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摘 要

摘 要

谱是拓扑空间的稳定化，是阿贝尔群的链复形的类比，由一列拓扑空间和其

中的 suspension映射所构成。环谱是一类重要的谱，是经典代数中环的高阶范畴化

类比，它们所代表的是具有乘性的广义上同调理论。代数拓扑中一个基本的问题

是如何构造具有结构乘法的环谱，比如乘法在同伦范畴具有交换性的环谱和乘法

在所有高阶同伦中交换的环谱。在一些经典的方法中，我们需要使用复杂的阻碍

理论去得到交换环谱的结构，比如 Goerss-Hopkins-Miller定理。但是 Lurie在他的

一系列书籍和文章中使用了谱代数几何的方法给了这个定理一个新的证明。但另

一方面，Morava E-理论在色展同伦论中扮演了重要角色，它们和形式群的形变的

表示对象有关，但是当我们考虑带水平结构的形式群的形变的表示对象，我们却

不能直接从 Lurie的机制中得到一个谱。这是因为这些对象到一维 p可除群的模叠

的映射不是平展的。

在这篇文章中，我们在谱代数几何中定义并研究了所谓的导出水平结构。我

们证明了谱椭圆曲线的同源诱导它下面的经典椭圆曲线之间的同源。这个结果说

明我们导出版本的水平结构必须诱导经典的水平结构。我们定义并研究了谱代数

几何中的相对 Cartier除子，并且我们证明了一些可表性结果。基于这些结果，我

们定义了谱代几何中的谱椭圆曲线的导出水平结构，我们证明了导出水平结构所

结合的函子是被一些谱代数空间所表示的。除此之外，我们还考虑了谱 p可除群

的导出水平结构，我们证明了谱 p可除群的水平结构的所结合的函子是可表的。

导出水平结构在代数拓扑中有很多应用。使用 Lurie发展的表示定理，我们证

明了附带导出水平结构的谱椭圆曲线可以形成一个谱 Deligne-Mumford 叠。我们

证明了 p-可除群的带有导出水平结构的谱形变的模问题是仿射可表的。这些仿射

可表对象所对应的谱使我们可以把Morava E-理论提升到带水平结构的形变上，虽

然这些提升是不平展的。对于附带全水平结构的形变，我们可以得到经典的 Lubin-

Tate塔的一个高阶范畴提升。而对于附带一个选定子群的形变,由 Strickland的工

作，可以看做是 Frobenius的形变的模问题。它们所对应的导出水平结构可以给我

们Morava E-理论的幂运算环的拓扑实现。

关键词：代数拓扑；色展同伦论；Morava E-理论；谱代数几何
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ABSTRACT

ABSTRACT

Spectra are stabilizations of topological spaces, analogous to chain complexes of

abelian groups. And ring spectra are higher categorical refinements of rings from clas-

sical algebra. They represent multiplicative generalized cohomology theories. A fun-

damental question is how to construct ring spectra with structured multiplication, such

as ring spectra whose multiplications are commutative in homotopy categories and ring

spectra whose multiplications are commutative in all higher homotopy. Classical meth-

ods use complicated obstruction theory to obtain commutative ring structures, such as

Goerss-Hopkins-Miller theorem. But Lurie uses methods of spectral algebraic geometry

give this theorem a new proof. On the other hand, Morava E-theories play an important

role in chromatic homotopy theory, they correspond to universal deformations of formal

groups. But moduli problems concerning deformations with level structures do not have

immediate topological realizations readily from Lurie’s framework. This is because the

representable objects are not étale over the moduli stack of one dimensional 𝑝-divisible
groups of height 𝑛.

In this thesis, we define and study moduli problems called derived level structures

in Lurie’s spectral algebraic geometry. We prove that isogenies of spectral elliptic curves

must induce isogenies of their underlying classical elliptic curves. This provides evidence

that the derived version of level structures must induce classical level structures. We de-

fine relative Cartier divisors in spectral algebraic geometry and prove those associated

functors are representable by certain spectral Deligne-Mumford stacks. Analogous to

Drinfeld, we define derived level structures for spectral elliptic curves. We prove that for

spectral elliptic curves, moduli problems of derived level structures are representable, sim-

ilar to the classical case. We also consider derived level structures of spectral 𝑝-divisible
groups. We prove that those problems associated with them are representable in certain

cases.

The study of derived level structures has many applications in algebraic topology.

Using the spectral Artin representability theorem, we prove that the moduli stack of spec-

tral elliptic curves with derived level structures has the structure of spectral Deligne-

Mumford stacks. When we consider spectral deformations with derived level structures

of 𝑝-divisible groups, those affine representable objects can provide us with many in-
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ABSTRACT

teresting spectra. We can lift Morava E-theories to deformations with level structures,

although these lifts are not étale over Morava E-theories. For deformations with full-

level structures, we can obtain higher categorical analogs of Lubin-Tate towers. And for

deformations involving the selection of subgroups, which can be interpreted as moduli

problems of deformations of Frobenius based on Stickland’s work. We can obtain spectra

whose 𝜋0 are power operation rings of Morava E-theories.

Keywords: Algebraic topology; Chromatic homotopy theory; Morava E-theory; Spectral

algebraic geometry
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Background

By Brown’s representability theorem, a general cohomology theory of topological

spaces corresponds to a spectrum. All spectra form a closed symmetric monoidal cat-

egory, called the stable homotopy category. Studying the stable homotopy category is

a central topic in algebraic topology. There are many models of spectra, making it be-

come a closed symmetric monoidal category. See[1] for an early discussion of the stable

homotopy category,[2] for the S-module approach, and[3] for the∞-category approach.
Chromatic homotopy theory uses chromatic localizations and the chromatic filtration

to study the stable homotopy category. The heart of chromatic homotopy theory is the

study of spectra, which represent general cohomology theories that are complex oriented.

We can associate each complex oriented cohomology theory with a one-dimensional for-

mal group. Studying those associated formal groups can help us understand complex

oriented cohomology theories. The heights of formal groups can distinguish certain com-

plex oriented cohomology theories. Choosing a coordinate of a formal group can yield

a formal group law. Quillen[4] proved that the complex cobordism MU is the universal

complex oriented cohomology theory, and its associated formal group law is the universal

formal group law over the Lazard ring. Using the Landweber exact functor theorem[5] ,

one can construct many complex oriented cohomology theories. Morava E-theories are

constructed by using this theorem. Morava K-theories are another important complex ori-

ented cohomology theories in chromatic homotopy theory, which are constructed by ten-

soring certain spectra together. Localizing with respect to Morava E-theories and Morava

K-theories is the most commonmethod in chromatic homotopy theory when working with

spectra. Another very important example in chromatic homotopy theory is elliptic coho-

mology theories and their global section, the topological modular forms, which are useful

in quantum field theory.

Homotopical algebraic geometry was founded in[6-7] , which replaces commutative

rings with simplicial rings, 𝐸∞-ring spectra, and so on. One version of homotopical al-
gebraic geometry is derived algebraic geometry, which replaces commutative rings with

simplicial rings. One can refer to[8-10] for the foundation of derived algebraic geometry.
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CHAPTER 1 INTRODUCTION

Derived algebraic geometry is useful in intersection problems, deformation problems,

mathematical physics (homological mirror symmetry, BRST or BV quantization), p-adic

Hodge theory, the geometric version of Langlands correspondences, andmany other fields

in mathematics. Spectral algebraic geometry is another version of homotopical algebraic

geometry, which replaces commutative rings with 𝐸∞-rings. It was founded by Lurie[11] ,
and has increasingly more applications in algebraic topology, such as elliptic cohomology

and equivariant topological modular forms.

As we mentioned, the stable homotopy category is a central topic in algebraic topol-

ogy. Structured ring spectra are the most common examples studied, such as 𝐻∞ spec-

tra and 𝐸∞ spectra. In[12] and[13] , Lurie uses spectral algebraic methods give a proof

of the Goerss-Hopkins-Miller theorem for topological modular forms. Except for the

application of elliptic cohomology, Lurie also proved the 𝐸∞ structures of Morava E-

theories[13] , which use the spectral version of deformation theory of certain p-divisible

groups. The earliest proof of 𝐸∞ structures of Morava E-theories is due to Goerss, Hop-

kins and Miller[14] . They turned the problem into a moduli problem and developed an

obstruction theory. One can finish the proof by computing the Andre-Quillen groups.

Comparing with their method, Lurie’s proof is more conceptual. There are more and

more applications of spectral algebraic geometry in algebraic topology. Such as topolog-

ical automorphic forms[15] , Morava E-theories over any 𝐹𝑝-algebra[13] , not only just for
a perfect field k. The construction of equivariant topological modular forms[16] , elliptic

Hochschild homology[17] and more.

On the other hand, moduli problems concerning deformations of formal groups with

level structures are also representable, and the moduli spaces of different levels form a

Lubin-Tate tower[18-19] . We know that the universal objects of deformations of formal

groups have higher algebra analogues, which are the Morava E-theories. A natural ques-

tion is what are higher categorical analogues of moduli problems of deformations with

level structures? And can we find higher categorical analogues of Lubin-Tate towers.

Although the 𝔼∞-structure of topological modular forms with level structures can be ob-
tained from[20] , we still hope that there exists a derived stack of spectral elliptic curves

with level structures which provide us with a more moduli interpretation. Except this,

in the computation of unstable homotopy groups of sphere, after applying the EHP spec-

tral sequences and the Bousfield-Kuhn functor, we observe that some terms on the 𝐸2-
page also arise from the universal deformation of isogenies of formal groups. They are

2



CHAPTER 1 INTRODUCTION

computed by the Morava E-theories on the classifying spaces of symmetric groups[21-22] .

They can be viewed as sheaves on the Lubin-Tate tower. We hope to provide a more

conceptual perspective on this fact within the higher categorical Lubin-Tate tower.

In this paper, we give an attempt to address this problem by studying specific moduli

problems in spectral algebraic geometry. The main ingredient of our work is the derived

version of Artin’s representability theorem established in[7,23] . We will use the spectral

algebraic geometry version[11] in this paper. We study relative Cartier divisors in the con-

text of spectral algebraic geometry. By imposing certain conditions, we define derived

level structures of certain geometric objects in spectral algebraic geometry. Using Artin

representability theorem, we prove some representable results of moduli problems that

arise from our derived level structures. We give some examples of applications involv-

ing derived level structures. We consider the moduli problem of spectral deformations

with derived level structures of 𝑝-divisible groups. We prove that these moduli prob-

lems are representable by certain formal affine spectral Deligne-Mumford stacks and the

corresponding spectra can provide us many interesting generalized cohomology theories.

1.2 Statement of Main Results

We work on spectral algebraic geometry in this thesis. For a spectral Deligne-

Mumford stack 𝑋 over a spectral Deligne-Mumford stack 𝑆, a relative Cartier divisor
is a morphism 𝐷 → 𝑆 of spectral Deligne-Mumford stacks such that 𝐷 → 𝑋 is a closed

immersion, the ideal sheaf of D is a line bundle over 𝑋, and the morphism 𝐷 → 𝑆 is flat,
proper and locally almost of finite presentation. We use Lurie’s representability theorem

prove that the relative Cartier divisor is representable in certain cases. Our first main

result is:

Theorem A. (Theorem 3.2.7) Suppose that 𝐸 is a spectral algebraic space over a

connective𝔼∞-ring𝑅, such that𝐸 → 𝑅 is flat, proper, locally almost of finite presentation,
geometrically reduced, and geometrically connected. Then the functor

CDiv𝐸/𝑅 ∶ CAlg𝑐𝑛𝑅 → 𝒮𝑅′ ↦ CDiv(𝐸𝑅′/𝑅′)
is representable by a spectral algebraic space which is locally almost of finite presentation

over R.

We define derived level structures of spectral elliptic curves. Roughly speaking, for

3



CHAPTER 1 INTRODUCTION

a finite abstract abelian group 𝐴, usually equals ℤ/𝑁ℤ, ℤ/𝑁ℤ× ℤ/𝑁ℤ, a derived 𝐴-level
structure of a spectral elliptic curve E over an 𝔼∞-ring 𝑅 is just a relative Cartier divisor𝐷 → 𝐸 satisfying its restriction to the heart comes from an ordinary 𝐴-level structure.
We let Level(𝒜, 𝐸/𝑅) denote the space derived 𝐴-level structures of a spectral elliptic
curve 𝐸/𝑅. We prove that moduli problems associated with derived level structures are

representable. Our second main result is:

Theorem B. (Theorem 3.3.5) Suppose that 𝐸 is a spectral elliptic curve over a con-

nective 𝔼∞-ring 𝑅, then the functor
Level𝐸/𝑅 ∶ CAlgcn𝑅 → 𝒮𝑅′ ↦ Level(𝒜, 𝐸𝑅′/𝑅′)

is representable by an affine spectral Deligne-Mumford stack which is locally almost of

finite presentation over the 𝔼∞-ring 𝑅.
In classical algebraic geometry, except one-dimensional group curves, we also care

level structures of 𝑝-divisible groups, it comes the full sections of commutative finite
flat group schemes. In chapter three, we also consider derived level structures of spec-

tral p-divisible groups. Let Level(𝑘, 𝐺𝑅/𝑅) denote the space of derived (ℤ/𝑝𝑘ℤ)ℎ-level
structures of a height h spectral p-divisible group 𝐺/𝑅. Out third main result is:

Theorem C. (Theorem 3.4.11) Suppose 𝐺 is a spectral 𝑝-divisible group of heightℎ over a connective 𝔼∞-ring R. Then the functor
Level𝑘𝐺/𝑅 ∶ CAlgcn𝑅 → 𝒮; 𝑅′ → Level(𝑘, 𝐺𝑅′/𝑅′)

is representable by an affine spectral Deligne-Mumford stack 𝑆(𝑘) = Sp𝑒́𝑡𝒫𝑘𝐺/𝑅.
For applications of derived level structures. We first prove that the moduli of spec-

tral elliptic curves with derived level structures is representable by a spectral Deligne-

Mumford stack. Our fourth main result is:

Theorem D. (Theorem 4.1.7) Let Ell(𝒜)(𝑅) denote the space of spectral elliptic
curves with derived A-level structures over the 𝔼∞-ring 𝑅. The functorℳ𝑒𝑙𝑙(𝒜) ∶ CAlgcn → 𝒮𝑅 ⟼ℳ𝑒𝑙𝑙(𝒜)(𝑅) = Ell(𝒜)(𝑅)
is representable by a spectral Deligne-Mumford stack and moreover this stack is locally

almost of finite presentation over the sphere spectrum 𝕊.
In[13] , Lurie consider the spectral deformations of a classical formal group. As we
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have the concept of derived level structures, it is natural to consider the moduli of spectral

deformations with derived level structures. Suppose 𝐺0 is a 𝑝-divisible group of height ℎ
over a perfect 𝐹𝑝-algebra 𝑅0. We consider the following functorℳ𝑜𝑟𝑘 ∶ CAlg𝑎𝑑𝑐𝑝𝑙 → 𝒮𝑅 → DefLevel𝑜𝑟(𝐺0, 𝑅, 𝑘)
where DefLevel𝑜𝑟(𝐺0, 𝑅, 𝑘) is the∞-category spanned by those quaternions (𝐺, 𝜌, 𝑒, 𝜂)

（1）G is a spectral p-divisible group over R.

（2）𝜌 is a equivalence class of 𝐺0-taggings of 𝑅.
（3）e is an orientation of the identity component of G.

（4）𝜂 ∶ 𝐷 → 𝐺 is a derived (ℤ/𝑝𝑘ℤ)ℎ-level structure of 𝐺/𝑅.
Our last main result is:

Theorem E. (Theorem 4.2.2) The functorℳ𝑜𝑟𝑘 is corepresentable by an 𝔼∞-ring𝒥ℒ𝑘, where 𝒥ℒ𝑘 is a finite 𝑅𝑜𝑟𝐺0 -algebra, 𝑅𝑜𝑟𝐺0 is the orientation deformation ring of 𝐺0
defined in[13] .

1.3 Outline

The second chapter of this paper is an introduction of spectral algebraic geometry.

We reviewmain definitions and propositions of Lurie’s book[11] and his series paper on el-

liptic cohomology[13,24-25] . We review spectral stacks, and morphisms between spectral

Deligne-Mumford stacks, such as flat, étale, proper and finite conditions. These con-

ditions will be useful in our future discussions. Spectral abelian varieties and spectral

p-divisible groups are our main objects of study in this paper, we will review their basic

properties in this chapter. The spectral Artin representability theorem is the main ingre-

dient of this paper, we will use it to prove some representability results later. We will

introduce the main conditions of this theorem. Deformations and orientations are the

main tools for applying spectral algebraic geometry to algebraic topology. We present

some useful concepts and theorems in the final section of this chapter.

The third chapter is the heart of this paper. We define derived isogenies and prove

that the kernel of a derived isogeny in some cases have the same phenomenon as in the

classical case. This provides evidence that our derived versions of level structures must

induce classical level structures. For representability reasons, we use moduli associated

with sheaves to detect higher homotopy of derived versions of level structures. We define
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relative Cartier divisors in the context of spectral algebraic geometry. We then use Lurie’s

representability theorem to prove that functors associated with relative Cartier divisors are

representable by certain spectral Deligne-Mumford stacks. The main part of our proof

involves computing of cotangent complex. We define derived level structures of spectral

elliptic curves. Roughly speaking, a derived 𝐴-level structure of a spectral elliptic curve𝐸 over an 𝔼∞-ring 𝑅 is just a relative Cartier divisor 𝐷 → 𝐸 satisfying its restriction

to the heart comes from an ordinary 𝐴-level structure. We prove that moduli problems

associated with derived level structures are representable. We also explore derived level

structures of spectral p-divisible groups in this chapter and prove that the corresponding

moduli problems are representable in certain cases.

In the last chapter, we give some applications of derived level structures. We first

prove that the moduli problem of spectral elliptic curves with derived A-level structures is

representable by a spectral Deligne-Mumford stack. In[13] , Lurie consider the spectral de-

formations of a classical formal group. As we have the concept of derived level structures,

it is natural to consider the moduli of spectral deformations with derived level structures

of certain p-divisible groups. We prove that these moduli problems are representable by

certain spectral Deligne-Mumford stacks. And by choose different level structures, we ob-

tain some interesting spectra. We will give examples of spectra constructed by consider

moduli of spectral deformations with various level structures, such as higher categorical

analogues of Lubin-Tate towers and topological realizations of representable objects of

Strickland’s deformations of Frobenius. In the second section of this chapter, we propose

some idea about representation theory in spectral algebraic geometry.

We give an introduction to chromatic homotopy theory in Appendix A. We review

formal groups, complex-oriented cohomology theory, Morava E-theories and Morava K-

theories. We state some great achievements in chromatic homotopic theory, including

nilpotence theorem, periodicity theorem and thick subcategories theorem. In the last part

of appendix A, we review something about power operations.

We also give some necessary introduction about∞-categories and higher algebra in
Appendix B, including∞-categories, homotopy limits and colimits,∞-operads, modules
and algebras in 𝔼∞-ring context, finite, perfect, flat and étale morphism in 𝔼∞-algebras.

6
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CHAPTER 2 SPECTRAL ALGEBRAIC GEOMETRY

Spectral algebraic geometry was founded by Lurie in[11] , it replaces commutative

ring by 𝔼∞-spectra in algebraic. Since there are homotopy coherence in the category

of spectra, for convenience, we will work on ∞-categories. There are many references
for ∞-categories, such as[3] and[26] . We assume that reader are familiar with the basic

knowledge of ∞-categories and higher algebra. If not, the appendix B will give you a

quick review. We will review some base knowledge of spectral algebraic geometry, most

of materials comes forms[11] . I recommand readers to find more details in Lurie’s book.

2.1 Spectral Deligne-Mumford Stacks

In the context of classical algebraic geometry, a stack is a functor from schemes to

groupoid and satisfying some descending conditions, we recommend readers[27] and[28]

for more discussion about stacks. We let Stk denote the 2-category of stacks. We recall

that a morphism 𝑓 ∶ 𝒳1 → 𝒳2 in Stk is representable by schemes if for any 𝑆 ∈ Sch and𝑆 → 𝒳2, the Cartesian product 𝑆 ×𝒳2 𝒳1
is representated by a scheme.

Definition 2.1.1: Suppose 𝒳 is a sheaf of sets on Sch𝑒́𝑡, we will say 𝒳 is an algebraic

space if there exists a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝒳 is representable

by schemes. The map 𝑈 → 𝑋 is called an étale presentation.

Suppose 𝑓 ∶ 𝒳 → 𝒴 is a morphism of prestacks (or presheaves) over Sch, we will

say 𝑓 is representable if for every morphism 𝑇 → 𝒴 from a scheme T, the fiber product𝒳⊗𝒴 𝑇 is an algebraic space.
Definition 2.1.2: Suppose 𝑋 is a stack𝒳 over Sch𝑒́𝑡, we will say that𝒳 is an algebraic

stack if there exits a scheme U and a surjective, smooth, and representable morphism𝑈 → 𝒳. We will call this morphism 𝑈 → 𝒳 a smooth presentation.

Definition 2.1.3: Let𝒳 be a stack over Sch𝑒́𝑡, we will say that𝒳 is a Deligne-Mumford

stack if there exits a schemeU and a surjective, étale, and representable morphism𝑈 → 𝒳.
We will call this morphism 𝑈 → 𝒳 an étale presentation.

7
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Our definition of spectral Deligne-Mumford stacks will follow[11] , which are ringed∞-topoi satisfying certain conditions. Let’s first say something about classical topoi.

When we say a category 𝑋 is a topos (Grothendieck topos), we always mean that 𝑋 is

equivalent to a category which has the form Shv(𝒞), which is the category sheaves on a
site 𝒞. And when we say ringed topos, we mean a pair (𝒳, 𝒪𝑥) such that𝒳 is a topos and𝒪𝒳 is a commutative ring object in the category 𝒳.

For a certain commutative ring 𝑅, we let CAlg𝑒́𝑡𝑅 denote the 1-category of étale-𝑅
algebra. By the properties of étale motphism, we can equip a Grothendieck topology

on the opposite category of CAlg𝑒́𝑡𝑅 . It is defined by setting the family of étale maps

generate a cover sieve if there exists some finite collection of morphism which is in-

dicated by 𝛼1, 𝛼2,⋯ , 𝛼𝑛, satisfying the map 𝐴 → ∏1≤𝑖≤𝑛 𝐴𝛼𝑖 is faithfully flat. We let𝒪 ∶ CAlg𝑒́𝑡𝑅 → Set be the forgetful functor defined by 𝒪(𝑅) = 𝑅. Then it can be prove
that 𝒪 is sheaf for the étale topology, and moreover it is a commutative ring object of

the topos ShvSet(CAlg𝑒́𝑡𝑅 ). We refer (ShvSet(CAlg𝑒́𝑡𝑅 ), 𝒪) as the étale spectrum of this

commutative 𝑅 and denote it as Sp𝑒́𝑡𝑅.
We know that a Deligne-Mumford stack𝑋 can be view as a functor from the category

of schemes to the category of groupoids satisfying certain conditions. It is an étale sheaf𝑋 ∶ CAlg♡ → 𝜏≤1𝒮.
Theorem 2.1.4: Let 𝑋 ∶ CAlg♡𝑅 → 𝜏≤1𝒮 be a functor, 𝑋 is representable by a classical

Deligne-Mumford stack if there exits a collection of objects 𝑈𝛼 which is indicated by𝛼 ∈ 𝐼 in the category CAlg♡𝑅, and it satisfies the following two conditions.
（1）These objects {𝑈𝛼, }𝛼∈𝐼 cover CAlg♡𝑅. That is, the canonical map ∐𝛼 𝑈𝛼 → 1

is an epimorphism in CAlg♡𝑅.
（2）For each 𝛼 ∈ 𝐼, the ringed topos (𝑋/𝑈𝛼, 𝒪𝒳|𝑈𝛼) is equivalent to a ringed topos

which has the form Sp𝑒́𝑡𝑅𝛼, such that 𝑅𝛼 is an ordinary commutative ring.
Proof: See[11]Remark 1.2.5.5 and[11]Theorem 1.2.5.9 . ∎∞-Topoi

We now turn to spectral algebraic geometry. The main ingredients of spectral alge-

braic geometry are spectral Deligne-Mumford stacks, they are spectrally ringed ∞-topoi
satisfying certain conditions.

Definition 2.1.5: Suppose we have an∞-category𝒳, we will say that𝒳 is an∞-topos,
if we have an accessible left exact localization functor 𝒫(𝒞) → 𝒳, where P(𝒞) is the∞-category of presheaves on small ∞-category 𝒞. This condition means that there is an

8
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adjoint pair 𝑎 ∶ 𝒫(𝒞) ⇆ 𝒳 ∶ 𝑖
where a is left exact, and 𝑖 is acessible.
Theorem 2.1.6: [29]Theorem 6.1.0.6 Suppose𝒳 is an∞-category, then we have the follow-
ing equivalent conditions:

（1）𝒳 is an∞-topos.
（2）𝒳 is presentable, if we have a small simplicial set 𝐾 and a natural transforma-

tion 𝛼̄ ∶ 𝑝̄ → 𝑞̄ of diagrams in Fun(𝐾⊳ → 𝒳), 𝒳 satisfies the following conditions:

If 𝑞̄ is a colimit diagram and 𝛼 = 𝛼̄|𝐾 is a Cartesian transformation, then we have 𝑝̄
is a colimit diagram if and only if 𝛼̄ is a Cartesian transformation.

（3）𝒳 satisfying the Giraud’s axioms:

1 𝒳 is a presentable∞-category.
2 Colimits in the∞-category 𝒳 are universal.

3 Coproducts in the∞-category 𝒳 are disjoint.

4 Every groupoid object of 𝒳 is an effective object.

Definition 2.1.7: Suppose we have two∞-topoi𝒳 and𝒴. A geometric morphism form𝒳 to 𝒴 is a functor 𝑓∗ ∶ 𝒳 → 𝒴 of ∞-categories, such that 𝑓∗ have a left exact adjoint
(denote by 𝑓∗ ∶ 𝒴 → 𝒳).

It is obvious that a classical topos is an ∞-topos whose morphism spaces are all

discrete. Generally, we have the definition of n-topos.

Definition 2.1.8: Suppose 𝒳 is an∞-category, for 0 ≤ 𝑛 ≤ ∞, we will say that 𝒳 is a𝑛-topos if there exists an accessible left exact localization𝐿 ∶ 𝒫≤𝑛−1(𝒞) → 𝒳
such that 𝒞 is a small∞-category, and 𝒫≤𝑛−1(𝒞) denote the full∞-subcategory of 𝒫(𝒞)
spanned by those (𝑛 − 1)-truncated objects of the presheaves category 𝒫(𝒞) of 𝒞.
Example 2.1.9: Suppose 𝒳 is an ∞-category, 𝒳 is a 0-topos if and only if there is an

equivalence of∞-categories 𝒳 ≃ 𝑁(𝒰), here 𝒰 is a locale. Let 𝒰 be a partially ordered

set, we say 𝒰 is a locale if it satisfies the following two conditions:

（1）Let {𝑈𝛼} be a subset of 𝒰, which consists of elements of 𝒰, then {𝑈𝛼} has a
least upper bound in 𝒰, which we denoted it by ∪𝛼𝑈𝛼 in 𝒰.

（2）The least upper bounds commutes with meets, that is we have an equality⋃(𝑈𝛼 ∩ 𝑉) = (⋃𝑈𝛼) ∩ 𝑉.
9
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where (𝑈 ∪ 𝑉) is the greatest lower bound of the two elements 𝑈 and 𝑉.
Spectrally Ringed ∞-Topoi
Definition 2.1.10: Suppose that 𝒳 is an ∞-topos and 𝒞 is an ∞-category. We will say

a functor 𝐹 ∶ 𝒳𝑜𝑝 → 𝒞 is a 𝒞 valued sheaf if it preserves small limits in ∞-categories.
We let Shv𝒞(𝒳) denote the∞-category of 𝒞-valued sheaves on 𝒳.
Remark 2.1.11: In general, the definition above is not equal to the definition of𝒞-valued
sheaves with respect to a certain Grothendieck topology on the∞-category 𝒳. But there
is still a connection between them. Suppose that 𝒯 is a small ∞-category equipped with
a certain Grothendieck topology. We let 𝑗 ∶ 𝒯 → 𝒫(𝒯) denote the∞-categorical Yoneda
embedding. We have an inclusion functor 𝑖 ∶ Shv(𝒯) ↪ 𝑃(𝒯), since it preserves small
limits, so by the ∞-categorical adjoint functor theorem, it admits a left adjoint. We let𝐿 ∶ 𝑃(𝒯) → Shv(𝒯) denote the left adjoint to inclusion functor. Suppose we have an∞-
category 𝒞 which admits all small limits. Then we have an equivalence of ∞-categories
Shv𝒞(Shv(𝒯)) → Shv𝒞(𝒯) which is induced by composition with 𝐿 ∘ 𝑗.
Definition 2.1.12: A spectrally ringed ∞-topos 𝑋 is a pair (𝒳, 𝒪), where 𝒳 is an ∞-
topos and 𝒪 ∈ ShvCAlg(𝒳) is a sheaf of 𝐸∞-rings on 𝒳.
Spectral Deligne-Mumford Stacks

For an∞-ring𝐴, we consider the∞-category of CAlg𝑒́𝑡𝐴 , it is equipped with the étale-
topology. The sheaf category Shv𝒮(CAlg𝑒́𝑡𝐴 ) is an ∞-topos, we let 𝒪 ∶ Shv𝒮(CAlg𝑒́𝑡𝐴 ) →
CAlg denote the forget functor (since its value on represent objects are spectra), then it

can be proved that (Shv𝑒́𝑡𝑅 , 𝒪) is a spectrally ringed topoi, we call this ∞-topoi the étale
spectrum of 𝐴.
Definition 2.1.13: Suppose we have a spectrally ringed∞-topos 𝑋 = (𝒳,𝒪𝒳), we will
say that 𝑋 is a nonconnective spectral Deligne-Mumford stack if there exists a collection

of objects 𝑈𝛼 ∈ 𝒳 satisfying the following two conditions:

（1）Those object {𝑈𝛼} is a cover of the∞-topos 𝒳.
（2）For each index 𝛼, the restriction ∞-topoi (𝒳/𝑈𝛼, 𝒪𝒳|𝑈𝛼) of (𝒳, 𝒪𝑋) to 𝑈𝛼 is

equivalent to an étale spectrum Sp𝑒́𝑡𝐴𝛼 for an 𝔼∞-ring 𝐴𝛼.
We will say 𝑋 = (𝒳,𝒪𝒳) is a spectral Deligne-Mumford stack if in addition, the

structure sheaf 𝒪𝒳 is connective.

Example 2.1.14: For a connective 𝔼∞-ring 𝐴, Sp𝑒́𝑡𝐴 = (Shv𝑒́𝑡𝑅 , 𝒪) is a spectral

Deligne-Mumford stack.
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Proposition 2.1.15: Suppose we have a nonconnective spectral Deligne-Mumford

stacks (𝒳, 𝒪𝒳), then the connective cover construction 𝜏≥0𝒪𝒳 → 𝒪𝒳 determine a spec-

tral Deligne-Mumford stack (𝒳, 𝜏≥0𝒪𝒳). And it has the following universal property: for
every (𝒴, 𝒪𝒴) ∈ ∞Top𝑠𝐻𝑒𝑛CAlg , if we have 𝒪𝒴 is connective, then the canonical map

Map∞Top𝑠𝐻𝑒𝑛CAlg
((𝒳, 𝜏≥0𝒪𝒳), (𝒴, 𝒪𝒴)) → Map∞Top𝑠𝐻𝑒𝑛CAlg

((𝒳, 𝒪𝒳), (𝒴, 𝒪𝒴))
is a homotopy equivalence. Moreover, the inclusion functor SpDM ↪ SpDM𝑛𝑐 has a left
adjoint. And its left adjoint is given by (𝒳, 𝒪𝒳) ↦ (𝒳, 𝜏≤0𝒪𝒳).
Proof: See[11]Proposition 1.4.5.1 and[11]Corollary 1.4.5.2 . ∎
Truncated spectral Deligne-Mumford stacks

Definition 2.1.16: Suppose 𝑛 ≥ 0 is an integer, and 𝑋 = (𝒳,𝒪𝒳) is a spectral Deligne-
Mumfor stack. We will say that 𝑋 is n-truncated if its structure sheaf 𝒪𝒳 is 𝑛-truncated.
We let SpDM≤𝑛 denote the full subcategory of SpDM, which is spanned by those spectral

Deligne-Mumford stacks which are 𝑛-truncated.
Example 2.1.17: Suppose 𝐴 is a connective 𝔼∞-ring, then Sp𝑒́𝑡𝐴 is an affine spectral

Deligne-Mumford stack. And Sp𝑒́𝑡𝐴 is n-truncated if and only if 𝐴 is an n-truncated𝔼∞-ring.
Proposition 2.1.18: Suppose (𝒳, 𝒪𝒳) is a spectral Deligne-Mumford stacks (𝒳, 𝒪𝒳),
then the truncated construction 𝜏≤𝑛 of structural sheaves determines a spectral Deligne-
Mumford stack (𝒳, 𝜏≤0𝒪𝒳). And it has following universal property: for each (𝒴, 𝒪𝒴) ∈∞TopsHenCAlg, if we have 𝒪𝒴 is connective and n-truncated. Then the canonical map

Map∞Top𝑠𝐻𝑒𝑛CAlg
((𝒳, 𝜏≤𝑛𝒪𝒳), (𝒴, 𝒪𝒴)) → Map∞Top𝑠𝐻𝑒𝑛CAlg

((𝒳, 𝒪𝒳), (𝒴, 𝒪𝒴))
is a homotopy equivalence. Moreover, the construction (𝒳, 𝒪𝒳) ↦ (𝒳, 𝜏≤𝑛𝒪𝒳) deter-
mines a left adjoint of the inclusion functor SpDM≤𝑛 ↪ SpDM.

Proof: See[11]Proposition 1.4.6.3 and[11]Corollary 1.4.6.4 . ∎
For an ∞-topos 𝒳, it can be prove that its heart 𝒳♡ is an ordinary topos. What

is the relations between (𝒳, 𝒪𝒳) and (𝒳♡, 𝜋0𝒪𝒳)? The following recognition criterion

give a relation between spectral Deligne-Mumford stacks and classical Deligne-Mumford

stacks.

Theorem 2.1.19: [11]Theorem 1.4.8.1 Suppose (𝒳, 𝒪𝒳) is a spectrally ringed∞-topos, then
it is a nonconnective spectral Deligne-Mumford stack if and only it satisfying the follow-

ing four conditions:
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（1）The underlying ringed topos (𝒳♡, 𝜋0𝒪𝒳) is a classical Deligne-Mumford

stack.

（2）The canoncial geometric morphism 𝜙∗ ∶ 𝒳 → Shv𝒮(𝒳♡) is étale.
（3）The homotopy groups sheaves 𝜋𝑛𝒪𝒳 are all quasi-coherent sheaf on the clas-

sical stack (𝒳♡, 𝜋0𝒪𝒳).
（4）The sheaf 𝒪𝒳 is hypercomplete.

Proposition 2.1.20: [11]Proposition 1.4.9.1 Let SpDM be the∞-category spectral Deligne-
Mumford stacks, it is the homotopy limit of following tower⋯ → SpDM≤3 𝜏≤2→ SpDM≤2 𝜏≤1→ SpDM≤1 𝜏≤0→ SpDM≤0.
Functor of Points

Assume we have a spectrally ringed∞-topos 𝑋 = (𝒳,𝒪𝒳), we define functorsℎ𝑛𝑐𝑋 ∶ CAlg → 𝒮̂𝑅 ⟼ Map∞Top𝑙𝑜𝑐CAlg
(Sp𝑒́𝑡𝑅, 𝑋)ℎ𝑋 ∶ CAlg𝑐𝑛 → 𝒮̂𝑅 ⟼ Map∞Top𝑙𝑜𝑐CAlg
(Sp𝑒́𝑡𝑅, 𝑋).

It can be prove that for a nonconnective spectral Deligne-Mumford stack 𝑋 and

for every 𝔼∞-ring R, the mapping space ℎ𝑛𝑐𝑋 Map∞Top𝑙𝑜𝑐CAlg
(Sp𝑒́𝑡𝑅, 𝑋) is essentially

small[11]Proposition 1.6.4.2 .

Proposition 2.1.21: [11]Proposition 1.6.4.2 Let ℎ𝑛𝑐𝑋 and ℎ𝑋 be the two functors defined

above, we have

（1）𝑋 ↦ ℎ𝑛𝑐𝑋 determines a fully faithful embedding SpDM𝑛𝑐 → Fun(CAlg, 𝒮).
（2）𝑌 ↦ ℎ𝑌 determines a fully faithful embedding SpDM → Fun(CAlg𝑐𝑛, 𝒮).

We will refer these two functors ℎ𝑛𝑐𝑋 and ℎ𝑌 as the functor of points of nonconnective

spectral Deligne-Mumford stack 𝑋 and spectral Deligne-Mumford stack 𝑌 respectively.
Definition 2.1.22: Suppose 𝑋 is a spectral Deligne-Mumford stack, we will say 𝑋 is a

spectral Deligne-Mumford n-stack if for every commutative ring 𝑅, the mapping space
MapSp𝐷𝑀(Sp𝑒́𝑡𝑅, 𝑋) is n-truncated. And a spectral algebraic space is a spectral Deligne-
Mumford 0-stack.

Example 2.1.23: Suppose that we have a connective𝔼∞-ring𝐴, then Sp𝑒́𝑡𝐴 is a spectral
algebraic space.
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Geometric Points

Suppose that𝒳 is an∞-topos, the∞-category of points of 𝑋 are the full subcategory
of the functor∞-category Fun(𝒳, 𝒮) spanned by those geometric morphism 𝑥∗ ∶ 𝒳 → 𝒮.
Definition 2.1.24: Suppose that we have a spectral Deligne-Mumford stack 𝑋. A geo-

metric point is a morphism of spectral Deligne-Mumford stacks 𝜂 ∶ Sp𝑒́𝑡𝑘 → 𝑋, such that𝑘 is a separably closed filed. And moreover, we say such a geometric point 𝜂 is minimal
if 𝜂 can be written as a composition

Sp𝑒́𝑡𝑘 𝜂′→ Sp𝑒́𝑡𝐴 𝜂"→ 𝑋
and it satisfies the following conditions:

（1）𝜂" is étale.
（2）The map of commutative rings 𝜙 ∶ 𝜋0𝐴 → 𝑘 which is induced by 𝜂" exhibits

k as a separable extension of a certain residue field of the ring 𝜋0𝐴.
We let 𝑃𝑡𝑔(𝑋) denote the full subcategory of SpDM/𝑋 which is spanned by those

minimal geometric points 𝜂 ∶ 𝑋0 → 𝑋.
The following theorem gives an relation between geometric points and points of the

underlying∞-topos of a spectral Deligne-Mumford stack.

Proposition 2.1.25: [11]Proposition 3.5.4.2 Suppose 𝑋 = (𝒳, 𝒪𝒳) is a spectral Deligne-
Mumford stack. Then we have a equivalence of ∞-categories between the ∞-category𝑃𝑡𝑔(𝑋) and ∞-category Fun∗(𝒳, 𝒮). Where Fun∗(𝒳, 𝒮) is the functor ∞-category
spanned by those functors which preserves small colimit and finite limits. This equiv-

alence is given by (𝜂 ∶ 𝑋0 → 𝑋) ↦ (𝜂∗ ∈ Fun(𝒳, 𝒮)).
Proposition 2.1.26: Suppose that 𝑋 = (𝒳, 𝒪𝒳) and 𝑌 = (𝒴, 𝒪𝒴) are two spectral
Deligne-Mumford stacks, and 𝑓 ∶ 𝑋 → 𝑌 is a morphism between them. Then we have the

following equivalent conditions:

（1）𝑓∗ ∶ 𝒳 → 𝒴 is a sujective morphism between their underlying∞-topoi.
（2）Suppose that 𝑘 be is a filed and 𝜂 ∶ Sp𝑒́𝑡𝑘 → 𝑌 is a morphism in SpDM. Then

we have an field extension of 𝑘′ of 𝑘, it satisfies the composite Sp𝑒́𝑡𝑘′ → Sp𝑒́𝑡𝑘 → 𝑌
factor through 𝑓.

（3）Suppose 𝑘 is a filed and 𝜂 ∶ Sp𝑒́𝑡𝑘 → 𝑌 is a morphism in SpDM, the fiber

product Sp𝑒́𝑡𝑘 ×𝑌 𝑋 is nonempty.

Proof: See[11]Proposition 3.5.5.4 . ∎
13
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Definition 2.1.27: Suppose 𝑋 and 𝑌 are two spectral Deligne-Mumford stacks and 𝑓 ∶𝑋 → 𝑌 is a morphism between 𝑋 and 𝑌, we will say 𝑓 is surjective if it satisfies those
equivalent conditions in the above proposition.

2.2 Properties of Morphisms

We first recall something about local properties of geometric objects and morphisms

between them. Let 𝒯 be a Grothendieck topology on the∞-category of spectral Deligne-
Mumford stacks, like open, étale, flat, fpqc and so on.

Suppose P is a property of spectral Deligne-Mumford stacks, we will say that the

property P is local for the 𝒯-topology, if 𝒫 satisfies the following conditions:

（1）For a morphism in 𝑓 ∶ 𝑋 → 𝑌 belongs to𝒯, if once we know 𝑌 has the property
P, then we can get 𝑋 also has the property P.

（2）For cover morphisms {𝑋𝛼 → 𝑌} in 𝒯, if every 𝑋𝛼 has the property P, then we
can get 𝑌 also has the property P.

Let Q be a property of morphisms in the∞-category SpDM, Q is said to be local on

the source with respect to the 𝒯-topology, if the following conditions hold:
（1）Supposewe have a diagram𝑋 𝑓→ 𝑌 𝑔→ 𝑍, if 𝑓 belongs to𝒯, and𝑔 is amorphism

which has property Q, then we can get 𝑔 ∘ 𝑓 also has the property Q.
（2）Suppose 𝑔 ∶ 𝑋 → 𝑌 be a morphism in SpDM, for a collection of cover mor-

phisms {𝑓𝛼 ∶ 𝑋𝛼 → 𝑋} in 𝒯, if each of the composition 𝑔 ∘ 𝑓𝛼 is a morphism the property

Q, then we get 𝑔 also has the property Q.
Let Q be a property of morphisms in SpDM, we will say that the property Q is local

on the target with respect to the 𝒯-topology, if it satisfying the following conditions:
（1）For every pullback square of spectral Deligne-Mumford stacks𝑋′ !!𝑓′

""

𝑋𝑓
""𝑌′ 𝑔 !! 𝑌

such that 𝑔 belongs to 𝒯, if 𝑓 has the property Q, we get 𝑓′ has the property Q.
（2）Let 𝑔 ∶ 𝑋 → 𝑌 be a morphism in SpDM, for a collection of cover morphisms{𝑓𝛼 ∶ 𝑌𝛼 → 𝑌} in 𝒯, if each of induced morphism 𝑌𝛼 ×𝑌 𝑋 → 𝑌𝛼 has the property Q, we

can get 𝑔 has the property Q.
14
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Étale Morphisms

By the definition of spectral Deligne-Mumford stacks, étale locally, they are étale

spectrum of 𝔼∞-rings. The étale morphisms play the role of local in the word of spectral
Deligne-Mumford stacks,just like open subscheme in classical algebraic geometry. We

recall that a morphism 𝑓 ∶ 𝐴 → 𝐵 of 𝔼∞-ring is called étale if it satisfies the following
conditions:

（1）𝜋0𝐴 → 𝜋0𝐵 is a étale morphism in the sense of classical algebraic geometry

(flat and unramified).

（2）There are isomorphism 𝜋𝑛𝐴⊗𝜋0𝐴 𝜋0𝐵 ≅ 𝜋0𝐵 of groups.

Definition 2.2.1: Let 𝑋 and 𝑌 be two nonconnective spectral Deligne-Mumford stacks,

We say a morphism 𝑓 ∶ 𝑋 = (𝒳, 𝒪𝒳) → 𝑌 = (𝒴, 𝒪𝒴) between them is étale if it satisfies

the following conditions:

（1）The morphism of the underlying ∞-topos 𝑓∗ ∶ 𝒳 → 𝒴 is étale, i.e., it induces

an equivalence of∞-topos, 𝒳 ≃ 𝒴/𝑈 for a certain object 𝑈 ∈ 𝒴.
（2）We have an equivalence 𝑓∗𝒪𝒴 → 𝒪𝒳

of sheaves of 𝔼∞-rings on 𝒳.
Proposition 2.2.2: [11]Corollary 1.4.10.3 Suppose that we have two nonconnective spectral

Deligne-Mumford stacks 𝑋 = (𝒳, 𝒪𝒳) and 𝑌 = (𝒴, 𝒪𝒴) and 𝑓 ∶ 𝑋 = (𝒳, 𝒪𝒳) → 𝑌 =(𝒴, 𝒪𝒴) is a morphism between them, then 𝑓 is étale if and only if for every commutative
diagram

Sp𝑒́𝑡𝐵 !!

""

𝑋𝑓
""

Sp𝑒́𝑡𝐴 !! 𝑌
where the horizontal maps are étale, the underying map of 𝔼∞-rings 𝐴 → 𝐵 is étale.

Definition 2.2.3: Suppose that we have two nonconnective spectral Deligne-Mumford

stacks 𝑋 = (𝒳,𝒪𝒳) and 𝑌 = (𝒴, 𝒪𝒴) and 𝑓 ∶ 𝑋 = (𝒳, 𝒪𝒳) → 𝑌 = (𝒴, 𝒪𝒴) is morphism
between them, we will say 𝑓 is flat if for every commutative square

Sp𝑒́𝑡𝐵 !!

""

𝑋𝑓
""

Sp𝑒́𝑡𝐴 !! 𝑌
where the horizontal maps are étale, the underying map of 𝔼∞-rings 𝐴 → 𝐵 is flat.

15
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Remark 2.2.4: By[11]Example 2.8.1.8 and[11]Proposition 2.8.2.4 , being a étale (flat) morphism
is a property which is local on source for the étale topology.

Closed Immersion

In classical algebraic geometry, assume that we have two schemes 𝑋 and 𝑌 a mor-

phism 𝑓 ∶ 𝑋 → 𝑌 between them. We say 𝑓 is a closed immersion if it induce a homeo-
morphism of the underlying topological space of 𝑋 to a closed subset of 𝑌, and induced
morphism of structure sheaves 𝑓−1 ∶ 𝒪𝑌 → 𝒪𝑋 is an epimorphism. We say a geometric

morphism 𝑓∗ ∶ 𝒴 → 𝒳 between ∞-topoi 𝒳 and 𝒴 is a closed immersion if we have a

composition 𝒴 𝑔∗→ 𝒳/𝑈 𝑖∗→ 𝒳,
and satisfying 𝑈 is an object of 𝒳 which is (-1)-truncated and 𝑔∗ is an equivalence of∞-topoi.
Definition 2.2.5: Suppose that we have two spectrally ringed ∞-topoi (𝒳, 𝒪𝒳) and(𝒴, 𝒪𝒴), we say a morphism 𝑓 ∶ (𝒳, 𝒪𝒳) → (𝒴, 𝒪𝒴) between them, we say 𝑓 is a closed
immersion if it satisfies the following conditions:

（1）𝑓∗ ∶ 𝒳 → 𝒴 is a closed immersion of∞-topoi.
（2）Both 𝒪𝒳 and 𝒪𝒴 are connective.

（3）The induce morphism 𝜋0𝑓−1𝒪𝒴 → 𝜋0𝒪𝒳 is an epimorphism.

Proposition 2.2.6: [11]Proposition 3.1.1.1 Suppose that (𝒳, 𝒪𝒳) is a locally spectrally

ringed ∞-topos, if we have 𝒪𝒳 is connective and we have a morphism 𝛼 ∶ 𝒪𝒳 → 𝒪′ of
sheaves of𝔼∞-rings on𝒳 such that the inducedmorphism 𝜋0𝒪𝒳 → 𝒪′ is surjective. Then
there exists a closed immersion locally spectrally ringed∞-topoi 𝑓 ∶ (𝒴, 𝒪𝒴) → (𝒳, 𝒪𝒳)
and an equivalence 𝛽 ∶ 𝒪′ ≃ 𝑓∗𝒪𝒴.
Proposition 2.2.7: [11]Corollary 3.1.2.3 Suppose that we have a pullback square in SpDM𝑋′ !!𝑓′

""

𝑋𝑓
""𝑌′ !! 𝑌

If we know that 𝑓 is a closed immersion, we get 𝑓′ is also a closed immersion.
Proposition 2.2.8: [11]Corollary 3.1.2.4 Suppose that we have a commutative triangle𝑋 𝑓 !!ℎ

##❄
❄❄

❄❄
❄❄

❄ 𝑌𝑔
$$⑧⑧
⑧⑧
⑧⑧
⑧⑧𝑍

16



CHAPTER 2 SPECTRAL ALGEBRAIC GEOMETRY

of spectral Deligne-Mumford stacks. If we already know that 𝑔 is a closed immersion.

Then the condition that 𝑓 is a closed immersion is equivalent to h is a closed immersion.
Separated Morphisms

Definition 2.2.9: Suppose 𝑋, 𝑌 ∈ SpDM, and 𝑓 ∶ 𝑋 → 𝑌 is a morphism between. We

will say 𝑓 is separated if the diagonal morphism 𝑋 → 𝑋×𝑌𝑋 is a closed immersion. Since
Sp𝑒́𝑡 S is final object of SpDM, we say that a 𝑋 ∈ SpDM is separated if the morphism𝑋 → Sp𝑒́𝑡𝑆 is separated.

It can be prove that for a separated morphism 𝑓 ∶ 𝑋 → 𝑌 between spectral Deligne-
Mumford stacks, the map MapSpDM(Sp𝑒́𝑡𝑅, 𝑋) → MapSpDM(Sp𝑒́𝑡𝑅, 𝑌) is 0-truncated.
By this result, if we know 𝑌 is a spectral algebraic space, we get 𝑋 is a spectral algebraic

space.

Remark 2.2.10: By the base change of closed immersion, suppose that we have a pull-
back square 𝑋′ !!𝑓′

""

𝑋𝑓
""𝑌′ 𝑔 !! 𝑌

of spectral Deligne-Mumford stacks. If 𝑓 is separated, then basechange 𝑓′ is also sepa-
rated. And if 𝑔 is an étale surjection, then the converse is also true.

By the definition of closed immersion, we find that a morphism 𝑓 ∶ 𝑋 = (𝒳, 𝒪𝒳) →𝑌 = (𝒴, 𝒪𝒴) in SpDM to be separated only depends on the morphism of their underlying

0-truncated spectral Deligne-Mumford stacks (𝒳, 𝜋0𝒪𝒳) → (𝒴, 𝜋0𝒪𝒴).
Finiteness Conditions on spectral Deligne-Mumford stacks

Let us first review some finiteness conditions in higher categorical algebra .

Suppose 𝐴 is an 𝔼∞-ring,𝑀 is an 𝐴-module. We say𝑀 is

（1）perfect, if it is an compact object of 𝐿Mod𝑅.
（2）almost perfect, if there exits a integer k satisfying 𝑀 ∈ (𝐿Mod𝑅)≥𝑘 and 𝑀 is

an almost perfect object of (𝐿Mod𝑅)≥𝑘.
（3）perfect to order 𝑛, if it satisfying the following conditions:
Suppose that we have a filtered diagram {𝑁𝛼} in (𝐿Mod𝐴)≥0, then the canonical map

lim→𝛼Ext𝑖𝐴(𝑀,𝑁𝛼) → Ext𝑖𝐴(𝑀, lim→𝛼𝑁𝛼) is injective for 𝑖 = 𝑛 and bijective for 𝑖 ≤ 𝑛.
（4）finitely 𝑛-presented if𝑀 is n-truncated and perfect to order (n+1).

（5）finite generated, if it is perfect to order 0.

17
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And when we consider the finiteness conditions on algebra. We say a morphism𝜙 ∶ 𝐴 → 𝐵 of connective 𝔼∞-rings is
（1）finite presentation if 𝐵 belongs to the smallest full subcategory of CAlgfree𝐴

which is closed under finite colimits.

（2）locally of finite presentation if 𝐵 is a compact object of∞-category CAlg𝐴.
（3）almost of finite presentation if𝐴 is an almost compact object of the∞-category

CAlg𝐴, that is, 𝜏≤𝑛𝐵 is a compact object of 𝜏≤𝑛CAlg𝐴 for all 𝑛 ≥ 0.
（4）finite generation to order 𝑛 if it satisfying the following conditions:
Suppose that we have a filtered diagram of connective 𝔼∞-rings over 𝐴, {𝐶𝛼}, it has

colimit C. If we know that each 𝐶𝛼 is n-truncated and that those transition maps 𝜋𝑛𝐶𝛼 →𝜋𝑛𝐶𝛽 is a monomorphism. Then there is a homotopy equivalence
lim𝛼 MapCAlg𝐴(𝐵, 𝐶𝛼) → MapCAlg𝐴(𝐵, 𝐶)

（5）finite type if 𝐵 is an 𝐴-algebra of finite generation to order 0.
（6）finite if 𝐵 as an 𝐴-module is finitely generated.

Proposition 2.2.11: [11]Proposition 2.7.2.1, Proposition 4.1.1.3 Suppose that we have two con-

nective 𝔼∞-rings 𝐴 and 𝐵, and 𝜙 ∶ 𝐴 → 𝐵 be a morphism between them. Then the

following conditions are equivalent.

（1）𝜙 is finite (finite type).

（2）The commutative ring 𝜋0𝐵 is finite (finite type) over 𝜋0𝐴.
Definition 2.2.12: [11]Definition 4.2.0.1 Suppose that we have𝑋, 𝑌 ∈ SpDM, and 𝑓 ∶ 𝑋 → 𝑌
is a morphism between them. We say that 𝑓 is locally of finite type, (locally of finite

genreration to order 𝑛, locally almost of finite presentation, locally of finite presentation)
if for every commutative diagram

Sp𝑒́𝑡𝐵 !!

""

𝑋𝑓
""

Sp𝑒́𝑡𝐴 !! 𝑌
in SpDM, such that the horizontal morphisms are étale, we always have the map of 𝔼∞-
rings 𝐴 → 𝐵 is finite type (finite generation to order n, almost of finite presentation,

locally of finite presentation).

Definition 2.2.13: [11]Definition 5.2.0.1 Suppose that we have𝑋, 𝑌 ∈ SpDM, and𝑔 ∶ 𝑋 → 𝑌
is a morphism between them, we say 𝑓 is finite, if 𝑓 satisfying the following conditions:

（1）𝑓 is affine.
18
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（2）The push-forward sheaves 𝑓∗𝒪𝑋 is perfect to order 0.
Remark 2.2.14: By[11]Example 4.2.0.2 , a morphism 𝑓 ∶ 𝑋 → 𝑌 in SpDM is locally of finite

type if the underlying map of spectral Deligne-Mumford 0-stacks is locally of finite type.

And by[11]Remark 5.2.0.2 , a morphism of 𝑓 ∶ 𝑋 → 𝑌 is finite if the underlying map of

spectral Deligne-Mumford 0-stacks is finite. If 𝑋 and 𝑌 are spectral algebraic spaces, then𝑓 is finite is equivalent to 𝑓♡ is finite is the sense of classical algebraic geometry.
Proposition 2.2.15: Suppose we have a pullback diagram𝑋′ !!𝑓′

""

𝑋𝑓
""𝑌′ !! 𝑌

in SpDM. If we know 𝑓 is locally of finite generation to order n (locally of finite type,
locally almost of finite presentation), we get 𝑓′ also satisfies the same condition.
Proof: This is easy to see by the pullback property. ∎
Proper Morphisms

Definition 2.2.16: Suppose that we have 𝑋, 𝑌 ∈ SpDM, and 𝑓 ∶ 𝑋 → 𝑌 is a morphism
between them. We say 𝑓 is universally closed if we have a pullback square in SpDM𝑋′ !!

""

𝑋
""𝑌′ !! 𝑌

such that Y’ is a quasi-separated spectral algebraic space, we alwasy get the map |𝑋′| →|𝑌′| between topological spaces is closed.
Definition 2.2.17: Suppose that we have 𝑋, 𝑌 ∈ SpDM, and 𝑓 ∶ 𝑋 → 𝑌 is a morphism
between them. We call 𝑓 a proper morphism if 𝑓 is quasi-compact, separated, locally of
finite type and universally closed.

Proposition 2.2.18: Proper morphism is stable under base change. Suppose we have

a pull-back diagram 𝑋′ !!𝑓′
""

𝑋𝑓
""𝑌′ 𝑔 !! 𝑌

in SpDM. Then we have

（1）if 𝑓 is proper, then so is 𝑓′ .
（2）if 𝑓′ is proper, and we know 𝑓 is separated and 𝑔 is a flat cover, we can get 𝑓
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is proper.

Proof: This just follows from the base change property of separated, universally closed

and locally of finite type. ∎
Corollary 2.2.19: The condition that a morphism 𝑓 ∶ 𝑋 → 𝑌 be proper is local on the

target for the étale topology. This means that, if we get a étale surjection such that the

projection map 𝑋 ×𝑌 𝑌′ → 𝑌′ is proper, then 𝑓 is proper. And moreover, if we have a
collection morphisms {𝑓𝛼 ∶ 𝑋𝛼 → 𝑌𝛼} such that each of them is proper. Then the we get

the induced map ∐𝑋𝛼 → ∐𝑌𝛼 is proper.
2.3 Quasi-Coherent Sheaves

Definition 2.3.1: Suppose that we have a nonconnective spectral Deligne-Mumford

stack (𝒳, 𝒪𝒳) and ℱ is a sheaves of spectra on 𝒳 which is a 𝒪𝒳-module. We say that ℱ
is a quasi-coherent sheaves if we can find a collection of objects 𝑈𝛼 ∈ 𝒳 such that they

cover 𝒳 (i.e.,the map ∐𝛼 𝑈𝛼 is an effective epimorphism) and they satisfies:
For every 𝛼, there exits an 𝐸∞-ring 𝐴𝛼, an 𝐴𝛼-module𝑀𝛼, and an equivalence(𝒳/𝑈𝛼, 𝒪|𝑈𝛼, ℱ|𝑈𝛼) ≃ Sp𝑒́𝑡Mod(𝐴𝛼,𝑀𝛼)

in the∞-category∞TopsHenMod .

For a nonconnective spectral Deligne-Mumford stack (𝒳, 𝒪𝒳), we let QCoh(𝑋) de-
note the∞-category of quasi-coherent sheaves of 𝒪𝒳-modules on 𝒳.

Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of functors 𝑋, 𝑌 ∶ CAlg𝑐𝑛 → 𝒮 which is locally of

finite presentation, representable, proper, locally of finite Tor-amplitude. We define𝑓+ℱ ∶ QCoh(𝑋) → QCoh(𝑌), ℱ ↦ 𝑓∗(𝜔𝑋/𝑌,⊗ℱ).
Proposition 2.3.2: Suppose that we have two functors 𝑋, 𝑌 ∶ CAlg𝑐𝑛 → 𝒮 and 𝑓 ∶𝑋 → 𝑌 be a morphism between such that 𝑓 is representable, locally of finite presentation,
proper and locally of finite Tor-amplitude. Then there exits an adjunction𝑓+ ∶ QCoh(𝑋) ⇆ QCoh(𝑌) ∶ 𝑓∗
2.4 Formal Spectral Algebraic Geometry

Suppose that 𝐴 is an 𝐸∞-ring, we say 𝐴 is an adic 𝔼∞-ring if 𝜋0𝐴 is an I adic ordinary
ring for an ideal 𝐼 ⊆ 𝜋0𝐴. In classical commutative algebra, for a𝑀 ∈ Mod𝑅 and an ideal
of 𝑅, we can talk about the 𝐼 -adic completion of 𝑀. There is a similar story in spectral
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algebraic geometry, reader can find more details in[11]Section 7 . For any finitely generated

ideals 𝐼 ⊂ 𝜋0𝐴, we have the following the 𝐼-completion functor
Mod𝐴 → Mod𝐼𝐴 ∶ 𝑀 → 𝑀̂𝐼

We consider a functor 𝒪Spf𝐴 ∶ CAlg𝑒́𝑡𝐴 → CAlg𝐴 defined by 𝐵 ↦ 𝐵∧𝐼 . Let Shv𝑎𝑑𝐴 de-

note the closed subtopos of Shv𝑒́𝑡𝐴 corresponds to vanishing locus of an ideal of definition

of 𝜋0𝐴. It can be prove that 𝒪Spf𝐴 ∶ Shv𝑎𝑑𝐴 → CAlg𝐴 is connective and strictly Henselian,
so (Shv𝑎𝑑𝐴 , 𝒪Spf𝐴) is an spectrally ringed∞-topos. One can see chapter 8 of Lurie’s book
for more details.

Definition 2.4.1: Let 𝐴 be an adic 𝐸∞-ring, the formal spectrum Sp𝐴𝑓 is the spectrally
ringed-topoi Spf(𝐴) ∶= (Shv𝑎𝑑𝐴 , 𝒪Spf𝐴).
Definition 2.4.2: Suppose that we have an spectrally ∞-topos 𝑋 = (𝒳, 𝒪𝒳), we say 𝑓
is a formal spectral Deligne-Mumford stack if there is a cover {𝑈𝑖} of 𝒳, such that each(𝒳|𝑈𝑖, 𝒪𝒳|𝑈𝑖) is equivalent to Spf𝐴𝑖 for an adic 𝐸∞-ring 𝐴𝑖.
Example 2.4.3: By[11]Proposition 8.1.6.6 , suppose that 𝑋 ∈ SpDM and 𝐾 ⊂ |𝑋| is a co-
compact closed subset of the underlying topological space of 𝑋. Then we can get a map
in 𝑖 ∶ 𝔛 → 𝒳 in SpDM, this 𝔛 can be viewed a formal completion of 𝑋 along the closed

subset K.

Formal GAGA Theorem
Theorem 2.4.4: [11]Theorem 8.5.3.1 Suppose that we have an I-adic complete 𝔼∞-ring 𝑅,
where 𝐼 is an ideal 𝜋0𝑅. If 𝑋 is a spectral algebraic space over𝑅and 𝑋∧ is the formal
completion along 𝐼, that is 𝑋∧ = Spf𝑅 ×Sp𝑒́𝑡𝑅 𝑋. Then we have a homotopy equivalence

MapSpDM(𝑋, 𝑌) → MapfSpDM(𝑋∧, 𝑌)
for any quasi-separated spectral algebraic space 𝑌.
2.5 Spectral Artin Representability Theorem

Suppose that we have a spectral Deligne-Mumford stack 𝑋, its functor of points
determines a functor 𝑋 ∶ CAlgcn → 𝒮. A fundamental question in spectral algebraic

geometry is what kinds of functors 𝑋 ∶ CAlgcn → 𝒮 are representable by spectral Deligne-
Mumford stacks? We will review spectral representability theorem in this section. Let us

first recall the classical Artin representability theorem

Theorem 2.5.1: Let 𝑅 be a Grothendieck ring and 𝑋 ∶ CAlg♡𝑅 → Set be a functor. If 𝑋
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satisfying the following conditions:

（1）𝑋 → 𝑋 ×Spec𝑅 𝑋 is representable by a classical algebraic space.

（2）𝑋 is an étale sheaf on the category of 𝑅-algebra.
（3）We have an equivalence of sets𝑋(𝐵) → lim⟵ 𝑋(𝐵/𝑚𝑛)

for any complete local Noetherian 𝑅-algebra 𝐵 with maximal ideal𝑚.
（4）𝑋 admits a cotangent complex, and satisfying Schlessinger’s criteria for formal

representability.

（5）𝑋 commutes with filtered colimits.

Then 𝑋 is representable by an algebraic space which is locally of finite presentation over

R.

In derived algebraic geometry, there is a similar theorem developed by[7] and[23] .

But we will focus on following spectral algebraic geometry version[11] .

Spectral Artin Representability Theorem
Theorem 2.5.2: [11]Theorem 16.0.1 Suppose that we have a functor 𝑀 ∶ CAlgcn → 𝒮 be-

tween∞-categories and 𝑅 is a Noetherian 𝔼∞-ring such that 𝜋0𝑅 is a Grothendieck ring.

If 𝑓 ∶ 𝑀 → Spec𝑅 is a natural transformation. If there exits a non-negative integer 𝑛 , and𝑋 satisfying the following conditions:

（1）The space𝑀(𝑅0) is 𝑛-truncated for any discrete commutative ring 𝑅0.
（2）The presheaf𝑀 is an étale sheaf.

（3）𝑀 admits a connective cotangent complex 𝐿𝑀.
（4）𝑀 is nilcomplete, integrable and infinitesimally cohesive.

（5）𝑓 is locally almost of finite presentation as a natural transformations between
functors CAlgcn → 𝒮.
Then𝑀 is representable by a spectral Deligne-Mumford stack which is locally almost of

finite presentation over 𝑅.
We will explain these conditions in the left of this section.

Cotangent Complex

Definition 2.5.3: Suppose that we have a spectrally ringed∞-topos (𝒳,𝒜) andℳ is an𝒜-modules we let𝒜⊕𝑀 denote the trivial square extension𝒜 byℳ, see[3]Theorem 7.3.4.7

for more details. A derivation is a map 𝒜 → 𝒜 ⊕ℳ satisfying it is a section of the
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canonical map 𝒜 ⊕ ℳ → 𝒜. We let Der(𝒜,ℳ) = MapShvCAlg(𝒳)/𝒜(𝒜,𝒜 ⊕ 𝑀)
denote∞-category of derivations of𝒜 intoℳ.

Definition 2.5.4: Suppose 𝒳 is an∞-topos. We let𝐿 ∶ ShvCAlg(𝒳) → Mod(ShvSp(𝒳)), 𝒜 ↦ 𝐿𝒜
denote the absolute cotangent complex functor defined in[3]Subsection 7.3.2 . And for a mor-

phism 𝜙 ∶ 𝒜 → ℬ of 𝔼∞-ring sheaves on 𝒳, the relative cotangent complex 𝐿ℬ/𝒜 is

given by the cofiber of the map ℬ ⊗𝒜 𝐿𝒜 → 𝐿ℬ determined by 𝜙.
By[11]Subsection 7.3.2 , the absolute cotangent complex is characterized by the following

properties: There exists a universal derivation 𝑑 ∈ Der(𝒜, 𝐿𝒜) for which composition
with 𝑑 induces an equivalence

MapMod𝒜(𝐿𝒜,𝑀) → Der(𝒜,𝑀).
of∞-categories.

The cotangent complex of a spectral Deligne-Mumford stack 𝑋 is the cotangent of𝑋 as a spectrally ringed topos. Assume that we have two functors 𝑋, 𝑌 ∶ CAlgcn → 𝒮 and
a natural transformation 𝑓 ∶ 𝑋 → 𝑌, they are determined by spectral Deligne-Mumford

stacks 𝑋, 𝑌 and a morphism 𝑓 ∶ 𝑋 → 𝑌 between them. Then for any 𝐴 ∈ CAlgcn and a

point 𝜂 ∈ 𝑋(𝐴), there exists a connective 𝐴-module𝑀𝜂 which corepresents the functor
Modcn𝐴 → 𝒮, 𝑁 ↦ fib(𝑋(𝐴 × 𝑁) → 𝑋(𝐴)⊗𝑌(𝐴) 𝑌(𝐴 ⊕𝑁)).

Definition 2.5.5: Let 𝑓 ∶ 𝑋 → 𝑌 be a natural transformation between functors 𝑋, 𝑌 ∶
CAlgcn → 𝒮, we define a functor 𝐹 ∶ Mod𝑋cn → 𝒮 by𝐹(𝐴, 𝜂,𝑀) = fib(𝑋(𝐴 ×𝑀) → 𝑋(𝐴)⊗𝑌(𝐴) 𝑌(𝐴 ⊕𝑀))
We will say 𝑓 admits a cotangent complex if the functor 𝐹 is locally almost corepre-

sentable, see[11]Subsection 17.2.4 for more details. We say a functor 𝑋 ∶ CAlgcn → 𝒮 admits
a cotangent complex if the natural transformation 𝑋 → ∗ admits a cotangent complex.

It can be prove that a functor 𝑋 ∶ CAlgcn → 𝒮 admits a cotangent complex in the

sense of above definition if it satisfies:

（1）For every 𝐴 ∈ CAlg𝑐𝑛 and any point 𝜂 ∈ 𝑋(𝐴), the functor𝐹𝜂 ∶ Mod𝑐𝑛𝐴 → 𝒮, 𝐹𝜂(𝑁) = 𝑋(𝐴⊕𝑁) ×𝑋(𝐴) {𝜂}
is corepresented by an 𝐴-module𝑀𝜂 by which is almost connective .

（2）Let 𝐴 → 𝐵 be a morphism between two connective 𝔼∞-rings 𝐴 and 𝐵, then
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for every 𝐵-module𝑀 which is connective, the diagram𝑋(𝐴⊕𝑀) !!

""

𝑋(𝐵 ⊕𝑀)
""𝑋(𝐴) !! 𝑋(𝐵)

is a pullback square.

Remark 2.5.6: Suppose that we have a diagram in SpDM𝑌 𝑔
##❄

❄❄
❄❄

❄❄
❄

𝑋 𝑓 %%⑧⑧⑧⑧⑧⑧⑧ ℎ !! 𝑍
in Fun(CAlgcn, 𝒮), if 𝑔 and h admits a cotangent complexes.We can get 𝑓 also admits a
cotangent complex, and we have a fiber sequence𝑓∗𝐿𝑌/𝑍 → 𝐿𝑋/𝑍 → 𝐿𝑋/𝑌
in the stable∞-category QCoh(𝑋).
Cohesive, Nilcomplete, and Integrable Functors

Definition 2.5.7: Let 𝑋 ∶ CAlg𝑐𝑛 → 𝒮 be a functor. We say that this functor 𝑋 is

（1）Cohesive if 𝑋 satisfying the condition: for every pull-back diagram𝐴′
""

!! 𝐴𝑓
""𝐵′ 𝑔 !! 𝐵

in CAlgcn for which the maps 𝜋0𝐴 → 𝜋0𝐵 and 𝜋0𝐵′ → 𝜋0𝐵 are surjective, the induced

square 𝑋(𝐴′) !!

""

𝑋(𝐴)𝑋(𝑓)
""𝑋(𝐵′) 𝑋(𝑔) !! 𝑋(𝐵)

is a pullback square in 𝒮.
（2）Infinitesimally cohesive if 𝑋 satisfying the condition: for every pull-back

square 𝐴′
""

!! 𝐴𝑓
""𝐵′ 𝑔 !! 𝐵
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in CAlgcn for which the maps 𝜋0𝐴 → 𝜋0𝐵 and 𝜋0𝐵′ → 𝜋0𝐵 are surjective whose kernel

are nilpotent ideals in 𝜋0𝐴 and 𝜋0𝐵′, the induced square diagram𝑋(𝐴′) !!

""

𝑋(𝐴)𝑋(𝑓)
""𝑋(𝐵′) 𝑋(𝑔) !! 𝑋(𝐵)

is a pullback square in 𝒮.
Remark 2.5.8: （1）Let 𝑋 ∶ CAlgcn → 𝒮 be a cohesive functor, then 𝑋 is in-

finitessimally cohesive.

（2）If 𝑋 is representable by a spectral Deligne-Mumford stack, then 𝑋 is infinites-

simally cohesive.

（3）Let {𝑋𝛼}𝛼∈𝐼 be a filtered diagram in Fun(CAlg𝑐𝑛 → 𝒮), and the colimit of
this diagram is 𝑋, if we know that each 𝑋𝛼 is cohesive(infintiesimally cohesive), then 𝑋
is cohesive (infinitessimally cohesive).

Definition 2.5.9: We say a functor 𝑋 ∶ CAlgcn → 𝒮 is nilcomplete if for every 𝑅 ∈
CAlgcn, the natural map 𝑋(𝑅) → lim← 𝑋(𝜏≤𝑛) is a homotopy equivalence.
Definition 2.5.10: We say a functor 𝑋 ∶ CAlgcn → 𝒮 is integrable if for every complete
local Noetherian 𝐸∞-ring 𝐴, we have an equivalence𝑋(𝐴) ≃ MapFun(CAlgcn,𝒮)(Spec𝐴, 𝑋) → MapFun(CAlgcn,𝒮)(Spf𝐴, 𝑋).
which is induced by Spf𝐴 → Spec𝐴.
Proposition 2.5.11: [11]Proposition 17.3.5.1 A functor 𝑋 ∶ CAlgcn → 𝒮 is integrable if and
only if for a local Noetherian ring A which is complete with respect to the maximal ideal𝑚𝐴, we have an equivalence 𝑋(𝐴) → lim←𝑛𝑋(𝐴/𝑚𝑛).
Relative Version of Cohesive, Nilcomplete, and Integrable

Definition 2.5.12: Let 𝑔 ∶ 𝑋 → 𝑌 be a natural transformation between two functors,𝑋, 𝑌 ∶ CAlgcn → 𝒮. We will say that 𝑔 is:
（1）cohesive if 𝑔 satisfies the condition: for every pullback square𝐴′ !!

""

𝐴
""𝐵′ !! 𝐵
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in CAlg𝑐𝑛 such that 𝜋0𝐴 → 𝜋0𝐵 and 𝜋0𝐵′ → 𝜋0𝐵 are all surjective, the diagram𝑋(𝐴′) !!

&&■
■■

■■
■■

■■

""

𝑋(𝐴)
''●

●●
●●

●●
●●

""

𝑌(𝐴′) !!

""

𝑌(𝐴)
""

𝑋(𝐵′) !!

&&■
■■

■■
■■

■■
𝑋(𝐵)

''●
●●

●●
●●

●●𝑌(𝐵′) !! 𝑌(𝐵)
in 𝒮 is a limit digram.

（2）infinitesimally cohesive, if 𝑔 satisfies the condition: for any pullback square𝐴′ !!

""

𝐴
""𝐵′ !! 𝐵

of CAlgcn, such that 𝜋0𝐴 → 𝜋0𝐵 and 𝜋0𝐵′ → 𝜋0𝐵 are surjections with nilpotent kernel,

we get diagram of spaces𝑋(𝐴′) !!

&&■
■■

■■
■■

■■

""

𝑋(𝐴)
''●

●●
●●

●●
●●

""

𝑌(𝐴′) !!

""

𝑌(𝐴)
""

𝑋(𝐵′) !!

&&■
■■

■■
■■

■■
𝑋(𝐵)

''●
●●

●●
●●

●●𝑌(𝐵′) !! 𝑌(𝐵)
is a limit diagram.

（3）nilcomplete if it satisfyies the condtion: for every 𝐴 ∈ CAlgcn, the diagram𝑋(𝐴) !!

""

lim← 𝑋(𝜏≤𝑛𝐴)
""𝑌(𝐴) !! lim← 𝑌(𝜏≤𝑛𝐴)

is a pullback square.

（4）integrable if it satisfies the condition: for every complete local Noetherian
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CHAPTER 2 SPECTRAL ALGEBRAIC GEOMETRY𝐸∞-ring A, the induced diagram𝑋(𝐴) !!

""

MapFun(CAlg𝑐𝑛,𝒮)(Spf𝐴, 𝑋)
""𝑌(𝐴) !! MapFun(CAlg𝑐𝑛,𝒮)(Spf𝐴, 𝑌)

is a pullback square.

Remark 2.5.13: Suppose we are given a commutative triangle𝑋 ℎ !!𝑓
##❄

❄❄
❄❄

❄❄
❄ 𝑍

𝑌 𝑔 %%⑧⑧⑧⑧⑧⑧⑧

in Fun(CAlgcn, 𝒮), where 𝑔 is cohesive. Then 𝑓 is cohesive if and only if h is cohesive.
The statement is also holds for conditions: infinitesimally cohesive, nilcomplete and in-

tegrable.

Take 𝑍 to be the final object of Fun(CAlg𝑐𝑛, 𝒮), we can find that if 𝑌 ∶ CAlg → 𝒮 is
cohesive, then a morphism 𝑓 ∶ 𝑋 → 𝑌 is cohesive if and only if 𝑋 is cohesive. The state-

ment is also holds for conditions: infinitesimally cohesive, integrable and nilcomplete.

Locally of Finite Presentation

Definition 2.5.14: Suppose 𝑋, 𝑌 ∈ Fun(CAlgcn → 𝒮), let 𝑓 ∶ 𝑋 → 𝑌 be a natural

transformation. We will say 𝑓 is
（1）locally of finite presentation if it satisfies the condition: for every filtered

diagram of connective 𝐸∞-rings {𝐴𝛼} whose colimit is 𝐴, the canonical map we have an
equivalence 𝜃 ∶ lim→ → 𝑋(𝐴) ×𝑌(𝐴) lim→ 𝑌(𝐴𝛼)

（2）locally almost of finite presentation if it satisfies the condition: for 𝑚 ≥ 0
and for any filtered diagram {𝐴𝛼} in CAlgcn,𝜏≤𝑛 , we have an equivalence𝜃 ∶ lim⟶ 𝑋(𝐴𝛼) → 𝑋(𝐴) ×𝑌(𝐴) lim⟶ 𝑌(𝐴𝛼).

（3）locally of finite generation to order n if it satisfies the condition: for any

filtered diagram {𝐴𝛼} in CAlgcn such that 𝐴𝛼 is n-truncated and the transition map𝜋𝑛𝐴𝛼 → 𝜋𝑛𝐴𝛽 are monomorphism, we have an equivalence𝜃 ∶ lim⟶ 𝑋(𝐴𝛼) → 𝑋(𝐴) ×𝑌(𝐴) lim⟶ 𝑌(𝐴𝛼).
Proposition 2.5.15: Suppose 𝑋, 𝑌 ∶ Fun(CAlgcn → 𝒮), let 𝑓 ∶ 𝑋 → 𝑌 be a natural
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transformation between them. Then we have the following statements which are equiva-

lent.

（1）𝑓 is locally of finite presentation .
（2）For every pull-back square 𝑋′ !!𝑓′

""

𝑋𝑓
""𝑌′ !! 𝑌

in Fun(CAlgcn, 𝒮), 𝑓′ is locally of finite presentation.
（3）For every pull-back square 𝑋′ !!𝑓′

""

𝑋𝑓
""𝑌′ !! 𝑌

in Fun(CAlgcn, 𝒮) where 𝑌′ is a corepresent functor, the map 𝑓′ is locally of finite pre-
sentation.

Moreover, these statements holds for the conditions: locally almost of finite presentation

and locally of finite generation to order n.

Proposition 2.5.16: [11]Proposition 17.4.2.1 Suppose 𝑋, 𝑌 ∶ Fun(CAlgcn → 𝒮), let 𝑓 ∶ 𝑋 →𝑌 be a natural transformation between them and suppose that 𝑓 admits a cotangent com-
plex 𝐿𝑋/𝑌. Then:

（1）If 𝑓 is locally of finite generation to order 𝑛, then 𝐿𝑋/𝑌 ∈ QCoh(𝑋) is perfect
to order n.

（2）Assume that 𝑓 is infinitessimally cohesive and satisfies the following addition
condition

(*) For every filtered diagram {𝐴𝛼} of commutative rings have colimits 𝐴, the dia-
gram of spaces

lim→ 𝑋(𝐴𝛼) !!

""

𝑋(𝐴)
""

lim→ 𝑌(𝐴𝛼) !! 𝑌(𝐴)
is a pull-back diagram. Moreover, if 𝐿𝑋/𝑌 is perfect to order n, then 𝑓 is locally of finite
generation to order n.
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Étale sheaves in Spectral Algebraic Geometry

Suppose that 𝒞 is an∞-category and 𝒞 been equipped with a Grothendieck topology𝒯 (See[29]Definition 6.2.2.1 for the details of Grothendieck topology on ∞-categories). Letℱ ∶ 𝒞𝑜𝑝 → 𝒮 be a presheaf, we say ℱ is an 𝒯-sheaf if for any object 𝐶 ∈ 𝒞, and a 𝒯 cover

sieve {𝑈𝑖 → 𝐶} , ℱ(𝐶) is the limit of the simplicial diagram
Tot ∶ Δop → 𝒮, [𝑛] ↦∐ℱ(𝑈𝑖1,𝑖𝑛)

This definition is similar with the classical definition, while ℱ ∶ 𝐶𝑜𝑝 → 𝜏≤0𝒮 ≃ Set

is a classical sheaf from a 1-category to Set if for any object 𝐶 ∈ 𝒞, and an 𝒯 cover{𝑈𝑖 → 𝐶}, ℱ(𝐶) is the limit of the diagram∐ℱ(𝑈𝑖) →∐ℱ(𝑈𝑖𝑗)
The following theorem gives a relation between an étale sheaf and its restriction to

discrete case.

Proposition 2.5.17: [11]Proposition 18.1.1.1 Let𝑋 ∶ CAlgcn → 𝒮 be a nilcomplete, infinites-
imally cohesive functor and admits a cotangent complex. Then the following conditions

are equivalent:

（1）The functor 𝑋 is an étale sheaf in higher categorical word.

（2）The restriction of 𝑋 restricts to discrete is an étale sheaf, that is 𝑋|CAlg♡ is an
étale sheaf .

Proof: The direction (1) ⇒ (2) is obvious, we will prove the other direction. Suppose
that we already know that 𝑋|CAlg♡ is a sheaf with respect to the étale topology. We wish

to prove that 𝑋 ∶ CAlgcn → 𝒮 is an étale sheaf, but étale sheaf is a local condition, so we
only need to prove that 𝑋|CAlg𝑒́𝑡𝑅 is an étale sheaf.

We know that 𝑋 is a nilcomplete sheaf, so we only need to prove that 𝑋𝜏≤𝑛𝑅 ∶
CAlg𝑒𝑡𝜏≤𝑛𝑅 → 𝒮, 𝐴 ↦ 𝑋(𝜏≤𝐴) is an étale sheaf. We will use the induction to prove this

statement. The case 𝑛 = 0 follows from the assumption, now we assume it is true for𝑛 − 1. We know that 𝑅 is a square-zero extension of 𝜏≤𝑛−1𝑅 by𝑀 = Σ𝑛(𝜋𝑛𝑅), we then
have a pullback diagram 𝜏≤𝑛𝑅 !!

" "

𝜏≤𝑛−1𝑅
""𝜏≤𝑛−1𝑅 !! 𝜏≤𝑛−1𝑅 ⊕ Σ𝑀
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We define two functors 𝑌𝜏≤𝑛−1𝑅, 𝑍𝜏≤𝑛−1𝑅 ∶ CAlg𝑒́𝑡𝜏≤𝑛𝑅 → 𝒮 by the formula𝑌𝜏≤𝑛−1𝑅(𝐴) = 𝑋(𝐴⊗𝜏≤𝑛𝑅 𝜏≤𝑛−1𝑅) = 𝑋(𝜏≤𝑛−1𝐴)𝑍𝜏≤𝑛−1𝑅(𝐴) = 𝑋(𝐴⊗𝜏≤𝑛𝑅 (𝜏≤𝑛−1𝑅 ⊕ Σ𝑀)) = 𝑋(𝜏≤𝑛−1𝐴⊕ (𝐴⊗𝜏≤𝑛𝑅 𝑀)).
By the infinitessimally cohesiveness of X, we then have a pullback diagram of functors𝑋𝜏≤𝑛𝑅 !!

""

𝑌𝜏≤𝑛−1𝑅
""𝑌𝜏≤𝑛−1𝑅 !! 𝑍𝜏≤𝑛−1𝑅

By the assumption, we have 𝑌𝜏≤𝑛−1𝑅 is an étale sheaf, so it is enough to prove that 𝑍𝜏≤𝑛−1𝑅
is an étale sheaf. We consider the nature projection 𝑍𝜏≤𝑛−1𝑅 → 𝑌𝜏≤𝑛−1𝑅, by the fiber

principle[11]Lemma D.4.3.2 , it is enough to prove that each fiber of this functor is an étale

sheaf. This is equivalent to say that:

(*) For every étale 𝜏≤𝑛𝑅-algebra 𝐴, and every point 𝜂 ∈ 𝑋(𝜏≤𝑛−1𝐴), the functorℱ ∶ CAlg𝑒́𝑡𝐴 → 𝒮 defined by𝐵 ↦ fib(𝑋(𝜏≤𝑛−1𝐵 ⊕ (𝐴⊗𝜏≤𝑛𝑅 𝑀)) → 𝑋(𝜏≤𝑛−1𝐵))
is an étale sheaf. But by the definition of cotangent complex of 𝐿𝑋, we find that ℱ(𝐵) =
MapMod𝜏≤𝑛−1𝐴(𝜂∗𝐿𝑋, 𝐵⊗𝑅 𝑀). It then follows from that Hom and⊗ [11]Corollary 6.3.4 sat-

isfying étale descent[11]Propositon 5.2.7 . ∎
And the spectral Artin representability can deduced from the following version.

Theorem 2.5.18: [11]Theorem 18.1.0.2 Suppose that we have a functor 𝑍 ∶ CAlgcn → 𝒮,
then 𝑍 is representable by a spectral Deligne-Mumford stack if and only if it satisfying

the following conditions:

（1）There exists a 𝑌 ∈ SpDM representing a functor 𝑌 ∶ CAlgcn → 𝒮 and a

equivalence of functors 𝑍CAlg♡ ≃ 𝑌|CAlg♡ .
（2）𝑍 have a cotangent complex.
（3）𝑍 is nilcomplete .
（4）𝑍 is infinitesimally cohesive.

2.6 Spectral Varieties

Algebraic varieties are the earliest objects people studied in classical algebraic ge-

ometry. They are the common zeros of a collection of polynomials. Then Grothendieck

give these objects a more general description, they are schemes satisfies certain condi-
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tions: integral separated scheme of finite type over an algebraically closed field 𝑘. In
spectral algebraic geometry, spectral varieties are also comes from some restrictions on

more general objects.

Definition 2.6.1: A spectral variety 𝑋 over an 𝐸∞-ring 𝑅 is a morphism in SpDM𝑛𝑐
which is flat, and satisfying the induced map 𝜏≥0𝑋 → Spet𝜏≥0𝑅 of spectral Deligne-

Mumford stacks is proper, locally almost of finite presentation, geometrically reduced

and geometrically connected. We let Var(𝑅) denote the ∞-category of spectral varieties
over 𝑅.

Suppose that𝒳 is an∞-category and it has all finite products. We let Lat denote the∞-category of free abelian group of finite rank. A functor 𝐴 ∶ Lat𝑜𝑝 → 𝒳 is called an

abelian group object if it preserves finite products. We let Ab(𝒳) denote the∞-category
of abelian group objects of 𝒳.

Suppose that 𝒳 is an ∞-category and it has all finite products. We recall that a

commutative monoid object of 𝒳 is a functor 𝑀 ∶ Fin∗ → 𝒳 which satisfies: For each𝑛 ≥ 0, the maps {𝑀(𝜌𝑖) ∶ 𝑀(⟨𝑛⟩) → 𝑀⟨1⟩}1≤𝑖≤𝑛 determines an equivalence 𝑀(⟨𝑛⟩) →𝑀(⟨1⟩)𝑛 in𝒳. And we denote CMon(𝒳) the∞-category of commutative monoid objects
of 𝒳.
Definition 2.6.2: Let 𝑅 be an 𝐸∞-ring. A spectral abelian variety over 𝑅 is a commu-

tative monoid object of the ∞-category Var(𝑅). We let AVar(𝑅) denote the category of
spectral abelian varieties over R.

Definition 2.6.3: Suppose that we have an 𝑅 ∈ CAlg. A strict spectral abelian variety

over 𝑅 is an abelian group object of the∞-category Var(𝑅). We let AVar𝑠(𝑅) denote the∞-category of strict abelian varieties over R.
Remark 2.6.4: We have the functor of points construction Var(𝑅) → Fun(CAlg𝑅, 𝒮),
which induce a fully faithful embedding

AVAr(𝑅) = CMon(Var(𝑅))= CMon𝑔𝑝(Var(𝑅))↪ CMon𝑔𝑝(Fun(CAlg𝑅, 𝒮))= Fun(CAlg𝑅,CMon𝑔𝑝(𝒮))
So for an abelian variety𝑋, its value𝑋(𝑅) on an 𝔼∞-ring 𝑅 is an group like 𝔼∞-space. We

also have the functors of strict abelian varieties their values on 𝔼∞-rings are topological
31



CHAPTER 2 SPECTRAL ALGEBRAIC GEOMETRY

abelian groups.

Spectral Elliptic Curves

Definition 2.6.5: Suppose that we have 𝑅 ∈ CAlg. A spectral elliptic curve over 𝑅 is

an spectral abelian variety of dimension 1 over 𝑅. We let Ell(𝑅) = AVar1(𝑅) denote the∞-category of spectral elliptic curves over 𝑅.
A strict spectral elliptic curve is a strict spectral ableian variety of dimensional 1 over

R.We let Ell𝑠(𝑅) = AVar𝑠1(𝑅) denote the∞-category of strict spectral elliptic curves over
R.

By the definition of spectral elliptic curves and strict spectral elliptic curves, we can

define functors ℳ𝑒𝑙𝑙 ∶ CAlg → 𝒮𝑅 ⟼ℳ𝑒𝑙𝑙(𝑅) = Ell(𝑅)≃ℳ𝑠𝑒𝑙𝑙 ∶ CAlg → 𝒮𝑅 ⟼ℳ𝑠𝑒𝑙𝑙(𝑅) = Ell(𝑅)≃
Theorem 2.6.6: [24]Theorem 2.4.1 The two functorsℳ𝑒𝑙𝑙 andℳ𝑠𝑒𝑙𝑙 are representable spec-
tral Deligne-Mumford stacks. Moreover, these two representable stacks are locally almost

of finite presentation over the sphere spectrum.

2.7 Spectral 𝑝-Divisible Groups
Definition 2.7.1: Suppose that we have 𝐴 is a 𝔼∞-ring and 𝑀 ∈ Mod𝐴. We will say

that𝑀 is finite flat it satisfies the following conditions:

（1）Every homotopy group 𝜋𝑛𝑀 as a 𝜋0𝐴-module is locally free of finite rank over
the commutative ring 𝜋0𝐴.

（2）For each integer 𝑛, we have an isomorphism 𝜋0𝑀 ⊗𝜋0𝐴 𝜋𝑛𝐴 → 𝜋𝑛𝑀 of

homotopy groups.

Definition 2.7.2: Let 𝑓 ∶ 𝑋 → 𝑌 be a map in SpDM. We say that 𝑓 is a finite flat

morphism of degree d, if for every map Sp𝑒́𝑡𝐴 → 𝑌, the fiber product 𝑋 ×𝑌 Sp𝑒́𝑡𝐴 has

the form Sp𝑒́𝑡𝐵, where B is a finite flat rank d A-module. We let FF(𝐴) denote the full
subcategory of SpDM𝑛𝑐𝐴 spanned by finite flat morphisms 𝑋 → Sp𝑒́𝑡𝐴.

It is easy to see that if 𝑓 ∶ 𝑋 → Sp𝑒́𝑡𝐴 is finite flat, then 𝑋 = Sp𝑒́𝑡𝐵 for some finite

flat 𝐴-algerba 𝐵. And one can also define spectral commutative finite flat schemes over
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CHAPTER 2 SPECTRAL ALGEBRAIC GEOMETRY𝐴. They are just grouplike commutative monoid objects in FF(𝐴). We let FFG(A) denote

the∞-category of spectral commutative finite flat group schemes over 𝐴.
Definition 2.7.3: Suppose 𝐴 ∈ CAlg and 𝑆 be a set of prime numbers. When we say

a 𝑆-divisible group over 𝐴, we mean a functor 𝑋 ∶ (Ab𝑆fin)op → FFG(𝐴) satisfies the
following conditions:

（1）The spectral commutative finite flat scheme 𝑋(0) is trivial.
（2）For every short exact sequence 𝑀″ → 𝑀 → 𝑀′ of finite abelian 𝑆-groups,

we have a pullback square of spectral commutative finite flat group schemes over 𝐴 as

follows 𝑋(𝑀″) !!

""

𝑋(𝑀)
""𝑋(0) !! 𝑋(𝑀′).

（3）The S-divisible group has height ℎ, if for a𝑀 which is a finite abelian 𝑆 group,𝑋(𝑀) is a degree |𝑀|ℎ spectral commutative finite flat group scheme over 𝐴.
when S consists of only one prime 𝑝, then we call it a p-divisible group over 𝐴, we write
BT𝑝ℎ(𝐴) for the∞-category of height h spectral p-divisible group.
Theorem 2.7.4: [24]Theorem 7.0.1 Assume that we have a connective 𝔼∞-ring 𝐴 ∈ CAlgcn

and𝑀 be a connective A-module, let 𝑅̄ be a square-zero extension of 𝑅 by𝑀. For every
integer 𝑔 ≥ 0, the 𝑝∞-torsion construction determines a pullback square

AVar𝑠𝑔(𝑅̄) !!

""

AVar𝑠𝑔(𝑅)
""

BT𝑠2𝑔(𝑅̄) !! BT𝑠2𝑔(𝑅)
By this theorem, we can find that just like the classical case, the deformations of spec-

tral abelian varieties are controled by deformations of their associated spectral p-divisible

groups. One can see[24]Section 6, 7 for more details about spectral p-divisible groups.

It is know that for a classical simple p-divisible group 𝐺 over a perfect field k of

characteristic p, there is a short exact sequence,0 → 𝐺∘ → 𝐺 → 𝐺𝑒́𝑡 → 0
such that 𝐺0 is formal and 𝐺𝑒́𝑡 is étale. This is also a similar theorem in spectral algebraic

geometry.

Definition 2.7.5: [13]Definition 1.6.1 Suppose that we have 𝑅 ∈ CAlgcn, A spectral formal
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group over 𝑅 is a functor 𝐺̂ ∶ CAlgcn → Modcnℤ such that the composition

CAlgcn𝑅 𝐺̂→ Modcnℤ Ω∞→ 𝒮
is a formal hyperplane over 𝑅, i.e., this functor is representable by a formal spectrum

of the dual of a smooth coalgebra, see[13]Section 1 for more details about spectral formal

groups.

Theorem 2.7.6: Suppose that we have a p-complete 𝐸∞-ring R, and 𝐺 is a spec-

tral p-divisible over 𝑅. Then there exits an essentially unique spectral formal group𝐺∘ ∈ FGroup(𝑅) satisfying that 𝐺𝑜 restrict to those connective 𝜏≤0𝑅-algebras which
are truncated and p-nilpotent is given by𝐴 ↦ fib(𝐺(𝐴) → 𝐺(𝐴𝑟𝑒𝑑)).

We call 𝐺∘ the identity component of 𝐺. Moreover, if the connective component 𝐺∘
is a spectral p-divisible formal group, then we can get a short exact sequence0 → 𝐺∘ → 𝐺 → 𝐺𝑒́𝑡 → 0,
satisfying 𝐺∘ is formally connected and 𝐺𝑒́𝑡 is étale.
Deformations of Spectral p-Divisible Groups

In this subsection, suppose that we have a commutative ring𝑅0 and𝐺0 is a p-divisible
group over 𝑅0. Let 𝐴 ∈ CAlgcn and we have a map 𝜌𝐴 ∶ 𝐴 → 𝑅0
Definition 2.7.7: A spectral deformation of 𝐺0 along the ring map 𝜌𝐴 consists of a pair(𝐺, 𝛼), where 𝐺 is a spectral p-divisible group over 𝐴 and 𝛼 ∶ 𝐺0 ≃ 𝜌∗𝐴𝐺 is an equivalence
of spectral p-divisible groups over 𝑅0. We let Def𝐺0(𝐴, 𝜌𝐴) denote the ∞-category of all
spectral deformations fo 𝐺0 along the map 𝜌𝐴.

The following theorem due to Lurie establish the universal spectral deformation the-

ory of p-divisible groups. Suppose that 𝑅0 is Noetherian 𝐹𝑝-algebra such that the Frobe-
nius morphism is finite and 𝐺0 is a p-divisible group over 𝑅0.
Theorem 2.7.8: [13]Theorem 3.0.11 There exists a 𝐸∞-ring 𝑅un𝐺0 ∈ CAlgcn with a morphism

of 𝐸∞-rings 𝜌 ∶ 𝑅un𝐺0 → 𝑅0 satisfying following properties:
• The 𝐸∞-ring 𝑅un𝐺0 is Noetherian, and the map 𝜋0(𝜌) ∶ 𝜋0(𝑅𝑢𝑛𝐺0 ) → 𝑅0 is surjective,

and 𝑅un𝐺0 is complete with respect to the ideal ker(𝜋0(𝜌)).
• For any complete Noetherian 𝐸∞-ring 𝐴 with a map 𝜌𝐴 ∶ 𝐴 → 𝑅0, such that

34



CHAPTER 2 SPECTRAL ALGEBRAIC GEOMETRY𝜖𝐴 ∶ 𝜋0(𝐴) → 𝑅0 is surjective, we have an equivalence of∞-categories
MapCAlg/𝑅0 (𝑅un𝐺0, 𝐴) → Def𝐺0(𝐴, 𝜌𝐴).

The proof of existence of universal deformations along amap follows from the follow

definition of 𝐺0-taggings.
Definition 2.7.9: Suppose that 𝐴 is an adic 𝐸∞-ring and 𝐺 ∈ BT𝑃(𝐴). A 𝐺0-tagging of𝐺 consists of a triple (𝐼, 𝜇, 𝛼), where 𝐼 ⊂ 𝜋0𝐴 is an ideal of definition, 𝜇 ∶ 𝑅0 → 𝜋0(𝐴)/𝐼
is a ring homomorphism, and 𝛼 ∶ (𝐺0)𝜋0𝐴/𝐼 ≃ 𝐺𝜋0𝐴/𝐼 is an isomorphism of p-divisible

groups over 𝜋0𝐴/𝐼.
We then define a spectral deformation of 𝐺0 over the 𝔼∞-ring 𝐴 consists of a spectral

p-divisible group 𝐺 over 𝐴 together with an equivalence class of 𝐺0-tagging of 𝐺. We let

Def𝐺0(𝐴) denote the collection of all deformations of 𝐺0 over 𝐴, i.e., it is the filtered
colimit

lim⟶𝐼 BT𝑝(𝐴) ×BT𝑝(𝜋0(𝐴)/𝐼) Hom(𝑅0, 𝜋0(𝐴)/𝐼)
where I ranges over all ideals of defintion 𝐼 ⊂ 𝜋0(𝐴) which are finitely generated. What

is the relation between Def𝐺0(𝐴, 𝜌𝐴) and Def𝐺0(𝐴)?. It can be proved that there is a fiber
sequence

Def𝐺0(𝐴, 𝜌) → Def𝐺0(𝐴) 𝜌→ Def𝐺0(𝑅0).
Lemma 2.7.10: [13]lemma 3.1.10 Suppose that 𝑅0 is a commutative ring and 𝐺0 is a p-
divisible group. If 𝑅 is a complete adic 𝔼∞-ring, the ∞-category Def𝐺0(𝑅) is an ∞-
groupoids.

By this lemma, we have a functor

Def𝐺0 ∶ CAlg𝑎𝑑𝑐𝑝𝑙 → 𝒮.
Theorem 2.7.11: [13]Theorem 3.1.15 If 𝑅0 is Noetherian 𝐹𝑝 algebra such that the Frobenius
morphism is finite, and 𝐺0 is a p-divisible group over 𝑅0. Then we have the following
statements:

（1）There exists an universal deformation of 𝐺0. i.e., there exists a complete adic𝔼∞-ring𝑅un𝐺0 , and a morphism 𝜌 ∶ 𝑅un𝐺0 → 𝑅0 such that the functor Def𝐺0 is corepresentable
by 𝑅un𝐺0 . i.e. , for any complete adic 𝔼∞-ring R，there is a equivalence

MapCAlg𝑎𝑑𝑐𝑝𝑙(𝑅un𝐺0, 𝑅) → Def𝐺0(𝑅).
（2）𝔼∞ ring 𝑅un𝐺0 is a connective and Noetherian 𝔼∞-ring.
（3）The induced map 𝜋0(𝜌) ∶ 𝜋0(𝑅un𝐺0) → 𝑅0 is surjective, and 𝑅un𝐺0 is complete
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with respect to the ideal ker(𝜋0(𝜌)).
How do we get univesal deformations along a map from universal deformations con-

sists of 𝐺0-taggings. For 𝜌𝐴 ∶ 𝐴 → 𝑅0 which induces a surjection of commutative rings𝜖 ∶ 𝜋0𝐴 → 𝑅0. We have a commutative digram 𝜎
MapCAlg𝑎𝑑𝑐𝑝𝑙(𝑅un𝐺0, 𝐴) 𝜌𝐴∘ !!

""

MapCAlg𝑎𝑑𝑐𝑝𝑙(𝑅un𝐺0, 𝑅0)
""

Def𝐺0(𝐴) !! Def𝐺0(𝑅0)
for any 𝑢 ∶ 𝑅un𝐺0 → 𝐴, it fits into a commutative diagram𝑅un𝐺0 𝑢 !!𝜌

((❆
❆❆

❆❆
❆❆

𝐴
𝜌𝐴))&&

&&
&&
&&𝑅0

Passing to the homtopy fiber of the lower horiznetal map, we get a map𝜃 ∶ MapCAlg𝑎𝑑𝑐𝑝𝑙(𝑅un𝐺0, 𝐴) → Def𝐺0(𝐴, 𝜌)
If A is complete with respect to ker 𝜖, vertical maps in 𝜎 are all equivalence, so we find
that 𝜃 is a equivalecne.
2.8 Orientations

Suppose that we have an 𝑅 ∈ CAlg and 𝑋 ∶ CAlg𝑐𝑛𝜏≥0(𝑅) → 𝒮∗ is a pointed formal
hyperplane over this 𝔼∞-ring R. We call a map of pointed spaces𝑒 ∶ 𝑆2 → 𝑋(𝜏≥0(𝑅))
is a preorientation of 𝑋.
Definition 2.8.1: A preorientation of an 1-dimensional spectral formal group 𝐺̂ over an𝐸∞-ring 𝑅 is a map 𝑒 ∶ 𝑆2 → Ω∞𝐺̂(𝜏≥0𝑅)
of based spaces, where the based points goes to the identity of the group structure. We let

Pre(𝑋) denote the space preorientation of 𝑋.
Fro every 1-dimensional spectral formal group 𝐺̂, the dualizing line of 𝐺̂ is an R-

module defined by 𝜔𝐺̂ ∶= 𝑅 ⊗𝒪𝐺̂ 𝒪𝐺̂(−𝜂)
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where 𝒪𝐺̂(−𝜂) is the fiber of 𝒪𝐺̂ → 𝜏≥0𝑅 → 𝑅, 𝜂 ∈ 𝐺̂(𝜏≥0𝑅) is the connective element
of the group. For every preorientation 𝑒 ∶ 𝑆2 → 𝐺̂(𝜏≥0𝑅), there is an associated map𝛽𝑒 ∶ 𝜔𝐺̂ → Σ−2𝑅
called the Bott map. See[13]Section 4.2 for more details about preotientations and orienta-

tions.

Definition 2.8.2: Fro a one dimensional spectral formal group 𝐺, an orientation is a
preorientation whose Bott map is an equivalence.

The reason why we require that the Bott map is an equivalence is because, for a

complex periodic 𝔼∞-ring, we can define a spectral formal group 𝐺𝐴𝑄 , called the Quillen
formal group over 𝐴. And the preorientation of of a spectral formal group 𝐺̂ is classified

by the mapping space of 𝐺̂𝑄𝐴 to 𝐺̂. And the Bott map of a preorientation of Quillen formal
groups is an equivalence. So if we want a preorientation 𝑒 of 𝐺̂ to be an orientation, then

the image of this proentation under the map 𝜙 ∶ Ω∞𝐺̂(𝜏≥0𝑅) → Ω∞𝐺̂𝐴𝑄(𝜏≥0𝑅)must be an
orientation, i.e. the Bott map of 𝜙(𝑒) is an equivalence, then we get the Bott map of 𝑒 is
an equivalence.

Proposition 2.8.3: [13]Proposition 4.3.21 Let 𝑅 be 𝐸∞-ring which is complex periodic.

Then for any spectral formal group 𝐺̂ over R, there is canonical equivalence

MapFGroup(𝐺𝑄𝐴 , 𝐺) = Pre(𝐺)
Proposition 2.8.4: [13]Proposition 4.3.13 Suppose that we have 𝑅 ∈ CAlg and 𝑋 is a for-

mal hyperplane over 𝑅 which is dimension one. Then there exists an 𝔼∞-ring 𝔇𝑋 and a
orientation 𝑒 ∈ OrDat(𝑋𝔇𝑋) satisfying for any 𝑅′ ∈ CAlg𝑅, evaluation on e induces an
homotopy equivalence

MapCAlg𝑅(𝔇𝑋, 𝑅′) → OrDat(𝑋𝑅′).
The representability of orientation comes from the following representability of pre-

orientation, we notice that Pre(𝑌) = Ω2𝑌(𝜏≥0𝑅) for a pointed formal hyperplane 𝑌 .
Lemma 2.8.5: Suppose that we have 𝑅 ∈ CAlg and 𝑋 is a pointed formal hyperplane

over 𝑅. Then the functor
CAlg𝑅 → 𝒮, 𝑅′ ↦ Pre(𝑋𝑅′)

is corepresentable by an 𝔼∞-ring 𝐴 over 𝑅.
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Applications

Definition 2.8.6: Suppose that we have an 𝔼∞-ring 𝑅, and 𝐸 is a strict elliptic curve

over 𝑅. A presentation of 𝐸 is a map 𝑒 ∶ 𝑆2 → Ω∞+2𝐸(𝜏≥0𝑅) of pointed spaces. An
orientation is a preorientation such that its image under the equivalence Pre(𝐸) = Pre(𝐸̂)
is an orientation of the formal group 𝐸̂.

We let Ell𝑜𝑟(𝑅) denote the∞-category of pairs (𝐸, 𝑒), such that 𝐸 is a strict elliptic

curve over 𝑅, and 𝑒 is an orientation of 𝐸.
Theorem 2.8.7: The functor ℳ𝑜𝑟𝑒𝑙𝑙 ∶ CAlgcn → 𝒮𝑅 ↦ Ell𝑜𝑟(𝑅)≃
is representable by a spectral Deligne-Mumford stack which is locally almost of finite

presentation over 𝕊.
Remark 2.8.8: It follows that[13]Remark 7.3.2 that the étale topos 𝒰 of the classical

Deligne-Mumford stack of classical elliptic curves is the full subcategory of the under-

lying topos 𝒳 ofℳ𝑠𝑒𝑙𝑙 spectral Deligne-Mumford stack of spectral elliptic curves. We

have a map 𝜙 ∶ ℳ𝑜𝑟𝑒𝑙𝑙 → ℳ𝑠𝑒𝑙𝑙 of nonconnective spectral Deligne-Mumford stacks, we

consider the direct image sheaf 𝜙∗𝒪ℳ𝑜𝑟𝑒𝑙𝑙 , which is a sheaf of 𝔼∞-rings over 𝒳. So we
get a functor 𝒪𝑇𝑜𝑝ℳ𝑒𝑙𝑙 ∶ 𝒰𝑜𝑝 → CAlg. This construction can be viewed as a construction

of elliptic cohomology theories. It follows that[13]Remark 7.3.2 and[30] , those ∞-structure
determined by this construction are actually homotopy equivalent to the 𝔼∞-structure in
Goerss-Hopkins-Miller’s proof[14] .

Let 𝐺0 be a nonstationary p-divisible group over a Noetherian 𝔽𝑝-algebra. Let 𝐺 be

the universal deformation of 𝐺0, and 𝑅𝑜𝑟𝐺0 denote the orientation classifier for the identity
component 𝐺∘, we refer 𝑅𝑜𝑟𝐺0 as the orientation deformation ring.
Theorem 2.8.9: Let 𝑅0 be a Noetherian 𝔽𝑝-algebra and 𝐺0 be a one dimensional non-
stationary p-divisible over 𝑅0 with a classical universal deformation ring 𝑅𝑐𝑙𝐺0 . Then we
have:

（1）The odd degree homotopy groups of 𝑅𝑜𝑟𝐺0 equals to zero, and 𝑅𝑐𝑙𝐺0 ≅ 𝜋0(𝑅𝑜𝑟𝐺0 ).
（2）Suppose that we have an adic 𝔼∞-ring 𝐴, the mapping space

MapCAlg𝑎𝑑𝑐𝑝𝑙(𝑅𝑜𝑟𝐺0 , 𝐴) = Def𝑜𝑟𝐺0
classifying triples (𝐺, 𝛼, 𝑒), where

1 𝐺 is a spectral deformation of 𝐺0 to 𝐴.
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2 𝛼 is an equivalence class of 𝐺0-taggings of 𝐴.
3 𝑒 is an orientation 𝐺∘ of the connective component of 𝐺.

Proof: See[13]Theorem 6.0.3 and[13]Remark 6.0.7 . ∎
By the deformation construction and orientation construction, we get the following

celebrated theorem due to Lurie[13] .

Theorem 2.8.10: Let 𝑀𝑛
BT denote the moduli stack of one dimensional height n 𝑝-

divisible group, then there is a sheaf of 𝐸∞-ring space, 𝒪Top on the étale site. such that
for any 𝐸 ∶= 𝒪Top(Spec𝑅 𝐺0→ 𝑀𝑛

BT)
we have

Spf𝐸0(ℂ𝑃∞) = 𝐺0
where 𝐺0 is the formal part of the p-divisible group G.

The construction this sheaf of 𝔼∞-rings: 𝒪Top is as follows: when we have a one-
dimensional height n p-divisible group 𝐺 over a commutative ring R, which is classified

by a map 𝐺0 ∶ 𝑅 → 𝑀𝑛
BT. We consider its unorientated deformation ring 𝑅𝑢𝑛𝐺 , and its

universal deformation 𝐺0,univ.The orientation classifier 𝑅𝑜𝑟𝐺0 of 𝐺∘0,univ is an even periodic
spectrum 𝐸. And it satisfies conditions in this theorem.

We recall that the Goerss-Hopkins-Miller theorem[14] . For any formal groups over

a perfect field of characteristic 𝑝 > 0. We can get a even periodic ring spectrum 𝐸, such
that 𝜋0𝐸 is the Lubin-Tate ring and the universal deformation was obtained from 𝐺𝑄0𝐸 by

base change of scalars.

Now let us give a strategy of Lurie’s proof of Goerss-Hopkins-Miller theorem. If 𝐺̂0
is a formal group over 𝑘, then it can be viewed as a identity component of a connected
classical p-divisible group 𝐺0 over 𝑘. Then there exists a universal deformation 𝐺 over

the spectral deformation ring 𝑅𝑢𝑛𝐺0 . Let 𝐺0 be the identity component of 𝐺, and 𝑅𝑜𝑟𝐺0 be
the orientation classifier of the identity component 𝐺0. Lurie proved that 𝐸𝐺0 = 𝐿𝐾𝑛𝑅𝑜𝑟𝐺0
is even periodic. We refer to this as the Lubin-Tate spectrum. We then prove that the

spectrum 𝐸𝐺0 satisfying the same property with Morava E-theories. And then using the

uniquess of Morava E-theories.

Theorem 2.8.11: [13]Theorem 5.1.5 For every complex periodic𝐾(𝑛)-local 𝐸∞-ring𝐴. We

have a homototpy equivalence

MapCAlg(𝐸𝐺0, 𝐴) → Homℱ𝒢((𝑅0, 𝐺0), (𝜋0(𝐴)/𝐽𝐴𝑛 , 𝐺𝑄𝑛𝐴 )).
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And there are some new cohomology theories which are constructed by this theorem,

like topological automorphic forms, we recommand readers find more details in[15] .
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CHAPTER 3 DERIVED LEVEL STRUCTURES

3.1 Isogenies of Spectral Elliptic Curves

This chapter is heart of this paper, Our main innovation is derived level structures

defined in this chapter. The start is derived version of isogenies. We prove that the kernel

of a derived isogeny in some cases have the same phenomenon as the classical case. This

gives us an evidence that over derived version of level structures must induce classical

level structures. In section 2, we define relative Cartier divisors in the setting of spec-

tral algebraic geometry. We then use Lurie’s representability theorem prove that functors

associated with relative Cartier divisors are representable by certain spectral Deligne-

Mumford stacks. In the third and fourth section, we study derived level structures of

spectral elliptic curves and spectral p-divisible groups. The main content of last two sec-

tions are the proof of representability of derived level structures.

Definition 3.1.1: Assume that we have a connective 𝔼∞ ring 𝑅. Let 𝑓 ∶ 𝑋 → 𝑌 be a

morphism of spectral abelian varieties over 𝑅, we say 𝑓 is an isogeny if it is flat, finite
and surjective.

Lemma 3.1.2: Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of spectral abelian varieties, then 𝑓♡ ∶𝑋♡ → 𝑌♡ is an isogeny in the classical sense.
Proof: In classical abelian varieties, 𝑓♡ is an isogeny means 𝑓♡ is surjective and ker 𝑓♡
is finite. But it is equivalent to 𝑓♡ is finite, flat and surjective[31]Proposition 7.1 . And it is
easy to see that 𝑓♡ is finite, flat. We only need to prove that 𝑓♡ is surjective.

For every morphism |Spec𝑘| → |𝑌♡|, this correspond to a morphism Sp𝑒́𝑡𝑘 → 𝑌♡,
by the inclusion-truncation adjunction[11]Proposition 1.4.6.3 , this corresponds to a morphism

Sp𝑒́𝑡𝑘 → 𝑌. By the definition of surjective, we get a commutative diagram
Sp𝑒́𝑡𝑘′

""

!! 𝑋
""

Sp𝑒́𝑡𝑘 !! 𝑌
The upper horizontal morphism corresponds to a morphism Sp𝑒́𝑡𝑘′ → 𝑋♡ by inclusion-
truncation adjunction. On the underlying topological space level, this corresponds to a

point |Sp𝑒́𝑡𝑘| → |𝑌♡|. It is clear that this point in |𝑌♡| is a preimage of |Sp𝑒́𝑡𝑘| in 𝑋♡.
So 𝑓♡ is surjective. ∎
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Lemma 3.1.3: Let 𝑓 ∶ 𝑋 → 𝑌 be an isogeny of spectral elliptic curves over a connective𝔼∞-ring 𝑅, then fib(𝑓) exists and is a finite and flat nonconnective spectral Deligne-

Mumford stack over 𝑅.
Proof: By[11]Proposition 1.14.1.1 , the finite limits of nonconnective spectral Deligne-

Mumford stacks exists, so we can define fib(f). We consider the following diagram

fib(𝑓) !!𝑓′
""

𝑋𝑓
""

**✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸

∗ !! 𝑖
++❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘ 𝑌
,,❋

❋❋
❋❋

❋❋
❋❋

Sp𝑒́𝑡𝑅
where the square is a pullback diagram. We find that fib(𝑓) is over Sp𝑒́𝑡𝑅.
By[11]Remark 2.8.2.6 , 𝑓′ ∶ fib(𝑓) → ∗ is flat because it is a pull-back of a flat morphism.
Obviously 𝑖 ∶ ∗ → Sp𝑒́𝑡𝑅 is flat, so by[11]Example 2.8.3.12 ( flat morphism is local on the

source for the flat topology), 𝑖 ∘ 𝑓′ ∶ fib(𝑓) → Sp𝑒́𝑡𝑅 is flat.

Next, we show ker 𝑓 is finite over 𝑅. Since ∗, 𝑋 and 𝑌 are all spectral algebraic

spaces, so we have fib𝑓 is also a spectral algebraic space. And Sp𝑒́𝑡𝑅 is an algebraic

space[11]Example 1.6.8.2 . By the above remark 2.2.14, we only need to prove that the under-

lying morphism is finite. The truncation functor is a right adjoint , so preserve limits. So

we get a pull-back diagram

fib(𝑓)♡ !!

""

𝑋♡
""∗ !! 𝑌♡

So we are reduced to prove that for an isogeny 𝑓♡ ∶ 𝑋♡ → 𝑌♡ of ordinary abelian
varieties over a commutative ring R. ker𝑓 is finite over R. But this is true in classical

algebraic geometry[31]Proposition 7.1 . ∎
Lemma 3.1.4: Let 𝑓𝑁 ∶ 𝐸 → 𝐸 be an isogeny of spectral elliptic curves over 𝑅, such that
the underline map of ordinary elliptic curve is the multiplication 𝑁 map, 𝑁 ∶ 𝐸♡ → 𝐸♡.
Then fib𝑓 is finite locally free of rank 𝑁 in the sense of[11]Definition 5.2.3.1 . And moreover

if 𝑁 is invertible in 𝜋0𝑅, then fib𝑓 is a locally constant étale sheaf.
Proof: By[32]Theorem 2.3.1 , we know that 𝑁 ∶ 𝐸♡ → 𝐸♡ is locally free of rank N in

the classical sense. When 𝑁 is invertible in 𝜋0𝑅, then ker𝑁 is locally constant étale

sheaf. fib(𝑓𝑁) is a spectral algebraic space which is finite and flat and its underlying
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map fib(𝑓𝑁)♡ = ker𝑁 is locally free of rank 𝑁. We need to prove that fib𝑓𝑁 → Sp𝑒́𝑡𝑅
is locally free of rank 𝑁 in spectral algebraic geometry. But fib𝑓𝑁 is finite and flat,

so is affine. We are reduce to prove this in local affine, i.e., we need ot prove that𝑓𝑁|Sp𝑒́𝑡𝑆 ∶ Sp𝑒́𝑡𝑆 → Sp𝑒́𝑡𝑅 is locally free, for Sp𝑒́𝑡𝑆 is an affine substack of fib𝑓𝑁. This
is equivalent to prove that 𝑅 → 𝑆 is locally free of rank𝑁 in the sense of[11]Definition 2.9.2.1 .

So we need to prove

（1）𝑆 is locally free of finite rank over 𝑅.(By[3]Proposition 7.2.4.20 , this is equivalent
to say 𝑆 is a flat and almost perfect R-module.)

（2）For every 𝔼∞-ring maps 𝑅 → 𝑘, the vector space 𝜋0(𝑀 ⊗𝑅 𝑘) is a 𝑁-
dimensional 𝑘-vector space.

For (1), we know that 𝜋0𝑆 is projective 𝜋0𝑅-module, and 𝑆 is a flat 𝑅-module, so
by[29]Proposition 7.2.2.18 , 𝑆 is a projective 𝑅-module. And since 𝜋0𝑆 is a finitely generate𝑅-module, so by[3]Corollary 7.2.2.9 , 𝑆 is a retract of a finitely generated free 𝑅-module𝑀, so
is locally free of finite rank.

For (2), 𝜋0(𝑘 ⊗𝑅 𝑀)，since 𝑅 and 𝑀 are connective, by[3]Corollary 7.2.1.23 , we get𝜋0(𝑘 ⊗𝑅 𝑀) ≃ 𝑘 ⊗𝜋0𝑅 𝜋0𝑀 is a rank 𝑁 𝑘-vector space (𝜋0𝑀 is rank 𝑁 free 𝜋0𝑅
module).

We next show that if 𝑁 is invertible in 𝜋0𝑅, then fib𝑓 is a locally constant sheaf.

By the above discussion, fib𝑓 is a spectral Deligne-Mumford stack, so the associated

functor points fib𝑓 ∶ CAlg𝑅 → 𝑆 is nilcomplete and locally of almost finite presentation.
By[32]Theorem 2.3.1 , fib𝑓|CAlg♡𝜋0𝑅 is a locally constant sheaf, the desired results follows form
the following lemma. ∎
Lemma 3.1.5: Let ℱ ∈ Shv𝑒́𝑡(CAlgcn𝑅 ), and is nilcomplete, locally of almost finite

presentation and ℱ|(CAlg𝑐𝑛𝑅 )♡ is the associated sheaf of constant presheaf valued on 𝐴.
Then ℱ is a homotopy locally constant sheaf (i.e., sheafification of a homotopy constant

presheaf).

Proof: We choose a étale cover 𝑈0𝑖 of 𝜋0𝑅, such that ℱ|𝑈0𝑖 is a constant sheaf for each i.
By[3]Theorem 7.5.1.11 , this corresponds to an étale cover 𝑈𝑖 → 𝑅 such that 𝜋0𝑈𝑖 = 𝑈0𝑖 . We

consider the following diagram 𝜏≤0𝑅 !!

""

𝜏≤0𝑈
""𝜏≤𝑛𝑅 !! 𝜏≤𝑛𝑈

which is push-out diagram, since 𝑈𝑖 is an étale 𝑅 algebra. This is a colimit diagram in
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CHAPTER 3 DERIVED LEVEL STRUCTURES𝜏≤𝑛CAlg𝑅. ℱ is a sheaf of locally of almost finite prsentation, so we get push-out diagramℱ(𝜏≤0𝑅) !!

""

ℱ(𝜏≤0𝑈𝑖)
""ℱ(𝜏≤𝑛𝑅) !! ℱ(𝜏≤𝑛𝑈𝑖)

For each 𝑖, we have such diagram. Without loss of generality, we can assume each𝑈𝑖 is connective. So ℱ(𝜏≤0𝑈𝑖) are always same for all 𝑖. That means we have ℱ(𝜏≤𝑛𝑈𝑖)
are all equivalence. But we have ℱ is nicomplete, this means ℱ(𝑈𝑖) ≃ colimℱ(𝜏≤𝑛𝑈𝑖).
So we get all ℱ(𝑈𝑖) are homotopy equivalence. ∎
3.2 Relative Cartier Divisors

In this section, we will define relative Cartier divisors in the context of spectral

algebraic geometry. And we use Lurie’s spectral Artin’s representability theorem to prove

that functors associated relative Cartier divisors are representable in certain cases.

For a locally spectrally topoi 𝑋 = (𝒳,𝒪𝑥), we can consider its functor of pointsℎ𝑋 ∶ ∞Top𝑙𝑜𝑐CAlg → 𝒮, 𝑌 ↦ Map∞ToplocCAlg
(𝑌, 𝑋)

By[11]Remark 3.1.1.2 , the closed immersion of locally spectrally ringed topos 𝑓 ∶ 𝑋 =(𝒳, 𝒪𝒳) → 𝑌 = (𝒴, 𝒪𝒴) corresponds to morphism of sheaves of connective 𝔼∞-rings𝒪𝒳 → 𝑓∗𝒪𝒴 over 𝒳 such that 𝜋0𝒪𝒳 → 𝜋0𝑓∗𝒪𝒴 is surjective. We consider the the fiber of

this map fib𝑓. For a closed immersion 𝑓 ∶ 𝐷 → 𝑋 of spectral Deligne-Mumford stack,

we let 𝐼(𝐷) denote fib(𝑓), called the ideal sheaf of 𝐷.
To prove the relative representability, we need the representability of the Picard func-

tor. If we have a map 𝑓 ∶ 𝑋 → Sp𝑒́𝑡𝑅 of spectral Deligne-Mumford stack, we can define

a functor 𝒫𝑖𝑐𝑋/𝑅 ∶ CAlg𝑐𝑛𝑅 → 𝒮, 𝑅′ ↦ 𝒫𝑖𝑐(Sp𝑒́𝑡𝑅′ ×Sp𝑒́𝑡𝑅 𝑋)
If 𝑓 admits a section 𝑥 ∶ Sp𝑒́𝑡𝑅 → 𝑋 then there exists a natural transformation of functors𝒫𝑖𝑐(𝑋/𝑅) → 𝒫𝑖𝑐𝑅/𝑅. We let 𝒫𝑖𝑐𝑥𝑋/𝑅 ∶ CAlg𝑐𝑛𝑅 → 𝒮
denote the fiber of this map.

Theorem 3.2.1: [11]Theorem 19.2.0.5 Let 𝑋 be a map spectral algebraic spaces which is flat,
proper, locally almost of finite presentation, geometrically reduced, and geometrically

connected over an 𝔼∞-ring R. And suppose that 𝑥 ∶ Sp𝑒́𝑡𝑅 → 𝑋 is a section, the functor
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CHAPTER 3 DERIVED LEVEL STRUCTURES𝒫𝑖𝑐𝑥𝑋/𝑅 is representable by a spectral algebraic space which is locally of finite presentation
over R.

In the classical case, relative Cartier divisors schemes are open subschemes of Hilbert

schemes[33] . But in the derived case, the Hilbert functor is representable by a spectral

algebraic space[23]Theorem 8.3.3 , it is hard to say relation to say the relation between them.

We will directly study relative Cartier divisors in derived world.

Definition 3.2.2: Suppose that 𝑋 is a spectral Deligne-Mumford stack over a spectral

Deligne-Mumford stack 𝑆. We let CDiv(𝑋/𝑆) denote the ∞-category of closed immer-
sions 𝐷 → 𝑋, such that 𝐷 is flat, proper, locally almost of finite presentation over S and

the associated ideal sheaf of D is locally free of rank one over 𝑋.
Remark 3.2.3: It is easy to say that for any spectral Deligne-Mumford stack 𝑋 over 𝑆,
CDiv(𝑋/𝑆) is a kan complex, since all objects are closed immersions of 𝑋, let 𝐷 → 𝐷′
be morphism, then we have a diagram𝐷 𝑓 !!

##❄
❄❄

❄❄
❄❄

❄ 𝐷′
--⑦⑦
⑦⑦
⑦⑦
⑦⑦𝑋

by the definition of closed immersions, they all equivalent to the same substack of 𝑋, so𝑓 is a equivalence.
Lemma 3.2.4: Let 𝑋/𝑆 be a spectral Deligne-Mumford stack, and 𝑇 → 𝑆 be a map of
spectral Deligne-Mumford stacks. If we have a relative Cartier divisor 𝑖 ∶ 𝐷 → 𝑋, then𝐷𝑇 is a relative Cartier divisor of 𝑋𝑇.
Proof: This is easy to see, we just notice that 𝐷𝑇 is still closed immersion of𝑋𝑇 [11]Corollary 3.1.2.3 . And after base change, 𝐷𝑇 is flat, proper, locally almost of finite

presentation over 𝑇. The only thing we need to worry is that whether 𝐼(𝐷𝑇) is a line
bundle over 𝑋𝑇? But this is also true. Since we have a fiber sequence𝐼(𝐷) → 𝒪𝑋 → 𝒪𝐷
after applying the morphism 𝑓∗ ∶ Mod𝒪𝑋 → Mod𝒪𝑋𝑇 , due to the flatness of D. We get

fiber sequence 𝑓∗(𝐼(𝐷)) → 𝒪𝑋𝑇 → 𝒪𝐷𝑇
So we get 𝐼(𝐷𝑇) is just 𝑓∗𝐼(𝐷), so is invertible. ∎

By the construction of relative Cartier divisors, suppose that 𝑋 is a spectral Deligne-

Mumford stack over an affine spectral Deligne-Mumford stack 𝑆 = Sp𝑒́𝑡𝑅. We then have
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a functor

CDiv𝑋/𝑅 ∶ CAlgcn𝑅 → 𝒮𝑅′ ↦ CDiv(𝐸𝑅′/𝑅′)
Our main target in this section is to prove this functor is representable when 𝐸/𝑅 is a

spectral algebraic space satisfying certain conditions. Before we start the prove of repre-

senability of relative Cartier divisor, we need some preparations for computing the cotan-

gent complex of a relative Cartier divisor functor. The main issiue is square extension.

We need following truth about pushout of two closed immersions.

By[11]Theorem 16.2.0.1, Proposition 16.2.3.1 , suppose we have a pushout square of spectral

Deligne-Mumford stacks: 𝑋01 𝑖 !!𝑗
""

𝑋0𝑗′
""𝑋1 𝑖′ !! 𝑋,

such that i and j are closed immersions. Then the induced square of∞-categories
QCoh(𝑋01) QCoh(𝑋0)..

QCoh(𝑋1)
//

QCoh(𝑋)..

//

determines emdbedding 𝜃 ∶ QCoh(𝑋) → QCoh(𝑋0) ×QCoh(𝑋01) QCoh(𝑋1) and restricts
to an equivalence

QCoh(𝑋)cn → QCoh(𝑋0)cn ×QCoh(𝑋01)cn QCoh(𝑋1)cn
Let ℱ ∈ QCoh(𝑋), and setℱ0 = 𝑗′∗ ∈ QCoh(𝑋0) ℱ1 = 𝑖′∗ℱ ∈ QCoh(𝑋1).
Then the quasi-coherent sheafℱ is n-connective is equivalentℱ0 andℱ1 are n-connective,
and this statement is also true for the condition, almost connective, Tor-amplitude ≤ 𝑛
flat, perfect to order n, almost perfec, perfect, locally free of finite rank.

And by[11]Theorem 16.3.0.1 , we the have a pullback square

SpDM/𝑋 !!

""

SpDM/𝑋0
""

SpDM/𝑋1 !! SpDM/𝑋01
of ∞-categories Let 𝑓 ∶ 𝑌 → 𝑋 be a map of spectral Deligne-Mumford stacks. Let
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CHAPTER 3 DERIVED LEVEL STRUCTURES𝑌0 = 𝑋0 ×𝑋 𝑌, 𝑌1 = 𝑋1 ×𝑋 𝑌 and let 𝑓0 ∶ 𝑌0 → 𝑋0 and 𝑓1 ∶ 𝑌1 → 𝑋1 be the projections
maps. Then we have[11]Proposition 16.3.2.1 𝑓 is locally almost of finite presentation if and

only if both 𝑓0 and 𝑓1 are locally almost of finite presentation. And the statement is also
trur for conditions: locally of finite generation to order 𝑛, locally of finite presentation,
étale, equivalence, open immersion, closed immersion, flat, affine, separated and proper.

Let 𝑋 = (𝒳, 𝒪𝒳) be a spectral Deligne-Mumford stack, and ℰ ∈ QCoh(𝑋)cn is a
quasi-coherent sheaf, and 𝜂 ∈ Der(𝒪𝑋, Σℰ), that is map 𝜂 ∶ 𝒪𝑋 → 𝒪𝑋 ⊕ Σℰ. We let 𝒪𝜂𝑋
denote the square-zero extension of 𝒪𝑋 by ℰ determined by 𝜂, then we have a pull-back
diagram 𝒪𝜂𝑋 !!

""

𝒪𝑋𝜂
" "𝒪𝑋 !! 𝒪𝑋 ⊕ Σℰ

By[11]Proposition 17.1.3.4 , (𝒳, 𝒪𝜂𝑋) is a spectral Deligne-Mumford stack, which we will

denote it by𝒳𝜂. In the case of 𝜂 = 0, we denote it by 𝑋ℰ = (𝒳, 𝒪𝑋 ⊕ℰ). We then have

a pullback square of spectral Deligne-Mumford stacks𝑋Σℰ𝑓
""

𝑔 !! 𝑋
""𝑋 !! 𝑋𝜂

such that 𝑓 and 𝑔 are closed immersions.
We have a pullback diagram

QCoh(𝑋𝜂)acn
""

!! QCoh(𝑋)acn
""

QCoh(𝑋)acn !! QCoh(𝑋Σℰ)acn.
by[11]Theorem 16.2.0.1, Proposition 16.2.3.1 . Taking 𝜂 = 0 and passing ti homotopy fiber over

some ℱ ∈ QCoh(𝑋)acn, we can get
QCoh(𝑋ℰ)acn ×QCoh(𝑋) {ℱ} ≃ MapQCoh(𝑋)(ℱ, Σ(ℰ ⊗ ℱ))

by[11]Proposition 19.2.2.2 .

Taking 𝜂 = 0 and passing to the homotopy fibers over some 𝑍 ∈ SpDM/𝑋, we can
get classification of the first order deformations

SpDM/𝑋ℰ ×SpDM/𝑋 {𝑍} ≃ MapQCoh(𝑋)(𝐿𝑍/𝑋, Σ𝑓∗ℰ),
see details in[11]Porposition 19.4.3.1 .
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Lemma 3.2.5: Let 𝑓 ∶ 𝑋 → Sp𝑒́𝑡𝑅 be a morphism of spectral Deligne-Mumford stacks.

For a connective 𝑅-module M, then the∞-categories of Deigne-Mumford stacks 𝑋′ with
a morphism 𝑋 → Sp𝑒́𝑡(𝑅 ⊕𝑀) such that fitting into the following pull back diagram𝑋 !!

""

𝑋′
""

Sp𝑒́𝑡𝑅 !! Sp𝑒́𝑡𝑅 ⊕𝑀
is a Kan complex, which is canonically equivalent to the mapping space

MapQCoh(𝐿𝑋/𝑌, Σ𝑓∗𝑀), and moreover if 𝑓 is flat, proper and locally of almost fi-

nite presnetation, then any such 𝑓′ ∶ 𝑋′ → 𝑆[𝑀] is flat, proper and locally almost of finite
presentation.

Proof: We have a pullback square in 𝔼∞-rings𝑅 ⊕𝑀
""

!! 𝑅(𝐼𝑑,0)
""𝑅 !! 𝑅 ⊕ Σ𝑀,

this corresponds a pushout square of spectral Deligne-Mumford stacks

Sp𝑒́𝑡𝑅 ⊕ Σ𝑀 !!

""

Sp𝑒́𝑡𝑅
""

Sp𝑒́𝑡𝑅 !! Sp𝑒́𝑡𝑅 ⊕𝑀
such that Sp𝑒́𝑡𝑅 ⊕ Σ𝑀 → Sp𝑒́𝑡𝑅 are closed immersion. That makes Sp𝑒́𝑡𝑅 ⊕ 𝑀 be an

infinitesimal thickening of Sp𝑒́𝑡𝑅 determined by 𝑅 (𝑖𝑑,0)⟶ 𝑅⊕ Σ𝑀.
The first part of this lemma is just the formula of first order deforma-

tions[11]Proposition 19.4.3.1 , and the second part is properties of pushout of two closed im-

mersions[11]Corollary 19.4.3.3 . ∎
Lemma 3.2.6: Suppose that we are given a pushout diagram of spectral Deligne-

Mumford stacks 𝜎: 𝑋01 𝑖 !!𝑗
""

𝑋0
""𝑋1 !! 𝑋,

where i and j are closed immersions. Let 𝑓 ∶ 𝑌 → 𝑋 be a map of spectral Deligne-

Mumford stacks. Let 𝑌0 = 𝑋0 ×𝑋 𝑌, 𝑌1 = 𝑋1 ×𝑋 𝑌 and let 𝑓0 ∶ 𝑌0 → 𝑋0 and 𝑓1 ∶ 𝑌1 → 𝑋1
be the projections maps.

If both 𝑓0 and 𝑓1 are closed immersions and determine line bundles over 𝑌0 and 𝑌1,
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then 𝑓 is a closed immersion and determines a line bundle.
Proof: The closed immersion part is just Lurie’s theorem. And for the line bundle part,
we notice that by[11]Theorem 16.2.0.1, Proposition 16.2.3.1 , 𝑓 determine a sheaf of locally free of
finite rank. To prove it is a line bundle, we can do it locally. By[11]Theorem 16.2.0.2 , for a

pullback diagram 𝐴 !!

""

𝐴0
""𝐴1 !! 𝐴01

of 𝐸∞-rings such that 𝜋0𝐴0 → 𝜋0𝐴01 ← 𝜋0𝐴1 are surjective, then there is an equiv-

alence 𝐹 ∶ Mod𝑐𝑛𝐴 → Mod𝑐𝑛𝐴0 ×Mod𝑐𝑛𝐴01 Mod𝑐𝑛𝐴1 . Actually this a symmetric monoidal

equivalence. Sice we have 𝐹(𝑀) = (𝐴0 ⊗𝐴 𝑀, 𝐴01 ⊗𝐴 𝑀, 𝐴1 ⊗𝐴 𝑀). They satisfy-
ing 𝐹(𝑀 ⊗ 𝑁) ≃ 𝐹(𝑀) ⊗ 𝐹(𝑁). But by[11]Propsition 2.9.4.2 , line bundles of 𝐴1, 𝐴0,1 and𝐴0 determines invertible objects of Mod𝑐𝑛𝐴1,Mod𝑐𝑛𝐴01 and Mod𝑐𝑛𝐴1 , so determine a invertible
object of Mod𝑐𝑛𝐴 , hence a line bundle over A by[11]Propsition 2.9.4.2 . ∎
Theorem 3.2.7: Let 𝐸/𝑅 be a spectral algebraic space which is flat, proper, locally

almost of finite presentation, geometrically reduced, and geometrically connected. Then

the functor

CDiv𝐸/𝑅 ∶ CAlg𝑅 → 𝒮𝑅′ ↦ CDiv(𝐸𝑅′/𝑅′)
is representable by a spectral algebraic space which is locally almost of finite presentation

over 𝑅.
Proof: We use Lurie’s spectral Artin’s represnetability theorem to prove this theorem.

（1）For every discrete commutative 𝑅0, the space CDiv𝐸/𝑅(𝑅0) is 0-truncated.
We just notice that CDiv𝐸/𝑅(𝑅0), consists of closed immersions 𝐷 → 𝐸×𝑅 𝑅0, such

that 𝐷 is flat proper over 𝑅0, so all D are discrete object, so CDiv𝐸/𝑅(𝑅0) is 1-truncated.
（2）The functor CDiv𝐸/𝑅 is a sheaf for the étale topology.
Let {𝑅′ → 𝑈𝑖}𝑖∈𝐼 be an étale cover of 𝑅′, and 𝑈• be the associate check simplicial

object. We need to prove that the map

CDiv𝐸/𝑅(𝑅′) → limΔ CDiv𝐸/𝑅(𝑈•)
is an equivalence. Unwinding the definitions, we only need to prove following general

result: for a spectral Deligne-Mumford stack 𝑋 → 𝑆 and we have a étale cover 𝑇𝑖 → 𝑆,
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then

CDiv(𝑋/𝑆) → limΔ CDiv(𝑋 ×𝑆 𝑇•)
is a homotopy equivalence. But this obvious, since our conditions of relative Cartier

divisor is local for the étale topology.

（3）The functor CDiv𝐸/𝑅 is nilcomplete.
This is equivalent to say that the canonical map

CDiv𝐸/𝑅(𝑅′) → lim⟵ CDiv𝐸/𝑅(𝜏≤𝑛𝑅′)
This can be deduced form the following results: for a flat, proper, locally almost of finite

presentation spectral spectral algebraic space 𝑋 over a connective 𝐸∞-ring S, we have a
equivalence

CDiv(𝑋/Sp𝑒́𝑡𝑆) → lim⟵ CDiv(𝑋 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆).
Let us prove this equivalence now. For a relative Cartier divisor 𝐷 → 𝑋, we have the
following commutative diagram𝐷 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆

""

00

!! 𝐷
""𝑋 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆 !!

""

𝑋
""

Sp𝑒́𝑡𝜏≤𝑛𝑆 !! Sp𝑒́𝑡𝑆
We then get a induce map 𝐷 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆 → 𝑋 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆. It is easy to prove
that this map is a closed immersion[11]Corollary 3.1.2.3 , and 𝐷 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆 → Sp𝑒́𝑡𝑆
is flat, proper and locally almost of finite presentation, since 𝐷 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆 is the
base change of D along Sp𝑒́𝑡𝜏≤𝑛𝑆 → Sp𝑒́𝑡𝑆, and the associated ideal sheaf of 𝐷 ×Sp𝑒́𝑡𝑆
Sp𝑒́𝑡𝜏≤𝑛𝑆 is still a line bundle over𝑋×Sp𝑒́𝑡𝑆Sp𝑒́𝑡𝜏≤𝑛𝑆. So𝐷×Sp𝑒́𝑡𝑆Sp𝑒́𝑡𝜏≤𝑛𝑆 is a relative
Cartier divisor of 𝑋 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆. Thus we have define a functor𝜃 ∶ CDiv(𝑋/𝑆) → lim⟵ CDiv(𝑋 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆), 𝐷 ↦ {𝐷 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆}

This functor is fully faithful, since we have equivalence SpDM/𝑆 → lim← SpDM/𝜏≤𝑛𝑆
defined by 𝑋 ↦ 𝑋×Sp𝑒́𝑡𝑆Sp𝑒́𝑡𝜏≤𝑛𝑆 [11]Proposition 19.4.1.2 . To prove the functor 𝜃 is an equiv-
alence, we need to show it is essentially surjective. Suppose {𝐷𝑛} → 𝑋 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆
is an object in lim⟵ CDiv(𝑋 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆). It is a morphism in lim⟵ SpDM/𝜏≤𝑛𝑆,
by[11]Proposition 19.4.1.2 , there is a morphism 𝐷 → 𝑋 in SpDM/𝑆, satisfying 𝐷 ×Sp𝑒́𝑡𝑆
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Sp𝑒́𝑡𝜏≤𝑛𝑆 → 𝑋 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆 are just 𝐷𝑛 → 𝑋 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆.
Next, we need to show that such 𝐷 → 𝑋 is relative Cartier divisor. The condi-

tion that 𝐷 → 𝑆 is flat, proper and locally almost of finite presentation follows imme-
diately from[11]Proposition 19.4.2.1 . We need to prove that 𝐷 → 𝑋 is a closed immersion

and determine a line bundle over X. Without loss of generality, we may assume that𝑋 = Sp𝑒́𝑡𝐵 is affine, so we have closed immersion 𝐷 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆 → Sp𝑒́𝑡𝐵 ×Sp𝑒́𝑡𝑆
Sp𝑒́𝑡𝜏≤𝑛𝑆 ≃ Sp𝑒́𝑡(𝐵⊗𝑆 𝜏≤𝑛𝑆), the second equivalence comes from[11]Proposition 1.4.11.1(3) .

And by[11]Theorem 3.1.2.1 , 𝐷×𝑆𝑝𝑒𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆 equals Sp𝑒́𝑡𝐵′𝑛 for each n, such that 𝜋0(𝐵×𝑆𝜏≤𝑛𝑆) → 𝜋0𝐵′𝑛 is surjective. Since we have 𝜏≤𝑛𝑆 → 𝐵′𝑛 is flat, we get Sp𝑒́𝑡𝐵′𝑛 =
Sp𝑒́𝑡𝐵′𝑛+1 ×Sp𝑒́𝑡𝜏≤𝑛+1𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆 = Sp𝑒́𝑡(𝐵′𝑛+1 ×𝜏≤𝑛+1𝑆 𝜏≤𝑛𝑆) ≃ Sp𝑒́𝑡𝜏≤𝑛𝐵′𝑛+1. So we
get a spectrum 𝐵′ such that 𝜏≤𝑛𝐵′ ≃ Sp𝑒́𝑡𝐵′𝑛 = 𝐷 ×Sp𝑒́𝑡𝑆 Sp𝑒́𝑡𝜏≤𝑛𝑆. Consequently𝐷 = Sp𝑒́𝑡𝐵′, and 𝜋0𝐵 → 𝜋0𝐵′ is surjective, so 𝐷 = Sp𝑒́𝑡𝐵′ → Sp𝑒́𝑡𝐵 = 𝑋 is a closed

immersion. To prove that the associated ideal sheaf of D is a line bundle, we notice that

there is a pullback diagram. 𝐼𝑛 !!

""

𝐵 ×𝑆 𝜏≤𝑛𝑆
""∗ !! 𝐵′ ×𝑆 𝜏≤𝑛𝑆,

each 𝐼𝑛 is an invertible 𝐵 ×𝑆 𝜏≤𝑛𝑆 = 𝜏≤𝑛𝐵 module. Passing to the inverse limit, we get

lim⟵ 𝐼𝑛 !!

""

𝐵
""∗ !! 𝐵′.

Consequently, we have 𝐼(𝐷) ≃ lim⟵ 𝐼𝑛. So by the nilcompleteness of Picard func-

tor[11]Corollary 19.2.4.6, Propostion 19.2.4.7 , We get I is a invertible B-module. So the associated

ideal sheaf of D is a line bundle of X.

（4）The functor CDiv𝐸/𝑅 is cohesive.
This statement follows from Proposition 3.2.6 and[11]Proposition 16.3.2.1 .

（5）The functor CDiv𝐸/𝑅 is integrable. We need to prove that for𝑅′ a local Noethe-
rian 𝔼∞-ring which is complete with respect to its maximal ideal 𝑚 ⊂ 𝜋0𝑅. Then the
inclusion functor induces a homotopy equivalence

Map𝐹𝑢𝑛(CAlg𝑐𝑛,𝒮)(Sp𝑒́𝑡𝑅′,CDiv𝐸/𝑅) → MapFun(CAlg𝑐𝑛,𝒮)(Spf𝑅′,CDiv𝐸/𝑅).
But this follows from the following result: for a flat proper, locally almost of finite pre-

sentation and separated spectral spectral algebraic space 𝑋 over a connective 𝐸∞-ring S,
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we have equivalence

CDiv(𝑋/𝑆) ≃ CDiv(𝑋 ×Sp𝑒́𝑡𝑆 Spf𝑆)
Let Hilb(𝑋/𝑆) denote the full subcategory of SpDM/𝑋 consists of those 𝐷 → 𝑋, such
that 𝐷 → 𝑋 is a closed immersion and 𝐷 → 𝑆 is flat, proper and locally almost of fi-
nite presentation. Then by the formal GAGA theorem[11]Theorem 8.5.3.4 and base change

properties of flat, proper and locally almost of finite presentation, we have Hilb(𝑋/𝑆) ≃
Hilb(𝑋 ×Sp𝑒́𝑡𝑆 Spf𝑆). To prove the equivalence of relative Cartier divisors, we need to
check that 𝐷 → 𝑋 associated a line bundle over X if and only if 𝐷×Sp𝑒́𝑡𝑆 Spf𝑆 associated
a line bundle over 𝑋 ×Sp𝑒́𝑡𝑆 Spf𝑆. We notice that since 𝑋 ×Sp𝑒́𝑡𝑆 Spf𝑆 is flat over X, we
have 𝐼(𝐷 ×Sp𝑒́𝑡𝑆 Spf𝑆) = 𝐼(𝑓∗𝐷) ≃ 𝑓∗𝐼(𝐷)𝐷 ×Sp𝑒́𝑡𝑆 Spf𝑆 !!

""

𝐷
""𝑋 ×Sp𝑒́𝑡𝑆 Spf𝑆 𝑓 !! 𝑋.

By[11]Proposition 19.2.4.7 , we have an equivalence

QCoh(𝑋/𝑆)aperf,cn ≃ QCoh(𝑋 ×Sp𝑒́𝑡𝑆 Spf𝑆)aperf,cn
By restricting to subcategories spanned by invertible object and using[11]Proposition 2.9.4.2 ,

we get D associated a line bundle over X if and only if 𝐷 ×Sp𝑒́𝑡𝑆 Spf𝑆 associated a line
bundle over 𝑋 ×Sp𝑒́𝑡𝑆 Spf𝑆.

（6）CDiv𝐸/𝑅 is locally almost of finite presentation.
We need to prove that CDiv𝐸/𝑅 ∶ CAlg𝑅 → 𝒮, 𝑅′ ↦ CDiv(𝐸𝑅′/𝑅′) commutate with

filtered colimits when restrict to 𝜏≤𝑛CAlgcn𝑅 . But we notice that CDiv(𝐸𝑅′/𝑅′) are full
categories of SpDM/𝐸𝑅′→𝑅′ , we consider the functor𝑅′ ↦ Var+/𝐸𝑅′→𝑅
where Var+/𝐸𝑅′→𝑅 consists of the diagram𝐷 !!

,,❋
❋❋

❋❋
❋❋

❋❋
𝐸𝑅′
""

Sp𝑒́𝑡𝑅′
such that 𝐷 → 𝑅′ is flat, proper, and locally almost of finite presentation. Then

by[11]Proposition 19.4.2.1 . This functor commutates with filtered colimits when restrict to𝜏≤𝑛CAlgcn𝑅 . Then we just need to prove that when {𝐷𝑖 → 𝐸𝑖𝑅′}𝑖∈𝐼 are closed immersions
and determine line bundles in {𝐸𝑖𝑅′}, then colim𝐷𝑖 are closed immersion of colim𝐸𝑖𝑅′ and
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determine line bundle in colim𝐸𝑖𝑅′ . But this fact follows from the locally almost of finite

presentationnes of Picard functor and properties of closed immersions.

Consider the functor CDiv𝐸/𝑅 → ∗, it is infitesimally cohesive and admits a cotan-
gent complex which is almost perfect, so by[11]17.4.2.2 , it is locally almost of finite pre-

sentation. So CDiv𝐸/𝑅 is locally almost of finite presentation, since ∗ is a final object of
Fun(CAlgcn, 𝒮).

（7）The functor CDiv𝐸/𝑅 admits a complex 𝐿 which is connective and almost per-
fect.

For a connective 𝐸∞-ring 𝑆, and every 𝜂 ∈ CDiv𝐸/𝑅(𝑆), and a connective S-module
M. We have a pullback diagram𝐹𝜂(𝑀) !!

""

CDiv𝐸/𝑅(𝑆 ⊕𝑀)
""𝜂 !! CDiv𝐸/𝑅(𝑆)

Then we have a functor 𝐹𝜂 ∶ Mod𝑆 → 𝒮, 𝑀 ↦ 𝐹𝜂(𝑀)
We need to prove that this functor is corepresentable. 𝜂 corresponds a morphism𝐷 → 𝐸 ×𝑅 𝑆, and 𝐸 ×𝑅 (𝑆 ⊕ 𝑀) is a square zero extension of 𝐸 ×𝑅 𝑆. So by the

classification of first order deformation theory[11]Propostion 19.4.3.1 , the space of 𝐷′, which
satisfying the pullback diagram 𝐷 !!𝑓

""

𝐷′
""𝐸 ×𝑅 𝑆 !!𝑝

""

𝐸 ×𝑅 (𝑆 ⊕𝑀)
""

Sp𝑒́𝑡𝑆 !! Sp𝑒́𝑡(𝑆 ⊕𝑀)
is equivalent to

MapQCoh(𝐷)(𝐿𝐷/𝐸×𝑅𝑆, Σ𝑓∗ℰ) = MapQCoh(𝐷)(𝐿𝐷/𝐸×𝑅𝑆, Σ𝑓∗ ∘ 𝑝∗𝑀)
Push forward along 𝑝 ∘ 𝑓, and by[11]Proposition 6.4.5.3 we have
MapQCoh(𝐷)(𝐿𝐷/𝐸×𝑅𝑆, Σ𝑓∗ ∘ 𝑝∗𝑀) ≃ MapQCoh(Sp𝑒́𝑡𝑆)(Σ−1𝑝+ ∘ 𝑓+𝐿𝐷/𝐸×Sp𝑒́𝑡𝑅Sp𝑒́𝑡𝑆,𝑀).

And by[11]Proposition 16.3.2.1 and Lemma 3.2.6, any such 𝐷′ is a closed immersion of

53



CHAPTER 3 DERIVED LEVEL STRUCTURES

CDiv𝐸/𝑅(𝑆 ⊕𝑀) and determine a line bundle of CDiv𝐸/𝑅(𝑆 ⊕𝑀). Since the diagram𝐷 !!

""

𝐷′
""

Sp𝑒́𝑡𝑆 !! Sp𝑒́𝑡𝑆 ⊕𝑀
is a pullback diagram, so 𝐷′ is a square zero extension of D. By[11]Proposition 16.3.2.1 , we get𝐷′ → Sp𝑒́𝑡(𝑆 ⊕ 𝑀) is flat, proper and locally almost of finite presentation. Combining
these facts, we find that𝐹𝜂(𝑀) = 𝑀𝑎𝑝QCoh(Sp𝑒́𝑡𝑆)(Σ−1𝑝+ ∘ 𝑓+𝐿𝐷/𝐸×Sp𝑒́𝑡𝑅Sp𝑒́𝑡𝑆,𝑀).
Consequently, the functor CDiv𝐸/𝑅 satisfies condition (a) of[11]Example 17.2.4.4 and con-

dition (b) follows form the compatibility of 𝑓+ with base change. It then follows

that CDiv𝐸/𝑅 admits a cotangent complex 𝐿CDiv𝐸/𝑅 satisfying 𝜂∗𝐿CDiv𝐸/𝑅 = Σ−1𝑝+ ∘𝑓+𝐿𝐷/𝐸×Sp𝑒́𝑡𝑅Sp𝑒́𝑡𝑆. Since the quasi-coherent sheaf 𝐿𝐷/𝐸×Sp𝑒́𝑡𝑅Sp𝑒́𝑡𝑆 is connective and al-
most perfect. The R-module Σ−1𝑝+ ∘ 𝑓+𝐿𝐷/𝐸×Sp𝑒́𝑡𝑅Sp𝑒́𝑡𝑆 is (-1) connective.𝐿CDiv𝐸/𝑅 is almost perfect, since we have CDiv𝐸/𝑅 it is infitesimally cohesive and

admits a cotangent complex. And it is locally almost of finite presentation, so by[11]17.4.2.2 ,

its cotangent complex is almost perfect.

We next show that it is connective. Let 𝑅′ be an 𝔼∞-ring, and 𝜂 ∈ CDiv(𝐸𝑅′/𝑅),
we wish to prove that 𝑀 = 𝜂∗𝐿CDiv𝐸/𝑅 ∈ Mod′𝑅 is connective. We already know that 𝑀
is is (-1)-connective and almost perfect, the homotopy group 𝜋−1𝑀 is a finitely generated𝜋0𝑅′ module. To prove that 𝜋−1 vanishes. By the Nakayama’s lemma, this is equivalent
to prove that 𝜋−1𝑀(𝑘 ⊗𝑅′ 𝑀) ≃ Tor𝜋0𝑅′0 (𝑘, 𝜋−1𝑀)
equals to 0 for every residue filed of 𝑅. Then we may replace 𝑅′ by k and assume 𝑘 is a
algebraically closed filed.

Let 𝐴 = 𝑘[𝑡]/(𝑡2), unwinding the definitions, we find that the dual space

Hom𝑘(𝜋−1𝑀, 𝑘) can be identify with the set of automorphism of 𝜂𝐴 such that it restrict
identity of 𝜂. we wish to prove this set is trivial. But this follow from the fact : Let 𝑋/𝑘
be scheme, 𝐿 is an line bundle on 𝑋, if 𝐿𝐴 is also a line bundle of 𝑋𝐴. If we have 𝑓 is

an automorphism of 𝐿𝐴 such that 𝑓|𝐿 is identity on 𝐿, then 𝑓 is the identity. (This fact
follows from the connectiveness of cotangent complexes of Picard functors.) ∎
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3.3 Derived Level Structures of Spectral Elliptic Curves

Let 𝐶 be a one dimensional smooth commutative group scheme over a base scheme𝑆, and 𝐴 be an abstract finite abelian group. A homomorphism of abstract groups𝜙 ∶ 𝐴 → 𝐶(𝑆)
is said to be an 𝐴-Level structure on 𝐶/𝑆 if the effective Cartier divisor D in 𝐶/𝑆 defined
by 𝐷 = Σ𝑎∈𝐴[𝜙(𝑎)]
is a subgroup of 𝐶/𝑆.

The following result due to Katz-Mazur[32] give the representability of level struc-

tures moduli problems.

Proposition 3.3.1: [32]Proposition 1.6.2 Let 𝐶/𝑆 be an one dimensional smooth commuta-
tive group scheme over S. Then the functor

Level𝐶/𝑆 ∶ Sch𝑆 → Set𝑇 ↦ the set of A-level structures on 𝐶𝑇/𝑇
is representable by a closed subscheme of Hom(𝐴, 𝐶) ≅ 𝐶[𝑁1] ×𝑆 ⋯ ×𝑆 𝐶[𝑁𝑟].
Definition 3.3.2: Let 𝐸/𝑅 be a spectral elliptic curve. In the level of objects, a derived𝐴-level structure is a relative Cartier divisor 𝜙 ∶ 𝐷 → 𝐸 of E, such that the underlying

morphism𝐷♡ → 𝐸♡ is the inclusion of the associated relative Cartier divisor Σ𝑎∈𝐴[𝜙0(𝑎)]
into 𝐸♡, where 𝜙0 ∶ 𝐴 → 𝐸♡(𝑅♡) is any classical level structure. We let Level(𝒜, 𝐸/𝑅)
denote the∞-category of derived A-level structures of 𝐸/𝑅, whose objects can be viewed
as pairs 𝜙 = (𝐷, 𝜙).

It is easy to see that for a spectral elliptic curve 𝐸/𝑅, the∞-category Level(𝒜, 𝐸/𝑅)
is a∞-groupoid, since it is a full subcategory of CDiv(𝐸/𝑅), which is a∞-groupoid.
Lemma 3.3.3: Let 𝐸/𝑅 be a spectral elliptic curve and 𝜙𝑆 ∶ 𝐷 → 𝐸 be a derived

level structure. Suppose that 𝑇 → 𝑆 be a morphism of nonconnective spectral Deligne-

Mumford stacks, then the induce morphism 𝜙𝑆 ∶ 𝐷𝑇 → 𝐸𝑇 is a derived level structure of𝐸𝑇/𝑇.
Proof: We notice that derived level structure is stable under base change. So 𝜙♡𝑆 ∶ 𝐴 →(𝐸×𝑆𝑇)♡(𝑇0)=𝐸♡(𝑇0) is classical level structure, so𝐷♡𝑇 is the associated classical relative
Cartier divisor of a classical level structure. And 𝐷𝑇 → 𝐸𝑇 is a relative Cartier divisor in
spectral algebraic geometry, this is just the base change of relative Cartier divisor (Lemma
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3.2.4). ∎
We first recall a proposition in Katz and Mazur’s book[32]Corollarly 1.3.7 : Suppose that𝐶/𝑆 is a smooth group curve, and 𝐷 is a relative Cartier divisor of 𝐶, then exists a closed

subscheme 𝑍 of 𝑆, satisfying for any 𝑇 → 𝑆, 𝐷𝑇 is a subgroup of 𝐶𝑇 if and only if 𝑇
passing through 𝑍.
Lemma 3.3.4: Let 𝐸/𝑅 be a spectral elliptic curve, and 𝐷 → 𝐸 be a relative Cartier

divisor. There exists a closed spectral Deligne-Mumford substack Sp𝑒́𝑡𝑍 ⊂ Sp𝑒́𝑡𝑅, sat-
isfying the following universal property:

For any 𝑆 ∈ CAlg𝑐𝑛𝑅 , such that the associated sheaf of 𝐷𝑆 is a relative Cartier divisor
of 𝑋𝑆 and (𝐷𝑆)♡ is a subgroup of (𝐸𝑆)♡ if and only if 𝑅 → 𝑆 factor through 𝑍.
Proof: For a map 𝑅 → 𝑆, it is obvious that 𝐷𝑆 is a relative Cartier divisor of 𝑋𝑆.
By[32]Corollarly 1.3.7 , we just notice that if (𝐷𝑆)♡/𝜋0𝑆 is a subgroup of (𝐸𝑆)♡/𝜋0𝑆, we have
Spec𝜋0𝑆must passing through a closed subscheme Spec𝑍0 of Spec𝜋0𝑅. This corresponds
a closed spectral subscheme Spec𝑍 of Spec𝑅, sice we have the map 𝑅 → 𝑆 such that𝜋0𝑅 → 𝜋0𝑆 pass through 𝜋0𝑅/𝐼 for some ideal I of 𝜋0𝑅, so we have 𝑅 → 𝑆 passing
through 𝑅𝑁𝑖𝑙(𝐼), see[11]Chapter 7 for details about nilpotent R-module. Conversely, suppose
that 𝑅 → 𝑆 passing through Z, then we have 𝑆 = 𝒪Sp𝑒́𝑡𝑆 is vanishing on I. That is we have𝜋0𝑅 → 𝜋0𝑆 passing through 𝜋0𝑅/√𝐼, but this is equivalent to say Spec𝜋0𝑆 → Spec𝜋0𝑅
passing through Spec𝜋0𝑅/𝐼 = Spec𝑍0, and so (𝐷𝑆)♡ is a subgroup of (𝐸𝑆)♡. ∎
Theorem 3.3.5: Let 𝐸/𝑅 be a spectral elliptic curve, then the functor

Level𝐸/𝑅 ∶ CAlgcn𝑅 → 𝒮𝑅′ ↦ Level(𝒜, 𝐸𝑅′/𝑅′)
is representable by a closed substack 𝑆(𝐴) of CDiv𝑋/𝑅. Moreover, 𝑆(𝐴) = Sp𝑒́𝑡𝒫𝐸/𝑅 for
an 𝔼∞-ring Sp𝑒́𝑡𝒫𝐸/𝑅, which is locally almost of finite presentation over 𝑅, .
Proof: By definition, the functor Level𝐸/𝑅 is a subfunctor of the representable functor
CDiv𝑋/𝑅. We consider a spectral Deligne-Mumford stack GroupCDiv defined by the

pullback diagram of spectral Deligne-Mumford stacks

GroupCDiv𝐸/𝑅
""

!! CDiv𝐸/𝑅
""

Sp𝑒́𝑡𝑍 !! Sp𝑒́𝑡𝑅.
It is easy to say that GroupCDiv𝐸/𝑅 valued on a R-algebra 𝑅′ is the space of relative
Cartier divisors D of 𝐸×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝑅′, such that 𝐷♡ is a subgroup of (𝐸×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝑅′)♡.
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It is cleared that

GroupCDiv𝐸/𝑅 = ∐𝐴0∈FinAb𝐴0 − CDiv𝐸/𝑅
where 𝐴0 − CDiv𝐸/𝑅 valued on a R-algebra 𝑅′ is the space of relative Cartier divisors
D of 𝐸 ×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝑅′, such that 𝐷♡ is an algebric subgroup of (𝐸 ×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝑅′)♡ and𝐷♡(𝑅′) = 𝐴0. It is cleared that Level𝐸/𝑅 = 𝐴 − CDiv𝐸/𝑅, so we have Level𝐸/𝑅 is

representable by a open substack of GroupCDiv𝐸/𝑅.
To prove the second part, we consider the map 𝑆(𝐴) → Sp𝑒́𝑡𝑅, they are all spectral

algebraic spaces. By[11]Remark 5.2.0.2 , a morphism between spectral algebraic spaces is

finite if and only if its underlying morphism between ordinary spectral algebraic space

is finite in ordinary algebraic geometry. So we only need to prove 𝑆(𝐴)♡ is finite over
Spec𝜋0𝑅, but this is just the classical case since 𝑆(𝐴)♡ is the representable object of the
classical level structure, which is finite over 𝑅0 by[32]Corollary 1.6.3 . ∎
3.4 Derived Level Structures of Spectral 𝑝-Divisible Groups

Before we talk about derived level structures of spectral 𝑝-divisible groups, let us
first review something about the classical level structures of commutative finite flat group

schemes. Let 𝑋/𝑆 be a finite flat 𝑆-scheme of finite presentation of rank 𝑁, it can be
prove that 𝑋/𝑆 is finite locally free of rank 𝑁. This means that for every affine scheme
Spec𝑅 → 𝑆, the pullback scheme 𝑋 ×𝑆 Spec𝑅 over Spec𝑅 have the form Spec𝑅′, where𝑅′ is an 𝑅-algebra which is locally free of rank 𝑁. For an element 𝑓 ∈ 𝑅′ which can acts
on 𝑅′ by multiplication, define an R-linear endmorphism of 𝐵′. Because 𝑅′ is a locally
free of rank 𝑁. Then multiplication of 𝑓 can be representable by a 𝑁 × 𝑁 matrix 𝑀𝑓.
Then we can define the characteristic polynomial of 𝑓 to be the characteristic polynomial
of𝑀𝑓, i.e.,

det(𝑇 − 𝑓) = det(𝑇 − 𝑀𝑓) = 𝑇𝑁 − trace(𝑀𝑓) + ⋯+ (−1)𝑁Norm(𝑓).
Let {𝑃1,⋯ , 𝑃𝑁} be a set of N points in 𝑋(𝑆), we say this set is a full set of sections

of 𝑋/𝑆 if one of the following two conditions are satisfied:
（1）For any Spec𝑅 → 𝑆, and 𝑓 ∈ 𝐵 = 𝐻0(𝑋𝑅, 𝒪), we have the equality

det(𝑇 − 𝑓) = 𝑁∏𝑖=1(𝑇 − 𝑓(𝑝𝑖)).
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（2）For every Spec𝑅 → 𝑆, and 𝑓 ∈ 𝐵 = 𝐻0(𝑋𝑅, 𝒪), we have
Norm(𝑓) = 𝑁∏𝑖=1 𝑓(𝑝𝑖).

Actually, these conditions are equivalent.

If we have 𝑁 not-necessarily-distinct points {𝑃1,⋯ , 𝑃𝑁} in 𝑋(𝑆), then we have a

morphism 𝒪𝑍 →⨂𝑖 (𝑃𝑖)∗(𝒪𝑆)
of sheave over 𝑋. It is easy to see that this map is surjective, and it defines a closed sub-
scheme 𝐷 of 𝑋, which is flat, proper over 𝑆. So by the construction, for a 𝜙 ∶ 𝐴 → 𝑋(𝑆),
we can define closed subscheme 𝐷 of 𝑋 which corresponds to the sheave⊗𝑎∈𝐴𝜙(𝑎)∗𝒪𝑆.
Lemma 3.4.1: For a finite flat and finite presentation 𝑆-scheme 𝑍, Hom(𝐴, 𝑍) is an open
subscheme of Hilb𝑍/𝑆.
Proof: Let 𝑇 → 𝑆 be a S-scheme, for any 𝐷 → 𝑌 = 𝑇 ×𝑆 𝑍 in Hilb(𝑌) = Hilb(𝑇 ×𝑆 𝑍),
we need to prove that the set of points 𝑡 ∈ 𝑇 which satisfying 𝐷𝑡 → 𝑌𝑡 is coming from
the closed subscheme associated with a map 𝜙 ∶ 𝐴 → 𝑍(𝑇) = 𝑌(𝑇) is an open subset
of T. Since 𝐷 is the closed subscheme defined by 𝒪𝑌 → 𝒪𝐷, if 𝐷𝑡 comes form 𝒪𝑌|𝑡 →⨂(𝑃𝑖)∗(𝒪𝑇)|𝑡. Then by the definition of stalks of sheaves, there exists an open subset U
of D such that 𝑡 ∈ 𝑈, and 𝐷𝑈 is defined by 𝒪𝑌|𝑈 → ⨂(𝑃𝑖)∗(𝒪𝑇)|𝑈. ∎
Definition 3.4.2: Suppose that 𝐺/𝑆 be a rank𝑁 commutative finite flat 𝑆-group scheme
of finite presentation and 𝐴 is a finite abelian group of order 𝑁. A group homomorphism𝜙 ∶ 𝐴 → 𝐺(𝑆)
is called an 𝐴-generator of 𝐺/𝑆, if the 𝑁 points {𝜙(𝑎)}𝑎∈𝐴 are a full subset of sections of𝐺(𝑆). In these cases, we say 𝜙 is a Drinfeld level structure.

Proposition 3.4.3: [32]Proposition 1.10.13 Suppose that𝐺 is a rank𝑁 finite flat commutative

group scheme of finite presentation over 𝑆 and 𝐴 is a finite abelian group of order𝑁. Then
we have the following two propositions:

（1）The functor 𝐴−Gen(𝐺/𝑆) on 𝑆-schemes defined by𝑇 ↦ {𝜙|𝜙 ∶ 𝐴 → 𝐺(𝑇) is a Drinfeld level structure}
is representable by a finite S-scheme of finite presentation. Actually, it is the closed

subscheme of HomSch𝑆(𝐴, 𝐺) over which the image of sections {𝜙𝑢𝑛𝑖𝑣(𝑎)}𝑎∈𝐴 of the uni-
versal homomorphism 𝜙𝑢𝑛𝑖𝑣 ∶ 𝐴 → 𝐺 form a full set of sections.
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（2）If 𝐺/𝑆 is finite étale over S of rank N, we have𝐴−Gen(𝐺/𝑆) ≃ IsomSch𝑆(𝐴, 𝐺),
such that each connected component of S, 𝐴−Gen(𝑆) is either empty or is a finite étale
Aut(𝐴)-torsor.
Derived Level Structures of Spectral Finite Flat Group Schemes

For a spectral commutative finite flat group scheme 𝐺 over 𝑅. By the definition of
finite flat, we have 𝐺 = Sp𝑒́𝑡𝐵 for a finite flat R-algebra B. We let Hilb(𝐺/𝑅) denote
the full subcategory of SpDM/𝐺 spanned by those 𝐷 → 𝐺 such that 𝐷 → 𝐺 is a closed

immersion of spectral Deligne-Mumford stacks, and the composition 𝐷 → 𝐺 → 𝑅 is

flat, proper and locally almost of finite presentation. Then we find Hilb(𝐺/𝑅) is actually
equivalent to the∞-category of diagrams which have the form𝑅 !!

((❅
❅❅

❅❅
❅❅

𝐵
--⑦⑦
⑦⑦
⑦⑦
⑦𝑅′

such that 𝑅′ is flat, proper and locally almost of finite presentation over 𝑅 and satisfies

certain conditions. It is easy to see that Hilb(𝐺/𝑅) is a Kan complex. Then we can define
a functor

Hilb𝐺/𝑅 ∶ CAlgcn𝑅 → 𝒮𝑅′ → Hilb(𝐺𝑅′)
Theorem 3.4.4: Suppose that 𝐺 is a commutative finite flat group scheme over an 𝔼∞-
ring𝑅, thenHilb𝐺/𝑅 is representable by a spectral Deligne-Mumford stackwhich is locally

almost of finite presentation over 𝑅.
Proof: This is just a special case of spectral algebraic geometry version of Lurie’s theo-
rem[23]Theorem 8.3.3 . ∎
Remark 3.4.5: We can proof this theorem by the same argument of the proof of repre-

sentability of relative Cartier divisors.

Definition 3.4.6: Let 𝐺 be a spectral commutative finite flat group scheme of rank 𝑁
over an 𝔼∞-ring 𝑅, and 𝐴 be an abstract finite abelian group of order 𝑁, an 𝐴-level struc-
ture of 𝐺 is an object 𝜙 ∶ 𝐷 → 𝐺 in Hilb(𝐺/𝑅), such that 𝜋0𝜙∗𝒪𝐷 ≃ ⊗𝜙(𝑎)∗𝒪Spec𝜋0𝑅,
where 𝜙(𝑎)∗𝒪Spec𝜋0𝑅 comes from a map 𝜙 ∶ 𝐴 → 𝐺♡(𝜋0𝑅).
Lemma 3.4.7: Let 𝐺/𝑅 be a spectral commutative finite flat group scheme of rank 𝑁
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over an 𝔼∞-ring 𝑅 and let 𝐷 be a Hilbert closed subscheme of 𝐺. Then there exists a𝔼∞-ring 𝑍, satisfying the following universal property:
For any 𝑅 → 𝑅′ in CAlgcn𝑅 , (𝐷𝑅′)♡ is a derived 𝐴-level structures of (𝐺𝑅′)♡ if and

only if 𝑅 → 𝑅′ factor through 𝑍.
Proof: For 𝑅 → 𝑅′ in CAlgcn𝑅 , it is obvious that 𝐷𝑅′ is in Hilb(𝐺𝑅′/𝑅′). This means
that (𝐷𝑅′)♡ is a Hilbert closed subscheme of (𝐺𝑅′)♡. For 𝐷𝑅′ to be a derived level struc-
ture, we have 𝐷♡𝑅′ must lie in Hom(𝐴, 𝐺♡)(𝜋0𝑅′), this means that Spec𝜋0𝑅′ → Spec𝜋0𝑅
must passing through an open of Spec𝜋0𝑅, since Hom(𝐴, 𝐺♡) can be viewed as a open
sub scheme of Hilb(𝐺♡/𝑅♡). Then we have 𝜋0𝑅 → 𝜋0𝑅′ passing through 𝑊0, where𝑊0 is a localization of 𝜋0𝑅, so we have 𝑅 → 𝑅′ must passing through 𝑊, where𝑊 is an 𝔼∞-ring, which is a localization of 𝑅. As for now, we already have a map

Sp𝑒́𝑡𝑅′ → Sp𝑒́𝑡𝑊, such that 𝐷𝑅′ is a Hilbert closed subscheme of 𝐺𝑅′ , and 𝜋0𝑖∗𝒪𝐷𝑅′
comes from a map 𝜙 ∶ 𝐴 → 𝐺♡(𝜋0𝑅′). For 𝐷𝑅′ want to be a derived level structure,𝒪𝐺♡ → 𝜙(𝑎)∗(𝒪Spec𝜋0𝑅′) needs to be an isomorphism, i.e., these 𝑁 points 𝜙(𝑎)𝑎∈𝐴 must
be a full section of 𝐺♡(𝜋0𝑅′). By[32]Proposition 1.9.1 , for a set of 𝑁 points of (𝐺♡(𝜋0𝑅′)) to
be a full section of 𝐺♡(𝜋0𝑅′), Spec𝜋0𝑅′ → Spec𝜋0𝑊 must passing through a closed sub-

scheme of Spec𝑊0. Then 𝜋0𝑊 → 𝜋0𝑅′ must passing through 𝑍0, where 𝑍0 is equals𝜋0𝑊/𝐼 for some ideal 𝐼 of 𝜋0𝑊. This means that we have 𝑊 → 𝑅′ pass through𝑍 = 𝑊Nil(𝐼). By the discussion above, we have 𝑍 is the desired 𝔼∞-ring. And the con-
verse is also true by the same discussion in the derived level structures of curves. ∎
Proposition 3.4.8: Suppose that 𝐺 is a spectral commutative finite flat group scheme

of rank 𝑁 over an 𝔼∞-ring 𝑅 and 𝐴 is an abstract finite abelian group of order 𝑁. Then
the following functor

Level𝒜𝐻/𝑅 ∶ CAlg𝑅 → 𝒮; 𝑅′ → Level(𝒜, 𝐺𝑅′/𝑅′)
is representable by an affine spectral Deligne-Mumford stack 𝑆(𝐴) = Sp𝑒́𝑡𝒫𝐺/𝑅.
Proof: We first prove the representability. By definition, the functor Level𝒜𝐺/𝑅 is a sub-
functor of the representable functor Hilb𝐺/𝑅. We consider a spectral Deligne-Mumford

stack 𝑆(𝐴) defined by the pullback diagram of spectral Deligne-Mumford stacks𝑆(𝐴)
""

!! Hilb𝐺/𝑅
""

Sp𝑒́𝑡𝑍 !! Sp𝑒́𝑡𝑅.
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It is easy to say that 𝑆(𝐴) valued on a R-algebra 𝑅′ is the Hilbert closed subscheme D
of 𝐸 ×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝑅′, such that 𝐷♡ is a derived level A-structure of (𝐸 ×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝑅′)♡.
Then 𝑆(𝐴) is the desried stack.

For the affine condition, we need to prove that 𝑆(𝐴) is finite in spectral algebraic
geometry. By[11]Remark 5.2.0.2 , a morphism between spectral algebraic spaces is finite if

and only if its underlying morphism between ordinary spectral algebraic space is finite in

ordinary algebraic geometry. We have 𝑆(𝐴) and Sp𝑒́𝑡𝑅 are spectral spaces. So we only

need to prove 𝑆(𝐴)♡ is finite over 𝑅0, but this is just the classical case, which is finite
by[32]Proposition 1.10.13 . ∎
Derived Level Structures of Spectral p-Divisible Groups

Remark 3.4.9: We let FFG(𝑅) denote the ∞-category of spectral commutative finite
flat group schemes over an 𝔼∞-ring 𝑅. By[24]Proposition 6.5.8 , there is another equivalent
definition of spectral 𝑝-divisible group[13]Definition 6.0.2 . A spectral 𝑝-divisible group over
a connective 𝔼∞-ring 𝑅 is just a functor𝐺 ∶ CAlgcn𝑅 → Modcnℤ
which satisfies the following conditions:

（1）Suppose that 𝑆 ∈ CAlg𝑐𝑛𝑅 , the spectrum 𝐺(𝑆) is 𝑝-nilpotent, i.e., 𝐺(𝑆)[1/𝑝] ≃0.
（2）For𝑀 be a finite ableian p-group, the functor

CAlgcn𝑅 → 𝒮, 𝑆 ↦ MapModℤ(𝑀, 𝐺(𝑆))
is copresentable by a finite flat R-algebra.

Let 𝑋 be a spectral 𝑝-divisible group of height h over an 𝔼∞-ring 𝑅, that is a functor𝑋 ∶ Ab𝑝fin → FFG(R).
For every 𝑝𝑘 ∈ Ab𝑝fin, we let 𝑋[𝑝𝑘] denote the image of 𝑝𝑘 of 𝑋. We find that 𝑋[𝑝𝑘] is a
rank (𝑝𝑘)ℎ spectral commutative finite flat group schemes over 𝑅.
Definition 3.4.10: Let 𝐺 be a spectral 𝑝-divisible group of height h over a connective𝐸∞-ring 𝑅 . For 𝐴 a finite abelian group, an derived (ℤ/𝑝𝑘ℤ)ℎ-level structure of 𝐺 is a

derived (ℤ/𝑝𝑘ℤ)ℎ-level structure 𝜙 ∶ 𝐷 → 𝐺[𝑝𝑘]
of𝐺[𝑝𝑘], which is a spectral commutative finite flat scheme over𝑅. We let Level(𝑘, 𝐺/𝑅)
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denote the∞-groupoid of derived (ℤ/𝑝𝑘ℤ)ℎ-level structures of 𝐺/𝑅.
Theorem 3.4.11: Let 𝐺 be a spectral p-divisible group of height ℎ over an 𝔼∞-ring 𝑅.
Then the following functor

Level𝑘𝐺/𝑅 ∶ CAlg𝑅 → 𝒮; 𝑅′ → Level(𝑘, 𝐺𝑅′/𝑅′)
is representable by an affine spectral Deligne-Mumford stack 𝑆(𝑘) = Sp𝑒́𝑡𝒫𝑘𝐺/𝑅.
Proof: We just notice that by the definition of spectral 𝑝-divisible group, 𝐺[𝑝𝑘] is a
spectral commutative finite flat scheme. Then the theorem follows form the above result

of general spectral commutative finite flat group scheme. ∎
Non-Full Level Structures

The above cases only cares full level structures of commutative finite flat schemes,

actually we can define general level structures of finite flat group schemes. Let 𝐺 be a

spectral commutative finite flat group scheme of rank N over an 𝔼∞-ring R, and 𝐴 be an

abstract finite abelian group, an derived 𝐴-level structure of 𝐺 is an object 𝜙 ∶ 𝐷 → 𝐺
in Hilb(𝐺/𝑅), such that 𝐷♡ is a subgroup of 𝐺 and 𝐺♡(𝜋0𝑅) is isomorphic to 𝐴. We let

Level1(𝒜, 𝐺/𝑅) denote th space of derived 𝐴-level structure. And Level0(𝒜, 𝐺/𝑅) de-
note the space of equivalence class𝐷 → 𝐺 in Hilb(𝐺/𝑅) such that 𝐺♡(𝜋0𝑅) is isomorphic
to 𝐴, two object 𝐷,𝐷′ are equivalent if the image of 𝐷♡ → 𝐺♡ and 𝐷′♡ → 𝐺♡ are same.
Proposition 3.4.12: Suppose that 𝐺 is a spectral commutative finite flat group scheme

of rank 𝑁 over an 𝔼∞-ring 𝑅 and 𝐴 is an abstract finite abelian group of order not neces-
sarily equal to N. Then the following functor

Level1,𝒜𝐺/𝑅 ∶ CAlg𝑐𝑛𝑅 → 𝒮; 𝑅′ → Level1(𝒜, 𝐺𝑅′/𝑅′)
is representable by an affine spectral Deligne-Mumford stack.

Proof: We just notice that the classical level structure functor Level(𝐴, 𝐺♡/𝜋0𝑅) is rep-
resentable by a closed subscheme Hom(𝐴, 𝐺), the using the same discussion of full level
case, we get the desired result. ∎
Remark 3.4.13: The above proposition also true for Level0,𝒜. By the spectral commu-
tative finite flat scheme cases, we can get the representability results of spectral 𝑝-divisible
group case.

We let Level1(𝑘, 𝐺/𝑅) denote the ∞-groupoid of derived (ℤ/𝑝𝑘ℤ)-level structures
of 𝐺/𝑅. Then the following functor

Level1,𝑘𝐺/𝑅 ∶ CAlgcn𝑅 → 𝒮; 𝑅′ → Level1(𝑘, 𝐺𝑅′/𝑅′)
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is representable by an affine spectral Deligne-Mumford stack 𝑆1(𝑘) = Sp𝑒́𝑡𝒫1,𝑘𝐺/𝑅.
We let Level0(𝑘, 𝐺/𝑅) denote the∞-groupoid of derived (ℤ/𝑝𝑘ℤ)-level generators

of 𝐺/𝑅. Then the following functor
Level0,𝑘𝐺/𝑅 ∶ CAlgcn𝑅 → 𝒮; 𝑅′ → Level0(𝑘, 𝐺𝑅′/𝑅′)

is representable by an affine spectral Deligne-Mumford stack 𝑆0(𝑘) = Sp𝑒́𝑡𝒫0,𝑘𝐺/𝑅.
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CHAPTER 4 APPLICATIONS TO CHROMATIC
HOMOTOPY THEORY

4.1 Spectral Elliptic Curves with Derived Level Structures

In the second chapter, we have introduced that there exists a spectral Deligne-

Mumford stackℳ𝑒𝑙𝑙 whose functor of points isℳ𝑒𝑙𝑙 ∶ CAlgcn → 𝒮𝑅 ⟼ℳ𝑒𝑙𝑙(𝑅),
where ℳ𝑒𝑙𝑙(𝑅) = Ell(𝑅)≃ is the underline ∞-groupoid of the ∞-category of spectral
elliptic curves over 𝑅.

And we have the classical Deligne-Mumford stack of classical elliptic curves, which

can be viewed as a spectral Deligne-Mumford stackℳ𝑐𝑙𝑒𝑙𝑙 ∶ CAlgcn → 𝒮𝑅 ⟼ℳ𝑐𝑙𝑒𝑙𝑙(𝜋0𝑅)
whereℳ𝑐𝑙𝑒𝑙𝑙(𝜋0𝑅) is the groupoid of classical elliptic curves over the commutative ring𝜋0𝑅.

And for 𝐴 denote ℤ/𝑁ℤ, or ℤ/𝑁ℤ×ℤ/𝑁ℤ, we have the classical Deligne-Mumford

stack of classical elliptic curves with level-𝐴 structures, which can also be viewed as a

spectral Deligne-Mumford stack.ℳ𝑐𝑙𝑒𝑙𝑙(𝐴) ∶ CAlgcn → 𝒮𝑅 ⟼ℳ𝑐𝑙𝑒𝑙𝑙(𝐴)(𝜋0𝑅)
whereℳ𝑐𝑙𝑒𝑙𝑙(𝐴)(𝜋0𝑅) is the groupoid of classical elliptic curves with level A-structures
over the commutative ring 𝜋0𝑅.

In last chapter, we define and study derived level structures. The construction 𝑋 ↦
Level(𝒜, 𝑋/𝑅) determines a functor Ell(𝑅) → 𝒮 which is classified by a left fibration

Ell(𝒜)(𝑅) → Ell(𝑅). Objects of Ell(𝒜)(𝑅) are pairs (𝐸, 𝜙), where𝐸 is a spectral elliptic
curve and 𝜙 is a derived level structures of 𝐸.

For every 𝑅 ∈ CAlgcn, we can consider all spectral elliptic curves over 𝑅 with de-
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rived level structures. This moduli problem can be thought as a functorℳ𝑒𝑙𝑙(𝒜) ∶ CAlgcn → 𝒮𝑅 ⟼ℳ𝑒𝑙𝑙(𝒜)(𝑅) = Ell(𝒜)(𝑅)
where Ell(𝒜)(𝑅) is the space of spectral elliptic curves 𝐸 with a derived level structure𝜙 ∶ 𝒜 → 𝐸.
Proposition 4.1.1: The functorℳ𝑒𝑙𝑙(𝒜) ∶ CAlgcn ↦ 𝒮 is an étale sheaf.
Proof: Let {𝑅 → 𝑈𝑖} be an étale cover of 𝑅, and 𝑈• be the associate check simplicial
object. We consider the following diagram

Ell(𝒜)(𝑅)≃ 𝑓 !!𝑝
""

limΔ Ell(𝒜)(𝑈•)≃𝑞
""

Ell(𝑅)≃ 𝑔 !! limΔ Ell(𝑈•)≃.
The left map p is a left fibration betweenKan complex, so is aKan fibration[29]Lemma 2.1.3.3 .

And the right vertical map is pointwise Kan fibration. By picking a suit model for the ho-

motopy limit wemay assume that 𝑞 is a Kan fibration as well. We have𝑔 is an equivalence
by[24]Lemma 2.4.1 . To prove that 𝑓 is a equivalence. We only need to prove that for every𝐸 ∈ Ell(𝑅), the map𝑝−1𝐸 ≃ Level(𝒜, 𝐸/𝑅) → limΔ Level(𝒜, 𝐸 ×𝑅 𝑈•/𝑈•) ≃ 𝑞−1𝑔(𝐸)
is an equivalence. We have the Level(𝒜, 𝐸) as full ∞-subcategory of CDiv(𝐸/𝑅) and
limΔ Level(𝒜, 𝐸 ×𝑅 𝑈•) as a full subcategory of

limΔ CDiv(𝐸 ×𝑅 𝑈•(𝑈•))
But CDiv is an étale sheaf. So the functor

Level(𝒜, 𝐸/𝑅) → limΔ Level(𝒜, 𝐸 ×𝑅 𝑈•/𝑈•).
is fully faithful. To prove it is a equivalence, we only need to prove it is essentially

surjective.

For any {𝜙𝑈• ∶ 𝐷 → 𝐸×𝑅 𝑈•} in limΔ Level(𝒜, 𝐸 ×𝑅 𝑈•/𝑈•). Clearly, we can find a
morphism𝜙𝑅 ∶ 𝐷 → 𝐸 in CDiv(𝐸/𝑅)whose image under the equivalence CDiv(𝐸/𝑅) ≃
limΔ CDiv(𝐸 ×𝑅 𝑈•/𝑈•) is {𝜙𝑈• ∶ 𝐷 → 𝐸 ×𝑅 𝑈•}. We just need to prove this 𝜙𝑅 ∶ 𝐷 → 𝐸
is a derived level structure. This is true since in the classic case, Level(𝐴, 𝐸♡(𝑅0)) ≃
limΔ Level(𝐴, 𝐸♡(𝜏≤0𝑈•)) and 𝜙𝑅 ∶ 𝐷 → 𝐸 is already a relative Cartier divisor. ∎
Lemma 4.1.2: ℳ𝑒𝑙𝑙(𝒜) ∶ CAlg𝑐𝑛 → 𝒮 is a nilcomplete functor, i.e.,ℳ𝑒𝑙𝑙(𝒜)(𝑅) is
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the homotopy limit of the following diagram⋯ →ℳ𝑒𝑙𝑙(𝒜)(𝜏≤𝑚𝑅) → ℳ𝑒𝑙𝑙(𝒜)(𝜏≤𝑚−1𝑅) → ⋯ →ℳ𝑒𝑙𝑙(𝒜)(𝜏≤0𝑅)
Proof: For a spectral elliptic curve 𝑅, there is an obvious functor𝜃 ∶ ℳ𝑒𝑙𝑙(𝒜)(𝑅) → lim←𝑛ℳ𝑒𝑙𝑙(𝒜)(𝜏≤𝑛𝑅)
define by (𝐸, 𝜙 ∶ 𝐷 → 𝐸) ↦ {(𝐸×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝜏≤𝑛𝑅, 𝜙𝑛 ∶ 𝐷×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝜏≤𝑛𝑅 → 𝐸×Sp𝑒́𝑡𝑅
Sp𝑒́𝑡𝜏≤𝑛𝑅)}𝑛. Here we notice that (𝐸 ×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝜏≤𝑛𝑅, 𝜙𝑛 ∶ 𝐷 ×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝜏≤𝑛𝑅 →𝐸 ×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝜏≤𝑛𝑅) is inℳ𝑒𝑙𝑙(𝒜)(𝜏≤𝑛𝑅).

First, we prove that 𝜃 is essentially surjective. An object in lim←𝑚ℳ𝑒𝑙𝑙(𝒜)(𝜏≤𝑚𝑅) can
be written as a diagram⋯ !!

""

𝐷𝑛+1 !!

""

𝐷𝑛 !!

""

𝐷𝑛−1 !!

""

⋯ !!

""

𝐷0
""⋯ !! 𝐸𝑛+1 !! 𝐸𝑛 !! 𝐸𝑛−1 !!⋯ !! 𝐸0

where each 𝐸𝑛 is spectral elliptic curve over 𝜏≤𝑛𝑅 and 𝐷𝑛 → 𝐸𝑛 is a derived level
structure, and satisfying 𝐷𝑛 = 𝐷𝑛+1 ×Sp𝑒́𝑡𝜏≤𝑛+1𝑅 Sp𝑒́𝑡𝜏≤𝑛𝑅, 𝐸𝑛 = 𝐸𝑛+1 ×Sp𝑒́𝑡𝜏≤𝑛+1𝑅
Sp𝑒́𝑡𝜏≤𝑛𝑅. By the nilcompletness ofℳ𝑒𝑙𝑙, we get a spectral elliptic curves E, such that𝐸 ×𝑅 𝜏≤𝑛𝑅 ≃ 𝐸𝑛, and by the nilcompletness of Var+ [11]Proposition 19.4.2.1 , we get a spectral

Deligne-Mumford stack 𝐷, such that 𝐷𝑛 = 𝐷 ×Sp𝑒́𝑡𝑅 Sp𝑒́𝑡𝜏≤𝑛𝑅. We need to prove the

induce map 𝐷 → 𝐸 is a derived level structure, but this follows form nilcompletness of

Level𝐸/𝑅.
Second, we need to prove that this functor is fully faithful. Unwinding the defini-

tions, we need to prove that for every (𝑋, 𝐷1 → 𝑋), (𝑌, 𝐷2 → 𝑌) ∈ ℳ𝑒𝑙𝑙(𝒜)(𝑅), the
following map is a homotopy equivalence.

Mapℳ𝑒𝑙𝑙(𝒜)(𝑅)((𝑋, 𝐷𝑋), (𝑌, 𝐷𝑌)) → Mapℳ𝑒𝑙𝑙(𝒜)(𝑅)(lim←𝑛(𝑋𝑛, 𝐷𝑋,𝑛), lim←𝑛(𝑌𝑚, 𝐷𝑌,𝑚)).
where 𝑋𝑛 is 𝜏≤𝑛𝑋 = 𝑋 ×𝑅 𝜏≤𝑛𝑅, and 𝑌, 𝐷𝑋,𝑛, 𝐷𝑌,𝑛 similarly.

But we notice that this is equivalent to following equivalence

MapSpDM/𝑅((𝑋, 𝐷𝑋), (𝑌, 𝐷𝑌)) → lim⟵𝑛MapSpDM𝜏≤𝑛 ((𝑋𝑛, 𝐷𝑋,𝑛), (𝑌𝑛, 𝐷𝑌,𝑛)).
And this equivalence follows from[11]Proposition 19.4.1.2 ∎
Lemma 4.1.3: ℳ𝑒𝑙𝑙(𝒜) ∶ CAlgcn → 𝒮 is a cohesive functor.
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Proof: For every pullback diagram 𝐷 !!

""

𝐴
""𝐶 !! 𝐵

in CAlgcn such that the underlying homomorphisms 𝜋0𝐴 → 𝜋0𝐵 ← 𝜋0𝐶 are surjective.

We need to prove that ℳ𝑒𝑙𝑙(𝒜)(𝐷) !!

""

ℳ𝑒𝑙𝑙(𝒜)(𝐴)
""ℳ𝑒𝑙𝑙(𝒜)(𝐶) !!ℳ𝑒𝑙𝑙(𝒜)(𝐵)

is a pullback diagram.

We have the following diagram in Fun(CAlg𝑐𝑛, 𝒮),ℳ𝑒𝑙𝑙(𝒜) 𝑔 !!

𝑓
11▲

▲▲
▲▲

▲▲
▲▲

▲
ℳ𝑒𝑙𝑙ℎ

""∗
By[11]Remark 17.3.7.3 , ℳ𝑒𝑙𝑙 ∗ (𝒜) is a cohesive fucntor if and only if 𝑓 is cohesive.

Since we haveℳ𝑒𝑙𝑙 is cohesive functor, ℎ is a cohesive morphism in Fun(CAlg𝑐𝑛, 𝒮).
And again by[11]Remark 17.3.7.3 , 𝑓 is cohesive if and only if 𝑔 is cohesive. So we only need
to prove that 𝑔 is a cohesive morphism. But by[11]Proposition 17.3.8.4 𝑔 is cohesive if and

only if each fiber of 𝑔 is cohesive, i.e., for 𝑅 ∈ CAlg𝑐𝑛 and a point 𝜂𝐸 ∈ ℳ𝑒𝑙𝑙(𝑅) which
represents a spectral elliptic curve E, the functor𝑓𝐸 ∶ CAlgcn𝑅 → 𝒮, 𝑅′ ↦ ℳ𝑒𝑙𝑙(𝒜)(𝑅′) ×ℳ𝑒𝑙𝑙(𝑅′) {𝜂𝐸}
is cohesive. But we have 𝑅′ ↦ ℳ𝑒𝑙𝑙(𝒜)(𝑅′)×ℳ𝑒𝑙𝑙(𝑅′) {𝜂𝐸} ≃ Level(𝒜, 𝐸 ×𝑅 𝑅′/𝑅′) ≃
Level𝐸/𝑅(𝑅′). The cohesive ofℳ𝑒𝑙𝑙(𝒜) then follows from the cohesive of Level𝐸/𝑅. ∎
Lemma 4.1.4: The fucntorℳ𝑒𝑙𝑙(𝒜) ∶ CAlg𝑐𝑛 → 𝒮 is integrable
Proof: We need to prove that for 𝑅 a local Noetherian 𝔼∞-ring which is complete with
respect to its maximal ideal𝑚 ⊂ 𝜋0𝑅, then there is an equivalence

Map𝐹𝑢𝑛(CAlg𝑐𝑛,𝒮)(Sp𝑒́𝑡𝑅′,ℳ𝑒𝑙𝑙(𝒜)) → MapFun(CAlg𝑐𝑛,𝒮)(Spf𝑅′,ℳ𝑒𝑙𝑙(𝒜)).
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We have the following diagram in Fun(CAlg𝑐𝑛, 𝒮),ℳ𝑒𝑙𝑙(𝒜) 𝑔 !!

𝑓
11▲

▲▲
▲▲

▲▲
▲▲

▲
ℳ𝑒𝑙𝑙ℎ

""∗
By[11]Remark 17.3.7.3 , ℳ𝑒𝑙𝑙(𝒜) → ∗ is a integrable fucntor if and only if 𝑓 is

integrable. Since we have ℳ𝑒𝑙𝑙 is integrable functor, ℎ is a integrable morphism

in Fun(CAlgcn, 𝒮). And again by[11]Remark 17.3.7.3 , 𝑓 is integrable if and only if 𝑔
is integrable. So we only need to prove that 𝑔 is a integrable morphism. But

by[11]Proposition 17.3.8.4 𝑔 is integrable if and only if each fiber of 𝑔 is integrable, i.e., for𝑅 ∈ CAlgcn and a point 𝜂𝐸 ∈ ℳ𝑒𝑙𝑙(𝑅) which represents a spectral elliptic curve 𝐸, the
functor 𝑓𝐸 ∶ CAlg𝑐𝑛𝑅 → 𝒮, 𝑅′ ↦ ℳ𝑒𝑙𝑙(𝒜)(𝑅′) ×ℳ𝑒𝑙𝑙(𝑅′) {𝜂𝐸}
is integrable. But we have 𝑅′ ↦ ℳ𝑒𝑙𝑙(𝒜)(𝑅′)×ℳ𝑒𝑙𝑙(𝑅′) {𝜂𝐸} ≃ Level(𝒜, 𝐸×𝑅𝑅′/𝑅′) ≃
Level𝐸/𝑅(𝑅′). The integrable ofℳ𝑒𝑙𝑙(𝒜) then follows from the integrable of Level𝐸/𝑅.∎
Lemma 4.1.5: The functorℳ𝑒𝑙𝑙(𝒜) ∶ CAlgcn ↦ 𝒮 admits a cotangent complex 𝐿ℳ𝑑𝑒𝑒𝑙𝑙 ,
and moreover 𝐿ℳ𝑑𝑒𝑒𝑙𝑙 is connective and almost perfect.
Proof: We have a commutative diagram in CAlg𝑐𝑛 → 𝒮,

ℳ𝑒𝑙𝑙(𝒜) 𝑔 !!

𝑓
11▲

▲▲
▲▲

▲▲
▲▲

▲
ℳ𝑒𝑙𝑙ℎ

""∗
Since we have h is infitessimally coheisve and admits a connective cotangent com-

plex, and f,g is infitessimally cohesive. By[11]Proposition 17.3.9.1 , to prove that 𝑓 admits

a cotangent complex. We only need to prove 𝑔 admits a relative cotangent complex.

By[11]Proposition 17.2.5.7 , a morphism 𝑗 ∶ 𝑋 → 𝑌 in Fun(CAlg𝑐𝑛, 𝒮) admits a relative con-
tangent complex if and only if, for any corepresentbale 𝑌′ = Map(𝑅, −) ∶ CAlg𝑐𝑛 → 𝒮
and any natural transformation 𝑌′ → 𝑈, 𝑗′ in the following pullback diagram admit a

cotangent complex. 𝑌′ ×𝑌 𝑋𝑗′
""

!! 𝑋𝑗
""𝑌′ !! 𝑌
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To prove thatℳ𝑒𝑙𝑙(𝒜) → ℳ𝑒𝑙𝑙 admits a cotangent a cotangent complex, we just need to
prove that for any 𝑅 ∈ CAlg𝑐𝑛, and a spectral elliptic curve E which represents a natural

transformations Spec𝑅 → ℳ𝑒𝑙𝑙. The functor
CAlg𝑅 → 𝒮, 𝑅′ ↦ ℳ𝑒𝑙𝑙(𝒜)(𝑅′) ×ℳ𝑒𝑙𝑙(𝑅′) {𝜂𝐸}

admits a connective cotangent complex. But we have ℳ𝑒𝑙𝑙(𝒜)(𝑅′) ×ℳ𝑒𝑙𝑙(𝑅′) {𝜂𝐸} =
Level(𝐸 ×𝑅 𝑅′) = Level𝐸/𝑅(𝑅′). So the results of 𝑓 ∶ ℳ𝑒𝑙𝑙(𝒜) → ∗ admits a cotan-
gent complex follows from Level𝐸/𝑅 admits a cotangent complex. And the properties of
connective and almost perfect also follows from the property of the cotangent complex of

Level𝐸/𝑅. ∎
Lemma 4.1.6: The functorℳ𝑒𝑙𝑙(𝒜) ∶ CAlg𝑐𝑛 ↦ 𝒮 is locally almost of finite presen-
tation.

Proof: Consider the functor ℳ𝑒𝑙𝑙(𝒜) → ∗, it is infitesimally cohesive and admits a
cotangent complex which is almost perfect, so by[11]17.4.2.2 , it is locally almost of finite

presentation. Soℳ𝑒𝑙𝑙(𝒜) is locally almost of finite presentation, since ∗ is a final object
of Fun(CAlg𝑐𝑛, 𝒮). ∎
Theorem 4.1.7: The functorℳ𝑒𝑙𝑙(𝐴) ∶ CAlg → 𝒮𝑅 ⟼ℳ𝑒𝑙𝑙(𝒜)(𝑅) = Ell(𝒜)(𝑅)≃
is representable by a spectral Deligne-Mumford stack.

Proof: By the spectral Artin representability theorem, we need to prove that the functorℳ𝑒𝑙𝑙(𝒜) satisfying the following condition
（1）The spaceℳ𝑒𝑙𝑙(𝒜)(𝑅0) is n-truncated for every discrete commutative ring𝑅0.
（2）ℳ𝑒𝑙𝑙(𝒜) is a sheaf for the étale topology.
（3）ℳ𝑒𝑙𝑙(𝒜) is a nilcomplete, infinitesimally cohesive, and integrable functor.
（4）ℳ𝑒𝑙𝑙(𝒜) admits a cotangent complex 𝐿ℳ𝑒𝑙𝑙(𝐴) which is connective.
（5）ℳ𝑒𝑙𝑙(𝒜) is locally almost of finite presentation.

But these follows form the above series of lemmas. ∎
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4.2 Higher Categorical Lubin-Tate Towers

We recall that for a height ℎ 𝑝-divisible group 𝐺0 over a commutative ring 𝑅0 and
suppose 𝐴 ∈ CAlg𝑎𝑑𝑐𝑝𝑙. We recall that a deformation of 𝐺0 over 𝑅 is a spectral 𝑝-divisible
group over𝑅 together with an equivalence class of𝐺0-tagging of𝐺. We let Level(𝑘, 𝐺/𝑅)
denote the space of derived (ℤ/𝑝𝑘ℤ)ℎ-level structure of a height ℎ spectral p-divisible

group. We consider the following functorℳ𝑘 ∶ CAlg𝑎𝑑𝑐𝑝𝑙 → 𝒮𝑅 → DefLevel(𝐺0, 𝑅, 𝑘)
where DefLevel(𝐺0, 𝑅, 𝑘) is the∞-category whose objects are triples (𝐺, 𝜌, 𝜂)

（1）𝐺 is a spectral p-divisible group over 𝑅.
（2）𝜌 is an equivalence of 𝐺0 taggings of 𝑅.
（3）𝜂 ∶ 𝐷 → 𝐺 is a derived (ℤ/𝑝𝑘ℤ)ℎ-level structure of 𝐺.

Theorem 4.2.1: The functorℳ𝑘 is corepresentable by a 𝔼∞-ring which is finite over
the unoriented spectral deformation ring of 𝐺0.
Proof: We let 𝐸𝑢𝑛𝑖𝑣/𝑅un𝐺0 denote the universal spectral deformation of 𝐺0/𝑅0. Suppose
that 𝐺 is a spectral deformation 𝐺0 to 𝑅, we get a map of 𝔼∞-rings 𝑅un𝐺0 → 𝑅, and an
equivalence 𝐸𝑢𝑛𝑖𝑣 ×𝑅𝑢𝑛𝐺0 𝑅 ≃ 𝐺 of spectral 𝑝-divisible groups. By the universal objects
of level structures. We have the following equivalence

Level(𝑘, 𝐺/𝑅) ≃ Level(𝑘, 𝐸𝑢𝑛𝑖𝑣 ×𝑅𝑢𝑛𝐺0 𝑅) ≃ MapCAlg𝑎𝑑,𝑐𝑝𝑙𝑅𝑢𝑛𝐺0 (𝒫𝐸𝑢𝑛𝑖𝑣/𝑅𝑢𝑛𝐺0 , 𝑅),
where 𝒫𝐸𝑢𝑛𝑖𝑣/𝑅𝑢𝑛𝐺0 is the universal object of derived level structure functor associated with
the 𝑝-divisible group 𝐸𝑢𝑛𝑖𝑣/𝑅𝑢𝑛𝐺0 .

Then we consider the following moduli problem

CAlg𝑎𝑑𝑐𝑝𝑙 → 𝒮, 𝑅 ↦ MapCAlg𝑎𝑑,𝑐𝑝𝑙𝑅0 (𝒫𝐸𝑢𝑛𝑖𝑣/𝑅𝑢𝑛𝐺0 , 𝑅).
For 𝑅 ∈ CAlg𝑎𝑑,𝑐𝑝𝑙𝑅0 , MapCAlg𝑎𝑑,𝑐𝑝𝑙𝑅0 (𝒫𝐸𝑢𝑛𝑖𝑣/𝑅𝑢𝑛𝐺0 , 𝑅) can viewed the ∞-categories of pairs(𝛼, 𝑓), where 𝛼 ∶ 𝑅𝑢𝑛𝐺0 → 𝑅
is the classified map of a spectral 𝑝-divisible group 𝐺, which is a deformation of 𝐺0, that is𝛼 = (𝐺, 𝜌), and 𝑓 ∈ MapCAlg𝑎𝑑,𝑐𝑝𝑙𝑅𝑢𝑛𝐺0 (𝒫𝐸𝑢𝑛𝑖𝑣/𝑅𝑢𝑛𝐺0 , 𝑅) = Level(𝑘, 𝐸𝑢𝑛𝑖𝑣 ×𝑅𝑢𝑛𝐺0 𝑅) is a derived
level structure of 𝐺/𝑅. So we get MapCAlg𝑎𝑑,𝑐𝑝𝑙𝑅0 (𝒫𝐸𝑢𝑛𝑖𝑣/𝑅𝑢𝑛𝐺0 , 𝑅) is just the ∞-category of
pairs (𝐺, 𝜌, 𝜂). By lemma 3.4.11, 𝒫𝐸𝑢𝑛𝑖𝑣/𝑅𝑢𝑛𝐺0 is finite over 𝑅𝑢𝑛𝐺0 . So we have 𝒫𝐸𝑢𝑛𝑖𝑣/𝑅𝑢𝑛𝐺0 is
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the desired spectrum. ∎
Although we get spectra come from a conceptual derived moduli problems, but

these spectra may be complicated, since we didn’t know the homotopy groups. In al-

gebraic topology, orientation of 𝔼∞-spectra make 𝐸2 page of Atiyah-Hirzebruch spectral
sequences degenerating, and give us the information of homotopy groups.

Let 𝐺0 be a height ℎ 𝑝-divisible group over 𝑅𝐺0 . We consider the following functorℳ𝑜𝑟𝑘 ∶ CAlg𝑎𝑑𝑐𝑝𝑙 → 𝒮𝑅 → DefLevel𝑜𝑟(𝐺0, 𝑅, 𝑘)
where DefLevel𝑜𝑟(𝐺0, 𝑅, 𝑘) is the space of four tuples (𝐺, 𝜌, 𝑒, 𝜂), where

（1）𝐺 is a spectral p-divisible over 𝑅.
（2）𝜌 is an equivalence class of 𝐺0 taggings of 𝑅.
（3）𝑒 ∶ 𝑆2 → Ω∞𝐺∘(𝑅) is an orientation of the 𝐺∘, where 𝐺∘ is the identity com-

ponent of 𝐺.
（4）𝜂 ∶ 𝐷 → 𝐺 is a derived (ℤ/𝑝𝑘ℤ)ℎ-level structure of 𝐺.

Theorem 4.2.2: The functorℳ𝑜𝑟𝑘 ∶ CAlg𝑎𝑑𝑐𝑝𝑙 → 𝒮 is corepresentable by an 𝔼∞-ring𝒥𝒦𝑘, which is finite over the orientated deformations ring 𝑅𝑜𝑟𝐺0 .
Proof: Let Def𝑜𝑟(𝐺0, 𝑅) denote the ∞-groupoid of triples (𝐺, 𝜌, 𝑒), where 𝐺 is a 𝑝-
divisible of over 𝑅, 𝜌 is an equivalence class of 𝐺0-taggings of 𝑅, and 𝑒 is an orientation
of the identity conpoment of G. By[13]Theorem 6.0.3, Remark 6.0.7 , the functorℳ𝑜𝑟 ∶ CAlg𝑎𝑑𝑐𝑝𝑙 → 𝒮𝑅 → Def𝑜𝑟(𝐺0, 𝑅)
is corepresnetable by the orientated deformation ring 𝑅𝑜𝑟𝐺0 , that is we have an equivalence
of spaces

MapCAlg𝑎𝑑𝑐𝑝𝑙(𝑅𝑜𝑟𝐺0 , 𝑅) ≃ Def𝑜𝑟(𝐺0, 𝑅).
Let 𝐸𝑜𝑟𝑢𝑛𝑖𝑣 be the associated universal orientation deformation of 𝐺0 to 𝑅𝑜𝑟𝐺0 , then it is obvi-
ous that 𝒥ℒ𝑘 = 𝒫𝐸𝑜𝑟𝑢𝑛𝑖𝑣/𝑅𝑜𝑟𝐺0 , the universal object of derived level structures of 𝐸𝑜𝑟𝑢𝑛𝑖𝑣/𝑅𝑜𝑟𝐺0 ,
is the desired spectrum similar to th unorientated case. ∎

We call this spectrum 𝒥ℒ𝑘 the Jacquet-Langlands spectrum. It is easy to see that this𝒥ℒ𝑘 admit an action of 𝐺𝐿ℎ(ℤ/𝑝𝑘ℤ) × Aut(𝐺0). And when 𝑘 varies, we have a tower
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Sp𝑒́𝑡𝒥ℒ𝑘
""

Sp𝑒́𝑡𝒥ℒ𝑘−1
""⋯
""

Sp𝑒́𝑡𝒥ℒ0.
We call this tower higher categorical Lubin-Tate tower.

Let 𝐸 be a local field, 𝐺 be a reductive group over 𝐸. The classical local Langlands
correspondence predict that for any irreducible smooth representation 𝜋 of 𝐺(𝐸), we can
naturally associate an 𝐿-parameter 𝜙𝐸 ∶ 𝑊𝐸 → 𝐺(ℂ).
The geometric Langlands correspondence actually aim to construct an equivalence of cat-

egories 𝐷(QCoh(LocSys𝐺∨(𝑋)) ≃ 𝐷(𝒟(Bun𝐺))
from the derived category of quasi-coherent sheaves on 𝐺∨ local systems on 𝑋 and the

derived categories of D-modules on the moduli stack of 𝐺-bundles over 𝑋 [34] . Due to the

work of Fargues-Scholze[35] , the arithmetic local Langlands correspondence can also be

some kinds of geometric Langlands correspondence, but in the perfectoid world.

In the classical arithmetic geometry, the Lubin-Tate tower can be used to realize the

Jacquet-Langlands correspondence[36] . Is there a topological realization of the Jacquet-

Langlands correspondence? Actually, in a recent paper[37] , they already realized a ver-

sion of topological Jacquet-Langlands correspondence. But their method is based on the

Goerss-Hopkins-Miller-Lurie sheaf. They actually consider the degenerate level struc-

tures such that representing object is étale over representing object of universal deforma-

tions.

We hope our higher categorical analogues of Lubin-Tate towers can also establish

a topological version of the classical Langlands correspondence, which means that we

construct representations on the category of spectra. By the construction of Jacquet-

Langlands spectra above, Let 𝔾 be a formal group over a field of characteristic p, 𝒥ℒ
be its 𝓁-adic complete Jacquet-Langlands spectrum. Let 𝑋 be a spectrum with an action
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of Aut(𝔾ℎ). We have the following brave conjecture.

Conjecture 4.2.3: The function spectrum 𝐹(𝑋, 𝒥ℒ) admits an action of 𝐺𝐿ℎ(ℤ𝑝) and
all its homotopy groups are ℤ𝑙-modules.
Representation Theory in Spectra Algebraic Geometry

The reason why we need spectra and spectral algebraic geometry in representation

theory is due to the fact, in general the derived category of 𝐺-objects Mod(𝑅) is not equal
to the category of𝐺-objects in𝐷(𝑅). But in algebraic topology, it seems that group actions
of spectra are more easy to find, like actions of Morava stabilizer groups on Morava E-

theories.

It follows that[38] , some topological realizations of classical cohomology rings may

have a good structures, like the topological Hochschild homology of quasiregualr semiper-

fectoid rings. These leads to the establishment of some special p-adic cohomology the-

ories, Breuil-Kisin-modules cohomology theory and its refinement, prismatic cohomol-

ogy[39] . The heart of this topic are 𝛿-rings and their topological realization derived 𝛿-
rings[40] . It turns out homotopy groups of these topological cohomology of perfectoid

rings are crystalline Galois representations[38] , But those entire spectra are not equivalent

spectra.

We hope to establish representation theory in derived category, like 𝐷(𝑅),𝐷(QCoh(𝑋)). But as we said, they are not the derived category of 𝐺-objects. We pro-

posed an viewpoint that how do we use spectral algebraic geometry to solve this problem.

（1）Representations in Var𝑘,QCoh(𝑋);
（2）Explain these Var𝑘,QCoh(𝑋) as classical moduli spaces;
（3）Find associated derived moduli problems in spectral algebraic geometry ;

（4）Using repersentability theorem to get derived geometric objects;

（5）Representations in derived categories.

Now, let’s see some examples of this strategy.

Example 4.2.4: (Spherical Witt Vectors) We consider the spherical Witt-vector func-

tor defined in[13] and[41] . 𝕊𝕎 ∶ Perf𝔽𝑝 → CAlg(Sp𝑝).
form the category of perfect 𝔽𝑝 algebras to the∞-category of 𝑝-complete 𝔼∞-rings. This
functor is defined by studying a derived moduli problem, thickenings of relatively perfect

morphisms. And it has many application in chromatic homotopy theory, like[41] and[42] .

73



CHAPTER 4 APPLICATIONS TO CHROMATIC HOMOTOPY THEORY

And it is easy to see that this functor can find some Galois representations in derived

category.

Example 4.2.5: (Spectral Deformations of 𝑝-Divisible Groups) For a classical 𝑝-
divisible group 𝐺0 over a perfect field 𝑘, we consider the Morava stabilizer group𝑆 = Aut(𝐺0) ⋊ 𝐺𝑎𝑙(𝑘). We can consider its spectral deformations over an 𝔼∞-ring
R, which consists of pairs (𝐺, 𝜌), where 𝐺 is a spectral 𝑝-divisible group over 𝑅, and 𝜌
is an equivalence class of 𝐺0 taggings. In[13] , Lurie proved that there exits an univer-
sal deformation of 𝐺0. i.e., there exists a complete adic 𝔼∞-ring 𝑅𝑢𝑛𝐺0 , and a morphism𝜌 ∶ 𝑅𝑢𝑛𝐺0 → 𝑅0 such that the functor Def𝐺0 is corepresentable by 𝑅𝑢𝑛𝐺0 . i.e., for any com-
plete adic 𝔼∞-ring 𝑅, there is an equivalence

MapCAlg𝑎𝑑𝑐𝑝𝑙(𝑅𝑢𝑛𝐺0 , 𝑅) → Def𝐺0(𝑅).
It is easy to see that this spectrum 𝑅𝑢𝑛𝐺0 admits an action of 𝑆.

Example 4.2.6: (Derived Level Structures) Let 𝑘 be a 𝑝-adic field with residue field 𝑘
of characteristic p. Let 𝐿𝑇𝑛 denote the moduli space of deformations with level (ℤ/ℤ𝑛)ℎ-
structures of a height ℎ formal group 𝐺0 . Passing to the direct limit over n of vanishing
cycle sheaves of 𝐿𝑇𝑛. This give an collection {Ψ𝑖𝑚} of infinite-dimensional Q̄𝑙-vector
spaces which admits admissible nature actions of the subgroup of 𝐺𝐿𝑔(𝐾) × 𝐷×𝐾,𝑔 ×𝑊𝐾.
Then by our construction of derived level structures, we find these actions can lift to

actions on certain∞-spectra.
Topological Langlands Correspondence

We know actions of certain Galois groups and automorphism groups on certain ob-

jects, like Morava E-theories, THH, TC. And this means that these groups acting on their

homotopy groups. By the Langlangs correspondence, we can associated certain objects

which have the action of 𝐺𝐿𝑛, or more generally, reductive groups. But can these objects
lift to 𝐺𝐿𝑛 equivalent spectra. Our derived level structure give an attempt on this idea by
considering the function spectrum Fun(𝑋, 𝒥ℒ).

Let 𝐺 be an algebraic group, viewed as a 0-truncated spectral Deligne-Mumford

stack, Let 𝑋 be a spectral Deligne-Mumford stack admits a G-action. Then does this

make 𝑅 for an affine substack Sp𝑒́𝑡𝑅 to become a 𝐺-equivariant spectrum? See[43] for

equivariant spectra and[44] for the equivariant 𝔼∞ setting. On the other hand, what is the

meaning of the action of an algebraic group on a spectrum, since spectra are topological,

they don’t have algebraic structures.
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We want to develop a representation theory in 𝐸∞-spectra, spectral schemes, and
spectral stacks, such that it is compatible with the classical definition of actions of alge-

braic groups on schemes. Andwewant to know how does actions of Galois side on certain

objects can related to actions of some algebraic groups on another certain objects. And

the name topological Langlands correspondence comes from that we want certain spectral

algebraic geometry objects play the roles of homotopy representations of dual reductive

algebraic groups, which can be viewed as automorphic side of topological Langlands cor-

respondence.

4.3 Topological Lifts of Power Operation Rings

We recall the deformation of formal groups. Let 𝐺0 be a formal group over a perfect
field 𝑘 such that char𝑘 = 𝑝 , a deformation of 𝐺0 to 𝑅 is a triple (𝐺, 𝑖, Φ) satisfying

• 𝐺 is a formal group over 𝑅,
• There is a map 𝑖 ∶ 𝑘 → 𝑅/𝑚
• There is an isomorphism Φ ∶ 𝜋∗𝐺 ≅ 𝑖∗𝐺0 of formal groups over 𝑅/𝑚.
Suppose that we have a complete local ring 𝑅 whose residue filed has characteristic𝑝. Let 𝜙 ∶ 𝑅 → 𝑅, 𝑥 ↦ 𝑥𝑝 be the Frobenius map. For each formal group 𝐺 over 𝑅,

the Frobenius isogeny Frob ∶ 𝐺 → 𝜙∗𝐺 is the homomorphism of formal group over 𝑅
induced by the relative Frobenius map on rings. We write Frob𝑟 ∶ 𝐺 → (𝜙𝑟)∗𝐺 which is

the composition 𝜙∗(Frob𝑟−1) ∘ Frob
Let 𝐺0 be a formal group over 𝑘, (𝐺, 𝑖, 𝛼) and (𝐺′, 𝑖′, 𝛼′) be two deformations of 𝐺0

to 𝑅. A deformation of Frob𝑟 is a homomorphism 𝑓 ∶ 𝐺 → 𝐺′ of formal groups over 𝑅
which satisfying

（1）𝑖 ∘ 𝜙𝑟 = 𝑖′ and 𝑖∗(𝜙𝑟)∗𝐺0 = (𝑖′)∗𝐺0.𝑘 𝑖′ !!𝜙𝑟
""

𝑅/𝑚
𝑘 𝑖 22④④④④④④④④

（2）the square 𝑖∗𝐺0𝑖∗(Frob𝑟)!!𝛼
""

𝑖∗(𝜙𝑟)∗𝐺0𝛼′
""𝜋∗𝐺 𝜋∗(𝑓)

!! 𝜋∗𝐺′
of homomorphisms of formal groups over 𝑅/𝑚 commutes.
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We let Def𝑅 denote the category whose objects are deformations fo 𝐺0 to 𝑅, and
whose morphisms are deformation of Frob𝑟 for some 𝑟 ≥ 0. We will say that a morphism

in Def𝑅 has height 𝑟, if it is a deformation of Frob𝑟, and the we denote the corresponding
subcategory as Sub𝑟𝑅. Let 𝐺 be deformation of 𝐺0 to 𝑅, then it can be proved that the
assignment 𝑓 → Ker𝑓 is a one-to-one correspondence between the morphisms in Sub𝑟𝑅
with source 𝐺 and the finite subgroup of 𝐺 which have rank 𝑝𝑟.
Theorem 4.3.1: [21] Let𝐺0/𝑘 be a height n formal group over a perfect field 𝑘. For each𝑟 > 0, there exists a complete local ring 𝐴𝑟 which carries a universal height r morphism𝑓𝑟𝑢𝑛𝑖𝑣 ∶ (𝐺𝑠, 𝑖𝑠, 𝛼𝑠) ↦ (𝐺𝑡, 𝑖𝑡, 𝛼𝑡) ∈ Sub𝑟(𝐴𝑟). That is the operation 𝑓𝑟𝑢𝑛𝑖𝑣 → 𝑔∗(𝑓𝑟𝑢𝑛𝑖𝑣)
define a bijective relation from the set of local homomorphism 𝑔 ∶ 𝐴𝑟 → 𝑅 to the set

Sub𝑟𝑅. Furthermore, we have:
（1）𝐴0 ≈ 𝑊(𝑘)[[𝑣1,⋯ , 𝑣𝑛−1]] is the Lubin-Tate ring.
（2）There is a map 𝑠 ∶ 𝐴0 → 𝐴𝑟 which classifies the source of the universal height𝑟 map, i.e. 𝐺𝑠 = 𝑠∗𝐺𝐸, where 𝐺𝐸 = 𝐺𝑢𝑛𝑖𝑣/𝐴0 be the universal deformation of 𝐺0, and 𝐴𝑟

is finite and free as an 𝐴0 module.
（3）There is a map 𝑡 ∶ 𝐴0 → 𝐴𝑟 which classifies the target of the universal height

r map, i.e. 𝐺𝑡 = 𝑡∗𝐺𝐸.
（4）And there is a bijection {𝑔 ∶ 𝐴𝑟 → 𝑅} → Sub𝑟(𝑅) given by 𝑔 →𝑔∗(𝑓𝑟𝑢𝑛𝑖𝑣)(𝑔∗𝐺𝑠 → 𝑔∗𝐺𝑡).
We know that those rings 𝐴𝑟, 𝑟 ≥ 0 have topological meansings.

Theorem 4.3.2: [22] The ring 𝐴𝑟 in the universal deformation of Frobenuis is isomor-
phic to 𝐸0(𝐵Σ𝑝𝑟)/𝐼, i.e, 𝐴𝑟 ≅ 𝐸0(𝐵Σ𝑝𝑟)/𝐼
where I is transfer ideal.

The collections {𝐴𝑟} have the structures of graded coalgerbas, for 𝑠 = 𝑠𝑘, 𝑡 = 𝑡𝑘 ∶𝐴0 → 𝐴𝑘, which is induced by 𝐸0 cohomology on 𝐵Σ → ∗, we have𝜇 = 𝑚𝑢𝑘,𝑙 ∶ 𝐴𝑘+𝑙 ∶ 𝐴𝑘+𝑙 → 𝐴𝑘𝑠⊗𝐴0𝑡𝐴𝑙
which classifying the source,target, and composite of morphisms. So for the power oper-

ation 𝑅𝑘(𝑋) → 𝑅𝑘(𝑋 × 𝐵Σ𝑚). For 𝑥 = ∗, we have𝜋0𝑅 → 𝐸0(𝐵Σ𝑝𝑟)/𝐼 ⊗ 𝜋0𝑅 = 𝐴[𝑟] ⊗ 𝜋0𝑅
This make 𝜋0𝑅 becomes a Γ-module, where Γ are duals of 𝐴[𝑟].

For more details about power operation in Morava E-theory, one can see[45-46]
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and[47] . Direct computations are in[48] for height 2 at the prime 2,[49] for height 2 at

prime 3,[50] for height 2 at all primes. Cases of height > 2 is still lack of computations.
Because we have the assignment 𝑓 → Ker𝑓 is a one-to-one correspondence between

the morphisms in Sub𝑟𝑅 with source 𝐺 and the finite subgroup of 𝐺 which have rank 𝑝𝑟.
So it is easy to see that 𝐴𝑟 corepresent the following moduli problem

ℳ0,𝑟 ∶ CAlg♡𝑘 → 𝒮𝑅 → Def(𝐺0, 𝑅, 𝑝𝑟)
where Def(𝐺0, 𝑅, 𝑝𝑟) consists of pairs (𝐺, 𝐻) where 𝐺 is an defomration 𝐺0 to 𝑅, and 𝐻
is a rank 𝑝𝑟 subgroup of G.
Proposition 4.3.3: For every integer 𝑟 ≥ 1, there exists a 𝐸∞-ring 𝐸𝑛,𝑟, such that𝜋0𝐸𝑛,𝑟 = 𝐴𝑟.
Proof: For the formal group 𝐺0 over a field 𝑘 of characteristic 𝑝. We just consider the

functor CAlg𝑎𝑑𝑐𝑝𝑙 → 𝒮 by sending an 𝐸∞-ring 𝑅 to quadruples (𝐺, 𝜌, 𝑒, 𝜂), where (𝐺, 𝜌)
is spectral deformation of 𝐺0 to R. e is an orientation of 𝐺∘, the identity component 𝐺,
and 𝜂 ∈ Level0(𝑘, 𝐺/𝑅) is a derived level structure. Using the same argument in full
level structure and the fact Level0,𝑘𝐺/𝑅 is representable, see Remark 3.4.13. We get this

proposition. ∎
Remark 4.3.4: Although, we obtain spectra whose 𝜋0 are the power operation rings of
Morava E-theories. But we don’t know higher homotopy groups of these spectra, since

these spectra are not even periodic and they are not étale over Morava E-theories. We will

continue to study such spectra in the future.
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CONCLUSION

We now give an conclusion of this paper. By our proves and results, it is reasonable

to consider moremoduli spaces in the context of spectral algebraic results, like vector bun-

dles on a spectral curves and how this moduli space can give us interesting cohomology

theory. The main contributions of this paper are

（1）Give a reasonable definition of derived versions of level structures.

（2）Prove that moduli spaces of relative Cartier divisors have the structure of spec-

tral Deligne-Mumford stacks.

（3）Give a higher categorical analogues of moduli stack of elliptic curves with

level structures.

（4）Give higher categorical analogues of Lubin-Tate towers.

（5）Give topological realizations of power operation rings of Morava E-theories

(The representable objects of deformations with given finite subgroups).

But there are still many problems in this project. First is computations of homotopy

groups of higher categorical Lubin-Tate towers, since we only know their 𝜋0 correspond
to moduli spaces of deformations with level structures. And as cohomology theories, we

also want some results about computations on certain spaces, like 𝐵Σ𝑛 and so on. The
relation between these cohomology theories and Morava E-theories is also interesting

topic for us.

The second question is more complicated. We know that our derived level structure

follows from relative Cartier divisors. But what if we choose other moduli problems, it

follows that different moduli problems will generating different cohomology theories. We

want find a relation between theses moduli problems and those representable spectra.
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APPENDIX A CHROMATIC HOMOTOPY THEORY

We review some basic definitions and results in chromatic homotopy theory. More

details can be found in[51-55] .

A.1 Formal Groups

A formal scheme is a functor the category of profinite commutative rings (completion

of some commutative ring) to the category of sets, which carries every profinite ring R to

its R-points 𝑋(𝑅)
A formal group is a formal scheme𝐺 which admits a group structure,𝑚 ∶ 𝐺×𝐺 → 𝐺.

G is a functor, so 𝑚 is actually a natural transformation from the product functor 𝐺 × 𝐺
to functor 𝐺,i.e, for every object 𝑅 ∈ ProCommR, there is a binary operation(𝐺 × 𝐺)(𝑅) = 𝐺(𝑅) × 𝐺(𝑅) → 𝐺(𝑅)

In algebraic topology, we usually consider dimension one affine group schemes. One

can see[56] and[57] for more discussions about formal groups.

Suppose that we have a complete local ring R and with char𝑅 = 𝑝 > 0. Let 𝐶𝑅
denote the category of local Noetherian R-algebras. For a functor𝐹 ∶ 𝐶𝑅 → Set,
the elements of 𝐹(𝐴) will be called the A-valued points of 𝐹. And we define the formal
affine line by 𝔸̂1(𝐴) ∶= 𝐶𝑅(𝑅[[𝑡]], 𝐴)
for any 𝐴 ∈ 𝐶𝑅. It’s easy to see that 𝔸̂1(𝐴) is isomorphic to the maximal ideal of A.
Definition A.1.1: A commutative one-dimensional formal group over R is a functor𝐹 ∶ 𝐶𝑅 → Ab

which is isomorphic to 𝔸̂1.
It is known that the morphisms between affine schemes is unique determined by the

morphisms of their global sections, i.e. ring of functions. If G is a group scheme over

79



APPENDIX A CHROMATIC HOMOTOPY THEORY

Spec𝑅 and has group multiplication𝑚 ∶ 𝐺 × 𝐺, we have a ring morphism𝒪𝐺 → 𝒪𝐺×𝐺 ≅ 𝒪𝐺 ⊗ 𝒪𝐺
The ring of functions 𝒪𝐺 is just 𝑅[[𝑋]] and 𝒪𝐺 ⊗ 𝒪𝐺 is 𝑅[[𝑋]] ⊗𝑅 𝑅[[𝑌]] = 𝑅[[𝑋, 𝑌]]. So
the multiplication is actually determined by𝜙 ∶ 𝑅[[𝑋]] → 𝑅[[𝑋, 𝑌]]𝑋 → 𝑓(𝑋, 𝑌)
So we find that the multiplication of a dimension one group scheme is actually determined

by a former power series 𝑓(𝑋, 𝑌) over 𝑅.
A coordinate X on F is a natural isomorphism 𝑥 ∶ 𝐹 → 𝔸̂1 = 𝔸̂1𝑅 of functors. It gives

an isomorphism Γ(𝐹, 𝒪𝐹) ≅ 𝑅[[𝑋]].
Formal Group Laws

Definition A.1.2: Suppose that we have a ring 𝑅 and 𝐹 ∈ 𝑅[[𝑥1, 𝑥2]] , we call f a formal
group law over R if it satisfying the following conditions：

• 𝐹(𝑥, 0) = 𝐹(0, 𝑥) = 𝑥 (Identity)
• 𝐹(𝑥1, 𝑥2) = 𝐹(𝑥2, 𝑥1) (Commutativity)
• 𝐹(𝐹(𝑥1, 𝑥2), 𝑥3) = 𝐹(𝑥1, 𝐹(𝑥2, 𝑥3)) (Associativity) If 𝑅 is a graded ring, we re-

quire 𝐹 to be homogeneous of degree 2 where |𝑥1| = |𝑥2| = 2.
Theorem A.1.3: There is a universal formal group law 𝐹𝑢𝑛𝑖𝑣(𝑥, 𝑦) ∈ 𝐿[[𝑥, 𝑦]] over a
ring 𝐿, such that for any other formal group law 𝐹(𝑥, 𝑦) ∈ 𝑅[[𝑥, 𝑦]] over a ring 𝑅, there is
a ring morphism 𝑓 ∶ 𝐿 → 𝑅 such that 𝑓∗(𝐹𝑢𝑛𝑖𝑣(𝑥, 𝑦)) = 𝐹(𝑥, 𝑦)
Proof: We let 𝐿 = ℤ[𝑐𝑖𝑗]/ ∼, where ∼ stands for a equivalence relation of 𝑥𝑖𝑗 given by
the condition of formal group law. And we define𝐹𝑢𝑛𝑖𝑣(𝑥, 𝑦) =∑𝑐𝑖𝑗𝑥𝑖𝑦𝑗
So for any other formal group Law 𝐹(𝑥, 𝑦) = ∑𝑎𝑖𝑗𝑥𝑖𝑦𝑗 ∈ 𝑅[[𝑥, 𝑦]] over a ring 𝑅, we
define a ring morphism 𝑓 ∶ 𝐿 → 𝑅, 𝑐𝑖𝑗 ↦ 𝑎𝑖𝑗
Clearly we have 𝑓∗𝐹𝑢𝑛𝑖𝑣 = 𝐹 ∎
Theorem A.1.4: (Lazard’s Theorem) 𝐿 ≅ ℤ[𝑡1, 𝑡2,⋯], where each 𝑡𝑖 has degree 2i.
Proof: See[58] . ∎
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Hights of Formal Groups

Definition A.1.5: Let 𝑓(𝑥, 𝑦) ∈ 𝑅[[𝑥, 𝑦]] be a formal group law over a commutative

ring 𝑅. For every non-negative integer 𝑛, we define the n-series [𝑛](𝑡) ∈ 𝑅[[𝑡]] as
（1）If 𝑛 = 0,we set [𝑛](𝑡) = 0.
（2）If 𝑛 > 0, we set [𝑛](𝑡) = 𝑓([𝑛 − 1](𝑡), 𝑡).
It can be prove that the n-series [𝑛](𝑡) of a formal group law determine a homomor-

phism from 𝑓 to itself, i.e., we have 𝑓([𝑛](𝑥), [𝑛](𝑦)) = [𝑛]𝑓(𝑥, 𝑦).
Proposition A.1.6: Suppose that R is a commutative ring, 𝑝 = 0 in R and f is a formal

group law over R, then s 𝑝[𝑡] is either 0 or 𝜆𝑡𝑝𝑛 + 𝑂(𝑡𝑝𝑛+1) for an integer 𝑛 > 0.
Proof: See[54]Lecture 12 . ∎
Definition A.1.7: Suppose we have a commutative ring R and F is a formal group law

over R . Let 𝑣𝑛 denote th coefficient of 𝑡𝑃𝑛 in the p-series of F. We call F has height≤ 𝑛 if𝑣𝑖 = 0 fro 𝑖 < 𝑛, and we call f has height exactly n if it has height≤ 𝑛 and the coefficient𝑣𝑛 is invertible.
Example A.1.8: For the formal group law 𝐹(𝑥, 𝑦) = 𝑥+𝑦+𝑥𝑦, its n-series is [𝑛](𝑡) =(1 + 𝑡)𝑛 − 1. If 𝑝 = 0 in R, then [𝑝](𝑡) = (1 + 𝑡)𝑝 − 1 = 𝑡𝑝, so F is height 1.
Example A.1.9: For the formal group law 𝐹(𝑥, 𝑦) = 𝑥 + 𝑦, if 𝑝 = 0 in R. Its p-series[𝑝](𝑡) = 0, so f has infinite height.

There is a geometric interpretation of the height of a formal group. Let ℱ ∶ Alg𝑅 →
Ab be a height n formal group. Then ℱ[𝑝] = ker(ℱ 𝑝→ ℱ) is representable by a finite flat
group scheme of rank 𝑝𝑛. And moreover, if we assume ℱ is defined by a formal group

law 𝑓(𝑥, 𝑦) whose p-series [𝑝](𝑡) = 𝜆𝑝𝑡𝑛 + ⋯ where 𝜆 is invertible. Then we haveℱ[𝑝] = Spec𝑅[[𝑡]]/(𝜆𝑡𝑝𝑛 + ⋯).
Example A.1.10: We consider the formal multiplicative group ℱ, then ℱ[𝑝] is ex-
actly the group scheme 𝜇𝑝, defined by 𝜇𝑝(𝐴) = 𝑎 ∈ 𝐴, 𝑎𝑝 = 1, and we have 𝜇𝑝 =
Spec𝑅[𝑎]/(𝑎𝑝 − 1) which has rank p.
A.2 Complex Oriented Cohomology Theories

Suppose that E is a general cohomology theory, we say E is multiplicative if there is

a map 𝐸𝑝(𝑋)⊗ 𝐸𝑞(𝑌) → 𝐸𝑝+𝑞(𝑋) for every topological space and every integers 𝑝, 𝑞.
Definition A.2.1: Amultiplicative cohomology theory 𝐸 is even periodic if 𝐸𝑖(𝑝𝑡) = 0
whenever 𝑖 is odd and there exists 𝛽 ∈ 𝐸−2(𝑝𝑡) such that multiplication with 𝛽 induces

an isomorphism 𝐸𝑛(−) ≅ 𝐸𝑛−2(−) for all n.
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Definition A.2.2: A complex orientation of 𝐸 is a natural, multiplicative, collection of

Thom classes 𝒰𝑉 ∈ 𝐸2𝑛(𝑇ℎ(𝑉)) for all complex vector bundles 𝑉 → 𝑋, where dimℂ𝑉 =𝑛, and satisfying the following condition
• 𝑓∗(𝒰𝑉) = 𝒰𝑓∗𝑉 for 𝑓 ∶ 𝑌 → 𝑋
• 𝒰𝑉1⊗𝑉2 = 𝒰𝑉1 ∘ 𝒰𝑉2 .
• For any 𝑥 ∈ 𝑋, the class 𝒰𝑉 maps to 1 under the composition𝐸2𝑛(𝑇ℎ(𝑉)) → 𝐸2𝑛(𝑇ℎ(𝑉𝑥)) ≊ 𝐸2𝑛(𝑆2𝑛) ≊ 𝐸0(𝑝𝑡).
We know that 𝐸2(ℂ𝑃∞) is set of morphisms of spectrum 𝑒 ∶ Σ∞−2(ℂ𝑃∞) → 𝐸.

If there is a unit map 𝑒 ∶ 𝕊 → 𝐸, then E is complex orientable if the map e factor as a

composition 𝕊 ≃ Σ∞−2ℂ𝑃1 → Σ∞−2ℂ𝑃∞ → 𝐸
By using the Atiyah-Hirzebruch spectral sequence 𝐻𝑝(𝑋, 𝐸𝑞(∗)) ⇒ 𝐸𝑝+𝑞(𝑋). The com-
plex orientation of 𝐸 determines an isomorphism𝐸∗(ℂℙ∞) ≅ 𝐸∗(∗)[[𝑡]] = (𝜋∗𝐸)[[𝑡]]
for some generator 𝑡 ∈ 𝐸2(∗). Furthermore given such an isomorphism, is equivalent to
a complex orientation. In particularly, any even periodic theory is complex orientable.

We know that there is a multiplication mapℂ𝑃∞ × ℂ𝑃∞ → ℂ𝑃∞
(We can view ℂ∞ as function space ℂ[𝑥], then we get a commutative multiplication

on ℂ𝑃∞). Still using the Atiyah-Hirzebruch spectrtal sequence, we can get 𝐸∗(ℂ𝑃∞ ×ℂ𝑃∞) ≅ (𝜋∗𝐸)[[𝑥, 𝑦]]. We then get a map(𝜋∗𝐸)[[𝑡]] ≅ 𝐸∗(ℂ𝑃∞) → 𝐸∗(ℂ𝑃∞ × ℂ𝑃∞) ≅ (𝜋∗𝐸)[[𝑥, 𝑦]]
We let 𝑓(𝑥, 𝑦) ∈ (𝜋∗𝐸)[[𝑥, 𝑦]] denote the image of t under this map. It is easy to prove
that 𝑓(𝑥, 𝑦) is a formal group law.
Complex Cobordism Spectrum MU

Let 𝐸𝑈(𝑛) → 𝐵𝑈(𝑛) be the universal bundle over the classifying space 𝐵𝑈(𝑛),
then we define spectrum𝑀𝑈(𝑛) to be Σ∞−2𝑛𝐵𝑈(𝑛)/𝐵𝑈(𝑛−1) which 𝐵𝑈(𝑛)/𝐵𝑈(𝑛−1)actually is 𝑇ℎ(𝐸𝑈(𝑛)), the Thom space of 𝐸𝑈(𝑛).

And we define a new spectrum 𝑀𝑈 = lim𝑀𝑈(𝑛). This spectrum 𝑀𝑈 is called the

complex cobordism. The n-th homotopy group is just the bordsim group of n-dimensional
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complex manifold. MU admits a 𝐸∞ structure since there is a diagram commutes up to

homotopy for any complex oriented spectrum.𝑀𝑈(𝑚) ×𝑀𝑈(𝑛) !!

""

𝑀𝑈(𝑚 + 𝑛)
""𝐸 ⊗ 𝐸 !! 𝐸

Theorem A.2.3: (Quillen’s theorem) MU is the universal complex oriented cohomol-

ogy theory, i.e., 𝐿 ≅ 𝜋∗MU

Proof: See[4] . ∎
Construction of Even Periodic Cohomology Theories

Suppose that E is a complex oriented cohomology theory. Then 𝜋∗𝐸 is an algebra

over the Lazard ring 𝐿 = 𝜋∗𝑀𝑈. So it is natural to ask a question: if we have a ring
map 𝐿 → 𝑅, how can we construct a general cohomology theory E which is complex

oriented such that 𝑅 = 𝜋∗𝐸. There is a natural way to construct such cohomology theory
by defining 𝐸∗(𝑋) = 𝑀𝑈∗(𝑋)⊗𝜋∗𝑀𝑈 𝑅 = 𝑀𝑈∗(𝑋)⊗𝐿 𝑅
However the axiom of cohomology theory require some exactness of a certain sequence,

but the functor −⊗𝐿 𝑅 general doesn’t preserve exact sequence. If R is flat over L, then

there is no problem. But this condition is too restrictive，because the Lazard ring is too

big. there is a weaker condition proved by Landweber.

Theorem A.2.4: (The Landweber Exact Functor Theorem ) Let𝑀 be a module over

the Lazard ring L. Then 𝑀 is flat overℳ𝐹𝐺 if and only if for every prime number 𝑝, the
elements 𝑣0 = 𝑝, 𝑣1, 𝑣2,⋯ ∈ 𝐿 form a regular sequence for𝑀.
Proof: See[5] . ∎
Example A.2.5: Let 𝑅 = ⨁𝑛 𝐿⊗𝑛 = ⨁𝑛 𝐿 ≅ 𝐿[𝛽±1], and 𝐿 → 𝑅 = 𝐿[𝛽±1] be the
obvious map. We can define a cohomology theory 𝐸𝑅(𝐸𝐿)∗(𝑋) = 𝑀𝑈∗(𝑋)⊗𝐿 𝐿[𝛽±] ≅ 𝑀𝑈∗(𝑋)[𝛽±1].
This spectrum is called the periodic complex bordism spectra and is denoted by MP.

Example A.2.6: Suppose that R is a commutative ring over L and R is an invertible L

module, and Let f be a formal group law over the graded commutative ring⨁𝑛 𝑅⊗𝑛 such
that associated ring morphism 𝐿 → ⨁𝑛 𝑅⊗𝑛 satisfying Landweber’s criterion. Then we
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get a homology theory(𝐸𝑅)∗(𝑋) = 𝑀𝑈∗(𝑋)⊗𝐿 𝑅[𝛽±1] ≃ 𝑀𝑃∗(𝑋) ⊗𝐿 𝑅.
In particular, we have (𝐸𝑅)0(𝑋) ⊗𝐿 𝑅 = 𝑀𝑈even(𝑋) ⊗𝐿 𝑅.
A.3 Morava E-theories and Morava K-theories

Lubin-Tate Theory

Definition A.3.1: Suppose that k is filed , an infinitesimal thickening of k is a surjective
map 𝜙 ∶ 𝐴 → 𝑘 of commutative rings and its kernel𝑚𝐴 = ker(𝜙) satisfying: 𝑚𝑛𝐴 = 0 for𝑛 ≫ 0 and𝑚𝑛𝐴/𝑚𝑛+1𝐴 is a finite dimensional k-vector space .

Definition A.3.2: (Deformation of formal groups) Suppose that 𝐺0 be a formal group
over a perfect field k and char(𝑘) = 𝑝, a deformation of 𝐺0 to 𝑅 is a triple (𝐺, 𝑖, Ψ) such
that 𝐺 ∈ FG(𝑅), 𝑖 ∶ 𝑘 → 𝑅/𝑚 is an isomorphism andΨ ∶ 𝜋∗𝐺 ≅ 𝑖∗𝐺0 is an isomorphism
of formal groups over 𝑅/𝑚.
Theorem A.3.3: (Lubin-Tate) There is a universal formal group 𝐺 over 𝑅 =𝑊(𝑘)[[𝑣1,⋯ , 𝑣𝑛−1]] in the following sense: for every infinitesimal thickening A of k,

there is a bijective map

Hom/𝑘(𝑅, 𝐴) → Def(𝐴).
Proof: See[59] . ∎
Morava E-Theories

Let 𝑘 be a perfect field and char𝑘 = 𝑝, 𝑓 is a height n formal group law. By Lubin
-Tate’s theorem, the deformation of by is classified by the ring 𝑅 = 𝑊(𝑘)[[𝑣1,⋯ , 𝑣𝑛−1]].
Notice that this universial deformation over 𝑅 is Landweber-exact: the sequence 𝑣0 =𝑝, 𝑣1,⋯ , 𝑣𝑛−1 is regular, and 𝑣𝑛 has invertible image in 𝑅/(𝑣1,⋯ , 𝑣𝑛). So using the

construction in last section, there is a even periodic spectrum 𝐸(𝑛) with𝜋∗𝐸(𝑛) = 𝑊(𝑘)[[𝑣1,⋯ , 𝑣𝑛−1]][𝛽±1]
where 𝛽 has degree 2. It’s called Morava E-theory. The cohomology theory 𝐸(𝑛) not
only depends on n, but also a choice of k and f .

Theorem A.3.4: (Goerss-Hopkins-Miller [14] ) Those spectra E(n) are 𝐸∞ ring spectra.
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Morava K-Theories

Suppose that p is a prime number, we can consider the p-local complex cobordism

spectrum 𝑀𝑈(𝑝) whose homotopy groups are 𝜋∗𝑀𝑈(𝑝) ≃ ℤ(𝑝)[𝑡1,⋯ , ], and we may as-
sume that 𝑣𝑖 = 𝑡𝑝𝑖−1 for each 𝑖 > 0.

For 𝑘 ∈ ℤ, write 𝑀(𝑘) for the cofiber of the map ∑2𝑘 𝑀𝑈(𝑝) → 𝑀𝑈(𝑝) given by
the multiplication by 𝑡𝑘. One can prove that each 𝑀(𝑘) admits a unital and homotopy
associative multiplication .

Let 𝐾(𝑛) denote the smash product𝑀𝑈(𝑝)[𝑣−1𝑛 ] ⊗𝑀𝑈(𝑝) ⨂𝑘≠𝑝𝑛−1𝑀(𝑘).
This spectrum 𝐾(𝑛) is calledMorava K-theory. It is obvious that the homotopy groups

of 𝐾(𝑛)are 𝜋∗𝐾(𝑛) ≅ (𝜋∗𝑀𝑈(𝑝))[𝑣−1𝑛 ]/(𝑡0, 𝑡1,⋯ 𝑡𝑝𝑛−2, 𝑡𝑝𝑛,⋯) ≅ 𝔽𝑝[𝑣±1𝑛 ]
where 𝑣𝑛 has degree 2(𝑝𝑛 − 1).
Elliptic Cohomology

The elliptic curve is an very important object in arithmetic geometry. It is the most

nontrival example in algebraic geometry. But it still can gives us some interesting things.

One can see[60] for information of elliptic curves and[32] for the moudli stack and level

structures of the elliptic curves. If we do completetion for an elliptic curve, then we get

an one dimensional formal group. Does this formal group can give us a good cohomology

theory.

Definition A.3.5: An elliptic cohomology theory is a generalized cohomology theory
E, which is representated by a spectrum E which satisfies.

（1）E is an even periodic spectrum.

（2）There exists a elliptic curve C over 𝜋0𝐸.
（3）There is an isomorphism of formal groups, 𝜙 ∶ Spf𝜋0(𝐸ℂ𝑃∞) ≅ 𝐶̂.

We denote this data as (𝐸, 𝐶𝜙)
Theorem A.3.6: (Goerss-Hopkins-Miller Theorem [14] ) There is a sheaf 𝒪𝑡𝑚𝑓 of𝐸∞-ring spectra over the stack ℳ for the etale topology. For any étale morphism𝑓 ∶ Spec(𝑅) → ℳ there is a natural structure of elliptic spectrum (𝒪𝑡𝑚𝑓(𝑓), 𝐶𝑓, 𝜙),
satisfying 𝜋0𝒪𝑡𝑚𝑓(𝑓) = 𝑅, and 𝐶𝑓 is the generalized elliptic curve over R classified by f.

Let 𝑇𝑚𝑓 = 𝒪𝑡𝑚𝑓(ℳ →ℳ), the spectrum topological modular forms.
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Let 𝑇𝑀𝐹 = 𝒪𝑡𝑚𝑓(ℳ →ℳ), the periodic spectrum of topological modular forms

Let 𝑡𝑚𝑓 = 𝜏≥0𝒪𝑡𝑚𝑓(ℳ̄𝑒𝑙𝑙) be the connect cover of Tmf.
We know that the modular forms can be viewed as global sections of the moduli stack

of elliptic curve over complex planeℂ. And it is easy to see that if we take homotopy group
of the topological modular forms , then we can get the classical modular forms.

The construction of topological modular forms is complicated, one can see[61] for

more details.

A.4 Chromatic Localizations

Suppose that we have a spectrum E , a spectrum F is called E-acyclic if 𝐹 ⊗ 𝐸 is 0,

we denote 𝐺𝐸 the collection of E-acyclic spectra. And we say spectrum is E-local if every

map for each 𝑌 ∈ 𝐺𝐸, the map 𝑌 → 𝑋 is nullhomotopic. For each 𝑋 ∈ Sp, we have a

cofiber sequence 𝐺𝐸(𝑋) → 𝑋 → 𝐿𝐸(𝑋).
where 𝐿𝐸(𝑋) is E-local, and 𝐺𝐸(𝑋) is E-acyclic. So we have define a functor𝐿𝐸 ∶ Sp → 𝐿𝐸Sp,
this functor is called Bousfield localizationfunctor . And the map 𝑋 → 𝐿𝐸(𝑋) is deter-
mined by following two properties.

（1）The spectrum 𝐿𝐸(𝑋) is E-local.
（2）The map 𝑋 → 𝐿𝐸(𝑋) is an E-equivalence.

Example A.4.1: Bousfield Localization with respect to Morava E-theories 𝐸(𝑛), 𝐿𝐸(𝑛).
And one can prove that 𝐿𝐸(𝑛) behaves like restriction to the open substackℳ≤𝑛𝐹𝐺 ⊂ ℳ𝐹𝐺×
Specℤ(𝑝).
Example A.4.2: Bousfield Localization with 𝐾(𝑛), 𝐿𝐾(𝑛). One can prove that 𝐿𝐾(𝑛) is
the completion alongℳ𝑛𝐹𝐺 ⊂ ℳ𝐹𝐺 × Specℤ(𝑝).

Suppose that we have two homology theory 𝐸 and 𝐸′, we say they are Bousfield
equivalent, if for every spectrum, the homology group𝐸∗(𝑋) vanishes if and only if 𝐸′∗(𝑋)
vanishes. It can be prove that the spectrumE(n) is Bousfield equivalent to𝐸(𝑛−1)×𝐾(𝑛).
Here by convention that 𝐸(0) ≃ 𝐻Q[𝛽±], which is Bousfield equivalent to 𝐻Q. This is
also equivalent to say that 𝐿𝐸(𝑛) = 𝐿𝐾(𝑛)×𝐸(𝑛−1).
Definition A.4.3: Suppose that G is commutative group, then the Moore spectrum MG

of G is the spectrum characterized by having the following homotopy groups:
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（1）𝜋<0𝑀𝐺 = 0;
（2）𝜋0(𝑀𝐺) = 𝐺;
（3）𝐻>0(𝑀𝐺, 𝑍) = 𝜋>0(𝑀𝐺 ∧ 𝐻𝑍) = 0.
A basic special case of E-Bousfield localization of spectra is given by 𝐸 = 𝑀𝐴 the

Moore spectrum of an abelian group A. For 𝐴 = ℤ(𝑝), this is p-localization, for 𝐴 = 𝔽𝑝,
this is p-completion, for 𝐴 = Q, is the rationalization of X.

Example A.4.4: The p-localization of a spectrum X:𝐿𝑀ℤ(𝑝)𝑋 ≃ 𝑀ℤ(𝑝) ∧ 𝑋.
We denote this as 𝐿𝑀ℤ(𝑝)𝑋 ≃ 𝑋(𝑝).
Example A.4.5: The p-completion of a spectrum X:𝐿𝑀𝔽𝑝𝑋 ≃ [Ω𝑀ℤ/𝑝∞, 𝑋].
where ℤ/𝑝∞ = ℤ[1/𝑝]/ℤ. We denote this spectrum as 𝑋∧𝑝 .
Example A.4.6: The rationalization of a spectrum X:𝐿𝑀Q𝑋 = 𝑋 ∧ 𝐿Q𝑆0 = 𝑋 ∧ 𝑀Q = 𝑋 ∧ 𝐻Q
We denote this spectrum as 𝑋Q.
Periodicity Theorem and Thick Subcategories

Definition A.4.7: Suppose that we have a p-local finite spectrum X, we say X has type

n if 𝐾(𝑛)∗(𝑋) ≠ 0 and 𝐾(𝑚)∗(𝑋) = 0 for 𝑚 < 𝑛. And we let 𝒞≥𝑛 be the category type≥ 𝑛 p-local spectra which
Suppose that we have a p-local finite spectrum, and let 𝑛 ≥ 1. A 𝑣𝑛-self map of X

is a map 𝑓 ∶ Σ𝑘𝑋 → 𝑋 which satisfying:

（1）𝐾(𝑛)∗𝑋 → 𝐾(𝑛)∗𝑋 is an isomorphism induced by f.

（2）For𝑚 ≠ 𝑛, 𝐾(𝑚)∗𝑋 → 𝐾(𝑚)∗𝑋 which is induced by f is nilpotent.

Theorem A.4.8: (Devinatz-Hopkins-Smith[62] ) For a type ≤ 𝑛 finite p-local spectrum
X, it admits a 𝑣𝑛 self map.

Suppose that 𝒞 is a full subcategory of finite p-local spectra. We call 𝒞 is thick

subcategory if it contains the final object, closed under fiber and cofiber, and is stable

under retract.

Theorem A.4.9: (Thick Subcategory Theorem [62] ) Suppose that 𝒯 is a thick subcat-

egory of Sp(𝑝). Then 𝒯 = 𝒞≥𝑛 for some 0 ≤ 𝑛 ≤ ∞.
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The Chromatic Filtration

Let 𝐿𝑛(𝑋) = 𝐿𝐸(𝑛)(𝑋), then we have the following chromatic tower.𝑀𝑛(𝑋)
""

𝑀2(𝑋)
""

𝑀1(𝑋)
""

𝑀0(𝑋) = 𝐻ℚ ∧ 𝑋
""⋯ !! 𝐿𝑛(𝑋) !!⋯ !! 𝐿2(𝑋) !! 𝐿1(𝑋) !! 𝐿0(𝑋) = 𝐻ℚ ∧ 𝑋

where𝑀𝑛(𝑋) are defined by the fiber .𝑀𝑛(𝑋) → 𝐿𝑛(𝑋) → 𝐿𝑛−1(𝑋)
The following chromatic convergence theorem is proved by Hopkins-Ravenel.

Theorem A.4.10: (Chromatic Convergence Theorem [63] ) Suppose that X is a finite

spectra, then the map 𝑋 → lim𝑛 𝐿𝑛𝑋 is an equivalence.

Suppose that X is a spectrum, we say Xmonochromatic of height n if it is 𝐸(𝑛)-local
and 𝐸(𝑛−1)-acyclic. We letℳ𝑛 denote the category monochromatic of height n spectra.
There is an equivalence 𝐿𝐾(𝑛) ∶ ℳ𝑛 ⇌ K(n) local spectra ∶ 𝑀𝑛.
See[54]Lecture 34 for details.

A.5 Power Operations

Suppose that we have 𝑅 ∈ CAlg, and 𝑀 ∈ Mod𝑅 , then we can define a free com-
mutative R-algebra on M:ℙ𝑅𝑀 = ⋁𝑚≥0ℙ𝑚𝑅 (𝑀) ≅ ⋁𝑚≥0(𝑀 ∧𝑅 ⋯ ∧𝑅 𝑀)ℎΣ𝑚.
And if A is commutative R-algebra , then we have a unit map𝜇 ∶ ℙ𝑅𝐴 → 𝐴.
So the question is how to build a power operation? Let us study the general case.

If A is a commutative R -algebra.

（1）We can choose a 𝛼 ∶ 𝑅 → ℙ𝑚𝑅 (𝑅) ≅ 𝑅 ∧ 𝐵Σ+𝑚
（2）For any element 𝑥 ∈ 𝜋0𝐴 which is represented by 𝑓𝑥 ∶ 𝑅 → 𝐴.
（3）We define a element 𝑄𝛼(𝑥) ∈ 𝜋0𝐴 which is represented by the following

composite 𝑅 𝛼⟶ ℙ𝑚𝑅 (𝑅) ℙ𝑚𝑅 (𝑓𝑥)⟶ ℙ𝑚𝑅 (𝐴) ⊂ ℙ𝑅(𝐴) 𝜇⟶ 𝐴
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So we have define a map 𝑄𝛼 ∶ 𝜋0𝐴 → 𝜋0𝐴. And we can also define 𝑄𝛼 ∶ 𝜋𝑞𝐴 → 𝜋𝑞+𝑟𝐴
if 𝛼 ∶ Σ𝑞+𝑟𝑅 → ℙ𝑚𝑅 (Σ𝑞𝑅) ≅ 𝑅 ∧ 𝐵Σ𝑞𝑉𝑚𝑚 .
Example A.5.1: (Steenrod Operations) Let𝐻 = 𝐻𝔽2 is the mod 2Maclane spectrum, if

A is a H-algebra, then 𝜋∗𝐴 is a graded commutative 𝔽2-algebra generated by 𝑄𝑟 ∶ 𝜋𝑞𝐴 →𝜋𝑞+𝑟𝐴 and satisfying relations

• 𝑄𝑟(𝑥 + 𝑦) = 𝑄𝑟(𝑥) + 𝑄𝑟(𝑦).
• 𝑄𝑟(𝑥𝑦) = ∑𝑄𝑖(𝑥)𝑄𝑟−𝑖(𝑦).
• 𝑄𝑟𝑄𝑠(𝑥) = 𝜖𝑖,𝑗𝑟,𝑠𝑄𝑖𝑄𝑗(𝑥) if 𝑟 > 2𝑠, where 𝑖 ≤ 2𝑗.

ExampleA.5.2: (PowerOperations inK-theory) If K is the complexK-theory spectrum,

and A is a p-complete K-algebra, we have Adams operations 𝜓𝑝 ∶ 𝜋0𝐴 → 𝜋0𝐴, they
satisfying relations:

• 𝜓𝑝(𝑥 + 𝑦) = 𝜓𝑝(𝑥) + 𝜓𝑝(𝑦).
• 𝜓𝑝(𝑥) ≡ 𝑥𝑝 mod 𝑝.
• 𝜓(𝑥𝑦) = 𝜓(𝑥)𝜓(𝑦).
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APPENDIX B HOMOTOPY COHERENT MATHEMATICS

We will review basic setting of homotopy coherent mathematics, including ∞-
categories, homotopy limits and homotopy colimits. Then we give an introduction of

higher algebra to help readers being familiar with the 𝔼∞-ring context.
B.1 Fundamental Language of ∞-Categories
Definition B.1.1: A category 𝒞 is called a simplicial category if mapping spaces of any
pairs of objects are simplicial sets.

If 𝒞 is a simplicial category, we can define new category |𝒞|as
（1）Objects of |𝒞| are objects of 𝒞.
（2）Map|𝒞|(𝑋, 𝑌) = |Map𝒞(𝑋, 𝑌)| .

Definition B.1.2: Suppose that 𝒞 be a simplicial categories, its homotopy categories ℎ𝒞
is defined by

（1）Objects ℎ𝒞 are objects of 𝒞
（2）For 𝑋, 𝑌 ∈ 𝒞, then we define Mapℎ𝒞(𝑋, 𝑌) = 𝜋0|Hom(𝑋, 𝑌)|
Let 𝑃𝑖,𝑗 = {𝐼 ⊆ [𝑖, 𝑗]|𝑖, 𝑗 ∈ 𝐼}

We now define a category 𝐶[Δ𝑛] as follows:
• objects: the numbers 0, 𝑞,⋯ , 𝑛
• morphisms

Map𝐶[Δ𝑛](𝑖, 𝑗) = { 𝑁𝑃𝑖,𝑗, if 𝑖 ≤ 𝑗∅, if 𝑖 > 𝑗
so there is a functor 𝐶[Δ•] ∶ Δ → 𝑠Cat
Definition B.1.3: The homotopy coherent nerve 𝑁Δ(𝒞) of a simplicial category 𝒞 is

the simplicial set 𝑁Δ(𝒞)• = hom𝑠Cat(𝐶[Δ•], 𝒞).
So 𝑁Δ is actually a functor form simplicial categories to simplicial sets𝑁Δ ∶ 𝑠Cat → 𝑠Set.
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On the other side, we can extend the cosimplicial object Δ → 𝑠Cat ∶ [𝑛] ↦ 𝐶[Δ𝑛] to
a colimit-preserving functor 𝐶[−] ∶ 𝑠Set → 𝑠Cat. For a simplicial set, we define𝐶[𝑋] = colimΔ/𝑋𝐶[−] ∘ 𝑝
where p is the canonical functor.

Theorem B.1.4: There is an adjunction𝐶[−] ∶ 𝑠Set ⇌ 𝑠Cat ∶ 𝑁Δ
Proposition B.1.5: Suppose that 𝒞 be a simplicial category such that for any two ob-

jects 𝑋, 𝑌 ∈ 𝒞, Map𝒞(𝑋, 𝑌) is a Kan complex. We have the simplical nerve 𝑁(𝒞) is an∞-category.
The counit of this adjunction can be described by the following theorem.

Theorem B.1.6: If 𝒞 is a topological category. Then the counit map|Map𝐶|𝑁(𝒞)|(𝑋, 𝑌)| → Map𝒞(𝑋, 𝑌)
is a weak homotopy equivalence of topological spaces.∞-Categories

We recall that a kan complex is a simplical set which satisfies for 0 ≤ 𝑘 ≤ 𝑛 and any
morphism 𝑓 ∶ ∧𝑛𝑘 → 𝑋, there exists a morphism 𝑓′ ∶ △𝑛 → 𝑋, such that the composition
of 𝑖 ∶ ∧𝑛𝑘 → △𝑛 and 𝑓′ is equal to 𝑓, this means that there exists a commutative triangle∧𝑛𝑙 𝑓 !!𝑖

""

𝑋
△𝑛𝑓′

%%

Definition B.1.7: An∞-catgory is a simpicial set 𝑋 which satisfies for any 0 < 𝑘 < 𝑛
and any morphism 𝑓 ∶ ∧𝑛𝑘 → 𝑋, there exists a morphism 𝑓′ ∶ △𝑛 → 𝑋, such that the
composition of 𝑖 ∶ ∧𝑛𝑘 → △𝑛 and 𝑓′ is equal to 𝑓, this means that there is a commutative
triangle ∧𝑛𝑙 𝑓 !!𝑖

""

𝑋
△𝑛𝑓′

%%

And this is also been called a weak Kan complex.

Given an ∞-category 𝒞, objects are the vertices 𝑥 ∈ 𝒞0, and the morphism are the

1-simplicies 𝑓 ∈ 𝒞1. The face map 𝑠 = 𝑑1 ∶ 𝒞1 → 𝒞0 is the source map, and 𝑡 = 𝑑0 ∶
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APPENDIX B HOMOTOPY COHERENT MATHEMATICS𝒞1 → 𝒞0 is the target map. We often write 𝑓 ∶ 𝑥 → 𝑦, if 𝑠(𝑓) = 𝑥 and 𝑡(𝑓) = 𝑦. We

define mapping space of hom𝒞(𝑥, 𝑦) from x to y to be the fiber

hom𝒞(𝑥, 𝑦) !!

""

𝒞1(𝑠,𝑡)
""∗ (𝑥,𝑦) !! 𝒞0 × 𝒞0

Definition B.1.8: Suppose that we have 𝑓, 𝑔 ∶ 𝑥 → 𝑦 in an ∞-category 𝒞, we say
f and g are homotopic (𝑓 ≃ 𝑔) if there is a 2 simplex 𝜎 ∶ Δ → 𝒞 whose boundary𝜕𝜎 = (𝑑0𝜎, 𝑑1𝜎, 𝑑2𝜎) is given by (𝑔, 𝑓, 𝑖𝑑𝑥), i.e., we have the following diagram𝑥 𝑔

##❄
❄❄

❄❄
❄❄

❄

𝑥Id𝑥
%%⑧⑧⑧⑧⑧⑧⑧⑧ 𝑓 !! 𝑦

Suppose that we have a∞-category 𝒞, then we can define a new category ℎ𝒞 whose
objects are the same as 𝒞, and whose morphism are the homotopy class of morphisms in𝒞. Compositions and identities are given by[𝑔] ∘ [𝑓] ∶= [𝑔 ∘ 𝑓] and 𝑖𝑑𝑥 ∶= [𝑖𝑑𝑥] = [𝑠0𝑥].
Construction of ∞-categories
Definition B.1.9: Suppose that we have two simplicial sets K and L, the join 𝐾 ⋆ 𝐿 of
K and L is the simplicial set defined by the formula(𝐾 ⋆ 𝐿)𝑛 = 𝐾𝑛 ∪ 𝐿𝑛 ⋃𝑖+1+𝑗=𝑛𝐾𝑖 × 𝐿𝑗.

We have the following properties of joins:

（1）The partial join functors 𝐾⋆(−) ∶ 𝑠Set → 𝑠Set𝐾/ and (−)⋆𝐿 ∶ 𝑠Set → 𝑠Set𝐿/
preserves colimits.

（2）Δ𝑖 ⋆ Δ𝑗 ≅ Δ𝑖+𝑗+1
Example B.1.10: And it is not hard to prove that the nerve functor is compatible with
the join constructions, i.e.,we have a natural isomorphism𝑁(𝐴) ⋆ 𝑁(𝐵) ≅ 𝑁(𝐴 ⋆ 𝐵), 𝐴, 𝐵 ∈ Cat

If K is an arbitrary simplicial set and 𝐿 = Δ0, then we define the right cone (or called
cocone) on K to be 𝐾⊳ = 𝐾 ⋆ Δ0. And the left cone (or called cone) is defined as 𝐿⊲ =Δ0 ⋆ 𝐿
Proposition B.1.11: [29]Proposition 1.2.8.3 Suppose that we have two ∞-categories 𝒞 and

92



APPENDIX B HOMOTOPY COHERENT MATHEMATICS𝒟 ar, then the join 𝒞 ⋆ 𝒟 is also an∞-category.
Proposition B.1.12: ([29]Proposition 1.2.9.2 ) Suppose that we have two simplicial sets A
and B, let 𝑝 ∶ 𝐴 → 𝐵 be a functor, then there exists a simplicial set 𝐵/𝑝 such that there is
a natural bijection

Fun(𝐶, 𝐵/𝑝) ≅ Fun𝑝(𝐶 ⋆ 𝐴, 𝐵)
where the right-hand side denote those 𝐶 ⋆ 𝐴 → 𝐵, making the triangle𝐴

33②②
②②
②②
②② 𝑝

##❄
❄❄

❄❄
❄❄𝐶 ⋆ 𝐴 !! 𝐵

commute.

B.1.1 Straightening and Unstraightening

We know that the Grothendieck Construction establish an equivalence between𝒞at(𝑆𝑒𝑡)-valued functor on 𝒞𝑜𝑝 and categories which are fibered over 𝒞. The 𝑆𝑡+𝜙 functor
establish an∞-version of this equivalence but replace 𝒞 by a simplicial set 𝑆 and replace𝒞 by Cat△∞

Suppose that we have a simplicial set S and 𝒞 is simplicial category, let 𝐶[𝑆] denote
the coherent nerve of S. Suppose that 𝜙 ∶ 𝐶[𝑆] → 𝒞𝑜𝑝 is functor between these two

simplicial categories. Given an object 𝑋 ∈ (Set△)/𝑆. Let 𝑣 denote the cone point of 𝑋⊳.
We can view the simplicial categoryℳ = ℭ[𝑋⊳]∐ℭ[𝑋]𝒞𝑜𝑝
as a correspondence from 𝒞𝑜𝑝 to 𝑣. Then we can define a simplicial functor𝑆𝑡𝜙𝑋 ∶ 𝒞 → Set△𝐶 ↦ Mapℳ(𝐶, 𝑣)
We can regard 𝑆𝑡𝜙 as a functor from (Set△)/𝑆 to (Set△)𝒞.We refer to 𝑆𝑡𝜙 as the straight-

ening functor associated to 𝜙. In the special case 𝒞 = 𝐶[𝑆]𝑜𝑝 and 𝜙 is the identity map,

we will write 𝑆𝑡𝑆 instead of 𝑆𝑡𝜙.
Theorem B.1.13: [29]Theorem 2.2.1.2 There is an Quillen adjunction.𝑆𝑡𝜙 ∶ 𝑠Set/𝑆 ⇄ 𝑠Set𝒞 ∶ 𝑈𝑛𝜙,
n where 𝑠Set/𝑆 is endowed with the contravariant model structure, and 𝑠Set𝒞 is endowed
with the projective model structure. If 𝜙 is an equivalence, then we have (𝑆𝑡𝜙, 𝑈𝑛𝜙) is
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also an Quillen equivalence.

B.1.2 Marked Case

Suppose that we have a simplicial set S and 𝒞 is a simplicial category, let 𝐶[𝑆] denote
the coherent nerve of S. Suppose that 𝜙 ∶ 𝐶[𝑆] → 𝒞𝑜𝑝 is functor between these two

simplicial categories. Let (𝑋, ℰ) be an object of (Set+△)/𝑆. Then we can define𝑆𝑡+𝜙(𝑋, ℰ) ∶ 𝒞 → Set+△𝐶 ↦ ((𝑆𝑡𝜙𝑋)(𝐶), ℰ𝜙(𝐶))
where ℰ𝜙(𝐶) is the set of all edges of (𝑆𝑡𝜙𝑋)(𝐶) having the form𝐺∗𝑓𝑓 ∶ 𝑑 → 𝑒 is a marked edge of 𝑋, giving rise to an edge 𝑓 ∶ 𝑑 → 𝐹∗𝑒 in (𝑆𝑡𝜙𝑋)(𝐷), and𝐺 belongs to Map𝒞𝑜𝑝(𝐶, 𝐷)1

• 𝑆𝑡+𝜙 ∶ (Set+△)/𝑆 → (Set+△)𝒞 preserve colimits.
• 𝑆𝑡+𝜙 has a right adjoint 𝑈𝑛+𝜙 ∶ 𝑆𝑡+𝜙 → (Set+△)/𝑆
• (𝑆𝑡+𝜙, 𝑈𝑛+𝜙) determine a Quillen adjuction (Set+△)/𝑆 ⇄ (Set+△)𝒞

Theorem B.1.14: [29]Theorem 3.2.0.1 There is an Quillen adjunction𝑆𝑡+𝜙 ∶ (Set+Δ)/𝑆 ⇆ (Set+Δ)𝒞 ∶ 𝑈𝑛+𝜙.
where (Set+Δ)/𝑆 is endowed with the Cartesian model structure and the category (Set+Δ)/𝑆
is endowed with the projective model structure). Moreover if 𝜙 is an equivalence, then(𝑆𝑡+𝜙, 𝑈𝑛+𝜙) is a Quillen equivalence.
B.2 Limits and Colimits

We recall that in a ordinary category 𝒞, an object 𝑋 ∈ 𝒞 is final if the hom set

Hom𝒞(𝑌, 𝑋) consists of only one point for any objects 𝑌 ∈ 𝒞. And an object 𝑋 ∈ 𝒞 is

initial if Hom𝒞(𝑋, 𝑌) consists of only one point for any objects 𝑌 ∈ 𝒞.
Definition B.2.1: Suppose that 𝒞 is a simplicial set. An object 𝑋 ∈ 𝒞 is final if it is

final ℎ𝒞,
Definition B.2.2: Suppose that K is a simplicial set and for any ∞ category 𝒞. A limit

of a functor 𝑝 ∶ 𝐾 → 𝒞 is a final object in 𝒞/𝑝. A colimit of a diagram 𝑝 ∶ 𝐾 → 𝒞 is an

initial object in 𝒞𝑝/.
A∞-category is complete is admits all limits of all small diagrams, is cocomplete if

it admits all comlimits of all small diagrams.
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B.3 Presentable ∞-Category
Definition B.3.1: Let 𝒞 be an ∞-category and 𝜅 a regular cardinal. We say 𝒞 is 𝜅-
accessible if 𝒞 admits small 𝜅-filtered colimits and contains an essentially small full sub-
category 𝒞" ⊆ 𝒞 which consists of 𝜅-compact objects and generate 𝒞 under small 𝜅-
filtered colimits.

Definition B.3.2: An ∞-category 𝒞 is presentable if 𝒞 is accessible and admits small

colimits.

Definition B.3.3: An adjunction between two∞-categories 𝒞 and 𝒟 is a map 𝑞 ∶ ℳ →Δ1 which is both a Cartesian fibration and a coCartesian fibration together with equiva-
lences 𝐶 → ℳ{0} and 𝐷 →ℳ{1}.

Assume M be an adjunction between C and D and let 𝑓 ∶ 𝒞 → 𝒟 and 𝑔 ∶ 𝒟 → 𝒞 be
functors associated to M. In this case, we will say that f is left adjoint to g and g is right

adjoint to f.

Theorem B.3.4: [29]Corollary 5.5.2.9 For presentable∞-categories, we have following cri-
terion for adjunctions

• A functor between presentable ∞-categories has a right adjoint if and only if it
preserves small colimits.

• A functor between presentable∞-categories has a left adjoint if and only if it pre-
serves small limits and is accessible.

B.4 Stable ∞-Categories
Definition B.4.1: Suppose that 𝒞 is an∞-category, we say 𝒞 is stable if we have 𝒞 has
a zero object, and satisfying Every morphism in 𝐶 have a cofiber and a fiber, a triangle in𝐶 is a fiber if and only if it is a cofiber.

We let𝑀Σ denote the full subcategory of 𝐹𝑢𝑛(Δ1 × Δ1, 𝒞) spanned by𝑋 !!

""

0
""0′ !! 𝑌

If 𝒞 admits cofibers, the evaluation at the initial vertex 𝑀Σ → 𝒞 is a trivial fibration[29] .

Let 𝑠 ∶ 𝒞 → 𝑀Σ be a section of it. Let 𝑒 ∶ 𝑀Σ → 𝒞 be the evaluation at the final vertex.

Then the composition of 𝑒 ∘ 𝑠 is a functor from 𝒞 to itself. And we call this suspension

functor and denote it by Σ ∶ 𝒞 → 𝒞. Similarly, If 𝒞 admits fibers, then the same argument
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show that for the evaluation at the final vertex, there is also a functor Ω ∶ 𝒞 → 𝒞 and we

call it the loop functor.

If 𝒞 is a stable∞-category and 𝑛 ≥ 0, We let𝑋 ↦ 𝑋[𝑛]
denote the nth power of the suspension functor Σ ∶ 𝒞 → 𝒞. If 𝑛 ≤ 0, we let 𝑋 ↦ 𝑋[𝑛]
denote the (−𝑛)th power of the loop functor Ω. Let 𝒞 be a stable ∞-category, Then the
suspension functor 𝑋 ↦ 𝑋[1] and the distinguished triangle defined above endowed ℎ𝒞
with a triangulated category.

Definition B.4.2: Suppose tat we have two ∞-categories 𝒞 and 𝒟 and F is a functor

between them, we will say f is excisive if it maps pushout to pullbacks.

Definition B.4.3: Suppose that 𝒞 is an∞-category. A functor 𝐹 ∶ 𝒮𝑓𝑖𝑛∗ → 𝒞 is called a
spectrum object if it satisfies the following two conditions:

• F is excisive.

• F(*) is terminal.

A spectrum is a spectrum object in the∞-category of spaces
Definition B.4.4: A stable homotopy theory is a presentable symmetric monoidal stable∞-category (𝒞,⊗, 𝕀) and it satisfies the conditions: all tensor product commutes with all
colimits.

So a stable homotopy theory (𝒞,⊗, 𝕀) has the following properties
（1）Ho(𝒞) is a symmetric monoidal triangulated category.
（2）There is an equivalence Σ ∶ 𝒞 ⇄ 𝒞 ∶ Ω.
（3）We can define homtopy groups𝜋𝑛𝐸 ∶= [Σ𝑛𝕀, 𝐸].
（4）We can define homology groups and cohomology groups𝐸𝑛(𝐹) ∶= 𝜋𝑛(𝐸 ⊗ 𝐹),𝐸𝑚(𝐹) ∶= 𝜋𝑛(Map(𝐹, 𝐸)).

Example B.4.5: The derived category 𝐷(𝑅) of a discrete ring R with the derived tensor

product admits a structure of stabel homotopy theory.
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Example B.4.6: The∞-categroy Sp of spectra.
Example B.4.7: The∞-categroy Mod𝑅 of modules over an 𝐸∞-ring spectrum R.

Example B.4.8: Let X be a scheme (or algebraic stack). Then the quasi-coherent shaves

complexes can admits an structure of stable homotopy theory.

Example B.4.9: Let K be an ∞-category, and 𝒞 is a stable homotopy theory. Then

Fun(𝐾, 𝒞) admits a nature structure of stable homotopy theory. If 𝐾 = 𝐵𝐺, then this
functor category are those objects in 𝒞 with a 𝐺-action.
B.5 Higher Categorical Algebra

Operads

For the convenience of discussion, we first recall some setting in simplicial set theory

（1）A morphism 𝛼 ∶ ⟨𝑛⟩ → ⟨𝑘⟩ in Fin∗ is insert if 𝛼−1(𝑖) is a singleton for every1 ≤ 𝑖 ≤ 𝑘
（2）A morphism 𝛼 ∶ ⟨𝑚⟩ → ⟨𝑛⟩ in Fin∗ is active if 𝛼−1(𝑝𝑡) is a singleton (neces-

sarily the basepoint).

（3）A morphism 𝛼 ∶ [𝑛] → [𝑘] in Δ is conves if it is injective and the image

im(𝛼) ⊆ [𝑘] is convex,i.e., the image is given by the interval [𝛼(0), 𝛼(𝑛)].
An operad is a gadget used to describe algebraic structures in symmetric monoidal

categories.

Definition B.5.1: Let 𝑉 be a symmetric monoidal category. A operad in 𝑉 consists of

objects 𝐹(𝑛) of 𝑉, 𝑛 ∈ 𝐍 equipped with the following extra structure.

• Right actions of symmetric groups 𝜌𝑛 ∶ 𝑆𝑛 → Hom(𝐹(𝑛), 𝐹(𝑛));
• A unit 𝑒 ∶ 𝐼 → 𝐹(1)
• Composition operations𝐹(𝑘) ⊗ 𝐹(𝑛1) ⊗ 𝐹(𝑛2) ⊗⋯⊗𝐹(𝑛𝑘) → 𝐹(𝑛1 + ⋯+ 𝑛𝑘)
These data are subject to obvious identities such as associativity and unitality of com-

position, and compatibility of composition with symmetric group actions. For example,

the unit laws say that the evident composite𝐹(𝑛) ≅ 𝐼 ⊗ 𝐹(𝑛) 𝑒⊗1⟶ 𝐹(1) ⊗ 𝐹(𝑛) 𝑐𝑜𝑚𝑝⟶ 𝐹(𝑛)
and 𝐹(𝑛) ≅ 𝐹(𝑛) ⊗ 𝐼⊗𝑛 1⊗𝑒⊗𝑛⟶ 𝐹(𝑛)⊗ 𝐹(1)⊗𝑛 𝑐𝑜𝑚𝑝⟶ 𝐹(𝑛)
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are the identity map. Compatibility with symmetric group actions means that for each

element 𝜎 ∈ 𝑆𝑛, the composition operation
𝐹(𝑘) ⊗ 𝑘⨂𝑖=1 𝐹(𝑛𝑖) → 𝐹(𝑛1 + ⋯+ 𝑛𝑘)

coequalizes a pair of automorphisms

𝜌(𝜎) ⊗ 1, 1 ⊗ 𝜆(𝜎) ∶ 𝐹(𝑘) ⊗ 𝑘⨂𝑖=1 𝐹(𝑛𝑖) ⇉ 𝐹(𝑘) ⊗
𝑘⨂𝑖=1 𝐹(𝑛𝑖)

where 𝜎 acts on the big tensor product on the left by permuting tensor factors in the

obvious way. If 𝑉 has suitable colimits, this condition could be expressed in terms of

tensor products over 𝑆𝑛.
Definition B.5.2: An 𝐹-algebra structure on an object 𝑣 in 𝑉 consists of a collection of

maps 𝐹(𝑛) ⊗ 𝑣⊗𝑛 → 𝑣
We intuitively write this map as𝜃 ⊗ 𝑥1 ⊗⋯⊗ 𝑥𝑛 ↦ 𝜃(𝑥1, … , 𝑥𝑛)

so that the element of 𝐹(𝑛) are interpreted as 𝑛-ary operations on 𝑣.
Definition B.5.3: Let 𝐶 be a set, called the set of colours. Then a coloured operd is

• for each 𝑛 ∈ 𝑁 and each (𝑛 + 1)-tupe (𝑐1,⋯ , 𝑐𝑛, 𝑐), there is an object𝑃(𝑐1,⋯ , 𝑐𝑛; 𝑐) ∈ 𝑉;
• for each 𝑐 ∈ 𝐶 a morphism 1𝑐 ∶ 𝐼 → 𝑃(𝑐 ∶ 𝑐) in 𝑉 - the identity on 𝑐;
• for each (𝑛 + 1)-tuple (𝑐1,⋯ , 𝑐𝑛, 𝑐) and n other tuples(𝑑1,1,⋯ , 𝑑1,𝑘1),⋯ , (𝑑𝑛,1,⋯ , 𝑑𝑛,𝑘𝑛) amorphism𝑃(𝑐1,⋯ , 𝑐𝑛; 𝑐)⊗𝑃(𝑑1,1,⋯ , 𝑑1,𝑘1; 𝑐1)⊗⋯⊗𝑃(𝑑𝑛,1,⋯ , 𝑑𝑛,𝑘𝑛; 𝑐𝑛) → 𝑃(𝑑1,1,⋯ , 𝑑𝑛,𝑘𝑛, 𝑐) the composition operation;
• for all n n, all tuples, and each permutation 𝜎 in the symmetric group Σ𝑛 a mor-

phism 𝜎∗ ∶ 𝑃(𝑐1,⋯ , 𝑐𝑛; 𝑐) → 𝑃(𝑐𝜎(1),⋯ , 𝑐𝜎(𝑛); 𝑐)
• subject to the conditions that

– the 𝜎𝑠form a representation of Σ𝑛;
– composition operation satisfies associativity and unitality in the obvious

way;

– and is Σ𝑛 equivariant in the evident way.
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Let 𝒪 be a colored operad. We define a category 𝒪⊗ as follows:

• The object of 𝒪⊗ are finite sequence of colors 𝑋1,… , 𝑋𝑛 ∈ 𝒪.
• Given two sequence of objects𝑋1,… , 𝑋𝑛, 𝑌1, … , 𝑌𝑛 ∈ 𝒪,

a morphism form {𝑋𝑖} to {𝑌𝑗} is given by a map 𝛼 ∶ ⟨𝑚⟩ → ⟨𝑛⟩ in Fin∗, together with a
collection of morphisms: {𝜙𝑗 ∈ 𝑃({𝑋𝑖}𝑖∈𝛼−1(𝑗), 𝑌𝑗)}

• Composition of morphisms in 𝒪⊗ is determined by the composition laws on Fin∗
and on 𝒪∞-operads

An∞-operad is an∞-categorical generalization of coloured operad.
Definition B.5.4: An ∞-operad is a functor 𝑝 ∶ 𝒪⊗ → 𝑁(Fin∗) between ∞-categories
which satisfies the following conditions:

（1）For every inert morphism 𝑓 ∶ ⟨𝑚⟩ → ⟨𝑚⟩ in 𝑁(Fin∗) and every object 𝐶 ∈𝒪⊗⟨𝑚⟩ , there exists a p-coCartesian morphism ̄𝑓 ∶ 𝐶 → 𝐶′ lifting 𝑓, In particular, 𝑓 induces
a functor 𝑓! ∶ 𝒪⊗⟨𝑚⟩ → 𝒪⊗⟨𝑛⟩

（2）Let 𝐶 ∈ 𝒪⊗⟨𝑛⟩ and 𝐶′ ∈ 𝒪⊗⟨𝑛⟩ be objects, let 𝑓 ∶ ⟨𝑚⟩ → ⟨𝑚⟩ in 𝑁(Fin∗) and
let 𝑀𝑎𝑝𝑓𝑂⊗(𝐶, 𝐶′) be the unoion of morphism which lie over 𝑓. Choose a p-coCartesion
morphism 𝐶′ → 𝐶′𝑖 lying over 𝜌𝑖 ∶ ⟨𝑛⟩ → ⟨1⟩. Then the induced map

Map𝑓𝑂⊗(𝐶, 𝐶′) → ∏1≤𝑖≤𝑛Map𝜌𝑖∘𝑓𝑂⊗ (𝐶, 𝐶′)
is a homotopy equivalence.

（3）For every finite collection of objects 𝐶1,⋯ , 𝐶𝑛 ∈ 𝒪⊗⟨1⟩, there exists an object𝒞 ∈ 𝒪⊗⟨𝑛⟩ and a collection of p-coCartesian morphisms 𝐶1 → 𝐶𝑖 covering 𝜌𝑖 ∶ ⟨𝑛⟩ → ⟨1⟩.
Example B.5.5: The commutative∞-operad Comm⊗ = 𝑁(Fin∗).
Example B.5.6: 𝑁(Fin𝑖𝑛𝑗∗ ) is an∞-operad which denote it by E⊗0 .
Definition B.5.7: Let 𝒪⊗ and 𝒪′⊗ be two ∞-operads. An ∞-operad map from 𝒪⊗ to𝒪′⊗ is a map of simplicial sets 𝑓 ∶ 𝒪⊗ → 𝒪′⊗ and satisfying:
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（1）There is a commutative diagram𝒪⊗ 𝑓 !!

&&■
■■

■■
■■

■■
■ 𝒪′⊗

44✉✉
✉✉
✉✉
✉✉
✉✉𝑁(Fin∗)

（2）The functor f carries insert morphisms in 𝒪⊗ to insert morphisms in 𝒪′⊗.
We say that a map of ∞-operads 𝑞 ∶ 𝒞⊗ → 𝒪⊗ is a fibration of operads if q is a

categorical fibration.

Definition B.5.8: Let 𝒪⊗ be an ∞-operad. A map 𝑝 ∶ 𝒞⊗ → 𝒪⊗ of ∞-categories is a
coCartesian fibration of∞-operads if

（1）𝑝 ∶ 𝒞⊗ → 𝒪⊗ is a coCartesian fibration of∞-categories.
（2）The composite map 𝑞 ∶ 𝒞⊗ → 𝒪⊗ → 𝑁(Fin∗) exhibits 𝒞⊗ as an∞-operad.

In this cas, we say that p exhibits 𝒪⊗ as a 𝒪-monoidal∞-category.
Algebras over ∞-Operads
Definition B.5.9: Let 𝑝 ∶ 𝒞⊗ → 𝒪⊗ be a fibration of operads, if we have a map of oper-

ads 𝛼 ∶ 𝒪′⊗ → 𝒪⊗. We let Alg𝒪′/𝒪(𝒞) denote the full subcategory of Fun𝒪⊗(𝒪′⊗, 𝒞⊗)
spanned by the maps of∞-operads.

In the special case where 𝒪′⊗ = 𝒪⊗ and 𝛼 is the identity map, we denote the ∞-
category Alg𝒪′/𝒪 by Alg/𝒪.
Symmetric Monoidal ∞-categories

Suppose thatℳ is a symmetric monoidal category with monoidal product ⊗, we

construct a new categoryℳ⊗ as follows.

（1）An object inℳ⊗ is a finite sequence(𝑀1,⋯ ,𝑀𝑛),𝑀𝑖 ∈ ℳ, 𝑛 ≥ 0
（2）A morphism (𝑀1,⋯ ,𝑀𝑛) → (𝐿1,⋯ , 𝐿𝑘) is a pair (𝛼, {𝑓𝑖}𝑖) consists of a mor-

phism 𝛼 ∶ ⟨𝑛⟩ → ⟨𝑘⟩ in ℱ𝑖𝑛 together with morphism𝑓𝑖 ∶ ⊗𝑗∈𝛼−1(𝑖) → 𝐿𝑖, 𝑖 = 1,⋯ , 𝑘.
and the tensor product ,unit, composition law can be recovered as before. There is an

obvious projection functor 𝑝 ∶ ℳ⊗ → ℱ𝑖𝑛 given by (𝑀1,⋯ ,𝑀𝑛) → ⟨𝑛⟩ and (𝛼, {𝑓𝑖}𝑖) →𝛼.
Proposition B.5.10: For any symmetric monoidal categoryℳ the functor 𝑝 ∶ ℳ⊗ →
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tion,i.e., the Segal maps (𝜌1! ,⋯ , 𝜌𝑛! ) ∶ ℳ⊗⟨𝑛⟩ ∼→ ℳ×𝑛, 𝑛 ≥ 0
are equivalence.

Definition B.5.11: A symmetric monoidal ∞-category is a coCartesian fibration 𝑝 ∶𝒞⊗ → 𝑁(Fin∗).
Remark B.5.12: If we don’ t want to use the language of ∞-operads, then there is a
equivalent definition. A symmetric monoidal ∞-category is a coCartesian fibration 𝑝 ∶ℳ⊗ → 𝑁(ℱ𝑖𝑛) such that the Segal maps are equivalence(𝜌1! ,⋯ , 𝜌𝑛! ) ∶ ℳ⊗⟨𝑛⟩ ∼→ (ℳ⊗⟨1⟩)×𝑛, 𝑛 ≥ 0

A symmetric monoidal ∞-category 𝑝 ∶ ℳ⊗ → 𝑁(ℱ𝑖𝑛) endows the underlying ∞-
categoryℳ =ℳ⊗⟨1⟩ with a monoidal pairing which is associative and commutative up to
coherent homotopy.

Definition B.5.13: Let 𝑝 ∶ ℳ⊗ → 𝑁(Fin∗), 𝑞 ∶ 𝒩⊗ → 𝒩(Fin∗) be symmetric ∞-
categories and let 𝐹 ∶ ℳ⊗ → 𝒩⊗ be a functor over 𝑁(Fin∗).

（1）The functor F is symmetric monoidal if it sends p-coCartesian arrows to q-

coCartesian arrows.

（2）The functor F is lax symmetric monoidal if it sends p-coCartesian lift of insert

morphism to q-coCartesian arrows.

Definition B.5.14: We define the ∞-categories of commutative algebra objects

AlgE∞(ℳ⊗) = Fun⊗,𝑙𝑎𝑥(𝑁(𝐹𝑖𝑛∗),ℳ⊗).
B.5.1 Monoidal ∞-category
Definition B.5.15: The category Assoc⊗ is defined as

（1）Objects: are the object of Fin∗.
（2）Morphism: a morphism form ⟨𝑚⟩ to ⟨𝑛⟩ consists of (𝛼, {⪯𝑖}1≤𝑖≤𝑛), where𝛼 ∶ ⟨𝑚⟩ → ⟨𝑛⟩ is a map of pointed finite sets and ⪯𝑖 is a linear ordering on the inverse

image 𝑓−1(𝑖) ⊂ ⟨𝑚⟩ for 1 ≤ 𝑖 ≤ 𝑛.
We let Assoc = 𝑁(Assoc⊗). It can be proved that Assoc is an∞-operad. We know

that the ordinary monoidal category can be encoded by Grothendieck opfibrations. Using

this idea, we can define monoidal∞-categories.
Definition B.5.16: Let 𝒞⊗ be an∞-operad with a fibration 𝑞 ∶ 𝒞⊗ → Assoc⊗. We let
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Alg(𝒞) denote the∞-category Alg/Assoc(𝒞) of∞-operads sections of q. The∞-categroy
of associative algebra objects of 𝒞.
Definition B.5.17: A monoidal∞-category is a coCartesian fibration of∞-operads 𝑝 ∶ℳ⊗ → Assoc⊗.
Remark B.5.18: Just like the symmetric monoidal ∞-case, if we don’ t want use the
language of ∞-operads. Then one can check there is a equivalent definition that is a

monoidal ∞-category is a coCartesian fibration 𝑝 ∶ ℳ⊗ → 𝑁(Δ𝑜𝑝) such that the Segal
maps are equivalence ℳ⊗[𝑛] ∼→ (ℳ⊗[1])×𝑛, 𝑛 ≥ 0.

We often refer to the categoryℳ =ℳ⊗[1] as a monoidal∞-category.
Example B.5.19: We ha

（1）Let ℳ be a monoidal category and 𝑝 ∶ ℳ⊗ → Δ𝑜𝑝 be the associated

Grothendieck opfibration. An application of the nerve functor yields a monoidal cate-

gory 𝑁(𝑝) ∶ 𝑁(ℳ⊗) → 𝑁(Δ𝑜𝑝).
（2）from model categorical input

We recall that a morphism 𝛼 ∶ [𝑛] → [𝑘] in Δ is conves if it is injective and the image
im(𝛼) ⊆ [𝑘] is convex,i.e., the image is given by the interval [𝛼(0), 𝛼(𝑛)].
Proposition B.5.20: Let 𝑝 ∶ ℳ⊗ → Δ𝑜𝑝 be a monoidal structure onℳ =ℳ⊗[1]. Then
a section 𝐴 ∶ Δ𝑜𝑝 → ℳ⊗ of p that sends convex arrows to p-coCartesian arrows encodes

an algebra structure on 𝐴[1] ∈ ℳ. Conversely, any algebra object inℳ determines such

a section of 𝑝 ∶ ℳ⊗ → Δ𝑜𝑝.
So in the∞-category language setting, we have

Definition B.5.21: Let 𝑝 ∶ ℳ⊗ → 𝑁(Δ𝑜𝑝) be a monoidal ∞-category. A section𝐴 ∶ 𝑁(Δ𝑜𝑝) → ℳ⊗ of p is an associative algebra object in ℳ⊗ if A sends convex

morphisms to p-coCartesian arrows inℳ⊗.
Given an algebra object A inℳ, the underlying object 𝐴[1] is endowed with a mul-

tiplciation map which is associative and unital up to coherent homotopy. In particular, an

algebra object in a monoidal∞-category defines an ordinary algebra object in the under-
lying homotopy category, but not conversely.

Algebra objects in monoidal∞-categories are special case of lax monoidal functors
between monoidal∞-categories.
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Definition B.5.22: Let 𝑝 ∶ ℳ⊗ → 𝑁(Δ𝑜𝑝) and 𝑞 ∶ 𝒩⊗ → 𝑁(Δ𝑜𝑝) be monoidal ∞-
categories. A lax monoidal functor 𝐹 ∶ ℳ⊗ → 𝒩⊗ is a functor over 𝑁(Δ𝑜𝑝), which is a
commutative diagram ℳ⊗ 𝐹 !!𝑝

&&❍
❍❍

❍❍
❍❍

❍❍
𝒩⊗

𝑞55✈✈
✈✈
✈✈
✈✈
✈

𝑁Δ𝑜𝑝
that sends p-coCartesian lifts of convex morphisms in 𝑁(Δ𝑜𝑝) to q-coCartesian arrows.
A monoidal functor 𝐹 ∶ ℳ⊗ → 𝒩⊗ is a functor over 𝑁(Δ𝑜𝑝) that sends arbitrary p-
coCartesian arrows to q-coCartesian ones.𝔼𝑛-Algebra

We begin by briefly recalling the notions of 𝐸𝑛-algebra is a closed symmetric

monoidal (∞, 2)-category 𝛿 which admits geometric relizations.
For an integer 𝑘 ≥ 0, we let □𝑘 = (−1, 1)𝑘 denote an open cube of dimension k. We

will say that a map 𝑓 ∶ □𝑘 → □𝑘 is a rectilinear embedding if it is given by the formula𝑓(𝑥1, … , 𝑥𝑘) = (𝑎1𝑥1 + 𝑏1, … , 𝑎𝑘𝑥𝑘 + 𝑏𝑘)
for some real constant 𝑎𝑖 and 𝑏𝑖, with 𝑎𝑖 ≥ 0
Definition B.5.23: We define a topological category 𝑡𝔼⊗𝑘 as follows

（1）The objects 𝑡𝔼⊗𝑘 are the objects ⟨𝑛⟩ ∈ Fin∗.
（2）Given two objects ⟨𝑚⟩, ⟨𝑛⟩. A morphism from ⟨𝑚⟩ to ⟨𝑛⟩ consists of:

•A morphism 𝛼 ∶ ⟨𝑚⟩ → ⟨𝑛⟩ in Fin∗.
•For each 𝑗 ∈ ⟨𝑛⟩∘ a rectilineat embedding □𝑘 × 𝛼−1(𝑗) → □𝑘.

We let 𝔼⊗𝑘 denote the nerve of the topological category 𝑡𝐸⊗𝑘 . It can be that this

functor 𝔼⊗𝑘 → 𝑁(Fin∗) exhibits 𝐸⊗𝑘 as an∞-operad. We refer to the∞-operad 𝔼⊗𝑘 as the∞-operad of little k-cubes.
Definition B.5.24: Suppose that 𝒞 is a symmetric monoidal∞-category. An𝐸𝑛-algebra
in 𝒞 is a symmetric monoidal functor𝒜 ∶ 𝔼⊗𝑘 → 𝒞.
B.6 Brave New Algebra

Finiteness Conditions

Proposition B.6.1: Suppose that we have an 𝐸1-ring R. Then we have 𝐿Mod𝑅 is com-
pactly generated∞-category, and an object of 𝐿Mod𝑅 is perfect if and only if it is compact.
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Definition B.6.2: Suppose that we have a compactly generated ∞-category 𝒞 and an

object 𝑋 in 𝒞, we will say X is almost compact if 𝜏≤𝑛𝑋 is a compact object of 𝜏≤𝑛 for all𝑛 ≤ 0.
Definition B.6.3: Suppose that we have an 𝐸1-ring R and𝑀 ∈ 𝐿Mod𝑅 , we call M is

（1）perfect if it is a compact object of 𝐿Mod𝑅.
（2）almost perfect if𝑀 ∈ (𝐿Mod𝑅)≤𝑘 and is almost compact object of (𝐿Mod𝑅)≤𝑘

for an certain integer k.

（3）perfect to order n if for every filtered diagram {𝑁𝛼} in (𝐿Mod𝐴)≤0, the canoni-
cal map lim→𝛼Ext𝑖𝐴(𝑀,𝑁𝛼) → Ext𝑖𝐴(𝑀, lim→𝛼𝑁𝛼) is injective for 𝑖 = 𝑛 and bijective for 𝑖 ≤ 𝑛.

（4）finitely n-presented if M is n-truncated and perfect to order (n+1).

Localization, Nilpotent and Complete

Semi-Orthogonal Decomposition of Stable∞-Categories
Definition B.6.4: Suppose that we have an∞-category 𝒞 and 𝒟 be a subcategory of 𝒞,
we define two subcategories ⟂𝒟 ⊆ 𝒞 ⊇ 𝒟⟂ as follows

（1）An object𝑋 ∈ 𝒞 belongs to ⟂𝒟 is equivalent to say that for every object𝑌 ∈ 𝒟,
Map𝒞(𝑋, 𝑌) is contractible.

（2）An object𝑌 ∈ 𝒞 belongs to𝒟⟂ is equivalent to say that for every object𝑋 ∈ 𝒟,
Map𝒞(𝑋, 𝑌) is contractible.
Definition B.6.5: Suppose that we have a connective 𝔼2-ring R and an element t 𝑥 ∈𝜋0𝑅, and let 𝒞 be a presentable 𝑅 linear ∞-category. Suppose 𝐶 is an object of 𝒞, we let𝐶[𝑋−1] denote 𝑅[𝑥−1] ⊗𝑅 𝐶. We call C is x-nilpotent object if the localization 𝐶[𝑥−1]
vanishes. If wa have an ideal 𝐼 of 𝜋0𝑅. We will call this object 𝐶 ∈ 𝒞 is I-nilpotent object
if it is x-nilpotent for each 𝑥 ∈ 𝐼.
Example B.6.6: Suppose that we have a connective 𝔼2-ring R and let 𝐼 is a finitely
generated ideal of𝜋0𝑅. Suppose thatM is a left R-module, thenM I-nilpotent is equivalent

to say that every element of 𝜋∗𝑀 is annihilated by some power of I.

Definition B.6.7: Suppose that we have a connective 𝔼2-ring R and 𝐼 is a finitely gener-
ated ideal of 𝜋0𝑅 . For any stable 𝑅-linear∞-category 𝒞 and 𝐶 is an object of 𝒞 is I-local
if the mapping space Map𝒞(𝐷, 𝐶) is contractible for every I-nilpotent object 𝐷 ∈ 𝒞. We

let 𝒞𝐿𝑜𝑐(𝐼) denote the full subcategory of 𝒞 spanned by the I-local objects.
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Flat

Definition B.6.8: Suppose that we have an 𝔼∞-ring R and𝑀 ∈ Mod𝑅. We will call M

is a flat R-module if we have

（1）𝜋0𝑀 is flat over 𝜋0𝐴, in the sense of ordinary algebraic geometry.
（2）For each n, the induces map𝜋𝑛𝐴⊗𝜋0𝐴 𝜋0𝑀 → 𝜋𝑛𝑀

is an isomorphism.

Locally Free Modules

Definition B.6.9: Suppose that we have an 𝔼∞-ring R and 𝑀 ∈ Mod𝑅. We will say M

is locally free of finite rank R-module if there exist an integer n, such that M is a direct

summand of 𝐴𝑛.
We say M is locally free of rank N, if

（1）M is locally free of finite rank.

（2）the vector space 𝜋0𝑘⊗𝑅 𝑀 is dimension N over k for every field k and every

map of 𝐸∞-ring 𝑅 → 𝑘.
Étale

Definition B.6.10: Suppose that we have two 𝔼∞-rings A and B and 𝑓 ∶ 𝐴 → 𝐵 is a

map between them, we will say f is 𝑒́tale if f satisfying the following two conditions:
（1）B is a flat A-module.

（2）𝜋0𝑓 ∶ 𝜋0𝐴 → 𝜋0𝐵 is 𝑒́tale.
Theorem B.6.11: Suppose that we have an 𝔼∞-ring A, then the map 𝜋0 ∶ CAlg𝐴 →
CAlg𝜋0𝐴 induces an equivalence CAlg𝑒𝑡𝐴 ≃ CAlg𝑒𝑡𝜋0𝐴.
Proof: See[3]Theorem 7.5.4.2 . ∎
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