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Abstract—In artificial-intelligence-aided signal processing, existing
deep learning models often exhibit a black-box structure. The integra-
tion of topological methods serves a dual purpose of making models
more interpretable as well as extracting structural information from time-
dependent data for smarter learning. Here, we provide a transparent and
broadly applicable methodology, TopCap, to capture topological features
inherent in time series for machine learning. Rooted in high-dimensional
ambient spaces, TopCap is capable of capturing features rarely de-
tected in datasets with low intrinsic dimensionality. Compared to prior
approaches, we obtain descriptors which probe finer information such as
the vibration of a time series. This information is then vectorised and fed
to multiple machine learning algorithms. Notably, in classifying voiced
and voiceless consonants, TopCap achieves an accuracy exceeding
96%, consistently standing comparison with and sometimes significantly
outperforming state-of-the-art deep learning neural networks in both
accuracy and efficiency.

1 INTRODUCTION

IN 1966, Mark Kac asked the famous question: “Can you
hear the shape of a drum?” To hear the shape of a drum

is to infer information about the shape of the drumhead
from the sound it makes, using mathematical theory. In this
article, we venture to flip and mirror the question across
senses and address instead: “Can we see the sound of a
human speech?”

As a major task of natural language processing (NLP),
speech recognition is one of the essential components of
artificial intelligence (AI). In turn, AI advancements have
led to a widespread adoption of voice recognition tech-
nologies, encompassing applications such as speech-to-text
conversion and music generation. The rise of topological
data analysis (TDA) [1] has integrated topological methods
into many areas including AI [2, 3], which makes neural
networks more interpretable and efficient, with a focus
on structural information. In the field of voice recognition
[4, 5], more specifically consonant recognition [6, 7, 8, 9,
10], prevalent methodologies frequently revolve around the
analysis of energy and spectral information. While topolog-
ical approaches are still rare in this area, we combine TDA
and machine learning to obtain a classification for speech
data, based on geometric patterns hidden within phonetic
segments. The method we propose, TopCap (referring to
the capability of capturing topological structures of data),
is not only applicable to audio data but also to general-
purpose time series data that require extraction of structural
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information for machine learning algorithms. Initially, we
endow phonetic time series with point-cloud structure in
a high-dimensional Euclidean space via time-delay embed-
ding (TDE, see Fig. 1a) with appropriate choices of param-
eters. Subsequently, 1-dimensional persistence diagrams are
computed using persistent homology (see Sec. S.2.2 for an
explanation of the terminologies). We then conduct evalua-
tions with nine machine learning algorithms, in comparison
with multiple deep learning models without topological
inputs, to demonstrate the significant capabilities of TopCap
in the desired classification.

Conceptually, TDA is an approach that examines data
structure through the lens of topology. This discipline was
originally formulated to investigate the shape of data, par-
ticularly point-cloud data in high-dimensional spaces [11].
Characterised by a unique insensitivity to metrics, robust-
ness against noise, invariance under continuous deforma-
tion, and coordinate-free computation [1], TDA has been
combined with machine learning algorithms to uncover in-
tricate and concealed information within datasets [12, 3, 13,
14, 15, 16]. In these contexts, topological methods have been
employed to extract structural information from the dataset,
thereby enhancing the efficiency of the original algorithms.
Notably, TDA excels in identifying patterns such as clusters,
loops, and voids in data, establishing it as a burgeoning tool
in the realm of data analysis [17]. Despite being a nascent
field of study, with its distinctive emphasis on the shape
of data, TDA has led to novel applications in various far-
reaching fields, as evidenced in the literature. These include
image recognition [18, 19, 20], time series forecasting [21]
and classification [22], brain activity monitoring [23, 24],
protein structural analysis [25, 26], speech recognition [27],
signal processing [28, 29], neural networks [30, 31, 32, 2],
among others. It is anticipated that further development of
TDA will pave a new direction to enhance numerous aspects
of daily life.

The task of extracting features that pertain to structural
information is both intriguing and formidable. This process
is integral to a multitude of practical applications [33, 34,
35, 36], as scholars strive to identify the most effective
representatives and descriptors of shape within a given
dataset. Despite the fact that TDA is specifically designed
for shape capture, there are several hurdles that persist in
this newly developed field of study. These include (1) the
nature and sensitivity of descriptors obtained by methods in
TDA, (2) the dimensionality of the data and other parameter
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Fig. 1: Illustrations of methodology. a, Time-delay embedding (dimension=3, delay=10, skip=1) of f(tn) = sin(2tn) −
3 sin(tn), with tn = π

50n (0 ⩽ n ⩽ 200). Resulting point clouds lay on a closed curve in 3-dimensional Euclidean space.
The colour indicates their original locations in the time series. b, A topological space and its triangulation. On the left
is a topological space consisting of a 1-dimensional sphere (i.e., a circle) and a 2-dimensional sphere with a single point
of contact, denoted as S1 ∨ S2. The right depicts a triangulation of this topological space. c, Average temperature in the
U.S. with monthly values (dark blue dots) and yearly values (green curve). The left panel shows a single-year section of
average temperature. d, Computing PH. The four plots consecutively show how a diagram or a barcode is computed:
Connect each pair of points with a distance less than ϵ by a line segment, fill in each triple of points with mutual distances
less than ϵ with a triangular region, etc., and compute the corresponding homology groups. In this way, as “time” ϵ
increases, points in the diagram or intervals in the barcode record the “birth” and “death” of each generator of a homology
group, i.e., the occurrence and disappearance of a loop (or a higher-dimensional hole), thereby revealing the essential
topological features of the point cloud that persist. e, Characterising the vibration of a time series in terms of its variability
of frequency, amplitude, and average line. f, Commonly used representations for PH, with an example of 100 points
uniformly distributed over a bounded region in 2D Euclidean space.

choices, (3) the vectorisation of topological features, and (4)
computational cost. These challenges will be elaborated in
the following paragraphs within this section. Subsequently,
we will demonstrate how our proposed methodology, Top-
Cap, addresses these challenges through an application to
consonant classification.

When applying TDA, the most imminent question is to
comprehend the characteristics and nature of descriptors
extracted via topological methods. TDA is grounded in the
pure-mathematical field of algebraic topology (AT) [37, 38],
with persistent homology (PH) being its primary tool [39,
40]. While AT can quantify topological information to a
certain extent [38, 1, 17], it is vitally important to understand
both the capabilities and limitations of TDA. Generally
speaking, TDA methods distinguish objects based on con-
tinuous deformation. For example, PH cannot differentiate a
disk from a filled rectangle, given that one can continuously
deform the rectangle into a disk by pulling out its four
edges. In contrast, PH can distinguish between a filled rect-
angle and an unfilled one due to the presence of a “hole” in
the latter, preventing a continuous deformation between the
two. In certain circumstances, these methods are considered

excessively ambiguous to capture the structural information
in data, thereby necessitating a more precise descriptor of
shapes. To draw an analogy, TDA can be conceptualised
as a scanner with diverse inputs encompassing time series,
graphs, pictures, videos, etc. The output of this scanner is
a multiset of intervals in the extended real line, referred to
as a persistence diagram (PD)1 or a persistence barcode (PB)
[11, 41, 42] (cf. Fig. 1f). In particular, by maximal persistence
(MP) we mean the maximal length of the intervals. The
precision of the topological descriptor depends on two
factors: (1) the association of a topological space, i.e., the
process of transforming the input data into a topological
space (see Fig. 1b for a simplicial-complex representation
of spaces; typically, the original datasets are less structured,
and one should find a suitable representation of the data),
and (2) the vectorisation of PD or PB, i.e., how to perform
statistical inference with PD/PB. Despite there are many
theoretical results which provide a solid foundation for
TDA, few can elucidate the practical implications of PD

1In this article, we shall freely use the usual birth-by-death PDs and
their birth-by-lifetime variants, whichever better serve our purposes.
See Sec. S.2.2 for details.
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Fig. 2: The varied shapes of vowels, voiced consonants, and voiceless consonants. a, the left 3 panels and the right 3 panels
depict 2 vowels, respectively. For each, the first picture is the time series of the vowel, the second picture corresponds to the
3-dimensional principal component analysis of the point cloud resulting from performing TDE (dimension=100, delay=1,
skip=1) on this time series, and the third picture is the PD of this point cloud. b, The analogous features for 2 voiced
consonants. c, Those for 2 voiceless consonants.

and PB. For example, what does it mean if many points
are distributed near the birth–death diagonal line in a PD?
Extensive studies have been conducted on short-lived bars
in PH, including those related to molecular data [43, 44],
hierarchical structures [45], and protein structures [46, 43,
47], among others. The significance of points distributed
near the birth–death diagonal line is particularly relevant
in real-world applications. In this article, we present a new
way to examine those data, with an example of simulated
time series to demonstrate that points distributed in such
regions indeed encode important information, such as vibra-
tion patterns of the time series, and a different distribution
in these regions leads to a different pattern of vibration. This
serves as a motivation for proposing TopCap and is further
discussed in Sec. 2.1. It turns out that topological descriptors
can be sharpened by noting patterns in these regions.

In view of the capability of topological methods to dis-
cern vibration patterns in time series, we apply them to clas-
sify consonant signals into voiced and voiceless categories.
As a first demonstration of our findings, to visualise vowels,
voiced consonants, and voiceless consonants in TDE and
PD, see Fig. 2 (cf. Sec. S.1 for details of phonetic categories).

The first challenge, as many researchers may encounter
when applying topological methods, is to determine the
dimension of point clouds derived from input data [48, 49,
50]. This essentially involves transforming the input into a
topological space. In situations where the dimensionality
of the data is large, researchers often project the data into
a lower-dimensional topological space to facilitate visuali-
sation and reduce computational cost [23, 24, 51]. On the
other hand, as in this study and other applications with time
series analysis [52, 53, 54, 55, 22, 56, 27], low-dimensional
data are embedded into a higher-dimensional space. In
both scenarios, deciding on the data dimensionality is both

critical and challenging. Often, tuning the dimension is a
tremendous task. In Sec. 4 of Discussion below, we delve
into the issue of data dimensionality. In our case, as it might
seem counterintuitive compared to most algorithms, when
the data are embedded into a higher-dimensional space, the
computation will be a little faster, the point cloud appears
smoother and more regular, and most importantly, more
salient topological features can be spotted, which seldom
happen in lower-dimensional spaces. When encountering
the dimensionality of data, researchers would think of the
well-known curse of dimensionality [57]: As a typical algo-
rithm grapple, with the increase of dimension, more data
are needed to be involved, often growing exponentially
and thereby escalating computational cost. Even worse, the
computational cost of the algorithm itself normally rises as
the dimension goes higher. However, topological methods
do not necessarily prefer data of lower dimension. For com-
puting PH (see Fig. 1d for the process of computing PD/PB
from point clouds), a commonly used algorithm [58, 59]
sees complexity grow with an increase in the number n of
simplices during the process, with a worst-case polynomial
time-complexity of O(n3). As such, the computational cost
is directly related to the number of simplices formed during
filtration. Our observation shows that computation time
may not increase much given an increase of dimension of
data, because the latter may have little effect on the size
(i.e., number of points) of the point cloud and thus neither
on the number of simplices formed during filtration.

Having obtained a suitable topological space from input
data, one can derive a PD/PB from the topological space,
which constitutes a multiset of intervals. The subsequent
challenge lies in the vectorisation of the PD/PB for its
integration into a machine-learning algorithm. The vectori-
sation process is essentially linked to the construction of the



4

topological space, as the combination of different methods
for constructing the topological space and vectorisation
together determine the descriptor utilised in machine learn-
ing. A plethora of vectorisation methods exist, such as per-
sistent entropy [60], persistence curve [61], persistence land-
scape [62], and persistence image (PI) [63], among others, as
documented in various studies [40, 64] (cf. Fig. 1f). The se-
lection of these methods requires careful consideration. Ad-
ditionally, one can design more customised quantification
techniques tailored to specific experimental conditions and
physical properties to meet specific requirements [65, 66, 67].
In Sec. 3 of Methods, we employ MP and its corresponding
birth time as two features. These have been integrated
into nine traditional machine learning algorithms to clas-
sify voiced and voiceless consonants, yielding an accuracy
that exceeds 96% with each algorithm. This vectorisation
method is quite simple, primarily due to our construction of
topological spaces from phonetic time series, as detailed in
the Method section. This construction enables PH to capture
significant topological features within the time series. In
Sec. 2.1, we also observe a pattern of vibration which could
potentially be vectorised by PI into a matrix. As one of
its strengths, PI emphasises regions where the weighting
function scores are high, which makes it a computationally
flexible method. Future work may involve a more precise
recognition of such patterns using PI.

To place our results in a more specific context as well
as to acknowledge earlier efforts made by other researchers
to which we are indebted, let us now give an overview of
closely related work in the field.

Time series analysis [68] is a prevalent tool for various
applied sciences. The recent surge in TDA has opened new
avenues for the integration of topological methods into time
series analysis [21, 69, 70]. Much literature has contributed
to the theoretical foundation in this area. For example,
theoretical frameworks for processing periodic time series
have been proposed by Perea and Harer [71], followed by
their and their collaborators’ implementation in discovering
periodicity in gene expressions [72]. Their article [71] stud-
ied the geometric structure of truncated Fourier series of a
periodic function and its dependence on parameters in time-
delay embedding (TDE), providing a solid background for
TopCap. In addition to periodic time series, towards more
general and complex scenarios, quasi-periodic time series
have also been the subject of scholarly attention. Research
in this direction has primarily concentrated on the selection
of parameters for geometric space reconstruction [73] and
extended to vector-valued time series [74].

In this article, a topological space is constructed from
data using TDE, a technique that has been widely em-
ployed in the reconstruction of time series (see Fig. 1a and
cf. Sec. S.2.1 for more background). Thanks to the topologi-
cal invariance of TDE, the general construction of simplicial-
complex representation (see Fig. 1b) and computation of PH
from point clouds (see Fig. 1d) apply to time series data,
although this transformation involves subtle technical issues
in practice. For instance, Emrani et al. utilised TDE and PH
to identify the periodic structure of dynamical systems, with
applications to wheeze detection in pulmonology [52]. They
selected the embedded dimension d as 2, and their delay pa-
rameter τ was determined by an autocorrelation-like (ACL)

function, which provided a range for the delay between the
first and second critical points of the ACL function. Pereira
and de Mello proposed a data clustering approach based
on PD [53]. The data were initially reconstructed by TDE,
with d = 2 and τ = 3, so as to obtain the corresponding
PD, which was then subjected to k-means clustering. The
delay τ was determined using the first minimum of an
auto mutual information, and the embedded dimension d
was set to be 2 as using 3 dimensions did not significantly
improve the results. Khasawneh and Munch introduced a
topological approach for examining the stability of a class
of nonlinear stochastic delay equations [54]. They used false
nearest neighbours to determine the embedded dimension
d = 3 and chose the delay to equal the first zeros of the
ACL function. Subsequently, the longest persistence lifetime
in PD was used as a vectorisation to quantify periodicity.
Umeda focused on a classification problem for volatile time
series by extracting the structure of attractors, using TDA
to represent transition rules of the time series [22]. He
assigned d = 3, τ = 1 in his study and introduced a novel
vectorisation method, which was then applied to a con-
volutional neural network (CNN) to achieve classification.
Gidea and Katz employed TDA to detect early signs prior
to financial crashes [56]. They studied multi-dimensional
time series with τ = 1 and used persistence landscape as
a vectorisation method. For speech recognition, Brown and
Knudson examined the structure of point clouds obtained
via TDE of human speech signals [27]. The TDE parameters
were set as d = 3, τ = 20, after which they examined the
structure of point clouds and their corresponding PB.

Upon reviewing the relevant literature, we see that cur-
rently there lacks a general framework for systematically
choosing d and τ , and researchers often have to make
choices in an ad hoc fashion for practical needs. While the
TDE–PH topological approach to handling time series data
is not new, TopCap extracts features from high-dimensional
spaces. For example, in our experiments d = 100 based on
several considerations (see Sec. 2.3.1). It happens in some
cases that in a low-dimensional space, regardless of how
optimal the choice of τ is, the structure of the time series
cannot be adequately captured. In contrast, given a high-
dimensional space, feature extraction from data becomes
simpler. Of course, operating in a high-dimensional space
comes with its own cost. For example, the adjustment of
τ then requires careful consideration. Nonetheless, it also
offers advantages, which we will elucidate step by step in
the subsequent sections.

2 RESULTS

This research drew inspiration from Carlsson and his col-
laborators’ discovery of the Klein-bottle distribution of high-
contrast, local patches of natural images [20], as well as their
subsequent recent work on topological CNNs for learning
image and even video data [2]. By analogy, we aim to
understand a distribution space for speech data, even a
directed graph structure on it modeling the complex net-
work of speech-signal sequences for practical purposes such
as speaker diarisation, and how these topological inputs
may enable smarter learning (cf. Sec. S.1). Here are some
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of our first findings in this direction, set in the context of
topological time series analysis.

2.1 Detection of vibration patterns

The impetus behind TopCap lies in an observation of how
PD can capture vibration patterns within time series. To
begin with, our aim is to determine which sorts of in-
formation can be extracted using topological methods. As
the name indicates, topological methods quantify features
based on topology, which distinguishes spaces that cannot
continuously deform to each other. In the context of time
series, we conduct a series of experiments to scrutinise the
performance of topological methods, their limitations as
well as their potential.

Given a periodic time series, its TDE target is situated on
a closed curve (i.e., a loop) in a sufficiently high-dimensional
Euclidean space (see Fig. 1a). Despite the satisfactory point-
cloud representation of a periodic time series, it remains
rare in practical measurement and observation to capture
a truly periodic series. Often, we find ourselves dealing
with time series that are not periodic yet exhibit certain
patterns within some time segments. For instance, Fig. 1c
portrays the average temperature of the United States from
the year 2012 to 2022, as documented in [75]. Although the
temperature does not adhere strictly to a periodic pattern,
it does display a noticeable cyclical trend on an annual
basis. Typically, the temperature tends to rise from January
to July and fall from August to December, with each year
approximately comprising one cycle of the variation pat-
tern. One strength of topological methods is their ability
to capture “cycles”. A question then arises naturally: Can
these methods also capture the cycle of temperature as well
as subtle variations within and among these cycles? To
be more precise, we first observe that variations occur in
several ways. For instance, the amplitude (or range) of the
annual temperature variation may fluctuate slightly, with
the maximum and minimum annual temperatures varying
from year to year. Additionally, the trend line for the annual
average temperature also shows fluctuations, such as the
average temperature in 2012 surpassing that of 2013. Despite
each year’s temperature pattern bearing resemblance to
that depicted in the left panel in Fig. 1c (representing a
single cycle of temperature within a year), it may be more
beneficial for prediction and response strategies to focus on
the evolution of this pattern rather than its specific form. In
other words, attention should be directed towards how this
cycle varies over the years. This leads to several questions.
How can we consistently capture these subtle changes in
the pattern’s evolution, such as variations in the frequency,
amplitude, and trend line of cycles? How can we describe
the similarities and differences between time series that
possess distinct evolutionary trajectories? In applications,
these are crucial inquiries that warrant further exploration.

To address these questions, we propose three kinds of
“fundamental variations” which are utilised for depicting
the evolutionary trace of a time series. Consider a series of
a periodic function f(tn) = f(tn + T ), where T is a period.

(1) Variation of frequency. Denote the frequency by F = T−1.
Note that the series is not necessarily periodic in the

mathematical sense. Rather, it exhibits a recurring pat-
tern after the period T . For instance, the average tem-
perature from Fig. 1c is not a periodic series, but we
consider its period to be one year since it follows a
specific pattern, i.e., the one displayed in the left panel of
Fig. 1c. This 1-year pattern always lasts for a year as time
progresses. Hence, there is no frequency variation in this
example. This type of variations can be represented as
g1(tn) = f

(
F (tn) · tn

)
, where F (tn) is a series repre-

senting the changing frequency. This type of variation
occurs, for example, when one switches their vocal tone
or when one’s heartbeats experience a transition from
walking mode to running mode.

(2) Variation of amplitude. The amplitudes of temperature
in the years 2014 and 2015 are 42.73◦F and 40.93◦F,
respectively. So the variation of amplitude from 2014 to
2015 is −1.80◦F. This can be represented by g2(tn) =
A(tn) · f(tn), where A(tn) is a series of the changing
amplitude. This type of variation is observed when
a particle vibrates with resistance or when there is a
change in the volume of a sound.

(3) Variation of average line. The average temperatures
through the years 2012 and 2013 are 55.28◦F and 52.43◦F,
respectively. The variation of average line from 2012 to
2013 is −2.85◦F. Let g3(tn) = f(tn)+L(tn), where L(tn)
is a series representing the variation of average line. This
type of variation is observed when a stock experiences
a downturn over several days or when global warming
causes a year-by-year increase in temperature.

To summarise, Fig. 1e provides a visual representation of
the three fundamental variations. It is important to note
that these variations are not utilised to depict the pattern
itself but rather to illustrate the variation within the pattern
or how the time series oscillates over time. This approach
offers a dynamic perspective on the evolution of the time
series, capturing changes in patterns that static analyses
may overlook.

Using three simulated time series corresponding to the
above three fundamental types of variation (see Sec. 3.1 for
detailed construction), we demonstrate that PD can distin-
guish these variations and detect how significant they are.
See Fig. 3, where a smaller value of c indicates a more rapid
fundamental variation. Here, regardless of which value c
takes, each individual diagram features a prominent single
point at the top and a cluster of points with relatively short
duration, except when F (tn) = 1 (i.e., c = 4). In this case,
the series represents a cosine function, and thus the diagram
consists of a single point. Normally, one tends to overlook
the points in a PD that exhibit a short duration as they
are sometimes inferred as noise. However, in this example,
the distribution of those points holds valuable information
regarding the three fundamental variations. As shown in
Fig. 3, each fundamental variation has its distinct pattern
of distribution in the lower region of a diagram, which
leads to refined inferences: If the points spiral along the
vertical axis of lifetime, it is probably due to a variation
of amplitude; if every two or four points stay close to form
a “shuttle”, it probably indicates a variation of average line;
otherwise the points just seem to randomly spread over,
which more likely results from a variation of frequency. It
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Fig. 3: 1-dimensional PH reveals three fundamental variations. a, Detecting variation of frequency. Upper-right panels
zoom in to show the barcode distribution in the lower dense region, where the position and colour of each value of c in
the main legend corresponds to those of its panel. Note that when c = 4, there is a single point, and so the panel for this
value is omitted. b, Detecting variation of amplitude. c, Detecting variation of average line.

is also straightforward to distinguish the values of c for
a specific fundamental variation, by their most significant
point in the diagram: Longer lifetime for the barcode of the
solitary point indicates slower variation. The lower region
of a diagram also gives some hints in this respect.

In this simulated example, we demonstrated how PD
could be utilised as a uniform means to distinguish three
fundamental variations of the cosine series and their respec-
tive rates of change. However, it is important to note that
in general scenarios, identifying the fundamental variations
in a time series using topological methods may encounter
significant challenges. Although topological methods are
indeed capable of capturing this information, vectorising
this information for subsequent utilisation remains a com-
plex task at this stage. Having recognised the potential of
topological methods, we resort to an alternative algorithm
for handling time series. Specifically, despite the difficulty
in vectorising PD to measure each fundamental variation,
we have developed a simplified algorithm to measure the
vibration of time series as a whole. This approach provides
a comprehensive understanding of the overall behaviour of
a time series, bypassing the need for complex vectorisation.

2.2 The three fundamental variations gleaned from a
persistence diagram

A PD for 1-dimensional PH encodes much more information
beyond the birth time and lifetime of the point of MP.
The three fundamental variations examined in Sec. 2.1 also
manifest themselves in certain regions of the PD, which can
in turn be vectorised.

To capture these variations, we perform an experiment
with two records of the vowel [A]. Specifically, we demon-
strate the fundamental variations by comparing the PDs
of (a) the record of [A] relatively unstable with respect to
the fundamental variations and (b) the other record of the
same vowel that is relatively stable. To better illustrate the
results, we crop each record into 4 overlapping intervals,
each starting from time 0 and ending at 600, 800, 1000, 1200,
respectively. When adding a new segment of 200 units into
the original sample each time, the amplitude and frequency

of the series altered more drastically in case (a). A more
rapid changing rate may lead to more points distributed
in the lower region of the diagram. The outcomes are
presented in Fig. 4. The plots in Fig. 4c show that the spectral
frequency of (a) indeed varies faster than that of (b).

We should also mention that the 1-dimensional PD here
serves as a profile for the collective effect of the fundamental
variations. Currently, it is unclear how the points in the
lower region change in response to a specific variation.

2.3 Traditional machine learning methods with novel
topological features

In this subsection, we present our results on conso-
nant recognition using topology-enhanced machine learning
methods, notably, the streamlined approach of TopCap. The
classification of voiced and voiceless consonants serves as a
significant, relevant application of our methodology, show-
casing its efficacy and advantages. Meanwhile, as a hands-
on example originating directly from industrial innovation,
it makes various technical considerations in developing
our methods more transparent and highlights potential for
further investigation and enhancement.

Voiced and voiceless regions of speech have distinct
speech production processes and energy patterns. Segmen-
tation of voiced and voiceless speech is a fundamental
and important process for various speech processing ap-
plications [76]. In medical diagnosis, researchers can detect
common cold and other diseases by studying voiceless and
voiced sounds [77, 78]. The detection of voiced and voiceless
sounds can also be used to reveal whether musical expertise
leads to an altered neurophysiological processing of sub-
segmental information available in the speech signal [79].
It is particularly important to study the segmentation of
voiced and voiceless sounds in linguistics, and a variety
of methods have been developed and applied [80, 81, 82,
83]. Moreover, there are applications geared towards AI
innovations, for example, speaker identification via voice-
less consonants [84]. Thus, it has become imperative to
research the characteristics of voiced and voiceless sounds
and distinguish them, which can ensure the accuracy of
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Fig. 4: Variation of 1-dimensional PDs due to the fundamental variations of time series. a, PDs of drastic fundamental
variations. The small panel on top right of each diagram shows the original time series, with 4 segments extracted from
the same record of [A], each starting from time 0 and ending at time 600, 800, 1000, 1200, respectively. It can directly be
seen from the time series that the variation of amplitude in (a) is bigger than (b); for frequency, see c; normally, we do not
discuss the average line of phonetic data as it is assumed to be constant. Below, each diagram shows the clustering density
of points in the lower region of the PD. b, PDs of mild fundamental variations for 4 time-series segments extracted from
the other record of [A], with the same ending and starting times as in (a). The lower density diagrams demonstrate that
unstable time series are characterised by a higher density of points in the lower region of PD. Moreover, stable series tend
to attain high MP. c, Spectral frequency plots of the time series with rapid variations (left) and with mild variations (right).

the segmentation and enable other applications. Placed in
a broader context, this analysis for speech recognition at the
phonemic level precedes the type of higher-order language
processing typically associated with NLP.

Given consonant recognition as a significant problem
originating and posed to us from the industry, we per-
formed multiple topology-enhanced machine learning ex-
periments and obtained the following.

2.3.1 Main experiment

Using datasets comprising human speech, we initially em-
ploy the Montreal Forced Aligner (MFA) [85] to align natu-
ral speech into phonetic segments. Following preprocess-

ing of these phonetic segments, TDE is conducted with
dimension parameter d = 100 and delay parameter τ set
to equal 6T/d, where T approximates the (minimal) period
of the time series. Following additional refinement proce-
dures, PDs are computed for these segments and are then
vectorised based on MP and its corresponding birth time.
The comprehensive procedural framework is expounded
in Secs. 3.2 and 3.3, while the corresponding workflow is
shown in Fig. 5e. It is worth noting that in the applications
of TDE, the dimension parameter d is usually determined
through some algorithms designed to identify the mini-
mal appropriate dimension [50, 86]. Here, the embedded
dimension d = 100 was chosen to be as large as possible
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within the constraints of our data. More specifically, in
our experiments, using lower dimensions such as d = 5,
10, or 20 yielded poor results, as those dimensions were
insufficient to capture the complex underlying structure of
the time series. In higher dimensions, important features
that are not apparent in lower dimensions become much
easier to identify. However, the dimension cannot be too
large either, otherwise the embedded point cloud obtained
following the theoretical framework of Perea and Harer [71]
(see Sec. 3.3.2 below for details) may consist of too few
points to adequately represent the original data structure.
The delay parameter τ is determined by an ACL function
with no specific rule, but in many cases τ = mT/d for some
positive integer m. In our pursuit of enhanced extraction of
topological features, a relatively high dimension is chosen
(see Sec. 4 for more discussion on dimension in TDE).
Given this higher dimension, the usual case of τ = T/d
with m = 1 may prove excessively diminutive, particularly
in light of the time series only taking values in discrete
time steps. Consequently, in TopCap we adopt an adjusted
parametrisation for τ = mT/d with a relatively large value
m = 6.

We input the pair of MP and birth time from 1-
dimensional PD for each sound record to multiple tradi-
tional classification algorithms: Tree, Discriminant, Logis-
tic Regression, Naive Bayes, Support Vector Machine, k-
Nearest Neighbours, Kernel, Ensemble, and Neural Net-
work. We use the application of the MATLAB (R2022b)
Classification Learner, with 5-fold cross-validation, and set
aside 30% records as test data. This application performs
machine learning algorithms in an automatic way. There
are a total of 1016 records, with 712 training samples and
304 test samples. Among them, 694 records are voiced
consonants and the remaining are voiceless consonants.
The models we choose in this application are Optimizable
Tree, Optimizable Discriminant, Efficient Logistic Regres-
sion, Optimizable Naive Bayes, Optimizable SVM, Optimiz-
able KNN, Kernel, Optimizable Ensemble, and Optimizable
Neural Network.

The results are shown in Fig. 5a–d. The receiver op-
erating characteristic curve (ROC), area under the curve
(AUC), and accuracy metrics collectively demonstrate the
efficacy of these topological features as inputs for a variety
of machine learning algorithms. Each of the algorithms
incorporating topological inputs attains AUC and accuracy
surpassing 96%. The ROC and AUC together depict the
high performance of our classification model across all
classification thresholds. The 2D histograms depicted in
Fig. 5c–d collectively illustrate the distinct distributions of
voiced and voiceless consonants. Voiced consonants tend
to exhibit a relatively higher birth time and lifetime, which
provides an explanation for the high performance of these
algorithms. Despite the intricate structure that a PD may
present, appropriately extracted topological features enable
traditional machine learning algorithms to separate complex
data effectively. This highlights the potential of TDA in
enhancing the performance of machine learning models.

2.3.2 Model comparison on benchmark datasets
We next demonstrate the advantages of TopCap by compar-
ing it with state-of-the-art methods in speech recognition

that are not based on topology, over a diverse range of
benchmark datasets.

In the above main experiment, our analysis solely
utilised the HT1 corpus sourced from the broader
ALLSSTAR dataset of SpeechBox [87] (see Sec. 3.2 for de-
tails). We extend this by conducting a series of experi-
ments across a diverse array of datasets using the same
methodology, with the aim of enhancing the robustness
and credibility of our results. These datasets encompass
renowned benchmark repositories such as LJSpeech [88],
TIMIT [89], and LibriSpeech [90], in addition to supplemen-
tary corpora sourced from ALLSSTAR. Collectively, they
contain a substantial amount of phones, numbering in the
hundreds of thousands: LJSpeech provides around 200000,
TIMIT around 40000, LibriSpeech over 7000000 (1000 hours
of speech), and ALLSSTAR around 20000 in total.

In terms of comparative analysis with existing method-
ologies, we have placed our approach alongside three meth-
ods that are not based on topology. We combine standard
audio processing methods for feature extraction with state-
of-the-art deep learning methods for classification tasks.
The former methods include short-time Fourier transform
(STFT) and mel-frequency cepstral coefficients (MFCC).
The latter methods include CNNs, gated recurrent unit
(GRU) networks, and Transformers. As such, we perform
experiments on the above datasets using the methods of
STFT–CNN, MFCC–GRU, and MFCC–Transformer, in com-
parison with those with TopCap. In more detail, TopCap
comprises TDE–PH and an array of traditional, accessible
machine learning methods. The coupling of TDE and PH
serves to extract the latent topological features inherent in
the time series, while STFT and MFCC each extract features
through analytic methods. Our selection of the multiple
machine learning and deep learning architectures in each
experimental pipeline is informed by the nature of the ex-
tracted features. Specifically, the output spectrograms from
STFT are imagery representations, making them well-suited
for CNNs. In particular, we design and compare two models
for this method, denoted by STFT–CNN and STFT–CNN+:
The former resizes each grey-scale spectrogram of 124×129
pixels through bilinear interpolation down to 8×8 with
386177 parameters, while the latter to 16×16 with 435329
parameters (a 90% reduction of parameters from the origi-
nal), both consisting of 5 layers with 3 convolutional and 2
fully connected. In contrast, MFCC features, characterised
by their lower dimensionality, are more appropriate for
recurrent-neural-network architectures, such as GRUs and
Transformers.

Tab. 1 presents the results of our experiments with
TopCap and the comparison models on benchmark datasets
listed above. In each table, on the leftmost column, the
various datasets are displayed. The remaining columns
record the data sizes (i.e., numbers of phones) along with
the corresponding accuracy rates of TopCap and of the
comparison models applied to these datasets. In the upper
half of Tab. 1, we focus on small-scale datasets. The 5
subsets of ALLSSTAR each comprise their entire phones,
while LJSpeech, TIMIT, and LibriSpeech datasets are sam-
pled randomly, each containing 2000 samples with a half
voiced consonants and the other half voiceless. The lower
half of Tab. 1 displays the results from large-scale datasets.
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Fig. 5: Machine learning results with topological features. a, ROCs of traditional machine learning algorithms. b, Accuracy
and AUC of each of these algorithms. c, Diagrams of records represented as (birth time, lifetime) for voiced consonants
(left) and voiceless consonants (right), where voiced consonants exhibit relatively higher birth time and lifetime. The colour
represents the density of points in each unit grid box. d, Histograms of records represented by their lifetime for voiced
and voiceless consonants, together with kernel density estimation and rug plot. The distributions of MP can distinguish
voiced and voiceless consonants. e, Flow chart of experiment. Here |S| denotes the number of samples in a time series, |P |
denotes the number of points in the point cloud, and T denotes the (minimal) period of the time series computed by the
ACL function.

ALLSSTAR corpora Random samples

Small dataset HT1 HT2 DHR LPP NWS LJ TIMIT Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 96.8 94.3 91.0 93.2 94.4 93.3 87.2 86.1
MFCC–GRU 92.0 91.3 88.9 88.7 92.0 87.7 85.3 80.0
MFCC–Transformer 96.9 95.2 96.3 92.2 97.2 96.3 96.6 92.5
STFT–CNN 84.0 85.0 83.7 84.8 84.2 79.7 78.1 77.6
STFT–CNN+ 95.1 96.4 95.8 92.4 92.4 94.8 90.1 91.2

Large dataset ALLSSTAR LJSpeech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 94.1 94.4 93.0 90.6
MFCC–GRU 94.0 96.7 96.3 93.8
MFCC–Transformer 95.3 97.8 97.1 95.0
STFT–CNN 84.6 84.5 77.6 80.3
STFT–CNN+ 95.0 96.5 91.1 93.6

Tab. 1: Performance of TopCap on 8 small datasets and 4 large datasets in comparison with state-of-the-art methods. The
random samples are taken from the large datasets listed in the lower half of the table. In particular, in the second row, LJ
and Libri are abbreviations for LJSpeech and LibriSpeech, respectively.
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Among them, ALLSSTAR, LJSpeech, and TIMIT each con-
tribute their entire data for analysis, while LibriSpeech does
500000 phones out of 1800000 from its speech data (we
obtained 1800000 phonetic segments from a half of the 500-
hour speech data). A main consideration for dividing the
experiments into small and large datasets lies in the nature
of training and generalisation for neural networks, which
depend on the size of a dataset and correlate with the
networks’ performances.

The above results show that, in classification of voiced
and voiceless consonants, our topology-enhanced model
TopCap achieved an outstanding accuracy on small datasets
and sustained a good performance on larger ones, in com-
parison with state-of-the-art models that are not based on
topology. Besides, our topology-enhanced approach shows
significant advantages in the following two areas.

• Efficiency: Neural network models require further
feature extraction from input MFCC sequences or
STFT spectrograms for classification tasks, necessi-
tating a training process which lengthens with the
growing dataset. In contrast, TopCap mainly utilises
topology-based methods (TDE and PH) which are
more straightforward for feature extraction. Mean-
while, the topological fingerprints (e.g., maximal per-
sistence) are strong enough to characterise phonemes
directly and effectively for our classification tasks
(see also Sec. 2.3.3 below). Therefore, TopCap gains
higher efficiency, especially when handling larger
datasets. On a related note, deep learning methods,
as a data-driven approach, require large amounts
of data for training and generalisation. In contrast,
comparing the upper and lower halves of Tab. 1, we
see that TopCap achieves equally good performance
on relatively small datasets.

• Interpretability: Neural networks are often referred
to as “black boxes” due to their low explainability
and interpretability, which make it challenging to
understand the mechanisms of feature extraction and
effectively improve a model for classification. How-
ever, TopCap offers a white-box method for visualis-
ing features of time series data, which gives insight
of the intrinsic properties and nuanced differences
within the data, enabling us to better understand and
improve the model.

To date, our TopCap method has incorporated only
basic machine learning algorithms for accessibility. In future
work, as explained at the beginning of Sec. 2, we aim to
integrate local and global topological features with deep
learning architectures and devise models with improved
accuracy, robustness, generalisability, efficiency, and inter-
pretability. Moreover, our work complements and poten-
tially enhances applications in NLP, particularly those re-
liant on speech input.

2.3.3 Feature analysis
Finally, to further demonstrate our model’s advantage in
feature extraction, we carry out feature analysis by compar-
ing clustering results based on our topological fingerprints
and latent-space features from the above comparison model
STFT–CNN+.

Specifically, we present a comparative analysis between
the features extracted by TDE–PH from our proposed
method TopCap, i.e., (birth time, lifetime) of MP, and
those derived from latent spaces of the CNNs. This
analysis is performed on both TIMIT and LJSpeech
datasets from the lower half of Tab. 1. We employ
two prominent dimensionality reduction techniques: t-
distributed stochastic neighbour embedding (t-SNE) and
uniform manifold approximation and projection (UMAP),
the latter being grounded in the principles of manifold
learning and TDA [91]. These techniques enable us to
visualise high-dimensional data in a lower-dimensional
space, thereby offering insight into the underlying structure
and characteristics within the data. The results are shown
in Fig. 6.

In summary, from our topological detection results, the
most significant distinction between voiced and voiceless
consonants is that the former exhibit higher MP. This can
scarcely be detected in lower dimensions regardless of how
we tune the delay parameter τ in TDE. Besides Fig. 5, see
also Fig. 2 for a sample of the recognition of vowels as
well as consonants in terms of their shapes. To demonstrate
the advantages of our proposed approach TopCap, we per-
formed comparative experiments and feature analysis with
state-of-the-art methods on multiple examples of datasets,
as presented in Tab. 1 and Fig. 6.

3 METHODS

3.1 Constructing vibrating time series

There are three kinds of fundamental variations mentioned
in Sec. 2.1. In order to substantiate our argument, let tn =
0.01n with 0 ⩽ tn ⩽ 7π and for each c ∈ {1, 2, 3, 4} define

f(tn) = cos(tn)

F (tn) =
c

4
+

1− c
4

7π
· tn

g1(tn) = f
(
F (tn) · tn

)
Note that F (tn) = c/4 when tn = 0 and F (tn) = 1 when
tn = 7π. In fact, F (tn) is a sequence of line segments con-
necting (0, c/4) and (7π, 1). Correspondingly, the frequency
of g1(tn) changes more slowly as c increases. In the extreme
case when c = 4, we have F (tn) = 1, so

g1(tn) = f
(
F (tn) · tn

)
= f(tn) = cos(tn)

which is a periodic function. For each value of c, we applied
TDE to the series g1(tn) with dimension 3, delay 100, skip
10 and computed the 1-dimensional PD of the embedded
point cloud. See Fig. 3a for the results. Replacing F (tn) by
A(tn) and L(tn), we obtained the diagrams in Figs. 3b and
3c, respectively.

3.2 Obtaining phonetic data from natural speech

We used speech files sourced from SpeechBox [87],
ALLSSTAR Corpus, task HT1 language English L1 file,
retrieved on 28th January 2023. SpeechBox is a web-based
system providing access to an extensive collection of digital
speech corpora developed by the Speech Communication
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Fig. 6: Feature analysis for TopCap in comparison with STFT–CNN+. Voiced consonants are labeled in purple and voiceless
ones in orange, of which 10 percent from each dataset are plotted. a, Plots for TopCap (left) and STFT–CNN+ (right) using
t-SNE on TIMIT. b, Plots with UMAP on TIMIT. c, Plots with t-SNE on LJSpeech. d, Plots with UMAP on LJSpeech.

Research Group in the Department of Linguistics at North-
western University. This section contains a total of 25 indi-
vidual files, comprising 14 files from women and 11 files
from men. The age range of these speakers spans from 18 to
26 years, with an average of 19.92. Each file is presented in
the WAV format and is accompanied by its corresponding
aligned file in Textgrid format, which features three tiers of
sentences, words, and phones. Collectively, these 25 speech
files amount to a total duration of 41.21 minutes. The speech
file contains each individual reading the same sentences
consecutively for a duration ranging from 80 to 120 seconds,
contingent upon each person’s pace. The original .wav file
has a sampling frequency of 22050 and comprises only one
channel. Since MFA [85] is trained in a sampling frequency
of 16000, we opted to adjust the sampling frequency of
the .wav files accordingly. We then extracted the “words”
tier from Textgrid and aligned words into phones using
English MFA dictionary and acoustic model (MFA version
2.0.6). Thus we obtained corresponding phonetic data from
these speech files.

Subsequently, we used voiced and voiceless consonants
in those segments as our dataset. Voiced consonants are
consonants for which vocal cords vibrate in the throat dur-
ing articulation, while voiceless consonants are pronounced
otherwise (see also Sec. S.1). Specifically, using Praat [92], we
extracted voiced consonants [N], [m], [n], [j], [l], [v], and [Z];
for voiceless consonants, we selected [f], [k], [8], [t], [s], and
[tS]. These phones were then read as time series. Our selec-
tion was limited to these voiced and voiceless consonants,
as we aimed to balance the ratio of voiced and voiceless
consonant records in these speech files. Additionally, some
consonants, such as [d] and [h], appeared difficult to classify
by our methods.

3.3 Deriving topological features from phonetic data
Prior to the extraction of topological features from a time
series, we first imbued this 1-dimensional time series with
a (Euclidean) topological structure through TDE. It is note-
worthy that this technique also applies to multi-dimensional

time series. The ambient space throughout this article is
always a Euclidean space. By establishing the topological
structure there, or more precisely, the distance matrices, we
subsequently calculated PH. We elaborate on the following
main steps. See Fig. 5e for the flow chart of this section.

3.3.1 Data cleaning

This involved eliminating the initial and final segments of a
time series until the first point with an amplitude exceeding
0.03 occurred. This approach was aimed at mitigating the
impact of environmental noise at the beginning and end of
a phone. Any resulting series with fewer than 500 points will
be disregarded, as such series were considered insufficiently
long or to contain excessive environmental noise.

3.3.2 Parameter selection for time-delay embedding

We selected suitable parameters for TDE to capture the the-
oretically optimal MP of a given time series. The dimension
of the embedding was fixed to be 100. Our principle for
determining an appropriate dimension is that we want to
choose the embedded dimension to be large for a time series
of limited length. As discussed in Sec. 4 and cf. Sec. S.2.1, a
higher dimension results in a more accurate approximation.
This approach also aimed to enhance computational effi-
ciency and the occurrence of more prominent MP. Nonethe-
less, it is imperative to exercise caution when selecting the
dimension, as excessively large dimensions may lead to
empty point clouds and other uncontrollable factors. For
instance, with a time series consisting of approximately 1200
points, setting the dimension to 100, delay to 5, and skip to
1 results in around 700 points in the corresponding point
cloud. However, increasing the dimension to 200 under the
same parameters would yield only 200 points, which may be
too few to adequately represent the original data structure.
Thus, the dimension was chosen to be as large as possible
while maintaining sufficient data points in the point cloud.

With a proper dimension, we then computed the delay
for the embedding. According to Perea and Harer [71], in
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the case of a periodic function, the optimal delays τ can be
expressed as

τ = m · T
d

where T denotes the (minimal) period, d represents the
dimension of the embedding, and m is a positive integer.

Under these conditions, we could obtain the theoretically
optimal MP. The time series under consideration in our case
was far from periodic, however, so we used the first peak of
the ACL function to represent the period T and set m = 6,
thus obtaining a relatively proper delay τ . The common
choice of τ is to let window size equal the (minimal) period.
However, in the case of a discrete time series, one often
obtains τ = 0 or τ = 1 in this way, since the dimension of
TDE is too large in comparison. Therefore, one strategy is to
increase m to get a relatively reasonable τ . The performance
of delay obtained in this way is presented in Sec. 4.

Then τ was rounded to the nearest integer (if it equals
0, take 1 instead). It was common that τ · d exceeded
the number of points in the series, resulting in an empty
embedding. In this case, we adopted τ = |S|/d, where
|S| denotes the number of points (i.e., the point capacity
of the time series), and then rounded it downwards. This
enabled us to obtain the appropriate delay for each time
series, thereby facilitating the attainment of significant MP
for the specified dimension.

Lastly, we let skip equal to 5. We chose this skip mainly
to reach a satisfactory computation time. The impact of the
skip parameter in TDE on MP and computation time is
expounded upon in Sec. S.3.1.

Once the parameters were set, the time series were
transformed into point clouds. If the number |P | of points in
a point cloud was less than 40, we excluded this time series
from further analysis, considering that there were too few
points to represent the original structure of the time series.
The problem of lacking points is also discussed in Sec. 4.

3.3.3 Computing persistent homology
Using Ripser [93, 94], we could compute the PDs of the
point clouds in a fast and efficient way. We then extracted
MP from each 1-dimensional PD, using persistence birth
time and lifetime as two features of a time series. The
process of vectorising a PD presents a challenge due to the
indeterminate (and potentially large) number of intervals in
the barcode, coupled with the ambiguous information they
contain. This ambiguity arises from our lack of knowledge
about the types of information that can be derived from
different parts of the PD. Here we only extracted the MP
and corresponding birth time. This decision was informed
by our prior selection of an appropriate set of parameters,
which ensured that the MP reached its optimal.

4 DISCUSSION

In the realm of applying topological methods to analyse
time series [52, 53, 54, 55, 22, 56, 27], the determination of
parameters for TDE emerges as a pivotal aspect. This stems
from the significant impact that the selection of parameters
has on the resulting topological spaces and their corre-
sponding PDs. There exist several convenient algorithms for

parameter selection. For example, the False Nearest Neigh-
bours algorithm (FNN), a widely utilised tool, provides a
method for deciding the minimal embedded dimension [86].
However, in the context of PH, usually the objective is not
to achieve a minimal dimension. Contrarily, a dimension
of substantial magnitude may be desirable due to certain
advantages it offers.

In this section, as a main novel feature of TopCap, we
reveal and leverage the relationship between embedded
dimension and maximal persistence. We relegate further
aspects of parameter selection to Sec. S.3.

In the TDE–PH approach, the determination of dimen-
sion in a TDE can be complex. However, it plays a pivotal
role in the extraction of topological descriptors such as
MP. It is observed that a larger dimension can significantly
enhance the theoretically optimal MP of a time series. In
TopCap, the dimension of TDE is set to be 100, a relatively
large dimension for the experiment. On the other hand,
several factors also constrain this choice. These include
the length of the sampled time series, since the dimension
cannot exceed the length (otherwise it would render the
resulting point cloud literally pointless). The constraints also
include the periodicity of the time series, as the time-delay
window size should be compatible with the approximate
period of the time series, which is to be elaborated below.

According to Perea and Harer [71, Proposition 5.1], there
is no information loss for trigonometric polynomials if and
only if the dimension of TDE exceeds twice the maximal fre-
quency. Here, no information loss implies that the original
time series can be fully reconstructed from the embedded
point cloud. In general, for a periodic function, a higher
dimension of TDE can yield a more precise approxima-
tion by trigonometric polynomials. Although there are no
absolutely periodic functions in real data, each time series
exhibits its own pattern of vibration, as discussed in Sec. 2.1,
and a higher dimension of embedding may be employed
to capture a more accurate vibration pattern in the time
series. Furthermore, an increased embedded dimension may
result in reduced computation time for PD. For instance,
computation times for a voiced consonant [N] are 0.2671,
0.2473, and 0.2375 seconds, corresponding to embedded
dimensions 10, 100, and 1000 (see Fig. 7a). This is attributed
to the reduction due to a higher dimension on the number
of points in the embedded point cloud. While this reduction
in computation time may not be considered substantial
compared to the impact of changing skip (see Fig. 7d), it
may become significant when handling large datasets. More
importantly, an increased embedded dimension can yield
benefits such as enhanced MP, which serves as a major mo-
tivation for higher dimensions, as well as a smoother shape
of resulting point clouds obtained through TDE, which
makes the embedding visibly reasonable. Typically, for most
algorithms, a lower dimension is preferred due to factors
such as those associated with curse of dimensionality and
computation cost. By contrast, in TopCap, we opt instead
for a higher dimension.

However, the embedded dimension cannot be arbitrarily
large. As illustrated in Fig. 7c, when the embedded dimen-
sion escalates to 1280, it becomes unfeasible to capture a
significant MP in the phonetic time series. This results from
a break of the point cloud. When the embedded dimension
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Fig. 7: Point-cloud behaviour with increasing embedded dimension. a, Original .wav file of a record of [N] (voiced
consonant). b, MP of the series after TDE as dimension increases (left) and the corresponding delay that ensures the
time series to reach theoretically optimal MP (right). Skip equals 5 when computing PD. c, Visualisation of the embedded
point clouds, which shows principal component analysis (PCA) of the embedded point clouds in 3D as projected from
various dimensions. Skip equals 1 when performing PCA. The percentage along each axis indicates the PCA explained
variance ratio. d, Given a sound record of the voiced consonant [m], computation time, MP, and the size of point clouds as
skip increases (see Sec. S.3.1 for details). An increase in skip can lead to a significant reduction in computation time, owing
to the reduced size of the point cloud. However, MP remains resilient to an increase in the skip parameter.

further reaches 1290, an empty 1-dimensional barcode is
obtained due to the lack of points necessary to form even
a single cycle. In this way, the dimension of TDE is related
to the length of the time series.

Using a sound record of the voiced consonant [N] as
an exemplar, we delineate the correlation between MP and
embedded dimension in Fig. 7a–c. As depicted in Fig. 7b,
MP tends to escalate rapidly and nonlinearly with the
increase in dimension, signifying that a more substantial
MP is captured in higher-dimensional TDE. Notably, two
precipitous drops in MP are observed, corresponding to
embedded dimensions 600 and 1190. When d = 600, this
time series can theoretically attain its optimal MP when
τ = 2 (see Sec. S.2.1). However, given the length of the series
is 1337 and the window size is d · τ = 1200, with the skip
set as 5, only 28 points are in the resulting point cloud for
PD computation. The sparse point cloud fails to represent
the original series adequately, leading to a decrease in MP.
A similar phenomenon occurs when the dimension reaches
1190. The principal component analysis for dimension 1280

is shown in Fig. 7c. In this scenario, as observed above,
the hypothetical cycle fails to form as there is a break in
the point cloud, resulting in a free-fall in MP. In contrast,
when d = 630, this series has a significant MP when τ = 1,
resulting in a window size of d·τ = 630. There are 142 points
in the point cloud for the persistence diagram if skip equals
5, ensuring that the MP rises again without any breakdown.
The embedded dimension also contributes significantly to
the geometric property of time-delay embedding, as the
shape becomes smoother in higher dimensions and the
point cloud more structural.

As mentioned above, there are three crucial parameters
in TDE, namely, d, τ , and skip. However, it is worth noting
that the TDE–PH approach encompasses many other signif-
icant variables and choices. These include the construction
of underlying topological space of the point clouds (i.e., the
distance function for pairwise points), and the type of com-
plexes utilised in filtering PH, among others. Some of these
choices, despite their importance, were seldom addressed in
the literature. Here, we propose a method for determining
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delay in order to capture the theoretically optimal MP of a
time series in high-dimensional TDE. In future research, we
aim at more systematic approaches for determining other
parameters, particularly dimension of the TDE.

5 DATA AND CODE AVAILABILITY

The data that support the findings of this study are
openly available in SpeechBox [87], ALLSSTAR Corpora, at
https://speechbox.linguistics.northwestern.edu, as well as
LJSpeech [88], TIMIT [89], and LibriSpeech [90].

The source code and supplementary materials for Top-
Cap can be accessed on the GitHub page at https://github.
com/sustech-topology/TopCap.
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SUPPLEMENTARY INFORMATION

00■S.1 Phonetic data, aural perception, and learning topo-
logically
As a research field of linguistics, phonetics studies the pro-
duction as well as the classification of human speech sounds
from the world’s languages. In phonetics, a phoneme is the
smallest basic unit of human speech sounds.1 It is a short
speech segment possessing distinct physical or perceptual
properties. Phonemes are generally classified into two prin-
cipal categories: vowels and consonants. A vowel is defined
as a speech sound pronounced by an open vocal tract with
no significant build-up of air pressure at any point above
the glottis, and at least making some airflow escape through
the mouth. In contrast, a consonant is a speech sound that
is articulated with a complete or partial closure of the vocal
tract and usually forces air through a narrow channel in
one’s mouth or nose.

Unlike vowels which must be pronounced by vibrated
vocal cords, consonants can be further categorised into two
classes according to whether the vocal cords vibrate or not
during articulation. If the vocal cords vibrate, the consonant
is known as a voiced consonant. Otherwise, the consonant is
voiceless. Since vocal cord vibration can produce a stable pe-
riodic signal of air pressure, voiced consonants tend to have
more periodic components than voiceless consonants, which
can in turn be detected by PH as topological characteristics
from phonetic time series data.

Indeed, one of the more heuristic motivations for our re-
search project is to reexamine (and even revise) the linguistic
classifications of phonemes through the mathematical lens
of topological patterns and shape of speech data, analogous
to Carlsson and his collaborators’ seminal work [S1] on the
distribution of image data (cf. Fig. S1).

Fig. S1: A charted “distribution space” of vowels created by
linguists [S2]. The vertical axis of the chart denotes vowel
height. Vowels pronounced with the tongue lowered are
located at the bottom and those raised are at the top. The
horizontal axis of this chart denotes vowel backness. Vowels
with the tongue moved towards the front of the mouth are
in the left of the chart, while those with to the back are
placed in the right. The last parameter is whether the lips
are rounded. At each given spot, vowels on the right and
left are rounded and unrounded, respectively.

1In the main text and supplementary information, we reserve phone
for a phoneme segmented from a recording of human speech.

The transmission of sound to the human auditory sys-
tem is a marvel of biological engineering, wherein acoustic
waves are progressively transformed into neural signals.
This process commences with the external ear channeling
sound waves to the tympanic membrane, which subse-
quently induces vibrations in the ossicles of the middle
ear—the malleus, incus, and stapes, constituting the small-
est bones in the human body. These minute oscillations
are then conveyed to one of the most critical structures in
auditory perception: the cochlea.

 

so so so

Fig. S2: Illustration depicting the distribution of frequencies
along the basilar membrane of the cochlea, which functions
as a natural Fourier analysis device, adapted from Ency-
clopædia Britannica [S3].

The cochlea, in essence, functions as a biological Fourier
analysis apparatus (see Fig. S2). This spiral-shaped, fluid-
filled organ amplifies the incoming sound waves and per-
forms a spectral decomposition of complex acoustic signals.
The cochlea’s architecture is characterised by a gradual vari-
ation in the radius of its spiral and the mechanical properties
of the basilar membrane that runs along its length. The
basal end of the cochlea, with its rigid basilar membrane
and narrow duct, is optimally tuned to high-frequency
vibrations. In contrast, the apical region, featuring a more
flexible membrane and wider duct, is more responsive to
lower frequencies.

This structural gradient creates a tonotopic organisation
within the cochlea, analogous to the varying tensions of mu-
sical strings producing different pitches. The basilar mem-
brane’s varying mechanical properties result in different re-
gions having distinct resonant frequencies, each maximally
sensitive to a specific range of sound frequencies. Atop
this membrane reside the hair cells, specialised mechanore-
ceptors that transduce mechanical vibrations into electrical
signals, thereby enabling auditory perception. The cochlea’s
spiral configuration, in conjunction with the basilar mem-
brane’s properties, constitutes a natural, passive mechani-
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cal Fourier analyser. This biological mechanism effectively
distributes frequency components of sound waves along
the length of the cochlea. Consequently, the neural signals
generated by hair cells at different locations along the basilar
membrane correspond to distinct frequency bands of the
original acoustic input.

It is noteworthy that contemporary industrial ap-
proaches to speech signal processing, such as STFT and
MFCC as in Sec. 2.3.2, employ analytical methods that
parallel the cochlea’s function. These techniques decompose
signals into linear combinations of basis functions, mir-
roring the cochlea’s spectral analysis. This convergence of
biological design and signal processing methodology can be
viewed as a triumph of biomimetic engineering.

Intriguingly, our experimental findings have demon-
strated that topological principles can also be leveraged to
extract certain acoustic information. This novel approach
lacks a direct physiological counterpart in current audi-
tory research and established theoretical frameworks. The
potential for topological methods in auditory signal pro-
cessing opens up an exciting new frontier for exploration,
potentially bridging the gap between abstract mathematics
and biological sensory systems. Future investigations in this
domain may yield insights that could revolutionise our un-
derstanding of auditory perception and inspire innovative
signal processing techniques (cf. [S4]).

00■S.2 Mathematical generalities of the TDE–PH approach
to time series data

00■S.2.1 Time-delay embedding

Time-delay embedding (TDE) is also known as sliding win-
dow embedding, delay embedding, and delay coordinate
embedding. For simplicity, we focus on 1-dimensional time
series. TDE of a real-valued function f : R → R, with
parameters positive integer d and positive real number τ ,
is defined to be the vector-valued function

SW d,τf : R → Rd

t 7→
(
f(t), f(t+ τ), . . . , f

(
t+ (d− 1)τ

))
Here, d is the dimension of the target space for the embed-
ding, τ is the delay, and their product d · τ is called the
window size. According to the Manifold Hypothesis, a time
series lies on a manifold. The method then reconstructs
this topological space from the input time series, when
d is at least twice the dimension of the latent manifold
M . Given a trajectory γ : R → M whose image is dense
in M , the embedding property holds for the time series
f(tn) (generically, in a technical sense we omit here) via an
“observation” function G : M → R, i.e., f(tn) = G

(
γ(tn)

)
.

In [S5, Sec. 5], Perea and Harer established that the N -
truncated Fourier series expansion

SNf(t) =
N∑

n=0

ak cos(kt) + bk sin(kt)

of a periodic time series f can be reconstructed into a circle
when d ≥ 2N , i.e.,

SWd,τf(R) ∼= S1

Moreover, let L be a constant such that

f

(
t+

2π

L

)
= f(t)

Then the 1-dimensional MP of the resulting point cloud
is the largest when the window size d · τ is integrally
proportional to 2π/L, i.e.,

d · τ = m
2π

L

for a positive integer m. Intuitively, an increase in the
dimension of TDE results in a better approximation when
truncating the Fourier series, and the MP of the point cloud
becomes the most significant when the window size equals
a period.

This methodology also proves particularly advantageous
in scenarios where the system under investigation exhibits
nonlinear dynamics, precluding straightforward analysis of
the time series data. Via a suitable embedding, the inherent
geometric configuration of the system emerges, enabling
deeper comprehension and refined analysis.

00■S.2.2 Persistent homology
Topology is a subject area that studies the properties of
geometric objects that remain unchanged under continuous
transformations or smooth perturbations. It focuses on the
intrinsic features of a space regardless of its rigid shape
or size. Algebraic topology (AT) provides a quantitative
description of these topological properties.

A simplicial complex (and its numerous variants and
analogues) is a powerful tool in AT which enables us to
represent a topological space using discrete data. Unlike
the original space, which can be challenging to compute
and analyse, a simplicial complex provides a combinatorial
description that is much more amenable to computation.
We can use algebraic techniques to study the properties of a
simplicial complex, such as its homology and cohomology
groups, which encode and reveal information about the
topology of the underlying space.

Formally, a simplicial complex with vertices in a set V is
a collection K of nonempty finite subsets σ ⊂ V such that
any nonempty subset τ of σ always implies τ ∈ K (called a
face of σ) and that σ intersecting σ′ implies their intersection
σ ∩ σ′ ∈ K . A set σ ∈ K with (i + 1) elements is called an
i-simplex of the simplicial complex K . For instance, consider
S1 ∨ S2, a circle kissing a sphere at a single point, as a
topology space. It can be approximated by the simplicial
complex K with 6 vertices a, b, c, d, e, f . This simplicial
complex can be enumerated as

K =
{
{a}, {b}, {c}, {d}, {e}, {f},
{a, b}, {a, c}, {b, c}, {c, d}, {c, f}, {d, f}, {c, e},
{d, e}, {f, e},
{c, d, f}, {c, e, f}, {c, d, e}, {d, e, f}

}
which is a combinatorial avatar for S1 ∨ S2 via a “triangula-
tion” operation on the latter. See Fig. S3.

Given a simplicial complex K , let p be a prime number
and Fp be the finite field with p elements. Define Ci(K;Fp)
to be the Fp-vector space with basis the set of i-simplices in
K . To keep track of the order of vertices within a simplex,
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a
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c

f

e

d

Simplicial-Complex Representation

Fig. S3: From a topological space to its triangulation.

we use the alternative notation with square brackets in the
following. If σ = [v0, v1, . . . , vi] is an i-simplex, define the
boundary of σ, denoted by ∂σ, to be the alternating sum of
the (i− 1)-dimensional faces of σ given by

∂σ :=
i∑

k=0

(−1)
k
[v0, . . . , v̂k, . . . , vi]

where [v0, . . . , v̂k, . . . , vi] is the k-th (i−1)-dimensional face
of σ missing the vertex vk. We can extend ∂ to Ci(K;Fp) as
an Fp-linear operator so that ∂ : Ci(K;Fp) → Ci−1(K;Fp).
The composition of boundary operators satisfies ∂ ◦ ∂ = 0.
The elements in Ci(K;Fp) with boundary 0 are called i-
cycles. They form a subspace of Ci(K;Fp), denoted by
Zi(K;Fp). The elements in Ci(K;Fp) that are the images
of elements of Ci+1(K;Fp) under ∂ are called i-boundaries.
They form a subspace too, denoted by Bi(K;Fp). It follows
from ∂ ◦ ∂ = 0 that

Bi(K;Fp) ⊂ Zi(K;Fp)

Then define the quotient space

Hi(K;Fp) := Zi(K;Fp)/Bi(K;Fp)

to be the i-th homology group of K with Fp-coefficients. We call
dim

(
Hi(K;Fp)

)
the i-th Betti number, denoted by βi(K),

which counts the number of i-dimensional holes in the
corresponding topological space. As such, these homology
groups are also called the homology groups of the space (it
can be shown that they are independent of the particular
ways in which the space is triangulated). For example, the
Betti numbers of S1 ∨S2 from above are β1 = 1, β2 = 1, and
βi = 0 when i ⩾ 3.

The usefulness of these invariants, besides their com-
putability (essentially Gaussian elimination in linear alge-
bra), lies in their tractability along deformations. Given two
simplicial complexes K and L, a simplicial map f : K → L
(that preserves the simplicial structure) induces an Fp-linear
map Hi(f ;Fp) : Hi(K;Fp) → Hi(L;Fp). Thus, if two spaces
are topologically equivalent (in fact, “homotopy equivalent”
suffices), their homology groups must be isomorphic and
the Betti numbers match up.

Let (X, d) be a finite point cloud with metric d. Define a
family of simplicial complexes, called Rips complexes, by

Rϵ(X) := {σ ⊂ X | d(x, x′) ≤ ϵ for all x, x′ ∈ σ}

The family
R(X) := {Rϵ(X)}ϵ≥0

is known as the Rips filtration of X . Clearly, if ϵ1 ≤ ϵ2, then
Rϵ1(X) ↪→ Rϵ2(X). Thus, for each i we obtain a sequence

Hi

(
Rϵ0(X);Fp

)
→ Hi

(
Rϵ1(X);Fp

)
→ · · ·
→ Hi

(
Rϵm(X);Fp

)
where 0 = ϵ0 < ϵ1 < · · · < ϵm < ∞. As ϵ varies,
the topological features in the simplicial complexes Rϵ(X)
vary, resulting in the emergence and disappearance of holes
(cf. Fig. 1d).

Given the values of ϵ, record the instances of emergence
and disappearance of holes, which correspond to cycle
classes in the homology groups along the above sequence.
Each class has a descriptor (b, d) ∈ R2, where b represents
the birth time, d represents the death time, and b−d represents
the lifetime of the holes. In this way, we obtain a multiset

{(bj , dj)}j∈J =: dgmi

(
R(X)

)
which encodes the “persistence” of topological features of
X . This multiset can be represented as a multiset of points
in the 2-dimensional coordinate system called a persistence
diagram for the i-th PH or as an array of interval segments
called a persistence barcode. In particular, we use maximal
persistence to refer to the maximal lifetime among all the
points in a persistence diagram.

00■S.3 More specifics on parameter selection with TopCap

00■S.3.1 Skip, maximal persistence, and persistence execu-
tion time
Computation time assumes a critical role when processing a
substantial volume of data. In this context, the parameter
skip in TDE is considered, as it significantly influences
the number of points within the point clouds, thereby di-
rectly impacting the number of simplices during persistent
filtration and thus the computation time for PD. In this
subsection, we demonstrate that an appropriate increment
in the skip parameter can markedly reduce computation
time. However, it is noteworthy that MP exhibits resilience
to an increase in skip to a certain extent. Consequently, in
this case, it is feasible to augment skip in TDE to expedite
the computation of PD. For details on the complexity of
computing persistent homology, the interested reader may
refer to Zomorodian and Carlsson [S6, Sec. 4.3] as well as
Edelsbrunner et al. [S7, Sec. 4].

Using an example of a sound record of the voiced
consonant [m], we elucidate the relationship between skip,
computation duration, and size of the resulting point
clouds obtained via TDE in Fig. 7d. Computation duration
is measured each time after restarting the Jupyter note-
book, on Dell Precision 3581, with CPU Intel® CoreTM

i7-13800H of basic frequency 2.50 GHz and 14 cores.
Computation time means the time for executing the code
ripser(Points,maxdim=1). As depicted in Fig. 7d, a
substantial reduction in computation time is observed with
an increase in the skip parameter. In contrast, our computa-
tion’s output MP appears stable.

00■S.3.2 Multiple dependency of maximal persistence
As mentioned in the main text, there are three crucial pa-
rameters in TDE, namely, d, τ , and skip. In this subsection,
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dimension = 10 dimension = 50 dimension = 100
desired delay = 40 desired delay = 8 desired delay = 4

delay skip MP delay skip MP delay skip MP
1 1 0.0610 1 1 0.2834 1 1 0.4270

10 1 0.1299 3 1 0.3021 2 1 0.4337
20 1 0.1312 4 1 0.3054 2 5 0.4146
30 1 0.1281 5 1 0.3058 3 1 0.4357
39 1 0.1229 6 1 0.3042 3 5 0.4120
39 5 0.1134 7 1 0.3052 4 1 0.4381
40 1 0.1290 7 5 0.2886 4 5 0.4139
40 5 0.1195 8 1 0.3093 5 1 0.4375
41 1 0.1200 8 5 0.2928 5 5 0.4105
41 5 0.1153 9 1 0.3091 6 1 0.4347
45 1 0.0940 9 5 0.2913 6 5 0.4114
50 1 0.1226 10 1 0.3069 7 1 0.4380
60 1 0.1315 15 1 0.3070 8 1 0.4378
94 1 empty 18 1 empty 9 1 empty

Tab. S1: MP for choices of dimension, delay, and skip in TDE. The desired delay is computed by the algorithm in Sec. 3 of
Methods. Empty in MP means the delay is too large to obtain point-cloud data.

we present a table that delineates the topological descriptor
MP in relation to these from TopCap.

The experiment is executed on a record of the voiced
consonant [N], which comprises 887 sampled points as the
length of this time series. Theoretically, given a periodic
function, one obtains the optimal MP of the function in a
fixed dimension under the condition that the TDE window
size (i.e., the product of dimension and delay) equals a
period (cf. Sec. S.2.1). However, the phonetic time series
that we typically handle deviate far from being periodic.
Despite our approach to calculating the period of time series
by ACL functions, we cannot assure that the (theoretically
derived) desired delay will indeed yield the optimal MP
of a time series in general. Nevertheless, this desired delay
usually gives relatively good MP. For instance, as illustrated
in Tab. S1, when the dimension is 10, the desired delay is 40.
This corresponds to an MP of 0.1290, which is marginally
lower than the MP of 0.1315 achieved at a delay of 60.
However, as the dimension rises, the point clouds from TDE
become more regular. It becomes increasingly probable that
at the desired delay, one can indeed obtain the optimal MP
of the time series. For example, when the dimension is either
50 or 100, the MP of the time series is achieved at the desired
delay. This provides additional justification for preferring
higher dimensions: The table reveals that an augmentation
in dimension may lead to a more substantial enhancement
in the MP of a time series than simply tuning delay.
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