Higher-periodic homotopy types through Lubin—Tate towers

In their recent work, Barthel, Schlank, Stapleton, and Weinstein determined the periodic
stable homotopy groups of the sphere spectrum rationally. They made an essential use of
the structure afforded by perfectoid spaces for computing relevant group cohomology in
the framework of condensed mathematics. These spaces appear in an equivariant
isomorphism between two towers: (1) the Lubin-Tate tower that parametrizes
deformations of a formal group of fixed height with level structures and (2) the Drinfeld
tower that parametrizes those for shtukas. I’'m obliged to introduce this exciting
mathematical landscape to the greater “perfection” community, and appeal for further
insights and collaborations. This also includes: (a) my ongoing joint work with Guozhen
Wang which computes unstable higher-periodic homotopy types integrally, (b) Xuecai
Ma’s spectral realization of finite levels of the Lubin-Tate tower as non-even commutative
ring spectra, which generalize Morava, Hopkins, Miller, Goerss, and Lurie’s spectra at the
ground level, and (c) Hongxiang Zhao’s work which connects Ando’s norm through
homotopical descent of level structures along the tower, to Coleman’s norm in the context
of Lubin and Tate’s explicit local class field theory.

https://bicmr.pku.edu.cn/content/show/17-3377.html
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The program of topological modular forms (and higher generalizations)

Recent disproof of Ravenel’s conjecture by Burklund, Hahn, Levy, and Schlank
The categories of spaces and spectra are veritably more topological and less accessible
through algebraic computations. Approximation gets swept under the rug in this talk.
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 In the opposite direction, homotopical methods, especially the theory of
infinity categories, have enabled constructions previously ad hoc or
Impossible in algebra and number theory, leading to recent advances in
and

In this talk, we focus on some of the recent progresses in the forward direction,
but the involved, as well as the relevant , may be of
iIndependent interest beyond topology.
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Given a group I' and a '-spectrum X, there is a homotopy-fixed-point spectral
sequence

Ey' = H* (T, m(X)) = m—s (X"
(similarly for Xar and X" = hcofib(Norm: Xar— X™)).

We have Lgn)S ~ FE'"“"  and thus obtain
Ey' = H5 (G, m(En)) = mo(Lxm)S)

Here, En = E(n,p) is a , Which is a spectral realization
of the (an affinoid) classifying deformations of a formal group G
of height n over Fp. Its Gn = Aut (G) x Gal(F,/F,).
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Recall deformations of a formal group with level structure:

G = formal group of height n < oo over a perfect field k£ of characteristic p > 0
R = complete local ring with residue field k, nilpotent maximal ideal ¢, and natural projection m: R — R/m

deformation of G/k to R := (G, i,«) with G a formal group over R, i: k < R/m, and a: 7°G = i*G

G ™G i*G G

L _l

] e

Speck

Spf R i Spec R/m ————— SpecR/m

deformation of G with a level-I'y(p") structure := (G, H) with H a cyclic degree-p” subgroup

=1: G — G/H over an extension of R ,
which lifts the relative Frobenius Frob": G — G@®")
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Symmetries
- The Morava stabilizer group Gn= b (with D / F = cent. div. alg. of inv. 1/n).

« Both GLn(F) (its congruence subgroups Kr) and D* act on the Lubin-Tate
tower, realizing the
- [Faltings, Fargues '08, Scholze—Weinstein ’13] There is an equivariant
iIsomorphism between the Lubin-Tate tower and another Drinfeld tower
(parametrizing deformations of shtukas).
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Crucial to their work, Barthel, Schlank, Stapleton, and Weinstein leveraged
these and computed the group cohomology in the homotopy-fixed-
point spectral sequence in the framework of

7

This diagram induces an |somorph|sm inD Solld
RT(LTx proéts Opona) " 22 RT (M prost, Oopa) ")
In view of a Gr-equivariant splitting rmo(En) = W ® A<, they computed
(RF(CTK proct; Ocond)hog) ow K o Ax(z1,23,. .., 220-1)[e] B ((A)"P @ K) [¢]

H*(RF(HK proet, Ocond)hGLn(Zp)> ®WK g AK(y17 y37 c 7y2n_1) [6]

to conclude that H_ . (G,, A°) is p-power torsion. This is a key step.
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[Hongxiang Zhao ’23] Zhao gave explicit evidence that, along Lubin—Tate
towers, certain norm operators from have spectral
realizations.
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Afterthoughts

Mathematics has become so developed and specialized, that the heavy
notations of individual subfields make it feel as if each small, distinguished
group of people set a rule, a roadmap for themselves, their friends and
descendants to play within. That said, we must not give up the effort to
increase the understandability of mathematics across subfields, convey the

essential ideas, learn and get inspirations from each other, so as to make the
better of it for the future.



