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Abstract—In artificial-intelligence-aided signal processing, existing
deep learning models often exhibit a black-box structure. Here, we
demonstrate that topological methods not only effectively capture in-
trinsic and complex structural information but can also be integrated
into neural networks. We provide a transparent methodology, TopCap,
to capture topological features inherent in time series for basic machine
learning. Compared to prior approaches, we obtain descriptors which
probe finer information such as the vibration of a time series. Notably,
in classifying voiced and voiceless consonants, TopCap achieves an ac-
curacy exceeding 96%, consistently standing in comparison with state-
of-the-art neural networks. Moreover, we integrate TopCap features into
those neural networks, making a network more interpretable with better
performance in terms of accuracy, steadiness, convergence of loss
function, and robustness against noise.

1 INTRODUCTION

IN 1966, Mark Kac asked the famous question: “Can you
hear the shape of a drum?” To hear the shape of a drum

is to infer information about the shape of the drumhead
from the sound it makes, using mathematical theory. In this
article, we venture to flip and mirror the question across
senses and address instead: “Can you see the sound of a
human speech?”

As a major task of natural language processing (NLP),
speech recognition is one of the essential components
of artificial intelligence (AI). In turn, AI advancements
have led to a widespread adoption of voice recognition
technology, encompassing applications such as speech-
to-text conversion and music generation. The rise of
topological data analysis (TDA) [1] has integrated
topological methods into many areas including AI [2,
3], which makes neural networks (NN) more interpretable
and efficient, with a focus on structural information. In the
field of voice recognition [4, 5], more specifically consonant
recognition [6, 7, 8, 9, 10], prevalent methodologies
frequently revolve around the analysis of energy and
spectral information, which may be viewed as biomimetic
engineering (see Sec. 00■S.1). While topological approaches are
still rare in this area, we combine TDA to machine learning
(ML) and obtain a classification for speech data, based on
geometric patterns hidden within phonetic segments. The
method we propose, TopCap (referring to the capability
of capturing topological structures of data), is not only
applicable to audio data but also to general-purpose time
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series data that require extraction of structural information
for ML algorithms. Moreover, it implements state-of-the-art
NNs to produce their topology-enhanced counterparts
TopNNs.

Conceptually, TDA is an approach that examines data
structure through the lens of topology. This discipline was
originally formulated to investigate the shape of data, par-
ticularly point-cloud data in high-dimensional spaces [11].
Characterised by a unique insensitivity to metrics, robust-
ness against noise, invariance under continuous deforma-
tion, and coordinate-free computation [1], TDA has been
combined with ML algorithms to uncover intricate and
concealed information within datasets [2, 3, 12, 13, 14, 15].
In these contexts, topological methods have been employed
to extract structural information from the dataset, thereby
enhancing the efficiency of the original algorithms. Notably,
TDA excels in identifying patterns such as clusters, loops,
and voids in data, establishing it as a burgeoning tool in
the realm of data analysis [16]. Despite being a nascent
field of study, with its distinctive emphasis on the shape
of data, TDA has led to novel applications in various far-
reaching fields, as evidenced in the literature. These include
image recognition [17, 18, 19], time series forecasting [20]
and classification [21], brain activity monitoring [22, 23],
protein structural analysis [24, 25], speech recognition [26],
audio identification [27], signal processing [28, 29], neural
networks [30, 31, 32, 2], among others. It is anticipated that
further development of TDA will pave a new direction to
enhance numerous aspects of daily life.

The task of extracting features that pertain to structural
information is both intriguing and formidable. This process
is integral to a multitude of practical applications [33, 34,
35, 36], as scholars strive to identify the most effective
representatives and descriptors of shape within a given
dataset. Despite the fact that TDA is specifically designed
for shape capture, there are several hurdles that persist in
this newly developed field of study. These include (1) the
nature and sensitivity of descriptors obtained by methods
in TDA, (2) dimensionality of the data and other parameter
choices, (3) vectorisation of topological features for ML
purposes, and (4) computational cost. These challenges will
be elaborated in the following paragraphs within this sec-
tion. Subsequently, we will demonstrate how our proposed
methodology, TopCap and TopNN, addresses these chal-
lenges through an application to consonant classification.
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Fig. 1: Illustrations of methodology. a, Time-delay embedding (dimension=3, delay=10, skip=1) of f(tn) = sin(2tn) −
3 sin(tn), with tn = π

50n (0 ⩽ n ⩽ 200). Resulting point clouds lay on a closed curve in 3-dimensional Euclidean space.
The colour indicates their original locations in the time series. b, A topological space and its triangulation. On the left
is a topological space consisting of a 1-dimensional sphere (i.e., a circle) and a 2-dimensional sphere with a single point
of contact, denoted as S1 ∨ S2. The right depicts a triangulation of this topological space. c, Average temperature in the
U.S. with monthly values (dark blue dots) and yearly values (green curve). The left panel shows a single-year section of
average temperature. d, Computing PH. The four plots consecutively show how a diagram or a barcode is computed:
Connect each pair of points with a distance less than ϵ by a line segment, fill in each triple of points with mutual distances
less than ϵ with a triangular region, etc., and compute the corresponding homology groups. In this way, as “time” ϵ
increases, points in the diagram or intervals in the barcode record the “birth” and “death” of each generator of a homology
group, i.e., the occurrence and disappearance of a loop (or a higher-dimensional hole), thereby revealing the essential
topological features of the point cloud that persist. e, Characterising the vibration of a time series in terms of its variability
of frequency, amplitude, and average line. f, Commonly used representations for PH, with an example of 100 points
uniformly distributed over a bounded region in 2D Euclidean space. A persistence barcode is a multiset of intervals, where
each interval represents a topological feature in a filtration. The x-axis shows when each feature appears and disappears.
A persistence diagram directly plots the birth and death times of each interval. In both plots, 0 and 1 correspond to the
0- and 1-dimensional persistence barcodes. In a persistence landscape, the k’th landscape is the k’th largest value of tent
functions for each feature, with the x-axis representing resolution. Similarly, a persistence image is created by applying
Gaussian functions centred at each feature and then converting them into a pixelated image, where both the x-axis and
y-axis represent resolution.

When applying TDA, the most imminent question is to
comprehend the characteristics and nature of descriptors
extracted via topological methods. TDA is grounded in the
pure-mathematical field of algebraic topology [37, 38], with
persistent homology (PH) being its primary tool [39, 40].
While algebraic topology can quantify topological informa-
tion to a certain extent [38, 1, 16], it is vitally important
to understand both the capabilities and limitations of TDA.
Generally speaking, TDA methods distinguish objects based
on continuous deformation. For example, PH cannot differ-
entiate a disk from a filled rectangle, given that one can
continuously deform the rectangle into a disk by pulling
out its four edges. In contrast, PH can distinguish between
a filled rectangle and an unfilled one due to the presence
of a “hole” in the latter, preventing a continuous defor-
mation between the two. In certain circumstances, these

methods are considered excessively ambiguous to capture
the structural information in data, thereby necessitating a
more precise descriptor of shapes. To draw an analogy,
TDA can be conceptualised as a scanner with diverse inputs
encompassing time series, graphs, pictures, videos, etc. The
output of this scanner is a multiset of intervals in the
extended real line, referred to as a persistence diagram (PD)
or a persistence barcode (PB) [11, 41, 42] (cf. Fig. 1f and
see Sec. 00■S.2.2 for details, including the usual birth-by-death
PDs and their birth-by-lifetime variants). In particular, by
maximal persistence (MP) we mean the maximal length of
the intervals. The precision of the topological descriptor
depends on two factors: (1) the association of a topological
space, i.e., the process of transforming the input data into a
topological space (see Fig. 1b for a simplicial-complex rep-
resentation of spaces; typically, the original datasets are less
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structured, and one should find a suitable representation of
the data), and (2) the vectorisation of PD or PB, i.e., how to
perform statistical inference with PD/PB. Despite there are
many theoretical results which provide a solid foundation
for TDA, few can elucidate the practical implications of PD
and PB. For example, what does it mean if many points
are distributed near the birth–death diagonal line in a PD?
Extensive studies have been conducted on short-lived bars
in PH, including those related to molecular data [43, 44],
hierarchical structures [45], and protein structures [46, 43,
47], among others. The significance of points distributed
near the birth–death diagonal line is particularly relevant
in real-world applications, and we shall explore it here in
context as well.

The next main challenge, as many researchers may en-
counter when applying topological methods, is to determine
the dimension of point clouds derived from input data [48,
49, 50]. This essentially involves transforming the input into
a topological space. In situations where the dimensionality
of the data is large, researchers often project the data into a
lower-dimensional topological space to facilitate visualisa-
tion and reduce computational cost [22, 23, 51]. On the other
hand, as in this study and other applications with time series
analysis [52, 53, 54, 55, 21, 56, 26], low-dimensional data
(on a hypothesised manifold) are embedded into a higher-
dimensional (Euclidean) space. In both scenarios, deciding
on the data dimensionality is both critical and challenging.
Often, tuning the dimension is a tremendous task. In our
case, as it might seem counterintuitive compared to most
algorithms, when the data are embedded into a higher-
dimensional space, the computation will be a little faster,
the point cloud appears smoother and more regular, and
most importantly, more salient topological features can be
spotted, which seldom happen in lower-dimensional spaces.
When encountering the dimensionality of data, researchers
would think of the well-known curse of dimensionality [57]:
As a typical algorithm grapple, with the increase of dimen-
sion, more data are needed to be involved, often growing
exponentially and thereby escalating computational cost.
Even worse, the computational cost of the algorithm itself
normally rises as the dimension goes higher. However,
topological methods do not necessarily prefer data of lower
dimension. For computing PH (see Fig. 1d for the process
of computing PD/PB from point clouds), a commonly used
algorithm [58, 59] sees complexity grow with an increase
in the number n of simplices during the process, with a
worst-case polynomial time-complexity of O(n3). As such,
the computational cost is directly related to the number of
simplices formed during filtration. Our experiments show
that computation time may not increase much given an
increase of dimension of data, because the latter may have
little effect on the size (i.e., number of points) of the point
cloud and thus neither on the number of simplices formed
during filtration.

Having obtained a suitable topological space from
input data, one can derive a PD/PB from the topological
space, which constitutes a multiset of intervals. The
subsequent challenge lies in the vectorisation of the PD/PB
for its integration into an ML algorithm. The vectorisation
process is essentially linked to the construction of the
topological space, as the combination of different methods

for constructing the topological space and vectorisation
together determine the descriptor utilised in ML. A plethora
of vectorisation methods exist, such as persistent entropy
[60], persistence curve [61], persistence landscape [62], and
persistence image [63], among others, as documented in
various studies [40, 64] (cf. Fig. 1f). The selection of these
methods requires careful consideration. Additionally, one
can design more customised quantification techniques
tailored to specific experimental conditions and physical
properties to meet specific requirements [65, 66, 67].

To place our results in a more specific context as well
as to acknowledge earlier efforts made by other researchers
to which we are indebted, let us now give an overview of
closely related work in the field.

Time series analysis [68] is a prevalent tool for various
applied sciences. The recent surge in TDA has opened new
avenues for the integration of topological methods into time
series analysis [20, 69, 70]. Much literature has contributed
to the theoretical foundation in this area. For example,
theoretical frameworks for processing periodic time series
have been proposed by Perea and Harer [71], followed by
their and their collaborators’ implementation in discovering
periodicity in gene expressions [72]. Their article [71] stud-
ied the geometric structure of truncated Fourier series of a
periodic function and its dependence on parameters in time-
delay embedding (TDE), providing a solid background for
TopCap. In addition to periodic time series, towards more
general and complex scenarios, quasi-periodic time series
have also been the subject of scholarly attention. Research
in this direction has primarily concentrated on the selection
of parameters for geometric space reconstruction [73] and
extended to vector-valued time series [74].

Here, a topological space is constructed from data using
TDE, a technique that has been widely employed in the
reconstruction of time series (see Fig. 1a and Sec. 00■S.2.1 for
details). Thanks to the topological invariance of TDE, the
general construction of simplicial-complex representation
(see Fig. 1b) and computation of PH from point clouds
(see Fig. 1d) both apply to time series data, although
this transformation involves subtle technical issues in
practice. For instance, Emrani et al. utilised TDE and PH
to identify the periodic structure of dynamical systems,
with applications to wheeze detection in pulmonology
[52]. They selected the embedding dimension d as 2,
and their delay parameter τ was determined by an
autocorrelation-like (ACL) function, which provided a
range for the delay between the first and second critical
points of the ACL function. Pereira and de Mello proposed
a data clustering approach based on PD [53]. The data
were initially reconstructed by TDE, with d = 2 and
τ = 3, so as to obtain the corresponding PD, which was
then subjected to k-means clustering. The delay τ was
determined using the first minimum of an auto mutual
information, and the embedding dimension d was set to be
2 as using 3 dimensions did not significantly improve the
results. Khasawneh and Munch introduced a topological
approach for examining the stability of a class of nonlinear
stochastic delay equations [54]. They used false nearest
neighbours to determine the embedding dimension d = 3
and chose the delay to equal the first zeros of the ACL
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function. Subsequently, the longest persistence lifetime
in PD was used for vectorisation to quantify periodicity.
Umeda focused on a classification problem for volatile
time series by extracting the structure of attractors, using
TDA to represent transition rules of the time series [21].
He assigned d = 3, τ = 1 in his study and introduced
a novel vectorisation method, which was then applied
to a convolutional neural network (CNN) to achieve
classification. Gidea and Katz employed TDA to detect
early signs prior to financial crashes [56]. They studied
multi-dimensional time series with τ = 1 and used
persistence landscape as a vectorisation method. For speech
recognition, Brown and Knudson examined the structure
of point clouds obtained via TDE of human speech signals
[26]. The TDE parameters were set as d = 3, τ = 20, after
which they examined the structure of point clouds and their
corresponding PB.

In this work, motivated by and aiming at important,
real-world applications to artificial intelligence, we develop
methods for topological speech (and audio) signal processing,
beyond direct biomimetic spectral engineering currently
adopted in the field (cf. Sec. 00■S.1):
(1) TopCap – a streamlined combination of Topological

Data Analysis to Machine Learning, with fine-tuned
Time-Delay Embedding juxtaposed with Persistent Ho-
mology on the topological end, followed by accessible,
user-friendly machine learning algorithms, and

(2) TopNN – state-of-the-art Neural Networks for audio
and speech signal processing, such as Gated Recurrent
Units, with Topology enhancement by concatenating
black-box neural network feature vector with inter-
pretable TopCap feature vector for decoder.

These methods extract and integrate topological features of
phonetic data beyond those obtained via short-time Fourier
transform or mel-frequency cepstral coefficients. As a first
demonstration of our findings, Fig. 2 gives an intuitive
visualisation for vowels, voiced consonants, and voiceless
consonants in TDE and PD, respectively (see Sec. 00■S.1 for de-
tails of phonetic categories). Applying TopCap and TopNN
to the task of classifying voiced and voiceless consonants,
we obtain the following main results.
(1) In terms of accuracy, TopCap stands in comparison with

various state-of-the-art models across a wide range of
small and large datasets. In addition, it shows ad-
vantages in structural efficiency, interpretability, and
computational cost.

(2) Compared to state-of-the-art neural networks, our ex-
periments with TopNN demonstrate better accuracy,
steadier performance, and more robustness against
noise.

Besides, for experts working on topological time series
analysis and on nonlinear time series analysis, we offer the
following conclusions:

• Noisy or complex real-world time series require a pa-
rameter selection scheme for time-delay embedding
(or sliding window embedding) that goes beyond the
Perea–Harer framework. Notably, the significant topolog-
ical feature of maximal persistence exhibits extreme
sensitivity to the delay parameter, while it correlates

proportionally to the square root of the embedding
dimension. This latter finding of higher embedding di-
mension for more prominent topological features (and
consequently better overall performance), seemingly
paradoxical, stands in contrast to the common intuition
from the curse of dimensionality as well as to the
relatively low intrinsic dimensions of time series data.

• Preliminary experiments with both synthetic and real-
world data show the capability and potential of topo-
logical representations, such as persistence diagrams
(utilising points distributed near the birth–death diago-
nal line), in capturing and distinguishing finer patterns
of vibration that go beyond periodicity, namely, variation
of frequency, of amplitude, and of average line.

• We propose formant spectral features and circular time-
delay embedding configuration eigenvalue patterns as
additional geometric features for consonant recognition.

This research drew inspiration from Carlsson and his col-
laborators’ discovery of the Klein-bottle distribution of high-
contrast, local patches of natural images [19], as well as their
subsequent recent work on topological CNNs for learning
image and even video data [2, 3]. By analogy, based on
our first findings in this direction, we aim to understand
a distribution space for speech data, even a directed graph
structure on it modelling the complex network of speech-
signal sequences for practical purposes such as speaker
diarisation. Moreover, we aim to better understand how
these topological inputs enable smarter learning.

2 RESULTS

In this section, we present in detail our novel methodologies
for topological speech signal processing, along with the
corresponding experiments and result analysis.

In Sec. 2.1, we propose TopCap, a framework that
embeds speech signals into high-dimensional space using
time-delay embedding, then extracts significant topological
features—serving as representations of the signal’s peri-
odicity—via persistent homology as shown in Sec. 2.1.1.
These topological descriptors are subsequently fed into tra-
ditional machine learning algorithms for classification. We
benchmark TopCap against several state-of-the-art neural
network-based models for speech processing in Sec. 2.1.2,
and the results show that TopCap achieves comparable clas-
sification accuracy while offering improved efficiency and
interpretability. To further compare the feature extraction
approach of TopCap with traditional speech signal process-
ing methods (e.g., STFT, MFCC), we conducted a dedicated
feature analysis in Sec. 2.1.3. The results demonstrate that
the features extracted by TopCap exhibit stronger discrim-
inative power, making them more effective for consonant
classification.

As an extension, motivated by the complementary
strengths of topological and deep learning approaches, we
further propose topology-enhanced neural networks, as in-
troduced in Sec. 2.2. The architecture of it is shown in
Sec. 2.2.1. In this model, the encoder integrates topologi-
cal features with features extracted by a neural network,
which are then passed through a decoder composed of fully
connected layers to map the representation to the target
labels. Experimental results shown in Sec. 2.2.2 and Sec. 2.2.3
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Fig. 2: The varied shapes of vowels, voiced consonants, and voiceless consonants. a, the left 3 panels and the right 3 panels
depict 2 vowels, respectively. For each, the first picture is the time series of the vowel, the second picture corresponds to the
3-dimensional principal component analysis of the point cloud resulting from performing TDE (dimension=100, delay=1,
skip=1) on this time series (the colour legend shows the vertical coordinate), and the third picture is the PD of this point
cloud. b, The analogous features for 2 voiced consonants. c, Those for 2 voiceless consonants.

demonstrate that TopNN successfully combines the advan-
tages of both paradigms, yielding significant improvements
in classification accuracy, robustness to noise, and model
stability.

In Sec. 2.3, beyond the experiments focused on capturing
periodicity in time series data, we conduct preliminary
studies using both synthetic and real-world datasets to
explore the broader potential of topological representations.
Our findings suggest that persistent diagrams—particularly
through the analysis of points near the birth–death diago-
nal—can effectively capture and distinguish more nuanced
vibration patterns beyond periodicity, including variations
of frequency, amplitude, and average line.

2.1 Traditional machine learning methods with novel
topological features
In this subsection, we present our results on conso-
nant recognition using topology-enhanced machine learning
methods, notably, the streamlined approach of TopCap. The
classification of voiced and voiceless consonants serves as a
significant, relevant application of our methodology, show-
casing its efficacy and advantages. Meanwhile, as a hands-
on example originating directly from industrial innovation,
it makes various technical considerations in developing
our methods more transparent and highlights potential for
further investigation and enhancement.

Voiced and voiceless regions of speech have distinct
speech production processes and energy patterns. Segmen-
tation of voiced and voiceless speech is a fundamental
and important process for various speech processing ap-
plications [75]. In medical diagnosis, researchers can detect
common cold and other diseases by studying voiceless and
voiced sounds [76, 77]. The detection of voiced and voiceless
sounds can also be used to reveal whether musical expertise

leads to an altered neurophysiological processing of sub-
segmental information available in the speech signal [78].
It is particularly important to study the segmentation of
voiced and voiceless sounds in linguistics, and a variety
of methods have been developed and applied [79, 80, 81,
82]. Moreover, there are applications geared towards AI
innovations, for example, speaker identification via voice-
less consonants [83]. Thus, it has become imperative to
research the characteristics of voiced and voiceless sounds
and distinguish them, which can ensure the accuracy of
the segmentation and enable other applications. Placed in
a broader context, this analysis for speech recognition at the
phonemic level precedes the type of higher-order language
processing typically associated with NLP.

Given consonant recognition as a significant problem
originating and posed to us from the industry, we per-
formed multiple topology-enhanced machine learning ex-
periments and obtained the following.

2.1.1 Primary experiment combining topological features
with machine learning models
Using datasets comprising human speech, we initially em-
ploy the Montreal Forced Aligner (MFA) [84] to align natu-
ral speech into phonetic segments. Following preprocess-
ing of these phonetic segments, TDE is conducted with
dimension parameter d = 100 and delay parameter τ set
to equal 6T/d, where T approximates the (minimal) period
of the time series. Following additional refinement proce-
dures, PDs are computed for these segments and are then
vectorised based on MP and its corresponding birth time.
The comprehensive procedural framework is expounded in
Secs. 00■S.3.1 and 00■S.3.2, while the corresponding workflow is
shown in Fig. 3e. It is worth noting that in the applications
of TDE, the dimension parameter d is usually determined
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through some algorithms designed to identify the minimal
appropriate dimension [50, 85]. Here, the embedding di-
mension d = 100 was chosen to be as large as possible
within the constraints of our data. More specifically, in
our experiments, using lower dimensions such as d = 5,
10, or 20 yielded poor results, as those dimensions were
insufficient to capture the complex underlying structure of
the time series. In higher dimensions, important features
that are not apparent in lower dimensions become much
easier to identify. However, the dimension cannot be too
large either, otherwise the embedded point cloud obtained
following the theoretical framework of Perea and Harer [71]
(see Sec. 00■S.3.2 for details) may consist of too few points
to adequately represent the original data structure. The
delay parameter τ is determined by an ACL function with
no specific rule, but in many cases τ = mT/d for some
positive integer m. In our pursuit of enhanced extraction of
topological features, a relatively high dimension is chosen
(see Sec. 3 for more discussion on dimension in TDE).
Given this higher dimension, the usual case of τ = T/d
with m = 1 may prove excessively diminutive, particularly
in light of the time series only taking values in discrete
time steps. Consequently, in TopCap we adopt an adjusted
parametrisation for τ = mT/d with a relatively large value
m = 6.

We input the pair of MP and birth time from 1-
dimensional PD for each sound record to multiple tradi-
tional classification algorithms: Tree, Discriminant, Logis-
tic Regression, Naive Bayes, Support Vector Machine, k-
Nearest Neighbours, Kernel, Ensemble, and Neural Net-
work. We use the application of the MATLAB (R2022b) Clas-
sification Learner, with 5-fold cross-validation, and set aside
30% records as test data. This application performs machine
learning algorithms in an automatic way. There are a total
of 1016 records, with 712 training samples and 304 test
samples. Among them, 694 records are voiced consonants
and the remaining are voiceless consonants. The models
we choose in this application are Optimizable Tree, Opti-
mizable Discriminant, Efficient Logistic Regression, Opti-
mizable Naive Bayes, Optimizable SVM, Optimizable KNN,
Kernel, and Optimizable Ensemble.

The results are shown in Fig. 3a–d. The receiver op-
erating characteristic curve (ROC), area under the curve
(AUC), and accuracy metrics collectively demonstrate the
efficacy of these topological features as inputs for a variety
of machine learning algorithms. Each of the algorithms
incorporating topological inputs attains AUC and accuracy
surpassing 96%. The ROC and AUC together depict the
high performance of our classification model across all
classification thresholds. The 2D histograms depicted in
Fig. 3c–d collectively illustrate the distinct distributions of
voiced and voiceless consonants. Voiced consonants tend
to exhibit a relatively higher birth time and lifetime, which
provides an explanation for the high performance of these
algorithms. Despite the intricate structure that a PD may
present, appropriately extracted topological features enable
traditional machine learning algorithms to separate complex
data effectively. This highlights the potential of TDA in
enhancing the performance of machine learning models.

2.1.2 Model comparison on benchmark datasets

We next demonstrate the advantages of TopCap by compar-
ing it with state-of-the-art methods in speech recognition
that are not based on topology, over a diverse range of
benchmark datasets.

In the above main experiment, our analysis solely
utilised the HT1 corpus sourced from the broader
ALLSSTAR dataset of SpeechBox [86] (see Sec. 00■S.3.1 for
details). We extend this by conducting a series of exper-
iments across a diverse array of datasets using the same
methodology, with the aim of enhancing the robustness
and credibility of our results. These datasets encompass
renowned benchmark repositories such as LJSpeech [87],
TIMIT [88], and LibriSpeech [89], in addition to supplemen-
tary corpora sourced from ALLSSTAR. Collectively, they
contain a substantial amount of phones, numbering in the
hundreds of thousands: LJSpeech provides around 200000,
TIMIT around 40000, LibriSpeech over 7000000 (1000 hours
of speech), and ALLSSTAR around 20000 in total.

In terms of comparative analysis with existing method-
ologies, we have placed our approach alongside three meth-
ods that are not based on topology. We combine standard
audio processing methods for feature extraction with state-
of-the-art deep learning methods for classification tasks.
The former methods include short-time Fourier transform
(STFT) and mel-frequency cepstral coefficients (MFCC). The
latter methods include CNNs, gated recurrent units (GRU)
networks, and Transformers. As such, we perform experi-
ments on the above datasets using the methods of STFT–
CNN, MFCC–GRU, and MFCC–Transformer, in comparison
with those with TopCap. In more detail, TopCap comprises
TDE–PH and an array of traditional, accessible machine
learning methods. The coupling of TDE and PH serves to
extract the latent topological features inherent in the time
series, while STFT and MFCC each extract features through
analytic methods. Our selection of the multiple machine
learning and deep learning architectures in each experi-
mental pipeline is informed by the nature of the extracted
features. Specifically, the output spectrograms from STFT
are imagery representations, making them well-suited for
CNNs. In particular, we design and compare two models
for this method, denoted by STFT–CNN and STFT–CNN+:
The former resizes each grey-scale spectrogram of 124×129
pixels through bilinear interpolation down to 8×8 with
386177 parameters, while the latter to 16×16 with 435329
parameters (a 90% reduction of parameters from the orig-
inal 124×129 neural network), both consisting of 5 layers
with 3 convolutional and 2 fully connected. In contrast,
MFCC features, characterised by their lower dimensionality,
are more appropriate for recurrent-neural-network architec-
tures, such as GRUs and Transformers.

Tab. 1 presents the results of our experiments with
TopCap and the comparison models on benchmark datasets
listed above. In each table, on the leftmost column, the
various datasets are displayed. The remaining columns
record the data sizes (i.e., numbers of phones) along with
the corresponding accuracy rates of TopCap and of the
comparison models applied to these datasets. In the upper
half of Tab. 1, we focus on small-scale datasets. The 5
subsets of ALLSSTAR each comprise their entire phones,
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Fig. 3: Machine learning results with topological features. a, ROCs of traditional machine learning algorithms. b, Accuracy
and AUC of each of these algorithms. c, Diagrams of records represented as (birth time, lifetime) for voiced consonants
(left) and voiceless consonants (right), where voiced consonants exhibit relatively higher birth time and lifetime. The colour
represents the density of points in each unit grid box. The features (birth time, lifetime) interpret the most prominent
structural feature and its birth time. d, Histograms of records represented by their lifetime for voiced and voiceless
consonants, together with kernel density estimation and rug plot. The distributions of MP can distinguish voiced and
voiceless consonants. e, Flow chart of experiment. Here |S| denotes the number of samples in a time series, |P | denotes the
number of points in the point cloud, and T denotes the (minimal) period of the time series computed by the ACL function.

while LJSpeech, TIMIT, and LibriSpeech datasets are sam-
pled randomly, each containing 2000 samples with a half
voiced consonants and the other half voiceless. The lower
half of Tab. 1 displays the results from large-scale datasets.
Among them, ALLSSTAR, LJSpeech, and TIMIT each con-
tribute their entire data for analysis, while LibriSpeech does
500000 phones out of 1800000 from its speech data (we
obtained 1800000 phonetic segments from a half of the 500-
hour speech data). A main consideration for dividing the
experiments into small and large datasets lies in the nature
of training and generalisation for neural networks, which
depend on the size of a dataset and correlate with the
networks’ performances.

The above results show that, in classification of voiced
and voiceless consonants, our topology-enhanced model
TopCap achieved an outstanding accuracy on small datasets
and sustained a good performance on larger ones, in com-

parison with state-of-the-art models that are not based on
topology. Besides, our topology-enhanced approach shows
significant advantages in the following three areas.

• Structural efficiency: Neural network models require
further feature extraction from input MFCC sequences
or STFT spectrograms for classification tasks, neces-
sitating a training process which lengthens with the
growing dataset. In contrast, TopCap mainly utilises
topology-based methods (TDE and PH) which are more
straightforward for feature extraction. Meanwhile, the
topological fingerprints (e.g., maximal persistence) are
strong enough to characterise phonemes directly and
effectively for our classification tasks (see also Sec. 2.1.3
below). Therefore, TopCap gains higher efficiency, espe-
cially when handling larger datasets. On a related note,
deep learning methods, as a data-driven approach,
require large amounts of data for training and gener-
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ALLSSTAR corpora Random samples

Small dataset HT1 HT2 DHR LPP NWS LJ TIMIT Libri
Number of phones 3200 3000 3600 3800 1800 2000 2000 2000
TopCap 96.8 94.3 91.0 93.2 94.4 93.3 87.2 86.1
MFCC–GRU 92.0 91.3 88.9 88.7 92.0 87.7 85.3 80.0
MFCC–Transformer 96.9 95.2 96.3 92.2 97.2 96.3 96.6 92.5
STFT–CNN 84.0 85.0 83.7 84.8 84.2 79.7 78.1 77.6
STFT–CNN+ 95.1 96.4 95.8 92.4 92.4 94.8 90.1 91.2

Large dataset ALLSSTAR LJSpeech TIMIT LibriSpeech
Number of phones 21000 257000 42000 500000
TopCap 94.1 94.4 93.0 90.6
MFCC–GRU 94.0 96.7 96.3 93.8
MFCC–Transformer 95.3 97.8 97.1 95.0
STFT–CNN 84.6 84.5 77.6 80.3
STFT–CNN+ 95.0 96.5 91.1 93.6

Tab. 1: Accuracy rates % of TopCap on 8 small datasets and 4 large datasets stand in comparison with state-of-the-art
methods. The random samples are taken from the large datasets listed in the lower half of the table. In particular, in
the second row, LJ and Libri are abbreviations for LJSpeech and LibriSpeech, respectively. While MFCC–Transformer and
STFT–CNN+ generally outperform TopCap, it is important to note that TopCap exceeds the performance of MFCC–GRU
(which also uses advanced architecture) and STFT–CNN (a smaller model than STFT–CNN+) on small datasets. For larger
datasets, TopCap generally does not match the performance of deep neural networks, primarily due to its use of simpler
topological features and basic machine learning models. This limitation motivates the integration of topological features
into neural networks, as discussed in Sec. 2.2. Overall, while TopCap may not achieve the highest performance across all
benchmarks, it delivers decent results.

alisation. In contrast, comparing the upper and lower
halves of Tab. 1, we see that TopCap achieves equally
good performance on relatively small datasets.

• Interpretability: Neural networks are often referred to
as “black boxes” due to their low explainability and in-
terpretability, which make it challenging to understand
the mechanisms of feature extraction and effectively
improve a model for classification. However, TopCap
offers a white-box method for visualising features of
time series data, which gives insight of the intrinsic
properties and nuanced differences within the data, en-
abling us to better understand and improve the model.

• Computational speed: Neural networks involve time-
consuming training processes, even with GPU acceler-
ation. For instance, on the TIMIT dataset, a full training
cycle of 15 epochs can take approximately 30 minutes
with GPU parallelisation. In contrast, TopCap bypasses
the need for iterative training and achieves significantly
faster computation. TopCap performs lightweight ma-
chine learning with negligible runtime overhead, com-
pleting both feature extraction and classification in just
2 minutes when utilising 16-thread CPU parallelisation.
TopCap’s efficiency advantage comes from avoiding
gradient-based optimisation and using computationally
cheaper topology-derived features, along with a highly
parallelisable pipeline, making it significantly faster
and more scalable especially for large datasets or real-
time applications.

To further enhance the computational efficiency of the
periodicity detection module in the TopCap algorithm,
we can transition from using the auto-correlation function
(ACF) to the Fast Fourier Transform (FFT), a modifica-
tion primarily driven by performance considerations. While
FFT’s O(N · logN) complexity offers a significant speed
advantage over ACF’s O(N2) approach—particularly ben-
eficial for large-scale datasets—we observed nuanced accu-

racy variations. This FFT-based approach, computationally
comparable to MFCC extraction in neural networks, was
adopted for the subsequent experiments in Sec. 2.2.

2.1.3 Feature analysis

Finally, to further highlight the advantages of our model
in feature extraction, we conduct a feature analysis by
comparing the features generated by topological methods,
STFT, and MFCC. The data utilised for this feature analysis
is sourced from the LJSpeech dataset [87], with a random
subsample comprising 10 percent of the entire library.

For the topological part, we use the same algorithm as
TopCap outlined in Sec. 00■S.3.2, deriving the birth time and
lifetime for each sample. In the case of STFT, we divide each
sample into 10 time segments, perform Fourier transforma-
tion, and extract the dominant frequency for each segment
as the feature representation. To visualise the features, we
employ Uniform Manifold Approximation and Projection
(UMAP) to reduce the dimensionality to two dimensions.
For MFCC, we directly apply the MFCC technique to the
data, yielding 50 features that characterise the spectral prop-
erties of the audio data. The results of this analysis are
presented in Fig. 4.

In many cases, feature extraction techniques, such as
STFT and MFCC, extract features in high dimension. For
instance, STFT is particularly useful when the time seg-
ments are sufficiently short, to better represent frequency
at this time. However, in order to effectively use these high-
dimensional features, dimension reduction techniques (such
as UMAP, t-SNE, etc.) are often applied to visualise data
or reduce complexity. One primary issue is the potential
loss of structural information from the original features.
For example, in Fig. 4b, while UMAP would reduce the
dimensionality to two, the meaning of these two dimen-
sions remains unclear. The reduced dimensions can only
be labelled as UMAP 1 and UMAP 2, without conveying
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Fig. 4: Analysis of the features derived from topological methods, the Short-Time Fourier Transform (STFT), and Mel-
Frequency Cepstral Coefficients (MFCC). a, Features derived from topological methods. The upper plot displays an overall
view of both voiced and voiceless features, while the two lower plots provide individual representations for the voiced and
voiceless categories. Subplots b and c adhere to the same layout. Voiced data typically exhibit longer lifetimes with lower
birth times, whereas voiceless data tend to show shorter lifetimes with higher birth times. A small subset of both voiced
and voiceless data in the middle region overlap with the opposing type. b, Features derived from STFT. Voiced data form a
single cluster, while voiceless data are distributed across several clusters. There is more overlap between the two types, in
comparison to the topological method. c, Features derived from MFCC. Most voiced data group into a single cluster, with
a small subset forming another cluster on the upper left region; voiceless data primarily form two distinct clusters. Similar
to STFT, there is more overlap between the two types when compared to the topological methods.

any intrinsic interpretability. More importantly, it is difficult
to discern the original data structure based on the reduced
representation. For example, in Fig. 4c, there are two clusters
in voiceless data, it is unclear how these clusters correspond
to the structure of the original data. While dimension reduc-
tion may add new and lose original structures in the data, it
is still a necessary step, as analysing high-dimensional data
directly is often impractical.

In contrast, the topological approach records the struc-
ture of a point cloud into a persistent diagram, which
provides a panorama of the data through the diagram.
By visualising the data through the persistence diagram,
the process of dimension reduction may become more
straightforward, as the diagram can reveal interpretable,
physically meaningful features. In TopCap, we use maximal
persistence and its birth time. This relatively simple form of
dimension reduction has proven to be effective in capturing
essential structural information.

2.2 Topology-enhanced neural networks

In the previous subsection, we proposed TopCap, which
integrates topological methods with traditional machine
learning approaches (e.g., KNN) for consonant classifica-
tion, and compared it against state-of-the-art models (e.g.,
MFCC–GRU). The experimental comparison in Sec. 2.1.2 re-

veals that neural network models achieve excellent classifi-
cation accuracy in specific scenarios owing to their complex
architectures, while topological methods demonstrate sig-
nificant advantages over neural networks in computational
efficiency, model stability, and interpretability.

Motivated by the complementarity between these two
paradigms, we further developed topology-enhanced neu-
ral networks—a novel framework that synergizes topologi-
cal feature extraction with neural architectures. This hybrid
model achieves significant improvements in classification
accuracy, noise resistance, robustness, and stability in con-
sonant classification experiments.

2.2.1 Architecture of topology-enhanced neural networks

Topology-enhanced neural networks are fundamentally
structured based on an encoder-decoder architecture. The
encoder comprises both black-box neural networks and
topological feature extraction modules, each responsible
for capturing distinct features from different aspects of
the data. These features are subsequently fused to form a
comprehensive latent representation. The decoder, usually
constructed using neural networks, learns to assign optimal
weights to these heterogeneous features through training
and transform the features into the target variable. Fig. 5g
presents a conceptual framework for topology-enhanced
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neural networks which enhance neural networks with in-
terpretable features informed by topology.

For speech recognition, as shown in the Fig. 5f, We
propose TopNN, an integrated architecture that combines
topological feature extraction modules (TDE–PH) and GRU
to serve as an encoder for feature extraction, followed by a
decoder composed of fully connected layers for classifica-
tion. The model concatenates the MP features obtained by
topological method with the final hidden states extracted by
GRU, forming a combined feature vector. These combined
representations are then processed through fully connected
layers to to learn the weights of different features for the
voiced and voiceless classification.

2.2.2 Experiments and results
In the voiced-voiceless consonant classification experiment,
consonant signals are fed into TopNN for hierarchical fea-
ture extraction and classification.

To establish a robust baseline for comparative analysis,
We designate NN (with standard GRU as encoder and fully
connected layer as decoder) as a baseline model and intro-
duce ZeroNN, an ablated variant of TopNN where topo-
logical features are replaced with zero vectors. In NN, the
encoder extracts a six-dimensional feature vector derived
from the GRU. In contrast, the encoder in TopNN extracts a
seven-dimensional feature vector by concatenating the six-
dimensional GRU-derived features with a one-dimensional
topological descriptor — the maximal persistence extracted
from the persistence diagram. In ZeroNN, the encoder out-
puts a seven-dimensional feature vector constructed by con-
catenating the GRU-extracted six-dimensional features with
an additional one-dimensional zero vector. This controlled
experimental design ensures any observed performance dif-
ferences are exclusively attributable to topological feature
incorporation.

Furthermore, to demonstrate the superiority of our
topology-enhanced method, particularly its resilience and
robustness derived from topological properties, we con-
ducted comprehensive noise injection experiments on
speech data across four signal-to-noise ratio (SNR) levels:
the original data (SNR =+∞), weak noise (SNR = 10dB),
moderate noise (SNR = 5dB), and strong noise (SNR = 0dB)
conditions. The injected noise followed a Gaussian ampli-
tude distribution, carefully selected to emulate the natu-
ral characteristics of electronic device background noise,
thereby providing a realistic simulation of real-world acous-
tic interference.

We systematically evaluate the classification perfor-
mance of TopNN, ZeroNN, and the standard NN on both
the original and the noise-added speech data. Fig. 5a–b track
the three models’ training progression on original and noise-
added speech data, respectively.

To mitigate performance fluctuations arising from data
selection bias and enhance the reliability of our compar-
isons, we employ a 5-fold cross-validation strategy. In each
fold, training and test data are randomly sampled, allowing
for a more comprehensive assessment of model generalisa-
tion. We conduct multiple experiments and use the mean
and standard deviation of training and test accuracy as
performance evaluation metrics. Tab. 2 presents the mean
values and standard deviations of training and test accuracy

of TopNN, ZeroNN and NN across multiple datasets under
varying amplitude noise environments.

2.2.3 Analysis of experimental results
Fig. 5 shows that the training and test accuracy of TopNN
consistently outperform those of ZeroNN and NN, with the
latter two showing similar performance. As noise intensity
increases, the performance gap between TopNN and the
other two models widens, highlighting its superior robust-
ness and noise resistance. Additionally, TopNN exhibits
lower accuracy variance across multiple experiments, indi-
cating enhanced model stability.

The results demonstrate that TopNN outperforms NN
in classifying both clean and noise-injected speech data.
These findings collectively suggest that the novel TopNN
architecture achieves improved classification accuracy and
robustness compared to the conventional NN framework.

The performance improvement can be attributed to the
following synergistic mechanisms. Firstly, neural networks
exhibit greater parametrisation flexibility and higher model
complexity compared to fixed analytical paradigms, en-
abling task-specific feature extraction with enhanced gener-
alisation capability. However, their representational capacity
for capturing intrinsic data structures remains constrained.
The topological approach complements this limitation by
extracting multi-scale persistent homology features that are
inherently difficult for neural networks to learn, thereby
enhance the representational capacity of the new model.

Secondly, the proposed architecture employs fully con-
nected layers as the decoder to dynamically learn the
weights corresponding to the fused features. This hybrid
strategy capitalizes on the strengths of neural networks in
learning hierarchical patterns while preserving the inter-
pretability of topological descriptors.

Moreover, neural networks, as data-driven models, are
susceptible to performance degradation under limited or
noisy training data. In contrast, topological methods, such
as persistent homology, focus on topological features (e.g.,
connected components, loops, voids) that persist across a
range of scales rather than being sensitive to small local
fluctuations. This ensures that minor noise or perturba-
tions in the data do not significantly alter the extracted
topological features. Therefore, the topological features ex-
tracted through topological methods demonstrate enhanced
robustness and resistance to noise. Our quantitative stabil-
ity analysis confirms that the integrated framework with
input of topological features significantly reduces variance
in prediction outcomes and exhibits superior performance
in classification tasks on noise-corrupted data.

The novel architecture achieves enhanced performance
by capitalizing on the complementary strengths of topo-
logical feature analysis and neural network-based learning,
demonstrating statistically significant improvements in both
classification accuracy and robustness against adversarial
perturbations.

2.3 Detection of vibration patterns
The impetus behind TopCap lies in an observation of how
PD can capture vibration patterns within time series. To
begin with, our aim is to determine which sorts of in-
formation can be extracted using topological methods. As
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Fig. 5: Visual analytics of experiments with topology-enhanced neural networks (TopNN). a, Training curves of TopNN,
ZeroNN (NN features concatenated with null topological feature, as a sanity check), and NN on 36000 original speech
data from the TIMIT dataset. It demonstrate that TopNN has higher accuracy and faster convergence in loss function
than ZeroNN and NN. b, Training curves of TopNN, ZeroNN, and NN with the same set up as in a, with noise-added
(SNR = 5dB). With noise added, TopCap’s improve in accuracy and loss decrease is more prominent compared with the
results in a. c, d, and e, Comprehensive performance comparison and noise robustness analysis of TopNN and NN based on
training and test accuracy with the large datasets ALLSSTAR, LJSpeech, and TIMIT from Tab. 1, respectively. Noise levels
include none, weak (SNR = 10dB), moderate (SNR = 5dB), and strong (SNR = 0dB). In all three figures, TopNN achieves
better accuracy and is more robust to noise than NN. f, Architecture of the specific TopNN used above. g, A generic flow
chart for enhancing neural networks with topological features.
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Noise None Weak Moderate Strong

Accuracy Training Test Training Test Training Test Training Test

Dataset ALLSSTAR

TopNN 96.0±0.2 95.9±0.2 95.7±0.3 95.9±0.2 92.8±0.6 92.9±0.5 87.3±1.6 87.8±1.5
NN 94.5±0.4 94.4±0.3 93.8±1.3 93.8±1.3 78.2±3.1 78.6±3.0 77.9±3.2 78.8±3.2

ZeroNN 94.5±0.4 94.5±0.3 93.8±1.3 93.9±1.3 78.3±3.0 78.6±3.1 77.8±3.2 78.5±3.0

Dataset LJSpeech

TopNN 96.0±0.4 96.1±0.3 93.3±0.7 92.9±1.1 91.5±1.1 91.6±1.1 87.1±1.3 86.2±1.5
NN 95.4±0.4 95.6±0.3 91.4±4.7 91.1±4.4 88.7±5.0 88.1±5.3 80.5±6.7 79.4±6.4

ZeroNN 95.5±0.4 95.6±0.3 92.6±3.1 92.5±2.8 90.6±4.7 90.2±4.9 81.2±7.2 80.5±6.8

Dataset TIMIT

TopNN 95.5±0.4 95.5±0.8 94.7±0.6 94.5±0.9 93.0±0.6 92.6±0.9 89.9±0.7 89.0±1.4
NN 94.4±2.0 95.0±2.1 93.4±2.0 93.5±1.9 91.3±1.8 90.8±2.1 87.5±2.5 86.6±2.4

ZeroNN 94.5±2.0 94.7±2.3 94.2±0.5 94.1±0.7 91.7±0.5 91.1±0.6 87.9±1.9 87.4±1.7

Tab. 2: State-of-the-art neural networks (NN, here taking MFCC–GRU from Tab. 1 to illustrate) with topology enhancement
achieve higher accuracy, steadier performance, and more robustness against noise. The table shows training and test
accuracy rates of TopNN, NN, and ZeroNN (NN features concatenated with null topological feature, as a sanity check)
on original and noisy data across various datasets. Noise levels include none, weak (SNR = 10dB), moderate (SNR = 5dB),
and strong (SNR = 0dB). All values are shown as mean± standard deviation in percentage units %. The numerics are in
supplement to the graphic demonstration in Fig. 5c–e and in partial comparison with the fifth and fourth rows from
bottom of Tab. 1.

the name indicates, topological methods quantify features
based on topology, which distinguishes spaces that cannot
continuously deform to each other. In the context of time
series, we conduct a series of experiments to scrutinise the
performance of topological methods, their limitations as
well as their potential.

Given a periodic time series, its TDE target is situated on
a closed curve (i.e., a loop) in a sufficiently high-dimensional
Euclidean space (see Fig. 1a). Despite the satisfactory point-
cloud representation of a periodic time series, it remains
rare in practical measurement and observation to capture
a truly periodic series. Often, we find ourselves dealing
with time series that are not periodic yet exhibit certain
patterns within some time segments. For instance, Fig. 1c
portrays the average temperature of the United States from
the year 2012 to 2022, as documented in [90]. Although the
temperature does not adhere strictly to a periodic pattern,
it does display a noticeable cyclical trend on an annual
basis. Typically, the temperature tends to rise from January
to July and fall from August to December, with each year
approximately comprising one cycle of the variation pat-
tern. One strength of topological methods is their ability
to capture “cycles”. A question then arises naturally: Can
these methods also capture the cycle of temperature as well
as subtle variations within and among these cycles? To
be more precise, we first observe that variations occur in
several ways. For instance, the amplitude (or range) of the
annual temperature variation may fluctuate slightly, with
the maximum and minimum annual temperatures varying
from year to year. Additionally, the trend line for the annual
average temperature also shows fluctuations, such as the
average temperature in 2012 surpassing that of 2013. Despite
each year’s temperature pattern bearing resemblance to
that depicted in the left panel in Fig. 1c (representing a
single cycle of temperature within a year), it may be more
beneficial for prediction and response strategies to focus on
the evolution of this pattern rather than its specific form. In

other words, attention should be directed towards how this
cycle varies over the years. This leads to several questions.
How can we consistently capture these subtle changes in
the pattern’s evolution, such as variations in the frequency,
amplitude, and trend line of cycles? How can we describe
the similarities and differences between time series that
possess distinct evolutionary trajectories? In applications,
these are crucial inquiries that warrant further exploration.

To address these questions, we propose three kinds of
“fundamental variations” which are utilised for depicting
the evolutionary trace of a time series. Consider a series of
a periodic function f(tn) = f(tn + T ), where T is a period.

(1) Variation of frequency. Denote the frequency by F =
T−1. Note that the series is not necessarily periodic in
the mathematical sense. Rather, it exhibits a recurring
pattern after the period T . For instance, the average
temperature from Fig. 1c is not a periodic series, but
we consider its period to be one year since it follows
a specific pattern, i.e., the one displayed in the left
panel of Fig. 1c. This 1-year pattern always lasts for
a year as time progresses. Hence, there is no frequency
variation in this example. This type of variations can be
represented as g1(tn) = f

(
F (tn) · tn

)
, where F (tn) is a

series representing the changing frequency. This type
of variation occurs, for example, when one switches
their vocal tone or when one’s heartbeats experience
a transition from walking mode to running mode.

(2) Variation of amplitude. The amplitudes of temperature
in the years 2014 and 2015 are 42.73◦F and 40.93◦F,
respectively. So the variation of amplitude from 2014
to 2015 is −1.80◦F. This can be represented by g2(tn) =
A(tn) · f(tn), where A(tn) is a series of the changing
amplitude. This type of variation is observed when
a particle vibrates with resistance or when there is a
change in the volume of a sound.

(3) Variation of average line. The average temperatures
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Fig. 6: 1-dimensional PH reveals three fundamental variations. a, Detecting variation of frequency. Upper-right panels
zoom in to show the barcode distribution in the lower dense region, where the position and colour of each value of c in
the main legend corresponds to those of its panel. Note that when c = 4, there is a single point, and so the panel for this
value is omitted. b, Detecting variation of amplitude. c, Detecting variation of average line.

through the years 2012 and 2013 are 55.28◦F and
52.43◦F, respectively. The variation of average line from
2012 to 2013 is −2.85◦F. Let g3(tn) = f(tn) + L(tn),
where L(tn) is a series representing the variation of
average line. This type of variation is observed when
a stock experiences a downturn over several days or
when global warming causes a year-by-year increase in
temperature.

To summarise, Fig. 1e provides a visual representation of
the three fundamental variations. It is important to note
that these variations are not utilised to depict the pattern
itself but rather to illustrate the variation within the pattern
or how the time series oscillates over time. This approach
offers a dynamic perspective on the evolution of the time
series, capturing changes in patterns that static analyses
may overlook.

Explicitly, let tn = 0.01n with 0 ⩽ tn ⩽ 7π and for each
c ∈ {1, 2, 3, 4} define

f(tn) = cos(tn)

F (tn) =
c

4
+

1− c
4

7π
· tn

g1(tn) = f
(
F (tn) · tn

)
Note that F (tn) = c/4 when tn = 0 and F (tn) = 1 when
tn = 7π. In fact, F (tn) is a sequence of line segments con-
necting (0, c/4) and (7π, 1). Correspondingly, the frequency
of g1(tn) changes more slowly as c increases. In the extreme
case when c = 4, we have F (tn) = 1, so

g1(tn) = f
(
F (tn) · tn

)
= f(tn) = cos(tn)

which is a periodic function. For each value of c, we applied
TDE to the series g1(tn) with dimension 3, delay 100, skip
10 and computed the 1-dimensional PD of the embedded
point cloud. See Fig. 6a for the results. Replacing F (tn) by
A(tn) and L(tn), we obtained the diagrams in Fig. 6b and c,
respectively.

Using these three simulated time series corresponding to
the three fundamental types of variation, we demonstrate
that PD can distinguish these variations and detect how
significant they are. See Fig. 6, where a smaller value of c

indicates a more rapid fundamental variation. Here, regard-
less of which value c takes, each individual diagram features
a prominent single point at the top and a cluster of points
with relatively short duration, except when F (tn) = 1 (i.e.,
c = 4). In this case, the series represents a cosine function,
and thus the diagram consists of a single point. Normally,
one tends to overlook the points in a PD that exhibit a
short duration as they are sometimes inferred as noise.
However, in this example, the distribution of those points
holds valuable information regarding the three fundamental
variations. As shown in Fig. 6, each fundamental variation
has its distinct pattern of distribution in the lower region of
a diagram, which leads to refined inferences: If the points
spiral along the vertical axis of lifetime, it is probably due
to a variation of amplitude; if every two or four points stay
close to form a “shuttle”, it probably indicates a variation of
average line; otherwise the points just seem to randomly
spread over, which more likely results from a variation
of frequency. It is also straightforward to distinguish the
values of c for a specific fundamental variation, by their
most significant point in the diagram: Longer lifetime for
the barcode of the solitary point indicates slower variation.
The lower region of a diagram also gives some hints in this
respect.

In this simulated example, we demonstrated how PD
could be utilised as a uniform means to distinguish three
fundamental variations of the cosine series and their respec-
tive rates of change. However, it is important to note that
in general scenarios, identifying the fundamental variations
in a time series using topological methods may encounter
significant challenges. Although topological methods are
indeed capable of capturing this information, vectorising
this information for subsequent utilisation remains a com-
plex task at this stage. Having recognised the potential of
topological methods, we resort to an alternative algorithm
for handling time series. Specifically, despite the difficulty
in vectorising PD to measure each fundamental variation,
we have developed a simplified algorithm to measure the
vibration of time series as a whole. This approach provides
a comprehensive understanding of the overall behaviour of
a time series, bypassing the need for complex vectorisation.
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a

b

c

Fig. 7: Variation of 1-dimensional PDs due to the fundamental variations of time series. a, PDs of drastic fundamental
variations. The small panel on top right of each diagram shows the original time series, with 4 segments extracted from
the same record of [A], each starting from time 0 and ending at time 600, 800, 1000, 1200, respectively. It can directly be
seen from the time series that the variation of amplitude in (a) is bigger than (b); for frequency, see c; normally, we do not
discuss the average line of phonetic data as it is assumed to be constant. Below, each diagram shows the clustering density
of points in the lower region of the PD. b, PDs of mild fundamental variations for 4 time-series segments extracted from
the other record of [A], with the same ending and starting times as in (a). The lower density diagrams demonstrate that
unstable time series are characterised by a higher density of points in the lower region of PD. Moreover, stable series tend
to attain high MP. c, Spectral frequency plots of the time series with rapid variations (left) and with mild variations (right).

2.3.1 The three fundamental variations gleaned from a per-
sistence diagram

A PD for 1-dimensional PH encodes much more information
beyond the birth time and lifetime of the point of MP.
The three fundamental variations examined in Sec. 2.3 also
manifest themselves in certain regions of the PD, which can
in turn be vectorised.

To capture these variations, we perform an experiment
with two records of the vowel [A]. Specifically, we demon-
strate the fundamental variations by comparing the PDs
of (a) the record of [A] relatively unstable with respect to
the fundamental variations and (b) the other record of the
same vowel that is relatively stable. To better illustrate the

results, we crop each record into 4 overlapping intervals,
each starting from time 0 and ending at 600, 800, 1000, 1200,
respectively. When adding a new segment of 200 units into
the original sample each time, the amplitude and frequency
of the series altered more drastically in case (a). A more
rapid changing rate may lead to more points distributed
in the lower region of the diagram. The outcomes are
presented in Fig. 7. The plots in Fig. 7c show that the spectral
frequency of (a) indeed varies faster than that of (b).

We should also mention that the 1-dimensional PD here
serves as a profile for the collective effect of the fundamental
variations. Currently, it is unclear how the points in the
lower region change in response to a specific variation.
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3 DISCUSSION

In this section, we present a comprehensive analysis of
parameter selection strategies involved in the experiments
above and investigate challenges for their generalisation.
These strategies are geared towards both traditional and
novel features of time series data.

Specifically, central to TopCap and TopNN is the TDE–
PH pipeline for deriving the significant topological descrip-
tor MP. Given the Takens embedding theorem [91, 92], the
critical parameters of embedding dimension d and time de-
lay τ jointly govern the topological fidelity of reconstructed
phase spaces. We systematically analyse and exploit the
interplay between d and τ , elucidating their synergistic
impact on optimising MP as follows.

• Solving the sample-size dilemma with large values of d and
τ by circular TDE. Standard TDE imposes constraints
on the minimal number of data points, requiring the
number N of data points to satisfy N ≥ (d − 1)τ . On
the other hand, PH analysis necessitates a significantly
larger point cloud, demanding N to be substantially
greater than (d− 1)τ .
In practical consonant recognition tasks, the finite
length of speech data limits parameter exploration to a
narrow range, as the maximal feasible N is constrained
by the inherent upper bound of audio duration. To
resolve this fundamental limitation and theoretically
maximise the parameter search range for identifying
optimal strategies, we propose a novel reconstruction
method of circular time-delay embedding (CTDE). By
cyclically connecting the endpoints of the audio signal,
CTDE enables d and τ to generically span the entire
interval [1, N ] of data points, thereby utilising the full
dataset without omission.
Crucially, the number of embedded points remains N ,
independent of parameter choices, which yields a con-
sistent and unbiased platform for systematic parameter
optimisation. Moreover, this approach does not com-
promise the discriminative properties for consonant
classification. For instance, given voiced consonants,
which exhibit quasi-periodic structures, the cyclic re-
construction preserves their inherent periodicity. For
voiceless consonants, which resemble stochastic noise
with uniformity and memorylessness, the endpoint
connection maintains their statistical characteristics.
A more detailed discussion, including 3D-projection vi-
sualisation of CTDE compared with TDE under varying
parameters, can be found in Sec. 00■S.2.1.

• MP correlates proportionally to square root of embedding
dimension. As illustrated in the lower graph of Fig. 8c,
MP from CTDE exhibits a smooth nonlinear increase
with respect to d, approximately following the relation
MP ∝ d1/2. This trend suggests that the growth rate of
MP scales sublinearly with embedding dimension.
Combined with our discussion on dependence of MP
(from standard TDE) on d in Sec. 00■S.4.1, we see that the
correlation between prominence of topological features
and dimensionality stands in contrast to the common
intuition from the curse of dimensionality as well as
to the relatively low intrinsic dimensions of time series
data. Reasonable high embedding dimension improves

overall performance of topology-enhanced ML.
• Sensitivity of MP to variation of time delay. In practice,

MP exhibits extreme sensitivity to τ , with its value
oscillating violently under minor perturbations (see the
upper graph of Fig. 8c). In contrast to the relationship
between MP and d discussed above, the one between
MP and τ (with d fixed) is highly non-smooth and
discontinuous, making interpretation difficult.
In fact, Perea and Harer’s assumptions break down
for noisy or complex real-world time series, as the
behaviour we observed contrasts sharply with idealised
periodic signals (cf. [71]). Under these experimental
conditions, their conclusions predict that MP will attain
maximal values at a discrete sequence τ = m · T/d,
where m are integers and T is a period of the time
series. As a result, the function relation of MP with re-
spect to τ must be a simple periodic function with each
period containing exactly one maximum. Moreover, the
maximum value is invariant across successive periods,
each being strictly T/d.
The Perea–Harer framework, grounded in oversimpli-
fied model derivations that assume idealised periodic
functions, inherently fails to prioritise MP optimisation.
This limitation stems from a fundamental mismatch
between its theoretical assumptions (e.g., strict peri-
odicity) and the quasi-periodic nature of real-world
signals such as human speech, where amplitude mod-
ulation and non-stationary dynamics dominate. Nev-
ertheless, 3D projections of TDE empirically reveal a
partial flattening and homogenisation of distributions
in reconstructed phase spaces (see Fig. S3a–b). While
the framework’s parameter selection criteria as encoded
in its closed-form equations may optimise alternative
global geometric indices, such as geometric uniformity
or spectral characteristics, these objectives are inher-
ently misaligned with PH’s focus on topological robust-
ness, resulting in suboptimal MP performance.

Let us now discuss the geometric distribution properties
of time series embedded into high-dimensional space via
CTDE from above.

Principal component analysis (PCA) is a dimension re-
duction technique whose core objective is to project high-
dimensional data into a low-dimensional space (here we set
three dimensions) while preserving the primary structural
information of the data. Larger eigenvalues indicate that
the corresponding eigenvectors capture more significant
variance in the data, meaning these directions are more
informative and dominant in representing the underlying
structure.

Specifically, we investigate the case where the embed-
ding dimension is fixed (d = 100) while varying the delay
parameter τ (through all possible values from 1 to N − 1).
By sorting the top 10 eigenvalues in descending order, we
observed the following patterns, as illustrated in Fig. 8d.

(1) Oscillation amplitude exhibits number-theoretic properties.
Each eigenvalue oscillates with τ , but its local aver-
age remains relatively stable over the global range.
This suggests that computing an average eigenvalue
is meaningful, as only very few τ values deviate sig-
nificantly from this average. Spikes occur at rational
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a b

c d

Fig. 8: Parameter selection and additional geometric features. a, The original waveform diagram (.wav file) of the signal [N]
(a voiced consonant) from the ALLSSTAR corpus. b, The power spectrum of the phone [N], with the first three prominent
peaks annotated by red, green, and blue vertical dashed lines, corresponding to the first three formants (F1, F2, F3)
in linguistic analysis. The fundamental period of the speech signal can be derived from the frequency associated with
Peak 1. c, Both the birth time and lifetime of maximal persistence via circular TDE demonstrate extreme sensitivity to
the delay parameter (upper, with fixed embedding dimension 10) and a smoothly proportional relationship following a
square-root dependence on embedding dimension (lower, with fixed delay 10). d, The geometric distribution properties of
time series via circular TDE reveal some regular patterns in the first 10 PCA eigenvalues: oscillation amplitude exhibits
number-theoretic properties under varying delay parameter, odd-even pairing with exponential decay (upper, with fixed
embedding dimension 100), and linear proportional scaling with embedding dimension (lower, with fixed delay 10).

points, i.e., where τ equals a rational multiple of the
data length N . Such values of τ lead to abrupt changes
and sometimes even cause jumps to adjacent eigen-
values. Although the example shown in the figure is
not highly representative, for general audio signals, the
amplitude of such mutations is negatively correlated
with the denominator of the rational fraction. The most
significant changes occur at positions such as 1/2, 1/3,
2/3, 1/4, 3/4, etc.

(2) Odd-even pairing and exponential decay. The average val-
ues of the (2k − 1)’st and (2k)’th eigenvalues (sorted
in descending order) are nearly identical, except for
possible opposite jump directions at rational points.
Moreover, the magnitudes of the leading paired eigen-
values exhibit an exponential decay as k increases.

(3) Effect of random noise and high-frequency components on

amplitude. By introducing additional random noise or
substituting different audio files, we observed that
higher randomness leads to more mutations at ratio-
nal points, with larger amplitudes. Similarly, a greater
presence of high-frequency components in the Fourier
spectrum results in more erratic behaviour.

We then study the case where τ is fixed and d varies. The
observed pattern is straightforward: Each eigenvalue grows
linearly with d, but the growth rates differ, as described in
(2) from above.

Given the precedent discussion, we finally propose the
closely related traditional formant spectral features and
embedding configuration eigenvalue patterns as additional
features for distinguishing voiced and voiceless consonants.

• In traditional linguistics and speech engineering, for-
mant spectral features provide a relatively effective
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characterisation of phonemes, but their applicability
has clear limitations. According to [93], the first three
formants (F1, F2, F3, represented by three differently
coloured dashed lines in Fig. 8b) can effectively ex-
plain the acoustic classification of vowels and voiced
consonants. However, they fail for voiceless consonants
and are susceptible to coarticulation interference. By
using the frequency and power intensity of Peak 1, Peak
2, and Peak 3 to form a six-dimensional feature, we
achieved classification accuracies of 93.5% and 94.1%
for classifying voiced and voiceless consonants on the
LJSpeech and TIMIT datasets, respectively.

• In our study of CTDE geometric configuration and PCA
eigenvalues above, we discovered that the eigenvalues
oscillating around stable mean values as the delay
parameter τ varies and together they serve as a robust
invariant. These eigenvalues are independent of τ and
scale proportionally with the embedding dimension
d, making them a potential feature for characterising
intrinsic audio properties. When applied to the same
voiced/voiceless consonant classification task on the
LJSpeech and TIMIT datasets, this method achieved
accuracies of 88.1% and 87.2%, respectively. Although
slightly lower than traditional linguistic features, NN-
based methods, and TopCap, this approach indepen-
dent of PH represents a novel feature worthy of further
investigation.

In conclusion, the complexity of parameter selection in
topological time series analysis lies in balancing theoretical
ideals (e.g., the Perea–Harer framework) with non-periodic
nature of real-world data. While heuristics with fixed pa-
rameters offer pragmatic shortcuts, future work must focus
on adaptive, signal-tailored frameworks. Integrating dimen-
sion reduction, noise-aware persistence criteria, and hybrid
spectral-topological methods could unlock more reliable
and generalisable solutions.

4 DATA AND CODE AVAILABILITY

The data that support the findings of this study are
openly available in SpeechBox [86], ALLSSTAR Corpora, at
https://speechbox.linguistics.northwestern.edu, as well as
LJSpeech [87], TIMIT [88], and LibriSpeech [89].

The source code and supplementary materials for Top-
Cap can be accessed on the GitHub page at https://github.
com/sustech-topology/TopCap.
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SUPPLEMENTARY INFORMATION

00■S.1 Phonetic data, aural perception, and learning topo-
logically
In this section, we first review the basics of phonetic data,
our main objects of study, and explain our scientific ap-
proach towards a distribution space for them based on their
topological features (rather than biomechanical production).
We then review the mechanism of human aural percep-
tion, especially the structure of a cochlea as a biological
Fourier analysis apparatus. This underpins existing audio
and speech signal processing technology. In contrast, our
topological approach to phonetic data extends beyond mere
biomimetic engineering to more comprehensive, robust fea-
ture extraction and learning, as demonstrated in results from
Sec. 2.2.

00■S.1.1 Phonetic data and their distribution
As a research field of linguistics, phonetics studies the pro-
duction as well as the classification of human speech sounds
from the world’s languages. In phonetics, a phoneme is the
smallest basic unit of human speech sounds.1 It is a short
speech segment possessing distinct physical or perceptual
properties. Phonemes are generally classified into two prin-
cipal categories: vowels and consonants. A vowel is defined
as a speech sound pronounced by an open vocal tract with
no significant build-up of air pressure at any point above
the glottis, and at least making some airflow escape through
the mouth. In contrast, a consonant is a speech sound that
is articulated with a complete or partial closure of the vocal
tract and usually forces air through a narrow channel in
one’s mouth or nose.

Unlike vowels which must be pronounced by vibrated
vocal cords, consonants can be further categorised into two
classes according to whether the vocal cords vibrate or not
during articulation. If the vocal cords vibrate, the consonant
is known as a voiced consonant. Otherwise, the consonant is
voiceless. Since vocal cord vibration can produce a stable pe-
riodic signal of air pressure, voiced consonants tend to have
more periodic components than voiceless consonants, which
can in turn be detected by PH as topological characteristics
from phonetic time series data.

Indeed, one of the more heuristic motivations for our
research project is to re-examine (and even revise) the lin-
guistic classifications of phonemes through the mathemat-
ical lens of topological patterns and shape of speech data,
analogous to Carlsson and his collaborators’ seminal work
[S1] on the distribution of image data (cf. Fig.

00■S.1.2 Spectral signal processing and beyond
The transmission of sound to the human auditory system is
a marvel of biological engineering, wherein acoustic waves
are progressively transformed into neural signals. This pro-
cess commences with the external ear channelling sound
waves to the tympanic membrane, which subsequently
induces vibrations in the ossicles of the middle ear—the
malleus, incus, and stapes, constituting the smallest bones
in the human body. These minute oscillations are then

1In the main text and supplementary information, we reserve phone
for a phoneme segmented from a recording of human speech.

Fig. S1: A charted “distribution space” of vowels created by
linguists [S2]. The vertical axis of the chart denotes vowel
height. Vowels pronounced with the tongue lowered are
located at the bottom and those raised are at the top. The
horizontal axis of this chart denotes vowel backness. Vowels
with the tongue moved towards the front of the mouth are
in the left of the chart, while those towards the back are
placed in the right. The last parameter is whether the lips
are rounded. At each given spot, vowels on the right and
left are rounded and unrounded, respectively.

conveyed to one of the most critical structures in auditory
perception: the cochlea.

 

so so so

Fig. S2: Illustration depicting the distribution of frequencies
along the basilar membrane of the cochlea, which functions
as a natural Fourier analysis device, adapted from Ency-
clopædia Britannica [S3].

The cochlea, in essence, functions as a biological Fourier
analysis apparatus (see Fig. S2). This spiral-shaped, fluid-
filled organ amplifies the incoming sound waves and per-
forms a spectral decomposition of complex acoustic signals.
The cochlea’s architecture is characterised by a gradual vari-
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ation in the radius of its spiral and the mechanical properties
of the basilar membrane that runs along its length. The
basal end of the cochlea, with its rigid basilar membrane
and narrow duct, is optimally tuned to high-frequency
vibrations. In contrast, the apical region, featuring a more
flexible membrane and wider duct, is more responsive to
lower frequencies.

This structural gradient creates a tonotopic organisation
within the cochlea, analogous to the varying tensions of mu-
sical strings producing different pitches. The basilar mem-
brane’s varying mechanical properties result in different re-
gions having distinct resonant frequencies, each maximally
sensitive to a specific range of sound frequencies. Atop
this membrane reside the hair cells, specialised mechanore-
ceptors that transduce mechanical vibrations into electrical
signals, thereby enabling auditory perception. The cochlea’s
spiral configuration, in conjunction with the basilar mem-
brane’s properties, constitutes a natural, passive mechani-
cal Fourier analyser. This biological mechanism effectively
distributes frequency components of sound waves along
the length of the cochlea. Consequently, the neural signals
generated by hair cells at different locations along the basilar
membrane correspond to distinct frequency bands of the
original acoustic input.

It is noteworthy that contemporary industrial ap-
proaches to speech signal processing, such as STFT and
MFCC as in Sec. 2.1.2, employ analytical methods that
parallel the cochlea’s function. These techniques decompose
signals into linear combinations of basis functions, mir-
roring the cochlea’s spectral analysis. This convergence of
biological design and signal processing methodology can be
viewed as a triumph of biomimetic engineering.

Intriguingly, our experimental findings have demon-
strated that topological principles can also be leveraged to
extract certain acoustic information. This novel approach
lacks a direct physiological counterpart in current audi-
tory research and established theoretical frameworks. The
potential for topological methods in auditory signal pro-
cessing opens up an exciting new frontier for exploration,
potentially bridging the gap between abstract mathematics
and biological sensory systems. Future investigations in this
domain may yield insights that could revolutionise our un-
derstanding of auditory perception and inspire innovative
signal processing techniques (cf. [S4] and [S5]).

00■S.2 Mathematical generalities of the TDE–PH approach
to time series data
00■S.2.1 Time-delay embedding
Time-delay embedding (TDE) is also known as Takens’
embedding, sliding window embedding, delay embedding,
and delay coordinate embedding. For simplicity, we focus
on 1-dimensional time series. TDE of a real-valued function
f : R → R, with parameters positive integer d and positive
real number τ , is defined to be the vector-valued function

Ed,τf : R → Rd

t 7→
(
f(t), f(t+ τ), . . . , f

(
t+ (d− 1)τ

))
Here, d is the dimension of the target space for the embed-
ding, τ is the delay, and their product d·τ is called the window
size.

According to Takens’ Embedding Theorem[S6], Let M
be a compact smooth manifold of dimension m, and let ϕt :
M → M be a smooth dynamical system. For generic pairs
(ϕt, G), where G : M → R is a smooth observation function,
the delay-coordinate map Ψ : M → Rd defined by

Ψ(x) =
(
G(x), G(ϕτ (x)), G(ϕ2τ (x)), . . . , G(ϕ(d−1)τ (x))

)
is an embedding of M into Rd, provided that d ≥ 2m + 1.
Here, τ > 0 is a fixed time delay, and genericity holds in
both ϕt and G.

Therefore, assumes that our time series data is generated
by an unknown dynamical system evolving on a smooth
manifold and an unknown observation function, i.e., f(t) =
G(ϕt(x0)), the image of the TDE Ed,τf reconstructs the
topological shape of the trajectory of the initial point x0 in
manifold M up to homeomorphism, provided the condition
d ≥ 2m + 1. In particular, when the trajectory converges
to an attractor, the reconstruction quality improves signifi-
cantly. This is because attractors are invariant sets—once a
trajectory enters an attractor, it remains within it indefinitely,
and nearby trajectories asymptotically approach it. More-
over, attractors are minimal in the sense that they cannot be
decomposed into smaller invariant subsets. Consequently,
the reconstructed point cloud becomes denser in the vicinity
of the attractor, leading to a more faithful representation of
the underlying dynamics.

In [S7, Sec. 5], Perea and Harer established that the N -
truncated Fourier series expansion

SNf(t) =
N∑

n=0

ak cos(kt) + bk sin(kt)

of a periodic time series f can be reconstructed into a circle
when d ≥ 2N , i.e.,

Ed,τSNf(R) ∼= S1

Moreover, let L be a constant such that

f

(
t+

2π

L

)
= f(t)

Then the 1-dimensional MP of the resulting point cloud
is the largest when the window size d · τ is integrally
proportional to 2π/L, i.e.,

d · τ = m
2π

L

for a positive integer m. Intuitively, an increase in the
dimension of TDE results in a better approximation when
truncating the Fourier series, and the MP of the point cloud
becomes the most significant when the window size equals
a period.

This methodology also proves particularly advantageous
in scenarios where the system under investigation exhibits
nonlinear dynamics, precluding straightforward analysis of
the time series data. Via a suitable embedding, the inherent
geometric configuration of the system emerges, enabling
deeper comprehension and refined analysis.

While standard TDE offers a fundamental approach
for state space reconstruction, its parameter selection faces
critical constraints requiring N ≥ (d − 1)τ . For a discrete
signal f : [N ] → R where [N ] = {0, 1, · · · , N − 1},
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conventional TDE with parameters d and τ generates at
most N − (d− 1)τ embedded points, creating a sample-size
dilemma that severely restricts practical applications with
small series length N or large d and τ values.

To overcome this limitation, we propose a novel circular
time-delay embedding (CTDE) reconstruction method. By
implementing cyclic boundary conditions through modular
arithmetic, CTDE preserves the complete dataset without
truncation. This innovation enables nearly unrestricted pa-
rameter selection, allowing d and τ to explore approxi-
mately the full parameter space from 1 to N . Crucially,
CTDE maintains a constant sample size of N embedded
points regardless of parameter choices, thereby establishing
a consistent and unbiased platform for systematic parameter
optimisation. Formally, the CTDE mapping is defined as:

E◦
d,τf : [N ] → Rd

t 7→
(
f(t mod N), f((t+ τ) mod N), . . . ,

f
(
t+ (d− 1)τ mod N

))
,

where r = a mod n denotes the standard modulo op-
eration returning the unique integer r ∈ [0, n) satisfying
a = kn+ r for some k ∈ Z.

Fig. S3 visualises embedded point clouds generated by
both standard and circular TDE methods, displaying their
3D PCA projections across varying embedding dimensions
and time delays.

00■S.2.2 Persistent homology
Topology is a subject area that studies the properties of
geometric objects that remain unchanged under continuous
transformations or smooth perturbations. It focuses on the
intrinsic features of a space regardless of its rigid shape
or size. Algebraic topology (AT) provides a quantitative
description of these topological properties.

A simplicial complex (and its numerous variants and
analogues) is a powerful tool in AT which enables us to
represent a topological space using discrete data. Unlike
the original space, which can be challenging to compute
and analyse, a simplicial complex provides a combinatorial
description that is much more amenable to computation.
We can use algebraic techniques to study the properties of a
simplicial complex, such as its homology and cohomology
groups, which encode and reveal information about the
topology of the underlying space.

Formally, a simplicial complex with vertices in a set V is
a collection K of nonempty finite subsets σ ⊂ V such that
any nonempty subset τ of σ always implies τ ∈ K (called a
face of σ) and that σ intersecting σ′ implies their intersection
σ ∩ σ′ ∈ K. A set σ ∈ K with (i + 1) elements is called an
i-simplex of the simplicial complex K . For instance, consider
S1 ∨ S2, a circle kissing a sphere at a single point, as a
topology space. It can be approximated by the simplicial
complex K with 6 vertices a, b, c, d, e, f . This simplicial
complex can be enumerated as

K =
{
{a}, {b}, {c}, {d}, {e}, {f},
{a, b}, {a, c}, {b, c}, {c, d}, {c, f}, {d, f}, {c, e},
{d, e}, {f, e},
{c, d, f}, {c, e, f}, {c, d, e}, {d, e, f}

}

which is a combinatorial avatar for S1 ∨ S2 via a “triangula-
tion” operation on the latter. See Fig. S4.

Given a simplicial complex K , let p be a prime number
and Fp be the finite field with p elements. Define Ci(K;Fp)
to be the Fp-vector space with basis the set of i-simplices in
K . To keep track of the order of vertices within a simplex,
we use the alternative notation with square brackets in the
following. If σ = [v0, v1, . . . , vi] is an i-simplex, define the
boundary of σ, denoted by ∂σ, to be the alternating sum of
the (i− 1)-dimensional faces of σ given by

∂σ :=
i∑

k=0

(−1)
k
[v0, . . . , v̂k, . . . , vi]

where [v0, . . . , v̂k, . . . , vi] is the k’th (i−1)-dimensional face
of σ missing the vertex vk. We can extend ∂ to Ci(K;Fp) as
an Fp-linear operator so that ∂ : Ci(K;Fp) → Ci−1(K;Fp).
The composition of boundary operators satisfies ∂ ◦ ∂ = 0.
The elements in Ci(K;Fp) with boundary 0 are called i-
cycles. They form a subspace of Ci(K;Fp), denoted by
Zi(K;Fp). The elements in Ci(K;Fp) that are the images
of elements of Ci+1(K;Fp) under ∂ are called i-boundaries.
They form a subspace too, denoted by Bi(K;Fp). It follows
from ∂ ◦ ∂ = 0 that

Bi(K;Fp) ⊂ Zi(K;Fp)

Then define the quotient space

Hi(K;Fp) := Zi(K;Fp)/Bi(K;Fp)

to be the i’th homology group of K with Fp-coefficients. We
call dim

(
Hi(K;Fp)

)
the i’th Betti number, denoted by βi(K),

which counts the number of i-dimensional holes in the
corresponding topological space. As such, these homology
groups are also called the homology groups of the space (it
can be shown that they are independent of the particular
ways in which the space is triangulated). For example, the
Betti numbers of S1 ∨S2 from above are β1 = 1, β2 = 1, and
βi = 0 when i ⩾ 3.

The usefulness of these invariants, besides their com-
putability (essentially Gaussian elimination in linear alge-
bra), lies in their tractability along deformations. Given two
simplicial complexes K and L, a simplicial map f : K → L
(that preserves the simplicial structure) induces an Fp-linear
map Hi(f ;Fp) : Hi(K;Fp) → Hi(L;Fp). Thus, if two spaces
are topologically equivalent (in fact, “homotopy equivalent”
suffices), their homology groups must be isomorphic and
the Betti numbers match up.

Let (X, d) be a finite point cloud with metric d. Define a
family of simplicial complexes, called Rips complexes, by

Rϵ(X) := {σ ⊂ X | d(x, x′) ≤ ϵ for all x, x′ ∈ σ}

The family
R(X) := {Rϵ(X)}ϵ≥0

is known as the Rips filtration of X . Clearly, if ϵ1 ≤ ϵ2, then
Rϵ1(X) ↪→ Rϵ2(X). Thus, for each i we obtain a sequence

Hi

(
Rϵ0(X);Fp

)
→ Hi

(
Rϵ1(X);Fp

)
→ · · ·
→ Hi

(
Rϵm(X);Fp

)
where 0 = ϵ0 < ϵ1 < · · · < ϵm < ∞. As ϵ varies,
the topological features in the simplicial complexes Rϵ(X)
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Fig. S3: Visualisation of the embedded point clouds via standard TDE and circular TDE, which shows PCA of the embedded
point clouds in 3D as projected from various embedding dimensions and various time delay. The percentages along each
axis represent the explained variance ratio of PCA eigenvalues. Observations reveal that standard TDE methods yield
sparse and scattered points when both embedding dimension (d) and time delay (τ ) are large. a, Standard TDE (fixed d =
10): Time delay τ varies (5, 10, 50, 100), but cannot be increased significantly further. b,Circular TDE (fixed d = 10): Time
delay τ varies (5, 100, 500, 1000), demonstrating greater flexibility. c, Standard TDE (fixed τ = 1): Embedding dimension d
varies (10, 100, 500, 1270). Notably, when d reaches 1270, the point cloud breaks, preventing the formation of a closed cycle
(head-to-tail connection). Consequently, no significant MP can be captured in the phonetic time series. When the embedded
dimension further reaches 1290, an empty 1-dimensional barcode is obtained due to the lack of points necessary to form
even a single cycle. d, Circular TDE (fixed τ = 1): Embedding dimension d varies (10, 100, 500, 1270), showcasing improved
stability.
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Simplicial-Complex Representation

Fig. S4: From a topological space to its triangulation.

vary, resulting in the emergence and disappearance of holes
(cf. Fig. 1d).

Given the values of ϵ, record the instances of emergence
and disappearance of holes, which correspond to cycle
classes in the homology groups along the above sequence.
Each class has a descriptor (b, d) ∈ R2, where b represents
the birth time, d represents the death time, and b−d represents
the lifetime of the holes. In this way, we obtain a multiset

{(bj , dj)}j∈J =: dgmi

(
R(X)

)
which encodes the “persistence” of topological features of
X . This multiset can be represented as a multiset of points
in the 2-dimensional coordinate system called a persistence
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diagram for the i’th PH or as an array of interval segments
called a persistence barcode. In particular, we use maximal
persistence to refer to the maximal lifetime among all the
points in a persistence diagram.

00■S.3 Methods in TopCap
00■S.3.1 Obtaining phonetic data from natural speech
We used speech files sourced from SpeechBox [86],
ALLSSTAR Corpus, task HT1 language English L1 file,
retrieved on 28th January 2023. SpeechBox is a web-based
system providing access to an extensive collection of digital
speech corpora developed by the Speech Communication
Research Group in the Department of Linguistics at North-
western University. This section contains a total of 25 indi-
vidual files, comprising 14 files from women and 11 files
from men. The age range of these speakers spans from 18 to
26 years, with an average of 19.92. Each file is presented in
the WAV format and is accompanied by its corresponding
aligned file in Textgrid format, which features three tiers of
sentences, words, and phones. Collectively, these 25 speech
files amount to a total duration of 41.21 minutes. The speech
file contains each individual reading the same sentences
consecutively for a duration ranging from 80 to 120 seconds,
contingent upon each person’s pace. The original .wav file
has a sampling frequency of 22050 and comprises only one
channel. Since MFA [84] is trained in a sampling frequency
of 16000, we opted to adjust the sampling frequency of
the .wav files accordingly. We then extracted the “words”
tier from Textgrid and aligned words into phones using
English MFA dictionary and acoustic model (MFA version
2.0.6). Thus we obtained corresponding phonetic data from
these speech files.

Subsequently, we used voiced and voiceless consonants
in those segments as our dataset. Voiced consonants are
consonants for which vocal cords vibrate in the throat dur-
ing articulation, while voiceless consonants are pronounced
otherwise (see Sec. 00■S.1 for more details). Specifically, using
Praat [94], we extracted voiced consonants [N], [m], [n],
[j], [l], [v], and [Z]; for voiceless consonants, we selected
[f], [k], [8], [t], [s], and [tS]. These phones were then read
as time series. Our selection was limited to these voiced
and voiceless consonants, as we aimed to balance the ratio
of voiced and voiceless consonant records in these speech
files. Additionally, some consonants, such as [d] and [h],
appeared difficult to classify by our methods.

00■S.3.2 Deriving topological features from phonetic data
Prior to the extraction of topological features from a time
series, we first imbued this 1-dimensional time series with
a (Euclidean) topological structure through TDE. It is note-
worthy that this technique also applies to multi-dimensional
time series. The ambient space throughout this article is
always a Euclidean space. By establishing the topological
structure there, or more precisely, the distance matrices, we
subsequently calculated PH. We elaborate on the following
main steps. See Fig. 3e for the flow chart of this section.
(1) Data cleaning. This involved eliminating the initial and

final segments of a time series until the first point with
an amplitude exceeding 0.03 occurred. This approach
was aimed at mitigating the impact of environmental

noise at the beginning and end of a phone. Any re-
sulting series with fewer than 500 points will be dis-
regarded, as such series were considered insufficiently
long or to contain excessive environmental noise.

(2) Parameter selection for time-delay embedding. We selected
suitable parameters for TDE to capture the theoretically
optimal MP of a given time series. The dimension of
the embedding was fixed to be 100. Our principle for
determining an appropriate dimension is that we want
to choose the embedding dimension to be large for a
time series of limited length. As discussed in Sec. 3
and cf. Sec. 00■S.2.1, a higher dimension results in a more
accurate approximation. This approach also aimed to
enhance computational efficiency and the occurrence
of more prominent MP. Nonetheless, it is imperative
to exercise caution when selecting the dimension, as
excessively large dimensions may lead to empty point
clouds and other uncontrollable factors. For instance,
with a time series consisting of approximately 1200
points, setting the dimension to 100, delay to 5, and
skip to 1 results in around 700 points in the correspond-
ing point cloud. However, increasing the dimension to
200 under the same parameters would yield only 200
points, which may be too few to adequately represent
the original data structure. Thus, the dimension was
chosen to be as large as possible while maintaining
sufficient data points in the point cloud.
With a proper dimension, we then computed the delay
for the embedding. According to Perea and Harer [71],
in the case of a periodic function, the optimal delays τ
can be expressed as

τ = m · T
d

where T denotes the (minimal) period, d represents
the dimension of the embedding, and m is a positive
integer.
Under these conditions, we could obtain the theoreti-
cally optimal MP. The time series under consideration
in our case was far from periodic, however, so we used
the first peak of the ACL function to represent the pe-
riod T and set m = 6, thus obtaining a relatively proper
delay τ . The common choice of τ is to let window size
equal the (minimal) period. However, in the case of a
discrete time series, one often obtains τ = 0 or τ = 1
in this way, since the dimension of TDE is too large in
comparison. Therefore, one strategy is to increase m to
get a relatively reasonable τ . The performance of delay
obtained in this way is presented in Sec. 3.
Then τ was rounded to the nearest integer (if it equals
0, take 1 instead). It was common that τ ·d exceeded the
number of points in the series, resulting in an empty
embedding. In this case, we adopted τ = |S|/d, where
|S| denotes the number of points (i.e., the point capacity
of the time series), and then rounded it downwards.
This enabled us to obtain the appropriate delay for
each time series, thereby facilitating the attainment of
significant MP for the specified dimension.
Lastly, we let skip equal to 5. We chose this skip mainly
to reach a satisfactory computation time. The impact
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of the skip parameter in TDE on MP and computation
time is expounded upon in Sec. 00■S.4.2.
Once the parameters were set, the time series were
transformed into point clouds. If the number |P | of
points in a point cloud was less than 40, we excluded
this time series from further analysis, considering that
there were too few points to represent the original
structure of the time series. The problem of lacking
points is also discussed in Sec. 3.

(3) Computing persistent homology. Using Ripser [95, 96], we
could compute the PDs of the point clouds in a fast
and efficient way. We then extracted MP from each
1-dimensional PD, using persistence birth time and
lifetime as two features of a time series. The process of
vectorising a PD presents a challenge due to the inde-
terminate (and potentially large) number of intervals in
the barcode, coupled with the ambiguous information
they contain. This ambiguity arises from our lack of
knowledge about the types of information that can be
derived from different parts of the PD. Here we only
extracted the MP and corresponding birth time. This
decision was informed by our prior selection of an
appropriate set of parameters, which ensured that the
MP reached its optimal.

00■S.4 More specifics on parameter selection with TopCap

In the realm of applying topological methods to analyse
time series [52, 53, 54, 55, 21, 56, 26], the determination of
parameters for TDE emerges as a pivotal aspect. This stems
from the significant impact that the selection of parameters
has on the resulting topological spaces and their corre-
sponding PDs. There exist several convenient algorithms
for parameter selection. For example, the False Nearest
Neighbours algorithm, a widely utilised tool, provides a
method for deciding the minimal embedding dimension
[85]. However, in the context of PH, usually the objective is
not to achieve a minimal dimension. Contrarily, a dimension
of substantial magnitude may be desirable due to certain
advantages it offers.

00■S.4.1 Embedding dimension and maximal persistence
In the TDE–PH approach, the determination of dimension
in a TDE can be complex. However, it plays a pivotal role
in the extraction of topological descriptors such as MP. It is
observed that a larger dimension can significantly enhance
the theoretically optimal MP of a time series. In TopCap,
the dimension of TDE is set to be 100, a relatively large
dimension for the experiment. On the other hand, several
factors also constrain this choice. These include the length of
the sampled time series, since the dimension cannot exceed
the length (otherwise it would render the resulting point
cloud literally pointless). The constraints also include the
periodicity of the time series, as the time-delay window size
should be compatible with the approximate period of the
time series, which is to be elaborated below.

According to Perea and Harer [71, Proposition 5.1], there
is no information loss for trigonometric polynomials if and
only if the dimension of TDE exceeds twice the maximal fre-
quency. Here, no information loss implies that the original
time series can be fully reconstructed from the embedded

point cloud. In general, for a periodic function, a higher
dimension of TDE can yield a more precise approxima-
tion by trigonometric polynomials. Although there are no
absolutely periodic functions in real data, each time series
exhibits its own pattern of vibration, as discussed in Sec. 2.3,
and a higher dimension of embedding may be employed to
capture a more accurate vibration pattern in the time se-
ries. Furthermore, an increased embedding dimension may
result in reduced computation time for PD. For instance,
computation times for a voiced consonant [N] are 0.2671,
0.2473, and 0.2375 seconds, corresponding to embedding
dimensions 10, 100, and 1000 (see Fig. 8a). This is attributed
to the reduction due to a higher dimension on the number
of points in the embedded point cloud. While this reduction
in computation time may not be considered substantial
compared to the impact of changing skip (see Fig. S5), it
may become significant when handling large datasets. More
importantly, an increased embedding dimension can yield
benefits such as enhanced MP, which serves as a major mo-
tivation for higher dimensions, as well as a smoother shape
of resulting point clouds obtained through TDE, which
makes the embedding visibly reasonable. Typically, for most
algorithms, a lower dimension is preferred due to factors
such as those associated with curse of dimensionality and
computation cost. By contrast, in TopCap, we opt instead
for a higher dimension.

However, the embedding dimension cannot be arbitrar-
ily large. As illustrated in Fig. S3c, when the embedding
dimension escalates to 1270, it becomes unfeasible to capture
a significant MP in the phonetic time series. This results
from a break of the point cloud. When the embedding
dimension further reaches 1280, an empty 1-dimensional
barcode is obtained due to the lack of points necessary to
form even a single cycle. In this way, the dimension of TDE
is related to the length of the time series.

00■S.4.2 Skip, maximal persistence, and persistence execu-
tion time
Computation time assumes a critical role when processing a
substantial volume of data. In this context, the parameter
skip in TDE is considered, as it significantly influences
the number of points within the point clouds, thereby di-
rectly impacting the number of simplices during persistent
filtration and thus the computation time for PD. In this
subsection, we demonstrate that an appropriate increment
in the skip parameter can markedly reduce computation
time. However, it is noteworthy that MP exhibits resilience
to an increase in skip to a certain extent. Consequently, in
this case, it is feasible to augment skip in TDE to expedite
the computation of PD. For details on the complexity of
computing persistent homology, the interested reader may
refer to Zomorodian and Carlsson [S8, Sec. 4.3] as well as
Edelsbrunner et al. [S9, Sec. 4].

Using an example of a sound record of the voiced
consonant [m], we elucidate the relationship between skip,
computation duration, and size of the resulting point
clouds obtained via TDE in Fig. S5. Computation duration
is measured each time after restarting the Jupyter note-
book, on Dell Precision 3581, with CPU Intel® CoreTM

i7-13800H of basic frequency 2.50 GHz and 14 cores.
Computation time means the time for executing the code
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Fig. S5: Given a sound record of the voiced consonant [m], computation time, MP, and the size of point clouds as skip
increases. An increase in skip can lead to a significant reduction in computation time, owing to the reduced size of the
point cloud. However, MP remains resilient to an increase in the skip parameter.

dimension = 10 dimension = 50 dimension = 100
desired delay = 40 desired delay = 8 desired delay = 4

delay skip MP delay skip MP delay skip MP
1 1 0.0610 1 1 0.2834 1 1 0.4270

10 1 0.1299 3 1 0.3021 2 1 0.4337
20 1 0.1312 4 1 0.3054 2 5 0.4146
30 1 0.1281 5 1 0.3058 3 1 0.4357
39 1 0.1229 6 1 0.3042 3 5 0.4120
39 5 0.1134 7 1 0.3052 4 1 0.4381
40 1 0.1290 7 5 0.2886 4 5 0.4139
40 5 0.1195 8 1 0.3093 5 1 0.4375
41 1 0.1200 8 5 0.2928 5 5 0.4105
41 5 0.1153 9 1 0.3091 6 1 0.4347
45 1 0.0940 9 5 0.2913 6 5 0.4114
50 1 0.1226 10 1 0.3069 7 1 0.4380
60 1 0.1315 15 1 0.3070 8 1 0.4378
94 1 empty 18 1 empty 9 1 empty

Tab. S1: MP for choices of dimension, delay, and skip in TDE. The desired delay is computed by the algorithm in Sec. 00■S.3
of Methods. Empty in MP means the delay is too large to obtain point-cloud data.

ripser(Points,maxdim=1). As depicted in Fig. S5, a
substantial reduction in computation time is observed with
an increase in the skip parameter. In contrast, our computa-
tion’s output MP appears stable.

00■S.4.3 Multiple dependency of maximal persistence

As mentioned in the main text, there are three crucial pa-
rameters in TDE, namely, d, τ , and skip. In this subsection,
we present a table that delineates the topological descriptor
MP in relation to these from TopCap.

The experiment is executed on a record of the voiced
consonant [N], which comprises 887 sampled points as the
length of this time series. Theoretically, given a periodic
function, one obtains the optimal MP of the function in a
fixed dimension under the condition that the TDE window
size (i.e., the product of dimension and delay) equals a
period (see Sec. 00■S.2.1). However, the phonetic time series
that we typically handle deviate far from being periodic.
Despite our approach to calculating the period of time series
by ACL functions, we cannot assure that the (theoretically
derived) desired delay will indeed yield the optimal MP
of a time series in general. Nevertheless, this desired delay
usually gives relatively good MP. For instance, as illustrated
in Tab. S1, when the dimension is 10, the desired delay is 40.
This corresponds to an MP of 0.1290, which is marginally
lower than the MP of 0.1315 achieved at a delay of 60.

However, as the dimension rises, the point clouds from TDE
become more regular. It becomes increasingly probable that
at the desired delay, one can indeed obtain the optimal MP
of the time series. For example, when the dimension is either
50 or 100, the MP of the time series is achieved at the desired
delay. This provides additional justification for preferring
higher dimensions: The table reveals that an augmentation
in dimension may lead to a more substantial enhancement
in the MP of a time series than simply tuning delay.
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