
The power operation structure on Morava E–theory
of height 2 at the prime 3

YIFEI ZHU

We give explicit calculations of the algebraic theory of power operations for
a specific Morava E–theory spectrum and its K(1)–localization. These power
operations arise from the universal degree-3 isogeny of elliptic curves associated to
the E–theory.

1 Introduction

Suppose E is a commutative S–algebra, in the sense of Elmendorf, Kriz, Mandell and
May [6], and A is a commutative E–algebra. We want to capture the properties and
underlying structure of the homotopy groups π∗A = A∗ of A, by studying operations
associated to the cohomology theory that E represents.

An important family of cohomology operations, called power operations, is constructed
via the extended powers. Specifically, consider the m’th extended power functor

Pm
E (−) := (−)∧Em/Σm : ModE → ModE

on the category of E–modules, which sends an E–module to its m-fold smash product
over E modulo the action by the symmetric group on m letters. The Pm

E (−)’s assemble
together to give the free commutative E–algebra functor

PE(−) :=
∨

m≥0

Pm
E (−) : ModE → AlgE

from the category of E–modules to the category of commutative E–algebras. These
functors descend to homotopy categories. In particular, for any integers d and i, each
α ∈ πd+iPm

E (ΣdE) gives rise to a power operation

Qα : Ad → Ad+i

(cf. Bruner, May, McClure and Steinberger [5, Sections I.2 and IX.1] and Rezk [16,
Section 3]).

Date: July 15, 2024. An error in Section 4 has been corrected thanks to Yifan Wu.
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Under the action of power operations, A∗ is an algebra over some operad in E∗–modules
involving the structure of E∗BΣm for all m. This operad is traditionally called a
Dyer–Lashof algebra, or more precisely, a Dyer–Lashof theory as the algebraic theory
of power operations acting on the homotopy groups of commutative E–algebras (cf. [5,
Chapters III, VIII and IX] and Rezk [14, Section 9]).

A specific case is when E represents a Morava E–theory of height n and A is K(n)–
local. Morava E–theory spectra play a crucial role in modern stable homotopy theory,
particularly in the work of Ando, Hopkins and Strickland on the topological approach
to elliptic genera (see [2]). As recalled in Rezk [16, 1.5], the K(n)–local E–Dyer–
Lashof theory is largely understood based on work of those authors. In [16], Rezk maps
out the foundations of this theory. He gives a congruence criterion for an algebra over the
Dyer–Lashof theory [16, Theorem A]. This enables one to study the Dyer–Lashof theory,
which models all the algebraic structure naturally adhering to A∗ , by working with a
certain associative ring Γ as the Dyer–Lashof algebra. Moreover, Rezk provides a
geometric description of this congruence criterion, in terms of sheaves on the moduli
problem of deformations of formal groups and Frobenius isogenies (see [16, Theorem
B]). This connects the structure of Γ to the geometry underlying E , moving one step
forward from a workable object Γ to things that are computable. In a companion paper
[15], Rezk gives explicit calculations of the Dyer–Lashof theory for a specific Morava
E–theory of height n = 2 at the prime 2.

The purpose of this paper is to make available calculations analogous to some of the
results in [15], at the prime 3, together with calculations of the corresponding power
operations on the K(1)–localization of the Morava E–theory spectrum.

1.1 Outline of the paper

As in Rezk [15], the computation of power operations in this paper follows the approach
of Steenrod [18]: one first defines a total power operation, and then uses the computation
of the cohomology of the classifying space BΣm for the symmetric group to obtain
individual power operations. These two steps are carried out respectively in Section 2
and Section 3.

In Section 2, by doing calculations with elliptic curves associated to our Morava
E–theory E , we give formulas for the total power operation ψ3 on E0 and the ring S3

which represents the corresponding moduli problem.

In Section 3, based on calculations of E∗BΣm in Strickland [19] as reflected in the
formula for S3 , we define individual power operations, and derive the relations they
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satisfy. In view of the general structure studied in Rezk [16], we then get an explicit
description of the Dyer–Lashof algebra Γ for K(2)–local commutative E–algebras.

In Section 4, we describe the relationship between the total power operation ψ3 , at
height 2, and the corresponding K(1)–local power operations. We then derive formulas
for the latter from the calculations in Section 2.

Remark 1.1 In Section 2, we do calculations with a universal elliptic curve over all
of the moduli stack which is an affine open subscheme of a weighted projective space
(cf. Proposition 2.1). At the prime 3, the supersingular locus consists of a single closed
point, and the corresponding Morava E–theory arises locally in an affine coordinate
chart of this weighted projective space containing the supersingular locus. In this paper
we choose a particular affine coordinate chart for computing the homotopy groups of
the E–theory spectrum and the power operations; we hope that the generality of the
calculations in Section 2 makes it easier to work with other coordinate charts as well.

Some of the formulas involved in our calculations with this universal elliptic curve are
in fact valid only fiber by fiber over the base scheme (for example, the polynomial ψ3 in
the proof of Proposition 2.2, and the group law algorithm in the proof of Proposition 2.3).
As the base scheme is connected, the statements for the universal elliptic curve follow
by rigidity (see Katz and Mazur [11, Section 2.4]). We write those formulas formally to
streamline the proofs.

Remark 1.2 The ring S3 turns out to be an algebra with one generator over the
base ring where our elliptic curve is defined (cf. Proposition 2.3 (i) and (21)). This
generator appears as a parameter in the formulas for the total power operation ψ3 ,
and is responsible for how the individual power operations are defined and how their
formulas look. Different choices of this parameter result in different bases of the Dyer–
Lashof algebra Γ. The parameter in this paper comes from the relative cotangent space of
the elliptic curve at the identity (see Proposition 2.3 (iv), Corollary 3.2 and Remark 3.4).
This choice is convenient for deriving Adem relations in Proposition 3.6 (iv), and it
fits into the treatment of gradings in Rezk [16, Section 2] (see Definition 3.8 (ii) and
Theorem 3.10). We should point out that our choice is by no means canonical. We
do not know yet, as part of the structure of the Dyer–Lashof algebra, if there is a
canonical basis which is both geometrically interesting and computationally convenient.
Somewhat surprisingly, although it appears to come from different considerations, our
choice has an analog at the prime 2 which coincides with the parameter used in Rezk
[15] (see Remark 2.5 and Remark 3.3). The calculations follow a recipe in hope of
generalizing to other Morava E–theories of height 2; we hope to address these matters
and recognize more of the general patterns based on further computational evidence.
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1.3 Conventions

Let p be a prime, q a power of p, and n a positive integer. We use the symbols

Fq, Zq and Z/n

to denote a field with q elements, the ring of p–typical Witt vectors over Fq , and the
additive group of integers modulo n, respectively.

If R is a ring, then RJxK and R((x)) denote the rings of formal power series and formal
Laurent series over R in the variable x respectively. If I ⊂ R is an ideal, then R∧

I
denotes the completion of R with respect to I .

If E is an elliptic curve and m is an integer, then [m] denotes the multiplication-by-m
map on E , and E[m] denotes the m–torsion subgroup scheme of E .

All formal groups mentioned in this paper are commutative and one-dimensional.

The terminology for the structure of a Dyer–Lashof theory follows Rezk [16, 15]; some
of the notions there are taken in turn from Borger and Wieland [4] and Voevodsky [20].

2 Total power operations

2.1 A universal elliptic curve and a Morava E–theory spectrum

A Morava E–theory of height 2 at the prime 3 has its formal group as the universal
deformation of a height-2 formal group over a perfect field of characteristic 3. Given
a supersingular elliptic curve over such a field, its formal completion at the identity
produces a formal group of height 2. To study power operations for the corresponding
E–theory, we do calculations with a universal deformation of that supersingular elliptic
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curve which is a family of elliptic curves with a Γ1(N)–structure (see Katz and Mazur
[11, Section 3.2]) where N is prime to 3. Here is a specific model for such a universal
family (cf. Husemöller [10, 4(4.6a)]).

Proposition 2.1 Over Z[1/4], the moduli problem of smooth elliptic curves with
a choice of a point of exact order 4 and a nowhere-vanishing invariant 1–form is
represented by

(1) C : y2 + axy + aby = x3 + bx2

with chosen point (0, 0) and 1–form −dx/(2y + ax + ab) = dy/(ay − 3x2 − 2bx) over
the graded ring

S• := Z[1/4][a, b,∆−1]

where |a| = 1, |b| = 2 and ∆ = a2b4(a2 − 16b).

Proof Let P be the chosen point of exact order 4. Since 2P is 2–torsion, the tangent
line of the elliptic curve at P passes through 2P, and the tangent line at 2P passes
through the identity at the infinity. With this observation, the rest of the proof is
analogous to that of Mahowald and Rezk [12, Proposition 3.2].

Over a finite field of characteristic 3, C is supersingular precisely when the quantity

(2) H := a2 + b

vanishes (cf. Silverman [17, V.4.1a]). As (3,H) is a homogeneous maximal ideal of S•

corresponding to the closed subscheme SpecF3 , the supersingular locus consists of a
single closed point, and C restricts to F3 as

C0 : y2 + xy − y = x3 − x2.

From the above universal deformation C of C0 , we next produce a Morava E–theory
spectrum which is 2–periodic. We follow the convention that elements in algebraic
degree n lie in topological degree 2n, and work in an affine étale coordinate chart of
the weighted projective space ProjZ[1/4][a, b] (see Remark 1.1). Define elements u
and c such that

(3) a = uc and b = u2.

Consider the graded ring

S•[u−1] ∼= Z[1/4][a,∆−1][u±1]
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where |u| = 1, and denote by S its subring of elements in degree 0 so that

(4) S ∼= Z[1/4][c, δ−1]

where δ = u−12∆ = c2(c2 − 16). Write

Ŝ := Z9JhK

where

(5) h := u−2H = c2 + 1.

Let i be an element generating Z9 over Z3 with i2 = −1. We may choose

c ≡ i mod (3, h)

and we have
δ ≡ −1 mod (3, h)

where (3, h) is the maximal ideal of the complete local ring Ŝ . Then by Hensel’s lemma,
both c and δ lie in Ŝ , and both are invertible. Thus

Ŝ ∼= S∧(3,h).

Now C restricts to S as

(6) y2 + cxy + cy = x3 + x2.

Let Ĉ be the formal completion of C over S at the identity. It is a formal group
over Ŝ , and its reduction to Ŝ/(3, h) ∼= F9 is a formal group G of height 2 in view
of (5) and (2). By the Serre–Tate theorem (see Katz and Mazur [11, Theorem 2.9.1]),
3–adically the deformation theory of an elliptic curve is equivalent to the deformation
theory of its 3–divisible group, and thus Ĉ is the universal deformation of G in view of
Proposition 2.1. Let E be the E∞–ring spectrum which represents the Morava E–theory
associated to G (see Goerss and Hopkins [7, Corollary 7.6]). Then

(7) E∗ ∼= Z9JhK[u±1]

where u is in topological degree 2.

2.2 Points of exact order 3

To study C in a formal neighborhood of the identity, it is convenient to make a change
of variables. Let

u =
x
y

and v =
1
y
, so x =

u
v

and y =
1
v
.
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The identity of C is then (u, v) = (0, 0), with u a local uniformizer. This coordinate u
corresponds to the element u in (7) via a chosen isomorphism Ĉ ∼= Spf E0(CP∞) of
formal groups over Ŝ ∼= E0 (see Ando, Hopkins and Strickland [2, Definition 1.2]). It
is different from the element u in (3); here |u| = −1. We will use this abuse of notation
and remind the reader when confusion may arise. In uv–coordinates, the equation (1)
of C becomes

(8) v + auv + abv2 = u3 + bu2v.

Proposition 2.2 On the elliptic curve C over S• , the uv–coordinates (d, e) of any
point of exact order 3 satisfy the identities

(9) f (d) = 0

and

(10) e = g(d)

where f , g ∈ S•[u] are given by

f (u) = b4u8 + 3ab3u7 + 3a2b2u6 + (a3b + 7ab2)u5 + (6a2b − 6b2)u4 + 9abu3

+ (−a2 + 8b)u2 − 3au − 3,

g(u) =− 1
a(a2 − 16b)

(
ab3u7 + (3a2b2 − 2b3)u6 + (3a3b − 6ab2)u5 + (a4 + a2b

+ 2b2)u4 + (4a3 − 15ab)u3 + 18bu2 − 12au − 18
)
.

Proof 1 Given the elliptic curve C with equation (1), a point Q is of exact order 3 if
and only if the polynomial

ψ3(x) := 3x4 + (a2 + 4b)x3 + 3a2bx2 + 3a2b2x + a2b3

vanishes at Q (cf. Silverman [17, Exercise 3.7f]). Substituting x = u/v and clearing
the denominators, we get a polynomial

ψ̃3(u, v) := 3u4 + (a2 + 4b)u3v + 3a2bu2v2 + 3a2b2uv3 + a2b3v4.

As Q = (d, e) in uv–coordinates, we then have

(11) ψ̃3(d, e) = 0.

To get the polynomial f , we take v as variable and rewrite (8) as a quadratic equation

(12) abv2 + (−bu2 + au + 1)v − u3 = 0,

1See Appendix A for explicit formulas for the polynomials f̃ , Q1 , R1 , Q2 , R2 , K , L , M and
N that appear in the proof.
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where the leading coefficient ab is invertible in S• = Z[1/4][a, b,∆−1] as ∆ =

a2b4(a2 − 16b). Define

(13) f̃ (u) := ψ̃3(u, v)ψ̃3(u, v̄)

where v and v̄ are formally the conjugate roots of (12) so that we compute f̃ in terms
of u by substituting

v + v̄ =
bu2 − au − 1

ab
and vv̄ = − u3

ab
.

We then factor f̃ over S• as

(14) f̃ (u) = −u4f (u)
a2b

with f the stated polynomial of order 8. We check that f is irreducible by applying
Eisenstein’s criterion to the homogeneous prime ideal (3,H) of S• .

We have f̃ (d) = 0 by (13) and (11). To see f (d) = 0, consider the closed subscheme
D ⊂ C[3] of points of exact order 3. By Katz and Mazur [11, Theorem 2.3.1] it is finite
locally free of rank 8 over S• . By the Cayley–Hamilton theorem, as a global section
of D, u locally satisfies a homogeneous monic equation of order 8, and this equation
locally defines the rank-8 scheme D. Since D is affine, it is then globally defined by
such an equation. In view of f̃ (d) = 0 and (14), we determine this equation, and (up to
a unit in S• ) get the first stated identity (9).

To get the polynomial g, we note that both the quartic polynomial

A(v) := ψ̃3(d, v)

and the quadratic polynomial

B(v) := abv2 + (−bd2 + ad + 1)v − d3

defined from (12) vanish at e, and thus so does their greatest common divisor (gcd).
Applying the Euclidean algorithm (see Appendix A for explicit expressions), we have

A(v) = Q1(v)B(v) + R1(v),

B(v) = Q2(v)R1(v) + R2,

where
R1(v) = K(d)v + L(d)

for some polynomials K and L, and R2 = 0 in view of (9). Thus R1(v) is the gcd of
A(v) and B(v), and hence

K(d)e + L(d) = R1(e) = 0.
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To write e in terms of d from the above identity, we apply the Euclidean algorithm to f
and K . Their gcd turns out to be 1, and thus there are polynomials M and N with

M(u)f (u) + N(u)K(u) = 1.

By (9) we then have N(d)K(d) = 1, and thus

e = −N(d)L(d) = g(d)

where g is as stated.

2.3 A universal isogeny and a total power operation

Proposition 2.3

(i) The universal degree-3 isogeny ψ with source C is defined over the graded ring

S•

3 := S•[κ]
/(

W(κ)
)

where |κ| = −2 and

(15) W(κ) = κ4 − 6
b2 κ

2 +
a2 − 8b

b4 κ− 3
b4 ,

and has target the elliptic curve

C′ : v + a′uv + a′b′v2 = u3 + b′u2v

where

a′ =
1
a

(
(a2b4 − 4b5)κ3 + 4b4κ2 + (−6a2b2 + 20b3)κ+ a4 − 12a2b + 12b2),

b′ = b3.

(ii) The kernel of ψ is generated by a point Q of exact order 3 with coordinates (d, e)
satisfying

κ =− 1
a2 − 16b

(
ab3d7 + (3a2b2 − 2b3)d6 + (3a3b − 6ab2)d5 + (a4

+ a2b + 2b2)d4 + (4a3 − 15ab)d3 + (a2 + 2b)d2 − 12ad − 18
)

= ae − d2.

(16)

(iii) The restriction of ψ to the supersingular locus at the prime 3 is the 3–power
Frobenius endomorphism.

(iv) The induced map ψ∗ on the relative cotangent space of C′ at the identity sends
du to κdu.
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Proof 2 Let P = (u, v) be a point on C , and Q = (d, e) be a point of exact order 3.
Rewriting (8) as

v = u3 + bu2v − auv − abv2,

we express v as a power series in u by substituting this equation into itself recursively.
For the purpose of our calculations, we take this power series up to u12 as an expression
for v, and write e = g(d) as in (10).

Define functions u′ and v′ by

u′ := u(P) · u(P − Q) · u(P + Q),

v′ := v(P) · v(P − Q) · v(P + Q),
(17)

where u(−) and v(−) denote the u–coordinate and v–coordinate of a point respectively.
By computing the group law on C , we express u′ and v′ as power series in u:

u′ = κu + (higher-order terms),

v′ = λu3 + (higher-order terms),
(18)

where the coefficients (κ, λ, etc) involve a, b and d . In particular, in view of (9), we
compute that κ satisfies W(κ) = 0 with |κ| = −2 as stated in (i).

Now define the isogeny ψ : C → C′ by

(19) u
(
ψ(P)

)
:= u′ and v

(
ψ(P)

)
:=

κ3

λ
· v′,

where we introduce the factor κ3/λ so that the equation of C′ will be in the Weierstrass
form. Using (18) (see Appendix B for explicit expressions), we then determine the
coefficients in a Weierstrass equation and get the stated equation of C′ .

We next check the statement of (ii). In view of (19) and (17), the kernel of ψ is the
order-3 subgroup generated by Q. In (16), the first identity is computed in (18); we
then compare it with (10) and get the second identity.

For (iii), recall from Section 2.1 that the supersingular locus at the prime 3 is SpecF3 .
Over F3 , since the group C[3](F3) = 0 by Silverman [17, V.3.1a], Q coincides with
the identity, and thus

u
(
ψ(P)

)
= u(P) · u(P − Q) · u(P + Q) =

(
u(P)

)3
.

As the u–coordinate is a local uniformizer at the identity, ψ then restricts to F3 as the
3–power Frobenius endomorphism.

The statement of (iv) follows by definition of κ in (18).
2See Appendix B for the power series expansion of v and details of the calculations involving

the group law on C that appear in the proof.
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Remark 2.4 In view of Proposition 2.3 (iii), the formal completion of ψ : C → C′ at
the identity of C is a deformation of Frobenius in the sense of Rezk [16, 11.3]. When it
is clear from the context, we will simply call ψ itself a deformation of Frobenius.

Remark 2.5 From (17) and (18) we have

(20) u(P − Q) · u(P + Q) = κ+ u · (higher-order terms).

In particular u(−Q) · u(Q) = κ (cf. Katz and Mazur [11, Proposition 7.5.2 and Section
7.7]). The analog of κ at the prime 2 coincides with the parameter d studied in Rezk
[15, Section 3].

Recall from Section 2.1 that

E0 ∼= Z9JhK = Ŝ ∼= S∧(3,h)

in which c and i are elements with c2 + 1 = h and i2 = −1. Given the graded ring S•

3
in Proposition 2.3 (i), define

(21) S3 := S[α]
/(

w(α)
)

where
w(α) = α4 − 6α2 + (c2 − 8)α− 3

(cf. the definition of S from S• in (4); in particular κ = u−2α where u is defined in (3)).
By Strickland’s theorem [19, Theorem 1.1] and the Serre–Tate theorem [11, Theorem
2.9.1] we have

E0BΣ3/I ∼=
(
S3
)∧

(3,h)

where

(22) I :=
⊕

0<i<3

image
(
E0B(Σi × Σ3−i)

transfer−−−−→ E0BΣ3
)

is the transfer ideal. In view of this and the construction of total power operations for
Morava E–theories in Rezk [16, 3.23], we have the following corollary.

Corollary 2.6 The total power operation

ψ3 : E0 → E0BΣ3/I ∼= E0[α]
/(

w(α)
)

is given by

ψ3(h) = h3 − 27h2 + 201h − 342 + (−6h2 + 108h − 334)α+ (3h − 27)α2

+ (h2 − 18h + 57)α3,

ψ3(c) = c3 − 12c + 12c−1 + (−6c + 20c−1)α+ 4c−1α2 + (c − 4c−1)α3,

ψ3(i) =− i.
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Proof By Proposition 2.3 (i), in xy–coordinates, C′ restricts to S3 as

y2 + c′xy + c′y = x3 + x2

where

c′ =
1
c

(
(c2 − 4)α3 + 4α2 + (−6c2 + 20)α+ c4 − 12c2 + 12

)
.

By Rezk [16, Theorem B], since the above equation is in the form of (6), there is a
correspondence between the restriction to S3 of the universal isogeny ψ , which is a
deformation of Frobenius, and the total power operation ψ3 . In particular ψ3(c) is given
by c′ . As ψ3 is a ring homomorphism, we then get the formula for ψ3(h) = ψ3(c2 + 1).
We also have (

ψ3(i)
)2

= ψ3(−1) = −1,

and thus ψ3(i) = i or −i. By Rezk [16, Propositions 3.25 and 10.5] the value of
ψ3(i) ∈ E0[α]

/(
w(α)

)
, viewed as a cubic polynomial in α , has constant term congruent

to i3 modulo 3. Hence ψ3(i) = −i.

3 Individual power operations

3.1 A composite of deformations of Frobenius

Recall from Proposition 2.3 that over S•

3 we have the universal degree-3 isogeny
ψ : C → C′ = C/G where G is an order-3 subgroup of C ; in particular, ψ is a
deformation of the 3–power Frobenius endomorphism over the supersingular locus. We
want to construct a similar isogeny ψ′ with source C′ so that the composite ψ′ ◦ ψ will
correspond to a composite of total power operations via Rezk [16, Theorem B] (cf. Katz
and Mazur [11, 11.3.1]).

Let G′ := C[3]/G which is an order-3 subgroup of C′ . Recall from Section 2.1 that C
is a universal deformation of a supersingular elliptic curve C0 . Since the 3–divisible
group of C0 is formal, C0[3] is connected. Thus over a formal neighborhood of the
supersingular locus, if G is the unique connected order-3 subgroup of C , G′ is then
the unique connected order-3 subgroup of C′ . As in the proof of Proposition 2.3, we
define ψ′ : C′ → C′/G′ using a point of exact order 3 in G′ (see (17) and (19)), and
ψ′ is then a deformation of Frobenius. Over the supersingular locus, the pair (ψ,ψ′)
is cyclic in standard order in the sense of Katz and Mazur [11, 6.7.7]. We describe it
more precisely as below.
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Proposition 3.1 The following diagram of elliptic curves over S•

3 commutes:

(23)

C C/G = C′

C/C[3] ∼= C/G
C[3]/G = C′

G′

ψ

[−3] ψ′

Proof By Katz and Mazur [11, Theorem 2.4.2], since Proj S•

3 is connected, we need
only show that the locus over which ψ′ ◦ ψ = [−3] is not empty, where by abuse of
notation [−3] denotes the map [−3] on C composed with the canonical isomorphism
from C/C[3] to C′/G′ .

Recall from Section 2.1 that C restricts to the supersingular locus F3 as

C0 : y2 + xy − y = x3 − x2.

By Proposition 2.3 (iii) both ψ and ψ′ restrict as the 3–power Frobenius endomorphism
ψ0 on C0 . By [11, Theorem 2.6.3], in the endomorphism ring of C0 , ψ0 is a root of the
polynomial

(24) X2 − trace(ψ0) · X + 3

with trace(ψ0) an integer satisfying(
trace(ψ0)

)2 ≤ 12.

Moreover by Silverman [17, Exercise 5.10a], since C0 is supersingular, we have

trace(ψ0) ≡ 0 mod 3.

Thus trace(ψ0) = 0, 3 or −3. We exclude the latter two possibilities by checking the
action of ψ0 at the 2–torsion point (1, 0). It then follows from (24) that ψ0 ◦ ψ0 agrees
with [−3] on C0 over F3 .

Analogous to Proposition 2.3 (iv), let κ′ be the element in S•

3 such that (ψ′)∗ sends du
to κ′du. Note that |κ′| = −6.

Corollary 3.2 The following relations hold in S•

3 :

b4κκ′ + 3 = 0

and

κ′ = −κ3 +
6
b2 κ− a2 − 8b

b4 .
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Proof The isogenies in (23) induce maps on relative cotangent spaces at the identity.
For the first stated relation, by Proposition 2.3 (iv) we need only show that [3]∗ sends
du to 3du/b4 , where by abuse of notation [3] denotes the map [3] on C composed with
the canonical isomorphism from C/C[3] to C′/G′ .

For i = 1, 2, 3 and 4, let Qi be a generator for each of the four order-3 subgroups of C .
Each Qi can be chosen as Q in (17), and we denote the corresponding quantity κ in
(18) by κi . Let P = (u, v) be a point on C . Define an isogeny Ψ with source C by

u
(
Ψ(P)

)
:= u(P)

4∏
i=1

(
u(P − Qi) · u(P + Qi)

)
,

v
(
Ψ(P)

)
:= v(P)

4∏
i=1

(
v(P − Qi) · v(P + Qi)

)
.

In view of (20), since [3] has the same kernel as Ψ, we have

(25) [3]∗(du) = s · κ1κ2κ3κ4 · du

where s is a degree-0 unit in S• coming from an automorphism of C over S• . In view
of (15) we have

κ1κ2κ3κ4 = − 3
b4 .

We compute that s = −1 by comparing the restrictions of the two sides of (25) to the
ordinary point corresponding to the homogeneous maximal ideal (5,H) of S• , and then
comparing the restrictions to the point corresponding to (7,H): over both points, [3]∗

becomes the multiplication-by-3 map, and −3/b4 becomes −3 as b = 1 in (6). Thus
[3]∗ sends du to 3du/b4 .

The second stated relation follows by a computation from the first relation and the
relation W(κ) = 0 in Proposition 2.3 (i).

Remark 3.3 As noted in Remark 2.5, the (local) analog of κ at the prime 2 coincides
with the parameter d in Rezk [15, Section 3]. In particular, with the notations in [15,
Section 3] and Mahowald and Rezk [12, Proposition 3.2], d and d′ satisfy an analogous
relation A3dd′ + 2 = 0 which locally reduces to dd′ + 2 = 0 (the analog of the factor s
in the proof of Corollary 3.2 equals 1; cf. Ando [1, Theorem 2.6.4]). These arise as
examples of Baker, González-Jiménez, González and Poonen [3, Lemma 3.21].

Remark 3.4 In view of (23), −ψ′ (composed with the canonical isomorphism on
the target) turns out to be the dual isogeny of ψ (cf. the proof of Katz and Mazur [11,
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Theorem 2.9.4]). By Corollary 3.2 and (2) we have

−κ′ = κ3 − 6
b2 κ+

a2 − 8b
b4 ≡ H

b4 mod (3, κ).

This congruence agrees with the interpretation of H as defined by the tangent map of
the Verschiebung isogeny over F3 (see [11, 12.4.1]).

3.2 Individual power operations

Let A be a K(2)–local commutative E–algebra. By Rezk [16, 3.23] and Corollary 2.6,
we have a total power operation

ψ3 : A0 → A0 ⊗E0 (E0BΣ3/I) ∼= A0[α]
/(

w(α)
)
.

We also have a composite of total power operations

A0
ψ3

−→ A0 ⊗E0 (E0BΣ3/I)
ψ3

−→
(
A0 ⊗E0 (E0BΣ3/I)

)
⊗ψ3

E0[α] (E0BΣ3/I)

∼=
(

A0[α]
/(

w(α)
))

⊗ψ3

E0[α]

(
E0[α]

/(
w(α)

))(26)

where the elements in the target M ⊗ψ3

R N are subject to the equivalence relation

m ⊗ (r · n) ∼
(
m · ψ3(r)

)
⊗ n

for m ∈ M , n ∈ N and r ∈ R, with

ψ3(α) = −α3 + 6α− h + 9

in view of Corollary 3.2, as well as other relations in a usual tensor product.

Definition 3.5 Define individual power operations

Qk : A0 → A0

for k = 0, 1, 2 and 3 by

ψ3(x) = Q0(x) + Q1(x)α+ Q2(x)α2 + Q3(x)α3.

Proposition 3.6 The following relations hold among the individual power operations
Q0 , Q1 , Q2 and Q3 :

(i) Q0(1) = 1, Q1(1) = Q2(1) = Q3(1) = 0;

(ii) Qk(x + y) = Qk(x) + Qk(y) for all k;
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(iii) Commutation relations

Q0(hx) = (h3 − 27h2 + 201h − 342)Q0(x) + (3h2 − 54h + 171)Q1(x)

+ (9h − 81)Q2(x) + 24Q3(x),

Q1(hx) = (−6h2 + 108h − 334)Q0(x) + (−18h + 171)Q1(x) + (−72)Q2(x)

+ (h − 9)Q3(x),

Q2(hx) = (3h − 27)Q0(x) + 8Q1(x) + 9Q2(x) + (−24)Q3(x),

Q3(hx) = (h2 − 18h + 57)Q0(x) + (3h − 27)Q1(x) + 8Q2(x) + 9Q3(x),

Q0(cx) = (c3 − 12c + 12c−1)Q0(x) + (3c − 12c−1)Q1(x) + (12c−1)Q2(x)

+ (−12c−1)Q3(x),

Q1(cx) = (−6c + 20c−1)Q0(x) + (−20c−1)Q1(x) + (−c + 20c−1)Q2(x)

+ (4c − 20c−1)Q3(x),

Q2(cx) = (4c−1)Q0(x) + (−4c−1)Q1(x) + (4c−1)Q2(x) + (−c − 4c−1)Q3(x),

Q3(cx) = (c − 4c−1)Q0(x) + (4c−1)Q1(x) + (−4c−1)Q2(x) + (4c−1)Q3(x),

Qk(ix) = (−i)Qk(x) for all k;
(iv) Adem relations

Q1Q0(x) = (−6)Q0Q1(x) + 3Q2Q1(x) + (6h − 54)Q0Q2(x) + 18Q1Q2(x)

+ (−9)Q3Q2(x) + (−6h2 + 108h − 369)Q0Q3(x)

+ (−18h + 162)Q1Q3(x) + (−54)Q2Q3(x),

Q2Q0(x) = 3Q3Q1(x) + (−3)Q0Q2(x) + (3h − 27)Q0Q3(x) + 9Q1Q3(x),

Q3Q0(x) = Q0Q1(x) + (−h + 9)Q0Q2(x) + (−3)Q1Q2(x)

+ (h2 − 18h + 63)Q0Q3(x) + (3h − 27)Q1Q3(x) + 9Q2Q3(x);
(v) Cartan formulas

Q0(xy) = Q0(x)Q0(y) + 3
(
Q3(x)Q1(y) + Q2(x)Q2(y) + Q1(x)Q3(y)

)
+ 18Q3(x)Q3(y),

Q1(xy) =
(
Q1(x)Q0(y) + Q0(x)Q1(y)

)
+ (−h + 9)

(
Q3(x)Q1(y) + Q2(x)Q2(y) + Q1(x)Q3(y)

)
+ 3

(
Q3(x)Q2(y) + Q2(x)Q3(y)

)
+ (−6h + 54)Q3(x)Q3(y),

Q2(xy) =
(
Q2(x)Q0(y) + Q1(x)Q1(y) + Q0(x)Q2(y)

)
+ 6

(
Q3(x)Q1(y) + Q2(x)Q2(y) + Q1(x)Q3(y)

)
+ (−h + 9)

(
Q3(x)Q2(y) + Q2(x)Q3(y)

)
+ 39Q3(x)Q3(y),

Q3(xy) =
(
Q3(x)Q0(y) + Q2(x)Q1(y) + Q1(x)Q2(y) + Q0(x)Q3(y)

)
+ 6

(
Q3(x)Q2(y) + Q2(x)Q3(y)

)
+ (−h + 9)Q3(x)Q3(y);
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(vi) The Frobenius congruence

Q0(x) ≡ x3 mod 3.

Proof The relations in (i), (ii), (iii) and (v) follow computationally from the formulas
in Corollary 2.6 together with the fact that ψ3 is a ring homomorphism.

For (iv), there is a canonical isomorphism C/C[3] ∼= C of elliptic curves over S• ⊂ S•

3 .
Given the correspondence between deformations of Frobenius and power operations in
Rezk [16, Theorem B], the commutativity of (23) then implies that the composite (26)
lands in A0 . In terms of formulas, we have

ψ3(ψ3(x)
)
= ψ3(Q0(x) + Q1(x)α+ Q2(x)α2 + Q3(x)α3)
=

3∑
k=0

ψ3(Qk(x)
)(
ψ3(α)

)k

=
3∑

k=0

3∑
j=0

QjQk(x)αj(−α3 + 6α− h + 9)k

≡ Ψ0(x) +Ψ1(x)α+Ψ2(x)α2 +Ψ3(x)α3 mod
(
w(α)

)
where each Ψi is an E0 –linear combination of the QjQk ’s. The vanishing of Ψ1(x),
Ψ2(x) and Ψ3(x) gives the three relations in (iv).

For (vi), we note that Q0 is a representative of the Frobenius class in the sense of
Rezk [16, 10.3]. Since A is a K(2)–local commutative E–algebra, the congruence then
follows from [16, Theorem A].

Example 3.7 We have E0S2 ∼= Z9JhK[u]/(u2). Via the isomorphism Spf E0(CP∞) ∼=
Ĉ and in view of the definition of κ in (18), the Qk ’s act canonically on u ∈ E0S2 :

Qk(u) =
{

u, if k = 1,
0, if k ̸= 1.

We then get the values of the Qk ’s on elements in E0S2 from Proposition 3.6 (i)–(iii).

3.3 The Dyer–Lashof algebra

Definition 3.8
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(i) Let i be an element generating Z9 over Z3 with i2 = −1. Define γ to be the
associative ring generated over Z9JhK by elements q0 , q1 , q2 and q3 subject to
the following relations: the qk ’s commute with elements in Z3 ⊂ Z9JhK, and
satisfy commutation relations

q0h = (h3 − 27h2 + 201h − 342)q0 + (3h2 − 54h + 171)q1 + (9h − 81)q2

+ 24q3,

q1h = (−6h2 + 108h − 334)q0 + (−18h + 171)q1 + (−72)q2 + (h − 9)q3,

q2h = (3h − 27)q0 + 8q1 + 9q2 + (−24)q3,

q3h = (h2 − 18h + 57)q0 + (3h − 27)q1 + 8q2 + 9q3,

qki = (−i)qk for all k,

and Adem relations

q1q0 = (−6)q0q1 + 3q2q1 + (6h − 54)q0q2 + 18q1q2 + (−9)q3q2

+ (−6h2 + 108h − 369)q0q3 + (−18h + 162)q1q3 + (−54)q2q3,

q2q0 = 3q3q1 + (−3)q0q2 + (3h − 27)q0q3 + 9q1q3,

q3q0 = q0q1 + (−h + 9)q0q2 + (−3)q1q2 + (h2 − 18h + 63)q0q3

+ (3h − 27)q1q3 + 9q2q3.

(ii) Write ω := π2E , viewed as a free module with one generator u over E0 ∼= Z9JhK.
Define ω as a left γ–module, compatible with its E0 –module structure, by

qk · u :=
{

u, if k = 1,
0, if k ̸= 1.

Remark 3.9 In Definition 3.8 (i), an element r ∈ Z9JhK ∼= E0 corresponds to the
multiplication-by-r operation (see Rezk [16, discussion following Proposition 6.3]),
and each qk corresponds to the individual power operation Qk in Definition 3.5 (also
compare Definition 3.8 (ii) and Example 3.7). Under this correspondence, the relations
in Proposition 3.6 (ii)–(v) describe explicitly the structure of γ as that of a graded
twisted bialgebra over E0 in the sense of [16, Section 5]. The grading of γ comes
from the number of the qk ’s in a monomial. For example, commutation relations are in
degree 1, and Adem relations are in degree 2. Under these relations, γ has an admissible
basis: it is free as a left E0 –module on the elements of the form

qm
0 qk1 · · · qkn

where m, n ≥ 0 (n = 0 gives qm
0 ), and ki = 1, 2 or 3. If we write γ[r] for the degree-r

part of γ , then γ[r] is of rank 1 + 3 + · · ·+ 3r .
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We now identify γ with the Dyer–Lashof algebra of power operations on K(2)–local
commutative E–algebras.

Theorem 3.10 Let A be a K(2)–local commutative E–algebra. Let γ be the graded
twisted bialgebra over E0 in Definition 3.8 (i), and ω be the γ–module in Defini-
tion 3.8 (ii). Then A∗ has the structure of an ω–twisted Z/2–graded amplified γ–ring
in the sense of Rezk [16, Section 2] and [15, 2.5 and 2.6]. In particular,

π∗LK(2)PE(ΣdE) ∼=
(
Fd

)∧
(3,h)

where Fd is the free graded amplified γ–ring with one generator in dimension d .

Formulas for γ aside, this result is due to Rezk [16, 15].

Proof Let Γ be the graded twisted bialgebra of power operations on E0 in Rezk [16,
Section 6]. We need only identify Γ with γ .

There is a direct sum decomposition Γ =
⊕

r≥0 Γ[r] where the summands come from
the completed E–homology of BΣ3r (see [16, 6.2]). As in Remark 3.9, we have a
degree-preserving ring homomorphism

ϕ : γ → Γ, qk 7→ Qk

which is an isomorphism in degrees 0 and 1. We need to show that ϕ is both surjective
and injective in all degrees.

For the surjectivity of ϕ, we use a transfer argument. We have

ν3(|Σ≀r
3 |) = ν3(|Σ3r |) = (3r − 1)/2

where ν3(−) is the 3–adic valuation, and (−)≀r is the r-fold wreath product. Thus
following the proof of [16, Proposition 3.17], we see that Γ is generated in degree 1,
and hence ϕ is surjective.

By Remark 3.9 and Strickland [19, Theorem 1.1], γ[r] and Γ[r] are of the same rank
1 + 3 + · · ·+ 3r as free modules over E0 . Hence ϕ is also injective.

4 K(1)–local power operations

Let F := LK(1)E be the K(1)–localization of E . The following diagram describes the
relationship between K(1)–local power operations on F0 (cf. Hopkins [8, Section 3]
and Bruner, May, McClure and Steinberger [5, Section IX.3]) and the power operation
on E0 in Corollary 2.6:
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E0 E0BΣ3/I

F0 F0BΣ3/J ∼= F0

ψ3

ψ3
F

Here ψ3
F is the K(1)–local power operation induced by ψ3 , and J is the transfer ideal

(cf. (22)). Recall from Proposition 2.3 (i), (21) and Corollary 2.6 that ψ3 arises from
the universal degree-3 isogeny which is parametrized by the ring S•

3 with(
S3
)∧

(3,h)
∼= E0BΣ3/I.

The vertical maps are induced by the K(1)–localization E → F . In terms of homotopy
groups, this is obtained by inverting the generator h and completing at the prime 3 (see
Hovey [9, Corollary 1.5.5]):

E∗ = Z9JhK[u±1] and F∗ = Z9JhK[h−1]∧3 [u±1]

with

F0 = Z9((h))∧3 =

{ ∞∑
n=−∞

knhn

∣∣∣∣∣ kn ∈ Z9, lim
n→−∞

kn = 0

}
.

The formal group Ĉ over E0 has a unique order-3 subgroup after being pulled back to
F0 , and the map

E0BΣ3/I → F0BΣ3/J ∼= F0

classifies this subgroup via the Serre–Tate theorem (see Katz and Mazur [11, Theorem
2.9.1]).3 Along the base change

E0BΣ3/I → F0 ⊗E0 (E0BΣ3/I) → F0BΣ3/J,

the special fiber of the 3–divisible group of Ĉ which consists solely of a formal
component may split into formal and étale components. We want to take the formal
component so as to keep track of the unique order-3 subgroup of the formal group over
F0 . This subgroup gives rise to the K(1)–local power operation ψ3

F .

Recall from (21) that S3 = S[α]
/(

w(α)
)

. Since

w(α) = α4 − 6α2 + (h − 9)α− 3 ≡ α(α3 + h) mod 3,

the equation w(α) = 0 has a unique root α = 0 in F9((h)). By Hensel’s lemma this
unique root lifts to a root in Z9((h))∧3 ; it corresponds to the unique order-3 subgroup of

3Strickland’s theorem [19, Theorem 1.1] does not apply here, as this map is not a local
homomorphism; cf. Mazel-Gee, Peterson and Stapleton [13].
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Ĉ over F0 . Plugging this specific value of α into the formulas for ψ3 in Corollary 2.6,
we then get an endomorphism of the ring F0 . This endomorphism is the K(1)–local
power operation ψ3

F .

Explicitly, with h invertible in F0 , we solve for α from w(α) = 0 by first writing

α = (3 + 6α2 − α4)/(h − 9) = (3 + 6α2 − α4)
∞∑

n=1

9n−1h−n

and then substituting this equation into itself recursively. We plug the power series
expansion for α into ψ3(h) and get

ψ3
F(h) = h3 − 27h2 + 183h − 180 + 186h−1 + 1674h−2 + (lower-order terms).

Similarly, writing h as c2 + 1 in w(α) = 0, we solve for α in terms of c and get

ψ3
F(c) = c3 − 12c − 6c−1 − 84c−3 − 933c−5 − 10956c−7 + (lower-order terms).

Appendices

Here we list long formulas whose appearance in the main body might affect readability.
The calculations involve power series expansions and manipulations of long polynomials
with large coefficients (division, factorization and finding greatest common divisors).
They are done using the software Wolfram Mathematica 8. The commands Reduce and
Solve are used to extract relations out of given identities.

A Formulas in the proof of Proposition 2.2

In the proof of Proposition 2.2, we have

f̃ (u) =− u4

a2b

(
b4u8 + 3ab3u7 + 3a2b2u6 + (a3b + 7ab2)u5 + (6a2b − 6b2)u4

+ 9abu3 + (−a2 + 8b)u2 − 3au − 3
)
,

Q1(v) = ab2v2 + (b2d2 + 2abd − b)v +
b2d4

a
+ 2bd3 + ad2 − 2bd2

a
− d +

1
a
,

R1(v) = (
b3d6

a
+ 2b2d5 + abd4 − 3b2d4

a
+ 2bd3 +

3bd2

a
− 1

a
)v +

b2d7

a
+ 2bd6

+ ad5 − 2bd5

a
+ 2d4 +

d3

a
,
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Q2(v) =
a

(b3d6 + 2ab2d5 + a2bd4 − 3b2d4 + 2abd3 + 3bd2 − 1)2

(
(ab4d6 + 2a2b3d5

+ a3b2d4 − 3ab3d4 + 2a2b2d3 + 3ab2d2 − ab)v − b4d8 − 2ab3d7 − a2b2d6

+ 4b3d6 − ab2d5 + a2bd4 − 6b2d4 + 4abd3 + 4bd2 − ad − 1
)
,

R2 =− ad4

(b3d6 + 2ab2d5 + a2bd4 − 3b2d4 + 2abd3 + 3bd2 − 1)2 (b4d8 + 3ab3d7

+ 3a2b2d6 + a3bd5 + 7ab2d5 + 6a2bd4 − 6b2d4 + 9abd3 − a2d2 + 8bd2

− 3ad − 3),

K(u) =
b3u6

a
+ 2b2u5 + (ab − 3b2

a
)u4 + 2bu3 +

3bu2

a
− 1

a
,

L(u) =
b2u7

a
+ 2bu6 + (a − 2b

a
)u5 + 2u4 +

u3

a
,

M(u) =
b

a2(a2 − 16b)2

(
(10a3b3 − 112ab4)u5 + (19a4b2 − 217a2b3 − 16b4)u4

+ (8a5b − 126a3b2 + 304ab3)u3 + (−a6 + 34a4b − 266a2b2 + 32b3)u2

+ (28a3b − 384ab2)u − 4a4 + 51a2b − 16b2),
N(u) =− 1

a(a2 − 16b)2

(
(10a3b5 − 112ab6)u7 + (29a4b4 − 329a2b5 − 16b6)u6

+ (27a5b3 − 313a3b4 − 48ab5)u5 + (7a6b2 − 15a4b3 − 837a2b4 − 16b5)u4

+ (−a7b + 66a5b2 − 714a3b3 + 528ab4)u3 + (−4a6b + 137a4b2

− 1147a2b3 + 80b4)u2 + (−12a5b + 237a3b2 − 1200ab3)u + a6 − 44a4b

+ 409a2b2 − 48b3).
B Formulas in the proof of Proposition 2.3

In the proof of Proposition 2.3, the power series expansion of v in terms of u (up to
u12 ) is

v = u3 − au4 + (a2 + b)u5 + (−a3 − 3ab)u6 + (a4 + 6a2b + b2)u7 + (−a5 − 10a3b

− 6ab2)u8 + (a6 + 15a4b + 20a2b2 + b3)u9 + (−a7 − 21a5b − 50a3b2

− 10ab3)u10 + (a8 + 28a6b + 105a4b2 + 50a2b3 + b4)u11 + (−a9 − 36a7b

− 196a5b2 − 175a3b3 − 15ab4)u12.

The group law on C satisfies:
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• Given P(u, v), the coordinates of −P are(
− v

u(u + bv)
,− v2

u2(u + bv)

)
;

• Given P1(u1, v1) and P2(u2, v2), the coordinates of −(P1 + P2) are

u3 := ak − bm
1 + bk

− u1 − u2 and v3 := ku3 + m

where

k =
v1 − v2

u1 − u2
and m =

u1v2 − u2v1

u1 − u2
.

Given P(u, v) and Q(d, e), with the above notations and formulas, we have:

• Set

(u1, v1) =
(
− v

u(u + bv)
,− v2

u2(u + bv)

)
and (u2, v2) = (d, e)

so that

P − Q = (u3, v3);

• Set

(u1, v1) = (u, v) and (u2, v2) = (d, e)

so that

P + Q =

(
− v3

u3(u3 + bv3)
,−

v2
3

u2
3(u3 + bv3)

)
.

Plugging the coordinates of P − Q and P + Q into (17), in view of (9), we have in (18)

κ =− 1
a2 − 16b

(
ab3d7 + (3a2b2 − 2b3)d6 + (3a3b − 6ab2)d5 + (a4 + a2b + 2b2)d4

+ (4a3 − 15ab)d3 + (a2 + 2b)d2 − 12ad − 18
)
,

λ =− 1
a2b2(a2 − 16b)

(
(a3b3 − 11ab4)d7 + (3a4b2 − 33a2b3 − 4b4)d6 + (3a5b

− 33a3b2 − 15ab3)d5 + (a6 − 4a4b − 96a2b2 − 4b3)d4 + (6a5 − 80a3b

+ 31ab2)d3 + (10a4 − 153a2b + 20b2)d2 + (3a3 − 117ab)d − 6a2 − 12b
)
.

More extended power series expansions in u for u′ (up to u6 ) and v′ (up to u9 ) are
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needed in (18) to determine the coefficients in the equation of C′ :

u′ =− 1
a2 − 16b

(
(ab3d7 + 3a2b2d6 − 2b3d6 + 3a3bd5 − 6ab2d5 + a4d4 + a2bd4

+ 2b2d4 + 4a3d3 − 15abd3 + a2d2 + 2bd2 − 12ad − 18)u + (−a2b3d7

+ 12b4d7 − 3a3b2d6 + 36ab3d6 − 3a4bd5 + 36a2b2d5 + 4b3d5 − a5d4

+ 5a3bd4 + 94ab2d4 − 6a4d3 + 85a2bd3 − 76b2d3 − 9a3d2 + 136abd2 + 60bd

+ 6a)u2 + (a3b3d7 − 17ab4d7 + 3a4b2d6 − 50a2b3d6 − 8b4d6 + 3a5bd5

− 48a3b2d5 − 27ab3d5 + a6d4 − 7a4bd4 − 150a2b2d4 − 16b3d4 + 7a5d3

− 113a3bd3 + 9ab2d3 + 16a4d2 − 258a2bd2 + 56b2d2 + 15a3d − 237abd

+ 2a2 − 32b)u3 + (−a4b3d7 + 16a2b4d7 + 12b5d7 − 3a5b2d6 + 46a3b3d6

+ 64ab4d6 − 3a6bd5 + 42a4b2d5 + 121a2b3d5 + 4b4d5 − a7d4 + 3a5bd4

+ 209a3b2d4 + 122ab3d4 − 8a6d3 + 114a4bd3 + 248a2b2d3 − 76b3d3

− 24a5d2 + 384a3bd2 − 4ab2d2 − 33a4d + 519a2bd + 60b2d − 18a3

+ 282ab)u4 + (a5b3d7 − 9a3b4d7 − 117ab5d7 + 3a6b2d6 − 24a4b3d6

− 396a2b4d6 − 24b5d6 + 3a7bd5 − 18a5b2d5 − 484a3b3d5 − 111ab4d5 + a8d4

+ 7a6bd4 − 307a4b2d4 − 1038a2b3d4 + 9a7d3 − 73a5bd3 − 1181a3b2d3

+ 573ab3d3 + 33a6d2 − 451a4bd2 − 1236a2b2d2 + 72b3d2 + 54a5d

− 807a3bd − 873ab2d + 36a4 − 570a2b − 48b2)u5 + (−a6b3d7 − 5a4b4d7

+ 337a2b5d7 + 12b6d7 − 3a7b2d6 − 19a5b3d6 + 1064a3b4d6 + 204ab5d6

− 3a8bd5 − 27a6b2d5 + 1164a4b3d5 + 638a2b4d5 + 4b5d5 − a9d4 − 24a7bd4

+ 441a5b2d4 + 3195a3b3d4 + 182ab4d4 − 10a8d3 − 22a6bd3 + 2956a4b2d3

− 645a2b3d3 − 76b4d3 − 43a7d2 + 403a5bd2 + 4594a3b2d2 − 544ab3d2

− 78a6d + 996a4bd + 4014a2b2d + 60b3d − 57a5 + 852a3b + 942ab2)u6),
v′ =− 1

a2b2(a2 − 16b)
(
(a3b3d7 − 11ab4d7 + 3a4b2d6 − 33a2b3d6 − 4b4d6

+ 3a5bd5 − 33a3b2d5 − 15ab3d5 + a6d4 − 4a4bd4 − 96a2b2d4 − 4b3d4

+ 6a5d3 − 80a3bd3 + 31ab2d3 + 10a4d2 − 153a2bd2 + 20b2d2 + 3a3d

− 117abd − 6a2 − 12b)u3 + (−2a4b3d7 + 28a2b4d7 − 6a5b2d6 + 82a3b3d6

+ 28ab4d6 − 6a6bd5 + 78a4b2d5 + 90a2b3d5 − 2a7d4 + 8a5bd4 + 294a3b2d4

+ 20ab3d4 − 14a6d3 + 202a4bd3 + 72a2b2d3 − 32a5d2 + 510a3bd2

− 124ab2d2 − 30a4d + 546a2bd − 6a3 + 204ab)u4 + (3a5b3d7 − 38a3b4d7
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− 107ab5d7 + 9a6b2d6 − 108a4b3d6 − 409a2b4d6 − 4b5d6 + 9a7bd5

− 96a5b2d5 − 590a3b3d5 − 47ab4d5 + 3a8d4 + a6bd4 − 646a4b2d4

− 912a2b3d4 − 4b4d4 + 24a7d3 − 292a5bd3 − 1249a3b2d3 + 639ab3d3

+ 70a6d2 − 1057a4bd2 − 849a2b2d2 + 20b3d2 + 93a5d − 1512a3bd

− 597ab2d + 48a4 − 870a2b − 12b2)u5 + (−4a6b3d7 + 24a4b4d7 + 583a2b5d7

− 12a7b2d6 + 60a5b3d6 + 1923a3b4d6 + 156ab5d6 − 12a8bd5 + 36a6b2d5

+ 2268a4b3d5 + 639a2b4d5 − 4a9d4 − 40a7bd4 + 1256a5b2d4 + 5128a3b3d4

+ 140ab4d4 − 36a8d3 + 229a6bd3 + 5409a4b2d3 − 2227a2b3d3 − 127a7d2

+ 1597a5bd2 + 6835a3b2d2 − 748ab3d2 − 201a6d + 2952a4bd + 5277a2b2d

− 129a5 + 2130a3b + 708ab2)u6 + (5a7b3d7 + 35a5b4d7 − 1754a3b5d7

− 275ab6d7 + 15a8b2d6 + 125a6b3d6 − 5511a4b4d6 − 1833a2b5d6 − 4b6d6

+ 15a9bd5 + 165a7b2d5 − 5988a5b3d5 − 4312a3b4d5 − 103ab5d5 + 5a10d4

+ 130a8bd4 − 2183a6b2d4 − 17022a4b3d4 − 2940a2b4d4 − 4b5d4 + 50a9d3

+ 159a7bd3 − 15035a5b2d3 + 179a3b3d3 + 1703ab4d3 + 206a8d2

− 1708a6bd2 − 25304a4b2d2 + 1431a2b3d2 + 20b4d2 + 363a7d − 4398a5bd

− 23694a3b2d − 1437ab3d + 258a6 − 3816a4b − 7026a2b2 − 12b3)u7

+ (−6a8b3d7 − 164a6b4d7 + 3864a4b5d7 + 3365a2b6d7 − 18a9b2d6

− 522a7b3d6 + 11837a5b4d6 + 13701a3b5d6 + 448ab6d6 − 18a10bd5

− 582a8b2d5 + 12275a6b3d5 + 21828a4b4d5 + 2395a2b5d5 − 6a11d4

− 296a9bd4 + 3283a7b2d4 + 43960a5b3d4 + 30290a3b4d4 + 424ab5d4

− 66a10d3 − 1099a8bd3 + 32246a6b2d3 + 30529a4b3d3 − 17045a2b4d3

− 310a9d2 + 679a7bd2 + 66726a5b2d2 + 24833a3b3d2 − 2192ab4d2 − 588a8d

+ 4809a6bd + 73578a4b2d + 23685a2b3d − 444a7 + 5316a5b + 30936a3b2

+ 1704ab3)u8 + (7a9b3d7 + 392a7b4d7 − 6863a5b5d7 − 17458a3b6d7

− 515ab7d7 + 21a10b2d6 + 1218a8b3d6 − 20647a6b4d6 − 61745a4b5d6

− 6709a2b6d6 − 4b7d6 + 21a11bd5 + 1302a9b2d5 − 20664a7b3d5

− 81924a5b4d5 − 22146a3b5d5 − 183ab6d5 + 7a12d4 + 567a10bd4

− 3982a8b2d4 − 97733a6b3d4 − 158644a4b4d4 − 8392a2b5d4 − 4b6d4

+ 84a11d3 + 2878a9bd3 − 57242a7b2d3 − 160981a5b3d3 + 59447a3b4d3

+ 3223ab5d3 + 442a10d2 + 2563a8bd2 − 142138a6b2d2 − 189134a4b3d2
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+ 18323a2b4d2 + 20b5d2 + 885a9d − 2382a7bd − 179958a5b2d

− 164688a3b3d − 2637ab4d + 696a8 − 5400a6b − 92938a4b2 − 29078a2b3

− 12b4)u9).
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