Persistence Modules
	2.1 Persistent Homology
	2.2 1-Parameter Persistence Modules
	2.3 Multi-Parameter Persistence Modules
	2.4 Harder-Narasimhan Filtrations of Persistence Modules

	Chapter 3 The Stability of Persistence Modules
	3.1 Stability of Persistent Homology
	3.2 Interleaving Distance
	3.3 Homotopy Interleaving Distance

	Chapter 4 Persistence Rational Homotopy
	4.1 Persistence Minimal Sullivan Models
	4.1.1 Minimal Sullivan Models
	4.1.2 Persistence Minimal Sullivan Models

	4.2 Persistence Minimal Free Lie Models
	4.2.1 Free Lie Models
	4.2.2 Persistence Free Lie Models


	Chapter 5 Block-Decomposable Persistence Modules
	5.1 The Block-Decomposition of 2-Parameter Persistence Modules
	5.2 The Block-Decomposition of 3-Parameter Persistence Modules
	5.2.1 Some Basic Definitions and Results
	5.2.2 Find Block Submodules in M
	5.2.3 The Direct Sum Decomposition


	CONCLUSION
	REFERENCES
	ACKNOWLEDGEMENTS
	RESUME AND ACADEMIC ACHIEVEMENTS


