
As a demonstration of the effectiveness in both accuracy
and efficiency, our streamlined algorithm TopCap
significantly outperformed traditional deep learning neural
networks for the classification of voiced and voiceless
consonants from real human speech data.  Using speech
files from SpeechBox, our topological approach achieved
an average accuracy exceeding 96%. 

We have been experimenting with more extensive
datasets, including LJSpeech, LibriSpeech and TlMIT, as well
as extending comparison of our approach to state-of-the-
art methods to demonstrate its advantages.

Applying topology to deep
learning
Using persistent homology, Carlsson et al. qualitatively
analysed approximately 4.5 x 10⁶ high-contrast local
patches of natural images obtained by Hateren et al. [1].  
In their 2008 article, they discovered that, as vectors of
pixels, the image data were unevenly distributed over a
Klein bottle within the 7-dimensional Euclidean sphere! 
A decade later, Carlsson and his collaborators utilised TDA
to analyse the architecture of CNNs, improving model
explainability [3].  Moreover, they used the Klein-bottle
distribution as a topological input for designing
convolutional layers in neural networks that learn image
data and even video data.  Both learnings achieved higher
accuracies with smaller training sets [2]. 

As a warm-up, our research group have reproduced some
of their results.

However, our preliminary work on distribution space for
speech data through “explainable neural networks” has
indicated that the situation is quite different from that of
image data.

Conjecture.  Instead of a universal distribution analogous
to the Klein bottle for local image data, specific
distributions apply to specific languages (or systems of
phones) and are trained through the human brain.
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Motivations
This research drew inspiration from Carlsson and his
collaborators’ discovery of the Klein-bottle distribution of
high-contrast, local patches of natural images [1], as well as
their subsequent work on topological convolutional neural
networks (CNN) for learning image and video data [2, 3].  
By analogy, we aim to understand a topological distribution
space for speech data (cf. Fig. 1), even a directed graph
structure on it modeling the complex network of speech-
signal sequences for practical purposes such as speaker
diarisation, and how these topological inputs may enable
smarter learning.

Topological approaches to
analysing time series data
With applications to speech recognition as one of the
essential components of artificial intelligence, we
established two conceptually novel approaches to address
the challenges and difficulties in analysing nonlinear time
series data, not limited to speech signals.

An apparently paradoxical parameter
selection scheme: high ambient vs.
low intrinsic dimensions
As a specific type of time series, we endow phonetic data
with a point-cloud structure in a high-dimensional
Euclidean space via time-delay embedding (TDE).  At this
preprocessing stage for TDA, selection of the dimension
becomes a critical issue.  Despite the curse of
dimensionality, when the data are embedded in a higher-
dimensional space, the computation will be a little faster,
the point cloud will appear smoother and more regular, and
most importantly, more salient topological features can be
spotted.  Fig. 2 illustrates the complexity involved in
selecting multiple parameters for TDE.

Beyond periodicity: detecting the
“three fundamental variations”
After TDE from above, 1-dimensional persistence diagrams
(PDs) are then computed using persistent homology.  
In many cases, points distributed near the birth–death
diagonal line in a PD are regarded as descriptors of noise
and are often disregarded.  However, using simulated data,
we demonstrated that by noting patterns in these regions,
PD can distinguish three kinds of “fundamental variations”
as finer structures inherent in 
time series data: namely, 
variabilities of frequency, of 
amplitude, and of average line.  
Moreover, it can detect how 
significant they are (Fig. 3).

Figure 2.  The computed topological desciptor of maximal persistence
(MP) per choices of dimension, delay, and skip in TDE.  Empty in MP
means the delay is too large to obtain point-cloud data.  Desired
delay is theoretically deduced according to work of Perea and Harer.

Figure 6.  Machine learning results with topological features.  
a, ROCs of TopCap’s traditional machine learning algorithms with
topological inputs and of CNN without topological inputs.
b, Accuracy and AUC of TopCap vs. those of CNN. 

Figure 8.  Topology of a CNN: emergence of cycles during a
training process (reproduced using GUDHI after Carlsson and
Gabrielsson 2018). 

Based on the approaches above,  we provide a transparent
and broadly applicable methodology, TopCap, to capture
topological features inherent in time series for machine
learning.

Our method: TopCap
In view of the capability of topological methods to discern
vibration patterns in time series, we applied them to
classifying consonant signals into voiced and voiceless
categories.

Rooted in high-dimensional ambient spaces, TopCap is
capable of capturing features rarely detected in datasets
with low intrinsic dimensionality.  Compared to prior
approaches, we obtain descriptors which probe finer
information such as the vibration of a time series.  This
information is then vectorised and fed to multiple machine
learning algorithms to do classification.  The detailed
process of TopCap goes as follows.

Figure 4.  The varied shapes of vowels, voiced/voiceless consonants.

Figure 1.  A charted distribution space of vowels created by linguists
(from the International Phonetic Association).

Figure 3.  1-dimensional PD reveals three fundamental variations.
a, Detecting variation of frequency.  b, Detecting variation of
amplitude.  c, Detecting variation of average line.
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Figure 5.  A pipeline for TopCap.  Here |S| denotes the number of
samples in a time series, |P| denotes the number of points in the
point cloud, and T denotes the (minimal) period of the time
series computed by an autocorrelation-like function.
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In 1966, Mark Kac asked the famous question: 
Can you hear the shape of a drum? 

To hear the shape of a drum is to infer information about the shape of the drumhead from the sound it makes.
In this poster, we mirror the question across senses and address instead: 

Can we see the sound of human speech?
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Figure 7.  A topological CNN for learning image and video data.


