










Higher-periodic homotopy types through Lubin–Tate towers



In their recent work, Barthel, Schlank, Stapleton, and Weinstein determined the periodic 
stable homotopy groups of the sphere spectrum rationally.  They made an essential use of 
the structure afforded by perfectoid spaces for computing relevant group cohomology in 
the framework of condensed mathematics.  These spaces appear in an equivariant 
isomorphism between two towers: (1) the Lubin–Tate tower that parametrizes 
deformations of a formal group of fixed height with level structures and (2) the Drinfeld 
tower that parametrizes those for shtukas.  I’m obliged to introduce this exciting 
mathematical landscape to the greater “perfection” community, and appeal for further 
insights and collaborations.  This also includes: (a) my ongoing joint work with Guozhen 
Wang which computes unstable higher-periodic homotopy types integrally, (b) Xuecai 
Ma’s spectral realization of finite levels of the Lubin–Tate tower as non-even commutative 
ring spectra, which generalize Morava, Hopkins, Miller, Goerss, and Lurie’s spectra at the 
ground level, and (c) Hongxiang Zhao’s work which connects Ando’s norm through 
homotopical descent of level structures along the tower, to Coleman’s norm in the context 
of Lubin and Tate’s explicit local class field theory.

https://bicmr.pku.edu.cn/content/show/17-3377.html
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Context and motivations




   p-adic geometry       homotopy theory      topology




In one direction, through a stratification of the moduli stack of formal groups •
by heights and primes, chromatic homotopy theory organizes generalized 
cohomology theories according to their capabilities to detect periodic 
families of elements in the homotopy groups of spheres.




In the opposite direction, homotopical methods, especially the theory of •
infinity categories, have enabled constructions previously ad hoc or 
impossible in algebra and number theory, leading to recent advances in       
p-adic Hodge theory and algebraic K-theory.




Today, we focus on some of the recent progresses in the forward direction, but 
the p-adic geometry involved, as well as the relevant tools, may hopefully be of 
independent interest beyond topology.
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The program of topological modular forms (and higher generalizations)
1.
Recent disproof of Ravenel’s telescope conjecture by Burklund, Hahn, Levy, and Schlank
2.
Recent progress towards structured multiplicative orientations:
3.

  Hahn–Shi

  Burklund–Schlank–Yuan, Balderrama, Senger, Absmeier

  Xuecai Ma (level structures in the derived setting), Jiacheng Liang


4.   Recent computations of the chromatically localized stable homotopy groups of the 
sphere spectrum, after rationalization, by Barthel, Schlank, Stapleton, and Jared Weinstein, 
utilizing the duality between the Lubin–Tate tower and the Drinfeld tower which afford the 
Jacquet–Langlands duality (also the local Langlands duality)
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Analytic geometry and homotopy groups of the K( n )-local sphere 



Let 𝕊 be the sphere spectrum with π0( S ) = colim πn( Sⁿ ) ≅ ℤ.  Given 0 ≤ n ≤ ∞ and 
primes p, let K( n ) = K( n, p ) be the Morava K-theory spectra, which are the 
“prime fields” of the stable ∞-category of spectra (i.e., modules over the sphere 
spectrum S, or the “derived category” of topological spaces).



Theorem (Barthel–Schlank–Stapleton–Weinstein, 2024).  There is an 
isomorphism of graded ℚ-algebras





where the latter is the exterior ℚp-algebra with generators ζ i in degree 1 – 2i. 



Key ingredients in their proof


The Devinatz–Hopkins homotopy fixed point spectral sequence (descent •
spectral sequence) computing the homotopy groups of the K( n )-local sphere

A novel approach to computing the • conti
nuous group cohomology appearing in the E2-
page of that spectral sequence:
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Theorem (Barthel–Schlank–Stapleton–Weinstein ’24).  There is an isomorphism 
of graded ℚ-algebras





where the latter is the exterior ℚp-algebra with generators ζ i in degree 1 – 2i. 



Key ingredients in their proof


The Devinatz–Hopkins homotopy fixed point spectral sequence (descent •
spectral sequence) computing the homotopy groups of the K( n )-local sphere

A novel approach to computing the continuous •
group cohomology appearing in the E2-page of 
that spectral sequence:
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Given a group Γ and a Γ-spectrum X, there is a homotopy-fixed-point spectral 
sequence





(similarly for XhΓ and Xᵗᴳ).



We have and thus obtain



 

Here, En = E( n, p ) is a Morava E-theory spectrum, which is a spectral realization 
of the Lubin–Tate ring (an affinoid) classifying deformations of a formal group G 
of height n over 𝔽p, and its Morava stabilizer group
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Analytic geometry and homotopy groups of the K( n )-local sphere



Recall deformations of a formal group with level structure:
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G = formal group of height h <1 over a perfect ¯eld k of characteristic p > 0

R = complete local ring with residue ¯eld k; nilpotent maximal ideal m; and natural projection ¼ : R ! R=m

deformation of G with a level-¡0(p
n) structure := (G;H) with H a cyclic degree-pn subgroup

deformation of G=k to R := (G; i; ®) with G a formal group over R; i : k ,! R=m; and ® : ¼
¤G »=! i¤G

= Ã : G ! G=H over an extension of R
which lifts the relative Frobenius Frobn : G ! G(p

n)
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Recall moduli spaces for deformations of a formal group with level structures.




Fix a formal group G / k.  Its level-Γ0 ( pʳ ) deformations are classified:

[Lubin–Tate ’66]  for r = 0, by an affine formal scheme Spf A0 of dimension ◦
n – 1 over the Witt ring 𝒪F of k (with F = max. unrf. ext. of p-adic comp. of k).

[Strickland   ’97]  for each r > 0, by an affine formal scheme Spf Ar of finite ◦
rank over A0.




[Goerss–Hopkins–Miller, Strickland ’98]  These moduli spaces are 
topologically realized by the Morava 
E-theory spectrum E  =  En (G / k), i.e., 





[Fargues ’08, Weinstein ’15]  As a 
family of spaces indexed by r, they 
stack into a tower with all levels 
literally:
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Analytic geometry and homotopy groups of the K( n )-local sphere 



Symmetries


The Morava stabilizer group 𝔾n≅𝒪D (with D / F = cent. div. alg. of inv. 1/n).
•
Both GL n( F ) (its congruence subgroups Kr) and D  act on the Lubin–Tate •
tower, realizing the Jacques–Langlands correspondence.

[Faltings, Fargues ’08, Scholze–Weinstein ’13]  There is an equivariant •
isomorphism between the Lubin–Tate tower and another Drinfeld tower 
(parametrizing deformations of shtukas).
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The Morava stabilizer group 𝔾n≅𝒪D (with D / F = cent. div. alg. of inv. 1/n).
•
Both GL n( F ) (its congruence subgroups Kr) and D  act on the Lubin–Tate •
tower, realizing the Jacquet–Langlands correspondence.

[Faltings, Fargues ’08, Scholze–Weinstein ’13]  There is an equivariant •
isomorphism between the Lubin–Tate tower and another Drinfeld tower 
(parametrizing deformations of shtukas).
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Analytic geometry and homotopy groups of the K( n )-local sphere 



Crucial to their work, Barthel, Schlank, Stapleton, and Weinstein leveraged 
these dual towers and computed the group cohomology in the homotopy fixed 
point spectral sequence in the framework of condensed mathematics.









This diagram induces an isomorphism in D(Solid):





In view of a 𝔾n-equivariant splitting π0(En) ≅ W ⊕ Aᶜ, they computed








to conclude that is p-power torsion.  This is a key step.
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Analytic geometry and homotopy groups of the K( n )-local sphere 



Analytic geometries:


Complex analytic geometry
•
Rigid analytic geometry (Tate ’62), including Gross–Hopkins’s set-up
•
Adic spaces (Huber ’94), perfectoid spaces (Scholze ’12)
•
Berkovich spaces (Berkovich ’90)
•



Applications:


Mixed characteristic shtukas and p-adic Hodge theory
•
Local Shimura varieties
•
Geometrization of the local Langlands correspondence
•



Pro-étale cohomology:







Colmez et al.
•
Bosco ’23 
•
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Our related works 



[Wang–Z., in progress]  Aimed at computing unstable chromatic homotopy 
groups of spheres, we have constructed a filtered, equivariant, quasi-syntomic 
sheaf of Koszul complexes over the Lubin–Tate tower.

Moreover, in this case, there are homotopy fixed point spectral sequences, too. 



[Xuecai Ma ’24]  In his Ph.D. thesis, Ma (fully) spectrally realized 
finite levels of the Lubin–Tate tower as non-even commutative ring 
spectra, which generalize the Morava E-theory spectra (due to 
Goerss–Hopkins–Miller, Lurie) at the ground level, in the framework 
of spectral algebraic geometry.

Moreover, he has defined dual Morava E-theory





which may be use to construct alternative homotopy fixed point 
spectral sequences for computations.



[Hongxiang Zhao ’23]  In his undergraduate thesis, Zhao gave explicit evidence 
that, along Lubin–Tate towers, certain norm operators from local class field 
theory have spectral realizations.
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                                        Thank you. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 












Afterthoughts 



Mathematics has become so developed and specialized, that the heavy 
notations of individual subfields make it feel as if each small, distinguished 
group of people set a rule, a roadmap for themselves, their friends and 
descendants to play within.  That said, we must not give up the effort to 
increase the understandability of mathematics across subfields, convey the 
essential ideas, learn and get inspirations from each other, so as to make the 
better of it for the future.

 
 


