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ABSTRACT

ABSTRACT

Chromatic homotopy theory has been well developed since the periodic phenomenon
manifested in computations of homotopy groups for certain types of spaces or spectra. It
builds a bridge between obejcts in algebraic topology—complex oriented spectra and ob-
jects in algebraic geometry—formal groups. The crucial objects in chromatic homotopy
theory are Morava K-theories and Morava E-theories. They correspond to height n for-
mal groups and their deformations. On the other hand, cohomology operations such as
Steenrod operations, Adam operations are crucial tools in the study of algebraic topol-
ogy. Their basic and simple properties have illustrated many highly nontrivial results in
algebraic topology. These operations are special types of power operations.

The study of power operations on Morava E-theory has been well developed by
Ando, Hopkins and Strickland. Their works established a deep connection between the
total power operations on Morava E-theory and deformations of formal groups with level
structures. In particular, Strickland calculated the Morava E-theory of symmetric groups
E*BY,, and showed its dual is the completed E-homology of symmetric groups. Hence
one can compute the Dyer-Lashof algebra of K(n)-local E-algebras. However, an E-
algebra need not to be K (n)-local.

From this point of view, we study the K (n— 1)-local E-algebras, which are equivalent
to K(n — 1)-local Lk ,_1)E,-algebras. In this dissertation, we calculate the Lg,_1)E,
cohomology of symmetric groups. It is free over 7, Lg,_1)E,. Then we interpret the
total power operation on Lk (,,_1E), in terms of augmented deformations of formal groups
over imperfect fields, k((x)) to be explicit, and subgroups. We also using the theory of Tate
cohomology deduce an analogue duality between L ,_1)E,-cohomology of symmetric
groups and the corresponding completed homology. This allow us to interpret the Dyer-
Lashof algebra over K (n — 1)-local E-algebras as the dual of Lg,_)E;BX.

In the height n = 2 case, we calculate an explicit formula of the total power opera-
tion on Lk (1,E, and explained the relation between our computations and elliptic curves.
Roughly speaking, this total power operation is encoded in the Hasse invariant of the tar-
get curve along a universal degree p isogeny. From the modular forms point of view, it is

the image of the Atkin-Lehner involution of the Hasse invariant of the source curve.

I
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

Cohomology operations are crucial in algebraic topology. It equips cohomology
rings with more richer algebraic structures. Many non-trivial results have roots in these
operations. For instance, the Steenrod mod-p operations in mod—p cohomology -2, the
Adams operations3! in the topological K —theory[*! are related directly to the Hopf invari-
ant one problem>-®! and the image of the stable J-homomorphism!7!. These operations
are examples of power operations.

Let E be a multiplicative cohomology theory, or equivalently, a homotopy commu-
tative ring spectrum. Suppose E admits an E., structure® (Chapter 1,2), i.e., its mul-
tiplication structure E A E %, E commutes not only up to homotopy, but up to higher

homotopy coherence. In this case, one can define the fotal power operation
P,:E° — EOBY,,

where BY, is the classifying space of the n—letters permutation groups. See Section 3.2
for detailed constructions. Some of the many important applications of power operations
can be found in[®-111 etc.

For a spectrum X, the chromatic fracture square and the chromatic convergence the-
orem suggest that one can break X into pieces, Lk, X namely, lying in each chromatic
layer and recover itself via patching all these pieces together, at least in good circumstance.
Transchromatic homotopy theory studies such chromatic layers. A fundamental and vi-
tal object in transchromatic homotopy theory is the K (¢)—localized Morava E—theory
LgE, fort < n.

Various work has been devoted to the study of Lk, E,. In12] Stapleton con-
structed associated character theory over it using p—divisible groups. He and Schlank also
gave a transchromatic proof of Strickland’s theorem based on such characters and inertia
groupoid functors!!3l. The spectrum L 1 E, itself is quite complicated. The coeflicient

ring 7oLk E,, is obtained by first inverting u, in
moE, = Wk)[[uy, ..., u,_1]]

then partially completing with the ideal (p,uq,...,u,_1). This ring is known to be ex-

cellent!'*]. Various different topology could be defined over it. From this point of view,
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Mazel-Gee, Peterson and Stapleton proposed a modular interpretation of 7, Ly, E, in
terms of pipe rings and pipe formal groups!3l. While when # = n — 1, things are slightly
easier, oLk ,_1)E, is still a complete local Noetherian ring with an imperfect residue
field k((u,,_)). Torii compared Lg ,_;)E, with E,_; by studying the associated formal
groups!®!17! and Vankoughnett gave a modular interpretation of Lk ,_1)E, using aug-
mented deformations!'8), which is basically deformations of formal groups together with
a choice of the last Lubin-Tate coordinates. (See Section 2.3 for definitions.)

Motivated by Vankoughnett’s result, in this paper, we investigate the modular in-
terpretation of the total power operation on the K(n — 1) -localized Morava E-theory
Lg (n-1)E, at height n.

Let F' = Lg,-1)E,, and G be the associated formal group. Let GY. be the fiber of
G g over the residue field k((«,,_;)) of F 0. We showed that
Theorem A (Theorem 3.3): The ring R,, = F OBZPm /1 classifies augmented defor-
mations of GY. together with a degree p™ subgroup, which means for any complete local

Noetherian ring R, we have a bijection
Map ., (R,,,R) = {(K,H)}

between the set of continuous maps from R,, to R and the set of pairs consisting of an
augmented deformation K of G% over R and a degree p™ subgroup H of K.

Moreover, the additive total power operation
yh: FO — FOBY /I

behaves like take the quotient, i.e.
(wh)* 0
Mapcts (RWL’R) - Mapcts(F ,R)

(K,H) — K/H.

Our result is an attempt to understand the full picture of power operations in chro-
matic setting by studying power operations on each associated K (n)-local monochromatic
layer. The author also guesses that the algebraic information about the choice of the last
Lubin-Tate coordinates has its own modular interpretation in terms of the étale part of G,
when considered as a p-divisible group over 7Lk ,-1)E,.

Let R be an E_, ring. The homotopy group of an R-algebra A possesses a module
structure over the Dyer-Lashof algebra DLp. The Dyer-Lashof algebra is a generaliza-
tion of Steenrod algebra in generalized cohomology setting, which governs all homotopy

operations.
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Our second result concerns Dyer-Lashof algebra over K(n — 1)-local E, -algebras.
Using Tate spectrum, we show the Lk ,_1)E,, theory for symmetric groups is self-dual
which leads to the following.

Theorem B (Proposition 3.10): The Dyer-Lashof algebra over K (n — 1)-local E,,-
algebras is

DL,z = (P FyBZ,,

m>1

where F' = Lg,_1)E,. Moreover we have
F,Bx,, = F'Bx,,
and thus we have
Fy,BX,, = Homyo(F°BX,,, F°)

is the dual of FOBYX. . The primitives in the left hand side correspond to indecomposables
in the right hand side.
This allows us to find a presentation of DL; 5 in terms of coefficients of the total
power operation ., as what have been done in the K (n)-local E,-algebra setting.
When the height n = 2, there is a connection between the spectrum Lg ;,E, and
elliptic curves. Recall that there is a sheaf of E, rings ©°P defined over the étale site

(Mb ;) 4, which assigns each elliptic curve
C : Spec(R) — %e”

an £ ring Elg (191 The p-completed stack (/b,;;) p can be decomposed into supersingular
—ss —ord
part b, and ordinary part /,; . Hence we have a chromatic fracture square for p-

completed Tmf 201

Tmf, ——— Lg)Tmf

l l

Lgq)Tmf —— Lg)Lg@2)Tmf.

In the above diagram, the right up corner Ly o) Tmf is a variation of Morava E-theories
of height 2 and the right lower corner is thus a kind of K (1)-localized E,. The spectrum
Lk 1)E> can be viewed as the intersection of ©'°7 over %21 and %zlrld, which corre-
sponds to a punctured formal neighborhood of a supersingular point, as illustrated in the
following picture.

Our third result concerns the total power operation on Lk ;,E,. The Dyer-Lashof

algebra structure over Lg (1)E; is clear. It is a free §—algebra on one generator as stated

3
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ord
/”f 1l

Figure 1-1 Spectra on p completed stack %e 1

in[211, Via the naturality of total power operations, we obtained the explicit formula of the
total power operation on Lg 1) E>.

Theorem C (Theorem 4.6): Let F be a K (1)-local Morava E-theory at height 2. The
total power operation y%. on F 0 is determined by

P P
ph(h) = a*+ ) (@)Y wed; .. (1.0.1)
i=0 =1

where
a* = (-1Ptp.p7l 4 (1 + (—l)erlp(pT_l))p3 -h73 + lower terms (1.0.2)
is the unique solution of
w(h,a) = (a=p)(a+ (=1)")? = (h-p* + (-1)")a

in W(F,)(h)) = FO.

The other coefficients w; and d; . are defined as

w; = (=1)PP=i+D [(ifl) + (—1>P+1p(’§)]

-1
— T—Ny,,N
dir = Z (=D)*"wg Z Wi, = Wi
n=0 my+-Mp_,=T+I
1<mg<p+1

My _,2i+1

and

In particular, y". satisfies the Frobenius congruence, i.e.

wh-(h) = h” modp

Remark 1.1: The element a* in 1.0.2 is the restriction of a modular form a of 'y (p)
over the punctured formal neighborhood of a supersingular point, which parametrizes

subgroups of elliptic curves, and 4 is a lift of Hasse invariant.
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The modular form « is sometimes called a norm parameter for T o (p) 122! (7.5.2),123
(Section 4.3). Choosing a coordinate u on elliptic curves with a I'y(p) structure, i.e. a
degree p subgroup, one has

a = ]—[ u(Q)
Qe¥ P -0
where %) is a degree p subgroup. Note that this implies a depends on the choice of u.
(Remark 1.2)

The element y7-(h) is actually the image of & under the Atkin-Lehner involution, see
Section 3.2 and (22 (Chapter 11) for details.

Remark 1.2: Our computation depends on a specific model for Morava E-theories

(Definition 2.23). The extent of this dependence can be found in?*! (Remark 2.25).

[24]

This result can be viewed as a first step toward to the total power operation on the
p-completed Tmf. Our analysis fits in the boxed regions in the diagram below 24! (Page
3).

G=T,(V) ) derived version of
moduli of €00 — L, moduliof ECLr | (v Y 5 moduli of €

to be understood as G varies

at cusps atas.s point | Serre-Tate

Ando-Hopkins-Strickland
moduli of Quasi&0L moduli of E moduli of G
/YG Q Rezk ;
o
has power operations K (1)-localization base change

moduli of L, E }\ moduli of G

punctured formal neighborhood
of a supersingular point

Here E is a height 2 Morava E-theory, €, is a universal elliptic curve with an N torsion
point and G is the universal deformation of the associated height 2 formal group of € 5

at a supersingular point.

1.1 Literature review

Calculating the stable homotopy group of spheres is always a central scene in al-

gebraic topology. The original method was due to Serre!?>2%! using the Hurewicz theo-
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rem?7] and Serre spectral sequence!?8]. It was founded that there are some periodic fam-
ilies in the stable homotopy group of spheres by Toda!?®], Smith and TodaB%31, Miller,

(321 etc. In the recent progress of computing stable stems[33-36] and

Ravenel and Wilson
in particular, the motivic homotopy theory involved 37381, there are also periodic families
which beyond the framework of classical settings 3921,

Recently, with the development of technique of algebraic Novikov spectral sequence
and the synthetic method, Lin-Wang and Xu had successfully computed the 126th stable
homotopy group of sphere, at least its 2-component. This result directly suggests that
there are some manifolds with Kervaire invariant 1 in dimension 126, which completes
the final piece of the problem of Kervaire invariants, a 64 years lasted problem. However,
using spectral sequence, we could compute homotopy groups prime by prime, while most
consequences of stable homotopy groups are only stated in p = 2 case. For p = 3 or other
cases, good references are!*3] and 44,

To have a conceptual understanding of these periodic phenomenons, the theory of
formal group laws and chromatic spectral sequences were introduced (], It is inspiring
when the complex cobordism M U spectrum was introduced #6471, Despite of its geomet-
ric interpretation of cobordism classes of manifolds, Quillen’s work showed the connec-
tion between M U, and formal group laws 43301 This is the beginning of the Chromatic
homotopy theory. On the other hand, algebraic topologists were interested in creating new
cohomology theories from formal group laws. This was suggested by the work of Conner
and Floyd'?! and finally landed in the Landweber exact functor theorem[>34!, Lurie
also has an refined version>>=7] using techniques of spectral algebraic geometry [58-5]
such as spectral p-divisible groups and spectral elliptic curves.

The stack of formal groups has been well studied%*-%1) Over an algebraically closed
field, formal groups are classified by heights. For each p and height n, there is a spectrum
K (n), called Morava K -theory, which corresponds to the height n formal group[©2!. There
is also a Morava E-theory which parameterizes deformations of such a formal group.

Bousfield introduced his localization technique in[63-641,

In this setting, localizing at E,,
behaves like restricting to the open substack of /637, and localizing at K (n) behaves like
completing along the locally closed stack ./%.;. And also, using the homotopy fixed
point spectral sequence (939! Devinatz and Hopkins showed the homotopy fiexed point
spectral sequence of Morava stabilizer group converges to the K (n)-local sphere [67:68],

Morava E theories admit essentially unique E, structure(®®!, hence admit power op-
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erations. Surprisingly, the total power operation over it has a strong connection with the
moduli of subgroups of formal groups and subgroups of elliptic curves, and it has been
well studied by Ando!7%7! Hopkins!”?), Strickland!”3! and Rezk!74-76!, etc.

1.2 Outline of the paper

In section 3.1, we calculate the K (n — 1)-localized Morava E-theory of symmetric
groups using the generalized character map. Then we deduce the modular interpretation
of the total power operation y?. in section 3.2.

In[72], the similar moduli interpretation of modified power operations in terms of level
structures associated to abelian group is confirmed. Though it is claimed in!7?] (Remark
3.12) that it is not necessary to use abelian group, there is not a direct proof in nonabelian
cases. Section 3.2 is devoted to such a proof. Seasoned readers can take it for granted and
skip it.

In section 3.3 we combine our analysis with augmented deformations and obtain the
Theorem A.

In section 3.4, we show the self-dualness of Lk ,,_)E,, and compute the Dyer-Lashof
algebra structure on K (n — 1)-local E, -algebras, which is Theorem B.

The chapter 4 is devoted to the connection between our analysis and theory of ellip-
tic curves when n = 2. In section 4.2, we review the method developed for computing
total power operations on E-theory, and in 4.3 explain how to interpret these topological
elements involved in terms of moduli schemes and modular curves. In section 4.4, we
calculate an explicit formula for the total power operation using the naturality of power
operations in section 4.2 and explain how these ideas are related to elliptic curve, modular
forms and p-divisible groups in section 4.3.

The chapter 5 is somehow independent from the main line. We investigate a family of
spectra, so called augmented deformation spectra and show that there underlying spectra

are independent of the choices of formal groups.
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CHAPTER 2 COMPLEX ORIENTED COHOMOLOGY
THEORIES AND DEFORMATIONS OF FORMAL GROUPS

In this section, we review some basic ideas of complex oriented cohomology theory
and the relation to formal groups. These objects are fundamental in chromatic homotopy

theory.

2.1 Complex Oriented Cohomology Theory

Let E be a multiplicative cohomology theory, or equivalently, a homotopy commu-
tative ring spectrum.
Definition 2.1: We say E is complex oriented if for any complex vector bundle & — X

of dimension #n, there is a class
Us € E>"(X?)

such that

* For each x € X, we have the image of U, under the composition
'E’Zn(Xé’) N E’Zn(*éj) N E2n(52n) N EO(*)

is the canonical element 1 € E*.

* Suppose f : X — Y is a map, then we have
If 7 is another bundle over X, we have
Usoy =Us - Uy

A useful criterion to determine whether a generalized cohomology theory is complex
oriented is as follow.
Proposition 2.1: A generalized cohomology theory is complex oriented if and only
if there is a class xp € EZ(CPW), called a complex orientation, which restricts to the

identity 1 via the map
E2(CP™) - E2(CP!) = E2(8?) = EO(%)

Remark 2.1: Note that the above proposition gurantees that the Atiyah-Hirzebruch spec-



CHAPTER 2 COMPLEX ORIENTED COHOMOLOGY THEORIES AND DEFORMATIONS
OF FORMAL GROUPS

tral sequence for E*(CP*)
ENY = HP (CP%; E9(%))
collapses, and hence we have an isomorphism
E*(CP%) = E*[[xg]]

Conversely, if the E, page of the spectral sequence collapses, one can easily deduce that
E is complex oriented.

Example 2.1: By this criteria, some of our familiar cohomology theories are complex
oriented.

* Ordinary cohomology theory with coeflicients a commutative ring R, i.e. HR is
complex oriented.

* The complex K-theory, KU is complex oriented.

* Any spectrum X with 44X vanishing is complex oriented.

* The real K-theory KO is not complex oriented. For one can check that for the
tautological line bundle & over CP*° the composition in Definition 2.1 is multiplication
by 2.

Now suppose E is complex oriented. Consider the tensor product of line bundles,

which is classified by the map
CP*® xCP*® — CP*™
It induces a map
E*(CP*®) — E*(CP* x CP*)
in the E cohomology theory. Since E is complex oriented, the above map can be identified
as
E*[[7]] — E*[[x,y]l

Let F(x,y) denote the image of ¢ in the right hand side. Since tensor products of line
bundles satisfies associativity, commutativity etc., the power series F should also satisfy
these relations. To be explicit, we have the following definition.
Definition 2.2: A formal group law over aring R is a power series F' € R[[x, y]] which
satisfies:

 Identity: F(x,0) = F(0,x) = x,

* Commutativity: F(x,y) = F(y,x) and
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* Associativity: F(F(x,y),z) = F(x,F(y,z2))

From the above discussion, we know that any complex oriented cohomology theory
has an associated formal group law.
Example 2.2: Ordinary cohomology theories have the associated formal group law
F(x,y) = x +y, which is called the additive formal group law.

The complex K-theory has F(x,y) = x + y + xy, which is called the multiplicative
formal group law.

Letf : R » Sbe aring map and F = )" a;x"y be a formal group law over R. It is

clear that the power series
f*F = Zf(aij)xfy’
is a new formal group law over the ring S. A natural question it that does there exist a ring

L which carries a universal formal group law F“ in the sense that for any formal group

law F over R, one has

for some mapf : L - R.

The answer is positive and not too hard. One can just define L to be the ring
L =Zla;]/1

where / is the ideal generated by relations constrained by identity, associativity and com-

mutativity. The universal formal group is just
F4 = Z a;x'y
The ring L is called the Lazard ring, which was first introduced by Lazard in!””). He also

showed that L has a simple structure despite of its horrible construction.

Theorem 2.1 (Lazard, 1955): The ring L is isomorphic to
Z[XI’XZ’ ]

where each a;; has degree (i +j — 1) and x; has degree i.
Moreover in[*81, Quillen showed the following result.
Theorem 2.2 (Quillen, 1969): The complex cobordism spectrum M U is complex ori-

ented, with coefficients
a7, MU = Z[x,%,,...]

where x; has degree 2i.

10
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Moreover, the canonical map
L— MU,

which classifies the formal group law over MU, is an isomorphism.
Hence we may regard M U as the universal complex oriented cohomology theory and

aring map
xg MU — E

establishes a complex orientation of E.
Suppose xz and xz are two complex orientations of E, i.e. elements in E*(CP>)
and Fg, Fy are corresponding formal groups laws respectively. There is a power series

f(t) € E*[[t]] such that

xp = f(xg)
The following diagrams
E*[xgll —— E*[[x,y]] fxg) —— f(FgW.y))
E*[[xg]l — E*[x",y"]] xp —— Fp(xX',y")

imply that
f(Fp(y) = Fp(f(x).f ()

Definition 2.3: Let F, G be two formal group laws over R. A homomorphism from F
to G is a power series f = ZZ] b;t" € R[[t]], such that

f(F(x,y) = G(f(x).f(y)

We say f is an isomorphism if f is invertible, i.e. by is a unit. We say f is a strict isomor-
phismif b, = 1.

Thus different choices of complex orientations yield isomorphic formal group laws
for a given complex oriented cohomology theory E. Hence we can consider formal group
laws more intrinsically, which are formal groups.

In algebraic geometry, a formal scheme is used to detect the local behavior around
a closed point. For example, Let R = k[x] for some field k. The maximal ideal (x)
corresponds to the closed point [0]. To study the local behavior around this closed point,

one has a sequence
Speck = Spec k[x]/x — Spec k[x]/x* — --- = Spec k[x]/x" = -+

11
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In each stage, Spec k[x]/x" has the underlying space [0], but the functions are more.
This indicates us to take the colimit of this sequence. Unfortunately, the category Sch of
schemes does not have all limits and colimits.

Remark 2.2: The category of locally ringed spaces has all limits and colimits. The
category Aff of affine schemes is the opposite category of Ring. We have the adjunction
I" : Sch & Ring” : Spec
with Spec being a right adjoint. Hence it preserves the limits in Ring”, or equivalently,

colimits in Ring.

No matter in what cases, there is no evidence that the colimit should exist. Hence
we have the following definition. Now we say a scheme means an affine scheme in all
of the notes, and denote the category of affine scheme by X, the full subcategory of
Fun(Ring, Set) consisting of representable functors.

Definition 2.4: A formal scheme X is a small filtered colimit of scheme X;. As we
already explained, this colimit may not exist in X. We can embed ¥ into Fun(Ring, Set),
where the later always has colimits, pointwisely.

To be more concrete, for each ring R, we have
X(R) = colimX;(R).
Definition 2.5: Let X = colimX; and ¥ = Y; be formal schemes. Define
Z(X.Y) = lim colim ¥ (X;. ¥;).
We denote ¥ (X, A!) by Oy, where A! = Ring(Z[], —). To be precise,
Ox =limOy..

Remark 2.3: From the definition, X is actually the same as 7 nd (¥ ). Note that in general,
one has
[colimX;, Y] = lim[X,, Y].
By the definition of colim Y;, we have
4]

X(X,Y) =1limX(X,,Y) = limcolim ¥ (X, Y,).
i I J

This is how we define morphisms in X.
Example 2.3: Let N; = Spec Z[x]/x". The resulting formal scheme is denoted by Al
Note that A! (R) = colimRing(Z[x]/x",R)) = Nil(R). And @Al = Z[[x]].

The category ¥ has better categorical properties than %.

12
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(1) ¥ has all small colimits and finite limits.

(2) finite limits commute with small colimits in ¥.
There are a special kind of formal schemes, called solid formal scheme, Spf R, which we
will define right now.
Definition 2.6: A linear topologized ring is a ring R equipped with a neighborhood sys-
tem around O consisting of open ideals, which forms a topological basis under translation.
The category of such rings and continuous maps is denoted by LRing.

We can equip any ring S with discrete topology, which yields a fully faithful embed-
ding Ring — LRing. Suppose R € LRing, S € Ring, f is a continuous map from R to
S. We must have f~1(0) = J an open ideal in R. Hence f is equivalent to a map R/J — S
between rings. All open ideals in R form a cofiltered system under inclusion maps. Hence

we have
LRing(R,S) = co}im Ring(R/J,S).
Therefore we define Spf R € Fun(Ring, Set) by
SpfR(S) = co}im Ring(R/J,S).

Definition 2.7: A solid formal scheme is a formal scheme which is isomorphic to Spf R
for some linearly topologized ring R. The solid formal schemes form a full subcategory
X, of X.

Given a linearly topologized ring R, we have the related cofiltered system {R/J},
where J runs through all open ideals. The limit of this system is denoted by R, called the
completion of R. The ring R automatically inherits a topological structure from R. The
preimage J of J under the natural map R - R/J forms a neighborhood system around 0
in R. It is easy to check SpfR = SpfR. A ring R is complete or a formal ring if R = R.
The category of formal rings is denoted by FRing, which is a full subcategory of LRing.

Note that

X(X,SpfR) = lim X(X;, SpfR) = lim LRing(R, Oy ) = LRing(R, Oy).
i I !
Hence we have the adjoint pairs:
O : ¥ $ LRing” : Spf.

We have the unit map X — Spf @y, and the counit R — R, which is just the completion.
Proposition 2.2: We have the following propositions.

(1) X is a solid fomal scheme then ©y is a formal ring.

13
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(2) X is solid iff X — Spf @y is an isomorphism.

(3) The inclusion functor X,,, — % is right adjoint to X — Spf Oy.

(4) The inclusion functor FRing — LRing is right adjoint to taking completion.
Proof: (1) Obvious.
(2) X is solid, then X is isomorphic to Spf R for some R. Therefore Oy is isomorphic to
R, which yields the conclusion. The converse is obvious.
(3) The functor FRing”” — ¥, sending R to Spf R is fully faithful. Suppose R, S are two

formal rings, then
fw,(Spr, Spfs) = li}n fw,(SpecR/J, SpfS) = limLRing(S,R/J) = FRing(S,R).
Therefore by (2), this functor defines an equivalence. The equation
X(X,SpfR) = LRing(R, Oy) = %,,,(Spf O, SpfR)

implies the inclusion functor being right adjoint to X — Spf O.

(4) The same argument holds.

o~

LRing(R,S) = SpfR(S) = SpfR(S) = FRing(R, S).

Now we are ready to define what so called formal groups.

Definition 2.8: A formal group G over a formal scheme X is a group object in X y.
We also require that G is isomorphic to X x Alin ¥ x- Amapu : G — Al makes G
isomorphic to X x Al is called a coordinate on G.

Suppose X is solid. Then X x Alis again solid. From the equivalence of categories,
we have X x Al is isomorphic to the Spf of coproduct of @Oy and Z[[¢]] in FRing, which
is the completion of Oy ® Z[[t]] = Ox[[t]]. Therefore G is solid as well with O 5 =
Ox 1.

Moreover, if we further assume X is just a scheme, then

O = Ox®zZ[[t] = Oxl1]]

for now Oy is equipped with the discrete topology. A coordinate on G is the same as an

isomorphism from G to X x A, which corresponds to a continuous map
u:Z[[t] - Og
which induces an isomorphism

@X[[Z]] =l @G‘

14
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Now since G is a group object, we have a map G xy G LR G, which corresponds to
Og->05®p, Og

of @Oy modules. We also call the latter map p, and it satisfies following properties.

Identity There is a map X = G such that the composite
X->-G-X
is identity. Moreover we require the composition
G=Xxy G2 Gx, G5 G

equals the identity from G to itself.
Equivalently, there is amap e : @5 = Oy, such that
© X @G -0 X
is identity and
e®id

@GH@G‘X)@ O — O0x®p, Og=0g

is identity.

Associativity
id
Gxx Gxy G5 G xy G Oc a O ®p, O
idxpu U H ideu
2 neid
GXXG G @G®@X @G*)@G®@X @G®@X @G
Commutativity
GXXG r GXXG @G ®@X @G @G ®@X @G
\ / \ /
G

where T is transposition.
If we choose a coordinate on G, then we have an isomorphism from @ to @Oy [[t]]. The

map p now is

Ox[[t]l = Oxllx,yll

between Oy modules, which is determined by f(x,y) = u(t) € Ox[[x,y]]. Such power

15
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series f (x,y) is just a formal group law over @'y, which satisfies

* f(0.y) =y

* [l f(y.2) =f(f(xy),2);

* fy) =fx).
Remark 2.4: The identity Ox[[t]] = Ox can only be ¢ — 0. Since this map is con-
tinuous between @y modules, hence is determined by the image of ¢ which is a nilpotent

element n in @O y. Note that

[y =) iy =) fiynx

by commutativity. Hence we have

fy) =Y fitmy =y

which implies that f (n) = 0. Hence f; (x) is divided by x* for some k. So does f;(y), that

is
Fly) =fox) +fo(y) + .

Hence k must be 1 and n = 0.
Example 2.4: The additive formal group G, = Spf Z[[¢]] is a formal group over Z.
For any ring R, G,(R) — Spec Z(R) is given by the inclusion of rings Nil(R) — =. The
group structure on G, is given by
Nil(R) x Nil(R) — Nil(R), (a,b) » a + b.

If we choose a coordinate id : Z[[t]] — Z][[t]], the nwe get a formal group law f(x,y) =
X +y.

The multiplicative formal group G,,, over Z has the same underlying formal scheme.

The group structure is given by
Nil(R) x Nil(R) - Nil(R), (a,b) = a + b + ab.

Use the same coordinate, we have a formal group law f(x,y) = (1 +x)(1 +y) — 1.
A morphism between two formal groups G over X and H over Y is just a commutative

diagram in X which respects the group structures of G and H.

TLT 7
X— Y Oy -L>0g

Let x,y be coordinates on G and H, then we have isomorphisms O = Ox[[x]] and
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Oy = Oylly]] respectively. The morphism g* sending y to a series f(x) € Oxl[[x]],

which satisfies

fx+gx) =f(x) +gfKx).
Such series is called a homomorphism between formal group laws.
Example 2.5: A crucial endomorphism from G to itself is multiplication by p. It is
induced by
P]: G D Gxy - xx G5 G

p times

where A is the diagonal. Choose a coordinate, we have [p](x) = x +g - +g X,
Suppose now X is over Spec IF), and ¢ : G —» H over X with x, y are coordinates on

them. Then there must be a # 0 € Oy and r such that

g*(y) = ax” mod x"*!.

Since ¢ is a homomorphism, we have
a(xy +x7) = a(xg + x;)” mod (xg,x1) "1,

Let r = p"m, we have

n n -p" "
XG+ X = (xg +x)"™ = x4 - mod (xg,x) "t

Hence m must be 1 and r = p” is a power of p.
Definition 2.9: We call such n the strict height of ¢g. We also let ht(g) to be the strict
height of ¢ : Gy — H,, over the special fiber. Finally, we define ht(G) tobe ht([p] : G -
G).
Remark 2.5: Strict height is always not greater then height obviously. Moreover, we
have g*(y) = g(x*"). This is because ¢* (y) = f(x) must have no constant term due to the
continuity. If f'(0) # 0, which means f(x) = x + ---, already meets the requirement. If
f7(0) = 0, then the group law will force f’ (x) = 0, which implies f (x) = g(x”).

There is a geometric way to think of the strict height of a morphism f : G - H over
X. Since X is over Spec F,, we have a Frobenius map Fy : X — X. The pullback FxG
is also a formal group. If we choose a coordinate x on G and the induced coordinate y
on F3 @, then the formal group law on F5 G is given by g'”) (y,y"), where g is the formal

group law of G under the coordinate x and gP is the series obtained from replacing
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G —ru

A
. F;G——G
) q
\\\ lq i l
X—X-X

The commutativity of Frobenius maps induces a map Fg,x : G » FxG, which is also a

coefficients g;; in g by gf;..

group homomorphism. Using the coordinates above, we have Fg x () = xP.
Now suppose f : G - H is a group homomorphism with f*(y) = g(x”) where x, y
are coordinates on G and H respectively. From the expression of f*(y), we know that f

factors through

Fgix

G — F;G - H.

The strict height of f corresponds to the height of the tower:

In

(F$)*G H
Proposition 2.3: Letf : G - H be a nonzero homomorphism over X with ht(G)
finite. Then ht(G) = ht(H) and ht(f) is finite.
Proof: Just a direct computation. [ |
Example 2.6: Using heights of formal groups, we can distinguish different conomology
theories. For example, HF, and the mod p K-theory K (—; IF,,) is not equivalent as ring
spectrum. For G, has height oo and G,,, has height 1 over F,,.

Formal groups over different characteristic behave quite different.
Proposition 2.4: Suppose F is a formal group over Q. Then there is a unique strict
isomorphism from F' to the additive formal group G,,.
Proof: Let f be a corresponding formal group law of F. Suppose [ is such an isomor-

phism, i.e. [(x) = x + ---. We have
I(f(x,y)) = 1(x) + L(y)

18
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Taking derivative respect to y and set y = 0 implies that

U (x)f,(x,0) = 1

Hence /(x) = f m, which is well-defined over Q. [ |
While over fields with p = 0, things are more interesting.
Theorem 2.3 (Lubin-Tate, Lazard): Let K be a field of characteristic p. For each n,
there exists a formal group of height n over K.
If K = K, then any two formal groups with the same height are isomorphic.
Example 2.7: For each n, there is a height n formal group H, called the Honda formal

group, which is determined by its p-series

[plg (x) = xP"

2.2 The Moduli Stack of Formal Groups

In this section, we review the language of Hopf algebroids and stacks. Then we
discuss the quasicoherent sheaves over the stack /6 .
Let E be a complex oriented spectrum, xz and x}, be two complex orientations. Then

we have the following diagram

XE

MU NS

w

XEAXE u
MUANMU ——— EANE ——— E

%

SAMU

This diagram implies that the composite
MU ANMU - E

classifies an isomorphism between the associated formal group laws F and F,, or equiv-
alently, an isomorphism of the associated formal group G . In fact, this classification is
universal.

Proposition 2.5 (Proposition 6.5[78]): Let 7, and 5% be the map Id A 1 and 1 A Id
from MU to MU A MU respectively. The ring MU MU = 7 MU A MU, which is flat
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over MU, carries a universal isomorphism of formal groups. To be explicit, a morphism
fMUMU — R

gives an isomorphism from formal group F' to G over R, where F is (f o n;)*F" and G is

(f o ng)*F"

The pair ( MU,,MU,MU) is an example of Hopf algebroid, which corepresents a
groupoid object in the category of rings. For each ring R, the set Ring(M U, R) is the set
of objects and Ring(M U, MU, R) is the set of isomorphisms.

The formal definition is as follow.

Definition 2.10: A Hopf algebroid is a pair of rings (A, '), together with the following
data:

(1) Left unit/Source map: 5, : A — T';

(2) Right unit/Target map: ng : A — T;

(3) Coproduct/Compositionmap: A : T — I’ @4 I';

(4) Augmentation/Identity map: € : I’ — A;

(5) Conjugation/Inverse map: ¢ : I' — T,
such that the following conditions hold.

* The identity map has the same source and target.
conp =€ong=1dy

* Composing with the identity leaves morphisms unchanged.

(ldr ® €) o A = (e ®@1dy) o A =1dr
* Associativity of composition.

(Idr @ A)o A = (A®Idr) oA
* Inverting a morphism interchanges the source and target.
ComnrL=1Mr, €°Nr =1L

* Composing with the inverse yields identity maps.

F(—F@F—)F

MR ®A
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The above relations guarantee that the functor pair Ring(A, —) and Ring(IT", —) takes val-
uesin Grpd. The maps s = 7 and ¢ = 7% stand for taking source and target of a morphism

respectively.

Ring(T", -) i Ring(A, —-)

Remark 2.6: It is clear from the definition that the ring I" has two A module structure,
which we refer to ; I'p, via the map 7; and 7. The morphism c in (5) turns the source
T'ginto gI';.

A stack is something analogue to a Hopf algebroid but satisfies a more strong gluing
property.

Recall the definition of Grothendieck topology.
Definition 2.11: A Grothendieck topology over a category % is a collection ¥ consist-
ing of a collection of sets of morphisms {V; — V} called coverings, such that

* Isomorphisms are coverings.

e If {U; » U} and {Uj; —» U} are coverings, then the composite {Uj; » Ulisa
covering.

* If {U; - U}isacoveringand V — U is amap, then {V x;; U; —» V} is a covering.
The category € equipped with a Grothendieck topology 7 is called a site.
Example 2.8: Here’s some basic and useful examples.

(1) The usual coverings of topological spaces in Top.
(2) The flat topology on affine schemes Aff. Coverings are {Spec R; — Spec R}
such that
*R — R; is flat.
*If an R module M satisfies M @ R; = O for all i, then M = 0.

Definition 2.12: A sheaf (of sets)  over a site (€, &) is a contravariant functor from
€ to Sets, such that

FW) - [|FW02[]FW; %y Uy
is an equilizer diagram.

Definition 2.13: A sheaf of groupoids is a pair of sheaves (X, X;) over € together with

two sheaf maps
S, t: Xl — XO

standing for taking source and target.

Clearly, a Hopf algebroid (A, I') is a sheaf of groupoids over the site Aff.
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Suppose (Xq, X) is a sheaf of groupoids and {U; — U} is a covering. Let Desc(y;,
be the cateogry of descent datum, which consisting of
* Objects : An object is a collection of pairs {(E;, a;;)}; ;, where E; € X (U;) and
a;i: Ei|U,~xUUj - Ej|Ul-xUU,~ € X, (U; xy U;) which satisfies the cocycle condition:
Ajp© Ay = Ajg
* Morphisms : A morphism between {(E;, a;;)};; and {(E], a};)}; ; is a collection

{f;}, with each f; : E; > E] € X, (U;), which makes the diagram commutes

fi /
Elluyxyu; — Eiluxyu,

a U\L \Lal'-j
E i E
.I'|UfXUUj ; J'|Ui><UUj
Here we are now ready to define what so called stacks.

Definition 2.14: A stack is a sheaf of groupoids (X, X;), which satisfies the descent

condition:
(XO?Xl ) (U) —> Desc{Ui}

is an equivalence of groupoids, for all coverings {U; - U}.
We can obtain a stack from a sheaf of groupoids. To be explicit, let (X, X;) be
a sheaf of groupoids, there is an associated stack b g gy, Which is defined by the

universal property that for each stack //°, we have
ShGroupoids((Xy,X;), N') = Stacks(Mb x, x,)» ")

Remark 2.7: Since stacks take values in 2-category, then above equality is actually an
equivalence of categories.

The stack /6 x, x,) is the stackification of (Xo,X;). Over each object U, the corre-
sponding groupoid is

Mo x, x,)(U) = {%E%D@SC{U,}

where the colimit is taken over all coverings of U.
Definition 2.15: The moduli stack of formal groups ./ is the associated stack of the
Hopf algebroid (MU,,MU,MU). For each ring R, /b s (R) is the groupoid of formal
groups over R with isomorphisms. We also let /6%, denote the stack of formal groups

with strict isomorphisms.

There is another convenient description of /b g and by ;.
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Let G = Spec Z[by, b,, ... ]. The R-point G(R) is the set of power series g(¢) =t + bt +
--- € R[[t]]. The group structure is given by the composition of power series. There is a

natural action of G on Spec L
G x Spec L — SpecL
which is given by

(&.f) — gf (g7 x), g7 ()

for all g € R([[t]] and formal group law f over R.

Therefore /b4, can be identified with the quotient stack Spec L/G.

Let G* = Spec Z[b§, by, ... ]. The action of G on Spec L extends over G* with the
same formula and 6 r; can be identified with Spec L/G*. Also note that G + /G =
Spec Z[b{] = G,

According to Proposition 2.4, we know that

MY ; x Spec Q = Spec Q
and

Mb g x Spec Q = BG,,

where G,, is the multiplicative groups scheme.
While in the p-local case, the stack /by x Spec Z ) has a straightification along
the height. There is a closed stack

.%12;’2; = Spec (L(p)/(VO,Vl, ,Vn_])) /G+

which classifies formal groups of height at least n. The elements v;’s here classifies the
height of a formal group. They are the coefficients of the term xP" in the p-series and has
degree 2(p' — 1).

Between successive two such closed substack, there is a locally closed substack
Mop = Mg — MoFE " = Spec (L) [vi'1/ (vo, v, e vu1)) /G

In fact, the p-local /b is the associated stack of (BP,,, BP,BP), where BP is the Brown

Peterson specctrum, which is a direct summand of MU, ») with
‘7T*BP = Z(p) [Vl’ V27 "']7 |Vl| = 2(pl - 1)
Over Fp, the locally closed stack /6% has a simple description

MY ; = Spec Fp/Gn
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where G, is a profinite group
G, = Aut(F,,,f)

called the nth extended Morava stabilizer group, where f is any formal group law of height
n over Fp (for they are all isomorphic). The profinite group Aut(Fp, f) consists of pairs
(n, a), where 7 is an automorphism of Fp and « : f - n*f is an isomorphism. It is also

easy to see that G, fis into a short exact sequence:
0-S,- G, - Gal(F,/F,) -0

with S, being the subgroup of G,,, called the nth Morava stabilizer group, which fixes

F,

ht=1

Figure 2-1 The p-local b -,

Now, back to topology, let X be any spectrum and E be a ring spectrum with E_E is

flat over E*. The composite
1d
Enx 2 EAEAX
induces

EX - E.(EAX) = E,(E) ®g, E.(X)

which exhibits a comodule structure over the Hopf algebroid (E,, E.E) on E, (X).
Definition 2.16: A comodule M over a Hopf algebroid (A, I') is an A module equipped

with an A module map
v M—->T,M

The map y is required to satisfies

1d
(1) Counity: M LIre A M M M identiy.

24



CHAPTER 2 COMPLEX ORIENTED COHOMOLOGY THEORIES AND DEFORMATIONS

OF FORMAL GROUPS
(2) Coassociativity:
W
M s T, M
W\L l]d]" QY
A®Idy,

Fre,M -2 rg, T M
Definition 2.17: a quasicohorent sheaf % over ./, is a rule, which assigns each p :

Spec R > Mbsq an R-module F (p), such that for each commutative diagram

/ > Spec R
x /
Mg

in 2—category, there is an isomorphism

Spec S

Upg: F(q) = [*F(p) =S ®r F (p).

Example 2.9: A basic example is the structure sheaf © 4, ., which assigns every ¢ :
Spec R —» b the R—module R itself and isomorphisms being the identity maps.
Proposition 2.6: The category Qcoh(Abr) consisting of all quasicoherent sheaves
over b is an abelian category.

Proposition 2.7: There is an equivalence
Q: ComOd(A,l") — QCOh(%FG)

between the category of comodules over the Hopf algebroid (A,T") = (MU,,MUMU)
and the category of quasicoherent sheaves over /b .

Proof: We define the inverse functor ¢ to be
¢:F » F(SpecA = Morg) =M,
where SpecA — b is the canonical map which classifies the universal formal group
law. The diagram
Spec I’ SN Spec A
e ]
SpecA —— Mg

implies there is a unique isomorphism as I' modules

a:I' @ M=ngM->ngpM=1T ® M.
A,?]L A

sTIR
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Since I' is an A—module via the map 7;, we can obtain an A—module map

wM-T @ M-T ® M,
Ay AR

wimpb 1®@me a(l ®m).

Counitality: Consider the diagram

SpecA ———---- ~-_id
\ \‘ \\\\
\ n N
i Spec I’ —=% SpecA

id \\\
b
N

SpecA —— Mbrg.

Solid arrows yield an isomorphism

da:AQT @ M-AQ®T ® M,
r,E A,T]L F,E AJ]R

which equals to the identity isomorphism id : M — M induced by dashed arrows, by the

commutativity. The map

eRid: T @ M- M
AR

is the same as the canonical map

' @ M-AQ®T ® M.
A’UR F,E A,’]R

Therefore the composite
MELET @ M5AQT @ M
AR I',e Ang

will send m to
mewym)=a(l®@m)-1Qa(l ®m) =m,

which yields the counitality.

Coassociativity: Consider the diagram

Spec ' ® I --——-—---""----—- +» Spec I’

3l
SpecT —% 5 SpecA

3 l’“ l

Specl’ ----=-- > SpecA —— Mbrg
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Again, the solid arrows give an isomorphism of I" % I'—modules:
NTR-ASTL

@ INel ® M,
A A,T]R

r ® INer M- (T
F’A A’nL NR-A1L rvA

”RsA’nL
which sends m to (A ® id) o w(m). On the other hand, we have another isomorphism

which equals to the previous one, induced by dashed arrows:

TrF @@ INIreoemM-T © TI'N T ® M.
NrRANL Iipy A NrRANL Lipy  Amg

To calculate it, we use the following diagram
SpecI' ® T SEIEN Spec I’ UL Spec A
R ’AJ]L
\Lpl lm
Spec I’ S L SN Spec A

. Y

Spec A > MorG

Now, the desired isomorphism is

r @ NHeremMm— T @ INXI M
NRANL L.py Amg NRANL I.py Agg

|

r & N o9roeomM—aT © INST @& M
”R5A’77L r’pZ AJ]L nR’A’ﬂL r’pZ AJ]R

which sends m to (id ® y) o w(m), hence yields the coassociativity.
Now we define the functor ¢. Suppose M is an (A, I') comodule and p : SpecA —
b - is the canonical map classifying the universal formal group over A. We define a

quasicoherent sheaf p, M as follow. If Spec R 2 rc factors through
Spec R R SpecA - by,

then we define p M (q) = f*M = RAQ} M.
In general case, we can take a cover {Spec U; — Spec R} of Spec R, such that each
Spec U; factors through Spec A. we can define each p M (U;), then patch them together.

The isomorphisms can be checked on the universal case

SpecT —=% SpecA

|
SpecA —— Mbpg

Since M is an (A, I')—comodule, there is an A—module map v : M - ' ® 4 M, which
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extends to a I'-module map
Yl QM —>Tr,M
Vi oy ®@miy-y(m).
It is an isomorphism indeed, with inverse
Tp®4M = FI%FL@AMﬂ [ @ Tg®y M =T, 8M
which sends
v 1@m=y@m=yQ@1l@mmr y@y(m)=1y-(c®id)(y(m)),

where c is the conjugationc : , I', —

- ne1 n, (standing for taking inverse of isomor-

phisms.)

Now the composite
([d®c®id) o (id@W) oy =(ld®cQid) o (A®id) oy
=(((d®c)oA)®id) oy
=((npee)®id) oy
is a '-=module map. Evaluating at (1 ® m) yields

((npee)®@id) o (1 ®@m) = ((n,0¢€) ®id) oy (m)
=(n,®id) o (e ®id) o y(m)
= (. ®id)(1 ® m)
= (1®m)

which completes the proof. [ |

So far, we start with a complex oriented cohomology theories from topology, and end
up with formal groups in algebraic setting. Could we invert this progress, which means
start with a formal group and result a spectrum?

To be explicit, let Fp be a formal group (law) over a graded ring R, is there a ring
spectrum Ep such that,

e m,Er =R

* Spf(ER(CP™)) = Fg
Remark 2.8: If R is ungraded, we simply replace R with R[B*], where |8| = 2 and
require that 77 ,Ex = R[f*], and SpfEQ(CP>) = Fy.
Without many efforts, the problem can be reduced to when MU, (—) ® 37, R is ahomology

theory. Then applying Brown representation theorem to get the desired spectrum.
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At first glance, the ring R is required to be flat over M U, to preserve exact sequences
in the axioms of homology theory. But this condition is too strong. On the other hand,
since we could regard MU, (X) as a quasicoherent sheaf over the stack /6, we could

only ask the map
q :SpecR — Mbrg
which classifies F'g, being flat. Then the exactness is guaranteed by the functor
q* : Qcoh( M) — Qcoh(Spec R) = Modg

is exact. This is precisely the Landweber exact functor theorem.
Theorem 2.4 (Lecture 15,[80]): Let M be a graded module over MU, If M is flat over
b £, then the functor

is a homology theory.
There is also a convenient criteria on the flatness of M over b .
Theorem 2.5 (Landweber, 76): The MU, module M is flat over /b . if and only if

the sequence (vy = p, vy, --+) acts regularly on M for all p, which means that
v,
vt M/ (vy,...,vi_1) — M/ (vgs...,Vi_7)

is an injection.
Example 2.10: The complex K-theory is a first example of Landweber exact functor

theorem, such that
MU, (X) @y, K, = K, (X)

is an isomorphism, called Conner-Floyd isomorphism!81.

2.3 Deformation of Formal Groups

In this section, we review the deformation theory of formal groups over perfect and
imperfect fields.

The completion of a scheme X along a closed point captures the local behavior around
that closed point. From this point of view, we study deformations of a height n formal
group over field k of characteristic p.

Definition 2.18: Let k be a field with p = 0 and T" be a formal group of height n over k.

A deformation of I" over R consists of a triple (R, G, a):
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* R is a complete local Noetherian ring with residue field R/m a k-algeba.
* G is a formal group over R.
*a:I'®,R/m - G ®g R/m is an isomorphism over R/m.

We say two deformations G and G’ over R are =-isomorphic, if there is an isomorphism
f:G->G

over R, which makes the diagram commute

I ®,R/m —*= G ®rR/m

lld lf
e, R/m - G’ ®@x R/m
Suppose k is a perfect field and R is a complete local Noetherian ring with the residue

field R/m a k algebra. Then there is a ring W (k), called the ring of Witt vectors, and a

unique ring map from W (k) to R, makes the diagram commute.

W(k) ----- > R
L
k — R/m

The moduli space Defs; (R) classifying x-isomorphism classes of deformations of I" over
R is a groupoid for there could be nontrivial *-automorphism. The following proposition
rules out this probability, hence it is actually discrete, which means Def; (R) is a set.

Proposition 2.8 (Lemma 1.1.2[82]): Let F,,, F, be lifts (deformations) of a formal

group F over A € Arty; then the homomorphism
PA H()mA(Fo,Fl) — Endk(F)

defined by reduction modulo m, is injective.
Moreover, the following theorem says that this moduli probelem is representable.
Theorem 2.6 (Lubin-Tate, 66): Suppose & is a perfect field of characteristic p and T’

is a formal group of height n over k. Then there is an bijection between sets.
HomCtS (W(k) [[V] LRARE ] vn—] ]], R) = Defr

There is also a formal group I',, defined over W (k)[[vy, ..., Vv,_; ]] and for any deformation

F of T over R, there is a continuous map
fiAg=WWE)[vy,-..ov,1]] = R

such that F is x-isomorphic to f*T",,.
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The map from MU, or BP, to W(k)[[vy,...,V,,_1 ][ B*]
v, > v, B1P" for i < n;
vy o B
v; =0 for i >n

satisfies the Landweber celebrated criteria and hence there is a corresponding spectrum,

called the Morava E-theory of height n, denoted by E,,, with

7By = W) [y, v NLB*]L 1Bl =2

Remark 2.9: In®3], the ring spectrum E, has been shown that it admits an essential
unique E, structure using the obstruction theory. After that Lurie gave a constructional
proof of this in his elliptic cohomology Part II.

Example 2.11: When the height n = 1, the corresponding A is just W (k). Since any
Artinian ring R with residue field a k algebra has a unique W (k) algebra structure, any
two deformations are »—isomorphic.

Example 2.12: Letk = F, and I' = x + y + xy be the multiplicative formal group law.

The corresponding spectrum E; has

JT*EI = Zp[ﬂi]

—

In fact, the spectrum E; is homotopy equivalent to the p-completed K-theory, K,.
Example 2.13: When the height n = 2, the corresponding E, with

7.Ey = W(k)[[ANI[B*]

is an example of elliptic cohomology. It corresponds to formal neighborhoods of super-
singular elliptic curves on the stack ., of elliptic curves. The element 4 stands for the
Hasse invariant, which parameterizes the supersingularity of elliptic curves.

As mentioned in the beginning of this section, the deformation of formal groups
characterizes a small neighborhood of a closed point on p-local ./ . The data of defor-
mations then tells how to patch these open strata /b’ together and there are spectra E,,
associated to these small neighborhood.

While there is also a spectrum K (n), called Morava K-theory, associated to a height

n closed point, with
7 K(n)=TF,vil, vl =2(p" - 1)

Remark 2.10: The construction of K (n) is a little subtle. It is not Landweber exact and
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it is not an E_, ring for all n.

Having discussed the deformation theory of formal groups over perfect fields, let us
consider the case over imperfect fields, in particular over the field k((x)), where k is a
perfect field. Such deformation theory is essential to the power operation on Lg ,_1)E,,.

Let us first recall the Lubin-Tate theory, which can be restated as follow.

Theorem 2.7 (Lubin-Tate): Let A € Art,, and T be a height n formal group over k.

Then the moduli problem of deformations of I" over Artinian A algebra is represented by
Defr(R) = Homgy, (AlVy, v, vy 1L R)

where the right hand Hom is required to be continuous A algebra map.

The Theorem 2.6 is a direct conculsion of 2.7, for any Artinian local ring with residue
field a k-algebra has a unique structure of W (k) algebra, when k is perfect.

While the field k is not perfect, we have the following proposition.
Proposition 2.9: Suppose R is a complete local ring with maximal ideal m. There is a
map from C (k) to R filling the diagram

Ck) ----- > R
L
k —> R/m

where C (k) is a complete local ring with residue field k, called the Cohen ring of k.
Remark 2.11: In general, the map filling the diagram is not unique. While the field & is
perfect, C (k) is isomorphic to the W (k) and the map is unique.
Example 2.14: The cohen ring for k((x)) is non-cononically isomorphic to A =
W (k) ((x)) ;,\, which is the p-adic completion of the ring of Laurent series in variable x
over the coefficients W (k).

From this point of view, Vankoughnett developed the theory of augmented deforma-
tions.
Definition 2.19 (Definition 4.91'8]): Let H be a height n — 1 formal group over k((x)).
An augmented deformation of H consists of a triple (G/R, i, «).

* G is a formal group over R and R is a complete Noetherian local ring.

* A continuous mapi: A = W(k)((x))g - R

* Anisomorphism a : H ®; ) R/m - G ®g R/m.
We say two augmented deformations (G/R, i, a) and (G’ /R,i’, a’) are »-isomorphic if

« iy =i,

e there is an isomorphism f : G - G over R
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* the following diagram commutes.
H ®p(x) R/m —— G ®g R/m
lld lf
H ®(x) R/m —< 5 G’ @ R/m

Remark 2.12: Note that in the second condition of the above definition, we are not
only required a k((x)) algebra structure of R/m, as which in Definition 2.18, but also a
continuous map A — R, which induces a k((x)) algebra structure of R/m. This is because,
as stated in Remark 2.11, the map from A to R inducing a given k((x)) algebra structure
on R/m is not unique. Hence we must specify one.

The moduli problem of augmented deformations is also representable.
Theorem 2.8 (Vankoughnett, 22): The moduli problem Defaﬁg, which classifies aug-

mented deformations of H upto s-isomorphism is represented by
A[[vl’ ey vn—] ]] = W(k) ((x))l/)\ [[Vl’ ceey vn—l ]]
To be explicit, let R be complete Noetherian local ring, we have

Defy® (R) = Hom, (A[[vy,...,v,_1 Il R)

2.4 Bousfield Localizations

In this section, we review the theory of Bousfield localization, and introduce the main
object Lk ,,—1)E, we concerned.

Let us begin with an example first. The rational homology can only recognize infor-
mation up to Q, but has no ideas about torsion parts. This can be viewed as a blindness
of HQ in the sense of 1341

Let C be a full subcategory of Sp, which is stable under shift and homotopy colimits.

The inclusion C — Sp preserves homotopy colimits, and hence we have an right adjoint:
G:Sp->C
We let L(X) denote the cofiber
G(X) > X - LX)
It is easily verified that for any ¥ € C, we have an equivalence
Map(Y,G(X)) = Map(Y,X)
Therefore Map(Y,L(X)) = .

33



CHAPTER 2 COMPLEX ORIENTED COHOMOLOGY THEORIES AND DEFORMATIONS
OF FORMAL GROUPS

Let C* be the full subcategory of Sp consisting of all spectra L such that Map (Y, L) =
« forall Y € C. Suppose Z € C 1, then we have

Map(L(X),Z) = Map(X,Z)

Hence we can regard L as a left adjoint of the inclusion C*+ — Sp.
Definition 2.20: Let E be a spectrum. Let C be the category of E-acyclic spectra and
spectra in C* are called E-local spectra. The functor L = Ly can be chracterized as follow:
(1) Lg(X) is an E-local spectrum.
(2) there is a natrual transformation 7 : Id — L, which is an E-equivalence for all
X - Lg(X).
A map f is an E-equivalence if E A f is an equivalence.

Example 2.15: 1. £ = MZ/p, then we have L (X) = X, where
— hali 2
X, =holim{--+ > X A\MZ/p~ > X N MZ/p}

2.E=MQ = HQ, then Lg = L is the rationalization of X.
Example 2.16: The most important example is the Bousfield localization respect
to K(n)!781  Let E be a p-local complex oriented ring spectrum, then the
K (n)—localization of E is
Lg mE = holim Vi E/ (P, vy s v, )]
When E is torsion free and concentrated in even degrees, we have
— -1
m.E=v, (JT*E)C),VI,...,V"_I)

In particular, we have the K (n — 1)-localized E,, has coeflicients
ToLgn-1)En = W) () plluy, .. uy o NIB*]
and
7 LgyEy = W(k) (h) ;[ B*]

It follows from Theorem 2.8 that 7oLk ,_1)E, classifies augmented deformations of a

height n — 1 formal group over the field k((u,,_1)).
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CHAPTER 3 K(n - 1)-LOCALIZED E-THEORY OF
SYMMETRIC GROUPS

Let E be the Morava E-theory associated to a height n formal group over a field k,
and F be the K (n — 1)-localization of E. The coefficient ring

F* = Wk) (up Dpllugs .o uy o N1[u]

is a Noetherian complete local ring with the maximal ideal (p, u,...,u,_,). It satisfies
the conditions in8 (Section 1.3), in particular, p~!F* # 0 by direct computation.

In this chapter, we calculate the ring F*BX; and F*BX, /I, where I is the ideal gener-
ated by images of proper transfers, using the framework in!”3! and give an interpretation of
the additive total power operation ring F'*BX, /I in terms of subgroups of a certain formal
group. The method for showing this is first show that F*BX, is free over F*, this relies
on a version of the theory of good groups!®! (Section 7). Then we identify F*BX /I as
indecomposables in F*BY;.. The rank formula follows from Theorem C in[8]. After that,
we identify the ring F*BX /I as the ring of functions of Suby (G ) and using Corollary

10.12 in871 to deduce its rank.

3.1 Calculations of F*BX, and F*BX, /I

Our conclusion is as follows:
Theorem 3.1: The ring FOBY, is a Noetherian local ring which is free over F of rank
d(n—1,k), which is defined to be the number of isomorphism classes of order k sets with
an action of Z1~1.

To start, we shall prove two lemmas.
Definition 3.1: Let K be a spectrum, which is a graded field, i.e. every K-module splits
as a direct sum of copies of K. We say an element x in K*(BG) is good, if x is a transferred
Euler class of a subrepresentation of G, i.e. x = Trg (e(p)). A group G is good if K*(BG)
is generated by good elements over K*. Of course, K*(BG) is concentrated in even degrees
if G is good.
Example 3.1: The most important example of K needed in this paper is

K=K, =

1 u;}lE/(paula""un—z)
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with
Ky o= k() [ut]

Proposition 3.1: The following properties for being good hold.

(1) Every finite abelian group is good.

(2) G is good if its Sylow p-subgroup is good.

(3) Ifx, is a good element in K*(BG,) and x, is good in K*(BG,), then so is their
product in K*(BG; x BG,).

(4) If f : H - G is any homomorphism and x is good in K*(BG), then f*(x) is a
linear combination of good elements in K*(BH).

(5) If x and y are both good, then their cup product xy is a sum of good elements.
Proof:

(1) We only need to consider p-components of G, then reduce the case to G =
Z/p. While K*(BZ/p) = K*[x]/[p]r(x) and x is the Euler class of any line bundle
corresponding to a generator of the character group Z/p*.(a : Z/p — S! will induce a
map BZ/p - BS' = CP*, and x is the Euler class of the corresponding line bundle.)

(2) The map Tr" : K*(BG,) - K*(BG) is surjective.

(3) Suppose x; = Trgi (e(py)) and x, = Trgi(e(pz)). We have

G xG
xpxxy =Try > (e(py © p2))

(4) Suppose x = Trg(e(p)). We have

1Bk, 2= BH

|, |

BKL)BG

The naturality of transfer maps yield

fHx) =) Tr(e(fi(p))).

(5) If x and y are good, then x x y is good in K*(B(G x G)). Composing with the
diagonal A : G - G x G gives the cup product xy.

|

Remark 3.1: Not all groups are good. In fact, let K = K(n) for each p, there are

examples of groups which are not good. For p > 2, n > 2, the Sylow p-subgroup

P = (Z/p)* x (Z/p)? of GL4(F,) works. See8¥! for detail calculations.
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To show a group G is good, we may consider its Sylow p-subgroups. In practice, a
lot of such groups have wreath product expressions. For example, Sylow p-subgroups of
BX, is a (product) of iterated wreath product of Z/p with itself. Thus it is wonderful if
the following is true.

Lemma 3.1 (The Wreath Product Lemma): If G is good, then so does the wreath
product G : Z /p.
Proof: We shall first recall the proof for K = K (n) in!8],
Let W denote G @ Z/p. Consider the sequence
1-GP > W->Z/p->1
which induces a fiber sequence
BGP - BW - BZ/p.
We have the Atiyah-Hirzebruch spectral sequence

EX*(BW) = H*(BZ/p,K (n)*(BGP)) = K (n)*(BW)

The action of Z /p over GP is a cyclic permutation, hence Z/p acts on K (n)*(BG?) =
®K (n)*(BG) by permutation too. Since K (n)*(BG) is finitely generated, we can choose
a basis {x;} of K(n)*(BG), then

Kn)*(BGP)=Fe&T

The module F is a free Z/p module, with basis {x; ® -+ ® xl-p} such that not all i; are

same. The module T has trivial Z /p action. Therefore, the E, page can be identified with
E, =H*(BZ/p,F®T)=H"(Z/p,F) @ H(Z/p,T).

A simple calculation implies

FZ/P, x=0
H*(Z/p,F) =
0 , else
and
H*(Z/p,T) = H*(BZ/p) ® T
with

H*(BZ/p) = E(u) ® P(x)

where |u| = 1 and |x| = 2.

From above analysis, we find that the part Ezzl’* of the E, page is H=! (BZ/p) ® T.
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Since we alredy know that the spectral sequence
E>*(BZ/p) = H*(BZ/p,K(n)*) = K(n)*(BZ/p) = K(n)*[x]/v,x"",
the only nonzero differential is

dopn_y(u) = v, xP".

>1,% >1,%

Hence we conclude that for » > 2, the Ei " (BW) page is isomorphic to E5 **(BZ/p) ®T.
In particular, when r > 2p”, there are no differentials in this area.
If the elements in Eg *(BW) are all permanent cycles, which means there are also no

differentials starting from the Oth column, and then we have
E;*(BW) =H%(Z/p,F) & (E;"*(BZ/p) ®T),
and
K(n)*(BW) = F2/P @ (K(n)*(BZ/p) ® T) .

The last identity implies W is a good group directly. [ |
Lemma 3.2: The elements in Eg *(BW) are all permanent cycles, which are linear com-
binations of good elements.
Proof: The proof falls into two parts.

An element in FZ/P ¢ K(n)*(BGP) is a permanent cycles if and only if it is an
image of the restriction map K (n)*(BW) — K (n)*(BG?). Note that F ZIp jg generated by
o(x) = ZGiEZ/p o;(x),x € K(n)*(BGP), i.e. the sum of orbits of x. The composite

K(n)*(BGP) — K(n)*(BW) -5 K(n)*(BGP)

will send x to o (x).
An element in 7 is of the form x ® --- ® x for x € K(n)*(BG). We can assume x =
Trg (e(p)) is atransferred Euler class. The representation p @--- @ p is a representation of

HP, which extends to a representation p of H : Z /p. The result follows from the diagram.

K(n)*(BH?) 4o— K(n)*(B(H  Z/p))
lTr lTr
K(n)*(BGP) AT K(n)*(BW)
|
Proof of Lemma 3.1: From the proof in K = K(n), we find that the only properties
used in the proof are K unneth formulas, K (n)* = ¥ » [u*] and the additive structure of the

Atiyah Hirzebruch spectral sequence of K (n)*(BZ /p). Hence we can replace K (n) by any
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field spectrum K of chromatic height n, since different choices of height n formal groups
only effect the multiplicative strucutre on the spectral sequence. The K uneth formula is
proved below [ |

Proposition 3.2: There is a linearly duality between F-homology and cohomology, i.e.
F*(X) = Homg (F,(X),F*).

For spectra X and Y, we have a Kiinneth homeomorphism:
F*X)®F*(Y) S F*(X A Y)

Proof: There are two ways to see the first statement. One way is applying the universal

coeflicient spectral sequence
Ey" = Extj;’:(F* (X),F*) = F*(X).

Since all things are free F, modules. The E, page collapses and we only has the Oth
column, i.e. the Hom part.

The second way is to look at the Serre spectral sequences. The homological and
cohomological spectral sequences are dual to each other (both terms and differentials),
which yields the conclusion.

The second statement is®! (Theorem 4.19). (]

There is also a finiteness property on even periodic field spectra.

Proposition 3.3: For each finite group G, K* (BG) is finite as K* modules.
Proof: This is proved for K = K (n) in [Rav82] of which I haven’t found the citation link.
We will recall his proof in our settings.

First, we may assume G is a p-group, for the surjectivity of transfer maps. We can
find a normal subgroup H of G with index p, and a group G with G/H = Z.

Assume F*(BH) is finite. The fiber sequence

BH — BG — S!

implies F*(BG) is finite.

Consider the map between fiber sequences

BG s BG s CP™

L e

S' — % BZ/p —— CP®
The Atiyah Hirzebruch spectral sequence for the bottom row implies there is a differen-

tial killing x”" for K*(BZ/p) = F*[x]/g(x), where g(x) is the degree p* Weierstrass
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polynomial associated to [p] g (x).
Finally, we see that E}°*(BG) is a module over E}*(BZ /p). Hence xP" is killed in
E?*(BG). The finiteness of K*(BG) follows from it of K*(BG). [ |
Now we can start our calculations on F*BX; and F*BX /1.
Proposition 3.4: F*BX, is finitely generated over F*.
Proof: This is a consequence of® (Corollary 4.4). We need to verify F is admissible in
the sense of ®Y (Definition 2.1). E? is Noetherian and both localization and completion
preserve Noetherianess. Hence FO is Noetherian and all other conditions are satisfied
automatically. [ |
Proposition 3.5: F*BX, is free over F*, concentrated in even degrees.
Proof: From!73! (Proposition 3.6), we know that E*BG is concentrated in even degrees.

Let u;}lE be the homotopy colimit

_ . Up—1 Up-1
unllE = hocolimE - E S E — ---

where u,_; is the corresponding element in E° and let w L E/(p,uy, ..., u,_5) be the

successive cofiber, denoted by K,, _, with
Kun—l* = k((un—] )) [l’ti]

We claim that K;;  BX, is concentrated in even degrees and free. Since 77,K,,  isa
graded field k((u,,_1))[u*], K;;  BX is automatically free. In [86] (Section 7), it has been
shown that 2 is a good group respect to Morava K-theory. The argument is still valid if
one replaces K (n) with any even periodic field spectrum, which implies our claim.

Now let F; = F/(p,uy,...,u;_1), and let F; = F. By construction, we have F,,_; =
K, . We will show that if F7BY is free and concentrated in even degrees, the same is

true for i — 1 as well. Consider the long exact sequence of cohomology groups
F \BX; - F} \BX; - F;BX,
obtained from the cofibration
Uj
Fiy = Fiy = F.

Each F;BX, is finitely generated by Proposition 3.4. Since F;BX, is concentrated in
even degrees, multiplying u; on F l‘.’f‘fBZ « is a surjective. Hence by Nakayama’s lemma,
FPUBY, = 0. From this, we know the action of u; on FS$'$"BY, is regular, and

F? |BX,/u; = F;BX, which implies that F* B is a free F'* module. Note in par-
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ticular, we have shown that

K;:n—lek = K;n—l ®F* F*sz

Proof of Theorem 3.1: Applying!3¢] (Theorem C), we have the rank of
p~F*BY,

over p~'F* is just d(n — 1,k). By Proposition 3.5, this rank must equal to the rank of
F*BY, over F*. [ |
Proposition 3.6: The ring FOBX,; /I = 0 for k # p™ and R,,, := FOBE /I is a free
module over F© of rank E(n — 1,m), where [ is the transfer ideal and E(n — 1, m) denotes
the number of lattices of index p™ in Z1~!.
Proof: For the first sentence, there is a standard argument in!”3! (Lemma 8.10). For the
second, using the method in®!! we see that L(DS) := [[L ® zo F°BX; is a Hopf ring,
which can be identified with the ring of functions F(B, L), where L is a ring extension of
FO with p~! and all roots of the p-series of the formal group law over F° added and B is
the Burnside semiring.

The x—indecomposables IndL(DSY) = []L ®po FYBX/I, is identified with
F(L,L), where L is the set if all lattices in Zg‘l and [, is the transfer. Hence we have
an isomorphism L ® zo FOBX /I, = F(L,,L), with L being the set of such lattices of

index k. This implies the rank of R, over F© is d(n—-1,m). [ |

3.2 Modular interpretation of y/.
Letf € E9(X), which is represented by a map
f:X —>E.
Then we obtained the nth power f”* via the composition

AR

XS XA nxlSENnESE
n n

It is clear that the symmetric group X, acts on this map and preserves it. Hence it factors

as

f*:X->XxBz, > EMN L E,
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where the first map is including the base point. The latter composition is an element in

EO(X x BX,), denoted by y"(f). Thus we have obtained a refined nth power operation
v E9(X) — E9(X xBX,)

called the nth total power operation. Composing with including the base point of BX,,
yields the ordinary nth power operation. Note that ¥” is only multiplicative. To obtain a

ring map, we can further mod out non-additive terms:
wy" : E9(X) — E9(X xBX,) — E°(X xBX,)/I
where [ is the transfer ideal generated by the images of the transfer maps
Tr: E9 (X x (BZ; x BX;)) » E%(X x BX,,)

for all i + j = n,1%?1 (Section 11.3).

Let G and G be the formal groups over Spf(E®) and Spf(F°) respectively.
Inl73] (Section 9), the scheme Spf(EOBZpk /I) is identified with the subgroup scheme
Sub,,(G )87 (Theorem 10.1) over Spf(E?).

The same procedure can be carried through with E replaced by F without harm.
Proposition 3.7: There is a canonical isomorphism Spf(FYBX ,n/I) — Sub,,(Gf).
That is, the ring FOBX pn /1 classifies degree p™ subgroups of G .

Proof: There is a canonical map from Ogy, (G, to FOBE /I as constructed in!"3]
(Proposition 9.1). Note that, these two rings has the same rank over F°. So we proceed
as!”3! (Theorem 9.2), by showing

k(ty-1) ®po Osup, G,y = k(1)) ® po FOBE /1
is injective. The key ingredient here is to show b,,, = c;,e: =D/p-D) # 0in

k((ty—1) ®po FOBZ m = K  BZ,m,

where ¢, m = e(V,m — 1) is the Euler class of representation Vpm —1in F OBEpm and Viym

P
is the standard complex representation of X . This follows from (73] (Theorem 3.2) with
K replaced by K,, . The rest follows!”*! (Theorem 9.2). [

Remark 3.2: We can not obtain this result directly from 87! (Theorem 10.1) which as-

serts that
Spf FO xsprEo Sub, (Gg) = Sub,, (Spf F° xspreo Gp) = Sub,, (Gp).

The failure of this equation is because the map E® — F? is not continuous.
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In order to figure out how the total power operation
yh: FO — FOBY /I

interacts with the modular interpretation of F O0BY. P /1, we shall recall some constructions
from!7? (Section 3).

Let Y denote the function spectrum F(CP*, F), we have
moY = FOCP® = FO[[x]]

which is a complete local Noetherian ring, with maximal ideal (p, uy, ..., u,_»,x) and the
canonical map sroF — Y is continuous with respect to their maximal ideal topology.
Proposition 3.8: The ring Y'BX ,/J is free over Y° and equal to Y° ® zo FOBZ,,/I,
where I and J are transfer ideals respectively.

Proof: For each k, we have
Y*BX, = [EPBY,, F(CP®,F)] = [EX(BXy A CP®),F] = F*(BX; A CP%).

By the Atiyah Hirzebruch spectral sequence, we have

EYY = HP(CP*®,FIBY;) = YP*IBYL,
Since F*BX is concentrated in even degrees, we conclude that

Y*BY, =Y* ®p« F*BX,.
It follows that Y ® o I = J, and hence
YOBZ,/J = Y° ®po FUBZ, /1.

which completes the proof. [ |
In the language of algebraic geometry, Spf Y? = G and the above proposition can

be summarized as the pullback diagram.

Spf(Y'BX,/J) = i*Gf Gp

| |

Spf(F°BX,/I) Spf FO

Together with the naturality of the total power operation:

. Yy
l*GF GF

| |

SPR(FOBX,, /1) —— Spf F?

43



CHAPTER 3 K(n - 1)-LOCALIZED E-THEORY OF SYMMETRIC GROUPS

we obtain a map yy r : i*Gp - (w%)*G over the ring FOBZP/I, as indicated in the

diagram.

(W)

Spf(FYBX,, /1) —— Spf F°

Proposition 3.9: Theisogeny v} ;- : i*Gp - (wh)* G is of degree p over FOBZP/I,
with kernel the universal degree p subgroup K of G over FOBX o/l

Proof: Choosing a coordinate x on G, y?% sends x to x” in Y'BX p/J = O, modulo

maximal ideal of YO. This follows from

+ SO-Bx]

B 2 77T oY

D,
JToY% JToY

sending x to x”. Since (x//’})*(x) = x, we conclude that w5 /F 18 of degree p. Therefore
the kernel of yy - is of rank p.

To show the kernel is precisely the universal degree p subgroup K of Gy over
F OBZP /1, we need to recall the construction of K from!”3! (Proposition 9.1) (in which
K is denoted by Hy). Let V), be the standard permutation representation of X ,. There is a
divisor D (V) of degree p over FOBZP, whose base change to FOBZp /Iis K. Let A be a

transitive abelian p subgroup of X ,, we have a composition of maps
Level(A*, Gr) » Hom(A*, Gp) = Spf FOBA — Spf FOBY. ,.

The divisor D(V,,) becomes a subgroup divisor £ ,c4-[¢(a)] with € the universal level-A*
structure of G on Level(A*, Gg)(See [72] (Section 3) for definition). It is claimed in!73!

(Proposition 9.1) that the map
Level(A*, Gg) - SpfFOBZP

factors through Spf F OBZI, /1 and the union of the images of these maps for all such A
is actually Spf FOBX ,/I. Hence it is sufficient to show the base change of ker y} /o
Level(A*, Gg) is Z ,c4+[0(a)].

Now Let D(A) = Ofeyei(a+,G ) the following diagram
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/WGF\
FO —— FOBA —% D(A)
A N
H I |
D |
FO — FBx, —— FOBX /I

\W;/

implies the composition of the total power operation y?. and the dashed arrow is y %

(Seel7?! (Definition 3.9)). Hence after base change to Level(A*, G ), the map y} - be-
comes y /77?1 (diagram 3.14). According to!7?! (Proposition 3.21), the kernel of y /"

is precisely €[A] = X c4+[€(a)]. [ |

3.3 Augmented deformations

In this section, we combine our analysis about F OBZP /I and the modular interpre-
tation of FO in terms of augmented deformations. Recall that there is a formal group G
over F©, which is the base change of the universal deformation G . Let GOF be the special
fiber of G, which is the base change of G over the residue field k((u,,_;)) of F 0,

The formal group GOF has height n — 1 over k((u,,_;)). At first glance, one would
like to construct the deformation theory of GOF as®3 does. However, the problem arises
immediately for the field k((x,_;)) being imperfect. A way to avoid the imperfectness is
the treatment stated in!'8/. We shall recall these constructions.

Definition 3.2: An augmented deformation of a formal group H over & ((u,,_;)) consists
of a triple (K /R, i, a) where

* Ris a complete local ring and K is a formal group over R,

* A local homomorphism i : A — R fits into the commutative diagram

A—"3R
l l
k(o) —— R/m

* and an isomorphism « : H ®§€((un_1)) R/m =K ®r R/m,
where A = W (k) ((u,,_1)),, is a Cohen ring with residue field k((u,,_;)).

Remark 3.3: There always exists such a local homomorphism i : A — R filling the

diagram

l |

k((u,_1)) — R/m
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due to the property of Cohen rings. Note that such morphisms may not be unique.

This is the main difference between deformation theories over perfect fields and im-
perfect fields. When the field on the left lower corner is perfect, there is a unique local
homomorphism from the Witt ring W (k) to R and consequently a unique W (k)-algebra
structure over R. While this is not true for Cohen rings of imperfect fields. Hence one must
specify a A-algebra structure when discussing deformations in the imperfect context.
Theorem 3.2 ('8, Theorem 1.1): Let H be any height n — 1 formal groups over
k((u,_1)). The ring F 0 classifies augmented deformations of H. To be precise, let
Defﬁg(R) denote the groupoid of augmented deformations of H together with isomor-

phisms. Then we have

Defy*(R) = Maps,, (FO, R).

CtS(

In particular, this implies the moduli problem of classifying augmented deformation is
discrete.

Combining our previous analysis on FBX, and the modular interpretation of F°, we
have the following theorem.
Theorem 3.3: The ring FUBX /I is free over FO of rank d(m,n — 1). Tt classifies

augmented deformations of GOF together with a subgroup of degree p™.

Maps

cts (FOBZ ,m /ILR) = {(K/R,H)}
To be precise, for any complete local ring R, there is a bijection between the set of con-
tinuous maps from F OBEpm /I to R and the set of all pairs (K /R, H), where K is an
augmented deformations of G% and H is a degree p™ subgroup of K.

Equivalently, FOBX /I classifies augmented deformations of mth Frobenius 74!

(Section 11.3), with the universal example
‘//*Y/F *Gp - (y/f:m)*GF

defined in the Proposition 3.9.
Proof: Combines Proposition 3.7, 3.9 and Theorem 3.2 [ ]

3.4 Dyer-Lashof algebra of K(n — 1)-local E,-algebras

We begin with the general theory of algebraic theories.
Recall that a group is a set G, equipped with maps
*m:GxG -G
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*i:G->G

ce:xoG
making certain diagrams commute.

We can abstract this, which is called an algebraic theory.
Definition 3.3: An algebraic theory T is a small category with objects {70, T!, ... }.
And there are maps 7; : T" — T! foralln > 0,1 < i < n, such that T(Tk,T") 7,
[1, T(T*,T') is a bijection.
Remark 3.4: Note that these s, make T” isomorphic to n-fold product of T'!.
Example 3.2: The algebraic theory of groups. T is a subcategory of Grps™. T is the
set of single element. T =< x, ..., x; > is the free group of i generators. Structure maps

are given by
a;: T(T", T') = Grps(< x| >, < X, ..., X, >)
X1 — X

and

 Multiplication: x; = xx, € T(T?,T").

* Inversion: x; = xl‘l e T(TY, ).

o Identity: x; = % € T(T°,Th).
Example 3.3: The algebraic theory Cr of commutative R algebras. Let F be the full
subcategory of Algp, with obejects {F, Fy, ...}, F; = R[xq,...,x;]. Let T = F°P. Let i;
be the following:

T
" =5 T!
Rlxy,....x,] < R[x{]
X; < X1.

The R algebra structure is characterized by

 Addition: x; = x; +x, € T(T?,T)

» Multiplication: x; + x,x, € T(T?,T')

* Inversion: x; » —x; € T(T',T")

e Scalar: x; » 1 € T(T?, T1)
Definition 3.4: A model for an algebraic theory 7T is a functor F : T — Sets, which
preserves finite products. A morphism ¢ between two models is simply a natural trans-
formation between them.

Example 3.4: By the definition above, a model F for the group theory can be identified

47



CHAPTER 3 K(n - 1)-LOCALIZED E-THEORY OF SYMMETRIC GROUPS

with a group, represented by F(T'!). The category of all models for group theory is the
category Grps of groups.

Hence given an algebraic theory T and a model A, we usually abbreviate the notation
A(T") by A.
Example 3.5: The functor Fy(n) = T(T", —) itself is a model for the algebraic theory
T, which is called the free model on n generators.

For example, in the algebraic theory of commutative R-algebras:
Fr(n)(TY) = T(T", T") = Algg(R[x],R[xq,...,x,]) = R[x{,...,x,].

Definition 3.5: A morphism of theories is a functor ¢ : T — T’, which preserve prod-
ucts and sends the projection maps to projection maps.
Definition 3.6: A commutative operation theory (COT), is a triple (T, R, ¢), which con-
sists of

* An algebraic theory T’

* Aring R and the algebraic theory of R-algebras

* Amap ¢ : Cg = T between algebraic theories, such that
¢* : Modely - Modelc,

commutes with finite coproducts.

Remark 3.5: This means a 7 model A has an underlying structure of R algebras, and the
coproduct of 7" models can be computed as tensor product of their underlying R algebras.
Example 3.6: Let G be a monoid. Consider the category of R algebras with an action
of G. Intuitively, this theory is a COT, and it does. The free model of n generators is

represented by
R[x¥:1<i<n,geq]

Example 3.7: Let R be aring. Consider the category of R algebras with an R-derivation,
i.e. d : A - A with the Leibnitz rule

d(xy) = d(x)y +x0(y)
The corresponding algebraic theory is a COT, with free model on one generator given by
R[x, 0x, d%x, -]

To work more conveniently with topological objects, we need the graded algebraic

theory.
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Definition 3.7: Let C be a fixed set, and N[C] is the set generated over C. A graded
theory T is a category with objects {T¢} deN[c]- together with, foreachd = £ .ccd.[c] €
N[C], a specified identification of T¢ with the product [(TLc1)*de,

Example 3.8: Let R, be a graded ring. Let Cg_be the Z graded theory with free model
Cg ([c1] + -+ [c,,]) given by

with each x; has degree c;.

Definition 3.8: A graded COT is a graded theory T with amap ¢ : Cx_— T, such that
¢* : Modely - Modelc,

preserves coproducts.
Example 3.9: Consider the Eilenberg-Maclane spectrum HR for some R. Consider the

following graded theory T, with
T(T[cl]+...+[cm], T[d1]+...+[dn]) = [K(R,c;) x - xK(R,c,,),K(R,dy) x -+ x K(R,d,)]

where the right hand side is the homotopy classes of maps.

If R is a field, then by Kiinneth formula, this is a graded COT.

Instead of focusing on the whole algebraic theory, we now focus on individual oper-
ations carried by an algebraic theory.
Definition 3.9: Letf € F;(n)(T!), and a,...,a, € A(T'), where A is any model of
T.

Letf o (ay,...,a,) denote the image of f under the map Fr(n) — A sending x; to
a;. We call the function:

foxi A" 5 A

the operation associated to f.

Let T = Cg, then we know that

Fr(n)(T') = Algg(R[x],R[x{,...,x,]) = R[x{,...,X,].

We abbreviate Fy(n)(T!) by R{xy,...,x,)}.

Hence
f < (ay,...,a,)

isjustf(ay,...,a,).
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If T is a COT, then we have

Fr(n) = Fr(l) ®g - ®g Fr(1).

Hence we may focus on operations in F'7(1).

These operation satisfies
xXxa=a
(f xg) xa=fo(gxa)
(f+g) xa=fxa+goxa

(fg) xa=(f xa)(g xa)

re<ca=r
Furthermore, if f € R{x} satisfies
fox(ap+ay) =fxa+fxap

We say it is an additive operation, denoted the set of all additive operations by /4.
Remark 3.6: .4 is an associative ring with product o, but not commutative in general.

Considering the following diagram.

Fr)(rh) — 2 ATt
x+y (a,b)
Fr()(r") Fr(2)(T")
o \
) \\

Fr()(Th) ® Fr(1)(T1)
R{x} has a additive coproduct A : R{x} = R{xy,x,} given by x » x; + x,, corresponds
to the structure map under addition. Hence additive operations are those elements with
primitive image.
Now we focus on the algebraic theory on E_, rings. Let R be a commutative S-

algebra, i.e. an E_, ring. We want an algebraic theory describes the structure of 7 ,A for

an R algebra A.

There is a pair of adjoint functor
P :Modg <= Algg : U
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where P is the free algebra functor and U is the forgetful functor. We have
PX)=\/P"X)=\/X"%,
The functor P has the following properties
o P"™(Z™T) = Z=(T}% ) for spaces T
« P(8%) = BT,
e Pr(§9) = 3BxdYn
where d € Z,V,, is R™ equipped with the X, action by permuting the coordinates and
dV,, is a virtual bundle over BX,,.
Similarly, we have adjoint functors
]PR : MOdR = AlgR : UR
With these notations, we have
JTq(A) = hModg(S9,A)
= hModg(R A S1,A)
= hAlgg(P(89),A)
= hAlg,(Pr(R A §7),A)
Thus we have the following definition
Definition 3.10: For any E_, ring or S-module R, we define the Z graded algebraic
theory DLy by
T(T[c1]+...[cm], T[d1]+...[d)1]) = hAlgR(IP’R(R/\ (Sd‘ Ve Vsdn))’ Pr(RA(SCLV v SCm)))
Note that the free model evaluated at [d] is given by
T (Tl leml TIdly = hAlg(PR(R A SY), PRr(R A (S€1 v -+ v §m)))
= hModg(R A S, PRr(R A (S€1 V -+ v §6m)))

74 (Pr(R A (SC1V - v §m)))

g (RAP(S v - v §m))

Also note that DLg is a COT iff when R, P(S¢) is flat over R,, in this case, we can obtain
the coproduct preserving property via the Kiinneth formula.

Hence we can also view taking homotopy group as a functor
7, Algg > Modelp,

For the simplicity, we now only focus on degree zero part of the whole Dyer-Lashof

51



CHAPTER 3 K(n - 1)-LOCALIZED E-THEORY OF SYMMETRIC GROUPS

theory. Let E be an E, ring and A be an E-algebra. In section 3.2, we have seen that there
is a canonical map
W' A - wABEm
which sends f : E — A to the composite
Nk 7

EABY, = E;l\gn —)A;l\gn — A

between E-modules.
Composing with any element 5 : E - E A BY, € EyBY,, yields a map
Q, : ToA - THA
which sends f € (A to the composite
0, ELEnBS, L4

Note that these Q, need not to be additive or multiplicative.
The algebra generated by these O, over E is called the Dyer-Lashof algebra of E,
denoted by DLg. It is clear that

DLE = @ E()an

Remark 3.7: What we have just defined is actually only the degree O part of the full
Dyer-Lashof algebra. In fact, one can start with f : S A E - A € m4A and obtain an

element
w"(f): EABZI" 5 A

where dV,, is d copies of V,, and V,, is the vector space R”" with permutation action of

%,,- Thus the full Dyer-Lashof algebra for E is generated by elements in
PEBzL
n,d

The Dyer-Lashof algebra DL governs homotopy operations on E-algebras. For ex-
ample, let X be a spectrum, then £ A X is an E-algebra. We thus recover homology
operations from E(X) to itself. If we take the function spectrum F (X, E) = EX which is
an E-algebra, then we recover cohomology operations on E0X.

Now let E be a height n Morava E-theory. In!73]_ it is shown that

E,BX, = E'BY,,

52



CHAPTER 3 K(n - 1)-LOCALIZED E-THEORY OF SYMMETRIC GROUPS

for all m, where
Ey(X) = moLg () (E A X)

is called the completed E homology of X.
Thus for K (n)-local E-algebra, their Dyer-Lashof algebra is referred to the modified

version
DL; = (P E(BZ,
n

Elements in &, E,BX,, can be decomposed into primitives, which correspond to indecom-
posables EOBX, /I in E°BY,,.

So what is going on for K (n—1)-local E-algebras? First, one obseves thata K (n—1)-
local E-algebra is the same as a K(n — 1)-local F-algebra, where F' = Lk ,_1)E, is the

K (n — 1)-localized E,,. This is because the structure map
E-A
of E-algebra structure on A factors through
E-Lgy,_-nhE—A

uniquely (up to homotopy) for L ,,_)E being the closest K (n — 1)-local object to E.
Thus the calculation of the Dyer-Lashof algebra on K (n—1)-local E-algebra demands
the calculation of FoBX,,, where F' = Lk ,_1)E, as usual. To obtain good values on Dyer-

Lashof algebra, we modify our notation with the completed homology
FyBZ,, = oLk (n-1)(F A BZ,,)

as what we done in the K (n)-local Morava E case.

Proposition 3.10: There is an isomorphism
FoBX,, - F°BX,,

Hence the Dyer-Lashof algebra over K (n — 1)-local E-algebra is generated by the coeffi-
cients of the total power operation /..
Proof: As explained above, the second statement is straightforward if the isomorphism

holds. Consider the Greenlees-May’s cofiber sequence [*4!
kNEG - F(EG,k) = tg(k)
Taking homotopy pixed point yields a cofiber sequence

K ABG - F(BG,K) - t;(i,K)©
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where K is any spectrum and k = iK is the G-equivariant version of K% (Section 1.1).
We will show that the spectrum ¢ (i, F )G is K (n — 1) acyclic and hence we have an

equivalence
Lgn-1)(F ABG) = Lg,_1)F(BG,F) = F(BG, F)

which induces the desired isomorphism.
Our strategy is as follow. Choose a generalized Moore spectrum M of type n — 1,

such that M A F is generated by K, _ , which is defined in Proposition 3.5. Then we show
tg(i.K, )9=0 (3.4.1)
Hence by property of Tate cohomology, we have
t(i, (M ANF)P =M A t5(i,F)° =0
Applying K (n — 1) homology and Kunneth formula implies
K(n—1),(t(i,F)°) =0

According to!®! (Proposition 3.1), the equation 3.4.1 holds if for all finite group G,
K, +BG is finite generated as K,, ., module. This is true because K,  is admissi-

ble and the finiteness follow from![°?! (Corollary 4.4), or one can directly check that
Kun—l*(_) = K*(_) ®K* Kun—l*

and the condition of being finite is valid for K, where K is the even periodic version of
K(n). [ |
Example 3.10: As a simple application, we consider the n = 2 case. From the calcula-

tion in 3.6 we know that
FOBY, /I = FO

for k = p™, and is zero for other k. Hence the corresponding Dyer-Lashof algebra is
freely generated by Q, for each i = p”. This fits in the general framework over K (1)-local
setting. There is a theorem of McClure which asserts that the Dyer-Lashof algebra of

K (1)-local E, rings is freely generated as a 6 algebra over one generator 0.
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CHAPTER 4 CONNECTIONS WITH ELLIPTIC CURVES

In this chapter we focus on the height 2 case and hence we let E be a Morava E-theory

at height 2 and F = Lk ;) E, be the K (1)-localization of E.

4.1 Elliptic curves and p-divisible groups

We begin with elliptic curves.
Definition 4.1: Let S be a scheme. An elliptic curve C over S is a proper smooth curve
with geometrically connected, genus one fibers and a given section 0.

For our purpose, only elliptic curves over affine schemes are involved. Hence for an

elliptic C over aring R, C is defined by a Weierstrass equation
C:Y’Z+a\XYZ+a3YZ? = X3 + ayX?Z + ayXZ? + agZ>

and over the affine chart 7 # 0, we have

3

C:y? +axy + azy = x> + ax> + asx + ag

where all @;’s belong to R.

Not all curves defined by this equation are elliptic curves. Associated to this equation,
there are some quantities:

* by = a% +4a,,by = 2a4 + ayaz,be = a% + 4ag

* by = alag + 4ara — ajaza, + aza% - az

* ¢4 = b3 —24by,cq = —b3 + 36byby — 216bg

* A = —b3bg — 8b3 — 27b2 + bbb
where the last term A is called the discriminant of C. A cubic curve defined by the Weier-
strass equation is elliptic if and only iff the descriminant A # 0. Otherwise, the curve is

singular, which means it has singular points.

Over fields K with characteristc not 2, by replacing y with %(y —a;x —as), we have
C :y? = 4x3 + byx? + 2byx + bg
If we further assume 3 # O € K, via the transformation

x—=3by, 'y
(-x’y)H( 36 91_08)
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the equation can be written as
C:y? = 4x3 — 27c x — S4cg
One can directly check that
1728A = ¢ - ¢2

Remark 4.1: When A = 0, there are two types of these singular curves. The first type is
nodal, which satisfies A = 0 but ¢4 # 0. In this case, there is a point on C, which has two
distinct tangent directions. Another type is cuspidal. In this case, we have A = ¢4 = 0
and there is a point with two opposite tangent directions.

Both cases contain only one such singular point.

3

Example 4.1: Here are two examples of singualr curves. The curve y?> = x3 is cuspidal

and y2 = x3 + x2 is nodal. See the picture below®”! (Section 3, Figure 3.2).
y? = g3 y? = 23 + 2
Cusp: one tangent Node: two distinct
direction tangent directions

Figure 4-1 Two singular curves

Now let C be an elliptic curve over a field K, with charK = p. It is known that C
admits an abelian group structure. Moreover let C,,; be the nonsingular part of C, if C is
nodal, then C,,; is the multiplicative group (under some field extension over K) and if C

is cuspidal , we have C,; is the additive group. In each case, we can define an isogeny
[m]:C - C

which sends P to the m times P under the group operation.
Let C[m] denote the kernel of [m], which consists of m torsion points on C.

Proposition 4.1 (Corollary 6.4197]1): If m + charK = p, then
Clm]=2/mZ x Z|mZ
If m = p®, only one following situation will happen
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(1) Clp]=Z/p°Z or,

(2) C[p1=0
Definition 4.2: With the above notation, if C/K satisfies the second condition, i.e.
C[p¢] = 0, then we say C is supersingular.
Remark 4.2: There are also other characterization of supersingular elliptic curves. The
first is the Hasse invariant of C equals 0. The another is the formal group assocaited to C
has height 2.

The following theorem provides a useful criterion for being supersingular.

Theorem 4.1: Let K = F, be a field of characteristic p > 3. Let C be an elliptic curve

over K with the Weierstrass form
C:y?=f(x)

The coefficient of x?~1 in f(x) = is the Hasse invariant of C, which vanishes if and only
if C is supersingular.

It is more convenient to consider things like subgroup from the scheme-theoretic
point of view.
Definition 4.3: Let S be a scheme, and C/S is an elliptic curve. An effective Cartier
divisor D on C is a closed subscheme of C, which is finite flat over S and the ideal sheaf
Op is an invertible @ y-module. In this case @O is a locally free sheaf over Og. We
denote the rank of @, by degD.
Definition 4.4: A subgroup of C is an effective Cartier divisor D, which is also a group
scheme, and the closed embedding D < C is a group homomorphism.
Example 4.2: It is easy to see that C[N] is a subgroup of C with degree N2. In fact, for
any abelian variety A with dimension d, the subgroup A[N] has degree N2<.
Definition 4.5: Let S be a scheme. A p-divisible group G = (G,,i,) is an inductive
limit

6 e,

such that
* G, is a finite group scheme over S with degree p*"

* G, can be identified with the kernel

va

RN .
v+1 vyl

0-G, %G,

The natural number #4 is called the height of G.

A homomorphism between G and G’ is a collection of (f, : G, - G},) compatible
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with the structure map.

Example 4.3: The trivial case is
(Q,/Z,)" = colim Z /p*"Z

which is the constant p-divisible group over S.

Another example is
Gm [poo] = (ﬂp"’ lv)

which is a p-divisble group of height 1.

Example 4.4: The essential case is that for any abelian variety A of dimension d, the
associated p-divisble group A[p] is of height 2d. In particular, we have C[p™] is of
height 2 for each elliptic curve C.

Proposition 4.2: Suppose R is a complete Noetherian local ring and G is a p-divisible

group over R. Then, there is a natural short exact sequence between p-divisible groups
0-G"->G->Gy,—0

Proof: We can put it in every finite stage, while this is just the connected-étale short exact
sequence of algebraic group over complete local ring. If each G, is affine, with @ ; being
a finite generated R-algebra over the base scheme Spec R. Then O is the maximal étale
subalgebra in O 5, and O ;- is the quotient of O ; by its maxiaml étale subalgebra. [ |
Remark 4.3: If R is a perfet field, then the above sequence is split.

Remark 4.4: Let G be an affine algebraic group over a field K, then the number of
connected components of G is the rank of its maximal étale subalgebra over K.

Proposition 4.3: We have the equality
heightG = heightG° + heightG,

Proof: Obvious. |
Example 4.5: The constant p-divisible group (Q,,/ Zp)h is clearly étale.

Consider the multiplicative group G, over R, which is represented by Spec R[x, x~!]
or equivalently Spec R[x,y]/(xy — 1). The p”"th kernel G,,[p"] is represented by
Spec R[x]/(x*" — 1). For simplicity, we assume R is a field. Since G,,[p™] is of height
1, we know it is either connected or étale at all. If char # p, then f = x”" — 1 is separale

over R. Hence let L be the splitting field over f over R, we have

L®rR[x]/f =Lx--xL
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Thus G,,[p™] is étale.

On the contrary, suppose p = 0 in R, we have f is inseparable and G,,,[p] is con-
nected.

Suppose G is a formal group of height 4 over a complete local Noetherian ring R.
We can reconstruct an associated p-divisible grop of the same height as follow.

Let G,, be the p"th kernel G[p”"], which is represented by SpfR[[x]]/[p"](x). By

Weierstrass preparation theorem, [p"](x) can be written as

[P"]1(x) = f(x)g(x)

where f is a monic polynomial of degree p" and g is a unit in R[[x]]. One can check that
the canonical inclusion i, fits in the sequence

05 G[p"] 2 Gy 2 Gy

Note that this p-divisble group is connected. Because over the residue field R/m, the
polynomial f can be written as f (xP") 2.5, which is inseparable.
The converse is also true.

Proposition 4.4: Let R be a complete local ring. The above construction
G — (G,,i,)

is an equivalence from the category of the divisible formal groups over R to the category

of connected p-divisible groups over R. A formal group G is divisible if the multiplication
by p map
P]:G -G

makes O g a free module over itself.

Hence we can freely change our dictionary between formal groups and p-divisible
groups.
Example 4.6: Let C be an elliptic curve over a complete local Noetherian ring R, with
residue field K of characteristic p. From Proposition 4.1, we know that if N # p, then
the N-divisible group C[N°] is purely étale. For N = p, there are two cases. If C[p¢] =
Z.|p¢Z, the p-divisible group C[p] falls into two parts, namely, the formal part and
étale part. Each is of height 1. If C[p] = 0, the corresponding p-divisible group C[p*]

is connected and hence formal. In this case, we say C is supersingular and

Clp=1=C
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where C is the formal group associated to C obtaining via completing along the identity
section [0] of C.
Proposition 4.5: For each p, there are only finite supersingular elliptic curves. More-

over, any supersingular elliptic curve can be defined over ]FI%.

4.2 Power Operations on E,

Now back to topology. From the previous section 4.1, we can construct a height 2
Morava E-theory, which is also denoted by E from elliptic curves. Namely, one just picks
a supersingular elliptic curve C,, over some perfect field k, which carries a height 2 formal

group C,. By considering the deformation of C,, one obtian such an E-theory with
moE = W(k)[[h]]

From works of Strickland 7387, Ando and Hopkins[2371:72.981 and Rezk 74!, we know
that to compute the total power operation on E, it is sufficient to find where the universal
degree p subgroup of C is defined, where C is the universal deformation of E‘B. Since we

have

— 0
Ounc = E°BE, /1

Definition 4.6: Let G, be a p-divisible group over k. A deformation of G, to a complete
local Noetherian ring R consists of a triple (G, i, a)

* G is a p-divisible group over R

e {:k — R/mis an inclusion of fields

* a:Gy®; R/m - G ®p R/m is an isomorphism of p-divisible groups over R/m

Clearly, if G is connected, i.e. formal, then the above definition is just the defor-
mation of G, as formal groups. Hence the deformation theory of C, is the same as the
deformation theory of Cy[p™]. Thanks to the theorem below, the deformation theory of
Colp] is equivalent to deformation of C,.
Theorem 4.2 (Serre-Tate): Let R be a complete local ring and k be its residue field of
characteristic p. The following two categories are equivalent.

J: Objects are elliptic curves C over R. Morphisms are homomorphisms over R.

3B: Objects consist of triples (Cy/k, G, 1)

* Cy is an elliptic curve over k.

* G is a p-divisible group over R.

* i:Cy[p™] = G ®g k is an isomorphism.
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In another words, the objects are deformations of Cy[p™].
Morphism in 9 are pairs (fy,f), where f; is a k-homomorphism of elliptic curves
and f is a homomorphism between p-divisible groups over R. They are compatible with

the isomorphism i, i.e.
Colp®] —— G ®rk
lfb lf
Chlp™1 —— G’ @k
The functor is given by

v: A — B
C/R — (Cy/k,C[p™],id)

Now let Cy be a supersingualr elliptic curve over k. Let R = W (k)[[A]]. From the
Lubin-Tate theorem 2.6 we know that there exsists a universal deformation of Cy[p™] =
C, over R, denoted by C. By the Serre-Tate theorem, there is an elliptic curve C over R,
such that C[p™] = C.

Let R’ be the complete local ring where the universal degree p isogeny is defined, or
equivalently, the place where the universal degree p subgroup of C lives. This ring exists,

and indeed

’ _
R = @Sub(é)

Since a degree p subgroup of C = C[p™] is contained in C[p], a degree p subgroup of
C is the same as a degree p subgroup of C. Therefore the total power operation ring of E
is R’, which is the universal degree p isogeny starting from C, or equivalently, degree p
subgroup of C being defined.

We can summarize the above discussion in the following picture.
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(Universal) deformation of E’B

Cp is of height 2

~

(Universal) deformation of Cy[p™] (4.2.1)

Serre—Tate

~

(Universal) deformation of C

To make things more accessible, we will use the representability of certain moduli
problems.
Definition 4.7: Let C be a scheme over S. An effective Cartier divisor D is a closed
subscheme of C, which is flat over S, and its associated ideal shaef /(D) is an invertible
O x-module. The rank of @O, over Oy is called the degree of D.
Example 4.7: It is clear that for any section s € C(S), there is an associated effective
Cartier divisor, denoted by [s], of degree 1.
Definition 4.8: Let D, D’ be two effective Cartier divisors over S. Their sum D + D’ is
defiend to be an another effective Cartier divisor. Locally over R, let A be @O, we have
Op = A/f for some f € A. Similarly @, = A/f’. Then D + D’ is defined by f - f”.

Clearly, we have deg(D + D") = degD + deg(D’). We say D’ < D if there is D” with
D’ + D” = D. This means the defining equation f” of D" divides f of D.

From the definition, D = D’ iff D’ < D and degD’ = degD.

These are enough for defining what so called level structures.
Definition 4.9: Let A be an finite abelian group and C/S be an elliptic curve over base

scheme S. We say
¢:A— C(S)

from A to the group of sections of C over S is an A-structure on C/S if the effective Cartier

divisor

is a subgroup of C/S.
Remark 4.5: From the definition, it is clear that deg[¢ (A)] = |A|. There is an S-scheme

which carries the universal A-structure on C. First, there is an S-scheme Hom (A, C) where
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a universal homomorphism
Puniv : A — C(Hom(A, C))

lives. Hence it is sufficient to find a Hom(A, C)-scheme T with [¢,;,(A)] being a sub-
group of C7/T. This can be accomplished thanks to the existance of intermediate shceme.
It asserts that for any two distinct divisor D, D" over a base scheme S, there is a closed
subscheme Z of S, such that D'Z < D, over Z. Moerover, Z is universal in the sense that,
if there is a scheme T with D%, < D over T, then the map T — S factors through Z.

The condition that D being a subgroup of C is equivalent to the following data

* [e] <D.

e Leti: C — C stand for taking inverse. Then D = i*D.

e Letm : C xg C —» C be the multiplication on C. Let P = D xg D, denote the
two projection maps by P, P,. There are two sections in C(P), which are composition of
projections and inclusion from Dp to Cp. These we have a section in Cp xp Cp, denoted

by (P, P,). We require that
[m(Py,Py)] < Dy

This means the multiplication on C restricts to D.

Example 4.8: One of the most important level structure is the Z /N Z —structure, which
also denoted by I'; (N)—structure. From the definition, one can immediately figure that a
I'; (N)-sturcture on C is equivalent to an N-torsion point on C, given by [¢(1)].
Example 4.9: Another example is I" (N)-structure, which is associated to group Z,/N Z.x
Z,/NZ. This is equivalent to a basis of C[N], given by ([¢(1,0), ¢(0,1)]).

Definition 4.10: Let Ell be the category of all elliptic curves, with morphism

cC’ — C

S ——S
being Cartesian product.

A moduli problem is a contravariant functor
%P : Ell — Sets

Remark 4.6: In the language of stacks, a moduli problem can be viewed as a presheaf

of sets over the moduli stack /6,;,.
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Example 4.10: The assignment
C/S +— {A - structure on C}

defines a moduli problem.

Let A = Z/NZ., the corresponding moduli problem is denoted by [I'{(N)], which
assigns each elliptic curve with the set of its N-torsion points. Let A = (Z/NZ)?, we
have similarly [I" (N )] moduli problem, which assigns C with the set of basis of C[N].
Example 4.11: The moduli problem

C/S — {degree N subgroup of C}

is denoted by [I'¢(N)].
Definition 4.11: We say a moduli problem & is relative representable if for any elliptic
C/S, the functor

T — P(Cy/T)

from Sch/S to Sets is representable.
Example 4.12: Clearly, [I'(N)] and [Gamma, (N)] is relative representable.

In fact, [I"((N)] is also relative representable.

In light of relative representability, to calculate the total power operation ring 4.2.1,
one could take the universal deformation C/W (k)[[h]] then find the representable object
Peiwmorny for [To(p)].

However, to keep track of where the element 4 goes, we shall use the representability
of [} (N)].
Definition 4.12: We say a moduli problem % is representable if & is represented by an
object in Ell.
Theorem 4.3: Over Z[1/N], [I'{(N)] is representable, denote the representing object
by Cy /[ Mby.
Proposition 4.6: Let % be a representable moduli problem and %’ relative repre-
sentable. Then the simultaneou moduli problem % x %’ is representable.
Proof: Let /(%) be the representaing object of . Then P x P’ is represented by
P 1) |
Corollary 4.1: Over Z[1/N], the simultaneous problem [T"{(N)] x [To(p)] is repre-
sentable, which is denoted by Cy/ Mby .

Now we can finially set up our computation framework.

Recall from previous discussion, let Cy be a supersingular elliptic curve, and C be its
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universal deformation. To calculate the total power operation in E, we proceed as follows.

Step 1: Choose N prime to p and find Cy / A6, . Find a supersingular locus on 6 p,,
thus we obtain a supersingular elliptic curve C and its universal deformation C and an
associated Morava E-theory.

Step 2: According to the representability of [I'{(N)] x [T'¢(p)], find the scheme
by p,. The scheme by, should be finite flat of rank p + 1 over /b, for there are p + 1
subgroups (C[p] has rank p?). Base change Moy, via Spec W(k)[[h]] = by, where
W (k)[[h]] = E° is the place universal deformation of C, defined. Then we have

— 0
@‘%N,pX%NSpCCW(k)[[h]] =F sz/]

Step 3: Find the expression of the universal target curve, and see how /& changes
through the universal degree p. This will give the expression of w” (h). See the following
example 4.13, 4.14.

Example 4.13: Whenp = 2, [[((2)] = [T';(2)]. Therefore the above procedure can
be simplified to find #,. Let C be such a curve:

C:Y?Z +aXYZ+YZ?=X3
over the ring Z[a]. The discriminant is A = a3 — 27. The Hasse invariant is a, which
means mod (2, &) the curve
C:Y?Z+YZ?=X3
is supersingualr over IF,. We thus produce a universal deformation which is C is self over
Z[al[A™" 1% ) = Z,[a]]
Now we calculate the 2-torsion pointon C. Letu = X/Y andv = Z/Y,overthe Y # 0

chart, C can be interpreted as

C:v:i+auv+v=u’

with the identity (0, 0). To calculate a torsion 2 point Q, observe that the line through the
origin and Q must tangent to C. Let Q = (d, e¢), we have
3d2 —ae dv edv

2e+ad + 1du  ddu
e +ade+e=d3

which yields

e+d>=0
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d3—ad-2=0
Thus C with the universal 2-torsion point lives on Z[a, d] /d3 — ad — 2. And hence
EOBY, /I = Z,[lallld]/d>® — ad -2

To calculate the total power operation, it is sufficient to find w?(a). Note that let C” be

the target curve of ¥ starting from C with the kernel generated by Q, then we must have

C' V2% +y2(a)u'Vv +Vv =u3

The coordinate u”, v’ can be written as
u' (¥(P)) =u(P)-u(P-Q)
VvV (¥(P)) =v(P)-v(P-0Q)

Using the group law on C and expanding everything on the right hand side as power series

in terms of u, we find
yfz(a) = a? + 3d — ad?
Example 4.14: When p = 3. The [I"; (4)] problem over Z[1/4] is representable, which
is represented by
C : y% + axy + aby = x3 + bx?
over the graded ring
S* = Z[1/4][a,b, A™1]

with la| = 1,]b| = 2 and A = a?b*(a® — 16b). The Hasse invariant in H = a? + b over Fs.
Introduce elements « and ¢, and let a = uc, b = u?. Consider the degree O part S of

S*[ul — 111, which is an affine open chart. We have
S=7Z[1/4][c,671]

where 8§ = u12A = ¢%(¢? — 16). The curve becomes

3 2

C:y2+cxy+cy=x3+x

over S, and the Hasse invariant is 4 = u=2H = ¢Z + 1.
By computing the universal point of exact order 3, and applying the same procedure

above, we have the universal isogeny of degree 3 is defined over

Slal/w(h, a)
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with

wh,a) = a* —6a% + (c2 - 8)a -3
Base change it to

S35 = Zollh]]
we have
EYBX3/I = Zol[hl[al/w(h, a)

with

w(h,a) =a*—6a%2+(h-9a -3

The target curve C is

3 2

C':y2+cxy+cy=x3+x

with

’

c = ((c2 -4 a3 +4a% + (-6¢2 +20)a + ¢t — 12¢% + 12)

| =

Therefore we have
y3(h) = g3 (2 +1)
=c?2+1
= h3 —27h% + 201h — 342 + (—=6h% + 108h — 334)a
+ (3h—27)a? + (h*> = 18h + 57)a?

4.3 Modular forms and Parameters

Inexample 4.13 and 4.14, we see that there are two variables, namely 4, a, to describe

the total power operation ring
E°BE, /1 = Og e = WK ® Oy,

These parameters are indeed examples of modular forms.

Let C/S be an elliptic curve, with the structure map
p:C->S

The Kéhler differential Qg is an invertible sheaf of @ --module. Let /S be the push-

forward sheaf p, Qg over S.
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Definition 4.13: A modular form of weight k is a section of @® over the compactified
moduli stack %—e,, of elliptic curves, where  is the pushforward of universal sheaf of
differentials.

To be precise, a modular form f is a rule, which assigns each elliptic curve C/R,
where R is a ring, a section f (C/S) of g%’/‘s. This assignment is natural in the sense that
foreach g : C/R — C’/R’ , we have

g (f(C"/R)) =f(C/R)

To be more precise, f assigns each pair (C/R, w), where w here is a basis of v C/R’
an element f (C/R, w) in R, such that

(1) Natural: g*(f(C'/R’,w’)) = f(C/R, g*w’), as above.

(2) Change of basis: f(C/R, Lw) = L7%f(C/R, w)
Example 4.15: Over the complex field C, an elliptic curve can be identified with C/Z +
Z.t, where T belongs to the upper half plane H. A canonical differential is d . Since for

y € SL,(Z), T and y 7 yield isomorphic elliptic curve, and

at +b
dy= _d(cr+d

a b
) = (ct +d) 2dT, y = [ J e SL,(Z)
c

We recover the classical modular forms, i.e. holomorphic function f (z) with

(cz+d)kf(yz) =f(2)

Example 4.16: Overan I ,-algebra R, an elliptic curve C adimits the absolute Frobenius
map F,,, : C - C, which induces an endomorphism on H!(C, © ). By Serre duality,
we have a basis @ on w . /s determines a basis 7 on H!(C, © ). We define a modular

form A, such that

F*

s =AC/S, w)n
If we let 2w take place of w, the corresponding basis is 1~!7. Hence we have
Fr, (271 = 27PF, ()
= A PAC/S,w)n
F*

abs

(A7) = A(C/S, Aw) 271y
Hence we have
A(C/S, Lw) = L17PA(C/S, w)

Thus A is a modular form over F » of weight p — 1, called the Hasse invariant.
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Similarly, we have modular forms of I'(p).
Definition 4.14: A weight k modular form f of T'y(p) is a rule which assigns each triple
(C/R,w,H), where H is a degree p subgroup of C, an element f(C/R, v, H), which
satisfies the analogue conditions as presented in definition 4.13.
Example 4.17: Let C be the universal elliptic curve carrying a 4-torsion point over /b,
as defined in Example 4.14. By the representability of I'{ (N) x I'¢(p), there is a scheme
Mby 3, such that C/ Mb, 5 carries a universal 4-torsion point and a universal degree 3

subgroup [0] + [Q] + [-Q]. Choose a coordinate u on C, and define
a:=[]u@) - u-0Q)

as an element in @ oy 5+ This is a modular form of I'{(N) x I'y(p), as one can see for
each elliptic curve over Spec R/ Z[1/N] carrying these two information, there is a unique
map f : Spec R — b, 3 which classifies such a curve. We assign such curve an element

f#(a) in R, where
20,4, >R

is the induced map on global sections.
This modular form which we also called @ is a norm parameter. In general, over

Z.[1/N1], we have a sequence of moduli schemes
Moy p > Moy — Spec Z[1/N]

Let C/ Aby , be the universal curve with degree p subgroup H. We can similarly construct
a norm
a=NwQ):= [] wQ
QeH-0
which is a modular form as explained previously.
Note that « is also the multiples of the cotangent map of the universal degree p
isogeny over the moduli scheme by ,. To be explicit, let ¥ : C - C/H be the uni-

versal isogeny, then we have
w*(di) = adu

where du and du are the invariant differentials over C and C/H respectively.
Let Cy/k be a supersingular elliptic curve, where k is a perfect field of characteristic

p. Let C/W (k)[[T]] be its universal deformation. Let A be the complete local ring with
Peiwwnry = SpecA
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In[?2] (Section 5.4, 7.7), the parameters for describing A is listed below. Thus we are

Table 4-1 Parameters for Moduli Problems near supersingular locus

Moduli Problems Data contained Parameters for A

'/ (N) N-torsion point P T,u(P)

Lo(p) Degree p subgroup T,Nu(P))

guarenteed that the ring E°BX o/ =0 Moy, is of the form
E°BY, /I = W(k)[[h]l[a]/w(h, a)

as shown in Example 4.13 and 4.14.

The compactified modular curve %N’p has cusps %N,p — by - For any cusp
on %N, there are exactly two cusps lying over it, corresponding to étale subgroup and
formal subgroup on the corresponding Tate curve. Katz[*! (Section 1.11) and Zhu!?*]
(Lemma 2.15) showed that the modular form « is 1 at unramified/étale cusps and is p at
ramified/formal cusps.

Thus, at least at cusps, we have the equation
(a-p)la-1)F=0
Since near a supersingular locus, we have the equation
p
w(h,a) = aP* + Z w;a' =0
i=0
In?41 it is shown that w, is constant for all i but w; = —h. Since the Hasse invariant takes
value 1 near each cusp, by comparing these two equations we have the following.
Theorem 4.4 (1241, Theorem A): After choosing a preferred model for E 24! (Defini-

tion 2,23), the ring E°BX /I can be interpreted as

E°BX,/1 = W(F,)[[h, all/w(h, a)
with
w(h,a) = (a —=p) (a + (=1)?")" = (h=p> + (-1)?) a. 4.3.1)

From the modular forms point of view, the total power operation can be explained as
follow.
The map, which is called an exotic morphism on moduli problems!??! (Chapter 11)

(C,N,H,du) — (C/H,¥(N),C[p]/H,du)

gives an endomorphism of ./ ,, denoted by a. This operation, which is called the Atkin-
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Lehner involution, is indeed an involution since the twice composite a o a sends C to
C/C[p] = C. It hence induces an involution on I'{ (N) x I'j(p) modular forms, which is
exactly the Atkin-Lehner theory on modular forms.

Hence under this interpretation, the total power operation can be understood as

Moy, a > Moy,
Mo

over the global moduli schemes. Near a supersingular locus, it can be interpreted as

0 J a 0
EOBE,/I < E9BY, /1
EO

For the convenience of notation, we usually denote the image of the Atkin-Lehner involu-
tion of a modular form f by . Therefore the total power operation is actually determined
by

wP(h) =h

the Hasse invariant of the target curve, as computed in Example 4.13 and 4.14.

4.4 Calculations on height 2 case
Let E be a Morava E-theory of height 2 over the field Fp, with
E* = W(F ) [[u; I[u*].
Let F be the K (1) localization of E, whose coefficients ring is
F* = W(F,) (u)plu*].

Let Gz and G be the formal groups over E© and FO respectively.
In this section, we give an explicit calculation of the additive total power operation
w" in terms of the expression of y. for the n = 2 case. The naturality of the total power

operations gives a diagram:

P
EO —£ 5 EOBY, /I

l lt (4.4.1)

yZ
YFr

FO —— FOBx /] = F°
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where I and J are the corresponding transfer ideals. The equality on the right corner is
because the formal group G is of height 1, hence F OBEP /J is free of rank d(1,1) = 1
over FO.

Remark 4.7: From now on, we will use 4 instead of u; in E* and F*. This is because
when height is 2, the ring EY can be viewed as the place where the universal deformation
of a certain supersingular elliptic curve is defined. The letter 4 here stands for the Hasse
invariant for it being a lift of Hasse invariant.

The map ¢ in the middle is EY linear. To see this, consider the diagram

E°(\/?! BE, xBX, ;) ey EOBY, —— EOBY, /I

! | i

FO(\/I;:_ll BX; xBX, ;) LN FYBY, — F°BX,/J

The maps in the top row are between E® modules and maps in the bottom can also be
viewed as EV linear maps via EY — FO. Then one can check that the left two vertical
maps are E¥ linear, which implies 7 is E° linear as well.

Now we can deduce the explicit expression of y7. via the calculation of y?., which
is summarized in the theorem below.

Theorem 4.5 (124, Theorem B): The image of / under y*. is

p

p
wh(h) = a+ Z al Z Wei1di 7 (4.4.2)
i=0 =1

where w;’s are defined to be

w; = (=1)PP=i+D) [(ifl) + (—1>P+1p(’§)]

-1
— T—Ny,,N
di = Z (=) "'wy Z Wi, = Wi
n=0 my+ My _,=T+i
1<mg<p+1

My _,2i+1

and

Proof: This theorem is deduced from the following observations. The modular form «
associated to C can be identified with the multiplicity of the cotangent map associated to
the isogeny C — C/H, for specific degree p subgroup H of C. Hence the image @ of «
under the Atkin-Lehner involution is the cotangent for C/H — C/C[p]. While we have

c Yy cm ¥ cicpl=cC
p
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Hence
pdu = V*U*dy = W*§dii = Gadu
and
ada = (-1)P1p (4.4.3)
Since & and « satisfies
w(h,a) = a?*! + i w;a' —ha + (-1)P"1p =0 (4.4.4)
=2

where the middle coefficients w; are all constants.

Applying Atkin-Lehner involution, we see that

P
aP*l + Y w @ - ha+p =0 (4.4.5)
i=2

Therefore from equations 4.4.3 and 4.4.5, we have

h=ar +w,aP '+ + w0 +a (4.4.6)
Dually, from equations 4.4.3 and 4.4.4, we have

a=-af - a)pap‘l ——wha+h 4.4.7)

Substituting the equation 4.4.7 into 4.4.6, we have the desired formula of % in terms of &
and a. [ |

Example 4.18: In Example 4.13, we calculate
wh,a) = a3 —ha -2

where d stands for ¢ and a stands for /.

By the method above, we have
a’?-h+a=0

and

=h-a*?+a
=h?>-2ha®+a* +a

=h? - 2ha? + ha® + 2a + a
=h? — ha? + 3a

which is just as what has been calculated in Example 4.13.
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Example 4.19: Inp = 3 case, Example 4.14 we calculate
w(h,a) =a*—6a%+ (h-9a -3
which is incompatible with Theorem 4.4 in which we have
wih,a)=(a-3) (-1 = (h-10) a
=a*-6a’ +12a° — ha + 3
This incompatability comes from the model for Morava E theory in Example 4.14 is not
the preferred model. In the preferred model, we have a¢@ = 3, while in this case, we have

-3.
Example 4.20: Inp = 5 case, we have

w(h,a) = a® = 10a> + 35a* — 60a3 + 5502 —ha +5=0 (4.4.8)
Applying Atkin-Lehner involution, we have
a® —10a° + 35a* — 604> + 5562 —ha +5=0
with
ad =5
Hence we have
w3 (h) =h=a - 10a* + 356> - 6062 + 558 + a
= (—a> + 10a* - 35¢3 + 60a? — 55a + h)>
—10(=a® + 10a* = 35a3 + 60a? — 55a + h)*
+35(-a° + 10a* = 35a3 + 60a? — 55a + h)?
- 60(—a> + 10a* — 35a3 + 60a? — 55a + h)?
+55(—a> + 10a®* = 35a3 + 60a? — 55a + h)
+a
= h> — 10h* - 1065h> + 12690h? + 168930h
— 1462250 + (-55h* + 850h> + 39575h?
— 608700h — 1113524)a + 60(h* — 775h3
— 454007 + 593900A + 2008800) a>
+ (=35h* — 400K — 27125h% — 320900h
— 1418300) @ + (10h* — 105h% — 7850h2
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+ 86975h + 445850) a* + (—h* + 10h3
+ 790h? — 8440h — 46680) >

Remark 4.8: As shown in above examples, different models for Morava E theories may
yield different formulas for the interpretation of E°BX p/1 and the total power operation
wP. To be explicit, in?*1, Zhu defined a preferred model for Morava E theory, which
consists of the following data:

Mod.1 a supersingular elliptic curve C, over the algebraically closed field Fp

Mod.2 Cy is the universal deformation of C over /6.

Mod.3 a coordinate u on Cy

Mod.4 an isomorphism between Spf E© and the formal completion of ./, around
the supersingular locus corresonding to C.

Mod.5 an isomorphism of formal groups between Spf EO(CP>) and Cy, which
sends xz - u to u.

Mod.6 auniversal degree p isogeny Cy — 1(\‘,” " over M N.p

Mod.7 anisomorphism between Spf E°BX /I and the formal completion of /6 ,,
around the supersingular locus.

Note that the first u is the periodic element in 7 E, and xg - u is a coordinate on
the formal group Spf E®(CP). The second u means the coordinate on Cy as defined in
Mod.3.

To get the desired formulas, we need to modify this model.

Mod.1,: The twice Frobenius on Cy is (=1)?"!p, i.e.
Frob” = (—~1)P~![p]

This guarantees aa = (—=1)7"1p.

Mod.3,: The coordinate u should be choosen properly, such that the induced modular
form « takes value p on ramified cusps and (—1)?~! on unramified cusps. This guarantees
the modular equation w(h, «) is of the desired form. By[24] (Lemma 2.15), this could be
done.

The desired equation and formalas depend on different choices of Mod.1 and Mod.3.
As explained, Mod.3 effects on the modular equation w(/, a) and Mod.1 effects the total
power operation formula.

Back to the streamline, to determine the image of h € F 0= W(Fp) ((h)) 1/,\ under y/l},
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it suffices to determine the image of « in Theorem 3.2 under the map ¢. We have
yh(h) =toyh(h)

by the diagram 4.4.1. Since ¢ is an EY linear map, this requires us to find the solutions of
w(h, ) in FV.
Proposition 4.7: There is a unique solution a* of w(h, a) in W(Fp) ((h)),, with

a* = (=)P*tlp.p7l 4 (1 + (—1)1”+1p(p—2_1))p3 -h™3 + lower terms (4.4.9)

satisfies
w(h,@) = (@ =p)(@+ (1)) = (h=p* + (=1)")a = 0.
Moreover, we have a¢* = 0 mod p.
Proof: We write w(h, a) as
Wy P+ w al + -+ wia + wg

where w,, | = 1, wy = —h, wg = (-1)P*!p, and

w; = (=1)PP=ixD) [(ifl) + (—1>P+1p(’§)]

for other coefficients.
Since 4 is invertible in W(Fp) ((h)) ;;, the equation w(h, @) = 0 implies
a=h1eP! + wyal + ewha? + wy)
= h‘lwo +a%(aP~ 1 + wpap‘2 + -+ wz)h‘1
= h™'wy + h3w3w, + lower terms
Substituting the second equation into itself recursively gives the desired formula for a* as
described in 4.4.9.

This iteration makes sense because the highest term of a* is A~ !w, and pjw,. Hence
each substitution only create a lower terms, which is divided by a higher power of p, than
current stage. Thus

a* = Xpagh™*
and the coeflicient a; satisfies
lim |a;| =0
k— o0

which implies ¢ is indeed an element in W (F ) (h)),,.
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The uniqueness comes from the following observation. Note that

w(h,a) = a(aP —h) mod p

This implies w(h, @) has only one solution 0 in the residue field of W (I p) ((h)) ;,\ Therefore
it also has a unique solution in W(Fp) ((h)) 1/,‘, which is a*. [ |
Remark 4.9: This uniqueness can not be explained as there is a unique degree p sub-
group of a height 1 formal group, beacause the map ¢ : EY'BX o/l > F 0 is not continuous.
Hence we cannot using Strickland’s theorem directly.

Combining our analysis on the naturality of total power operations and Proposition
4.7, we have the following theorem.
Theorem 4.6: Let F be a K(1)-local Morava E-theory at height 2. The total power

operation y. on F 0 is determined by

p p

whh) = a*+) (@)Y weiid; o, (4.4.10)
i=0 =1

where
a* = (-1)P*lp.-hl 4+ (1 + (_1)P+1p(pT_1))p3 -h73 + lower terms
is the unique solution of
w(h,a) = (a = p)(a+ (=1)P)? = (h=p* + (-1)")a

in W(F,) (h)} = F°.
The other coeflicients w; and d; , are defined in Theorem 4.5.

In particular, y?. satisfies the Frobenius congruence, i.e.

w-(h) = h” modp

Proof: The formula 4.4.10 is obtained by assembling Theorem 3.3 and Proposition 3.7.
The last sentence comes from y/. = Zi—:l Wy 41do, mod p, for a* being zero after

modulo p. Also notice that
w; =0modp, i =0,2,---,p.
Therefore

wh(h)

P
Y weiido . = doy
=1
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p-1
— —Nn,.,n
= Z(—l)p wg Z Wi, Wiy
n=0 my+-my,_p=p
1<smg<p+1

1<smg<p+1

>
mp_l

The only possibility in the last summation is m, = 1, hence

wh.(h) = (=1)Pw} = (=1)P(=h)P = kP mod p

Example 4.21: We calculate these formulas for small p.

When p = 2, we have

T+h—4+h—7+0(l’l )

a* =

and

w3(h) =h*>+a*—h-(a*)?

_p2_9 YV -10
h R + Oh™'Y)
When p = 3, we have
. 3 108 162 7857 6
a_ﬁ+h3_h4+h5 + O(h™®)
and
w(h) = h3 — 6h% — 96h + 594 — Hhﬁ + 14;280 + lower terms.

Remark 4.10: In the p = 3 case, this power operation formula is different from which
in[100] (Section 5.4). This is because the equation for & in!19% is not of the form as 4.3.1,
but these two equations are equivalent?*! (Remark 2.25). In the semi-stable model of
Morava E-theory [24] (Definition 2.23, Mod.1%), it is required that Frob® = (-1)P~1[p],
for instance, [3] in this case. While in!1%, the model used is Frob” = [-3], as explained
in Example 4.19
Remark 4.11: The formula 4.4.10 relies on the E_, structure on F. In our analysis, we
equipped F with the E, structure induced from E via localization. However, F itself may
admit a different E_, structure. Seel!8] (Section 6). Not as what happened in Morava E
theory, different models for F do yield inequivalent interpretation and formulas.

Recall that the total power operation y/%. : E 0 - E9BY. /1 stands for taking the target

of the universal deformation of Frobenius. It can also be viewed as taking the target curve
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of the universal degree p isogeny as explained previously.

Over FY, the p-divisible group Gz becomes an extension
OQGFzG%eGEan/ZPAO

where GY is the connected component of G over F°, which is G.

Or equivalently
0-C, = Culp™1 > Q,/Z, 0

over FO, where C,, is the universal elliptic curve over ./ np and F 0 corresponds to a
punctured formal neighborhood of a supersingualr locus.

The map
t: E°BY, /I - F°

in the diagram 4.4.1 classifies a degree p cyclic subgroup of C, over FV. However, in
this case, C,, has only one cyclic subgroup of degree p, which coincides with the solution
of w(h, @) in F© being unique, or equivalently, the map ¢ being the unique map from
EOBZp /I to FY, as stated in Proposition 4.7.

Moreover, this subgroup is also the unique subgroup of degree p of C, = G over
FO.

Therefore, in the interpretation of elliptic curves, we can explain the diagram 4.4.1

as follow.

Co s C /K

Lo

c, Vs
where C), is the base change of C,, over F¥, and H is the degree p cyclic subgroup of C/,
as explained above. The maps y%. and y?. take the target curves of degree p isogenies
starting from C,, over E°BX p/I and F O respectively. And the map ¢ transform C, to C,,
and K to H, hence it takes the curve C,/K to C,,/H. The element wf,(h) can be viewed
as the Atkin Lehner involution 7 restricted over FO.

In the interpretation of formal groups, we have

p
Gp s (y5)*Gp = Ge/K

! I

Gp —5 (y2)*Gp = Gp/H

79



CHAPTER 4 CONNECTIONS WITH ELLIPTIC CURVES

where K is the universal degree p subgroup of the formal group G and H is the unique
degree p subgroup of G . The groups K and H are the same thing as which appear in the

interpretation of elliptic curves.
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Let H be any height n — 1 formal group over k((#,_;)). In section 2.3, we have

constructed the universal deformation H* over the ring
FO = W (k) (w1 ) plltays o 5],
and let
F* = FO[ p*]
with | 8| = —2. The ring F* is Landweber exact, via the map

MU* - F*

Xopin wut

Hence we can construct a homotopy ring spectrum, called augmented deformation spec-
trum, denoted by Ly € CAlg(hSp), which is complex oriented and carries the formal

group H*.

5.1 The underlying spectra are equivalent

In this section we will show that the underlying spectra of Ly are independent of the
choice of formal groups H, which means they are all equivalent.

Let us recall what happens in Morava E-theories. Suppose the field k is perfect, [F,
and F, are two formal groups over k. Then we have IF; and I, are isomorphic over the
algebraic closure k of k, and in fact, they are isomorphic over the separable closure of k.

Let E(k, ) and E(k,F,) be the corresponding Morava E-theories. It has been
shown in!1911 that the underlying spectra of them are equivalent, but not as homotopy
commutative ring spectra. Hence one can at least take k to be an algebraically closed
field, and talk about the Morava E-theory of height n over it.

While things are slightly different when consider formal groups over k ((#)) even if k
is algebraically closed.

Example 5.1: Let H be the Honda formal group over Fp ((u)) with its p series given by

[P1a (x) = XP,
and let G be the special fiber of the base change of the universal deformation of the height
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2 Honda formal group, which is defined over Fp ((n)) with p series
(plg = uxP +5 xP’.

We claim that H and G are not isomorphic over Fp ((u)).

Suppose ¢ (t) = byt + -+ is an isomorphism from H to G, hence b; # 0. We have

¢ ([plg(x)) = [plg(¢(x))
d(P) = up(x)’ +6 p0)" .

Calculating with mod xpz, we have

p—1
bix'P = byxP + -+ b, 1xP7VP = ug(x)”
1

i=
= uqup + ungzp 4o ubz_lx(P—l)P

p-1

=Y ubPx’P modx””.

i=1

This implies that b; = ub? in Fp ((#)). But the equation ux” = x does not have a non-zero
solution in Fp ((#)) and by # O by the assumption.

Example 5.2: Following the above notation, we know that the Honda formal group H

pocesses all its automorphism over F,, and in particular, over F,((u)). On the other

P
hand, by the same calculation, one can see that G does not have all its automorphism
over Fp ((n)).

These examples illustrate that one can not talk about the augmented deformation
spectrum of a given height without specifying the formal group associated to it.

To show, despite of their ring structures, their underlying spectra are all equivalent,
we need the following lemma.
Lemma 5.1 (['91], Lemma 7): Let R be a commutative ring with two Landweber exact
formal group laws e,f : MU, — R and let E and F be the corresponding spectra. If there
is a ring extension u : R — § which is split as an R-module map and over S, the formal
groups u o e and u o f are isomorphic and Landweber exact, then E and F has the same
homotopy type.
Proof: We may assume E = H is the height n — 1 Honda formal group law and F is

p-typical. We have

Ly =Ly = W(k) (up_1)pllugs ... u, 2N B*]
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Fix a separable closure of k((«,_)), and an isomorphism

B(X) =Y &)X +p ®XP" 4y + -

i>0

from F to H. Let L denote the field k((«,,_1)) (®q, P, ... ), and
L, =k((u,_1)(®g, ®q,...,2,).

Therefore L = limL; and F and H are isomorphic over L.
Each L, is a finite Galois extension of k ((u,,_ )) [16! (Section 2.3). By!!%?] (Proposition

4.4) or!7l there is a sequence of finite étale W (k) (u,,_1)) ;,\ algebras
W (k) (u,_1)p = B(=1) = B(0) - ---.

Note that each B(i) is a free W (k) (u,,_1)) ;; module, so does their limit B(co). We have
the map W(k)((un_l))]’,\ — B(oo) splits as W(k)((un_l));,\—modules. Since this is a Zp
module map, this splitting property extends to the p-adic completion, B(cc);, denoted by
B. By!!'7l (Lemma 4.2), the ring B is a Cohen ring of its residue field L.

Now Let

R =Ly =Lg =Wk (u-)plluy,....u, 21, [B*]
S =Blluy,....u, o[ B*].
The map u : R - S sends u; to u; and g to B, which splits as an R-module morphism
as explained above. Let F and H be the universal augmented deformations of F and H
respectively, over R. It is clear that u*F is isomorphic to u*H over S, because they are
deformations of two isomorphic formal group laws. The conclusion follows from the

Lemma 5.1. [ |
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CONCLUSION

In this dissertation, we calculated the K (n — 1)-local E-theory of symmetric groups,
obtained the corresponding modular interpretation of total power operation on the K (n —
1)-localized Morava E-theory at height n and deduced the Dyer-Lashof algebra structure
of K (n — 1)-local E,-algebras, using the duality result of K (n — 1)-localized E,,.

In the height n = 2 case, we calculated explicitly the formula of total power opera-
tion on K (1)-localized E,, and explained our works in the setting of elliptic curves and
modular forms. We also proved all spectra constructed from augmented deformations are
homotopy equivalent.

Our results

(1) extend results from K (n)-local E-algebras to K (n — 1)-local E-algebras, which
gives a more comprehensive perspective of E-algebras.

(2) is an attempt to get a full understanding of transchromatic phenomenon, which
gives an insight of what happening on the moduli stack of formal groups when Bousfield
localization changes chromatic heights.

(3) establish the modular interpretation of the total power operation on the overlap
of the ordinary part and supersingular locus over the moduli stack of elliptic curve, which
may have its use on getting a modular interpretation of the total power operation on the

global moduli, i.e. TMF'.

5.2 Future works

In future works, we could consider the total power operation on K (¢)-localized
Morava E-theory of height n, with n — ¢ > 2. This may have its roots in the Lurie’s
refined Landweber exact functor theorem.

Recall the theorem from Lurie.

Theorem 5.1 ([551Theorem 3.0.11): Let R, be a Noetherian IF,, algebra, which is
F-finite (i.e. Frobenius is a finite morphism), and let G, be a nonstationary p-divisible
group over R. Then there exists a morphism of connective E, rings Ré’z , which classifies

(unoriented) deformation of G, over R, i.e.
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where A is a Noetherian E, ring withamap p4 : A = Rpand asurjection €4 : mpA = Ry,
which is complete with respect to ker € 4.

Since every classical p-divisible group is (canonically) oriented, we have an E, ring
(usually not connective) R‘”O , which is called the orientation classifier of Ré’é .

Lurie took R to be a perfect field, and G be a height n formal group over R, and
showed that

Ly R, = R, = E,

We could follow his approach, to be precise
* Let Ry = k((u,)), where k is a perfect field. This ring R is F-finite.
* Let G be the base change of the formal group G over 7 (E,,) along the map

WO(En) - JTO(LK(t)En) - k((uz))

which is a height n p-divisible group with height k formal part. I don’t know whether it is
nonstationary or not.

» Show that LK(,)R%rO is equivalent to Lk, E,,

If this could work, then we have showed that L, E,, classifies oriented deformations
of G in the spectral setting.

We could also study the total power operation on Lk 1, TMF, which corresponds to
the ordinary part of moduli stack of elliptic curves. Since the total power operation on
supersingular loci can be identified with a map of E_, rings, we could patch them and
which over the ordinary locus along their intersection, to obtain an expression of the total

power operation on TMF'.
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