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ABSTRACT

ABSTRACT

Spectra are stabilizations of topological spaces, analogous to chain complexes of
abelian groups. And ring spectra are higher categorical refinements of rings from clas-
sical algebra. They represent multiplicative generalized cohomology theories. A fun-
damental question is how to construct ring spectra with structured multiplication, such
as ring spectra whose multiplications are commutative in homotopy categories and ring
spectra whose multiplications are commutative in all higher homotopy. Classical meth-
ods use complicated obstruction theory to obtain commutative ring structures, such as
Goerss-Hopkins-Miller theorem. But Lurie uses methods of spectral algebraic geometry
give this theorem a new proof. On the other hand, Morava E-theories play an important
role in chromatic homotopy theory, they correspond to universal deformations of formal
groups. But moduli problems concerning deformations with level structures do not have
immediate topological realizations readily from Lurie’s framework. This is because the
representable objects are not étale over the moduli stack of one dimensional p-divisible
groups of height n.

In this thesis, we define and study moduli problems called derived level structures
in Lurie’s spectral algebraic geometry. We prove that isogenies of spectral elliptic curves
must induce isogenies of their underlying classical elliptic curves. This provides evidence
that the derived version of level structures must induce classical level structures. We de-
fine relative Cartier divisors in spectral algebraic geometry and prove those associated
functors are representable by certain spectral Deligne-Mumford stacks. Analogous to
Drinfeld, we define derived level structures for spectral elliptic curves. We prove that for
spectral elliptic curves, moduli problems of derived level structures are representable, sim-
ilar to the classical case. We also consider derived level structures of spectral p-divisible
groups. We prove that those problems associated with them are representable in certain
cases.

The study of derived level structures has many applications in algebraic topology.
Using the spectral Artin representability theorem, we prove that the moduli stack of spec-
tral elliptic curves with derived level structures has the structure of spectral Deligne-
Mumford stacks. When we consider spectral deformations with derived level structures

of p-divisible groups, those affine representable objects can provide us with many in-

II



ABSTRACT

teresting spectra. We can lift Morava E-theories to deformations with level structures,
although these lifts are not étale over Morava E-theories. For deformations with full-
level structures, we can obtain higher categorical analogs of Lubin-Tate towers. And for
deformations involving the selection of subgroups, which can be interpreted as moduli
problems of deformations of Frobenius based on Stickland’s work. We can obtain spectra

whose 1y are power operation rings of Morava E-theories.

Keywords: Algebraic topology; Chromatic homotopy theory; Morava E-theory; Spectral

algebraic geometry

III
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Background

By Brown’s representability theorem, a general cohomology theory of topological
spaces corresponds to a spectrum. All spectra form a closed symmetric monoidal cat-
egory, called the stable homotopy category. Studying the stable homotopy category is
a central topic in algebraic topology. There are many models of spectra, making it be-
come a closed symmetric monoidal category. Seel!l for an early discussion of the stable
homotopy category,? for the S-module approach, and?! for the co-category approach.

Chromatic homotopy theory uses chromatic localizations and the chromatic filtration
to study the stable homotopy category. The heart of chromatic homotopy theory is the
study of spectra, which represent general cohomology theories that are complex oriented.
We can associate each complex oriented cohomology theory with a one-dimensional for-
mal group. Studying those associated formal groups can help us understand complex
oriented cohomology theories. The heights of formal groups can distinguish certain com-
plex oriented cohomology theories. Choosing a coordinate of a formal group can yield
a formal group law. Quillen! proved that the complex cobordism MU is the universal
complex oriented cohomology theory, and its associated formal group law is the universal
formal group law over the Lazard ring. Using the Landweber exact functor theorem!®],
one can construct many complex oriented cohomology theories. Morava E-theories are
constructed by using this theorem. Morava K-theories are another important complex ori-
ented cohomology theories in chromatic homotopy theory, which are constructed by ten-
soring certain spectra together. Localizing with respect to Morava E-theories and Morava
K-theories is the most common method in chromatic homotopy theory when working with
spectra. Another very important example in chromatic homotopy theory is elliptic coho-
mology theories and their global section, the topological modular forms, which are useful
in quantum field theory.

Homotopical algebraic geometry was founded in!®7] which replaces commutative
rings with simplicial rings, E-ring spectra, and so on. One version of homotopical al-
gebraic geometry is derived algebraic geometry, which replaces commutative rings with

8-10

simplicial rings. One can refer tol®19 for the foundation of derived algebraic geometry.



CHAPTER 1 INTRODUCTION

Derived algebraic geometry is useful in intersection problems, deformation problems,
mathematical physics (homological mirror symmetry, BRST or BV quantization), p-adic
Hodge theory, the geometric version of Langlands correspondences, and many other fields
in mathematics. Spectral algebraic geometry is another version of homotopical algebraic
geometry, which replaces commutative rings with E,-rings. It was founded by Lurie[!!],
and has increasingly more applications in algebraic topology, such as elliptic cohomology
and equivariant topological modular forms.

As we mentioned, the stable homotopy category is a central topic in algebraic topol-
ogy. Structured ring spectra are the most common examples studied, such as H,, spec-

[12] and (3] Lurie uses spectral algebraic methods give a proof

tra and E,, spectra. In
of the Goerss-Hopkins-Miller theorem for topological modular forms. Except for the
application of elliptic cohomology, Lurie also proved the E,, structures of Morava E-
theories!'3!, which use the spectral version of deformation theory of certain p-divisible
groups. The earliest proof of E, structures of Morava E-theories is due to Goerss, Hop-
kins and Millerl'¥). They turned the problem into a moduli problem and developed an
obstruction theory. One can finish the proof by computing the Andre-Quillen groups.
Comparing with their method, Lurie’s proof is more conceptual. There are more and
more applications of spectral algebraic geometry in algebraic topology. Such as topolog-

151 Morava E-theories over any Fp-algebra[13] , not only just for

ical automorphic forms!
a perfect field k. The construction of equivariant topological modular forms!'®l, elliptic
Hochschild homology!!”! and more.

On the other hand, moduli problems concerning deformations of formal groups with
level structures are also representable, and the moduli spaces of different levels form a

Lubin-Tate tower!!8-1?

1. 'We know that the universal objects of deformations of formal
groups have higher algebra analogues, which are the Morava E-theories. A natural ques-
tion is what are higher categorical analogues of moduli problems of deformations with
level structures? And can we find higher categorical analogues of Lubin-Tate towers.
Although the E,-structure of topological modular forms with level structures can be ob-

tained from[20]

, we still hope that there exists a derived stack of spectral elliptic curves
with level structures which provide us with a more moduli interpretation. Except this,
in the computation of unstable homotopy groups of sphere, after applying the EHP spec-
tral sequences and the Bousfield-Kuhn functor, we observe that some terms on the E,-

page also arise from the universal deformation of isogenies of formal groups. They are
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computed by the Morava E-theories on the classifying spaces of symmetric groups[>!-2%],

They can be viewed as sheaves on the Lubin-Tate tower. We hope to provide a more
conceptual perspective on this fact within the higher categorical Lubin-Tate tower.

In this paper, we give an attempt to address this problem by studying specific moduli
problems in spectral algebraic geometry. The main ingredient of our work is the derived

7,23

version of Artin’s representability theorem established in!”-?*]. We will use the spectral

(1] in this paper. We study relative Cartier divisors in the con-

algebraic geometry version
text of spectral algebraic geometry. By imposing certain conditions, we define derived
level structures of certain geometric objects in spectral algebraic geometry. Using Artin
representability theorem, we prove some representable results of moduli problems that
arise from our derived level structures. We give some examples of applications involv-
ing derived level structures. We consider the moduli problem of spectral deformations
with derived level structures of p-divisible groups. We prove that these moduli prob-

lems are representable by certain formal affine spectral Deligne-Mumford stacks and the

corresponding spectra can provide us many interesting generalized cohomology theories.

1.2 Statement of Main Results

We work on spectral algebraic geometry in this thesis. For a spectral Deligne-
Mumford stack X over a spectral Deligne-Mumford stack S, a relative Cartier divisor
i1s a morphism D — S of spectral Deligne-Mumford stacks such that D — X is a closed
immersion, the ideal sheaf of D is a line bundle over X, and the morphism D — S is flat,
proper and locally almost of finite presentation. We use Lurie’s representability theorem
prove that the relative Cartier divisor is representable in certain cases. Our first main
result is:

Theorem A. (Theorem 3.2.7) Suppose that E is a spectral algebraic space over a
connective E,-ring R, such that E — R is flat, proper, locally almost of finite presentation,

geometrically reduced, and geometrically connected. Then the functor
CDivg/p : CAlgy > S
R' » CDiv(EgR//R")
is representable by a spectral algebraic space which is locally almost of finite presentation

over R.

We define derived level structures of spectral elliptic curves. Roughly speaking, for
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a finite abstract abelian group A, usually equals Z/NZ, Z/NZ X Z/NZ, a derived A-level
structure of a spectral elliptic curve E over an E.,-ring R is just a relative Cartier divisor
D — E satisfying its restriction to the heart comes from an ordinary A-level structure.
We let Level(A, E/R) denote the space derived A-level structures of a spectral elliptic
curve E/R. We prove that moduli problems associated with derived level structures are
representable. Our second main result is:

Theorem B. (Theorem 3.3.5) Suppose that E is a spectral elliptic curve over a con-

nective [E,-ring R, then the functor

Levelg/z : CAlgy > S
R' — Level(A, Eg//R")

is representable by an affine spectral Deligne-Mumford stack which is locally almost of
finite presentation over the E-ring R.

In classical algebraic geometry, except one-dimensional group curves, we also care
level structures of p-divisible groups, it comes the full sections of commutative finite
flat group schemes. In chapter three, we also consider derived level structures of spec-
tral p-divisible groups. Let Level(k, Gg/R) denote the space of derived (Z/p*Z)"-level
structures of a height h spectral p-divisible group G /R. Out third main result is:

Theorem C. (Theorem 3.4.11) Suppose G is a spectral p-divisible group of height

h over a connective E.,-ring R. Then the functor
Levelg p : CAlgy > §; R’ - Level(k, Gg/ /R")
is representable by an affine spectral Deligne-Mumford stack S(k) = Spét?Gk/ R
For applications of derived level structures. We first prove that the moduli of spec-
tral elliptic curves with derived level structures is representable by a spectral Deligne-
Mumford stack. Our fourth main result is:

Theorem D. (Theorem 4.1.7) Let Ell(A)(R) denote the space of spectral elliptic

curves with derived A-level structures over the E,-ring R. The functor
Mey(A) : CAlg" - S
R +— My (A)(R) = ElI(A)(R)
is representable by a spectral Deligne-Mumford stack and moreover this stack is locally

almost of finite presentation over the sphere spectrum S.

In!3!, Lurie consider the spectral deformations of a classical formal group. As we
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have the concept of derived level structures, it is natural to consider the moduli of spectral
deformations with derived level structures. Suppose G is a p-divisible group of height h

over a perfect Fy,-algebra Ry. We consider the following functor
M+ CAlgly >S
R — DefLevel’” (Gy, R, k)

where DefLevel®” (G, R, k) is the co-category spanned by those quaternions (G, p, e,7)
(1) G is a spectral p-divisible group over R.
(2) p is a equivalence class of G,-taggings of R.
(3) e is an orientation of the identity component of G.
(4) n: D - G is a derived (Z/p*Z)"-level structure of G /R.
Our last main result is:
Theorem E. (Theorem 4.2.2) The functor M)" is corepresentable by an E,-ring
JLy, where JLy is a finite Rg; -algebra, Rg’ is the orientation deformation ring of Gy

defined in!13!,

1.3 Outline

The second chapter of this paper is an introduction of spectral algebraic geometry.
We review main definitions and propositions of Lurie’s book '] and his series paper on el-

13.24-25] " We review spectral stacks, and morphisms between spectral

liptic cohomology'!
Deligne-Mumford stacks, such as flat, étale, proper and finite conditions. These con-
ditions will be useful in our future discussions. Spectral abelian varieties and spectral
p-divisible groups are our main objects of study in this paper, we will review their basic
properties in this chapter. The spectral Artin representability theorem is the main ingre-
dient of this paper, we will use it to prove some representability results later. We will
introduce the main conditions of this theorem. Deformations and orientations are the
main tools for applying spectral algebraic geometry to algebraic topology. We present
some useful concepts and theorems in the final section of this chapter.

The third chapter is the heart of this paper. We define derived isogenies and prove
that the kernel of a derived isogeny in some cases have the same phenomenon as in the
classical case. This provides evidence that our derived versions of level structures must

induce classical level structures. For representability reasons, we use moduli associated

with sheaves to detect higher homotopy of derived versions of level structures. We define
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relative Cartier divisors in the context of spectral algebraic geometry. We then use Lurie’s
representability theorem to prove that functors associated with relative Cartier divisors are
representable by certain spectral Deligne-Mumford stacks. The main part of our proof
involves computing of cotangent complex. We define derived level structures of spectral
elliptic curves. Roughly speaking, a derived A-level structure of a spectral elliptic curve
E over an E.,-ring R is just a relative Cartier divisor D — E satisfying its restriction
to the heart comes from an ordinary A-level structure. We prove that moduli problems
associated with derived level structures are representable. We also explore derived level
structures of spectral p-divisible groups in this chapter and prove that the corresponding
moduli problems are representable in certain cases.

In the last chapter, we give some applications of derived level structures. We first
prove that the moduli problem of spectral elliptic curves with derived A-level structures is
representable by a spectral Deligne-Mumford stack. Int'3!, Lurie consider the spectral de-
formations of a classical formal group. As we have the concept of derived level structures,
it is natural to consider the moduli of spectral deformations with derived level structures
of certain p-divisible groups. We prove that these moduli problems are representable by
certain spectral Deligne-Mumford stacks. And by choose different level structures, we ob-
tain some interesting spectra. We will give examples of spectra constructed by consider
moduli of spectral deformations with various level structures, such as higher categorical
analogues of Lubin-Tate towers and topological realizations of representable objects of
Strickland’s deformations of Frobenius. In the second section of this chapter, we propose
some idea about representation theory in spectral algebraic geometry.

We give an introduction to chromatic homotopy theory in Appendix A. We review
formal groups, complex-oriented cohomology theory, Morava E-theories and Morava K-
theories. We state some great achievements in chromatic homotopic theory, including
nilpotence theorem, periodicity theorem and thick subcategories theorem. In the last part
of appendix A, we review something about power operations.

We also give some necessary introduction about co-categories and higher algebra in
Appendix B, including co-categories, homotopy limits and colimits, co-operads, modules

and algebras in E,-ring context, finite, perfect, flat and étale morphism in E,-algebras.
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CHAPTER 2 SPECTRAL ALGEBRAIC GEOMETRY

Spectral algebraic geometry was founded by Lurie in!'], it replaces commutative
ring by E.-spectra in algebraic. Since there are homotopy coherence in the category
of spectra, for convenience, we will work on co-categories. There are many references
for oo-categories, such asl¥l and[?6]. We assume that reader are familiar with the basic
knowledge of co-categories and higher algebra. If not, the appendix B will give you a
quick review. We will review some base knowledge of spectral algebraic geometry, most

of materials comes forms!'!. I recommand readers to find more details in Lurie’s book.

2.1 Spectral Deligne-Mumford Stacks

In the context of classical algebraic geometry, a stack is a functor from schemes to
groupoid and satisfying some descending conditions, we recommend readers(>”! and[?8!
for more discussion about stacks. We let Stk denote the 2-category of stacks. We recall
that a morphism f : X; = X, in Stk is representable by schemes if for any S € Sch and
S — X,, the Cartesian product

S X, Xy

is representated by a scheme.

Definition 2.1.1: Suppose X is a sheaf of sets on Schy;, we will say X is an algebraic
space if there exists a scheme U and a surjective étale morphism U — X is representable
by schemes. The map U — X is called an étale presentation.

Suppose f : X — Y is a morphism of prestacks (or presheaves) over Sch, we will
say f is representable if for every morphism T — Y from a scheme T, the fiber product
X ®q T is an algebraic space.

Definition 2.1.2: Suppose X is a stack X over Schg;, we will say that X is an algebraic
stack if there exits a scheme U and a surjective, smooth, and representable morphism
U — X. We will call this morphism U — X a smooth presentation.

Definition 2.1.3: Let X be a stack over Schg;, we will say that X is a Deligne-Mumford
stack if there exits a scheme U and a surjective, étale, and representable morphism U — X.

We will call this morphism U — X an étale presentation.



CHAPTER 2 SPECTRAL ALGEBRAIC GEOMETRY

Our definition of spectral Deligne-Mumford stacks will follow[!!], which are ringed
co-topoi satisfying certain conditions. Let’s first say something about classical topoi.
When we say a category X is a topos (Grothendieck topos), we always mean that X is
equivalent to a category which has the form Shv(C), which is the category sheaves on a
site C. And when we say ringed topos, we mean a pair (X, 0,,) such that X is a topos and
Oy 1s a commutative ring object in the category X.

For a certain commutative ring R, we let CAlgf;t denote the 1-category of étale-R
algebra. By the properties of étale motphism, we can equip a Grothendieck topology
on the opposite category of CAlgit. It is defined by setting the family of étale maps
generate a cover sieve if there exists some finite collection of morphism which is in-
dicated by @y, @z, -, @y, satisfying the map A — [],;., Ag, is faithfully flat. We let
O : CAlgff — Set be the forgetful functor defined by O(R) = R. Then it can be prove
that O is sheaf for the étale topology, and moreover it is a commutative ring object of
the topos ShVSet(CAlgit). We refer (ShVSet(CAlgit),O) as the étale spectrum of this
commutative R and denote it as SpétR.

We know that a Deligne-Mumford stack X can be view as a functor from the category
of schemes to the category of groupoids satisfying certain conditions. It is an étale sheaf
X: CAlgQ7 - T3,

Theorem 2.1.4: Let X : CAIgZ — TS be a functor, X is representable by a classical
Deligne-Mumford stack if there exits a collection of objects U, which is indicated by
a € I in the category CAng, and it satisfies the following two conditions.

(1) These objects {U,, }4e; cover CAlg;. That is, the canonical map [[, U, — 1
is an epimorphism in CAng.

(2) Foreach a € I, the ringed topos (X,y,_, Ox|y,) is equivalent to a ringed topos

which has the form SpétR,,, such that R, is an ordinary commutative ring.
Proof: Seel!llRemark 1255 .., q[11]Theorem 1.2.5.9 -

co-Topoi

We now turn to spectral algebraic geometry. The main ingredients of spectral alge-
braic geometry are spectral Deligne-Mumford stacks, they are spectrally ringed co-topoi
satisfying certain conditions.

Definition 2.1.5: Suppose we have an co-category X', we will say that X is an co-topos,
if we have an accessible left exact localization functor P(C) = X, where P(C) is the

co-category of presheaves on small co-category C. This condition means that there is an

8
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adjoint pair
a:PC)SX:i

where a is left exact, and i is acessible.
Theorem 2.1.6; [21Theorem 6.1.0.6 gyynose X is an co-category, then we have the follow-
ing equivalent conditions:
(1) X is an co-topos.
(2) X is presentable, if we have a small simplicial set K and a natural transforma-
tion @ : p = q of diagrams in Fun(K® — X), X satisfies the following conditions:
If g 1s a colimit diagram and @ = @|K is a Cartesian transformation, then we have p
is a colimit diagram if and only if & 1s a Cartesian transformation.
(3) X satisfying the Giraud’s axioms:
(1) X is a presentable co-category.
(2) Colimits in the co-category X are universal.
(3) Coproducts in the co-category X are disjoint.
(4) Every groupoid object of X is an effective object.
Definition 2.1.7: Suppose we have two co-topoi X and Y. A geometric morphism form
X to Y is a functor f, : X — Y of co-categories, such that f, have a left exact adjoint
(denote by f* : Y — X).
It is obvious that a classical topos is an co-topos whose morphism spaces are all
discrete. Generally, we have the definition of n-topos.
Definition 2.1.8: Suppose X is an co-category, for 0 < n < oo, we will say that X is a

n-topos if there exists an accessible left exact localization
L: :Psn—l(c) - X

such that C is a small co-category, and P<,,_1 (C) denote the full co-subcategory of P (C)
spanned by those (n — 1)-truncated objects of the presheaves category P(C) of C.
Example 2.1.9: Suppose X is an co-category, X is a 0-topos if and only if there is an
equivalence of co-categories X =~ N(U), here U is a locale. Let U be a partially ordered
set, we say U is a locale if it satisfies the following two conditions:

(1) Let {U,} be a subset of U, which consists of elements of U, then {U,} has a
least upper bound in ‘U, which we denoted it by U, U, in U.

(2) The least upper bounds commutes with meets, that is we have an equality

U(Ua nV) = (U uHNv.
9
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where (U U V) is the greatest lower bound of the two elements U and V.

Spectrally Ringed «o-Topoi

Definition 2.1.10: Suppose that X is an co-topos and C is an co-category. We will say
a functor F : X°P — C is a C valued sheaf if it preserves small limits in co-categories.
We let Shve (X)) denote theco-category of C-valued sheaves on X .

Remark 2.1.11: In general, the definition above is not equal to the definition of C-valued
sheaves with respect to a certain Grothendieck topology on the co-category X. But there
is still a connection between them. Suppose that 7" is a small co-category equipped with
a certain Grothendieck topology. We let j : T = P(T") denote the co-categorical Yoneda
embedding. We have an inclusion functor i : Shv(T) & P(T), since it preserves small
limits, so by the co-categorical adjoint functor theorem, it admits a left adjoint. We let
L : P(T) = Shv(T) denote the left adjoint to inclusion functor. Suppose we have an co-
category C which admits all small limits. Then we have an equivalence of co-categories
Shve(Shv(T)) = Shve () which is induced by composition with L o j.

Definition 2.1.12: A spectrally ringed oo-topos X is a pair (X, 0), where X is an co-
topos and O € Shvpje(X) is a sheaf of Eq,-rings on X.

Spectral Deligne-Mumford Stacks

For an co-ring A, we consider the co-category of CAlgjt, it is equipped with the étale-
topology. The sheaf category Shvg (CAlgjt) is an oco-topos, we let O : Shvg (CAlgit) -
CAlg denote the forget functor (since its value on represent objects are spectra), then it
can be proved that (Shv,éet, 0) is a spectrally ringed topoi, we call this co-topoi the étale
spectrum of A.

Definition 2.1.13: Suppose we have a spectrally ringed co-topos X = (X, Oy ), we will
say that X is a nonconnective spectral Deligne-Mumford stack if there exists a collection
of objects U, € X satisfying the following two conditions:

(1) Those object {U,} is a cover of the co-topos X .

(2) For each index a, the restriction co-topoi (X,y,_, Ox|y,) of (X, 0x) to U, is
equivalent to an étale spectrum SpétA, for an E.,-ring A4,.

We will say X = (X, Oy) is a spectral Deligne-Mumford stack if in addition, the
structure sheaf Oy is connective.

Example 2.1.14: For a connective E,-ring A, SpétA = (Shvf;t, 0) is a spectral
Deligne-Mumford stack.

10
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Proposition 2.1.15: Suppose we have a nonconnective spectral Deligne-Mumford
stacks (X, Oy), then the connective cover construction T-q0y — Oy determine a spec-
tral Deligne-Mumford stack (X, 7500 ). And it has the following universal property: for

every (Y,0qy) € OOTopéIifgn , if we have Oy is connective, then the canonical map

MapooTopéIZ‘fgn ((x’ TZOOX)’ (yJ O'y)) - MapooTopgile; ((x' OX)' Cy' O'y))

is a homotopy equivalence. Moreover, the inclusion functor SpDM & SpDM"* has a left

adjoint. And its left adjoint is given by (X, Oy ) = (X, T<c0x).
Proof: See[ll]Proposition 1.4.5.1 and[ll]Corollary 1.4.52_ -

Truncated spectral Deligne-Mumford stacks

Definition 2.1.16: Supposen > 0is an integer, and X = (X, Oy) is a spectral Deligne-
Mumfor stack. We will say that X is n-truncated if its structure sheaf Oy is n-truncated.
We let SpDMsn denote the full subcategory of SpDM, which is spanned by those spectral
Deligne-Mumford stacks which are n-truncated.

Example 2.1.17: Suppose A is a connective E,-ring, then SpétA is an affine spectral
Deligne-Mumford stack. And SpétA is n-truncated if and only if A is an n-truncated
E o -ring.

Proposition 2.1.18: Suppose (X, Oy) is a spectral Deligne-Mumford stacks (X, Oy),
then the truncated construction 7, of structural sheaves determines a spectral Deligne-
Mumford stack (X, 7<oOx). And it has following universal property: for each (Y, Oy) €

OOTOpSCijl;, if we have Oy is connective and n-truncated. Then the canonical map

MapooTopgglegn ((X,7<n0x), (Y, 0y)) - MapooTopéI;ilegn ((X,0x), (Y, 04))

is a homotopy equivalence. Moreover, the construction (X,0yx) = (X, T<,0x) deter-

mines a left adjoint of the inclusion functor SpDMsn S SpDM.

Proof: Seel!!lProposition 1.4.63 ,, q[11]Corollary 1.4.6.4 -
For an co-topos X, it can be prove that its heart XV is an ordinary topos. What

is the relations between (X, Oy) and (X, my0y)? The following recognition criterion

give a relation between spectral Deligne-Mumford stacks and classical Deligne-Mumford

stacks.

Theorem 2.1.19: [1!1]Theorem 1481 qnn05e (X, Oy ) is a spectrally ringed oo-topos, then

it is a nonconnective spectral Deligne-Mumford stack if and only it satisfying the follow-

ing four conditions:

11
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(1) The underlying ringed topos (XY, my0x) is a classical Deligne-Mumford
stack.

(2) The canoncial geometric morphism ¢, : X — Shvgs(X") is étale.

(3) The homotopy groups sheaves 1,0y are all quasi-coherent sheaf on the clas-
sical stack (X7, my0y).

(4) The sheaf Oy is hypercomplete.
Proposition 2.1.20: [1]Proposition 1L4.9.1 1 ot ShIIM be the co-category spectral Deligne-
Mumford stacks, it is the homotopy limit of following tower

3<2 1<0

- > SpDM=* = spDM=? = spDM=! = spDM=’.

Functor of Points

Assume we have a spectrally ringed co-topos X = (X, Oy ), we define functors
R : CAlg—$
R — MapooToplC%g (Spé tR, X)

hy : CAlg" = S§
R — MapooTongflg (SpetR,X)

It can be prove that for a nonconnective spectral Deligne-Mumford stack X and

for every Eg-ring R, the mapping space hyx“Map (SpetR X) is essentially

o Top loc

small [11]Proposition 1.6.4. 2

Proposition 2.1.21; [!1Proposition 1.64.2 7 ot pic and hy be the two functors defined
above, we have
(1) X = h% determines a fully faithful embedding SpDM™ — Fun(CAlg, S).
(2) Y & hy determines a fully faithful embedding SpDM — Fun(CAIg", S).
We will refer these two functors hg¢ and hy as the functor of points of nonconnective
spectral Deligne-Mumford stack X and spectral Deligne-Mumford stack Y respectively.
Definition 2.1.22: Suppose X is a spectral Deligne-Mumford stack, we will say X is a
spectral Deligne-Mumford n-stack if for every commutative ring R, the mapping space
MapSp oy (SPétR, X) is n-truncated. And a spectral algebraic space is a spectral Deligne-
Mumford 0-stack.
Example 2.1.23: Suppose that we have a connective E,-ring A, then SpétA is a spectral

algebraic space.

12
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Geometric Points

Suppose that X is an co-topos, the co-category of points of X are the full subcategory
of the functor co-category Fun(X, §) spanned by those geometric morphism x* : X’ — §.
Definition 2.1.24: Suppose that we have a spectral Deligne-Mumford stack X. A geo-
metric point is a morphism of spectral Deligne-Mumford stacks 7 : Spétk — X, such that
k is a separably closed filed. And moreover, we say such a geometric point 77 is minimal
if n can be written as a composition

Spétk > speta > X
and it satisfies the following conditions:
(1) n"is étale.
(2) The map of commutative rings ¢ : myA — k which is induced by n" exhibits
k as a separable extension of a certain residue field of the ring myA.

We let Pt,(X) denote the full subcategory of SpDM /X which is spanned by those
minimal geometric points 77 : X, — X.

The following theorem gives an relation between geometric points and points of the
underlying oo-topos of a spectral Deligne-Mumford stack.

Proposition 2.1.25; [11IProposition3.542 qynnose X = (X, 0y) is a spectral Deligne-
Mumford stack. Then we have a equivalence of co-categories between the co-category
Pty (X) and oco-category Fun®(X,8). Where Fun®(X,S) is the functor oo-category
spanned by those functors which preserves small colimit and finite limits. This equiv-

alence is given by
m:Xo— X) > (n* € Fun(X,S)).

Proposition 2.1.26: Suppose that X = (X,0x) and Y = (Y, Oy) are two spectral
Deligne-Mumford stacks, and f : X = Y is a morphism between them. Then we have the
following equivalent conditions:

(1) f, :+ X - Y is a sujective morphism between their underlying co-topoi.

(2) Suppose that k be is a filed and n : Spétk — Y is a morphism in SpDM. Then
we have an field extension of k' of k, it satisfies the composite Spétk’ — Spétk — Y
factor through f.

(3) Suppose k is a filed and n : Spétk — Y is a morphism in SpDM, the fiber
product Spét; Xy X is nonempty.

Proof: See [11]Proposition 3.5.5.4 ) n

13
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Definition 2.1.27: Suppose X and Y are two spectral Deligne-Mumford stacks and f :
X — Y is a morphism between X and Y, we will say f is surjective if it satisfies those

equivalent conditions in the above proposition.

2.2 Properties of Morphisms

We first recall something about local properties of geometric objects and morphisms
between them. Let 7 be a Grothendieck topology on the co-category of spectral Deligne-
Mumford stacks, like open, étale, flat, fpqc and so on.

Suppose P is a property of spectral Deligne-Mumford stacks, we will say that the
property P is local for the T'-topology, if P satisfies the following conditions:

(1) Foramorphismin f : X — Y belongs to T, if once we know Y has the property
P, then we can get X also has the property P.

(2) For cover morphisms {X, = Y} in T, if every X, has the property P, then we
can get Y also has the property P.

Let Q be a property of morphisms in the co-category SpDM, Q is said to be local on
the source with respect to the T'-topology, if the following conditions hold:

(1) Suppose we have a diagram X EX vy 5z ,if f belongsto T, and g is a morphism
which has property Q, then we can get g o f also has the property Q.

(2) Suppose g : X = Y be a morphism in SpDM, for a collection of cover mor-
phisms {f, : X, = X} in T, if each of the composition g ° f, is a morphism the property
Q, then we get g also has the property Q.

Let Q be a property of morphisms in SpDM, we will say that the property Q is local
on the target with respect to the 7'-topology;, if it satisfying the following conditions:

(1) For every pullback square of spectral Deligne-Mumford stacks

X' —X

b

y' 2.y

such that g belongs to T, if f has the property Q, we get f' has the property Q.

(2) Let g : X = Y be a morphism in SpDM, for a collection of cover morphisms
{fo : Yo = Y} in T, if each of induced morphism Y, Xy X — Y, has the property Q, we
can get g has the property Q.

14
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Etale Morphisms

By the definition of spectral Deligne-Mumford stacks, étale locally, they are étale
spectrum of E,-rings. The étale morphisms play the role of local in the word of spectral
Deligne-Mumford stacks,just like open subscheme in classical algebraic geometry. We
recall that a morphism f : A — B of Ey-ring is called étale if it satisfies the following
conditions:

(1) myA — myB is a étale morphism in the sense of classical algebraic geometry
(flat and unramified).

(2) There are isomorphism m,A @ 4 moB = myB of groups.
Definition 2.2.1: Let X and Y be two nonconnective spectral Deligne-Mumford stacks,
We say a morphism f : X = (X, 0x) = Y = (Y, Oy) between them is étale if it satisfies
the following conditions:

(1) The morphism of the underlying oo-topos f, : X = Y is étale, i.e., it induces
an equivalence of co-topos, X' = Y, for a certain object U € Y.

(2) We have an equivalence
[0y - Ox

of sheaves of E,,-rings on X.
Proposition 2.2.2; [H]Corollary 1.4.10.3 gyypp05e that we have two nonconnective spectral
Deligne-Mumford stacks X = (X,0x) andY = (Y,0y) and f : X = (X,0x) - ¥ =
(Y, Oy) is a morphism between them, then f is étale if and only if for every commutative
diagram

SpétB — X

| )

SpétA ——Y
where the horizontal maps are étale, the underying map of E,,-rings A — B is étale.
Definition 2.2.3: Suppose that we have two nonconnective spectral Deligne-Mumford
stacks X = (X,0x) andY = (Y,0y) and f : X = (X,0x) = Y = (Y, Oy) is morphism

between them, we will say f is flat if for every commutative square

SpétB — X

|k

SpétA ——Y

where the horizontal maps are étale, the underying map of E.,-rings A — B is flat.

15
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Remark 2.2.4: Byl!!Example28.18 5y q[11]Proposition 2.8.2.4 "heing 3 étale (flat) morphism

is a property which is local on source for the étale topology.

Closed Immersion

In classical algebraic geometry, assume that we have two schemes X and Y a mor-
phism f : X — Y between them. We say f is a closed immersion if it induce a homeo-
morphism of the underlying topological space of X to a closed subset of Y, and induced
morphism of structure sheaves f~1 : Oy — Oy is an epimorphism. We say a geometric
morphism f, : Y — X between co-topoi X and Y is a closed immersion if we have a
composition

ySxwsx,

and satisfying U is an object of X which is (-1)-truncated and g, is an equivalence of
co-topoi.
Definition 2.2.5: Suppose that we have two spectrally ringed co-topoi (X, 0y ) and
(Y, Oy), we say a morphism f : (X, 0x) = (Y, Oy) between them, we say f is a closed
immersion if it satisfies the following conditions:

(1) f, : X = Y is a closed immersion of co-topoi.

(2) Both Oy and Oy are connective.

(3) The induce morphism 7, f ‘10y - o0y 1s an epimorphism.
Proposition 2.2.6: [!Proposition 3.1.L1 qyynose that (X, 0y) is a locally spectrally
ringed co-topos, if we have Oy is connective and we have a morphism a : Oy — O’ of
sheaves of [E,-rings on X such that the induced morphism Oy — O’ is surjective. Then
there exists a closed immersion locally spectrally ringed co-topoi f : (Y, Oy) = (X, Ox)
and an equivalence § : 0" = f,0y.

Proposition 2.2.7: [111Corollary 3.12.3 gy5505e that we have a pullback square in SpDM

X' —X

oy
Y —Y

If we know that f is a closed immersion, we get f' is also a closed immersion.

Proposition 2.2.8; [!1Corollary 3.124 Gyy5505e that we have a commutative triangle

N

Z

16
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of spectral Deligne-Mumford stacks. If we already know that g is a closed immersion.

Then the condition that f is a closed immersion is equivalent to h is a closed immersion.

Separated Morphisms

Definition 2.2.9: Suppose X,Y € SpDM, and f : X = Y is a morphism between. We
will say f is separated if the diagonal morphism X — X Xy X is a closed immersion. Since
Spét S is final object of SpDM, we say that a X € SpDM is separated if the morphism
X — SpétS is separated.

It can be prove that for a separated morphism f : X = Y between spectral Deligne-
Mumford stacks, the map MapSpDM(SpétR,X ) = MapSpDM(SpétR, Y) is O-truncated.
By this result, if we know Y is a spectral algebraic space, we get X is a spectral algebraic
space.

Remark 2.2.10: By the base change of closed immersion, suppose that we have a pull-

back square

X' —X
lf ! J/f

y' Iy
of spectral Deligne-Mumford stacks. If f is separated, then basechange f' is also sepa-
rated. And if g is an étale surjection, then the converse is also true.

By the definition of closed immersion, we find that a morphism f : X = (X, 0y) —

Y = (Y, Oy) in SpDM to be separated only depends on the morphism of their underlying
0-truncated spectral Deligne-Mumford stacks (X, mgOx) = (Y, moO0q).

Finiteness Conditions on spectral Deligne-Mumford stacks

Let us first review some finiteness conditions in higher categorical algebra .
Suppose A is an E,-ring, M is an A-module. We say M is
(1) perfect, if it is an compact object of LModg.
(2) almost perfect, if there exits a integer k satisfying M € (LModg)s, and M is
an almost perfect object of (LModg)sk-
(3) perfect to order n, if it satisfying the following conditions:
Suppose that we have a filtered diagram {N, } in (LMod, )¢, then the canonical map
1_i>rg(1Exti1 (M,N,) - Extf4 (M, l_i)rgNa) is injective for i = n and bijective for i < n.
(4) finitely n-presented if M is n-truncated and perfect to order (n+1).
(5) finite generated, if it is perfect to order 0.

17
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And when we consider the finiteness conditions on algebra. We say a morphism

¢ : A — B of connective Eq,-rings is

free

(1) finite presentation if B belongs to the smallest full subcategory of CAlg,

which is closed under finite colimits.
(2) locally of finite presentation if B is a compact object of co-category CAlg,,.
(3) almost of finite presentation if A is an almost compact object of the co-category
CAlg,, that is, T, B is a compact object of 7, CAlg , for alln = 0.
(4) finite generation to order n if it satisfying the following conditions:
Suppose that we have a filtered diagram of connective E,-rings over 4, {C,}, it has
colimit C. If we know that each C, is n-truncated and that those transition maps 7,,C, —

7, Cg 1s a monomorphism. Then there is a homotopy equivalence
liorln MapCAlgA (B,C,) — MapCAlgA (B,0)

(5) finite type if B is an A-algebra of finite generation to order 0.

(6) finite if B as an A-module is finitely generated.
Proposition 2.2.11; [11]Proposition 2.7.2.1, Proposition 4.1.1.3 qynn0se that we have two con-
nective E.,-rings A and B, and ¢ : A — B be a morphism between them. Then the
following conditions are equivalent.

(1) ¢ is finite (finite type).

(2) The commutative ring 7B is finite (finite type) over myA.
Definition 2.2.12; [!1Definition 4.2.0.1 gypp0se that we have X, Y € SpDM, and f : X —» Y
is a morphism between them. We say that f is locally of finite type, (locally of finite
genreration to order n, locally almost of finite presentation, locally of finite presentation)

if for every commutative diagram

SpétB — X
n

SpétA ——=Y
in SpDM, such that the horizontal morphisms are étale, we always have the map of E,-
rings A — B is finite type (finite generation to order n, almost of finite presentation,
locally of finite presentation).
Definition 2.2.13; [11IDefinition 52.0.1 gy5p05e that we have X, Y € SpDM, andg : X - Y
is a morphism between them, we say f is finite, if f satisfying the following conditions:

(1) f is affine.

18
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(2) The push-forward sheaves f,Oy is perfect to order 0.
Remark 2.2.14: Byl!!Example4.2.02 "5 morphism f : X — Y in SpDM is locally of finite
type if the underlying map of spectral Deligne-Mumford 0-stacks is locally of finite type.
And by[HRemark 32.0.2 5 pyorphism of f : X — Y is finite if the underlying map of
spectral Deligne-Mumford O-stacks is finite. If X and Y are spectral algebraic spaces, then
f is finite is equivalent to £ is finite is the sense of classical algebraic geometry.

Proposition 2.2.15: Suppose we have a pullback diagram

X' —X
ool
Y' —Y
in SpDM. If we know f is locally of finite generation to order n (locally of finite type,
locally almost of finite presentation), we get f' also satisfies the same condition.

Proof: This is easy to see by the pullback property. [

Proper Morphisms

Definition 2.2.16: Suppose that we have X,Y € SpDM, and f : X — Y is a morphism

between them. We say f is universally closed if we have a pullback square in SpDM

X' —X

L

Y —Y
such that Y’ is a quasi-separated spectral algebraic space, we alwasy get the map |X'| —
|Y'| between topological spaces is closed.
Definition 2.2.17: Suppose that we have X,Y € SpDM, and f : X — Y is a morphism
between them. We call f a proper morphism if f is quasi-compact, separated, locally of
finite type and universally closed.
Proposition 2.2.18: Proper morphism is stable under base change. Suppose we have
a pull-back diagram

X' —X

lf’ J{f

y -y
in SpDM. Then we have
(1) if f is proper, then so is f' .

(2) if f' is proper, and we know f is separated and g is a flat cover, we can get f

19



CHAPTER 2 SPECTRAL ALGEBRAIC GEOMETRY

is proper.

Proof: This just follows from the base change property of separated, universally closed
and locally of finite type. [
Corollary 2.2.19: The condition that a morphism f : X — Y be proper is local on the
target for the étale topology. This means that, if we get a étale surjection such that the
projection map X Xy Y' — Y’ is proper, then f is proper. And moreover, if we have a
collection morphisms {f, : X, — Y,} such that each of them is proper. Then the we get
the induced map [[ X, — [] Y, is proper.

2.3 Quasi-Coherent Sheaves

Definition 2.3.1: Suppose that we have a nonconnective spectral Deligne-Mumford
stack (X, Oy ) and F is a sheaves of spectra on X which is a Oy-module. We say that F
is a quasi-coherent sheaves if we can find a collection of objects U, € X such that they
cover X (i.e.,the map [[, U, is an effective epimorphism) and they satisfies:

For every a, there exits an E,-ring A,, an A,-module M, and an equivalence

(x/Ua'Oanﬁfan) = SpétMod(Aa:i Maf)

in the oo-category OOTopls\ifél .

For a nonconnective spectral Deligne-Mumford stack (X, Oy ), we let QCoh(X) de-
note the co-category of quasi-coherent sheaves of Oy-modules on X'.
Let f : X — Y be a morphism of functors X,Y : CAlg" — § which is locally of

finite presentation, representable, proper, locally of finite Tor-amplitude. We define
f+F : QCoh(X) — QCoh(Y), F v f.(wx/y, ®F).

Proposition 2.3.2: Suppose that we have two functors X,Y : CAlg" — S and f :
X — Y be a morphism between such that f is representable, locally of finite presentation,

proper and locally of finite Tor-amplitude. Then there exits an adjunction

f+ : QCoh(X) S QCoh(Y) : f~

2.4 Formal Spectral Algebraic Geometry

Suppose that 4 is an E,-ring, we say 4 is an adic E,-ring if myA is an [ adic ordinary
ring for an ideal I € myA. In classical commutative algebra, fora M € Mody and an ideal

of R, we can talk about the I -adic completion of M. There is a similar story in spectral
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11]

algebraic geometry, reader can find more details in[!115¢ction? "Eor any finitely generated

ideals I € myA, we have the following the I-completion functor
Mod, — Modf4 :M > M,

We consider a functor Ogpy CAlgjt — CAlg, defined by B = Bf". Let Shvﬁd de-
note the closed subtopos of Shvit corresponds to vanishing locus of an ideal of definition
of myA. It can be prove that Ogpey * Shvzd — CAlg, is connective and strictly Henselian,
SO (Shvfld, Ospra) is an spectrally ringed co-topos. One can see chapter 8 of Lurie’s book
for more details.

Definition 2.4.1: Let A be an adic E,-ring, the formal spectrum SpAf is the spectrally
ringed-topoi Spf(4) := (Shvis", Osyra).

Definition 2.4.2: Suppose that we have an spectrally co-topos X = (X, Oy), we say f
is a formal spectral Deligne-Mumford stack if there is a cover {U;} of X', such that each
(Xju,» Ox|U;) is equivalent to SpfA; for an adic Eq,-ring 4;.

Example 2.4.3: Byl!!Proposition8.1.6.6 "gy;5505e that X € SpDM and K < |X| is a co-
compact closed subset of the underlying topological space of X. Then we can get a map
ini: X —= X in SpDM, this X can be viewed a formal completion of X along the closed

subset K.

Formal GAGA Theorem
Theorem 2.4.4; U1Theorem8.33.1 gypp05e that we have an I-adic complete Eo,-ring R,
where [ is an ideal myR. If X is a spectral algebraic space overRand X" is the formal

completion along I, that is X = SpfR Xspetr X- Then we have a homotopy equivalence

Mapg (X, Y) = Mapgg xMNY)

for any quasi-separated spectral algebraic space Y.

2.5 Spectral Artin Representability Theorem

Suppose that we have a spectral Deligne-Mumford stack X, its functor of points
determines a functor X : CAlg™ — S. A fundamental question in spectral algebraic
geometry is what kinds of functors X : CAlg™ — S are representable by spectral Deligne-
Mumford stacks? We will review spectral representability theorem in this section. Let us
first recall the classical Artin representability theorem

Theorem 2.5.1: Let R be a Grothendieck ring and X : CAlg; — Set be a functor. If X
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satisfying the following conditions:
(1) X — X Xgpecr X is representable by a classical algebraic space.
(2) X is an étale sheaf on the category of R-algebra.

(3) We have an equivalence of sets
X(B) = limX(B/m™)

for any complete local Noetherian R-algebra B with maximal ideal m.
(4) X admits a cotangent complex, and satisfying Schlessinger’s criteria for formal
representability.
(5) X commutes with filtered colimits.
Then X is representable by an algebraic space which is locally of finite presentation over
R.
In derived algebraic geometry, there is a similar theorem developed by’ and[?3].

But we will focus on following spectral algebraic geometry version!!'!].

Spectral Artin Representability Theorem
Theorem 2.5.2; [11]Theorem 160.1 qyy555¢ that we have a functor M : CAlg™ — S be-
tween oo-categories and R is a Noetherian E,,-ring such that myR is a Grothendieck ring.
If f : M — SpecR is a natural transformation. If there exits a non-negative integer n , and
X satisfying the following conditions:

(1) The space M(R,) is n-truncated for any discrete commutative ring Ry.

(2) The presheaf M is an étale sheaf.

(3) M admits a connective cotangent complex Ly,.

(4) M is nilcomplete, integrable and infinitesimally cohesive.

(5) f is locally almost of finite presentation as a natural transformations between
functors CAlg™" — S.
Then M is representable by a spectral Deligne-Mumford stack which is locally almost of
finite presentation over R.

We will explain these conditions in the left of this section.

Cotangent Complex

Definition 2.5.3: Suppose that we have a spectrally ringed co-topos (X, A) and M is an
A-modules we let A @ M denote the trivial square extension A by M, see [3]Theorem 7.3.4.7

for more details. A derivation is a map A — A @ M satisfying it is a section of the
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canonical map A @ M — A. We let Der(A, M) = MapShVCAlg(x)/ﬂ(ﬂ,ﬂ @D M)
denote oo-category of derivations of A into M.

Definition 2.5.4: Suppose X is an co-topos. We let
L : Shvpa e (X) = Mod(Shvg, (X)), A = Ly

denote the absolute cotangent complex functor defined in[31Subsection 732 “ And for a mor-
phism ¢ : A — B of Es-ring sheaves on X, the relative cotangent complex Lg, 4 is
given by the cofiber of the map B @ 4 L4 = Lg determined by ¢.

By [H1]Subsection 7.3.2 "the absolute cotangent complex is characterized by the following
properties: There exists a universal derivation d € Der(A, L) for which composition

with d induces an equivalence
Mapy;.q . (Lg,M) = Der(A, M).

of oo-categories.

The cotangent complex of a spectral Deligne-Mumford stack X is the cotangent of
X as a spectrally ringed topos. Assume that we have two functors X, Y : CAlg™ — S and
a natural transformation f : X — Y, they are determined by spectral Deligne-Mumford
stacks X, Y and a morphism f : X — Y between them. Then for any A € CAlg™ and a

point 7 € X(A), there exists a connective A-module M;, which corepresents the functor
Mody' =S, N~ fib(X(4 X N) = X(4) Qya) Y(4 @ N)).

Definition 2.5.5: Let f : X — Y be a natural transformation between functors X,Y :
CAlg™" — S, we define a functor F : Modé(n - S by

F(A,1,M) = fib(X(A X M) = X(A) @y Y (A © M)

We will say f admits a cotangent complex if the functor F is locally almost corepre-
sentable, seel!!ISubsection 17.2.4 41 more details. We say a functor X : CAlg™ — S admits
a cotangent complex if the natural transformation X — * admits a cotangent complex.

It can be prove that a functor X : CAlg™ — S admits a cotangent complex in the
sense of above definition if it satisfies:

(1) For every A € CAlg" and any point € X(A), the functor
F,:Mody" - S, Fy(N) =X(A@® N) Xxa) {n}

is corepresented by an A-module M,, by which is almost connective .

(2) Let A = B be a morphism between two connective E,-rings A and B, then
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for every B-module M which is connective, the diagram

X(A® M) —=X(B® M)

| |

X(A) X(B)

is a pullback square.

Remark 2.5.6: Suppose that we have a diagram in SpDM

Y
VN
X S (N 7
in Fun(CAlg®, S), if g and h admits a cotangent complexes.We can get f also admits a
cotangent complex, and we have a fiber sequence

f"Ly;z = Lx;z = Ly )y

in the stable co-category QCoh(X).

Cohesive, Nilcomplete, and Integrable Functors

Definition 2.5.7: Let X : CAlg®™" — S be a functor. We say that this functor X is
(1) Cohesive if X satisfying the condition: for every pull-back diagram

A——A

L, )

B'-2~B
in CAlg® for which the maps myA — myB and my,B’ — m,B are surjective, the induced
square
X(A) —X(4)
J/ J{X o))
X(B") X X(B)
is a pullback square in S.

(2) Infinitesimally cohesive if X satisfying the condition: for every pull-back

square

A ——A

L, )

B -2.B
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in CAlg®" for which the maps myA4 — m,B and myB’' — m,B are surjective whose kernel
are nilpotent ideals in myA and yB’, the induced square diagram
XA —=X(4)
J/ J{X )
xB") X% x(p)
is a pullback square in S.
Remark 2.5.8: (1) Let X : CAlg™ — S be a cohesive functor, then X is in-
finitessimally cohesive.
(2) If X is representable by a spectral Deligne-Mumford stack, then X is infinites-
simally cohesive.
(3) Let {X4}qes be a filtered diagram in Fun(CAIg" — &), and the colimit of
this diagram is X, if we know that each X, is cohesive(infintiesimally cohesive), then X
is cohesive (infinitessimally cohesive).
Definition 2.5.9: We say a functor X : CAlg™" — S is nilcomplete if for every R €
CAlg™, the natural map X (R) — limX (t<p) is a homotopy equivalence.
Definition 2.5.10: We say a functor X : CAlg®" — S is integrable if for every complete

local Noetherian E,-ring A, we have an equivalence
X(A) = MapFun(C Alg™5) (Spec4, X) - MapFun(C Alg™5) (SpfA, X).
which is induced by SpfA — SpecA.
Proposition 2.5.11; [11IProposition 17.3.5.1° A fynctor X : CAlg™ — S is integrable if and

only if for a local Noetherian ring A which is complete with respect to the maximal ideal

my, we have an equivalence

X(A) > limX (4/m™).

Relative Version of Cohesive, Nilcomplete, and Integrable

Definition 2.5.12: Let g : X — Y be a natural transformation between two functors,
X,Y : CAlg™ — §. We will say that g is:

(1) cohesive if g satisfies the condition: for every pullback square

A'——A

|

B'——B
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in CAlg™" such that myA — myB and myB’ — m,B are all surjective, the diagram

XA X(4)

N N

Y(B") Y(B)

in § is a limit digram.

(2) infinitesimally cohesive, if g satisfies the condition: for any pullback square

A ——=A
B'——B
of CAlg®, such that myA — myB and myB' — m,B are surjections with nilpotent kernel,

we get diagram of spaces

X(4) X(4)

N N

Y(B") Y(B)

is a limit diagram.

(3) nilcomplete if it satisfyies the condtion: for every A € CAlg™", the diagram

X(4) — limX (r<pA)

|

Y(A) — limY (t<pA)

is a pullback square.

(4) integrable if it satisfies the condition: for every complete local Noetherian
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E-ring A, the induced diagram

X(A) — Mapg,.catg™ s) (SpfA4, X)

| |

Y(A) — Mapg, ., calg™ 5) (Spfa,Y)

is a pullback square.

Remark 2.5.13: Suppose we are given a commutative triangle

4

in Fun(CAlg™, S), where g is cohesive. Then f is cohesive if and only if h is cohesive.

X

The statement is also holds for conditions: infinitesimally cohesive, nilcomplete and in-
tegrable.

Take Z to be the final object of Fun(CAlg™", §), we can find that if Y : CAlg — § is
cohesive, then a morphism f : X — Y is cohesive if and only if X is cohesive. The state-

ment is also holds for conditions: infinitesimally cohesive, integrable and nilcomplete.

Locally of Finite Presentation

Definition 2.5.14: Suppose X,Y € Fun(CAlg™ — §), let f : X — Y be a natural
transformation. We will say f is

(1) locally of finite presentation if it satisfies the condition: for every filtered
diagram of connective E,-rings {4,} whose colimit is A, the canonical map we have an

equivalence
6 : lim - X(A) Xy(a) limY (Ag)

(2) locally almost of finite presentation if it satisfies the condition: form = 0

and for any filtered diagram {4,} in CAlg"""=", we have an equivalence
0 : imX(Ag) = X(A) Xya) limY (Ag).

(3) locally of finite generation to order n if it satisfies the condition: for any
filtered diagram {A4,} in CAlg™ such that A, is n-truncated and the transition map

TpAg = TyApg are monomorphism, we have an equivalence
0 : imX(Ag) = X(A) Xya) limY (Ag).
Proposition 2.5.15: Suppose X,Y : Fun(CAlg™ — §), let f : X — Y be a natural
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transformation between them. Then we have the following statements which are equiva-
lent.
(1) f is locally of finite presentation .

(2) For every pull-back square

X' —X
if ! J/f
Y —Y
in Fun(CAIg™, S), f' is locally of finite presentation.
(3) For every pull-back square

X' —X
ool
Y —Y
in Fun(CAlg®™, S) where Y’ is a corepresent functor, the map f' is locally of finite pre-
sentation.
Moreover, these statements holds for the conditions: locally almost of finite presentation
and locally of finite generation to order n.
Proposition 2.5.16; [11IProposition 174.2.1 qysp05e X, Y : Fun(CAlg™ — 8), let f : X —
Y be a natural transformation between them and suppose that f admits a cotangent com-
plex Lyy. Then:
(1) If f is locally of finite generation to order n, then Ly ,y € QCoh(X) is perfect
to order n.
(2) Assume that f is infinitessimally cohesive and satisfies the following addition
condition
(*) For every filtered diagram {A,} of commutative rings have colimits A, the dia-

gram of spaces

limX (4q) — X (4)

L

limY (4¢) — Y (4)

is a pull-back diagram. Moreover, if Ly /y is perfect to order n, then f is locally of finite

generation to order n.
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Etale sheaves in Spectral Algebraic Geometry

Suppose that C is an co-category and C been equipped with a Grothendieck topology
T (Seel??IDefinition 6.2.2.1 51 the details of Grothendieck topology on co-categories). Let
F : C°P - S be a presheaf, we say F is an T'-sheaf if for any object C € C, and a T cover
sieve {U; = C}, F(C) is the limit of the simplicial diagram

Tot: A® - S, [n]+~ UT(Uil,in)
This definition is similar with the classical definition, while F : C°P — 7,8 = Set

is a classical sheaf from a 1-category to Set if for any object C € C, and an T cover

{U; — C}, F(C) is the limit of the diagram

[ [rwo-] [rwy

The following theorem gives a relation between an étale sheaf and its restriction to
discrete case.

Proposition 2.5.17: [!1Proposition I8 LLL T ot ¥ : CAlg™ — S be a nilcomplete, infinites-
imally cohesive functor and admits a cotangent complex. Then the following conditions
are equivalent:

(1) The functor X is an étale sheaf in higher categorical word.

(2) The restriction of X restricts to discrete is an étale sheaf, that is X|. Al® 18 an
étale sheaf .
Proof: The direction (1) = (2) is obvious, we will prove the other direction. Suppose
that we already know that X| Alg® is a sheaf with respect to the étale topology. We wish
to prove that X : CAlg™ — S is an étale sheaf, but étale sheaf is a local condition, so we
only need to prove that X| CAlE! is an étale sheaf.

We know that X is a nilcomplete sheaf, so we only need to prove that X;_ p :
CAlgi:n r = 8, A » X(1<4) is an étale sheaf. We will use the induction to prove this
statement. The case n = 0 follows from the assumption, now we assume it is true for
n — 1. We know that R is a square-zero extension of 7<,,_4R by M = £"(m,,R), we then

have a pullback diagram

T<nR ———> TR

| |

T<n-1R —T<n-1R @ IM
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We define two functors Y, Z R: CAlgfin g — S by the formula

<n-1R"“T<n—

Yrsn_lR(A) =X ®‘csnR T<n—1R) = X(T<p-14)

Zr o R(A) = X(A ®1_r (T<n-1R © IM)) = X (1< 1A © (A Qr,r M)).
By the infinitessimally cohesiveness of X, we then have a pullback diagram of functors

Xe

<nR YTsn—lR

Y‘fsn—lR ZTsn—1R
By the assumption, we have Y;_ g is an étale sheaf, so it is enough to prove that Z;_
is an étale sheaf. We consider the nature projection Z;_ _ p — Y;_ g, by the fiber

principle [11]Lemma D.4.3.2

, it is enough to prove that each fiber of this functor is an étale
sheaf. This is equivalent to say that:
(*) For every étale T, R-algebra A, and every point n € X(t<,_14), the functor

F : CAlgy - S defined by
B + fib(X (1<n-1B © (A 1,z M)) = X(1<n-1B))

is an étale sheaf. But by the definition of cotangent complex of Ly, we find that F(B) =
Map, ;.4 B (n*Ly, B @z M). It then follows from that Hom and & [11Corollary 6.3.4 ga¢
T<n—-1

isfying étale descent!!!IPropositon 3.2.7.

[ ]
And the spectral Artin representability can deduced from the following version.
Theorem 2.5.18: [!1Theorem 18.1.02 gy 5505e that we have a functor Z : CAlg™ — S,
then Z is representable by a spectral Deligne-Mumford stack if and only if it satisfying

the following conditions:

(1) There exists a Y € SpDM representing a functor Y : CAlg™ — S and a
equivalence of functors Z . Al = Y|e Al

(2) Z have a cotangent complex.

(3) Z is nilcomplete .

(4) Z is infinitesimally cohesive.

2.6 Spectral Varieties

Algebraic varieties are the earliest objects people studied in classical algebraic ge-
ometry. They are the common zeros of a collection of polynomials. Then Grothendieck

give these objects a more general description, they are schemes satisfies certain condi-
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tions: integral separated scheme of finite type over an algebraically closed field k. In
spectral algebraic geometry, spectral varieties are also comes from some restrictions on
more general objects.

Definition 2.6.1: A spectral variety X over an E-ring R is a morphism in SpDM"™*
which is flat, and satisfying the induced map 750X — SpetryoR of spectral Deligne-
Mumford stacks is proper, locally almost of finite presentation, geometrically reduced
and geometrically connected. We let Var(R) denote the co-category of spectral varieties
over R.

Suppose that X is an co-category and it has all finite products. We let Lat denote the
oco-category of free abelian group of finite rank. A functor A : Lat®” — X is called an
abelian group object if it preserves finite products. We let Ab(X") denote the co-category
of abelian group objects of X.

Suppose that X is an co-category and it has all finite products. We recall that a
commutative monoid object of X is a functor M : Fin, — X which satisfies: For each
n = 0, the maps {M(p') : M((n)) » M(1)},<;<n determines an equivalence M((n)) —
M((1))"™ in X. And we denote CMon(X) the co-category of commutative monoid objects
of X.

Definition 2.6.2: Let R be an E-ring. A spectral abelian variety over R is a commu-
tative monoid object of the co-category Var(R). We let AVar(R) denote the category of
spectral abelian varieties over R.

Definition 2.6.3: Suppose that we have an R € CAlg. A strict spectral abelian variety
over R is an abelian group object of the co-category Var(R). We let AVar® (R) denote the
oo-category of strict abelian varieties over R.

Remark 2.6.4: We have the functor of points construction Var(R) — Fun(CAlg,, §),
which induce a fully faithful embedding

AVAr(R) = CMon(Var(R))
= CMon“?? (Var(R))
< CMon?? (Fun(CAlg 23))
= Fun(CAlgy, CMon?? ($))

So for an abelian variety X, its value X (R) on an E,-ring R is an group like [E,-space. We

also have the functors of strict abelian varieties their values on E,-rings are topological
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abelian groups.

Spectral Elliptic Curves

Definition 2.6.5: Suppose that we have R € CAlg. A spectral elliptic curve over R is
an spectral abelian variety of dimension 1 over R. We let EII(R) = AVar,(R) denote the
oo-category of spectral elliptic curves over R.

A strict spectral elliptic curve is a strict spectral ableian variety of dimensional 1 over
R. We let EII° (R) = AVar] (R) denote the oo-category of strict spectral elliptic curves over
R.

By the definition of spectral elliptic curves and strict spectral elliptic curves, we can

define functors
Me” : CAlg -8
R — M, (R) = ElI(R)™

M;, + CAlg—>S
R — M}, (R) = Ell(R)™
Theorem 2.6.6: [241Theorem 2.4.1 The two functors M, and M3, are representable spec-

tral Deligne-Mumford stacks. Moreover, these two representable stacks are locally almost

of finite presentation over the sphere spectrum.

2.7 Spectral p-Divisible Groups

Definition 2.7.1: Suppose that we have A is a E-ring and M € Mod,. We will say
that M is finite flat it satisfies the following conditions:

(1) Every homotopy group 1, M as a tyA-module is locally free of finite rank over
the commutative ring myA.

(2) For each integer n, we have an isomorphism oM ®p 4 mpA — m,M of
homotopy groups.
Definition 2.7.2: Let f : X — Y be a map in SpDM. We say that f is a finite flat
morphism of degree d, if for every map SpétA — Y, the fiber product X Xy SpétA has
the form SpétB, where B is a finite flat rank d A-module. We let FF(A4) denote the full
subcategory of SpDMZC spanned by finite flat morphisms X — SpétA.

It is easy to see that if f : X — SpétA is finite flat, then X = SpétB for some finite

flat A-algerba B. And one can also define spectral commutative finite flat schemes over
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A. They are just grouplike commutative monoid objects in FF(A4). We let FFG(A) denote
the oo-category of spectral commutative finite flat group schemes over A.
Definition 2.7.3: Suppose A € CAlg and S be a set of prime numbers. When we say
a S-divisible group over A, we mean a functor X : (Ab}im)Olo — FFG(A) satisfies the
following conditions:

(1) The spectral commutative finite flat scheme X (0) is trivial.

(2) For every short exact sequence M” — M — M’ of finite abelian S-groups,
we have a pullback square of spectral commutative finite flat group schemes over A as

follows

X(M") —— X (M)
X(0) ——=X(M").
(3) The S-divisible group has height h, if for a M which is a finite abelian S group,
X(M) is a degree |M|" spectral commutative finite flat group scheme over A.
when S consists of only one prime p, then we call it a p-divisible group over A, we write
BTfl (A) for the co-category of height h spectral p-divisible group.
Theorem 2.7.4; [241Theorem 7.0.1 Agqume that we have a connective Eq.-ring A € CAlg™
and M be a connective A-module, let R be a square-zero extension of R by M. For every

integer g > 0, the p®-torsion construction determines a pullback square

AVary (R) — AVary(R)

| |

BT;g (R) - BT;g (R)
By this theorem, we can find that just like the classical case, the deformations of spec-
tral abelian varieties are controled by deformations of their associated spectral p-divisible

[24]Section 6,7 for more details about spectral p-divisible groups.

groups. One can see
It is know that for a classical simple p-divisible group G over a perfect field k of

characteristic p, there is a short exact sequence,
056G >G> G -0

such that G is formal and G¢! is étale. This is also a similar theorem in spectral algebraic
geometry.

Definition 2.7.5: [13IDefinition 1.6.1 gyyyin05e that we have R € CAlg™, A spectral formal
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group over R is a functor G : CAlg™ — Mody' such that the composition
G a®
CAlg, - Modg — §
is a formal hyperplane over R, i.e., this functor is representable by a formal spectrum

[13]1Section I for more details about spectral formal

of the dual of a smooth coalgebra, see
groups.

Theorem 2.7.6: Suppose that we have a p-complete E.-ring R, and G is a spec-
tral p-divisible over R. Then there exits an essentially unique spectral formal group
G° € FGroup(R) satisfying that G° restrict to those connective T<yR-algebras which

are truncated and p-nilpotent is given by
A v fib(G(A) » G(ATeY)).

We call G° the identity component of G. Moreover, if the connective component G°

is a spectral p-divisible formal group, then we can get a short exact sequence
0-G°—>G -G -0,

satisfying G° is formally connected and G¢! is étale.

Deformations of Spectral p-Divisible Groups

In this subsection, suppose that we have a commutative ring R, and G is a p-divisible

group over R,. Let A € CAlg®™ and we have amap p, : A = R,
Definition 2.7.7: A spectral deformation of G, along the ring map p, consists of a pair
(G, @), where G is a spectral p-divisible group over A and a : Gy =~ p, G is an equivalence
of spectral p-divisible groups over Ry. We let Defg (4, p4) denote the co-category of all
spectral deformations fo G along the map py,.

The following theorem due to Lurie establish the universal spectral deformation the-
ory of p-divisible groups. Suppose that R, is Noetherian F,-algebra such that the Frobe-
nius morphism is finite and G, is a p-divisible group over Ry,.

Theorem 2.7.8: [13ITheorem 3.0.11 There exists a E,-ring Rg, € CAlg™ with a morphism
of Ee-rings p : Rg — Ry satisfying following properties:

* The Eo,-ring R, is Noetherian, and the map 7o (p) : 7o (Rg,') — Ry is surjective,
and Rg, is complete with respect to the ideal ker(7o (p)).

» For any complete Noetherian E,-ring A with a map p, : A = Ry, such that
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€4 : mo(A) = R 1s surjective, we have an equivalence of co-categories

MapCAlg/Ro( Gor A) = Defg (4, pa).

The proof of existence of universal deformations along a map follows from the follow

definition of G,-taggings.
Definition 2.7.9: Suppose that A is an adic E,-ring and G € BT’ (4). A Gy-tagging of
G consists of a triple (I, u, @), where I € myA is an ideal of definition, p : Ry = my(4)/1
is a ring homomorphism, and a : (Go)r,a/1 = Gryayr 1 an isomorphism of p-divisible
groups over myA/I.

We then define a spectral deformation of G, over the E,-ring A consists of a spectral
p-divisible group G over A together with an equivalence class of G,-tagging of G. We let
Def, (A) denote the collection of all deformations of G, over 4, i.e., it is the filtered
colimit

IEnBTp (A) Xg1P (1, (ay;1) Hom(Ro, o (A) /1)
I

where I ranges over all ideals of defintion I € my(A) which are finitely generated. What
is the relation between Defg (4, p4) and Defg (A)?. It can be proved that there is a fiber

sequence

Defg, (4, p) = Defg, (4) 5 Defg, (Ro)-
Lemma 2.7.10: [13llemma3.1.10 qynh65e that R, is a commutative ring and Gy is a p-
divisible group. If R is a complete adic Eq-ring, the co-category Def; (R) is an oo-
groupoids.

By this lemma, we have a functor

Defg, : CAlgg, — S.
Theorem 2.7.11: [13ITheorem3.L15 1 R is Noetherian F, algebra such that the Frobenius
morphism is finite, and G is a p-divisible group over Ry. Then we have the following
statements:
(1) There exists an universal deformation of G,. i.e., there exists a complete adic
E-ring R, , and a morphism p : Rg — Ry such that the functor Def; is corepresentable

by Rg, - i.e. , for any complete adic Eq,-ring R, there is a equivalence
MapCAlg?gl (Rgy, R) = Defg, (R).

(2) Eg ring Rg; is a connective and Noetherian Eq,-ring.

(3) The induced map my(p) : mo(RG,) — Ry is surjective, and Ry, is complete
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with respect to the ideal ker(my(p)).
How do we get univesal deformations along a map from universal deformations con-
sists of G,-taggings. For py : A = Ry which induces a surjection of commutative rings

€ : TyA = Ry. We have a commutative digram o

Pa°

un un

MapCAlgad ( GO,A) — MapCA]gad (RGO, Ry)
cpl cpl

i |

DefGo (A) DefGo (Ro)

for any u : Rg, — A, it fits into a commutative diagram

.
p
\ PA
Ro
Passing to the homtopy fiber of the lower horiznetal map, we get a map

0 : MapCAlg?gl (Rg,, A) — Defg (4, p)

If A is complete with respect to ker €, vertical maps in ¢ are all equivalence, so we find

that @ is a equivalecne.

2.8 Orientations

Suppose that we have an R € CAlg and X : CAngLO ® S, 1s a pointed formal
hyperplane over this E,-ring R. We call a map of pointed spaces
e:S? > X(120(R))

is a preorientation of X.
Definition 2.8.1: A preorientation of an 1-dimensional spectral formal group G over an
E-ring R is a map

e:5% -5 Q%G (t59R)
of based spaces, where the based points goes to the identity of the group structure. We let
Pre(X) denote the space preorientation of X.

Fro every 1-dimensional spectral formal group G, the dualizing line of G is an R-

module defined by

w¢ = R ®o, Og(~1)
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where Os(—n) is the fiber of O = 7,0R @ R, 1 € G (TsR) is the connective element

of the group. For every preorientation e : §2 = G (TsoR), there is an associated map
Be:wg > E7%R

called the Bott map. Seel!315¢ction42 for more details about preotientations and orienta-
tions.

Definition 2.8.2: Fro a one dimensional spectral formal group G, an orientation is a
preorientation whose Bott map is an equivalence.

The reason why we require that the Bott map is an equivalence is because, for a
complex periodic E-ring, we can define a spectral formal group Gg, called the Quillen
formal group over A. And the preorientation of of a spectral formal group G is classified
by the mapping space of G :12 to G. And the Bott map of a preorientation of Quillen formal
groups is an equivalence. So if we want a preorientation e of G to be an orientation, then
the image of this proentation under the map ¢ : Q®G (75oR) = Qmég (TsoR) must be an
orientation, i.e. the Bott map of ¢(e) is an equivalence, then we get the Bott map of e is
an equivalence.

Proposition 2.8.3: [13IProposition4.321 1 ot R be E -ring which is complex periodic.

Then for any spectral formal group G over R, there is canonical equivalence
Maprg,o,, (G£ G) = Pre(G)

Proposition 2.8.4: [13IProposition 43.13 qyypp05e that we have R € CAlg and X is a for-

mal hyperplane over R which is dimension one. Then there exists an [E.,-ring Dy and a

orientation e € OrDat(Xy, ) satisfying for any R" € CAlgg, evaluation on e induces an

homotopy equivalence
Mape g, (Px, R") = OrDat(Xgr).

The representability of orientation comes from the following representability of pre-
orientation, we notice that Pre(Y) = Q2Y (75R) for a pointed formal hyperplane Y .
Lemma 2.8.5: Suppose that we have R € CAlg and X is a pointed formal hyperplane

over R. Then the functor
CAlg, - 8, R’ Pre(Xgr)

is corepresentable by an [E,-ring A over R.
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Applications

Definition 2.8.6: Suppose that we have an E,,-ring R, and E is a strict elliptic curve
over R. A presentation of E is amap e : S2 - Q®*2E(t5oR) of pointed spaces. An
orientation is a preorientation such that its image under the equivalence Pre(E) = Pre(E)
is an orientation of the formal group E.

We let EII°" (R) denote the oo-category of pairs (E, e), such that E is a strict elliptic
curve over R, and e is an orientation of E.

Theorem 2.8.7: The functor
o+ CAIE™ - s
R » ENI°"(R)™

is representable by a spectral Deligne-Mumford stack which is locally almost of finite
presentation over S.

Remark 2.8.8: It follows that[!3Remark7.32 that the étale topos U of the classical
Deligne-Mumford stack of classical elliptic curves is the full subcategory of the under-
lying topos X of M}, spectral Deligne-Mumford stack of spectral elliptic curves. We
have a map ¢ : MZ;, = M}, of nonconnective spectral Deligne-Mumford stacks, we
consider the direct image sheaf d)*OMglrl, which is a sheaf of E-rings over X. So we
get a functor OJTV;Z;I : U°P — CAlg. This construction can be viewed as a construction

that!13]Remark 7.3.2- 5, 4301 those oco-structure

of elliptic cohomology theories. It follows
determined by this construction are actually homotopy equivalent to the E,-structure in
Goerss-Hopkins-Miller’s proofl!4l.

Let G, be a nonstationary p-divisible group over a Noetherian [F,,-algebra. Let G be
the universal deformation of Gy, and R¢; denote the orientation classifier for the identity
component G°, we refer Rg. as the orientation deformation ring.

Theorem 2.8.9: Let R, be a Noetherian Fj,-algebra and G, be a one dimensional non-
stationary p-divisible over R, with a classical universal deformation ring Rgé Then we
have:

(1) The odd degree homotopy groups of Rg; equals to zero, and Rgé = 1o (REy)-

(2) Suppose that we have an adic E,-ring A, the mapping space
T
MapCAlg?;,il (Rgg; A) = De Go

classifying triples (G, @, e), where

(1) G is a spectral deformation of G, to A.
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(2) a is an equivalence class of G,-taggings of A.
(3) e is an orientation G° of the connective component of G.

Proof: See[lS]Theorem 6.0.3 and[lS’]Remark 6.0.7' n

By the deformation construction and orientation construction, we get the following
celebrated theorem due to Lurie!'3].
Theorem 2.8.10: Let Mg, denote the moduli stack of one dimensional height n p-
divisible group, then there is a sheaf of E.,-ring space, OT°P on the étale site. such that

for any
E := OTP(SpecR = M2,
we have
SpfE®(CP*) = G,

where G is the formal part of the p-divisible group G.
The construction this sheaf of Eo,-rings: 0T°P is as follows: when we have a one-
dimensional height n p-divisible group G over a commutative ring R, which is classified

by amap Gy : R = Mg;. We consider its unorientated deformation ring Rg", and its

o

universal deformation Gg iy The orientation classifier Rg, of G iy

is an even periodic
spectrum E. And it satisfies conditions in this theorem.

We recall that the Goerss-Hopkins-Miller theorem!#. For any formal groups over
a perfect field of characteristic p > 0. We can get a even periodic ring spectrum E, such
that myE is the Lubin-Tate ring and the universal deformation was obtained from G ,?0 by
base change of scalars.

Now let us give a strategy of Lurie’s proof of Goerss-Hopkins-Miller theorem. If G,
is a formal group over k, then it can be viewed as a identity component of a connected
classical p-divisible group G, over k. Then there exists a universal deformation G over
the spectral deformation ring RE™. Let G° be the identity component of G, and RZ" be

0 0
the orientation classifier of the identity component G°. Lurie proved that Eg, = Lg,Rg)
n 0
is even periodic. We refer to this as the Lubin-Tate spectrum. We then prove that the
spectrum Eg satisfying the same property with Morava E-theories. And then using the
uniquess of Morava E-theories.

Theorem 2.8.11: [131Theorem 5.1.5 Eor every complex periodic K (n)-local E-ring A. We

have a homototpy equivalence
Map 1o (Egyr A) = Homgeg (R, Go), (o (A) /] GE™)).
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And there are some new cohomology theories which are constructed by this theorem,

like topological automorphic forms, we recommand readers find more details in[!3].
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CHAPTER 3 DERIVED LEVEL STRUCTURES

3.1 Isogenies of Spectral Elliptic Curves

This chapter is heart of this paper, Our main innovation is derived level structures
defined in this chapter. The start is derived version of isogenies. We prove that the kernel
of a derived isogeny in some cases have the same phenomenon as the classical case. This
gives us an evidence that over derived version of level structures must induce classical
level structures. In section 2, we define relative Cartier divisors in the setting of spec-
tral algebraic geometry. We then use Lurie’s representability theorem prove that functors
associated with relative Cartier divisors are representable by certain spectral Deligne-
Mumford stacks. In the third and fourth section, we study derived level structures of
spectral elliptic curves and spectral p-divisible groups. The main content of last two sec-
tions are the proof of representability of derived level structures.

Definition 3.1.1: Assume that we have a connective E., ring R. Let f : X - Y bea
morphism of spectral abelian varieties over R, we say f is an isogeny if it is flat, finite
and surjective.

Lemma 3.1.2: Let f : X — Y be a morphism of spectral abelian varieties, then f* :
X" — YV is an isogeny in the classical sense.

Proof: In classical abelian varieties, f is an isogeny means f " is surjective and ker f*
is finite. But it is equivalent to £ is finite, flat and surjective31Proposition 7.1 = And jt jg
easy to see that [V is finite, flat. We only need to prove that f* is surjective.

For every morphism |Speck| — |Y|, this correspond to a morphism Spétk — Y°,
by the inclusion-truncation adjunction[!1JProposition 1.4.6.3 “this corresponds to a morphism

Spétk — Y. By the definition of surjective, we get a commutative diagram

Spétk! —X

Spétk ——Y
The upper horizontal morphism corresponds to a morphism Spétk’ — X by inclusion-
truncation adjunction. On the underlying topological space level, this corresponds to a
point |Spétk| — |Y°|. It is clear that this point in |[Y] is a preimage of |[Spétk| in X°.

So fY is surjective. [ |
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Lemma 3.1.3: Let f : X — Y be an isogeny of spectral elliptic curves over a connective
E-ring R, then fib(f) exists and is a finite and flat nonconnective spectral Deligne-
Mumford stack over R.

Proof: Byl!!Proposition L1411 *the finjte limits of nonconnective spectral Deligne-

Mumford stacks exists, so we can define fib(f). We consider the following diagram

fib(f) —X

if’ lf

* —Y

\\*
SpétR
where the square is a pullback diagram. We find that fib(f) is over SpétR.
By!!1Remark2.8.2.6 * 7 fih(f) — # is flat because it is a pull-back of a flat morphism.
Obviously i : * — SpétR is flat, so byl!Example 28312 flat morphism is local on the
source for the flat topology), i o f' : fib(f) — SpétR is flat.

Next, we show ker f is finite over R. Since *, X and Y are all spectral algebraic
spaces, so we have fibf is also a spectral algebraic space. And SpétR is an algebraic

I]Example 1.68.2 "By the above remark 2.2.14, we only need to prove that the under-

spacel
lying morphism is finite. The truncation functor is a right adjoint , so preserve limits. So

we get a pull-back diagram

fib(f)? —= X°

S
So we are reduced to prove that for an isogeny f¥ : XY — YV of ordinary abelian
varieties over a commutative ring R. ker f is finite over R. But this is true in classical

algebraic geometry[3!1Proposition 7.1

[ ]
Lemma 3.1.4: Let fy : E — E be an isogeny of spectral elliptic curves over R, such that
the underline map of ordinary elliptic curve is the multiplication N map, N : E¥ — E°.

11]Definition 5.2.3.1 And moreover

Then fibf is finite locally free of rank N in the sense of!
if N is invertible in myR, then fibf is a locally constant étale sheaf.

Proof: By[32ITheorem23.1 "o know that N : EY — EY is locally free of rank N in
the classical sense. When N is invertible in myR, then ker N is locally constant étale

sheaf. fib(fy) is a spectral algebraic space which is finite and flat and its underlying
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map fib(fy)” = ker N is locally free of rank N. We need to prove that fibfy — SpétR
is locally free of rank N in spectral algebraic geometry. But fibfyy is finite and flat,
so is affine. We are reduce to prove this in local affine, i.e., we need ot prove that
fulspérs : SpetS — SpétR is locally free, for SpétS is an affine substack of fibfy. This
is equivalent to prove that R — S is locally free of rank N in the sense of!!!IPefinition 2.9.2.1
So we need to prove

(1) S is locally free of finite rank over R.(By[3IProposition 72420 "thiq is equivalent
to say S is a flat and almost perfect R-module.)

(2) For every Eq-ring maps R — k, the vector space my(M Qg k) is a N-
dimensional k-vector space.

For (1), we know that (S is projective moR-module, and S is a flat R-module, so
by [291Proposition 72.2.18 © ¢ j5 3 projective R-module. And since m,S is a finitely generate
R-module, so byBICorollary 7229 "¢ iq 3 retract of a finitely generated free R-module M, so
is locally free of finite rank.

For (2), mo(k @z M), since R and M are connective, by[3Icorollary 7.2.1.23 "o get
To(k Qg M) = k Qg g ToM is a rank N k-vector space (oM is rank N free moR
module).

We next show that if N is invertible in myR, then fibf is a locally constant sheaf.
By the above discussion, fibf is a spectral Deligne-Mumford stack, so the associated
functor points fibf : CAlg, — S is nilcomplete and locally of almost finite presentation.
By [32ITheorem2.3.1 "fip £ | & is a locally constant sheaf, the desired results follows form
the following lemma. [
Lemma 3.1.5: Let F € Shvét(CAlg;n), and is nilcomplete, locally of almost finite
presentation and F |(C AlgE™)° is the associated sheaf of constant presheaf valued on A.
Then F is a homotopy locally constant sheaf (i.e., sheafification of a homotopy constant
presheatf).

Proof: We choose a étale cover U? of 7y R, such that F| v? is a constant sheaf for each i.
By [3Theorem 7.5.L11 "thig corresponds to an étale cover U; — R such that moU; = Up. We

consider the following diagram

T<oR —— 10U

L

T<pR ——1,,U

which is push-out diagram, since U; is an étale R algebra. This is a colimit diagram in
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T<nCAlgp. F is a sheaf of locally of almost finite prsentation, so we get push-out diagram

F(t<oR) —= F(t<oU)

F(t<nR) —= F(t<nUp)
For each i, we have such diagram. Without loss of generality, we can assume each
U; is connective. So F(t<oU;) are always same for all i. That means we have F(t<,U;)
are all equivalence. But we have F is nicomplete, this means F(U;) = colimF (t<,U;).

So we get all F(U;) are homotopy equivalence. [

3.2 Relative Cartier Divisors

In this section, we will define relative Cartier divisors in the context of spectral
algebraic geometry. And we use Lurie’s spectral Artin’s representability theorem to prove
that functors associated relative Cartier divisors are representable in certain cases.

For a locally spectrally topoi X = (X, 0,), we can consider its functor of points

loc

hx : ©Topcy, =S, Y+ MapooTopgilg(Y, X)

By!!Remark3.1.1.2 " the closed immersion of locally spectrally ringed topos f : X =
(X,0x) = Y = (Y, Oy) corresponds to morphism of sheaves of connective Eq,-rings
Ox = f.Oy over X such that 1,0y — 7, f.Oy is surjective. We consider the the fiber of
this map fibf. For a closed immersion f : D — X of spectral Deligne-Mumford stack,
we let I(D) denote fib(f), called the ideal sheaf of D.

To prove the relative representability, we need the representability of the Picard func-
tor. If we have a map f : X — SpétR of spectral Deligne-Mumford stack, we can define

a functor
Picx/p CAlg;n -8, R+ Pic(SpétR" Xgpsrr X)
If f admits a section x : SpétR — X then there exists a natural transformation of functors
Pic(X/R) » Picg/g. We let
Picyp : CAlgy" - S
denote the fiber of this map.
Theorem 3.2.1: [111Theorem 192.0.5 1 ot ¥ be a map spectral algebraic spaces which is flat,

proper, locally almost of finite presentation, geometrically reduced, and geometrically

connected over an E.,-ring R. And suppose that x : SpétR — X is a section, the functor
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Picy /R 1s representable by a spectral algebraic space which is locally of finite presentation
over R.

In the classical case, relative Cartier divisors schemes are open subschemes of Hilbert
schemes®3]. But in the derived case, the Hilbert functor is representable by a spectral

[23]Theorem 8.3.3 "4t i5 hard to say relation to say the relation between them.

algebraic space
We will directly study relative Cartier divisors in derived world.

Definition 3.2.2: Suppose that X is a spectral Deligne-Mumford stack over a spectral
Deligne-Mumford stack S. We let CDiv(X/S) denote the oco-category of closed immer-
sions D — X, such that D is flat, proper, locally almost of finite presentation over S and
the associated ideal sheaf of D is locally free of rank one over X.

Remark 3.2.3: It is easy to say that for any spectral Deligne-Mumford stack X over S,
CDiv(X/S) is a kan complex, since all objects are closed immersions of X, let D — D'

be morphism, then we have a diagram
f D[
X

by the definition of closed immersions, they all equivalent to the same substack of X, so

D

f is a equivalence.

Lemma 3.2.4: Let X/S be a spectral Deligne-Mumford stack, and T — S be a map of
spectral Deligne-Mumford stacks. If we have a relative Cartier divisor i : D — X, then
Dr is a relative Cartier divisor of Xr.

Proof: This is easy to see, we just notice that Dy is still closed immersion of
X [11]Corollary 3.12.3 = And after base change, Dy is flat, proper, locally almost of finite
presentation over T. The only thing we need to worry is that whether 1(Dy) is a line

bundle over X? But this is also true. Since we have a fiber sequence
I(D) » Ox = Op
after applying the morphism f* : Mody, — ModOXT, due to the flatness of D. We get
fiber sequence
fraD)) = Ox, = Op,

So we get I(Dr) is just f*I(D), so is invertible. [
By the construction of relative Cartier divisors, suppose that X is a spectral Deligne-

Mumford stack over an affine spectral Deligne-Mumford stack S = SpétR. We then have
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a functor
. cn
CDle/R : CAlgR )
R' - CDiv(Eg'/R")
Our main target in this section is to prove this functor is representable when E /R is a
spectral algebraic space satisfying certain conditions. Before we start the prove of repre-
senability of relative Cartier divisor, we need some preparations for computing the cotan-

gent complex of a relative Cartier divisor functor. The main issiue is square extension.

We need following truth about pushout of two closed immersions.

By[ll]Theorem 16.2.0.1, Proposition 16.2.3.1 , SUppose we have a pushout square of spectral

Deligne-Mumford stacks:
Xo1 X 0
T
X, =X,

such that 1 and j are closed immersions. Then the induced square of co-categories

QCoh(Xp1) =— QCoh(Xy)

| |

QCoh(X;) =—— QCoh(X)
determines emdbedding 6 : QCoh(X) — QCoh(Xy) Xqcon(x,,) QCoh(X;) and restricts

to an equivalence
QCoh(X)" = QCoh(X)™ Xqcoh(xg,) QCOh(X7)"
Let F € QCoh(X), and set
Fo =j" € QCoh(X,) F; =1i"F € QCoh(X;).

Then the quasi-coherent sheaf F is n-connective is equivalent F and F; are n-connective,
and this statement is also true for the condition, almost connective, Tor-amplitude < n
flat, perfect to order n, almost perfec, perfect, locally free of finite rank.

And by!!1ITheorem 163.0.1 "we the have a pullback square

SpDM X SpDM

| l

SpDM X, SpDM

/Xo

/Xo1

of oco-categories Let f : ¥ — X be a map of spectral Deligne-Mumford stacks. Let
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Yo =Xo XxY,Y; =X, XyYandlet f, : Yy = Xy and f; : ¥; = X; be the projections
maps. Then we havel!!IProposition 163.2.1 ¢ i¢ ocally almost of finite presentation if and
only if both f; and f; are locally almost of finite presentation. And the statement is also
trur for conditions: locally of finite generation to order n, locally of finite presentation,
¢tale, equivalence, open immersion, closed immersion, flat, affine, separated and proper.

Let X = (X, Oy) be a spectral Deligne-Mumford stack, and € € QCoh(X)*" is a
quasi-coherent sheaf, and 7 € Der(Oy, ZE), that is map 5 : Oy — Ox @ ZE. We let Oy
denote the square-zero extension of Oy by £ determined by 7, then we have a pull-back

diagram

Ox — 0O

Lk
OX _— OX @ XE
By[11Proposition 17.1.3.4 " 30 911 is a spectral Deligne-Mumford stack, which we will
denote it by X. In the case of n = 0, we denote it by X& = (X, Ox @ E). We then have

a pullback square of spectral Deligne-Mumford stacks
x%€ - x
o
X ——X"
such that f and g are closed immersions.

We have a pullback diagram

QCoh(X™M)2" — QCoh(X)"
QCoh(X)" —— QCoh(XZ&)acn,

by[ll]Theorem 16.2.0.1, Proposition 16.2.3.1 ) Taking n = 0 and passing t homotopy fiber over

some F € QCoh(X)*", we can get

QCOh(X&)™™ X aconcr) (F} = Mapgea i, (Fr E(E ® F))

by [11]Proposition 19.2.2.2

Taking n = 0 and passing to the homotopy fibers over some Z € SpDM ,,,, we can

/X
get classification of the first order deformations

SPDM/XS XSpDM/X {Z} = Machoh(X) (LZ/X;Zf*S);

see details in[ll]Porposition 19.4.3.1
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Lemma 3.2.5: Let f : X = SpétR be a morphism of spectral Deligne-Mumford stacks.
For a connective R-module M, then the co-categories of Deigne-Mumford stacks X’ with

a morphism X — Spét(R @ M) such that fitting into the following pull back diagram

X X'

| |

SpétR —— SpétR @ M

is a Kan complex, which is canonically equivalent to the mapping space
MapQCoh(LX/Y, Xf*M), and moreover if f is flat, proper and locally of almost fi-
nite presnetation, then any such f' : X' — S[M] is flat, proper and locally almost of finite
presentation.

Proof: We have a pullback square in E,-rings

ROM R

l la¢m

R—R®IM,

this corresponds a pushout square of spectral Deligne-Mumford stacks

SpétR @ IM SpétR

| |

SpétR —— SpétR & M

such that SpétR @ XM — SpétR are closed immersion. That makes SpétR @ M be an
id,0
infinitesimal thickening of SpétR determined by R g R @ EM.

The first part of this lemma is just the formula of first order deforma-

H]Proposition 19.4.3.1 “anq the second part is properties of pushout of two closed im-

11]Corollary 19.4.3.3 u

tions!
mersions!
Lemma 3.2.6: Suppose that we are given a pushout diagram of spectral Deligne-

Mumford stacks o
Xor ——Xo
po
X, —X,
where 1 and j are closed immersions. Let f : Y — X be a map of spectral Deligne-
Mumford stacks. Let Yy = Xq Xx Y, Y; =Xy Xy Yandletfy : Yy > Xpand f; : V; = X3
be the projections maps.

If both f;, and f; are closed immersions and determine line bundles over Y, and Y3,
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then f is a closed immersion and determines a line bundle.

Proof: The closed immersion part is just Lurie’s theorem. And for the line bundle part,
we notice that byl!11Theorem 16.2.0.1, Proposition 16.2.3.1 * £ determine a sheaf of locally free of
finite rank. To prove it is a line bundle, we can do it locally. By!!11Theorem 16.2.02 " £y 5

pullback diagram

A——A,

|

Ay —= Aoy
of E,-rings such that myA, = mydg1 < meA; are surjective, then there is an equiv-
alence F : Mody' — Modﬁﬁ XModiﬂl)l Modﬁf}. Actually this a symmetric monoidal
equivalence. Sice we have F(M) = (Ay ®4 M,Ap;1 @4 M,A; &4 M). They satisfy-
ing F(M ® N) =~ F(M) ® F(N). But by!lPropsition2.942 "iine bundles of Ay, Ag; and
A, determines invertible objects of ModZ’:, Modﬁfg , and Modf{ll, so determine a invertible

[11]Propsition 2.9.4.2 n

object of Mody", hence a line bundle over A by
Theorem 3.2.7: Let E/R be a spectral algebraic space which is flat, proper, locally
almost of finite presentation, geometrically reduced, and geometrically connected. Then

the functor
CDiVE/R : CAlgR g S
R'" - CDiv(EgR//R")

is representable by a spectral algebraic space which is locally almost of finite presentation
over R.
Proof: We use Lurie’s spectral Artin’s represnetability theorem to prove this theorem.
(1) For every discrete commutative Ry, the space CDivg /g (Ry) is 0-truncated.
We just notice that CDivg /g (Ry), consists of closed immersions D — E Xg Ry, such
that D is flat proper over Ry, so all D are discrete object, so CDivg /g (R,) is 1-truncated.
(2) The functor CDivg g is a sheaf for the étale topology.
Let {R" = U;}i¢; be an étale cover of R’, and U, be the associate check simplicial

object. We need to prove that the map
CDivg/g(R") — 1i£n CDivg g(U.)

is an equivalence. Unwinding the definitions, we only need to prove following general

result: for a spectral Deligne-Mumford stack X — S and we have a étale cover T; — S,
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then
CDiv(X/S) —» lign CDiv(X X5 T.)

is a homotopy equivalence. But this obvious, since our conditions of relative Cartier
divisor is local for the étale topology.
(3) The functor CDivg g is nilcomplete.

This is equivalent to say that the canonical map
CDiVE/R (R,) - thDlVE/R (TSTLR,)

This can be deduced form the following results: for a flat, proper, locally almost of finite
presentation spectral spectral algebraic space X over a connective E-ring S, we have a

equivalence
CDiv(X/SpétS) — imCDiv(X Xgpsrs Spétt<,S).

Let us prove this equivalence now. For a relative Cartier divisor D — X, we have the

following commutative diagram

D Xgpérs SPétTenS —D

X

Y

|

Spétt.,S

SpétS
We then get a induce map D Xgpgp5 SpetT<n,S = X Xgpsrs Spétt<,S. It is easy to prove

that this map is a closed immersion[!!Corollary 3.1.2.3

, and D Xgpgr5 Spétt<,S — SpétS
is flat, proper and locally almost of finite presentation, since D Xgpers Spétt<yS is the
base change of D along Spétt.,S — SpétS, and the associated ideal sheaf of D Xgy4¢s
Spétt.,S is still aline bundle over X Xg,615 SpétT<,S. S0 D Xgpsrs Spétt<y S is arelative

Cartier divisor of X Xg,4¢s SpétT<,S. Thus we have define a functor
6 : CDiv(X/S) » IimCDiv(X Xgpsrs Spétt<,S), D » {D Xgpers Spétt<, S}

This functor is fully faithful, since we have equivalence SpDM /s liinSpDM JTenS
defined by X = X Xgps15Spétt<,S [H]Proposition 19-4.1.2 14 prove the functor @ is an equiv-
alence, we need to show it is essentially surjective. Suppose {D,} = X Xgpers Spétt<,S
is an object in li(_mCDiV(X Xgpsts SPétt<yS). It is a morphism in l(iinSpDM JTepS?

byl !Proposition 19412 “there is a morphism D — X in SpDM q, satisfying D Xspsts
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Spétt<nS = X Xgpers Spett<,S are just Dy = X Xgpers Spétt<,S.
Next, we need to show that such D — X is relative Cartier divisor. The condi-
tion that D — § is flat, proper and locally almost of finite presentation follows imme-

diately ﬁ.om[ll]Proposition 19.4.2.1

. We need to prove that D — X is a closed immersion
and determine a line bundle over X. Without loss of generality, we may assume that
X = SpétB is affine, so we have closed immersion D Xgpsr5 Spett<,S = SpétB Xgysts
Spétt<,S = Spét(B ®s1<,S), the second equivalence comes from ! IProposition 1L.4.11.1(3)
And by[!1]Theorem 3.1.2.1 " py Xspets SPEtT<,S equals SpétBy, for each n, such that o (B Xg
T<n,S) — myBy, is surjective. Since we have 7.,S — By, is flat, we get SpétB,, =
SpétBy i1 Xspétrapsys SPELT<nS = Spét(Bpy1 Xo_, s T<nS) = Spétt<,Byyq. So we
get a spectrum B’ such that 7<,B" =~ SpétB;, = D Xg,¢ts Spétt<,S. Consequently
D = SpétB’, and myB — myB’ is surjective, so D = SpétB’' — SpétB = X is a closed
immersion. To prove that the associated ideal sheaf of D is a line bundle, we notice that

there is a pullback diagram.

I,— B Xg 1<,S
* HB, XS TSTLS’

each I, is an invertible B Xg 7<,S = T<, B module. Passing to the inverse limit, we get

l(iinln —B
-
Consequently, we have I(D) = l(iinln. So by the nilcompleteness of Picard func-
tor[11]Corollary 19.2.4.6, Propostion 19.2.4.7 "we oet | is a invertible B-module. So the associated
ideal sheaf of D is a line bundle of X.
(4) The functor CDivg g is cohesive.
This statement follows from Proposition 3.2.6 andl!!IProposition 16.3.2.1
(5) The functor CDivg g is integrable. We need to prove that for R" a local Noethe-

rian E -ring which is complete with respect to its maximal ideal m < myR. Then the

inclusion functor induces a homotopy equivalence

MapFun(CAlgcn'S) (SpétR’,CDivg/g) — MapFun(CAlgcn'S) (SpfR’, CDivg g).

But this follows from the following result: for a flat proper, locally almost of finite pre-

sentation and separated spectral spectral algebraic space X over a connective E.,-ring S,
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we have equivalence
CDiv(X/S) = CDiv(X Xgpsts SptS)

Let Hilb(X/S) denote the full subcategory of SpDM /x consists of those D — X, such
that D — X is a closed immersion and D — § is flat, proper and locally almost of fi-

nite presentation. Then by the formal GAGA theorem![!!Theorem8.5.3.4

and base change
properties of flat, proper and locally almost of finite presentation, we have Hilb(X/S) =
Hilb(X Xgpsrs SpLS). To prove the equivalence of relative Cartier divisors, we need to
check that D — X associated a line bundle over X if and only if D Xg,4+5 SpfS associated
a line bundle over X Xgpsr5 SpES. We notice that since X Xgy4r5 SpiS is flat over X, we

have [(D Xgpers SPES) = I(f*D) = f*I(D)

D Xspsrs SpES —= D
L
X Xspsrs SPES —— X.

By[ll]Proposmon 19.2.4.7 , wWe have an equivalence

QCoh(X/S)™eten = QCOh(X Xspees SPES)Herie

By restricting to subcategories spanned by invertible object and using!!!1Proposition 2.94.2/

we get D associated a line bundle over X if and only if D Xg,6¢5 SpfS associated a line
bundle over X Xgpers SpfS.
(6) CDivg g is locally almost of finite presentation.
We need to prove that CDivg /g : CAlg, — 8, R’ = CDiv(Eg//R") commutate with
filtered colimits when restrict to TSnCAlg;n. But we notice that CDiv(Eg//R") are full

categories of SpDM we consider the functor

/ERI ->R'">
r +
R* = Var,p g
+ . .
where Var, Epr—R CONSIStS of the diagram

D <>\ ERI
SpétR’
such that D — R’ is flat, proper, and locally almost of finite presentation. Then
by [11Proposition 194.2.1 " Thijs functor commutates with filtered colimits when restrict to
rSnCAlg;n. Then we just need to prove that when {D; - E zie’}ie ; are closed immersions

and determine line bundles in {£ Ié,}, then colimD; are closed immersion of colimE é' and
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determine line bundle in colimE 1"2,. But this fact follows from the locally almost of finite
presentationnes of Picard functor and properties of closed immersions.
Consider the functor CDivg/p = *, it is infitesimally cohesive and admits a cotan-

gent complex which is almost perfect, so byl!11174.2.2

, it is locally almost of finite pre-
sentation. So CDivg g is locally almost of finite presentation, since * is a final object of
Fun(CAlg™, S).
(7) The functor CDivg g admits a complex L which is connective and almost per-
fect.
For a connective E,-ring S, and every 1 € CDivg /z(S), and a connective S-module

M. We have a pullback diagram

Fy (M) — CDivg (S @ M)
n CDivg/r(S)

Then we have a functor
E,:Modg » 8, M » F,(M)

We need to prove that this functor is corepresentable. 1 corresponds a morphism
D - E Xp S, and E Xp (S @ M) is a square zero extension of E Xp S. So by the
classification of first order deformation theory[!1Propostion 19.4.3.1 “+the snace of D', which

satisfying the pullback diagram

D D’

i |

i |

SpétS —— Spét(S @ M)

is equivalent to

Mapconpy (Lp/Exgs 2f 7€) = Mapoconpy (Lp/Exgs: If*op™M)

11]Proposition 6.4.5.3

Push forward along p © f, and by! we have

Machoh(D) (LD/EXRS’Zf* °op*M) = MapQCOh(SpétS) (Z_1p+ ° f+LD/EXSpétRSpétS’ M).

And byl!1Proposition 16.3.2.1 and Temma 3.2.6, any such D’ is a closed immersion of
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CDivg /g (S @D M) and determine a line bundle of CDivg /(S @ M). Since the diagram

D D’

| |

SpétS — SpétS O M

is a pullback diagram, so D’ is a square zero extension of D. Byl IProposition 16.3.2.1

, we get
D' — Spét(S @ M) is flat, proper and locally almost of finite presentation. Combining

these facts, we find that

E,(M) = Mapqconcspees) E~ P+ © frLpjexgypepspérs: M)-

11]Example 17.2.4.4 and con-

Consequently, the functor CDivg g satisfies condition (a) ofl
dition (b) follows form the compatibility of f, with base change. It then follows
that CDivg /g admits a cotangent complex Lcpiy, /R satisfying 1" Lepivy R = T ip, o
filp /EXspetrSPELS- Since the quasi-coherent sheaf Lp JEXspetrSPELS is connective and al-
most perfect. The R-module 2~ 1p, o f, Lp /EXsp5tRSPELS is (-1) connective.

Lepiyg /R is almost perfect, since we have CDivg g it is infitesimally cohesive and
admits a cotangent complex. And it is locally almost of finite presentation, so by[!!1174.2.2
its cotangent complex is almost perfect.

We next show that it is connective. Let R’ be an E,,-ring, and n € CDiv(Eg//R),
we wish to prove that M = n*Lcpy, g € Mody, is connective. We already know that M
is is (-1)-connective and almost perfect, the homotopy group m_; M is a finitely generated
myR’ module. To prove that m_; vanishes. By the Nakayama’s lemma, this is equivalent

to prove that
1Mk @ M) = Tor™F (k,m_, M)

equals to 0 for every residue filed of R. Then we may replace R’ by k and assume k is a
algebraically closed filed.

Let A = k[t]/(t?), unwinding the definitions, we find that the dual space
Homy, (m_41M, k) can be identify with the set of automorphism of 1, such that it restrict
identity of 7. we wish to prove this set is trivial. But this follow from the fact : Let X /k
be scheme, L is an line bundle on X, if L, is also a line bundle of X4. If we have f is
an automorphism of L, such that f|L is identity on L, then f is the identity. (This fact

follows from the connectiveness of cotangent complexes of Picard functors.)
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3.3 Derived Level Structures of Spectral Elliptic Curves

Let C be a one dimensional smooth commutative group scheme over a base scheme

S, and A be an abstract finite abelian group. A homomorphism of abstract groups
¢:A—C(S)

is said to be an A-Level structure on C/S if the effective Cartier divisor D in C /S defined
by

D =ZXgealp(a)]

is a subgroup of C/S.

The following result due to Katz-Mazur3?! give the representability of level struc-
tures moduli problems.
Proposition 3.3.1: [32IProposition 1L62 1 ot /S be an one dimensional smooth commuta-

tive group scheme over S. Then the functor

Level¢/s : Schg — Set

T v the set of A-level structures on Cy/T

is representable by a closed subscheme of Hom(4, C) = C[N;] Xg -+ Xg C[N;].
Definition 3.3.2: Let E /R be a spectral elliptic curve. In the level of objects, a derived
A-level structure is a relative Cartier divisor ¢ : D — E of E, such that the underlying
morphism DY — E¥ is the inclusion of the associated relative Cartier divisor Z ¢4 [¢o(a)]
into EY, where ¢, : A = EY(R") is any classical level structure. We let Level(A, E/R)
denote the oo-category of derived A-level structures of E /R, whose objects can be viewed
as pairs ¢ = (D, ).

It is easy to see that for a spectral elliptic curve E /R, the co-category Level(A, E /R)
is a co-groupoid, since it is a full subcategory of CDiv(E /R), which is a co-groupoid.
Lemma 3.3.3: Let E/R be a spectral elliptic curve and ¢ : D — E be a derived
level structure. Suppose that T — S be a morphism of nonconnective spectral Deligne-
Mumford stacks, then the induce morphism ¢s : Dy — E7 is a derived level structure of
Er/T.

Proof: We notice that derived level structure is stable under base change. So ¢¢ : 4 —
(ExsT)"(Ty) = E°(T,) is classical level structure, so Dy, is the associated classical relative
Cartier divisor of a classical level structure. And Dy — Er is a relative Cartier divisor in

spectral algebraic geometry, this is just the base change of relative Cartier divisor (Lemma
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3.2.4). [ ]

We first recall a proposition in Katz and Mazur’s book 321Corollarly 1.3.7. gy 5505e that
C/S is a smooth group curve, and D is a relative Cartier divisor of C, then exists a closed
subscheme Z of S, satisfying for any T — S, Dy is a subgroup of C7 if and only if T
passing through Z.
Lemma 3.3.4: Let E/R be a spectral elliptic curve, and D — E be a relative Cartier
divisor. There exists a closed spectral Deligne-Mumford substack SpétZ c SpétR, sat-
isfying the following universal property:

Forany S € CAlg;n, such that the associated sheaf of Ds is a relative Cartier divisor
of Xg and (Dy)? is a subgroup of (Eg)? if and only if R — S factor through Z.
Proof: For a map R — S, it is obvious that Ds is a relative Cartier divisor of Xj.
By [32]Corollarly 1.3.7 "ye just notice that if (Dg)® /7, S is a subgroup of (Es)° /m,S, we have
SpecmyS must passing through a closed subscheme SpecZ, of SpecmyR. This corresponds
a closed spectral subscheme SpecZ of SpecR, sice we have the map R — S such that
moR — myS pass through myR /I for some ideal I of myR, so we have R — § passing
through RVU (D seel11IChapter 7 £51 details about nilpotent R-module. Conversely, suppose
that R — § passing through Z, then we have § = Og,étS is vanishing on I. That is we have
moR = m,yS passing through yR /+/I, but this is equivalent to say SpecmyS — SpecmyR
passing through SpecmyR /I = SpecZ,, and so (Ds)" is a subgroup of (Eg)”. [
Theorem 3.3.5: Let E/R be a spectral elliptic curve, then the functor

Levelg/z : CAlgy > S
R' — Level(A, Eg//R")

is representable by a closed substack S(A4) of CDivy /g. Moreover, S(A) = SpétPg g for
an E,-ring SpétPg z, which is locally almost of finite presentation over R, .
Proof: By definition, the functor Levelg g is a subfunctor of the representable functor

CDivy g. We consider a spectral Deligne-Mumford stack GroupCDiv defined by the
pullback diagram of spectral Deligne-Mumford stacks

GroupCDiv, R CDivg g

i |

SpétZ SpétR.

It is easy to say that GroupCDiv /R valued on a R-algebra R’ is the space of relative

Cartier divisors D of E Xg,¢:r SpétR’, such that DY is a subgroup of (E Xgys¢r SpEtR’)”.
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It is cleared that
GroupCDiVE/R = ]_[ Ay — CDivg g
Ao€EFinAb

where Ay — CDivg g valued on a R-algebra R’ is the space of relative Cartier divisors
D of E Xgpser SpEtR’, such that DY is an algebric subgroup of (E Xg,¢rp SpétR’)” and
DY(R") = Ay. Itis cleared that Levelg/g = A — CDivg/g, so we have Levelg g is
representable by a open substack of GroupCDiv /R

To prove the second part, we consider the map S(A) — SpétR, they are all spectral

a_]gebraic spaces. By[ll]Remark 5.2.02

, @ morphism between spectral algebraic spaces is
finite if and only if its underlying morphism between ordinary spectral algebraic space
is finite in ordinary algebraic geometry. So we only need to prove S(A)" is finite over
SpecmyR, but this is just the classical case since S(A)" is the representable object of the

32]Corollary 1.6.3

classical level structure, which is finite over R, byl [

3.4 Derived Level Structures of Spectral p-Divisible Groups

Before we talk about derived level structures of spectral p-divisible groups, let us
first review something about the classical level structures of commutative finite flat group
schemes. Let X/S be a finite flat S-scheme of finite presentation of rank N, it can be
prove that X /S is finite locally free of rank N. This means that for every affine scheme
SpecR — S, the pullback scheme X X SpecR over SpecR have the form SpecR’, where
R' is an R-algebra which is locally free of rank N. For an element f € R’ which can acts
on R’ by multiplication, define an R-linear endmorphism of B'. Because R’ is a locally
free of rank N. Then multiplication of f* can be representable by a N X N matrix Mg.
Then we can define the characteristic polynomial of f to be the characteristic polynomial

Ofo, i.e.,
det(T — f) = det(T — My) = TV — trace(My) + --- + (—1)NNorm(f).

Let {Py, -+, Py} be a set of N points in X(S), we say this set is a full set of sections
of X/S if one of the following two conditions are satisfied:

(1) Forany SpecR - S, and f € B = H°(Xg, 0), we have the equality

N
det™ = f) = | |7 = F@.
i=1
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(2) Forevery SpecR — S, and f € B = H°(Xg, 0), we have

N
Nom(f) = | | .
i=1

Actually, these conditions are equivalent.

If we have N not-necessarily-distinct points {Py, -, Py} in X(S), then we have a

0, > (X)P.05)

of sheave over X. It is easy to see that this map is surjective, and it defines a closed sub-

morphism

scheme D of X, which is flat, proper over S. So by the construction, fora ¢ : A = X(S5),
we can define closed subscheme D of X which corresponds to the sheave @ ,ex¢(a).Os.
Lemma 3.4.1: For a finite flat and finite presentation S-scheme Z, Hom(4, Z) is an open
subscheme of Hilby s.

Proof: LetT — S be a S-scheme, forany D - Y =T X Z in Hilb(Y) = Hilb(T Xs Z),
we need to prove that the set of points t € T which satisfying D; — Y; is coming from
the closed subscheme associated with a map ¢ : A — Z(T) = Y(T) is an open subset
of T. Since D is the closed subscheme defined by Oy — Op, if D; comes form Oy|; —
&®(P;).(O7)|¢- Then by the definition of stalks of sheaves, there exists an open subset U
of D such that t € U, and Dy, is defined by Oy |y = ®(P;).(07)]|y. [
Definition 3.4.2: Suppose that G /S be arank N commutative finite flat S-group scheme

of finite presentation and A is a finite abelian group of order N. A group homomorphism
¢:A—G(S)

is called an A-generator of G /S, if the N points {¢(a)},c4 are a full subset of sections of
G(S). In these cases, we say ¢ is a Drinfeld level structure.

Proposition 3.4.3: [32IProposition 1.10.13 gy 505e that G is a rank N finite flat commutative
group scheme of finite presentation over S and A is a finite abelian group of order N. Then
we have the following two propositions:

(1) The functor A—Gen(G/S) on S-schemes defined by
T » {¢|¢ : A— G(T) is a Drinfeld level structure}

is representable by a finite S-scheme of finite presentation. Actually, it is the closed
subscheme of Homgy,, (4, G) over which the image of sections {¢y (@) }qea of the uni-

versal homomorphism ¢, * A = G form a full set of sections.
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(2) If G/S is finite étale over S of rank N, we have
A—Gen(G/S) = Isomge (4, G),

such that each connected component of S, A—Gen(S) is either empty or is a finite étale

Aut(A)-torsor.

Derived Level Structures of Spectral Finite Flat Group Schemes

For a spectral commutative finite flat group scheme G over R. By the definition of
finite flat, we have G = SpétB for a finite flat R-algebra B. We let Hilb(G/R) denote
the full subcategory of SpDM /G spanned by those D — G such that D — G is a closed
immersion of spectral Deligne-Mumford stacks, and the composition D — G — R is
flat, proper and locally almost of finite presentation. Then we find Hilb(G /R) is actually

equivalent to the co-category of diagrams which have the form
R—— B
RI
such that R’ is flat, proper and locally almost of finite presentation over R and satisfies

certain conditions. It is easy to see that Hilb(G /R) is a Kan complex. Then we can define

a functor
Hilbg g : CAlg, = S
R' - Hilb(Gg/)

Theorem 3.4.4: Suppose that G is a commutative finite flat group scheme over an [E,-
ring R, then Hilbg /g is representable by a spectral Deligne-Mumford stack which is locally
almost of finite presentation over R.

Proof: This is just a special case of spectral algebraic geometry version of Lurie’s theo-
rem [23]Theorem 8.3.3 -
Remark 3.4.5: We can proof this theorem by the same argument of the proof of repre-
sentability of relative Cartier divisors.

Definition 3.4.6: Let G be a spectral commutative finite flat group scheme of rank N
over an E,-ring R, and A be an abstract finite abelian group of order N, an A-level struc-
ture of G is an object ¢ : D — G in Hilb(G/R), such that my¢.0p = Q@ (a).Ospecryr>
where ¢(a).Ogpecrr,r cOmes from amap ¢ : A — G (mgR).

Lemma 3.4.7: Let G/R be a spectral commutative finite flat group scheme of rank N
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over an E.-ring R and let D be a Hilbert closed subscheme of G. Then there exists a
E-ring Z, satisfying the following universal property:

Forany R - R’ in CAlg),, (Dg/) is a derived A-level structures of (Gg/)? if and
only if R = R’ factor through Z.
Proof: For R — R’ in CAlg},, it is obvious that Dg is in Hilb(Ggs/R"). This means
that (Dgs)" is a Hilbert closed subscheme of (Ggr)". For Dgs to be a derived level struc-
ture, we have Dg, must lie in Hom(4, G*)(myR"), this means that SpecmtyR’ — SpecmyR
must passing through an open of SpecmyR, since Hom(4, G%) can be viewed as a open
sub scheme of Hilb(GY/R"). Then we have myR — myR’ passing through W, where
W, is a localization of myR, so we have R — R’ must passing through W, where
W is an E,-ring, which is a localization of R. As for now, we already have a map
SpétR' — SpétW, such that Dy is a Hilbert closed subscheme of Gg/, and moi.Op,,
comes from amap ¢ : A > G°(myR'). For Dpr want to be a derived level structure,
Ogv = $(a)+«(Ospecrryr’) Ne€ds to be an isomorphism, i.e., these N points ¢(a)qeq must
be a full section of G¥(mryR"). By32IProposition 19.1 "for 4 set of N points of (G?(myR")) to
be a full section of G¥(myR"), SpecmtyR’ — SpecmyW must passing through a closed sub-
scheme of SpecW,. Then myW — myR’ must passing through Z,, where Z,, is equals
oW /I for some ideal I of myW. This means that we have W — R’ pass through
Z = whNil), By the discussion above, we have Z is the desired [E,-ring. And the con-
verse 1s also true by the same discussion in the derived level structures of curves.

[ ]

Proposition 3.4.8: Suppose that G is a spectral commutative finite flat group scheme
of rank N over an E.,-ring R and A is an abstract finite abelian group of order N. Then

the following functor
Levelyj /g : CAlg, > 8; R’ - Level(A, Gpr/R")

is representable by an affine spectral Deligne-Mumford stack S(A) = SpétP; /.
Proof: We first prove the representability. By definition, the functor Level‘él/R is a sub-
functor of the representable functor Hilbg /r. We consider a spectral Deligne-Mumford

stack S(A) defined by the pullback diagram of spectral Deligne-Mumford stacks

.

SpétZ —— SpétR.
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It is easy to say that S(A) valued on a R-algebra R’ is the Hilbert closed subscheme D
of E Xgp6er SpEtR’, such that D is a derived level A-structure of (E Xg,6¢r SpEtR’)°.
Then S(A) is the desried stack.

For the affine condition, we need to prove that S(A) is finite in spectral algebraic

[11]Remark 5.2.02 "3 morphism between spectral algebraic spaces is finite if

geometry. By
and only if its underlying morphism between ordinary spectral algebraic space is finite in
ordinary algebraic geometry. We have S(A) and SpétR are spectral spaces. So we only

need to prove S(A)Y is finite over R, but this is just the classical case, which is finite
by [32]Proposition 1.10.13 . -

Derived Level Structures of Spectral p-Divisible Groups

Remark 3.4.9: We let FFG(R) denote the co-category of spectral commutative finite
flat group schemes over an E,-ring R. By[24IProposition 658 “there js another equivalent
definition of spectral p-divisible group!!3IPefinition 6.02 * A spectral p-divisible group over

a connective [Eq,-ring R is just a functor
G : CAlgy — Mody'

which satisfies the following conditions:

(1) Suppose that S € CAlg;n, the spectrum G (S) is p-nilpotent, i.e., G(S)[1/p] =

(2) For M be a finite ableian p-group, the functor
CAlgy =S, S+ Mapy . (M,G(S))

is copresentable by a finite flat R-algebra.
Let X be a spectral p-divisible group of height h over an E,-ring R, that is a functor

X : AbE - FFG(R).

For every p* € Abzin, we let X[p*] denote the image of p* of X. We find that X[p*] is a
rank (p*)" spectral commutative finite flat group schemes over R.
Definition 3.4.10: Let G be a spectral p-divisible group of height h over a connective
Eo-ring R . For A a finite abelian group, an derived (Z/p*Z)"-level structure of G is a
derived (Z/p*Z)"-level structure

¢ :D - G[p]

of G [p*], which is a spectral commutative finite flat scheme over R. We let Level(k, G/R)
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denote the oo-groupoid of derived (Z/p*Z)"-level structures of G /R.
Theorem 3.4.11: Let G be a spectral p-divisible group of height h over an [E,-ring R.
Then the following functor

Level’é/R : CAlg, - §; R’ - Level(k, Gy /R")

is representable by an affine spectral Deligne-Mumford stack S(k) = Spét?Gk/ R
Proof: We just notice that by the definition of spectral p-divisible group, G[p*] is a
spectral commutative finite flat scheme. Then the theorem follows form the above result

of general spectral commutative finite flat group scheme. [

Non-Full Level Structures

The above cases only cares full level structures of commutative finite flat schemes,
actually we can define general level structures of finite flat group schemes. Let G be a
spectral commutative finite flat group scheme of rank N over an E,,-ring R, and A4 be an
abstract finite abelian group, an derived A-level structure of G is an object ¢ : D = G
in Hilb(G/R), such that D is a subgroup of G and G (7yR) is isomorphic to A. We let
Level, (A, G/R) denote th space of derived A-level structure. And Levely(A, G/R) de-
note the space of equivalence class D — G in Hilb(G /R) such that G% (7o R) is isomorphic
to A, two object D, D' are equivalent if the image of DY — G and D' — G are same.
Proposition 3.4.12: Suppose that G is a spectral commutative finite flat group scheme
of rank N over an E.,-ring R and A is an abstract finite abelian group of order not neces-
sarily equal to N. Then the following functor

Levelg, : CAlgy" = 8 R’ - Level; (A, Ggi/R')

is representable by an affine spectral Deligne-Mumford stack.
Proof: We just notice that the classical level structure functor Level(4, G¥ /myR) is rep-
resentable by a closed subscheme Hom(4, G), the using the same discussion of full level
case, we get the desired result. [
Remark 3.4.13: The above proposition also true for Level””. By the spectral commu-
tative finite flat scheme cases, we can get the representability results of spectral p-divisible
group case.

We let Level, (k, G/R) denote the co-groupoid of derived (Z/p*Z)-level structures
of G/R. Then the following functor

Levelg), : CAlgy > 8; R’ > Levely (k, G /R")
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is representable by an affine spectral Deligne-Mumford stack S; (k) = Spé t?Gl /’;
We let Levely (k, G /R) denote the oo-groupoid of derived (Z/p*Z)-level generators

of G/R. Then the following functor
Levelg’fR : CAlgy > S; R’ - Levely(k,Gg/R")

is representable by an affine spectral Deligne-Mumford stack S, (k) = Spé t?GO /’f?
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CHAPTER 4 APPLICATIONS TO CHROMATIC
HOMOTOPY THEORY

4.1 Spectral Elliptic Curves with Derived Level Structures

In the second chapter, we have introduced that there exists a spectral Deligne-

Mumford stack M,;; whose functor of points is
Meu : CAlgcn )
R +— My (R),

where M,;;(R) = EII(R)™ is the underline co-groupoid of the oco-category of spectral
elliptic curves over R.
And we have the classical Deligne-Mumford stack of classical elliptic curves, which

can be viewed as a spectral Deligne-Mumford stack

MS, : CAlg™" > S

e

R — M¢[,(moR)

where eclll (moR) is the groupoid of classical elliptic curves over the commutative ring
moR.

And for A denote Z/NZ, or ZL/NZ X Z./ NZ, we have the classical Deligne-Mumford
stack of classical elliptic curves with level-A structures, which can also be viewed as a

spectral Deligne-Mumford stack.
MELA) + CAlgT - S
R — M, (A)(moR)

where M} (A)(myR) is the groupoid of classical elliptic curves with level A-structures
over the commutative ring myR.

In last chapter, we define and study derived level structures. The construction X +
Level(A, X/R) determines a functor ElI(R) — § which is classified by a left fibration
Ell(A)(R) = ElI(R). Objects of ElI(cA)(R) are pairs (E, ¢), where E is a spectral elliptic

curve and ¢ is a derived level structures of E.

For every R € CAIlg™, we can consider all spectral elliptic curves over R with de-
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rived level structures. This moduli problem can be thought as a functor
Moy(A) : CAlg™” —§
R +— M (A)(R) = E(A)(R)
where Ell(A)(R) is the space of spectral elliptic curves E with a derived level structure
¢:A-E.
Proposition 4.1.1: The functor M;;(A) : CAlg" = S is an étale sheaf.

Proof: Let {R — U;} be an étale cover of R, and U, be the associate check simplicial

object. We consider the following diagram

Ell(A)(R)™ — > lim ElI(A) (U.)™

i ¥

ElI(R)™ 9 - lim, E1(U.)>.

The left map p is a left fibration between Kan complex, so is a Kan fibration [2%Lemma 2.1.3.3

And the right vertical map is pointwise Kan fibration. By picking a suit model for the ho-
motopy limit we may assume that q is a Kan fibration as well. We have g is an equivalence
by [24ltemma24.1 “To prove that f is a equivalence. We only need to prove that for every

E € ElI(R), the map
pE ~ Level(A,E/R) - lign Level(A, E xg U,/U.) =~ q 1g(E)
is an equivalence. We have the Level(A, E) as full co-subcategory of CDiv(E/R) and
limp Level(A, E Xy U.) as a full subcategory of
li&n CDiv(E xg U.(U.))
But CDiv is an étale sheaf. So the functor
Level(A,E/R) — liin Level(A,E Xg U,/U.).

is fully faithful. To prove it is a equivalence, we only need to prove it is essentially
surjective.

Forany {¢y, : D —» E Xp U,} inlimy Level(A, E X U,/U.). Clearly, we can find a
morphism ¢g : D = E in CDiv(E /R) whose image under the equivalence CDiv(E /R) =
limy CDiv(E Xg U./U.) is {¢y. : D = E X U.}. We just need to prove this ¢ : D = E
is a derived level structure. This is true since in the classic case, Level(4, EY(Ry)) =
limp Level(4, E¥(1<0U.)) and ¢g : D — E is already a relative Cartier divisor. [
Lemma 4.1.2: M, (A) : CAlg™" — S is a nilcomplete functor, i.e., M,;;(A)(R) is
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the homotopy limit of the following diagram
= Moy (A)(TemR) = M (A)(Tm-1R) = -+ = My (A) (T<oR)
Proof: For a spectral elliptic curve R, there is an obvious functor
0 : Meu(A)(R) = LimMeyy (A) (T<nR)

define by (E, : D — E) = {(E Xspatr SPEtTnR, b * D Xsperr SPELTznR = E Xsperr
Spétt<,R)},. Here we notice that (E Xgpgrr SpEtT<nR, ¢ + D Xgperp Spett<p,R —
E Xgspetr Spett<pR) is in My (A) (t<nR).

First, we prove that 6 is essentially surjective. An object in Elrln’l]\/fe 11(A)(T<mR) can

be written as a diagram

l = Dyyy =Dy = Dyy —— l —— D,
T Enga En En-1 Eq

where each E, is spectral elliptic curve over 7., R and D,, = E,, is a derived level
structure, and satisfying D, = Dyyq Xspérre,, R SP€LT<nR, En = Enyq Xspétre, (R
Spétt.,R. By the nilcompletness of M,;;, we get a spectral elliptic curves E, such that

11]Proposition 19.4.2.1 ,we geta spectral

E Xg T<yR = E,,, and by the nilcompletness of Var, |
Deligne-Mumford stack D, such that D;, = D Xgp¢ip Spétt<,R. We need to prove the
induce map D — E is a derived level structure, but this follows form nilcompletness of
Levelg /g.

Second, we need to prove that this functor is fully faithful. Unwinding the defini-
tions, we need to prove that for every (X,D; = X),(Y,D, = Y) € M,y (A)(R), the

following map is a homotopy equivalence.

Map]v[e”(c,q)(R) ((X,Dx),(Y,Dy)) — MapMe”(dq)(R) (l(i_l}ll(Xn, DX,n)' 1}_11111(le Dy m))-

where X, is T<nX = X Xg 7R, and Y, Dy , Dy ,, similarly.

But we notice that this is equivalent to following equivalence

MapSpDM/R ((Xr DX)! (Y, DY)) - (li_r{,llMapSpDMTsn ((X‘l’l' DX,n); (an DY,n))-

And this equivalence follows from[!!IProposition 19.4.1.2 [

Lemma 4.1.3: M,;;(A) : CAlg™ — S is a cohesive functor.
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Proof: For every pullback diagram

D——A
C——B
in CAlg® such that the underlying homomorphisms myA — moB « m,C are surjective.

We need to prove that

Mell(cf)(D) — Mell(r)(‘q)
M1 (A)(C) — My (A)(B)
is a pullback diagram.

We have the following diagram in Fun(CAlg™", §),

g
M (A) —— Mgy

RN

*

BylHRemark 17373 “pr 0« (A) is a cohesive fucntor if and only if f is cohesive.

Since we have M, is cohesive functor, h is a cohesive morphism in Fun(CAlg ", S).

H]Remark 17.3.7.3 " £ is cohesive if and only if g is cohesive. So we only need

11]Proposition 17.3.8.4

And again byl
to prove that g is a cohesive morphism. But by! g 1s cohesive if and
only if each fiber of g is cohesive, i.e., for R € CAlg"" and a point g € M,;;(R) which

represents a spectral elliptic curve E, the functor
fe : CAlgy =S, R = Moy (AR X,z (e}

is cohesive. But we have R' = M,y (A)(R") X, vy (NE} = Level(A, E Xg R'/R") =~
Levelg /g (R"). The cohesive of M, (A) then follows from the cohesive of Levelg /5.

[ ]
Lemma 4.1.4: The fucntor M,;;(A) : CAlg"™" — S is integrable
Proof: We need to prove that for R a local Noetherian [E,-ring which is complete with

respect to its maximal ideal m € myR, then there is an equivalence

MapFun(CAlgcn,S) (SpétR,, Me” (c/q)) - MapFun(CAlgcn,S) (Spr,, Me” (c/l))
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We have the following diagram in Fun(CAlg", S),

g
M (A) — Mgy

RN

*

Byl!Remark 17.3.73 “pr (A) —  * is a integrable fucntor if and only if f is
integrable. Since we have M,;; is integrable functor, h is a integrable morphism
in Fun(CAlg™,S). And again byl!!Remark17.3.73 = ¢ ig integrable if and only if g
is integrable. So we only need to prove that g is a integrable morphism. But
by/[!11]Proposition 17.3.84 5 jg integrable if and only if each fiber of g is integrable, i.e., for
R € CAlg™ and a point n; € M,;;(R) which represents a spectral elliptic curve E, the

functor

fg:CAlgy" =8, R w M (A)(R') Xag,rry M)

is integrable. But we have R" = Mg (A)(R") X ¢, (r"y {ME} = Level(A, EXgR'/R") ~
Levelg /g (R"). The integrable of M;;(A) then follows from the integrable of Levelg /g.

]
Lemma 4.1.5: The functor M,;;(A) : CAlg™ = S admits a cotangent complex LMéiﬁ,
and moreover L pde is connective and almost perfect.

Proof: We have a commutative diagram in CAIg"" — §,

g
M1 (A) — My
h
e
*
Since we have h is infitessimally coheisve and admits a connective cotangent com-

11]Proposition 17.3.9.1

plex, and f,g is infitessimally cohesive. Byl , to prove that f admits

a cotangent complex. We only need to prove g admits a relative cotangent complex.
By[!1Proposition 17.2.5.7 "5 morphism j : X — Y in Fun(CAlg ", ) admits a relative con-
tangent complex if and only if, for any corepresentbale Y’ = Map(R,—) : CAlg™" —» §
and any natural transformation Y’ — U, j' in the following pullback diagram admit a

cotangent complex.

Y' Xy X —> X

o

Y ——Y
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To prove that M,;;(A) = M,;; admits a cotangent a cotangent complex, we just need to
prove that for any R € CAlg", and a spectral elliptic curve E which represents a natural

transformations SpecR = M,;;. The functor
CAlg, =S, R'» Mg (A)(R") X, v ME}

admits a connective cotangent complex. But we have M (A)(R') Xar,, vy (NE} =
Level(E xg R') = Levelg/g(R"). So the results of f : M (cA) — * admits a cotan-
gent complex follows from Levelg /g admits a cotangent complex. And the properties of
connective and almost perfect also follows from the property of the cotangent complex of
Levelg /g. [
Lemma 4.1.6: The functor M,;;(A) : CAlg™" = S is locally almost of finite presen-
tation.

Proof: Consider the functor M,;;(A) — *, it is infitesimally cohesive and admits a

117422 "it is locally almost of finite

cotangent complex which is almost perfect, so by!
presentation. So M ;;(A) is locally almost of finite presentation, since * is a final object

of Fun(CAIg", §).

Theorem 4.1.7: The functor
Meu(4) = CAlg—S
R — My (A)(R) = Ell(A)(R)™
is representable by a spectral Deligne-Mumford stack.
Proof: By the spectral Artin representability theorem, we need to prove that the functor

M1 (A) satistying the following condition

(1) The space M,;;(A)(Ry) is n-truncated for every discrete commutative ring

Ry.
(2) M,y (A) is a sheaf for the étale topology.
(3) M,;;(A) is a nilcomplete, infinitesimally cohesive, and integrable functor.
(4) Mgy (A) admits a cotangent complex Ly, 4y Which is connective.
(5) Mgy (A) is locally almost of finite presentation.
But these follows form the above series of lemmas. [
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4.2 Higher Categorical Lubin-Tate Towers

We recall that for a height h p-divisible group G, over a commutative ring R, and
suppose 4 € CAlggg ;- We recall that a deformation of G, over R is a spectral p-divisible
group over R together with an equivalence class of G,-tagging of G. We let Level(k, G/R)
denote the space of derived (Z/p*Z)"-level structure of a height h spectral p-divisible

group. We consider the following functor
My : CAlgl, > S
R — Deflevel(Gy, R, k)

where DefLevel(Gy, R, k) is the co-category whose objects are triples (G, p, 1)

(1) G is a spectral p-divisible group over R.

(2) pis an equivalence of G, taggings of R.

(3) n:D — G is a derived (Z/p*Z)"-level structure of G.
Theorem 4.2.1: The functor M}, is corepresentable by a [E,-ring which is finite over
the unoriented spectral deformation ring of G,.
Proof: We let Ey,iy/Rg, denote the universal spectral deformation of Go/R,. Suppose
that G is a spectral deformation G, to R, we get a map of Ee,-rings R, — R, and an
equivalence E, i, X RYT R =~ G of spectral p-divisible groups. By the universal objects

of level structures. We have the following equivalence
Level(k, G/R) = Level(k, E,pnip X RY™ R) = Map_. Angﬁ,rclpl(:PEunw /R, R),
Go
where P ./ RUn is the universal object of derived level structure functor associated with
0

the p-divisible group Eyniv/Rg, -

Then we consider the following moduli problem
d
CAlgey, —»S, Rw MapCAlg;jcpl(PEuniv /ren, R).
ForR € CAlg;d‘Cpl, Map,.,, adcpt(Pg,,, /run, R) can viewed the co-categories of pairs
0 CAlgg univ/Rg
(a, ), where
a:Rg' >R
is the classified map of a spectral p-divisible group G, which is a deformation of G, that is
a = (G,p),and f € Map.,, ad.cpt(Pg,,;,/ren, R) = Level(k, Eypip Xgun R) is a derived
gR%;‘” univ/ g Go
0
level structure of G/R. So we get Map Algad,cpl(:PEuniv /rén, R) s just the co-category of
Ro 0

pairs (G, p,n). By lemma 3.4.11, Pg, . /gun is finite over RE;'. So we have PE i/ RET 1S
0 0
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the desired spectrum. [

Although we get spectra come from a conceptual derived moduli problems, but
these spectra may be complicated, since we didn’t know the homotopy groups. In al-
gebraic topology, orientation of [E.,-spectra make E, page of Atiyah-Hirzebruch spectral
sequences degenerating, and give us the information of homotopy groups.

Let G be a height h p-divisible group over R, . We consider the following functor
M 2 CAlgly >S
R — DefLevel’’ (Gy, R, k)

where DefLevel®” (Gy, R, k) is the space of four tuples (G, p, e, 1), where

(1) G is a spectral p-divisible over R.

(2) p is an equivalence class of G, taggings of R.

(3) e : S? - Q®G°(R) is an orientation of the G°, where G° is the identity com-
ponent of G.

(4) 1 : D - G is a derived (Z/p*Z)"-level structure of G.
Theorem 4.2.2: The functor M¢" : CAngZl — § is corepresentable by an E,-ring
JXi, which is finite over the orientated deformations ring Rg(’;
Proof: Let Def’ (Go, R) denote the co-groupoid of triples (G, p, e), where G is a p-
divisible of over R, p is an equivalence class of G,-taggings of R, and e is an orientation

Theorem 6.0.3, Remark 6.0.7

of the identity conpoment of G. Byl , the functor

MO i CAlgl > S
R - Def’" (Go, R)

is corepresnetable by the orientated deformation ring R¢, that is we have an equivalence

of spaces
Map,. A (RZ",R) = Def”" (G, R).

Let EJ7,;,, be the associated universal orientation deformation of G to Rg;, then it is obvi-

ous that J L = Pgor_, RET > the universal object of derived level structures of Eyj7;,,/Ré; ,
is the desired spectrum similar to th unorientated case. [
We call this spectrum J L, the Jacquet-Langlands spectrum. It is easy to see that this

J Ly admit an action of GLy,(Z/p*Z) x Aut(G,). And when k varies, we have a tower
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SpétJL,.
We call this tower higher categorical Lubin-Tate tower.
Let E be a local field, G be a reductive group over E. The classical local Langlands
correspondence predict that for any irreducible smooth representation  of G (E), we can

naturally associate an L-parameter
b5 : Wg = G(C).

The geometric Langlands correspondence actually aim to construct an equivalence of cat-

egories
D(QCoh(LocSys,v (X)) = D(D(Bung))

from the derived category of quasi-coherent sheaves on GV local systems on X and the
derived categories of D-modules on the moduli stack of G-bundles over X [**. Due to the
work of Fargues-Scholze[?*], the arithmetic local Langlands correspondence can also be
some kinds of geometric Langlands correspondence, but in the perfectoid world.

In the classical arithmetic geometry, the Lubin-Tate tower can be used to realize the

Jacquet-Langlands correspondencel*°]

. Is there a topological realization of the Jacquet-
Langlands correspondence? Actually, in a recent paper®’!, they already realized a ver-
sion of topological Jacquet-Langlands correspondence. But their method is based on the
Goerss-Hopkins-Miller-Lurie sheaf. They actually consider the degenerate level struc-
tures such that representing object is étale over representing object of universal deforma-
tions.

We hope our higher categorical analogues of Lubin-Tate towers can also establish
a topological version of the classical Langlands correspondence, which means that we
construct representations on the category of spectra. By the construction of Jacquet-

Langlands spectra above, Let G be a formal group over a field of characteristic p, JL

be its £-adic complete Jacquet-Langlands spectrum. Let X be a spectrum with an action
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of Aut(Gy). We have the following brave conjecture.
Conjecture 4.2.3: The function spectrum F (X, J£) admits an action of GLy(Z,) and

all its homotopy groups are Z;-modules.

Representation Theory in Spectra Algebraic Geometry

The reason why we need spectra and spectral algebraic geometry in representation
theory is due to the fact, in general the derived category of G-objects Mod(R) is not equal
to the category of G-objects in D (R). But in algebraic topology, it seems that group actions
of spectra are more easy to find, like actions of Morava stabilizer groups on Morava E-
theories.

It follows that!3¥! | some topological realizations of classical cohomology rings may
have a good structures, like the topological Hochschild homology of quasiregualr semiper-
fectoid rings. These leads to the establishment of some special p-adic cohomology the-
ories, Breuil-Kisin-modules cohomology theory and its refinement, prismatic cohomol-
ogy?%l. The heart of this topic are §-rings and their topological realization derived &-
rings[4%]. It turns out homotopy groups of these topological cohomology of perfectoid
rings are crystalline Galois representations!*®! | But those entire spectra are not equivalent
spectra.

We hope to establish representation theory in derived category, like D(R),
D(QCoh(X)). But as we said, they are not the derived category of G-objects. We pro-
posed an viewpoint that how do we use spectral algebraic geometry to solve this problem.

(1) Representations in Vary, QCoh(X);

(2) Explain these Vary, QCoh(X) as classical moduli spaces;

(3) Find associated derived moduli problems in spectral algebraic geometry ;
(4) Using repersentability theorem to get derived geometric objects;

(5) Representations in derived categories.

Now, let’s see some examples of this strategy.

Example 4.2.4: (Spherical Witt Vectors) We consider the spherical Witt-vector func-

tor defined in[!3] and!#!!,
SW : Perf[Fp - CAlg(Spp).

form the category of perfect IF,, algebras to the co-category of p-complete E,-rings. This
functor is defined by studying a derived moduli problem, thickenings of relatively perfect

morphisms. And it has many application in chromatic homotopy theory, like*!l and[4?].
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And it is easy to see that this functor can find some Galois representations in derived
category.

Example 4.2.5: (Spectral Deformations of p-Divisible Groups) For a classical p-
divisible group G, over a perfect field k, we consider the Morava stabilizer group
S = Aut(Gy) x Gal(k). We can consider its spectral deformations over an [E,-ring
R, which consists of pairs (G, p), where G is a spectral p-divisible group over R, and p
is an equivalence class of G, taggings. In!'*, Lurie proved that there exits an univer-
sal deformation of G,. i.e., there exists a complete adic E,,-ring Rggl, and a morphism
p + RG' = Ry such that the functor Defg, is corepresentable by R¢ . i.e., for any com-

plete adic E,-ring R, there is an equivalence
Map, Algd, (RG,» R) — Defg, (R).

It is easy to see that this spectrum Rg;1 admits an action of S.
Example 4.2.6: (Derived Level Structures) Let k be a p-adic field with residue field k
of characteristic p. Let LT, denote the moduli space of deformations with level (Z/Z™)"-
structures of a height h formal group G, . Passing to the direct limit over n of vanishing
cycle sheaves of LT,. This give an collection {¥},} of infinite-dimensional Q;-vector
spaces which admits admissible nature actions of the subgroup of GLy(K) X Dg 5 X W.
Then by our construction of derived level structures, we find these actions can lift to

actions on certain co-spectra.

Topological Langlands Correspondence

We know actions of certain Galois groups and automorphism groups on certain ob-
jects, like Morava E-theories, THH, TC. And this means that these groups acting on their
homotopy groups. By the Langlangs correspondence, we can associated certain objects
which have the action of G L,,, or more generally, reductive groups. But can these objects
lift to GL,, equivalent spectra. Our derived level structure give an attempt on this idea by
considering the function spectrum Fun(X, JL).

Let G be an algebraic group, viewed as a O-truncated spectral Deligne-Mumford
stack, Let X be a spectral Deligne-Mumford stack admits a G-action. Then does this
make R for an affine substack SpétR to become a G-equivariant spectrum? Seel*! for
equivariant spectra and[*¥ for the equivariant [E,, setting. On the other hand, what is the
meaning of the action of an algebraic group on a spectrum, since spectra are topological,

they don’t have algebraic structures.
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We want to develop a representation theory in E-spectra, spectral schemes, and
spectral stacks, such that it is compatible with the classical definition of actions of alge-
braic groups on schemes. And we want to know how does actions of Galois side on certain
objects can related to actions of some algebraic groups on another certain objects. And
the name topological Langlands correspondence comes from that we want certain spectral
algebraic geometry objects play the roles of homotopy representations of dual reductive
algebraic groups, which can be viewed as automorphic side of topological Langlands cor-

respondence.

4.3 Topological Lifts of Power Operation Rings

We recall the deformation of formal groups. Let G be a formal group over a perfect
field k such that chark = p , a deformation of G to R is a triple (G, i, ) satisfying
* G is a formal group over R,
* Thereisamapi:k - R/m
* There is an isomorphism @ : ©*G = i*G, of formal groups over R/m.
Suppose that we have a complete local ring R whose residue filed has characteristic
p. Let¢p : R - R,x — xP be the Frobenius map. For each formal group G over R,
the Frobenius isogeny Frob : G = ¢*G is the homomorphism of formal group over R
induced by the relative Frobenius map on rings. We write Frob’ : G — (¢7)*G which is
the composition ¢*(Frob” ) o Frob
Let G be a formal group over k, (G, i, @) and (G',i’, a") be two deformations of G,
to R. A deformation of Frob’ is a homomorphism f : G = G’ of formal groups over R
which satisfying
(1) iep" =i"and i*(¢p")* Gy = (i")*G,.
k— R/m
o
k
(2) the square

oy o UF(FrOb ), .
I"Go ——1"(¢p")"Go

‘| la’
6 L 2 TG’

of homomorphisms of formal groups over R/m commutes.
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We let Defy denote the category whose objects are deformations fo G, to R, and
whose morphisms are deformation of Frob’ for some r > 0. We will say that a morphism
in Defg, has height r, if it is a deformation of Frob', and the we denote the corresponding
subcategory as Sub’' R. Let G be deformation of G, to R, then it can be proved that the
assignment f — Kerf is a one-to-one correspondence between the morphisms in Subp,
with source G and the finite subgroup of G which have rank p".

Theorem 4.3.1: 2!l Let G, /k be a height n formal group over a perfect field k. For each
r > 0, there exists a complete local ring A, which carries a universal height r morphism
fiiw * Gy sy as) & (Govip, @) € Sub” (4,). That is the operation £z, = g* (i)
define a bijective relation from the set of local homomorphism g : A, — R to the set
Subpg. Furthermore, we have:

(1) Ay = W(k)[[vy, ", Vn—1]] is the Lubin-Tate ring.

(2) Thereisamaps : Ay = A, which classifies the source of the universal height
r map, i.e. Gy = s*Gg, where Gg = Gynip/Ap be the universal deformation of G, and A,
is finite and free as an Ay module.

(3) Thereisamapt : Ay = A, which classifies the target of the universal height
rmap, i.e. Gy = t*Gg.

(4) And there is a bijection {g : A, — R} - Sub (R) given by g —
9" finin) (g Gs = g7 Go).

We know that those rings A4,, 7 = 0 have topological meansings.

Theorem 4.3.2: [??I The ring A, in the universal deformation of Frobenuis is isomor-
phic to EO(BZpr)/I, 1.e,

Ay = E°(BS,r) /1

where [ is transfer ideal.
The collections {4, } have the structures of graded coalgerbas, for s = si,t = t; :

Ay = Ay, which is induced by E° cohomology on BX — =, we have
t
p= mug;: Agsr t Agsr = A’ Qa, Ar
which classifying the source,target, and composite of morphisms. So for the power oper-
ation R*(X) - R¥(X x BX,,). For x = *, we have

moR = E°(BZ,r) /I @ moR = A[r] @ moR

This make myR becomes a ['-module, where I' are duals of A[r].

For more details about power operation in Morava E-theory, one can see[*3-4°]
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and[*’1. Direct computations are in!*®! for height 2 at the prime 2,!*°) for height 2 at

prime 3,5% for height 2 at all primes. Cases of height > 2 is still lack of computations.
Because we have the assignment f — Kerf is a one-to-one correspondence between

the morphisms in Suby with source G and the finite subgroup of G which have rank p”.

So it is easy to see that A, corepresent the following moduli problem

My, : CAlg, > 8
R - Def(Gy, R, p")

where Def(Gg, R, p") consists of pairs (G, H) where G is an defomration G, to R, and H
is a rank p” subgroup of G.

Proposition 4.3.3: For every integer r > 1, there exists a E,-ring Ej, ., such that
MoEp,r = Ay

Proof: For the formal group G, over a field k of characteristic p. We just consider the
functor CAlg?gl — § by sending an E-ring R to quadruples (G, p, e,n), where (G, p)
is spectral deformation of G, to R. e is an orientation of G°, the identity component G,
and n € Levely(k,G/R) is a derived level structure. Using the same argument in full
level structure and the fact Levelg‘fR is representable, see Remark 3.4.13. We get this
proposition. u
Remark 4.3.4: Although, we obtain spectra whose 1 are the power operation rings of
Morava E-theories. But we don’t know higher homotopy groups of these spectra, since
these spectra are not even periodic and they are not étale over Morava E-theories. We will

continue to study such spectra in the future.
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CONCLUSION

We now give an conclusion of this paper. By our proves and results, it is reasonable
to consider more moduli spaces in the context of spectral algebraic results, like vector bun-
dles on a spectral curves and how this moduli space can give us interesting cohomology
theory. The main contributions of this paper are

(1) Give a reasonable definition of derived versions of level structures.

(2) Prove that moduli spaces of relative Cartier divisors have the structure of spec-
tral Deligne-Mumford stacks.

(3) Give a higher categorical analogues of moduli stack of elliptic curves with
level structures.

(4) Give higher categorical analogues of Lubin-Tate towers.

(5) Give topological realizations of power operation rings of Morava E-theories
(The representable objects of deformations with given finite subgroups).

But there are still many problems in this project. First is computations of homotopy
groups of higher categorical Lubin-Tate towers, since we only know their 7, correspond
to moduli spaces of deformations with level structures. And as cohomology theories, we
also want some results about computations on certain spaces, like BX,, and so on. The
relation between these cohomology theories and Morava E-theories is also interesting
topic for us.

The second question is more complicated. We know that our derived level structure
follows from relative Cartier divisors. But what if we choose other moduli problems, it
follows that different moduli problems will generating different cohomology theories. We

want find a relation between theses moduli problems and those representable spectra.
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APPENDIX A CHROMATIC HOMOTOPY THEORY

We review some basic definitions and results in chromatic homotopy theory. More

details can be found inP!-°1,

A.1 Formal Groups

A formal scheme is a functor the category of profinite commutative rings (completion
of some commutative ring) to the category of sets, which carries every profinite ring R to
its R-points X (R)

A formal group is a formal scheme G which admits a group structure, m : G XG — G.
G 1s a functor, so m is actually a natural transformation from the product functor G X G

to functor G i.e, for every object R € ProCommR, there is a binary operation
(GXG)(R)=GR)XGR) - G(R)

In algebraic topology, we usually consider dimension one affine group schemes. One

56

can seel®! and®7! for more discussions about formal groups.

Suppose that we have a complete local ring R and with charR = p > 0. Let Cy

denote the category of local Noetherian R-algebras. For a functor
F: CR - Set,

the elements of F(A) will be called the A-valued points of F. And we define the formal
affine line by

A'(4) = Cr(R[[t]], A)

for any A € Cy. It’s easy to see that A*(A) is isomorphic to the maximal ideal of A.

Definition A.1.1: A commutative one-dimensional formal group over R is a functor
F:Cr > Ab

which is isomorphic to Al.
It is known that the morphisms between affine schemes is unique determined by the

morphisms of their global sections, i.e. ring of functions. If G is a group scheme over
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SpecR and has group multiplication m : G X G, we have a ring morphism
O = Ogxe = 06 @ Ug

The ring of functions O is just R[X] and O; ® O is R[[X]| ®r R[Y] = R[X,Y]. So
the multiplication is actually determined by
¢: RIX] - R[XY]
X - fXY)
So we find that the multiplication of a dimension one group scheme is actually determined
by a former power series f(X,Y) over R.

A coordinate X on F is a natural isomorphism x : F — Al = A}? of functors. It gives

an isomorphism I'(F, Or) = R[[X]].

Formal Group Laws

Definition A.1.2: Suppose that we have aring R and F € R[[xq, x,]| , we call f a formal
group law over R if it satisfying the following conditions:

* F(x,0) = F(0,x) = x (Identity)

* F(xq,%x3) = F(x5,x1) (Commutativity)

* F(F(xq,%3),x3) = F(xq,F(x3,x3)) (Associativity) If R is a graded ring, we re-
quire F to be homogeneous of degree 2 where |x;| = |x,| = 2.
Theorem A.1.3: There is a universal formal group law F,,;,,(x,y) € L[x,y]] over a
ring L, such that for any other formal group law F(x,y) € R[x, y]| over aring R, there is
a ring morphism f : L = R such that f*(F,,i,(x,¥)) = F(x,y)
Proof: Welet L = Z[c;;]/ ~, where ~ stands for a equivalence relation of x;; given by

the condition of formal group law. And we define
Eniv(x,y) = 2 Cijxiyj

So for any other formal group Law F(x,y) = Y a; jxiyj € R[[x,y]] over a ring R, we

define a ring morphism
fiL—)R,Cij Haij

Clearly we have f*F, i, = F [
Theorem A.1.4: (Lazard’s Theorem) L = Z[t;, t5,---], where each t; has degree 2i.
Proof: Seel*8]. ]
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Hights of Formal Groups

Definition A.1.5: Let f(x,y) € R[x,y]] be a formal group law over a commutative
ring R. For every non-negative integer n, we define the n-series [n](t) € R[[t] as
(1) If n = 0,we set [n](t) = 0.
(2) Ifn > 0, we set [n](t) = f([n — 1](¢), t).

It can be prove that the n-series [n](t) of a formal group law determine a homomor-
phism from f to itself, i.e., we have f([n](x), [n](y)) = [n]f (x,y).
Proposition A.1.6: Suppose that R is a commutative ring, p = 0 in R and f'is a formal
group law over R, then s p[t] is either 0 or AtP" + O(tpn“) for an integer n > 0.
Proof: Seel>#lLecture 12, ]
Definition A.1.7: Suppose we have a commutative ring R and F is a formal group law
over R . Let v,, denote th coefficient of t¥n in the p-series of F. We call F has height < n if
v; = 0 fro i < n, and we call f has height exactly n if it has height < n and the coefficient
vy, 1s invertible.
Example A.1.8: For the formal group law F(x,y) = x +y+xy, its n-series is [n](t) =
(1+6)"—=1.If p =0inR, then [p](t) = (1 + )P — 1 = tP, so F is height 1.
Example A.1.9: For the formal group law F(x,y) = x + y, if p = 0 in R. Its p-series
[p](t) = 0, so f has infinite height.

There is a geometric interpretation of the height of a formal group. Let F : Alg, —
Ab be a height n formal group. Then F[p] = ker(F 5F ) is representable by a finite flat
group scheme of rank p™. And moreover, if we assume F is defined by a formal group
law f(x,y) whose p-series [p](t) = Apt" + - where A is invertible. Then we have
F[p] = SpecR[[t]]/(AtP" + ).
Example A.1.10: We consider the formal multiplicative group F, then F[p] is ex-
actly the group scheme uy,, defined by pu,(4) = a € A,a? =1, and we have u, =
SpecR[a]/(aP? — 1) which has rank p.

A.2 Complex Oriented Cohomology Theories

Suppose that E is a general cohomology theory, we say E is multiplicative if there is
amap EP(X) ® E1(Y) —» EPT4(X) for every topological space and every integers p, q.
Definition A.2.1: A multiplicative cohomology theory E is even periodic if EX(pt) = 0
whenever i is odd and there exists § € E~2(pt) such that multiplication with 8 induces

an isomorphism E™(—) = E™"~2(-) for all n.
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Definition A.2.2: A complex orientation of E is a natural, multiplicative, collection of
Thom classes Uy € E?™(Th(V)) for all complex vector bundles V — X, where dim¢V =
n, and satisfying the following condition

c ff(Uy) =Upyforf:Y - X

* Uy, @u, = Uy, ° Uy,.

* For any x € X, the class U, maps to 1 under the composition

E?™(Th(V)) » E*™(Th(V,)) = E*"(5?™) = E°(pt).

We know that E2(CP*) is set of morphisms of spectrum e : £®°72(CP®) — E.
If there is a unit map e : § — E, then E is complex orientable if the map e factor as a
composition

S ~ x®72CPl -» z°72CP* > E

By using the Atiyah-Hirzebruch spectral sequence H? (X, E9(x)) = EP*9(X). The com-

plex orientation of E determines an isomorphism

E*(CP®) = E*(»[t] = (m.E)[[t]]
for some generator t € E%(*). Furthermore given such an isomorphism, is equivalent to

a complex orientation. In particularly, any even periodic theory is complex orientable.

We know that there is a multiplication map
CP* x CP* - CP”™

(We can view C* as function space C[x], then we get a commutative multiplication
on CP®). Still using the Atiyah-Hirzebruch spectrtal sequence, we can get E*(CP* X
CP™) = (m.E)[[x,y]]. We then get a map

(mE)[[t]] = E*(CP™) - E*(CP* x CP™) = (m.E)[[x, ¥]]

We let f(x,y) € (r.E)[[x,y]] denote the image of t under this map. It is easy to prove
that f(x,y) is a formal group law.

Complex Cobordism Spectrum MU

Let EU(n) = BU(n) be the universal bundle over the classifying space BU(n),
then we define spectrum MU (n) to be Z*°~2"BU(n)/BU(n — 1) which BU(n)/BU(n —
1)actually is Th(EU(n)), the Thom space of EU(n).

And we define a new spectrum MU = lim MU (n). This spectrum MU is called the

complex cobordism. The n-th homotopy group is just the bordsim group of n-dimensional
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complex manifold. MU admits a E,, structure since there is a diagram commutes up to

homotopy for any complex oriented spectrum.

MU(m) X MU(n) —= MU(m + n)

| |

EQE E

Theorem A.2.3: (Quillen’s theorem) MU is the universal complex oriented cohomol-

ogy theory, i.e., L = n,MU
Proof: Seel*l. ]

Construction of Even Periodic Cohomology Theories

Suppose that E is a complex oriented cohomology theory. Then m,E is an algebra
over the Lazard ring L = m,MU. So it is natural to ask a question: if we have a ring
map L — R, how can we construct a general cohomology theory E which is complex
oriented such that R = m,E. There is a natural way to construct such cohomology theory

by defining
E.(X)=MU.(X) Qr.muR=MU.(X) @, R

However the axiom of cohomology theory require some exactness of a certain sequence,
but the functor — @; R general doesn’t preserve exact sequence. If R is flat over L, then
there is no problem. But this condition is too restrictive, because the Lazard ring is too
big. there is a weaker condition proved by Landweber.

Theorem A.2.4: (The Landweber Exact Functor Theorem ) Let M be a module over
the Lazard ring L. Then M is flat over Mg if and only if for every prime number p, the
elements vy = p,vq, vy, -+ € L form a regular sequence for M.

Proof: Seel®l. n
Example A.2.5: LetR = @, L%" = @, L = L[f*'],and L - R = L[B*"] be the

obvious map. We can define a cohomology theory Eg
(E).(X) = MU.(X) ®, L[B*] = MU,(X)[*'].

This spectrum is called the periodic complex bordism spectra and is denoted by MP.
Example A.2.6: Suppose that R is a commutative ring over L and R is an invertible L
module, and Let f be a formal group law over the graded commutative ring @,, R®™ such

that associated ring morphism L — @,, R®™ satisfying Landweber’s criterion. Then we
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get a homology theory
(Er).(X) = MU.(X) ®, R[f*'] = MP.(X) ®_ R

In particular, we have (ER)o(X) @1 R = MUqen(X) @1 R.

A.3 Morava E-theories and Morava K-theories
Lubin-Tate Theory

Definition A.3.1: Suppose that k is filed , an infinitesimal thickening of k is a surjective
map ¢ : A = k of commutative rings and its kernel m, = ker(¢) satisfying: m} = 0 for

n > 0 and m}/m}*?

is a finite dimensional k-vector space .

Definition A.3.2: (Deformation of formal groups) Suppose that G, be a formal group
over a perfect field k and char(k) = p, a deformation of G, to R is a triple (G, i, ¥) such
that G € FG(R), i : k = R/m is an isomorphism and ¥ : 7*G = i*G is an isomorphism
of formal groups over R/m.

Theorem A.3.3: (Lubin-Tate) There is a universal formal group G over R =
W (k)[[v1, -+, Vp-1]] in the following sense: for every infinitesimal thickening A of k,

there is a bijective map
Hom (R, A) — Def(4).

Proof: Seel®], n

Morava E-Theories

Let k be a perfect field and chark = p, f is a height n formal group law. By Lubin
-Tate’s theorem, the deformation of by is classified by the ring R = W (k)[[vy, -+, vn_1]l-
Notice that this universial deformation over R is Landweber-exact: the sequence v, =
p,Vq,,Vp—1 is regular, and v, has invertible image in R/(vy, -+, v,). So using the

construction in last section, there is a even periodic spectrum E (n) with

T[*E(n) = W(k) [[vll Y vn—l]] [ﬁil]
where f has degree 2. It’s called Morava E-theory. The cohomology theory E(n) not

only depends on n, but also a choice of k and f.

Theorem A.3.4: (Goerss-Hopkins-Miller!'*l) Those spectra E(n) are E, ring spectra.
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Morava K-Theories

Suppose that p is a prime number, we can consider the p-local complex cobordism
spectrum MU,y whose homotopy groups are T,MU(py = Zp)[ty, -, ], and we may as-

sume that v; =t for each i > 0.

pi-1

For k € Z, write M (k) for the cofiber of the map ZZk MUy —» MUy given by
the multiplication by t;. One can prove that each M (k) admits a unital and homotopy
associative multiplication .

Let K(n) denote the smash product

MUgy[v"] ®uw, () M.
k#pn—-1

This spectrum K (n) is called Morava K-theory. It is obvious that the homotopy groups
of K(n)are

K () = (TMUp) v ]/ (to, tr, -+ tyn_z, tyn, ) = Fp[vi']

where v, has degree 2(p™ — 1).

Elliptic Cohomology

The elliptic curve is an very important object in arithmetic geometry. It is the most
nontrival example in algebraic geometry. But it still can gives us some interesting things.
One can see!®! for information of elliptic curves and*? for the moudli stack and level
structures of the elliptic curves. If we do completetion for an elliptic curve, then we get
an one dimensional formal group. Does this formal group can give us a good cohomology
theory.

Definition A.3.5: An elliptic cohomology theory is a generalized cohomology theory
E, which is representated by a spectrum E which satisfies.

(1) E is an even periodic spectrum.

(2) There exists a elliptic curve C over myE.

(3) There is an isomorphism of formal groups, ¢ : Spfry(E®" °°) = (.
We denote this data as (E, C¢)
Theorem A.3.6: (Goerss-Hopkins-Miller Theorem ['*1) There is a sheaf Otmys of
E-ring spectra over the stack M for the etale topology. For any étale morphism
f : Spec(R) — M there is a natural structure of elliptic spectrum (O s (f), Cr, ¢),
satisfying 7O (f) = R, and C is the generalized elliptic curve over R classified by f.

Let Tmf = Oy (M — M), the spectrum topological modular forms.
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Let TMF = Oy (M — M), the periodic spectrum of topological modular forms

Let tmf = T500¢ms (M, ;) be the connect cover of Tmf.

We know that the modular forms can be viewed as global sections of the moduli stack
of elliptic curve over complex plane C. And it is easy to see that if we take homotopy group
of the topological modular forms , then we can get the classical modular forms.

The construction of topological modular forms is complicated, one can seel®!! for

more details.

A.4 Chromatic Localizations

Suppose that we have a spectrum E , a spectrum F is called E-acyclic if F @ E is 0,
we denote G the collection of E-acyclic spectra. And we say spectrum is E-local if every
map for each Y € Gg, the map Y — X is nullhomotopic. For each X € Sp, we have a

cofiber sequence
Gg(X) - X = Lg(X).
where Lg(X) is E-local, and G (X) is E-acyclic. So we have define a functor
Lg : Sp — LgSp,

this functor is called Bousfield localizationfunctor . And the map X — Lg(X) is deter-
mined by following two properties.

(1) The spectrum Lg(X) is E-local.

(2) The map X — Lg(X) is an E-equivalence.
Example A.4.1: Bousfield Localization with respect to Morava E-theories E (1), Lg n).
And one can prove that Lg ;) behaves like restriction to the open substack M Fo C Mpg X
SpecZ ).
Example A.4.2: Bousfield Localization with K(n), Lg ). One can prove that Ly () is
the completion along Mz; © Mpg X SpecZ ).

Suppose that we have two homology theory E and E’, we say they are Bousfield
equivalent, if for every spectrum, the homology group E, (X) vanishes if and only if E; (X)
vanishes. It can be prove that the spectrum E(n) is Bousfield equivalent to E (n—1) XK (n).
Here by convention that E(0) =~ HQ[S*], which is Bousfield equivalent to HQ. This is
also equivalent to say that Lg) = Lgmyxem-1)-

Definition A.4.3: Suppose that G is commutative group, then the Moore spectrum MG

of G is the spectrum characterized by having the following homotopy groups:
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(1) m MG = 0;
(2) my(MG) = G,
(3) Hyo(MG,Z) = t5o(MGANHZ) = 0.
A basic special case of E-Bousfield localization of spectra is given by E = M A the
Moore spectrum of an abelian group A. For A = Z ), this is p-localization, for A = F,,,
this is p-completion, for A = Q, is the rationalization of X.

Example A.4.4: The p-localization of a spectrum X:
LMZ(p)X = MZ(p) NX.

We denote this as LMZ(p)X = Xp)-
Example A.4.5: The p-completion of a spectrum X:

Lur, X = [QMZ/p®, X].

where Z/p® = Z[1/p]/Z. We denote this spectrum as Xy,.
Example A.4.6: The rationalization of a spectrum X:

LygX =X ALoS° =XAMQ=XAHQ

We denote this spectrum as Xq.

Periodicity Theorem and Thick Subcategories

Definition A.4.7: Suppose that we have a p-local finite spectrum X, we say X has type
nif K(n),(X) # 0 and K(m).(X) = 0 for m < n. And we let C,,, be the category type
= n p-local spectra which

Suppose that we have a p-local finite spectrum, and let n > 1. A v,-self map of X
isamap f : Z¥X — X which satisfying:

(1) K(n).,X - K(n),X is an isomorphism induced by f.

(2) Form # n, K(m),X - K(m),X which is induced by f is nilpotent.
Theorem A.4.8: (Devinatz-Hopkins-Smith[®?]) For a type < n finite p-local spectrum
X, it admits a v,, self map.

Suppose that C is a full subcategory of finite p-local spectra. We call C is thick
subcategory if it contains the final object, closed under fiber and cofiber, and is stable
under retract.

Theorem A.4.9: (Thick Subcategory Theorem!®?) Suppose that T is a thick subcat-
egory of Sp(p). Then T = C5,, for some 0 < n < oo.
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The Chromatic Filtration
Let L, (X) = Lgm)(x), then we have the following chromatic tower.

Mnl(X) Mzi(X) Mle) My(X) EHQ/\X
v Ly (X) —— e = LX) ——> Li(X) —— Lo(X) = HQAX
where M,,(X) are defined by the fiber .

Mn(X) - Ln(X) - Ln—l(X)

The following chromatic convergence theorem is proved by Hopkins-Ravenel.
Theorem A.4.10: (Chromatic Convergence Theorem(%]) Suppose that X is a finite
spectra, then the map X — lim,, L,,X is an equivalence.

Suppose that X is a spectrum, we say X monochromatic of height n if it is E'(n)-local
and E (n—1)-acyclic. We let M, denote the category monochromatic of height n spectra.

There is an equivalence
Lgmy * My = K(n) local spectra : M,,.

See [S4]Lecture 34 £ details.

A.5 Power Operations

Suppose that we have R € CAlg, and M € Mody, , then we can define a free com-
mutative R-algebra on M:

PeM = \ /PR = \ /M Ag - Ag M)z

m=0 m=0

And if A is commutative R-algebra , then we have a unit map
U PrA - A

So the question is how to build a power operation? Let us study the general case.
If A is a commutative R -algebra.
(1) We can choose aa : R » PF(R) = R A BZ},
(2) For any element x € myA which is represented by f, : R — A.
(3) We define a element Q,(x) € myA which is represented by the following
composite
RS PRR) 0 BR(A) € Pa(a) B 4
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So we have define a map Q, : mpA = meA. And we can also define Q : TgA - Ty, A
if
a:$9T"R —» PT(Z9R) = R A BZL™,

Example A.5.1: (Steenrod Operations) Let H = HF, is the mod 2 Maclane spectrum, if
A is a H-algebra, then m, A is a graded commutative [F,-algebra generated by Q" : mzA4 —
Tq4+rA and satisfying relations

* QT (x+y)=Q"(x) + Q" ().

* Q"(xy) =X Q' ()Q"' ().

+ QTQ5(x) = €7%Q1Q! (x) if r > 25, where i < 2j.
Example A.5.2: (Power Operations in K-theory) IfK is the complex K-theory spectrum,
and A is a p-complete K-algebra, we have Adams operations YP : myA — myA, they
satisfying relations:

* YP(x +y) = PP (x) + PP (y).

* YP(x) = xP mod p.

* Y(xy) = Y)Y ).
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APPENDIXB HOMOTOPY COHERENT MATHEMATICS

We will review basic setting of homotopy coherent mathematics, including oo-
categories, homotopy limits and homotopy colimits. Then we give an introduction of

higher algebra to help readers being familiar with the E,-ring context.

B.1 Fundamental Language of «o-Categories

Definition B.1.1: A category C is called a simplicial category if mapping spaces of any
pairs of objects are simplicial sets.
If C is a simplicial category, we can define new category |C|as
(1) Objects of |C| are objects of C.
(2) Map ¢ (X,Y) = [Map.(X,Y)] .
Definition B.1.2: Suppose that C be a simplicial categories, its homotopy categories hC
is defined by
(1) Objects hC are objects of C
(2) For X,Y € C, then we define Map, .(X,Y) = mo|Hom(X,Y)]
Let

We now define a category C[A"] as follows:
* objects: the numbers 0,q, -+, n
* morphisms
NP;;, if i<j
Mape(p (L)) = ’
Clan] o, if i>]

so there is a functor C[A®] : A — sCat
Definition B.1.3: The homotopy coherent nerve N, (C) of a simplicial category C is

the simplicial set
Nx(C). = homgcy (C[A%], C).
So N, is actually a functor form simplicial categories to simplicial sets

N, : sCat - sSet.

90



APPENDIX B HOMOTOPY COHERENT MATHEMATICS

On the other side, we can extend the cosimplicial object A — sCat : [n] - C[A"] to

a colimit-preserving functor C[—] : sSet — sCat. For a simplicial set, we define
C[X] = colimy/xC[—] e p

where p is the canonical functor.

Theorem B.1.4: There is an adjunction
C[—] : sSet = sCat : Ny

Proposition B.1.5: Suppose that C be a simplicial category such that for any two ob-
jects X, Y € C, Map.(X,Y) is a Kan complex. We have the simplical nerve N(C) is an
co-category.

The counit of this adjunction can be described by the following theorem.

Theorem B.1.6: If C is a topological category. Then the counit map
|MapC|N(€)|(X, Y)| = Map.(X,Y)

is a weak homotopy equivalence of topological spaces.

co-Categories

We recall that a kan complex is a simplical set which satisfies for 0 < k < n and any
morphism f : A} — X, there exists a morphism " : A" — X, such that the composition
of i : A > A™ and f' is equal to f, this means that there exists a commutative triangle

/\?L»X

T
|
ATL
Definition B.1.7: An oco-catgory is a simpicial set X which satisfies forany 0 < k <n
and any morphism f : A} — X, there exists a morphism f’ : A™ — X, such that the
composition of i : A} — A" and f' is equal to f, this means that there is a commutative
triangle

A?LX

S
l
ATL
And this is also been called a weak Kan complex.
Given an oo-category C, objects are the vertices x € Cgy, and the morphism are the

I-simplicies f € C;. The face map s = d; : C; = C, is the source map, and t = d, :
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Ci — C is the target map. We often write f : x — y, if s(f) = x and t(f) = y. We
define mapping space of home(x, y) from x to y to be the fiber

home(x,y) —C4

l |

* 4>(x,y) Co X Cy

Definition B.1.8: Suppose that we have f,g : x — y in an co-category C, we say
f and g are homotopic (f = g) if there is a 2 simplex ¢ : A — C whose boundary
do = (dyo,dq0,d,0) is given by (g, f,id,), i.e., we have the following diagram

AN

I
X

y

Suppose that we have a co-category C, then we can define a new category hC whose
objects are the same as C, and whose morphism are the homotopy class of morphisms in

C. Compositions and identities are given by
(gl [f]:=1[g°f] and idy:=[idy] = [Sox].
Construction of «o-categories

Definition B.1.9: Suppose that we have two simplicial sets K and L, the join K x L of
K and L is the simplicial set defined by the formula
(K*xL), =K, UL, U K; X L;.
i+1+j=n
We have the following properties of joins:

(1) The partial join functors K * (—) : sSet - sSety, and (=) L : sSet - sSet;,
preserves colimits.

(2) AP x A = AT+
Example B.1.10: And it is not hard to prove that the nerve functor is compatible with

the join constructions, i.e.,we have a natural isomorphism

N(A)*N(B) = N(A*B),A,B € Cat
If K is an arbitrary simplicial set and L = A°, then we define the right cone (or called
cocone) on K to be K = K = A°. And the left cone (or called cone) is defined as L™ =
A% x L

Proposition B.1.11: [2%IProposition 1.2.8.3 qyyppnose that we have two co-categories € and
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D ar, then the join C x D is also an co-category.
Proposition B.1.12; ([2%IProposition 1.2.9.2 qyyh05e that we have two simplicial sets A
and B, let p : A — B be a functor, then there exists a simplicial set B /p such that there is

a natural bijection
Fun(C, B/p) = Fun,(C x A, B)
where the right-hand side denote those C * A — B, making the triangle
A
N

CxA B

commute.

B.1.1 Straightening and Unstraightening

We know that the Grothendieck Construction establish an equivalence between
Cat(Set)-valued functor on C°P and categories which are fibered over C. The S t; functor
establish an co-version of this equivalence but replace C by a simplicial set S and replace
C by Cat,

Suppose that we have a simplicial set S and C is simplicial category, let C[S] denote
the coherent nerve of S. Suppose that ¢ : C[S] — C°P is functor between these two
simplicial categories. Given an object X € (Seta)/s. Let v denote the cone point of X~ .
We can view the simplicial category

a = cpx=]| Jeer
Clx]
as a correspondence from C°P to v. Then we can define a simplicial functor
SteX: C - Setp
C ~ Map,,(C,v)

We can regard Sty as a functor from (Setn ) /s to (Set A)€ . We referto S ty as the straight-
ening functor associated to ¢. In the special case C = C[S]°? and ¢ is the identity map,
we will write Stg instead of Stg.

Theorem B.1.13: [2ITheorem2.2.1.2 There js an Quillen adjunction.

St¢, : SSet/S 2 sSetC : Un¢,

n where sSet /g is endowed with the contravariant model structure, and sSet is endowed

with the projective model structure. If ¢ is an equivalence, then we have (Sty, Ung) is
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also an Quillen equivalence.

B.1.2 Marked Case

Suppose that we have a simplicial set S and C is a simplicial category, let C[S] denote
the coherent nerve of S. Suppose that ¢ : C[S] — C°P is functor between these two

simplicial categories. Let (X, £) be an object of (SetZ) /s- Then we can define
Sti(X,€): € - Set

C = ((StpX)(C), E4(0))
where €4 (C) is the set of all edges of (StyX)(C) having the form
G'f

f +d = e is amarked edge of X, giving rise to an edge f : d = F*& in (St X)(D), and
G belongs to Mapzop (C, D)1

. St$ : (SetZ)/S - (SetZ)C preserve colimits.

« St has aright adjoint Ung : St — (SetZ)/s

» (St},Un}) determine a Quillen adjuction (Set,,) /s & (Setz)®

Theorem B.1.14; [21Theorem3.2.0.1 There is an Quillen adjunction
St} (Setp)/S S (Setx)C : Unj.

where (SetX) /S is endowed with the Cartesian model structure and the category (SetZ) /S
is endowed with the projective model structure). Moreover if ¢ is an equivalence, then

(St4, Ung) is a Quillen equivalence.

B.2 Limits and Colimits

We recall that in a ordinary category C, an object X € C is final if the hom set
Homg¢ (Y, X) consists of only one point for any objects Y € C. And an object X € C is
initial if Home (X, Y) consists of only one point for any objects Y € C.

Definition B.2.1: Suppose that C is a simplicial set. An object X € C is final if it is
final hC,

Definition B.2.2: Suppose that K is a simplicial set and for any oo category C. A limit
of a functor p : K — C is a final object in C/,. A colimit of a diagram p : K — C is an
initial object in Cp.

A oo-category is complete is admits all limits of all small diagrams, is cocomplete if

it admits all comlimits of all small diagrams.
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B.3 Presentable «-Category

Definition B.3.1: Let C be an co-category and k a regular cardinal. We say C is k-
accessible if C admits small k-filtered colimits and contains an essentially small full sub-
category C" € C which consists of k-compact objects and generate C under small -
filtered colimits.

Definition B.3.2: An co-category C is presentable if C is accessible and admits small
colimits.

Definition B.3.3: An adjunction between two co-categories C and D isamap q : M —
A which is both a Cartesian fibration and a coCartesian fibration together with equiva-
lences C > Mgy and D — Mq;.

Assume M be an adjunction between Cand Dandlet f : C > Dand g : D = C be
functors associated to M. In this case, we will say that f is left adjoint to g and g is right
adjoint to f.

Theorem B.3.4; [291Corollary 5.5.29 Eor presentable co-categories, we have following cri-
terion for adjunctions

» A functor between presentable co-categories has a right adjoint if and only if it
preserves small colimits.

* A functor between presentable co-categories has a left adjoint if and only if it pre-

serves small limits and is accessible.

B.4 Stable «-Categories

Definition B.4.1: Suppose that C is an co-category, we say C is stable if we have C has
a zero object, and satisfying Every morphism in € have a cofiber and a fiber, a triangle in
C is a fiber if and only if it is a cofiber.

We let M* denote the full subcategory of Fun(A! x Al, ) spanned by

X—0

0 —Y
If C admits cofibers, the evaluation at the initial vertex M* — C is a trivial fibration[?!.
Lets : C - MZ be a section of it. Let e : M* — C be the evaluation at the final vertex.
Then the composition of e o s is a functor from C to itself. And we call this suspension

functor and denote it by X : C — C. Similarly, If C admits fibers, then the same argument
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show that for the evaluation at the final vertex, there is also a functor ) : C — C and we
call it the loop functor.

If C is a stable co-category and n > 0, We let
X » X[n]

denote the nth power of the suspension functor £ : C = C. If n < 0, we let X = X[n]
denote the (—n)th power of the loop functor (). Let C be a stable co-category, Then the
suspension functor X + X[1] and the distinguished triangle defined above endowed hC
with a triangulated category.
Definition B.4.2: Suppose tat we have two co-categories C and D and F is a functor
between them, we will say f is excisive if it maps pushout to pullbacks.
Definition B.4.3: Suppose that C is an co-category. A functor F : SIS ¢ s called a
spectrum object if it satisfies the following two conditions:

* F is excisive.

* F(*) is terminal.

A spectrum is a spectrum object in the co-category of spaces

Definition B.4.4: A stable homotopy theory is a presentable symmetric monoidal stable
co-category (C, @, I) and it satisfies the conditions: all tensor product commutes with all
colimits.
So a stable homotopy theory (C, @, I) has the following properties
(1) Ho(C) is a symmetric monoidal triangulated category.

(2) There is an equivalence

(3) We can define homtopy groups
R E = [Z"], E].
(4) We can define homology groups and cohomology groups
En(F) := mn(E ® F),
E™(F) := m,(Map(F, E)).

Example B.4.5: The derived category D (R) of a discrete ring R with the derived tensor

product admits a structure of stabel homotopy theory.
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Example B.4.6: The oo-categroy Sp of spectra.

Example B.4.7: The oo-categroy Modg of modules over an E,-ring spectrum R.
Example B.4.8: Let X be a scheme (or algebraic stack). Then the quasi-coherent shaves
complexes can admits an structure of stable homotopy theory.

Example B.4.9: Let K be an co-category, and C is a stable homotopy theory. Then
Fun(K, C) admits a nature structure of stable homotopy theory. If K = BG, then this

functor category are those objects in C with a G-action.

B.5 Higher Categorical Algebra
Operads

For the convenience of discussion, we first recall some setting in simplicial set theory
(1) A morphism « : (n) — (k) in Fin, is insert if @ 1(i) is a singleton for every
1<i<k
(2) A morphism « : {(m) — (n) in Fin, is active if a1 (pt) is a singleton (neces-
sarily the basepoint).
(3) A morphism a : [n] — [k] in A is conves if it is injective and the image
im(a) S [k] is convex,i.e., the image is given by the interval [a(0), a(n)].
An operad is a gadget used to describe algebraic structures in symmetric monoidal
categories.
Definition B.5.1: Let I/ be a symmetric monoidal category. A operad in V consists of
objects F(n) of V, n € N equipped with the following extra structure.
* Right actions of symmetric groups p,, : S, = Hom(F(n), F(n));
* Aunite : [ - F(1)

» Composition operations
F(l) @ F(n)) @ F(nz) @ -+ Q F(ny) = F(nq + + + my)

These data are subject to obvious identities such as associativity and unitality of com-
position, and compatibility of composition with symmetric group actions. For example,

the unit laws say that the evident composite
e®1 comp
Fm)=I®Fn) — F(H®FMn) — F(n)
and

Fin) = F) ® 19" 25 Fn) @ F(1)®" 2% Fn)
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are the identity map. Compatibility with symmetric group actions means that for each

element o € S,,, the composition operation

k
FOO) ® (X FOn) = F(ny + 4 1)
i=1

coequalizes a pair of automorphisms

k k
p(@) @ 1,1®A) : () ® (X) Fn) = F() ® (X) (o)
i=1 i=1

where o acts on the big tensor product on the left by permuting tensor factors in the
obvious way. If V has suitable colimits, this condition could be expressed in terms of
tensor products over S,,.

Definition B.5.2: An F-algebra structure on an object v in V consists of a collection of

maps
Fn) @ v - v
We intuitively write this map as
0Rx1 Q- Q@xp = O0(xq,...,Xp)

so that the element of F(n) are interpreted as n-ary operations on v.
Definition B.5.3: Let C be a set, called the set of colours. Then a coloured operd is

» for each n € N and each (n + 1)-tupe (c¢q,:*,cn,C), there is an object
P(cq, ,cnic) €V

* for each ¢ € C amorphism 1, : [ = P(c : c¢) in V - the identity on c;

efor each (m + 1)-tuple (cq,->",cp,c) and n other tuples
(A1 dagr)s s (A, ) amorphismP(cy, -+, € O@P(dy 1,7+, dy ey €)@
@ P(dny1, dnk, €n) = P(dy1, ) dnk,,, €) the composition operation;

« for all n n, all tuples, and each permutation o in the symmetric group X,, a mor-

phism
o P(ClJ *yCn; C) - P(Ca(l)J ** Ca(n); C)

* subject to the conditions that
— the gsform a representation of ¥;
— composition operation satisfies associativity and unitality in the obvious
way,

— and is X, equivariant in the evident way.
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Let O be a colored operad. We define a category 09 as follows:
« The object of 0% are finite sequence of colors X, ..., X,, € O.

» Given two sequence of objects
X1 X, Ve, o, Yy €0,

a morphism form {X;} to {¥;} is given by a map a : (m) — (n) in Fin,, together with a

collection of morphisms:

{¢j € P((Xi}iea—1¢j) ¥}
« Composition of morphisms in 0% is determined by the composition laws on Fin,

and on O

co-operads

An oo-operad is an co-categorical generalization of coloured operad.
Definition B.5.4: An co-operad is a functor p : 0® — N(Fin,) between co-categories
which satisfies the following conditions:

(1) For every inert morphism f : (m) — (m) in N(Fin,) and every object C €
0(%1) , there exists a p-coCartesian morphism f : C — C' lifting £, In particular, f induces
a functor f, : 0(%) - 0(%

(2) Let € € 0F and €' € OF, be objects, let f : (m) - (m) in N(Fin,) and
let M apjor® (C, C") be the unoion of morphism which lie over f. Choose a p-coCartesion
morphism C' — C; lying over p* : (n) = (1). Then the induced map

Map’;®(C,C’) - 1_[ Mapg;f(C,C’)
1<isn
is a homotopy equivalence.

(3) For every finite collection of objects Cy,-+,C,, € 02519), there exists an object
Ce€ 0(% and a collection of p-coCartesian morphisms C; — C; covering p' : (n) — (1).
Example B.5.5: The commutative co-operad Comm® = N (Fin,).

Example B.5.6: N(Fininj) is an oco-operad which denote it by E?.
Definition B.5.7: Let 0% and 0'® be two oo-operads. An co-operad map from 0% to

0'®isa map of simplicial sets f : 0® — 0'® and satisfying:
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(1) There is a commutative diagram

0® ! 0'®

o~

N (Fin,)

(2) The functor f carries insert morphisms in O® to insert morphisms in 0'®.
We say that a map of co-operads q : C® — 0® is a fibration of operads if q is a
categorical fibration.
Definition B.5.8: Let O® be an co-operad. A map p : C® — 0% of co-categories is a
coCartesian fibration of co-operads if
(1) p:C® - 0% is a coCartesian fibration of co-categories.
(2) The composite map g : C® — 0® — N(Fin,) exhibits C® as an co-operad.

In this cas, we say that p exhibits 0% as a O-monoidal co-category.

Algebras over «-Operads

Definition B.5.9: Letp : C® — 0® be a fibration of operads, if we have a map of oper-
ads a : 0'® - 0%®. We let Alg,/,(C) denote the full subcategory of Funyg (0'®,C®)
spanned by the maps of co-operads.

In the special case where 0'® = 09 and « is the identity map, we denote the oo-

category Algo,/(, by Alg/o.
Symmetric Monoidal co-categories

Suppose that M is a symmetric monoidal category with monoidal product &, we
construct a new category M'® as follows.

(1) An object in M'® is a finite sequence
My, ,M),M; e M\',n=>0

(2) A morphism (My, -+, My,) = (Lq, -, L) is a pair (e, {f;};) consists of a mor-
phism «a : (n) = (k) in Fin together with morphism

fir & -L,i=1k.

j€a~1(d)
and the tensor product ,unit, composition law can be recovered as before. There is an
obvious projection functor p : M'® — Fin given by (M, -+, M,) — (n)and (a, {f;};) »
Qa.

Proposition B.5.10: For any symmetric monoidal category M the functorp : M'® —

100



APPENDIX B HOMOTOPY COHERENT MATHEMATICS

Fin is a Grothendieck opfibration. Moreover, this functor satisfies the Segal condi-

tion,1.e., the Segal maps
(o, pT") : Mgy = M n = 0

are equivalence.
Definition B.5.11: A symmetric monoidal co-category is a coCartesian fibration p :
C¢® - N(Fin,).
Remark B.5.12: If we don’ t want to use the language of co-operads, then there is a
equivalent definition. A symmetric monoidal co-category is a coCartesian fibration p :

M® — N(Fin) such that the Segal maps are equivalence
(ot p) M(% - (M(%)Xn'" =0

A symmetric monoidal co-category p : M'® — N(Fin) endows the underlying oo-
category M' = M, (% with a monoidal pairing which is associative and commutative up to
coherent homotopy.

Definition B.5.13: Letp : M® — N(Fin,),q : ¥® — N (Fin,) be symmetric co-
categories and let F : M'® — N'® be a functor over N(Fin,).

(1) The functor F is symmetric monoidal if it sends p-coCartesian arrows to q-
coCartesian arrows.

(2) The functor F is lax symmetric monoidal if it sends p-coCartesian lift of insert
morphism to g-coCartesian arrows.
Definition B.5.14: We define the oo-categories of commutative algebra objects
Algy (M®) = Fun®' ™ (N(Fin,), M'®).

B.5.1 Monoidal co-category

Definition B.5.15: The category Assoc® is defined as

(1) Objects: are the object of Fin,.

(2) Morphism: a morphism form (m) to (n) consists of (&, {<;}1<i<n), Where
a : (m) — (n) is a map of pointed finite sets and =<; is a linear ordering on the inverse
image f~1(i) c (m)for1 <i < n.

We let Assoc = N (Ass0c®). It can be proved that Assoc is an c-operad. We know

that the ordinary monoidal category can be encoded by Grothendieck opfibrations. Using
this idea, we can define monoidal co-categories.

Definition B.5.16: Let C® be an oo-operad with a fibration q : C® — Assoc®. We let
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Alg(C) denote the co-category Alg /Assoc (C) of oco-operads sections of q. The co-categroy
of associative algebra objects of C.

Definition B.5.17: A monoidal co-category is a coCartesian fibration of co-operads p :
M® > Assoc®.

Remark B.5.18: Just like the symmetric monoidal co-case, if we don’ t want use the
language of co-operads. Then one can check there is a equivalent definition that is a
monoidal co-category is a coCartesian fibration p : M'® — N(A°P) such that the Segal

maps are equivalence
® ®
M[Tl] - (M[l])xn;n > 0.
We often refer to the category M = M, [?] as a monoidal co-category.
Example B.5.19: We ha

(1) Let M be a monoidal category and p : M® — A% be the associated

Grothendieck opfibration. An application of the nerve functor yields a monoidal cate-
gory
N(p) : N(M®) - N(A°P).

(2) from model categorical input

We recall that a morphism « : [n] = [k] in A is conves if it is injective and the image
im(a) € [k] is convex,i.e., the image is given by the interval [a(0), a(n)].
Proposition B.5.20: Letp : M'® — A°P be a monoidal structure on M = M[%. Then
asection A : A°? - M'® of p that sends convex arrows to p-coCartesian arrows encodes
an algebra structure on A1) € M. Conversely, any algebra object in M determines such
a section of p : M'® — A°P,

So in the co-category language setting, we have
Definition B.5.21: Let p : M® — N(A°P) be a monoidal co-category. A section
A : N(AP?) —» M® of p is an associative algebra object in M'® if A sends convex
morphisms to p-coCartesian arrows in M'®.

Given an algebra object A in M, the underlying object A[qy is endowed with a mul-
tiplciation map which is associative and unital up to coherent homotopy. In particular, an
algebra object in a monoidal co-category defines an ordinary algebra object in the under-
lying homotopy category, but not conversely.

Algebra objects in monoidal co-categories are special case of lax monoidal functors

between monoidal oco-categories.
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Definition B.5.22: Letp : M® — N(A°?) and q : N® — N(A°P) be monoidal co-
categories. A lax monoidal functor F : M'® — N'® is a functor over N(A°P), which is a

commutative diagram

M® F N®
p
q
NA°P
that sends p-coCartesian lifts of convex morphisms in N (A°P) to g-coCartesian arrows.

A monoidal functor F : M'® — N® is a functor over N(A°P) that sends arbitrary p-

coCartesian arrows to q-coCartesian ones.

E, -Algebra

We begin by briefly recalling the notions of E,-algebra is a closed symmetric
monoidal (oo, 2)-category § which admits geometric relizations.
For an integer k > 0, we let 0¥ = (—1, 1)* denote an open cube of dimension k. We

will say that a map f : 0F — OF is a rectilinear embedding if it is given by the formula
f(xq, o, xx) = (a1xq + by, ..., apxy + by)

for some real constant a; and b;, with a; > 0
Definition B.5.23: We define a topological category t[E,‘? as follows
(1) The objects tIE,? are the objects (n) € Fin,.
(2) Given two objects (m), (n). A morphism from (m) to (n) consists of:
*A morphism « : (m) — (n) in Fin,.
*For each j € (n)° a rectilineat embedding 0¥ x a~1(j) - o*.

We let IE,‘?> denote the nerve of the topological category tE,‘? . It can be that this
functor IE,? — N(Fin,) exhibits E ,? as an oco-operad. We refer to the co-operad IE,? as the
co-operad of little k-cubes.

Definition B.5.24: Suppose that C is a symmetric monoidal co-category. An E,,-algebra

in C is a symmetric monoidal functor A : IE,? - C.

B.6 Brave New Algebra
Finiteness Conditions

Proposition B.6.1: Suppose that we have an E;-ring R. Then we have LMody is com-

pactly generated co-category, and an object of LModp, is perfect if and only if it is compact.
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Definition B.6.2: Suppose that we have a compactly generated co-category C and an
object X in C, we will say X is almost compact if 7., X is a compact object of 7, for all
n < 0.
Definition B.6.3: Suppose that we have an E;-ring R and M € LModj , we call M is

(1) perfect if it is a compact object of LModg.

(2) almostperfectif M € (LModg)< and is almost compact object of (LModg) <
for an certain integer k.

(3) perfect to order n if for every filtered diagram {N, } in (LMod,)<(, the canoni-
cal map l_i)IgExtil (M,N,) - Extf4 (M, l_i)rélNa) is injective for i = n and bijective fori < n.

(4) finitely n-presented if M is n-truncated and perfect to order (n+1).

Localization, Nilpotent and Complete

Semi-Orthogonal Decomposition of Stable co-Categories

Definition B.6.4: Suppose that we have an co-category C and D be a subcategory of C,
we define two subcategories *D € € 2 D+ as follows

(1) AnobjectX € C belongs to 1D is equivalent to say that for every objectY € D,
Map.(X,Y) is contractible.

(2) AnobjectY € C belongsto D is equivalent to say that for every object X € D,
Map.(X,Y) is contractible.
Definition B.6.5: Suppose that we have a connective [E,-ring R and an element t x €
moR, and let C be a presentable R linear co-category. Suppose C is an object of C, we let
C[X~!] denote R[x™1] ®g C. We call C is x-nilpotent object if the localization C[x1]
vanishes. If wa have an ideal I of myR. We will call this object C € C is I-nilpotent object
if it is x-nilpotent for each x € I.
Example B.6.6: Suppose that we have a connective E,-ring R and let I is a finitely
generated ideal of Ty R. Suppose that M is a left R-module, then M I-nilpotent is equivalent
to say that every element of ,M is annihilated by some power of L.
Definition B.6.7: Suppose that we have a connective [E,-ring R and I is a finitely gener-
ated ideal of Ty R . For any stable R-linear co-category C and C is an object of C is I-local
if the mapping space Map(D, C) is contractible for every I-nilpotent object D € C. We
let €L2¢M denote the full subcategory of C spanned by the I-local objects.
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Flat

Definition B.6.8: Suppose that we have an E,-ring R and M € Modg. We will call M
is a flat R-module if we have
(1) myM is flat over myA4, in the sense of ordinary algebraic geometry.

(2) For each n, the induces map
TpA Qrya ToM - T, M

is an isomorphism.

Locally Free Modules

Definition B.6.9: Suppose that we have an E.,-ring R and M € Modg. We will say M
is locally free of finite rank R-module if there exist an integer n, such that M is a direct
summand of A™.
We say M is locally free of rank N, if
(1) M is locally free of finite rank.
(2) the vector space ok @z M is dimension N over k for every field k and every
map of E,-ring R — k.

Etale

Definition B.6.10: Suppose that we have two E,-rings Aand Band f : A - Bisa
map between them, we will say f'is étale if f satisfying the following two conditions:
(1) Bis a flat A-module.
(2) mof : myA - myB is étale.
Theorem B.6.11: Suppose that we have an E.-ring A, then the map m, : CAlg, —
CAlgﬂ0 , induces an equivalence CAngt ~ CAlg,eTE "

Proof: See [3]Theorem 7.5.4.2 . n
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