



International Day of Mathematics lecture, SUSTech, 2022




Weird surfaces: Möbius band, Klein bottle, and swallowtail

	 	 	 	 	 	 	 	 	 	 	 

        	 		 	 	 	 	 	 	 	            		                                     	Yifei Zhu






What is a Möbius band?


























It is a surface with only one side and only one boundary! 
	 	 	 	 	 	 	 














Where do we SEE a Möbius band?




Let’s RECYCLE!
























The Mobius loop is the unfamiliar name of a very 
familiar symbol: a triangle composed of three arrows 
looping back on themselves in clockwise direction 





This symbol indicates that a product can be recycled, 
but not necessarily that it has been itself produced 
from recycled materials		 	 	 
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    	 	        “成都⾼新区五岔⼦⼤桥的⽹红之路”



    	 	         	           四川省建筑设计研究院，2020


































                   2022打卡点！ 






	       “梅溪湖中国结桥怎么样 - ⼩红书”



2016年9⽉18⽇落成 ，该桥曾被美国CNN评选为⼗⼤“世界最性感建筑”之⼀ 
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“它的设计创意来⾃于‘⽆限之环’—莫
⽐乌斯环的概念，把四维空间中才存
在的⽆限形态，抽象设计到三维空间
中，形成了数学中⽆穷⼤的符号形
象，所以可以说这个形象代表着桥梁
所在的⾼新区⽆限的发展可能。”
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Architecture designs by Antony Gibbon                        Inspired~ 











MOBIUS



The design evolved from the Mobius strip which is a surface with only one side and only one boundary.  It has the 
mathematical property of being unorientable



The circular interior sits beneath the organic form.  Floor to ceiling glass doors circulate the open plan living space and lead 
you out to the pool area.  A circular kitchen is at the centre point of the Mobius house with a sky light that mirrors the diameter 
of the kitchen shape directly above.  A twisted staircase leads you up onto the roof terrace that follows the form of the 
Hempcrete internal walls of the structure



The large roof top creates another area of equal size to the interior space providing many options for its use as well as an area 
to view the surrounding nature.  A large eclipse shape swimming pool follows the form of the house, accessed from both sides 
of the building.  The twisting driveway to the property takes you down into the garage which is situated directly below the 
building with a second staircase that takes you back up to the main interior
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you out to the pool area.  A circular kitchen is at the centre point of the Mobius house with a sky light that mirrors the diameter 
of the kitchen shape directly above.  A twisted staircase leads you up onto the roof terrace that follows the form of the 
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The circular interior sits beneath the organic form.  Floor to ceiling glass doors circulate the open plan living space and lead 
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Hempcrete internal walls of the structure
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Klein bottle = two Möbius bands glued together!



Recall:















































































































	 	 	 	 	 	 	 	 	 	 	 	 		           Has to intersect itself in 3D!




cathead

is
glueang f red edges

iitainman










Klein bottle = two Möbius bands glued together!



Recall:















































































































	 	 	 	 	 	 	 	 	 	 	 	 		           Has to intersect itself in 3D!




i

Fyyx

g.gg

glueang f purpleedges

is
glueang f red edges

It
is a










Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Klein bottle = two Möbius bands glued together!
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Can “embed” to 4D without self intersection, though, analogous to
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The common weirdness of Möbius band and Klein bottle is that 
they are both non-orientable (= one side only!)
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Where do we SEE a Klein bottle?




To be honest we do not see it directly.  Data reveal it for us!






Example: Natural image statistics 
(Lee–Mumford–Petersen 2003, Carlsson–Ishkhanov–de Silva–Zomorodian 2008)






An image taken by black and white digital camera can be viewed as a vector, with •
one coordinate for each pixel




Each pixel has a “gray scale” value, can be thought of as a real number (in reality, •
takes one of 255 values)




Typical camera uses tens of thousands of pixels, so images lie in a very high •
dimensional space, call it pixel space, P

Mumford asks: What can be said about the set of images I ⊆ P one obtains when 
one takes many images with a digital camera?



Lee, Mumford, Pedersen: Useful to study local structure of images statistically





































       	          3 x 3 patches in images



Observations:                                 


Each patch gives a vector in ℝ
1.
Most patches will be nearly constant, or low contrast, because of the presence 2.
of regions of solid shading in most images

Low contrast will dominate statistics, not interesting
3.
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of regions of solid shading in most images
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Each patch gives a vector in ℝ⁹
1.
Most patches will be nearly constant, or low contrast, because of the presence 2.
of regions of solid shading in most images

Low contrast will dominate statistics, not interesting.  High contrast patches 3.
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Lee–Mumford–Pedersen study only high contrast patches:




Collect approximately 4.5 × 10  high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
•



Means that data now lies on a 7-D ellipsoid, ≅ S •

 
Result: Point cloud data M lying on a sphere in ℝ





Carlsson–Ishkhanov–de Silva–Zomorodian wish to analyze it with “persistent 
homology” to understand it qualitatively



First observation: The points fill out S  in the sense that every point in S  is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.




Define M[T] ⊆ M by M[T] = {x | x is in T-th percentile of densest points}
•
 

By computing the persistent homology of these M[T]’s, they reveal




5 x 10  points, T = 25:                                                                                             1.
There are 5 independent 1-dimensional cycles on M[T]                                        
Red and green circles do not touch, each touches black circle 
Is there a surface in which this picture fits?

4.5 x 10  points, T = 10:                                                         2.
There are one 0D cycle (connected), two 1D cycles (loops), 
and one 2D cycle (surface)
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There are 5 independent 1-dimensional cycles on M[T]                                        
Red and green circles do not touch, each touches black circle 
Is there a surface in which this picture fits?

4.5 x 10  points, T = 10:                                                         2.
There are one 0D cycle (connected), two 1D cycles (loops), 
and one 2D cycle (surface)
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Lee–Mumford–Pedersen study only high contrast patches:




Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
•
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Result: Point cloud data M lying on a sphere in ℝ
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There are one 0D cycle (connected), two 1D cycles (loops), 
and one 2D cycle (surface)









i

ioffe







Lee–Mumford–Pedersen study only high contrast patches:
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patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•
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First observation: The points fill out S  in the sense that every point in S  is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.




Define M[T] ⊆ M by M[T] = {x | x is in T-th percentile of densest points}
•
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By computing the persistent homology of these M[T]’s, they reveal




5 x 10  points, T = 25:                                                                                             1.
There are 5 independent 1-dimensional cycles on M[T]                                        
Red and green circles do not touch, each touches black circle 
Is there a surface in which this picture fits?

4.5 x 10  points, T = 10:                                                         2.
There are one 0D cycle (connected), two 1D cycles (loops), 
and one 2D cycle (surface)









Émmm







Lee–Mumford–Pedersen study only high contrast patches:
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Lee–Mumford–Pedersen study only high contrast patches:




Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
•



So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸
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homology” to understand it qualitatively



First observation: The points fill out S⁷ in the sense that every point in S⁷ is “close” 
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By computing the persistent homology of these M[T]’s, they reveal




5 x 10  points, T = 25:                                                                                             1.
There are 5 independent 1-dimensional cycles on M[T]                                        
Red and green circles do not touch, each touches black circle 
Is there a surface in which this picture fits?

4.5 x 10  points, T = 10:                                                         2.
There are one 0D cycle (connected), two 1D cycles (loops), 
and one 2D cycle (surface)









icons
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Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
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So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸
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However, density of points varies a great deal from region to region
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obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
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Normalize contrast by dividing by the norm, so obtain patches with norm = 1
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So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸





Carlsson–Ishkhanov–de Silva–Zomorodian wish to analyze it with “persistent 
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There are one 0D cycle (connected), two 1D cycles (loops), 
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obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
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So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸





Carlsson–Ishkhanov–de Silva–Zomorodian wish to analyze it with “persistent 
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First observation: The points fill out S⁷ in the sense that every point in S⁷ is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.
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By computing the persistent homology of these M[T]’s, they reveal
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Lee–Mumford–Pedersen study only high contrast patches:




Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
•



So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸
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First observation: The points fill out S⁷ in the sense that every point in S⁷ is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.
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By computing the persistent homology of these M[T]’s, they reveal
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There are one 0D cycle (connected), two 1D cycles (loops), 
and one 2D cycle (surface)
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Lee–Mumford–Pedersen study only high contrast patches:




Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
•



So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸





Carlsson–Ishkhanov–de Silva–Zomorodian wish to analyze it with “persistent 
homology” to understand it qualitatively



First observation: The points fill out S⁷ in the sense that every point in S⁷ is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.




Define M[T] ⊂ M by M[T] = {x | x is in T-th percentile of densest points}
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By computing the persistent homology of these M[T]’s, they reveal
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There are one 0D cycle (connected), two 1D cycles (loops), 
and one 2D cycle (surface)
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Lee–Mumford–Pedersen study only high contrast patches:




Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
•



So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸





Carlsson–Ishkhanov–de Silva–Zomorodian wish to analyze it with “persistent 
homology” to understand it qualitatively



First observation: The points fill out S⁷ in the sense that every point in S⁷ is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.




Define M[T] ⊂ M by M[T] = {x | x is in T-th percentile of densest points}
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By computing the persistent homology of these M[T]’s, they reveal
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Lee–Mumford–Pedersen study only high contrast patches:




Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
•



So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸





Carlsson–Ishkhanov–de Silva–Zomorodian wish to analyze it with “persistent 
homology” to understand it qualitatively



First observation: The points fill out S⁷ in the sense that every point in S⁷ is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.




Define M[T] ⊂ M by M[T] = {x | x is in T-th percentile of densest points}
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By computing the persistent homology of these M[T]’s, they reveal
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and one 2D cycle (surface)
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Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
•



So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸





Carlsson–Ishkhanov–de Silva–Zomorodian wish to analyze it with “persistent 
homology” to understand it qualitatively



First observation: The points fill out S⁷ in the sense that every point in S⁷ is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.




Define M[T] ⊂ M by M[T] = {x | x is in T-th percentile of densest points}
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By computing the persistent homology of these M[T]’s, they reveal
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Is there a surface in which this picture fits?
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There are one 0D cycle (connected), two 1D cycles (loops), 
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Lee–Mumford–Pedersen study only high contrast patches:




Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
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So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸





Carlsson–Ishkhanov–de Silva–Zomorodian wish to analyze it with “persistent 
homology” to understand it qualitatively



First observation: The points fill out S⁷ in the sense that every point in S⁷ is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.




Define M[T] ⊂ M by M[T] = {x | x is in T-th percentile of densest points}
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Lee–Mumford–Pedersen study only high contrast patches:




Collect approximately 4.5 × 10⁶ high contrast patches from a collection of images •
obtained by van Hateren and van der Schaaf




Normalize mean intensity by subtracting mean from each pixel value to obtain •
patches with mean intensity = 0




Puts data on an 8-dimensional hyperplane, ≅ ℝ⁸
•



Normalize contrast by dividing by the norm, so obtain patches with norm = 1
•



So, data now lie on a 7-dimensional sphere, ≅ S⁷ •

 
Result: Point cloud data M lying on a sphere in ℝ⁸





Carlsson–Ishkhanov–de Silva–Zomorodian wish to analyze it with “persistent 
homology” to understand it qualitatively



First observation: The points fill out S⁷ in the sense that every point in S⁷ is “close” 
to a point in M 
 
However, density of points varies a great deal from region to region



How to analyze?  Set thresholds for M.




Define M[T] ⊂ M by M[T] = {x | x is in T-th percentile of densest points}
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By computing the persistent homology of these M[T]’s, they reveal
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There are 5 independent 1-dimensional cycles on M[T]                                        
Red and green circles do not touch, each touches black circle 
Is there a surface in which this picture fits?

4.5 x 10⁶ points, T = 10:                                                         2.
There are one 0D cycle (connected), two 1D cycles (loops), 
and one 2D cycle (surface)
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   Three circles fit naturally inside the Klein bottle?
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A take-home message:

Klein bottle appears as where local data from digital camera •
images sit.  It is as natural as what you see in everyday life, 
not just an idle game!
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The eccentricity of Möbius band and Klein bottle lie in their unorientability.  

Other weird surfaces contain singularity, such as




Swallowtail 



2D motion visualization in Mathematica
•
3D handicrafted model
•




Where does it come from mathematically?



Let’s consider the polynomial p(x) = x⁴ + a x² + b x + c 
 
Here a, b, c are parameters in ℝ



We wish to see for which values of a, b, c the polynomials p(x) has a double root 
(with multiplicity at least 2, real or complex)



This can be done by setting both p(x) = 0 and p'(x)= 0



We eliminate x and get a polynomial s(a, b, c) of degree 5, called the discriminant



p(x) has a double root precisely when s(a, b, c) = 0



This last equation determines a singular surface in 3D (the abc-space)




3D movie for swallowtail
•



How does it come up in condensed matter physics?





























                  Holography featured prominently in recent Olympic ceremonies 
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   Holography is made possible through special optical devices and materials.



   Swallowtail and other singularities play a pivotal role in designing such.















































Concluding prose: 


























  Thank you, and Happy π Day!
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