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Architecture designs by Antony Gibbon Inspired~

MOBIUS

The design evolved from the Mobius strip which is a surface with only one side and only one boundary. It has the
mathematical property of being unorientable

The circular interior sits beneath the organic form. Floor to ceiling glass doors circulate the open plan living space and lead
you out to the pool area. A circular kitchen is at the centre point of the Mobius house with a sky light that mirrors the diameter
of the kitchen shape directly above. A twisted staircase leads you up onto the roof terrace that follows the form of the
Hempcrete internal walls of the structure

The large roof top creates another area of equal size to the interior space providing many options for its use as well as an area
to view the surrounding nature. A large eclipse shape swimming pool follows the form of the house, accessed from both sides
of the building. The twisting driveway to the property takes you down into the garage which is situated directly below the
building with a second staircase that takes you back up to the main interior



Architecture designs by Antony Gibbon

MOBIUS

The design evolved from the Mobius strip which is a surface with only one side and only one boundary. It has the
mathematical property of being unorientable

The circular interior sits beneath the organic form. Floor to ceiling glass doors circulate the open plan living space and lead
you out to the pool area. A circular kitchen is at the centre point of the Mobius house with a sky light that mirrors the diameter
of the kitchen shape directly above. A twisted staircase leads you up onto the roof terrace that follows the form of the
Hempcrete internal walls of the structure

The large roof top creates another area of equal size to the interior space providing many options for its use as well as an area
to view the surrounding nature. A large eclipse shape swimming pool follows the form of the house, accessed from both sides
of the building. The twisting driveway to the property takes you down into the garage which is situated directly below the
building with a second staircase that takes you back up to the main interior

TENDRIL GALLERY




Klein bottle




Klein bottle = two M&bius bands glued together!




Klein bottle = two M&bius bands glued together!

Recall:

Ly Y

-




Klein bottle = two M&bius bands glued together!

Recall:

3

Vv
s —




Klein bottle = two M&bius bands glued together!

Recall:

| ]




Klein bottle = two M&bius bands glued together!

Recall:

| : |
} : {

Vv




Klein bottle = two M&bius bands glued together!

I
T

%[ua o&ouj 3/ Pwrf\& e,ol%x,s




Klein bottle = two M&bius bands glued together!

—
T

%(ua o&ouj 3/ Pwr\c e,ol%x,s

]




Klein bottle = two M&bius bands glued together!

—
T

%(ua o&ouj 3/ PMF\L e,olfax,s

%\ua o&ouj 3/ red eoloc\xs



Klein bottle = two M&bius bands glued together!

I
T

%(ua o&ouj 3/ Psmr\.c e,ol%x,s

%\ua o&ouj 3/ red eola(‘,zs




Klein bottle = two M&bius bands glued together!

—
T

%(ua o&ouj 3/ PMF\L e,olfax,s

> < band
O 0 =




Klein bottle = two M&bius bands glued together!

—
S

%(u& o&ouj 3/ Pwr\c e,ol%x,s

> < band
O 0 =




Klein bottle = two M&bius bands glued together!

—
T

%(ua o&ouj 3/ Psmr\.c e,olfax,s

> < band
O 0 =

bamd

NS>



Klein bottle = two M&bius bands glued together!

—
T

%(ua o&ouj 3/ PMF\L e,olfax,s

> < band.
O 0 =

band ’
AN

folhare




Klein bottle = two M&bius bands glued together!

I
T

%(ua o&ouj 3/ Psmr\.c e,olfax,s

> < band
O 0 =

bund, ’ o




Klein bottle = two M&bius bands glued together!

—
T

%(ua o&ouj 3/ PMF\L e,olfax,s

bund, ’ o



Klein bottle = two M&bius bands glued together!

Recall:

| ]
{ .1

%[u& o&ouj 3/ Pw“)\c e,ol%x,s

> < bamd
O 0 =

bund, ’ of s

g I ~AD




Klein bottle = two M&bius bands glued together!

Recall:

| ]
} .1

%[u& o&ouj 3/ Pw‘?\c e,elo(‘x,s

> < bamd
O 0 =

bund ’ of s

In 3D, has to intersect itself!



Can “embed” to 4D without self intersection, though,



Can “embed” to 4D without self intersection, though, analogous to

R
1z

s

-

7



Can “embed” to 4D without self intersection, though, analogous to

R
1z

?M{ (k

/‘» A

é/ to 2D




Can “embed” to 4D without self intersection, though, analogous to

A

4

7




Can “embed” to 4D without self intersection, though, analogous to

A

4

7




Can “embed” to 4D without self intersection, though, analogous to

A

4

7

AW




Can “embed” to 4D without self intersection, though, analogous to

A

4

7

Lift

QV\/W

o 4D

AW




Can “embed” to 4D without self intersection, though, analogous to

A

4

AW




Can “embed” to 4D without self intersection, though, analogous to

A 4
Zz

/ [.t('{i

«\/\/w

n W

3D fo 4D

The common weirdness of M&bius band and Klein bottle is that
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+ An image taken by black and white digital camera can be viewed as a vector, with
one coordinate for each pixel

« Each pixel has a “gray scale” value, can be thought of as a real number (in reality,
takes one of 255 values)

« Typical camera uses tens of thousands of pixels, so images lie in a very high
dimensional space, call it pixel space, P

Mumford asks: What can be said about the set of images I c P one obtains when
one takes many images with a digital camera?

Lee, Mumford, Pedersen: Useful to study /ocal structure of images statistically

3 x 3 patches in images

Observations:

1. Each patch gives a vector in R?

2. Most patches will be nearly constant, or /low contrast, because of the presence
of regions of solid shading in most images

3. Low contrast will dominate statistics, not interesting. High contrast patches
delineate profiles
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patches with mean intensity = 0
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Result: Point cloud data M lying on a sphere in R®

Carlsson-Ishkhanov—de Silva-Zomorodian wish to analyze it with “persistent
homology” to understand it qualitatively

First observation: The points fill out S’ in the sense that every point in S’ is “close”
to a point in M

However, density of points varies a great deal from region to region
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Holography featured prominently in the Beijing Winter Olympics opening ceremony
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A topological classification for intersection singularities of exceptional surfaces in
pseudo-Hermitian systems

Hongwei Jia*, Ruo-Yang Zhang", Jing Hu, Yixin Xiao, Yifei Zhu', C. T. Chan'

Abstract: Exceptional degeneracy plays a pivotal role in the topology of non-Hermitian systems, and
recently many efforts have been devoted to classifying exceptional points and exploring the intriguing
physics. However, intersections of exceptional surfaces, which are commonly present in non-Hermitian
systems with parity-time symmetry or chiral symmetry, were not classified. Here we classify generic
pseudo-Hermitian systems, for which the momentum space is partitioned by exceptional surfaces, and
these surfaces intersect stably in momentum space. The topology of such gapless structure can be
viewed from its quotient space, which is “figure eight,” by considering the equivalence relations of
eigenstates in energy gaps and on exceptional surfaces. We reveal that the topology of such systems
can be described by a free non-Abelian group composed of products of two generators. The topological
invariants in the group are well associated with the spin rotation of eigenstates via adiabatic
transformations. Our classification does not rely on specific bandgaps and is thus a global topological
description. Importantly, the classification predicts a new phase of matter, and can systematically
explain how the exceptional surfaces and their intersections evolve against deformations to the
Hamiltonian. Our work opens a new pathway for designing systems with robust topological phases, and
is potentially a guidance for applications to sensing and lasing devices utilizing exceptional surfaces

and intersections.

Observation oflswallowtail catastrophe singularitylin non-Hermitian bands and
1ts topological origin

Jing Hu, Ruo-Yang Zhang, Yixiao Wang, Yifei Zhu', Hongwei Jia’, C. T. Chan*

Abstract: Exceptional surfaces in non-Hermitian band structures are singular hypersurfaces in
parameter space. Hypersurface singularities can be folds, cusps and intersections, which play central
roles in catastrophe theory. Here we propose that a three-band non-Hermitian system, being non-
reciprocal and defined in three-dimensional space, exhibits swallowtail catastrophe singularity in band
structures. We discover that cusps, intersections and isolated singular lines in the swallowtail
correspond to exceptional lines of order three (EL3), non-defective intersection lines (NIL) of
exceptional surfaces, and nodal lines (NL), respectively. Hence, the swallowtail is an interactive
phenomenon within elementary types of degeneracy lines. To experimentally observe the interaction
behaviour, we realize the model with a topological circuit by incorporating operational amplifiers, with
the parameter space replaced with synthetic di ions that can be iated with circuit el By
characterizing the topology of the singularities with adiabatic transformation of eigenstates, we reveal
that the swallowtail can emerge because these degeneracy lines are topologically associated with each
other. Our finding constitutes the first observation and demonstration of swallowtail catastrophe in non-
Hermitian bands, possibly opening new avenues for the design of systems realizing robust topological
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