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We give a formulation for descent of level structures on deformations of formal
groups and study the compatibility between descent and a norm construction.
Under this framework, we generalize Ando’s construction of H∞ complex orien-
tations for Morava E-theories associated to the Honda formal groups over Fp . We
show the existence and uniqueness of such an orientation for any Morava E-theory
associated to a formal group over an algebraic extension of Fp and, in particular,
orientations for a family of elliptic cohomology theories. These orientations cor-
respond to coordinates on deformations of formal groups that are compatible with
norm maps along descent.
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1 Introduction

1.1 Algebraic motivations and statement of results Let R be a commutative ring
with 1 and let A be an algebra over R. Suppose that, as an R-module, A is finitely
generated and free. The norm of A is a map A → R which sends a to det(a·),
the determinant of multiplication by a as an R-linear transformation on A. It is
multiplicative but not additive in general. Such norms appear as an important ingredient
in various contexts: arithmetic moduli of elliptic curves [Katz–Mazur 1985, §1.8 and
§7.7], actions of finite group schemes on abelian varieties [Mumford 2008, §12],
isogenies of one-parameter formal Lie groups over p-adic integer rings [Lubin 1967,
§1]. These norm maps are closely related to construction of quotient objects.

The purpose of this paper is to examine an interaction between norms and the corre-
sponding subobjects, more precisely, a functorial interaction with chains of subobjects,
in the context of Lubin and Tate’s formal deformations [Lubin–Tate 1966]. The func-
toriality amounts to descent of “level structures” on deformations (see §6 and §8). In
this paper, a level structure on a formal group is a choice of finite subgroup scheme,
from which we obtain a quotient morphism of formal groups. A norm map between
their rings of functions then gets involved in making this quotient morphism into a
homomorphism of formal group laws (2.3). This norm construction is compatible with
successive quotient along a chain of subgroups.

On the other hand, given a deformation over a p-adic integer ring, there is a canonical
(i.e., coordinate-free) descent of level structures via Lubin and Tate’s universal deforma-
tions. Strickland studied the representability of this moduli problem [Strickland 1997]
so that the descent can be realized as canonical lifts of Frobenius morphisms (5.13).

Our main result shows the existence and uniqueness of deformations of formal group
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laws (equivalently, formal groups with a choice of coordinate) on which the canonical
lifts of Frobenius coincide with quotient homomorphisms from the norm construc-
tion. We say that these deformations are norm coherent, and call their corresponding
coordinates norm-coherent ones (see §6, specifically Definition 6.21).

Let k be an algebraic extension of Fp , R a complete local ring with residue field
containing k , G a formal group law over k of finite height, and F a deformation of G
to R.

Theorem 1.2 There exists a unique formal group law F′ over R, ⋆-isomorphic to F ,
which is norm coherent. Moreover, when F is a Lubin–Tate universal deformation, F′

is functorial under base change of G/k , under k-isogeny out of G, and under k-Galois
descent.

Cf. Theorem 7.22 and see Proposition 7.1 for a statement in terms of coordinates.

Remark 1.3 In the context of local class field theory via Lubin and Tate’s theory of
complex multiplication [Lubin–Tate 1965], Coleman’s norm operator [Coleman 1979,
Theorem 11] is used to compute norm groups. Walker observed its similarity to the
norm construction above [Walker 2008, Chapter 5]. Specifically, he reformulated the
norm-coherence condition (for a special case) in terms of a particular way in which
Coleman’s norm operator acts [Walker 2008, 5.0.10]. It would be interesting to have a
conceptual understanding of this connection in the generality of Theorem 1.2.

Another instance where norms interact with descent of level structures appears in the
Lubin–Tate tower for a formal group of height 1 (with full level structures) as in
[Weinstein 2016, §2.3]. A natural question would be the relevance of our results with
their situation at a general height, as the two settings are closely related.

1.4 Topological motivations and statement of results The relevance to topology
(and, further, to geometry and mathematical physics) of this functorial interaction
between norms and finite formal subgroup schemes lies, for instance, in having highly
coherent multiplications for genera. These are cobordism invariants of manifolds.
Such multiplications refine the invariants by reflecting symmetries of the geometry
(some known, some conjectural).

A prominent example is the Witten genus for string manifolds, which takes values
in the ring of integral modular forms of level 1. Motivated by this, Hopkins and
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his collaborators developed highly structured multiplicative orientations (i.e., gen-
era for families of manifolds) for elliptic cohomology theories and for a univer-
sal theory of topological modular forms [Hopkins 1995, Hopkins 2002]. In partic-
ular, in [Ando–Hopkins–Strickland 2004], they showed that their sigma orientation
MU⟨6⟩ → E for any elliptic cohomology E is H∞ , a commutativity condition on its
multiplicative structure (2.8).

Their analysis of this H∞ structure was based on [Ando 1995, Ando 1992], where the
algebraic condition of norm coherence had made a first appearance. See specifically
[Ando–Hopkins–Strickland 2004, 1.5 and Remark 4.16]. Specializing to the case of
interest, our algebraic formulation of norm coherence from above is equivalent to the
condition they required (see Proposition 8.17 below). As a topological application,
Theorem 1.2 then produces MU⟨0⟩-orientations that are H∞ for a family of generalized
cohomology theories called Morava E-theories (2.7), including those treated by Ando
and by Ando, Hopkins, Strickland.

Theorem 1.5 Let k and G be as in Theorem 1.2. For the form of Morava E-theory
associated to G/k , there exists a unique MU⟨0⟩-orientation that is an H∞ map.

Cf. Corollary 8.20 for a precise statement about uniqueness.

Remark 1.6 Rezk reminded us that the sigma orientations do not factor through these
H∞ MU⟨0⟩-orientations (8.1).

On the other hand, the coefficient ring of an E-theory (of height 2) is a certain comple-
tion of a ring of modular forms. In [Zhu 2020], as a first step, we related its elements
to certain quasimodular forms (and to mock modular forms) via Rezk’s logarithmic
operations. See also [Rezk 2018, the second remark following Theorem 1.29]. Given
Theorem 1.5, it would be interesting to acquire and analyze more exotic manifold
invariants. In particular, we may investigate an analogue of the modular invariance of
a sigma orientation [Ando–Hopkins–Strickland 2001, 1.3] in view of the uniqueness
in Theorem 1.5.

Remark 1.7 A natural question is whether there exist E∞ complex orientations for
Morava E-theories and, more specifically, whether the orientation in Theorem 1.5
rigidifies to be an E∞ map. See [Hopkins–Lawson 2018] for recent progress on E∞
complex orientations, where the norm-coherence condition appears.

Finally, the expositions in [Rezk 2015] and [Rezk 2018, esp. §4] provide some other
perspectives. See also [Strickland, esp. §29].
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1.8 Outline of the paper In §2, we recall some basic concepts from the theory of
formal groups and homotopy theory, particularly quotient of formal groups (2.3), and
set their notation.

In §3, following a suggestion of Rezk, we introduce an enlarged category of formal
groups (cf. [Katz–Mazur 1985, §4.1]). This viewpoint will be helpful in clarifying
deformations of Frobenius (5.2), descent of level structures (6.8, 6.11), the norm-
coherence condition (6.19), and functoriality of norm coherence (7.21).

In §4 and §5, we give an account for the theorems of Lubin, Tate (4.12) and of
Strickland (5.12) on deformations of formal groups. Our formulation follows Rezk’s
(e.g., in [Rezk 2014, §4]) with an emphasis on formal group laws as well, for we are
concerned with special coordinates. The purpose of these two sections is to provide
a detailed exposition together with a precise setup which is crucial for the notion of
norm coherence to follow in desired generality.

In §6, we introduce the central notion of this paper, norm coherence (6.18–6.29),
building on Ando’s framework [Ando 1995, §2]. We then generalize his theorem and
prove Theorem 1.2 in §7. Our main results are Proposition 7.1 and Theorem 7.22, the
latter stated in a form suggested by Rezk.

In §8, we discuss corresponding topological results for complex orientations, with
(8.1) an introduction of further background on work of Ando, of Ando, Hopkins,
Strickland, and of Ando, Strickland. In (8.3–8.15), we compare the setup for our
results above with Ando, Hopkins, and Strickland’s descent data and norm maps
[Ando–Hopkins–Strickland 2004, Parts 1 and 3]. The purpose is to continue the
exposition from §5 while proving Theorem 1.5.
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ence and related questions from Charles Rezk. A good deal of the theory presented
here was developed in discussions with him, including “norm coherent.” The term is
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often enlightening suggestions.
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1.10 General conventions Unless otherwise indicated, a prime p is fixed throughout.

We often omit the symbol Spf and simply write R for Spf(R) when it appears as a
base scheme. In particular, β∗ means base change from R to S along β : R → S ,
understood as β : Spf(S)→ Spf(R).

We also write ψ∗ for the pullback of functions along a morphism ψ of schemes.

Depending on the context, the symbol / stands for “over” (indicating the structure
morphism of a scheme) or “modulo” (indicating a quotient).

More specific conventions are contained in (2.1) (twice) and (4.1) below, which apply
to sections thereafter.

2 General notions

2.1 Formal groups, coordinates, and formal group laws Let R be a complete local
ring with residue characteristic p > 0. A formal group G over R is a group object in
the category of formal R-schemes, i.e., a pointed formal scheme

G → Spf(R) 0−→ G

satisfying a set of group-like axioms, where 0 denotes the identity section with respect
to the group law. It can be viewed as a covariant functor from the category of complete
local R-algebras (and local homomorphisms) to the category of abelian groups.

Conventions In this paper, all formal groups will be commutative, one-dimensional,
and affine. Let OG be the structure sheaf of G . We will simply write OG for the ring
Γ(G ,OG ) of global sections of OG , and similarly for other sheaves.

A coordinate X on G is a natural isomorphism G
∼−→ Â1 = Â1

R of functors to pointed
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sets. It gives an isomorphism Γ(G ,OG ) ∼= RJXK of augmented R-algebras, as well as
a trivialization of the ideal sheaf IG (0) = OG (−0) of functions on G which vanish at
the identity section 0.

A (one-dimensional commutative) formal group law F over R is a formal power series
in two variables T1 and T2 with coefficients in R, often written T1 +F T2 , which
satisfies a set of abelian-group-like axioms. In particular, the above data of G and X
determines a formal group law G such that

X(P1) +
G

X(P2) = X(P1 +
G

P2)

for any R-points P1 and P2 on G (where we identify an R-point on Â1 with an element
in the maximal ideal of R). To be more explicit, the group map µ and the coordinate
X give a map

Â1 × Â1 ∼←− G × G
µ−→ G

∼−→ Â1

of formal schemes. If Â1 = Spf(RJTK) and Â1 × Â1 = Spf(RJT1,T2K), then these
data determine the formal group law G(T1,T2) = µ∗(T). Conversely, given a formal
group law F , it determines a formal group F = Spf(RJXFK) in a similar way.

Conventions Given the above relationship between a formal group G , a coordinate X ,
and a formal group law G, we will sometimes write a pair (G ,X) for a corresponding
formal group law. Here and throughout the paper, as a visual reminder for the reader,
we use calligraphic letters to denote formal groups and plain letters for formal group
laws.

2.2 Subgroups and isogenies By ( finite) subgroups of a formal group over R, we
mean finite flat closed subgroup schemes. Their points are often defined over an
extension R̃ of R.

An isogeny ψ : G → G ′ over R is a finite flat morphism of formal groups. Along ψ∗ ,
OG becomes a free OG ′ -module of finite rank d , called the degree of ψ . Since the
residue characteristic of R is p, d must be a power of p.

Suppose X and X′ are coordinates on G and G ′ . Then ψ induces a homomorphism
(G ,X)→ (G ′,X′) of formal group laws, i.e., h(T) ∈ T · RJTK such that

h(T1 +
G

T2) = h(T1) +
G′

h(T2)

More explicitly, the composite

Â1 ∼←− G
ψ−→ G ′ ∼−→ Â1
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together with the identities Â1 = Spf(RJTK) on the source and Â1 = Spf(RJT ′K) on
the target determine the homomorphism h(T) = ψ∗(T ′). Thus we will sometimes
abuse notation by writing ψ for h, denote this homomorphism of formal group laws
by ψ : G → G′ , and say it is an isogeny of degree d (cf. [Lubin 1967, 1.6]). By
Weierstrass preparation, h = mn with m ∈ R[T] monic of degree d and n ∈ RJTK
invertible.

2.3 Kernels and quotients The notions of subgroups and of isogenies are connected
as follows.

Given ψ : G → G ′ as above, its kernel K is defined by OK = OG ⊗OG ′ R, where
the tensor product is taken along ψ∗ and the augmentation map of OG ′ . It is naturally
a subgroup of G and has degree d as an effective Cartier divisor in G .

Conversely, given a subgroup D ⊂ G over R̃ of degree pr , there is a corresponding
isogeny fD : G → G /D defined by an equalizer diagram

OG /D OG OG×D

f ∗
D

µ∗

π∗

where µ, π : G × D → G are the group, projection maps, and G /D is naturally a
formal group over R̃. Moreover, given a coordinate X on G ,

XD
:= Norm f ∗

D
(X)

is a coordinate on G /D , where Norm f ∗
D

(X) equals the determinant of multiplication
by X on OG as a finite free OG /D -module via f ∗

D
. Explicitly,

(2.4) f ∗
D

(XD ) =
∏

Q∈D(R̃)

(
X +

G
X(Q)

)
By writing

fD : G→ G/D

as an isogeny of formal group laws, we will always intend the above compatibility
between corresponding coordinates. Sometimes we write more specifically

( fD ,X) : (G ,X)→ (G ,X)/D := (G /D ,XD )

Note that over the residue field of R, (2.4) becomes

(2.5) f ∗
D

(XD ) = X pr

as a formal group over a field of characteristic p has exactly one subgroup of degree
pr . Thus fD is a lift of the relative pr -power Frobenius isogeny.
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For more details, see [Lubin 1967, §1, esp. Theorems 1.4 and 1.5], [Strickland 1997,
§5, esp. Theorem 19] (cf. Remark 8.15 below), and [Ando 1995, §§2.1–2.2].

2.6 Complex cobordism and orientations Let MU⟨0⟩ be the Thom spectrum of the
tautological (virtual) complex vector bundle over Z× BU . We have

π∗(MU⟨0⟩) ∼= π∗(MU)[β±1]

with |β| = 2. More generally, let MU⟨2k⟩ be the Thom spectrum associated to the
(2k − 1)-connected cover BU⟨2k⟩ → Z× BU .

The spectrum MU⟨0⟩ is often written MUP or MP for “periodic” (as can be seen
from its homotopy groups). In fact, MU⟨0⟩ is the Thom spectrum associated to virtual
bundles of any rank, while MU is the Thom spectrum associated to virtual bundles of
rank 0, so that

MU⟨0⟩ =
∨

m∈Z
Σ2mMU

Thus π0(MU⟨0⟩) is the ring of cobordism classes of even dimensional stably almost
complex manifolds. The spectrum MU⟨2⟩ = MU . The homology of MU⟨2k⟩ is
concentrated in even degrees if 0 ≤ k ≤ 3.

Let E be an even periodic ring spectrum. The formal scheme

GE := Spf
(
E0(CP∞)

)
is naturally a formal group over E0(point) = π0(E).

An MU⟨0⟩-orientation for E is a map g : MU⟨0⟩ → E of homotopy commutative ring
spectra. Consider the natural map

CP∞
+ → (CP∞)L → Σ2MU → MU⟨0⟩

where L is the tautological line bundle over CP∞ . Composing with this map, each
MU⟨0⟩-orientation g gives an element Xg ∈ E0(CP∞) whose restriction to the bottom
cell is a generator (because (CP∞)L → MU⟨0⟩ → E is a Thom class), and so
induces an isomorphism E0(CP∞) ∼= π0(E)JXgK. Thus, from an MU⟨0⟩-orientation
g : MU⟨0⟩ → E , this procedure produces a coordinate Xg on GE , and hence a formal
group law (GE ,Xg) over π0(E). In particular, taking E = MU⟨0⟩ with its MU⟨0⟩-
orientation the identity map, we obtain over π0(MU⟨0⟩) the universal formal group
law of Lazard (see [Quillen 1969, Theorem 2] and [Adams 1974, Part II]).

An MU-orientation (or complex orientation) for E is a ring map g : MU → E .
Composing this with (CP∞)L−1 → MU gives an element

ξg ∈ E0((CP∞)L−1) ∼= E2((CP∞)L
) ∼= Ẽ2(CP∞)



10 Yifei Zhu

whose restriction to Ẽ2(S2) ∼= Ẽ0(S0) is 1, since the following diagram commutes.

(CP∞)L−1 MU

S0

η

Thus this procedure produces an “orientation” in the sense of [Adams 1974, Part II,
2.1] from an MU -orientation g : MU → E .

In fact, the procedures from the previous two paragraphs induce bijections between
orientations and corresponding objects [Ando–Hopkins–Strickland 2001, Corollary
2.50, Examples 2.51 and 2.52] (cf. [Ando 2000, Proposition 1.10 (ii)] and [Adams 1974,
Part II, Lemma 4.6]).

2.7 Morava E-theories We now specialize the setup from the previous section to a
family of cohomology theories. Let k be a perfect field of characteristic p, and G be
a formal group over k of finite height n. Associated to this data, there is a generalized
cohomology theory, called a Morava E-theory (of height n at the prime p). It is
represented by an even periodic ring spectrum E = EG . The above association has the
property that the formal group GE = Spf

(
E0(CP∞)

)
is a universal deformation of G

in the sense of Lubin and Tate (see §4 below). We have

π∗(E) ∼= W(k)Ju1, . . . , un−1K[u±1]

where |ui| = 0 and |u| = 2.1

Thus a Morava E-theory spectrum is a topological realization of a Lubin–Tate ring.
Strickland showed that E0(BΣpr )/Itr is a finite free module over π0(E), where Itr is
the ideal generated by the images of transfers from proper subgroups of the symmetric
group Σpr on pr letters. Moreover, this ring classifies degree-pr subgroups of GE

[Strickland 1998, Theorem 1.1] (see §5). Ando, Hopkins, and Strickland then assem-
bled these into a topological realization of descent data for level structures on GE in
[Ando–Hopkins–Strickland 2004, §3.2] (see §8).

When G is the formal group of a supersingular elliptic curve, its corresponding E-
theory (of height 2) is an elliptic cohomology theory [Ando–Hopkins–Strickland 2001,
Definition 1.2] via the Serre–Tate theorem.

1For some purposes, it is convenient to instead have W(k) or |u| = −2 in π∗(E).
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2.8 E∞ and H∞ structures Let Sp be a complete and cocomplete category of
spectra, indexed over some universe, with an associative and commutative smash
product ∧ (e.g., the category of L-spectra in [Elmendorf–Kriz–Mandell–May 1997,
Chapter I]).

An E∞ -ring spectrum is a commutative monoid in Sp. Equivalently, it is an algebra
for the monad D on Sp defined by

D(−) :=
∨

m≥0

Dm(−) :=
∨

m≥0

(−)∧m/Σm

where Σm is the symmetric group on m letters acting on the m-fold smash product.

Weaker than being E∞ , an H∞ -ring spectrum is a commutative monoid in the ho-
motopy category of Sp. It also has a description as an algebra for the monad which
descends from D to the homotopy category. There are power operations Dm on the
homotopy groups of such a spectrum (see [Bruner–May–McClure–Steinberger 1986,
Chapter I]).

Complex cobordism MU and its variants above are E∞ -ring spectra [May 1977, §IV.2].
Morava E-theories E are also E∞ -ring spectra [Goerss–Hopkins 2004, Corollary 7.6].
A morphism of E∞ -ring (or H∞ -ring) spectra is called an E∞ (or H∞ ) map.

3 Categories of formal groups

3.1 The category FG and its subcategories Consider FG whose objects are formal

groups G
f−→ Spf(k) of finite height over variable base fields of characteristic p, and

whose morphisms are commutative squares

(3.2)
G G ′

Spf(k) Spf(k′)

Ψ

f f ′

β

of formal schemes such that the induced morphism of k-schemes

(3.3) G
(Ψ, f )−−−→ G ′ ×

k′
k
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is a homomorphism of formal groups over k .

We also have subcategories FGisog and FGiso when (3.3) is restricted to be an isogeny
or isomorphism. Write FG(k), FGisog(k), and FGiso(k) for the subcategories where the
base field is fixed and β = id in (3.2). In contrast to these subcategories, we think of
FG, FGisog , and FGiso as “wide” categories because of the factorization

(3.4) G G ′ ×k′ k G ′

Spf(k) Spf(k) Spf(k′)

f f ′

β

⌟

Example 3.5 (Frobenius endomorphisms in FGisog ) For our purpose, a key example
of morphisms in FG is the following, where σ is the absolute p-power Frobenius and
Frob is the relative one.

(3.6)

G G (p) G

Spf(k) Spf(k) Spf(k)

Frob

σ

f f

σ

⌟

This is an endomorphism in FGisog on the object G /k . Denote it by Φ. It is not a
morphism in FGisog(k). The composite Φr corresponds to the pr -power Frobenius.

3.7 Canonical factorization of Φr along an isogeny We begin with the following
observation.

Lemma 3.8 Any ψ : G → G ′ in FGisog(k), necessarily of degree pr for some r ≥ 0,
has the same kernel as the relative pr -power Frobenius Frobr : G → G (pr) .

Proof Since its base k is a field of characteristic p, the formal group G has a unique
subgroup of degree pr , namely, the divisor pr[0] = Spf(OG /Xpr

), where X is a
coordinate on G (see (2.3)).
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Thus, given such an isogeny ψ as in the lemma, there is a unique factorization in FGisog

of Φr along ψ as follows, where Φr = Λψ ◦ ψ with Λψ in FGiso .

(3.9)

G G ′ G (pr) G

Spf(k) Spf(k) Spf(k) Spf(k)

ψ ∼

σr

Λψ

⌟

The canonical isomorphisms from G /(pr[0]) to G ′ and G (pr) give the unique isomor-
phism G ′ ∼−→ G (pr) in this diagram.

Correspondingly, between rings of functions on the formal groups, we have

(3.10)
OG OG ′ OG

ψ∗ Λ∗
ψ

σr

Next, recall from linear algebra that the norm of a matrix is its determinant. It is
multiplicative and, together with the trace, appears as a coefficient of the characteristic
polynomial of the matrix and its corresponding linear transformation.

In our context, let R be a commutative ring and S be an R-algebra along the structure
map f : R→ S . Suppose this makes S free of finite rank as an R-module. Define the
norm (map)

Norm f : S→ R

by sending s ∈ S to the determinant of multiplication by s as an R-linear transformation
on S . Observe that it is functorial with respect to restriction of scalars, i.e., given
g : R′ → R with f ′ := f ◦ g, we have Norm f = g ◦ Norm f ′ .

Proposition 3.11 Given (3.9), the map Λ∗
ψ coincides with the norm Normψ∗ : OG →

OG ′ of OG as a finite free module over OG ′ along ψ∗ .

Proof First, consider the case of ψ = Frobr . Let OG = kJXK and OG ′ = kJX′K with
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ψ∗(X′) = X pr
. Let Xi be the roots of the minimal polynomial of X over OG ′ . We have

(3.12) Normψ∗(X) =
pr∏

i=1

Xi = (−1) pr+1X′ = X′

and Normψ∗(c) = c pr
for c ∈ k . Note that in characteristic p, the norm map is

additive and hence a local homomorphism. Thus composing with the k-linear map
ψ∗ , it becomes the absolute pr -power Frobenius σr as follows, where h(pr) is the series
obtained by twisting the coefficients of h with the pr -power Frobenius (cf. (3.10) and
also [Stacks 2020, Tag 0BCX]).

(3.13)
kJXK kJX′K kJXK

ψ∗ Normψ∗

h(pr)(X pr
) h(pr)(X′) h(X)

The claim then follows by the uniqueness of the factorization (3.9).

In general, consider two such isogenies ψ1 and ψ2 out of G , with ψ1 = ι ◦ ψ2 for a
unique k-isomorphism ι. We need only observe that

(3.14) ψ∗
1 ◦ Normψ∗

1
= ψ∗

2 ◦ ι∗ ◦ Normψ∗
1
= ψ∗

2 ◦ Normψ∗
2

where the second equality is by restriction of scalars along ι∗ . With ψ1 = Frobr from
above, the claim for ψ2 follows.

4 Deformations of formal groups

4.1 Setup Let k be a field of characteristic p > 0, and G be a formal group over k
of height n < ∞. Let R be a complete local ring with maximal ideal m and residue
field R/m ⊃ k , and let π : R→ R/m be the natural projection.

Conventions To ease notation, for complete local rings and for objects and morphisms
over them, we will often use subscript 0 to indicate restriction to the special fiber. For
example, R0 := R/m, and F0 := π∗F if F is a formal group over R.

Recall the category FGiso from (3.1). Let us consider a similar category F̃Giso where
the formal groups are over complete local rings instead of fields only. In this category,
an object is a formal group over a complete local ring of the form F → Spf(R) and a
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morphism is a pullback diagram

(4.2)
F F ′

Spf(R) Spf(R′)

Ψ

α

i.e., the induced map F → α∗F ′ is an isomorphism of formal groups over R.

4.3 Deformations and deformation structures Fix G /k from (4.1). A deformation
(F , i, η) of G is a diagram in F̃Giso of the form

(4.4)
F F0 G

Spf(R) Spf(R0) Spf(k)

η

π i

where F0 = π∗F in the morphism on the left. A morphism of deformations
(F , i, η)→ (F , i′, η′) is a commutative diagram (in F̃Giso ) of the form

(4.5)
F F0 G

F ′ F ′
0

η

Ψ Ψ0
η′
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over one of the form

Spf(R) Spf(R0) Spf(k)

Spf(R′) Spf(R′
0)

i

α α0
i′

It is convenient to display the two pieces of data Ψ and α simply as (4.2). Write DefG
iso

for this category of deformations of G .

Given a deformation (F , i, η) in DefG
iso , we call the pair (i, η) a deformation structure

attached to F with respect to G /k , and may simply call F a deformation of G if its
deformation structure is understood.

Example 4.6 (Change of bases) Let β : R → S be a local homomorphism. Given
a deformation (F , i, η) of G to R, writing i′ := β0 ◦ i (as ring homomorphisms), we
obtain an induced deformation (β∗F , i′, η) to S by base change along β ,2 together
with an induced morphism in DefG

iso . In terms of deformation structures, we write
β∗(i, η) := (i′, η).

4.7 ⋆-isomorphisms Upon choosing coordinates (see (2.1)), the definitions in (4.3)
translate directly for formal group laws. Let (F, i, η) and (F′, i′, η′) be deformations of
G/k to R. A ⋆-isomorphism (F, i, η) → (F′, i′, η′) consists of an equality i = i′ and
an isomorphism ψ : F ∼−→ F′ of formal group laws over R such that η′ ◦ψ0 = η , as in
the following commutative diagram over Spf(R)← Spf(R0) i−→ Spf(k).

(4.8) F F0 G

F′ F′
0

η

ψ ψ0
η′

2Here, as an abuse of notation, we also denote by η the pullback of η along β0 .
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We simply call ψ : F → F′ a ⋆-isomorphism if in addition η = η′ so that ψ0 = id.
We use the symbol ⋆

= for this equivalence relation. Clearly it is preserved under base
change.

Example 4.9 (Change of coordinates) Let F/R be a formal group with a deforma-
tion structure (i, η) with respect to G /k . A change of coordinates X 7→ X′ on F over
R results in a ⋆-isomorphism

(
(F ,X), i, η

)
→

(
(F ,X′), i, η′

)
. In particular, if X and

X′ are lifts of the same coordinate on F0 and X 7→ X′ restricts to the identity map,
then η = η′ and so this ⋆-isomorphism gives one between formal group laws.

4.10 Classification of deformations The Lubin–Tate theorem classifies deformations
of formal group laws up to ⋆-isomorphisms [Lubin–Tate 1966, Theorem 3.1].

Let DefG
iso be the category of deformations of G /k from (4.3). Strickland’s coordinate-

free reformulation of the Lubin–Tate theorem states that DefG
iso has a terminal object

[Strickland 1997, Proposition 20] (cf. [Strickland 1997a, Proposition 6.1]). Specifi-
cally, there is a formal group Funiv → Spf(E) with E = EG := W(k)Ju1, . . . , un−1K
which participates in a deformation

Funiv (Funiv)0 G

Spf(E) Spf(E0) Spf(k)

such that, for any deformation (F , i, η) as in (4.4), there is a unique morphism of
deformations

F Funiv

Spf(R) Spf(E)

Ψ

α

Remark 4.11 As a universal object, (Funiv, id, id) is unique up to unique isomor-
phism. Moreover, Funiv = F G

univ is functorial with respect to G /k as an object in
FGisog .
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The following is a generalized and reformulated version of the Lubin–Tate theorem
(cf. [Ando 1995, Theorem 2.3.1] and [Rezk 2014, Proposition 4.2]). When η in the
proposition is allowed to be the identity only, this is the Lubin–Tate theorem. The
general statement, necessary for our construction of special coordinates in later sections,
follows directly (see (2.1)) from Strickland’s coordinate-free formulation above.

Corollary 4.12 Let k and R be as in (4.1) and fix a formal group law G/k of height
n <∞. Then the functor

R 7→ {⋆-isomorphism classes of deformations (F, i, η) of G to R}

from the category of complete local rings with residue field containing k to the category
of sets is co-represented by the ring E = EG := W(k)Ju1, . . . , un−1K.

Explicitly, there is a deformation (Funiv, id, id) to E satisfying the following universal
property. Given any deformation (F, i, η) of G to R, there is a unique local homomor-
phism

α : E → R

such that it reduces to i : k = E0 → R0 and that there is a unique ⋆-isomorphism

(4.13) (F, i, η)→ (α∗Funiv, i, id)

5 Deformations of Frobenius

The flexibility of having an isomorphism η in a deformation of a formal group (law)
buys us a notion of pushforward of deformation structures along any isogeny, compat-
ible with Frobenius in a precise way.

We continue the setup and conventions in (4.1).

5.1 Pushforward of deformation structures along an isogeny Let (F , i, η) be a
deformation of G to R. Let ψ : F → F ′ be an isogeny of formal group over R of
degree pr .

Applying Lemma 3.8 to the restriction ψ0 over the special fiber, we see that F ′ can
be endowed with a deformation structure (i′, η′) such that the following diagrams
commute, where σ is the absolute p-power Frobenius and Frob is the relative one
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(cf. [Strickland 1997, §13]).

(5.2)
F F0 i∗G G

F ′ F ′
0

i∗G (pr) G (pr)

i′∗G G

η

η′

ψ ψ0

i∗Frobr Frobr

over

Spf(R) Spf(R0) Spf(R0) Spf(k)

Spf(R) Spf(R0)

Spf(R0) Spf(k)

Spf(R0) Spf(k)

i

i

i′
σr

We write ψ!(i, η) := (i′, η′) and call it the pushforward of (i, η) along ψ . Explicitly,
the pair is determined by the equalities

i′ = i ◦ σr and η′ ◦ ψ0 = i∗Frobr ◦ η

Example 5.3 Let D ⊂ F be a subgroup of degree pr and fD : F → F/D be the
quotient map as in (2.3). Then fD !(i, η) = (i ◦ σr, η) by the proof of Lemma 3.8.

5.4 More categories of deformations Fix G /k . Recall from (3.1) the categories
FGiso and FGisog of formal groups over fields, and their subcategories FGiso(k) and
FGisog(k) for a fixed base field k . We defined in (4.3) the category DefG

iso of deforma-
tions (and isomorphisms). In view of (5.1), let us extend it to a category that allows
isogenies, with the restriction of a fixed base ring.

Let DefG
isog(R) be the category with objects deformations (F , i, η) of G to R and with

morphisms (F , i, η) → (F ′, i′, η′), each consisting of an isogeny ψ : F → F ′ of
formal groups over R and an equality (i′, η′) = ψ!(i, η). The degree of ψ must be pr

for some r ≥ 0.

There is a corresponding category DefG
isog(R) with formal group laws instead of formal

groups. Note that the isomorphisms in this category are precisely the ⋆-isomorphisms
(cf. (4.8), when r = 0) and that the only automorphism of an object is the identity by
the uniqueness in Corollary 4.12.
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5.5 Deformations of Frobenius Given the diagram (5.2), we view a morphism
(F , i, η)→ (F ′, i′, η′) in DefG

isog(R) as a deformation to R of Φr in the category FGisog

(3.5). Thus, we call it a deformation of Frobenius, and simply call ψ : F → F ′ such
if η = η′ (in the same sense of the footnote in (4.6), with i′ = σr ◦ i, σ being the
absolute Frobenius on R0 ) so that ψ0 is a relative Frobenius (cf. [Rezk 2009, 11.3]).

In terms of formal group laws, we say that two deformations of Frobenius (F1, i1, η1)→
(F′

1, i
′
1, η

′
1) and (F2, i2, η2)→ (F′

2, i
′
2, η

′
2) are isomorphic, if (F1, i1, η1) and (F2, i2, η2)

are ⋆-isomorphic and if (F′
1, i

′
1, η

′
1) and (F′

2, i
′
2, η

′
2) are ⋆-isomorphic.

5.6 Classification of deformations of Frobenius Extending (4.10), we now cast
[Strickland 1997, Theorem 42] as a generalization of the Lubin–Tate theorem formu-
lated in Proposition 20 there (cf. its §13 as well).

For each r ≥ 0, let DefFrobr G
iso denote the following category of deformations of

the pr -power Frobenius Φr on G /k . An object in DefFrobr G
iso is a deformation of

Frobenius to a complete local ring of the form (5.2), abbreviated (F → F ′)/R. A
morphism from (F1 → F ′

1)/R1 to (F2 → F ′
2)/R2 is a pair of pullback diagrams of

the form (4.2)

F1 F2

Spf(R1) Spf(R2)

Ψ

α

F ′
1 F ′

2

Spf(R1) Spf(R2)

Ψ′

α

compatible with deformation structures (cf. (4.5)), such that the following diagram of
formal groups over R1 commutes.

F1 α∗F2

F ′
1 α∗F ′

2

∼

∼
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Strickland’s theorem gives a terminal object for each DefFrobr G
iso from the terminal

object (Funiv, id, id) over E of DefG
iso in (4.10) as follows.

Let Subr(Funiv) be the affine formal scheme over E from [Strickland 1997, Theorem
42] that classifies degree-pr subgroups of Funiv , and let Ar be its ring of functions.
Observe that A0 = E . The structure morphism A0 → Ar of Subr(Funiv)/A0 reduces
to the identity between residue fields (see [Strickland 1997, §13]). Thus Funiv ×A0 Ar

inherits the deformation structure (id, id) from Funiv along the base change. Let
D (pr)

univ ⊂ Funiv ×A0 Ar be the subgroup of degree pr classified by id : Ar → Ar , and
let F (pr)

univ := (Funiv ×A0 Ar)/D (pr)
univ be the quotient group as in (2.3). Then the quotient

map

ψ(pr)
univ : Funiv ×A0 Ar → F (pr)

univ

of formal groups induces a deformation of Frobenius

(Funiv ×A0 Ar, id, id)→ (F (pr)
univ, σ

r, id)

over Ar , where id appears in the deformation structure attached to F (pr)
univ in view of

the proof of Lemma 3.8.

Proposition 5.7 For each r ≥ 0, (Funiv ×A0 Ar → F (pr)
univ)/Ar is a terminal object of

DefFrobr G
iso .

Proof Given any deformation (F , i, η) → (F ′, i′, η′) of Φr to R, we need to show
that there exists a unique local homomorphism αr : Ar → R together with unique
morphisms

(5.8) (F , i, η)→ (Funiv ×A0 Ar, id, id) and (F ′, i′, η′)→ (F (pr)
univ, σ

r, id)

in DefG
iso along αr such that the following diagram of formal groups over R commutes.

(5.9) F αr∗(Funiv ×A0 Ar)

F ′ αr∗F (pr)
univ

∼

∼
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By [Strickland 1997, Proposition 20], in DefG
iso there are unique morphisms

(5.10) Funiv ×A0 Ar Funiv

Spf(Ar) Spf(A0)
sr

F (pr)
univ Funiv

Spf(Ar) Spf(A0)
tr

Indeed, by uniqueness, sr is the structure morphism of Subr(Funiv)/A0 . Similarly,
there are unique morphisms

(5.11) F Funiv

Spf(R) Spf(A0)
α

F ′ Funiv

Spf(R) Spf(A0)
α′

Let D ⊂ α∗Funiv be the image of ker (F → F ′) under the isomorphism F
∼−→

α∗Funiv in (5.11). It is a subgroup of degree pr . Then by [Strickland 1997, Theorem
42], there is a unique local homomorphism αr : Ar → R that classifies D , with
αr ◦ sr = α . Moreover, αr ◦ tr = α′ by the universal property of (Funiv, id, id), as we
compute in DefG

iso that

(F ′, i′, η′) ∼=
(
F/ker (F → F ′), i′, η

)
by (5.2) and the proof of Lemma 3.8

∼= (α∗Funiv/D , i′, id) by (5.11)
∼=
(
αr∗(Funiv×

A0
Ar)/αr∗D (pr)

univ, i
′, id

)
by [Strickland 1997, Theorem 42]

∼= (αr∗F (pr)
univ, i

′, id) by [Strickland 1997, Theorem 19 (v)]
∼= (αr∗tr∗Funiv, i′, id) by (5.10)

Thus we obtain the desired morphisms (5.8) from (5.11), with readily checked com-
patibility as required in (5.9).

For applications in later sections, we next deduce a corollary from Proposition 5.7 and
its proof, in terms of formal group laws (cf. [Rezk 2014, Theorem 4.4]).

Corollary 5.12 Let k , R, G, E be as in Corollary 4.12 and again fix G/k . Then for
each r ≥ 0 the functor

R 7→ {isomorphism classes of deformations (F, i, η)→ (F′, i′, η′) of Φr to R}
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from the category of complete local rings with residue field containing k to the category
of sets is co-represented by a ring Ar , which is a bimodule over A0 = E with structure
maps local homomorphisms sr, tr : A0 → Ar .

Explicitly, there is a deformation (Funiv, id, id) of G to A0 satisfying the following
universal property. Given any deformation (F, i, η)→ (F′, i′, η′) of Φr to R, there is a
unique local homomorphism

αr : Ar → R

such that αrsr, αrtr : A0 → R reduce to i, i′ : k = E0 → R0 respectively and that there
are unique ⋆-isomorphisms

(F, i, η)→ (αr∗sr∗Funiv, i, id) and (F′, i′, η′)→ (αr∗tr∗Funiv, i′, id)

5.13 Canonical lifts of Frobenius morphisms In view of Proposition 5.7 and
Corollary 5.12, the ring Ar carries a universal example

(5.14) sr∗Funiv = Funiv ×A0 Ar ψ(pr )
univ−−−→ F(pr)

univ
⋆
= tr∗Funiv

of deformations of Φr to R.3 The central notion of norm coherence in this paper, to
be introduced in the next section, concerns the question of when the ⋆-isomorphism in
(5.14) is the identity.

6 Norm-coherent deformations

6.1 Setup Let k be an algebraic extension of Fp (in particular, k is perfect) and G
be a formal group law over k of finite height n. Let R be a complete local ring with
maximal ideal m and residue field R0 := R/m ⊃ k . Let F/R be a deformation of G/k
with deformation structure (i, id) as in (4.3).

Remark 6.2 Observe that, given any deformation (F, i, η), there exists a unique
deformation (F̃, i, id) such that the two are in the same ⋆-isomorphism class, as shown

3See [Strickland 1997, §10 and §13] for more about the rings Ar . For an explicit example
with r = 1 and G of height 2 over k = Fp , see [Zhu 2019, Theorems A and B (ii)], where
u1 = h ∈ A0 and t1(u1) = ψ p(h) ∈ A1 .
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in the following diagram.4

F F0 G

F̃ G

η

Ψ η

Without loss of generality, here we focus on the case of η = id.

6.3 Outline of the section Having discussed the general theory of deformations in
Sections 4 and 5, in (6.4–6.16) below we shall give a closer look at morphisms of
deformations of formal group laws and set up notations (intended to keep in line with
[Ando 1995]), before introducing the central notion of norm coherence.

6.4 Morphisms of deformations: quotient by the p-torsion subgroup As in
(2.1) write F for the formal group over R whose group law is F (upon choosing a
coordinate) and write F [p] for its subgroup scheme of p-torsions. This is defined
over an extension R̃ of R obtained by adjoining the roots of the p-series of F . Let
F/F [p] := (F ×R R̃)/F [p] be the quotient group as in (2.3) with a particular group
law F/F[p] so that the isogeny

fp : F → F/F[p]

induced by the quotient morphism of formal groups is a deformation of Frobenius (5.5).
Note that F [p](R̃) is stable under the action of Aut(R̃/R). Thus fp can be defined
over R (cf. [Lubin 1967, Theorem 1.4]).

Remark 6.5 The restriction of fp on the special fiber is the relative pn -power Frobe-
nius (see Example 5.3). It is not an endomorphism unless k ⊂ Fpn (cf. [Ando 1995,
proof of Proposition 2.5.1]).

6.6 Morphisms of deformations: the isogeny lp By Corollary 5.12, there exists
a unique local homomorphism αn : An → R together with a unique ⋆-isomorphism

4Here Ψ is any isomorphism lifting η . Such lifts always exist because the ring co-
representing (strict) isomorphisms between formal group laws over commutative rings is free
polynomial. They are in fact unique by the uniqueness in [Lubin–Tate 1966, Theorem 3.1].
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(F/F[p], i ◦ σn, id) → (αn∗tn∗Funiv, i ◦ σn, id). According to the convention in (4.7),
we simply write this as

gp : F/F[p]→ α∗
nt∗nFuniv

Define

lp : F → α∗
nt∗nFuniv

to be the composite gp ◦ fp .

Remark 6.7 The isogeny lp of formal group laws over R is uniquely characterized
by the following properties (cf. [Ando 1995, Proposition 2.5.4], the proof here being
completely analogous).

(i) It has source F and target of the form α∗tn∗Funiv for some local homomorphism
α : An → R.

(ii) The kernel of lp applied to F is F [p].

(iii) Over the residue field, lp reduces to the relative pn -power Frobenius.

Explicitly, with notation as in (5.2), fp and lp fit into the following commutative
diagram. Their restrictions on the special fiber are highlighted with corresponding
colors, which are in fact identical in this case (cf. Example 5.3).

(6.8) F F0 i∗G G

F/F[p] (F/F[p])0 i∗G(pn) G(pn)

αn∗tn∗Funiv (αn∗tn∗Funiv)0 i′∗G G

fp ( fp)0 i∗Frobn Frobn

gp (gp)0

lp

Example 6.9 Let k = Fp and G be the Honda formal group law given by [Ando 1995,
2.5.5] with [p]G(t) = t pn

. Then the relative Frobenius Frobn coincides with the absolute
Frobenius automorphism on G and so lp = [p]F (cf. [Ando 1995, Proposition 2.6.1]).

6.10 Morphisms of deformations: the isogenies lD More generally, let D ⊂
F be a subgroup of degree pr , ψ : F → F′ be any isogeny with kernel D , and
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ψ × ψ! : (F, i, id) → (F′, i′, η′) be the corresponding deformation of Frobenius. The
diagram (6.8) generalizes as follows.

(6.11)
F F0 i∗G G

F′ F′
0 i∗G(pr) G(pr)

αr∗tr∗Funiv (αr∗tr∗Funiv)0 i′∗G G

η= id

η′

ψ ψ0 i∗Frobr Frobr

lD

In particular, when ψ = fD : F → F/D, we have the following commutative diagram
(cf. (2.3) for fD and (6.6) for g

D ).

(6.12)
F F/D

αr∗tr∗Funiv

fD

lD
g

D

Remark 6.13 This construction of lD is functorial under base change and under
quotient, due to the functoriality of fD and g

D (see [Strickland 1997, Theorem 19 (v)],
[Ando 1995, Proposition 2.2.6], Proposition 5.7, and Remark 4.11). To be precise,
given any local homomorphism β : R→ R′ and any finite subgroups D1 ⊂ D2 of F ,
we have

l
β∗D = β∗lD and lD2/D1

◦ lD1
= lD2

where the composition is taken up to a ⋆-isomorphism, as shown in the following
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commutative diagrams.

(6.14) F β∗F

F/D β∗(F/D) = β∗F/β∗D

αr∗tr∗Funiv β∗αr∗tr∗Funiv

fD

g
D

β∗fD

β∗g
D

f
β∗D

g
β∗D

(6.15)
F F/D2 α∗

r2
t∗r2

Funiv

F/D1 F/D1

/
D2/D1

α∗
r1

t∗r1
Funiv α∗

r1
t∗r1

Funiv
/

D (p
r2−r1)

univ

fD2
g

D2

fD2/D1

f̃D2/D1

fD1

g
D1

g̃
D1

g̃
D2/D1

6.16 Morphisms of deformations: pushing forward coordinates As a followup to
(5.1), given (6.11) and (5.13), let F = (F ,X) and αr∗tr∗Funiv = (αr∗tr∗Funiv,Xcan)
(see (2.1)). Define the pushforward of X along ψ to be

(6.17) ψ!(X) := ι∗(Xcan) ∈ OF ′

where ι is the ⋆-isomorphism from F′ to αr∗tr∗Funiv (or an isomorphism between
corresponding formal groups as in Proposition 5.7). This is a coordinate on F ′

(cf. Example 4.9). Its pullback to F along ψ equals l∗
D
(Xcan), where lD carries the

canonical descent of the level structure of a degree-pr subgroup kerψ .

6.18 Norm coherence: idea Let G /k and F/R be the formal group and its defor-
mation, equipped with suitable coordinates, that correspond to the formal group laws
in (6.1) (see (2.1)).

Recall from the proof of Proposition 3.11 that when ψ = Frobr : G → G (pr) , the
norm map Normψ∗ : OG → OG ′ sends a coordinate XG on G to the coordinate on
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G ′ = G (pr) which pulls back along ψ to X pr

G
. Thus the norm map agrees with pushing

forward a coordinate along the Frobenius isogeny in the sense of (6.16) (G is a trivial
deformation of itself).

This agreement on XG over k may not extend to R for an arbitrary coordinate X on
F lifting XG .

On one hand, given a subgroup D ⊂ F of degree pr , the isogeny fD : F → F/D

lifts the norm map in the sense that

XD

(
fD (P)

)
=

(
f ∗
D

(XD )
)
(P)(6.19)

=
∏

Q∈D(R̃)

(
X(P) +

F
X(Q)

)
by (2.4)

=
( ∏
σ∈Aut(OF/OF/D )

σ · X
)

(P)

=
(

f ∗
D

Norm f ∗
D

(X)
)
(P) cf. (3.12)

= Norm f ∗
D

(X)
(

fD (P)
)

where XD is the coordinate corresponding to the group law (F ,X)/D, P is any R-point
on F , and R̃ is an extension of R to define the pr points of D .5

On the other hand, the isogeny lD = g
D◦ fD of formal group laws lifts Frobr canonically

with respect to D . Namely, if f ′
D

is another lift with kernel D and classifying ⋆-
isomorphism g′

D
, then g′

D
◦ f ′

D
= lD (see Remark 6.7 and (5.13)).

6.20 Norm coherence: definition Let (F, i, id) be a deformation of G to R as in
(6.1). Suppose that F = (F ,X) as in (2.1). Given any finite subgroup D of F , let

5There is an analogue of this in the context of Galois theory, where the finite free extension
f ∗
D

: OF/D → OF of rings is replaced by a finite Galois extension (see, e.g., [Rotman 2010,
pp. 916–920, esp. Corollary 10.87]). Moreover, consider a coordinate on F as a map F → Â1

(2.1). We then have

F
f
D−−→ F/D → Â1

and Norm f∗
D

gives

F
X−→ Â1 7→ F/D

X
D−−→ Â1

which is analogous to a norm map as a piece of structure in a Tambara functor
[Tambara 1993, 3.1]. This last notion of a norm map has been packaged into equivariant
stable homotopy theory and turned out as a key ingredient in recent advances in the field
[Brun 2007, Hill–Hopkins 2016].
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fD : (F ,X)→ (F/D ,XD ) be the associated quotient map of formal group laws as in
(2.3). Write fD !(X) for the pushforward of X along fD as in (5.2).

Definition 6.21 We say that the coordinate X on the deformation F is norm coherent
if the identity

(6.22) fD !(X) = XD

holds in OF/D for all D . In this case, we also say that (F, i, id), or simply F , is norm
coherent.

More generally, given any deformation (F, i, η) of G to R, let (F̃, i, id) be the unique
deformation associated to it (Remark 6.2). We say that (F, i, η) is norm coherent if
(F̃, i, id) is.

6.23 Norm coherence: an alternative definition Roughly speaking, the condition
(6.22) says that the canonical descent along lD has the same effect as the descent along
the norm map in terms of fD .

To be precise, in view of (6.12), the equality (6.22) forces the ⋆-isomorphism g
D to be

given by the identity series h(T) = T (see (2.2)), which generalizes Ando’s condition

lD = fD

in [Ando 1995, Theorem 2.5.7] and can be taken as an alternative definition for norm
coherence.6

6.24 Norm coherence: an explicit criterion Recall from (4.10) the universal defor-
mation Funiv of G /k over E = EG = W(k)Ju1, . . . , un−1K.

Proposition 6.25 A coordinate X on Funiv is norm coherent if and only if, given any
finite subgroup D of Funiv , we have

(6.26) h(pr)(lD(X)
)
=

∏
Q∈D(Ar)

h
(
X +

Funiv
X(Q)

)
for all h(T) ∈ T · EJTK, where h(pr) denotes the series obtained by twisting the
coefficients cj of h(T) =

∑
cj T j with the automorphism of E given by the lift of the

absolute pr -power Frobenius on k to W(k) (and leaving the generators ui fixed).
6The reader may prefer to distinguish the identity series from the identity homomorphism id

with the same source and target, and hence not to phrase the condition in terms of an equality
lD = fD .
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Proof Suppose that (6.26) holds for all h. When h is the identity series h(T) = T ,
we obtain gD ◦ fD(X) = f ∗

D
(XD ) (cf. (6.12, 2.4)). This is the pullback of (6.22) to OFuniv

along fD . Thus (6.22) holds in OFuniv/D , viewed as a subring of OFuniv via f ∗
D

.

Conversely, a norm-coherent coordinate X forces lD = fD (by an abuse of notation)
as in (6.23). We view h(T) ∈ T · EJTK as a homomorphism ψ : Funiv → F of formal
group laws over E for some deformation F = (F ,XF ) as in (2.2). Then

h(pr)(lD(X)
)
= h(pr)( fD(X)

)
= h(pr)( f ∗

D
(XD )

)
= h(pr)( f ∗

D
Norm f ∗

D
(X)

)
by (6.19)

= f ∗
D

Norm f ∗
D

(
h(X)

)
cf. (3.13)

= f ∗
D

Norm f ∗
D

(
ψ∗(XF )

)
= ψ∗ f ∗

ψ(D)
Norm f ∗

ψ(D)
(XF )

= ψ∗ f ∗
ψ(D)

(X
ψ(D)) by (6.19)

= ψ∗
( ∏

Q′∈ψ(D)(Ar)

(
XF +

F
XF (Q′)

))
=

∏
Q∈D(Ar)

(
h(X) +

F
h
(
X(Q)

))
=

∏
Q∈D(Ar)

h
(
X +

Funiv
X(Q)

)

6.27 Norm coherence: a conceptual formulation Let ψ×ψ! : (F, i, η)→ (F′, i′, η′)
be any deformation of Φr to R (5.5) and write D := kerψ . Let X[F, i, η] := XF be the
coordinate on F corresponding to F , the latter equipped with deformation structure
(i, η). Consider the identity

(6.28) X[F′, ψ!(i, η)] = Normψ∗(X[F, i, η])

in OF ′ . The norm coherence of (F, i, η) is equivalent to the condition that (6.28) hold
for any ψ .

Indeed, let us reduce to the universal case. The pushforward ψ!(i, η) of deformation
structure (5.2) indicates a change of coordinates on F ′ under which the left-hand side of
(6.28) corresponds to the formal group law αr∗tr∗Funiv , i.e., the target of lD (cf. Remark
6.2 and (6.11)) . Meanwhile, by functoriality of norm maps (i.e., restriction of scalars
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for determinants), the right-hand side changes to Norm l∗
D

(X[F, i, η]) (cf. (3.14)). Thus,
in the universal case, (6.28) becomes

X[αr∗tr∗Funiv, i ◦ σr, η] = Norm l∗
D

(X[F, i, η])

(The left-hand side with η = id was written as Xcan in (6.16).) Pulling this back along
g

D to OF/D , we see that it holds if and only if (F, i, η) is norm coherent.

We shall return to this formulation of norm coherence towards the end of Section 8 (in
the proof of Proposition 8.17).

6.29 Norm coherence: functoriality Recall from Example 4.6 and (5.1) the opera-
tions of base change and pushforward of deformation structures. The notion of norm
coherence in Definition 6.21 is preserved under both as follows.

Proposition 6.30 Let (F, i, η) be a norm-coherent deformation of G to R.

(i) Given any local homomorphism β : R → R′ , the deformation
(
β∗F, β∗(i, η)

)
is norm coherent.

(ii) Given any isogeny ψ : F → F′ over R, the deformation
(
F′, ψ!(i, η)

)
is norm

coherent. In particular, given any finite subgroup D ⊂ F of degree pr , the
deformation (F/D, i ◦ σr, η) is norm coherent.

Proof We resort to the alternative definition of norm coherence in (6.23).

For (i), in view of Remark 6.2, first note that

(F̃, i, id) ⋆
= (F, i, η)

=⇒
(
β∗F̃, β∗(i, id)

) ⋆
=

(
β∗F, β∗(i, η)

)
=⇒ β∗F̃ = β̃∗F

To see that β∗F̃ is norm coherent, we have from (6.14)

l
β∗D = β∗lD = β∗fD = f

β∗D

For (ii), suppose that ψ is of degree pr and let i′ = i ◦ σr . In view of(
F′, ψ!(i, η)

) ⋆
= (F/D, i′, η) ⋆

= (F̃/D, i′, id) = (F̃/D, i′, id)

we are reduced to the special case of

(F, i, id)
fD× fD !−−−−→ (F/D, i ◦ σr, id)
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(see Example 5.3). Since the source is norm coherent, we have from (6.15)

lD = fD and l
D′/D
◦ lD = l

D′ = f
D′ = f

D′/D
◦ fD

where D ′ is any finite subgroup of F containing D , and the first composition is on
the nose because of the first identity in the display. Given that g

D′/D
is an isomorphism,

we then deduce from these
l

D′/D
= f

D′/D

which shows the norm coherence of (F/D, i ◦ σr, id).

7 Existence and uniqueness of norm-coherent deformations

The following generalizes a result of Ando’s (cf. [Ando 1995, Theorem 2.5.7]).

Proposition 7.1 Let k , G, R, F be as in (6.1) and fix G/k . There exists a unique
formal group law F′ over R, ⋆-isomorphic to F , that is norm-coherent. In other words,
given any coordinate XG on the formal group G and a coordinate XF on F that lifts
XG , there exists a unique norm-coherent coordinate X′

F
on F such that the formal

group law (F ,X′
F

) is ⋆-isomorphic to (F ,XF ).

To show this, we will follow Ando’s proof of his theorem, making alterations for greater
generality whenever necessary (most significantly in (7.6)). The argument breaks into
two parts, the first focusing on norm coherence for the p-torsion subgroup F [p] and
the second showing functoriality for all finite subgroups. We begin with the following
key lemma (cf. [Ando 1995, Theorem 2.6.4]).

Lemma 7.2 Given any coordinate XF on F that lifts XG , there exists a unique
coordinate on F whose corresponding formal group law is ⋆-isomorphic to that of XF

and satisfies

(7.3) lp = fp

Proof Existence First we reduce the proof to the universal case. Let Funiv be a
universal deformation of G/k to E as in Corollary 4.12, so that there is a unique local
homomorphism

α : E → R

together with a unique ⋆-isomorphism

g : F → α∗Funiv
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Suppose that we can construct a coordinate X on Funiv such that F′
univ = (Funiv,X)

satisfies (7.3) and is ⋆-isomorphic to Funiv . Taking D = Funiv[p] in the proof of
Proposition 6.30 (i), we then see that α∗F′

univ satisfies (7.3) and is ⋆-isomorphic to F .

We turn to the universal case. The proof is inductive, on powers of the maximal ideal
I of E . Let Y be the coordinate corresponding to Funiv from above, so we may write
FY := Funiv . We will also drop the subscript univ for the rest of this proof. With
respect to Y , given that gY

p : FY/F[p] → αn∗tn∗FY is defined over E as in (6.4), let
a(T) ∈ EJTK be such that

(7.4) gY
p (T) = T + a(T)

We shall construct a desired coordinate X on the universal formal group F by induc-
tively modifying the coordinate Y so that a(T) ≡ 0 mod Ir for increasing r .

Let the inductive hypothesis be

(7.5) a(T) =
∑
j≥1

aj T j with aj ∈ Ir−1

Since gY
p is a ⋆-isomorphism, we get the case of r = 2. Let δ(T) be the power series

(7.6) δ(T) = T − a(−pn)(T)

where a(−pn)(T) is the series obtained by twisting the coefficients aj with the inverse
of the local automorphism αntn on A0 = E ,7 and has its coefficients in Ir−1 as well.
The coordinate

(7.7) Z := δ(Y)

on F then yields a formal group law FZ over E such that δ : FY → FZ is a ⋆-
isomorphism. With respect to Z , let b(T) ∈ EJTK be such that

(7.8) gZ
p (T) = T + b(T)

We will show that this choice of coordinate Z gives

(7.9) b(T) =
∑
j≥1

bj T j with bj ∈ Ir

7 This automorphism lifts the pn -power Frobenius σn on k to W(k) and fixes the generators
ui . Indeed, by [Lubin 1967, Theorem 1.5], the isogeny fp differs by an E -isomorphism from
the endomorphism [p]F . Moreover, their targets can be equipped with deformation structures
so that they are ⋆-isomorphic as deformations (cf. (6.8)). Since the generators ui parameterize
⋆-isomorphism classes of deformations as in Corollary 4.12, they remain unchanged under
αntn . Cf. [Rezk 2013, 4.15–4.16] and Proposition 6.25.
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and in particular produces the equation

gZ
p (T) ≡ T mod Ir

Note that the formal group laws FY and FZ coincide modulo Ir−1 . Thus, by induction
and Krull’s intersection theorem, we will then obtain in the limit a coordinate X such
that gX

p (T) = T , or lXp (T) = f X
p (T), as desired.

Consider the diagram

(7.10) FY FZ

αn∗tn∗FY αn∗tn∗FZ

δ

δ̃

lYp lZp

where δ̃ := αn∗tn∗δ is a ⋆-isomorphism.8 By the unique characterization of lp in
Remark 6.7, we have δ̃ ◦ lYp ◦ δ−1 = l Z

p . Thus the diagram commutes and we get
δ̃ ◦ lYp (T) = l Z

p ◦ δ(T), or

(7.11) δ̃ ◦ gY
p ◦ f Y

p (T) = gZ
p ◦ f Z

p ◦ δ(T)

We shall compare the two sides of (7.11) modulo Ir to show (7.9) and thus complete
the induction.

The left-hand side of (7.11) can be evaluated modulo Ir as follows.

δ̃ ◦ gY
p ◦ f Y

p (T) = δ̃
(

f Y
p (T) + a ◦ f Y

p (T)
)

by (7.4)(7.12)

≡ δ̃
(

f Y
p (T) + a(T pn

)
)

by (2.5, 7.5)

= f Y
p (T) + a(T pn

)− a
(

f Y
p (T) + a(Y pn

)
)

by (7.6)

≡ f Y
p (T) + a(T pn

)− a
(

f Y
p (T)

)
by (7.5)

≡ f Y
p (T) + a(T pn

)− a(T pn
) by (2.5, 7.5)

= f Y
p (T)

8The classifying maps for FY/F[p] and FZ/F[p] are both αntn because FY and FZ are
⋆-isomorphic.
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For the right-hand side of (7.11), first note that modulo Ir we have

f Z
p ◦ δ(T) =

∏
c∈F [p](Ẽ)

(
δ(T) +

FZ

Z(c)
)

by (2.4)(7.13)

=
∏

c

δ
(
T +

FY

Y(c)
)

by (7.7)

=
∏

c

[(
T +

FY

Y(c)
)
− a(−pn)(T +

FY

Y(c)
)]

by (7.6)

≡
∏

c

(
T +

FY

Y(c)
)

−
∑

c

a(−pn)(T +
FY

Y(c)
)∏

d ̸=c

(
T +

FY

Y(d)
)

by (7.5)

≡ f Y
p (T)−

∑
c

a(−pn)(T) T pn−1 by (2.4, 7.5, 2.5)

= f Y
p (T)− pna(−pn)(T) T pn−1

≡ f Y
p (T) by (7.5) and as p ∈ I

In particular, by (2.5), this gives

(7.14) f Z
p ◦ δ(T) ≡ T pn

mod I

Thus, given k ≥ 2, if in (7.8) we have

b(T) =
∑
j≥1

bj T j with bj ∈ Ik−1

then for k ≤ r on the right-hand side of (7.11) we have

gZ
p ◦ f Z

p ◦ δ(T) = f Z
p ◦ δ(T) + b

(
f Z
p ◦ δ(T)

)
by (7.8)

≡ f Y
p (T) + b(T pn

) mod Ik by (7.13, 7.14)

Comparing this to (7.12), we get

b(T) ≡ 0 mod Ik

Since gZ
p in (7.8) is a ⋆-isomorphism, we can proceed by induction on k and obtain

b(T) ≡ 0 mod Ir

which implies (7.9).

Uniqueness Let F/R be a deformation of G /k . Let X and Y be two coordinates
on F , both lifting XG on G and both satisfying (7.3). Suppose FX and FY are in the
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same ⋆-isomorphism class so that there is a ⋆-isomorphism δ : FX → FY fitting into a
commutative diagram analogous to (7.10).

FX FY

FX/F[p] FY/F[p]

δ

δ̃

l X
p = f X

p lYp = f Y
p

Let m be the maximal ideal of R. Let c(T) ∈ RJTK be such that

(7.15) δ(T) = T + c(T)

where
c(T) =

∑
j≥1

cj T j with cj ∈ m

Since X and Y are distinct, there exists r0 ≥ 2 such that it is the largest r satisfying

(7.16) cj ∈ mr−1 for all j

Modulo mr0 we then have

f Y
p (T) = δ̃ ◦ f X

p ◦ δ−1(T)

= f X
p ◦ δ−1(T) + c(pn) ◦ f X

p ◦ δ−1(T) by (7.15)

≡ f X
p ◦ δ−1(T) + c(pn)(T pn

) by (2.5, 7.16)

≡ f Y
p (T) + c(pn)(T pn

) analogous to (7.13)

which is a contradiction.

Proof of Proposition 7.1 (cf. [Ando 1995, proof of Proposition 2.6.15]) We need
only show that the coordinate X on F constructed in Lemma 7.2 satisfies the stronger
condition lD = fD for any finite subgroup D ⊂ F . As in the proof of existence there,
we are reduced to the universal case with Funiv =: F = FX over E .

Unlike in the proof of the lemma, since there is a single coordinate X (and its de-
scendants XD ) involved here, we will drop the superscripts and simply write, e.g.,
fD := f X

D
: F → F/D and f

D′/D
:= f XD

D′/D
: F/D → F/D′ . We will also save the

superscripts in αr and tr when the subgroup under classification is understood.

Given any D ⊂ F of degree pr , we will show that the ⋆-isomorphism

(7.17) g
D : F/D→ α∗t∗F
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is the identity by the uniqueness from Lemma 7.2. Namely, the source and target are in
the same ⋆-isomorphism class, and we show that both of them satisfy (7.3). That the
target does is clear from the proof of Proposition 6.30 (i). For the source of (7.17), let
p−1D := {c ∈ F | pc ∈ D}.9 It contains both D and F [p] as subgroups. We need
to show

(7.18) l
p−1D/D

= f
p−1D/D

Consider the following commutative diagram. The upper rectangle commutes due
to the functoriality of the isogeny f under quotient [Ando 1995, Proposition 2.2.6].
The lower rectangle commutes (with identical classifying maps at the bottom-left
and bottom-right corners) as a result of the functoriality from Corollary 5.12 of the
⋆-isomorphisms g under quotient.

F F/D

F/F[p] F/p−1D

α∗t∗F α∗t∗(F/D)α∗t∗F/α∗t∗D =

fD

α∗t∗fD

f
p−1D/F[p]

fp

gp

f
p−1D/D

fp−1D

g
p−1D/D

Note that p−1D/F [p] ∼= D . In the lower rectangle, gp = id and hence f
p−1D/F[p]

=

α∗t∗fD . This then forces the ⋆-isomorphism g
p−1D/D

to be the identity, and (7.18)
follows.

Remark 7.19 In [Zhu 2020, §3.1], for the purpose of studying Hecke operators in
elliptic cohomology, we showed the existence of an analogue of Ando’s coordinate.
It is conceptually different from the norm-coherent coordinates here. Note that there
the base change is not along a local homomorphism (see [Zhu 2014, §4, footnote] and
cf. (7.21) below).

Example 7.20 Let k = Fp2 and G be the formal group law of a supersingular elliptic
curve over k . We choose this curve so that its p2 -power Frobenius endomorphism

9The notation c ∈ F means [c] ⊂ F , where [c] is the effective Cartier divisor defined by
a section. To be precise, this set-theoretic description defines the subgroup scheme p−1D of
F as a sum of effective Cartier divisors.
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coincides with the map of multiplication by (−1) p−1p, as in [Zhu 2020, 3.1]. We then
have lp = [−p], if p = 2, in view of Remark 6.7 and Footnote7.

Let E be the Morava E-theory associated to G /k as in (2.7) and choose a preferred
PN -model for E in the sense of [Zhu 2020, Definition 3.8]. In particular, there is a
chosen coordinate u on the universal deformation of G /k . Given [Zhu 2020, 3.5], the
cotangent map along f u

p is multiplication by p. Thus, by the criterion (7.3), u cannot
be norm coherent if p = 2.

More explicitly, let us consider the supersingular elliptic curve C0/F2 : y2 + y = x3 .
A direct calculation shows that Frob2 = [−2] on C0 . In [Rezk 2008], Rezk chose the
coordinate u := x/y for the formal group Ĉ0 and for its universal formal deformation
Ĉ over Z2JaK, with C : y2 + axy + y = x3 . Let Q be the universal example of a point
of exact order 2 of Ĉ . Rezk then chose d := u(Q) as a parameter for the modular
curve X0(2) near the supersingular locus, and computed its equation as

d3 − ad − 2 = 0

Taking D = Ĉ [2] in (2.4), we see that the cotangent map along f u
2 is multiplication

by d1d2d3 = 2, with each di a root of the modular equation, whereas lu
2 = [−2]. If

we instead choose ũ := −x/y as a coordinate for Ĉ , it restricts to u over F2 while
satisfying f ũ

2 = lũ
2 by rigidity (cf. [Rezk 2013, Remark 4.16]). Thus ũ is the unique

norm-coherent lift of u to Z2JaK.10

Comparing with the more comprehensive list of [Zhu 2019, Examples 2.16, 2.17, 2.18,
and 2.20], only the coordinate in 2.16 is not norm coherent (but still good for the
purpose as explained in the last footnote).

7.21 Norm coherence: more functoriality We continue the discussion in (6.29)
with varying G/k .

10Note that Rezk derived in [Rezk 2008, §4] formulas for power operations in E without
using a norm-coherent coordinate. In fact, let d̃ := ũ(Q) and suppose that d = sd̃ for some
unit s ∈ Z2JaK . With his notation, we then have

d′ = s′d̃′ = s · −2

d̃
= s · −2

s−1d
= s2 · −2

d
= s2(a− d2)

where the second equality relies on norm coherence and the last one follows from the modular
equation above. Here s happens to be −1 so incidentally s2 = 1. In general, to apply
[Rezk 2009, Theorem B], we need norm-coherent coordinates to compute power operations for
E-theories as studied in [Rezk 2008, Zhu 2014, Zhu 2020, Zhu 2019] (cf. Remark 8.8 below).
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Let X : FGisog → Set be the functor

G /k 7→ {coordinates on G } ⊂ OG

Note that this is a “wide” functor in the sense that, given diagram (3.4), X is con-
travariant along the right square and covariant along the left square. More specifically,
X is contravariant with respect to base change Spf(k) → Spf(k′) and pullback along
an isomorphism over k , hence contravariant with respect to any morphism in the sub-
category FGiso . On the other hand, given an isogeny G → G ′ over k of degree pr ,
any coordinate X on G determines a unique coordinate on G (pr) which pulls back
along Frobr to X pr

. This coordinate on G (pr) then corresponds to one on G ′ via the
isomorphism between the two formal groups (cf. (6.16)). Thus X is also covariant
with respect to any morphism in the subcategory FGisog(k).

Let Xnc : FGisog → Set be the functor

G /k 7→ {norm-coherent coordinates on F G
univ/E}

where F G
univ is a functorial choice of universal deformation of G as in Remark 4.11.

The “wideness” of Xnc , in the same sense as above, follows from Proposition 6.30 and
the universal property in Corollary 5.12.

Theorem 7.22 The natural transformation ρ : Xnc → X of functors by restricting a
coordinate on F G

univ to G is an isomorphism. Moreover, it satisfies Galois descent:
given G /k in FGisog and a Galois extension K/k , the following diagram commutes,
where the vertical maps take fixed points under the Galois action.

Xnc(G ×k K) X(G ×k K)

Xnc(G ) X(G )

∼

∼

This diagram is natural in G /k and K/k .

Proof On each object in FGisog , the natural transformation ρ is an isomorphism by
Proposition 7.1, and the descent is clear since the condition (6.22) of norm coherence
is stable under Galois actions. Each of the naturality properties is straightforward to
check.
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8 Norm coherence and H∞ complex orientations

8.1 Introduction Given a Morava E-theory spectrum E , consider its MU⟨0⟩-
orientations, i.e., homotopy multiplicative maps MU⟨0⟩ → E (2.6). A necessary
and sufficient condition for such an orientation to be H∞ (2.8) is that its corresponding
coordinate on the formal group of E is norm coherent.

Ando showed this for E-theories associated to the Honda formal groups over Fp

[Ando 1995, Theorem 4.1.1]. There, the norm-coherence condition (6.22) boils down
to the identity [p] = fp (cf. (7.3) and (6.9)). Moreover, he established the existence and
uniqueness of coordinates, hence orientations, with the desired property [Ando 1995,
Theorem 2.6.4].

In fact, to show that norm coherence is necessary and sufficient for H∞ orientations,
Ando’s proof does not depend on the choice of the formal groups being the Honda
formal groups (see [Ando 1995, Lemma 4.4.4]). However, his setup does require them
be defined over Fp so that the relative pr -power Frobenius is an endomorphism for
every r ≥ 0 (cf. [Ando–Hopkins–Strickland 2004, Proposition 2.5.1] and Remark 6.5).

With results in sufficient generality about level structures on formal groups from
[Strickland 1997], Ando, Hopkins, and Strickland extended the applicability of the
above condition for H∞ orientations: MU⟨0⟩ generalizes to MU⟨2k⟩, k ≤ 3, and
E generalizes to any even periodic H∞ -ring spectrum whose zeroth homotopy is a
p-regular admissible local ring with perfect residue field of characteristic p and whose
formal group is of finite height [Ando–Hopkins–Strickland 2004, Proposition 6.1].
They did this by first reformulating Ando’s condition so that in particular it applies to
E-theories associated to formal groups over any perfect field of positive characteristic
[Ando–Hopkins–Strickland 2004, Proposition 4.13].

Based on this general condition, Ando, Hopkins, and Strickland showed the existence
and uniqueness of H∞ MU⟨6⟩-orientations for H∞ elliptic spectra, called the sigma
orientations, from corresponding norm-coherent cubical structures of elliptic curves
[Ando–Hopkins–Strickland 2004, Proposition 16.5].

However, when the elliptic spectrum represents an E-theory associated to the formal
group of a supersingular elliptic curve, such an orientation does not factor through
MU⟨4⟩ due to obstruction from Weil pairings (see [Ando–Strickland 2001, proof of
Theorem 1.4]). Thus, in this case, we cannot deduce the existence and uniqueness of
H∞ MU⟨2k⟩-orientations for 0 ≤ k ≤ 2 from the sigma orientation.
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8.2 Setup Let E be a Morava E-theory spectrum, with GE = F G
univ for some G /k

whose group law is as in (6.1).

We will show the existence and uniqueness of H∞ MU⟨0⟩-orientations for E by com-
bining Proposition 7.1 with Ando, Hopkins, and Strickland’s condition for H∞ orienta-
tions. Indeed, we need only check that their criterion [Ando–Hopkins–Strickland 2004,
4.14] and our definition (6.22) for norm coherence agree.

8.3 Descent for level structures on formal deformations We carry out the needed
comparison by recalling the canonical descent data for level structures on GE = F G

univ
from [Ando–Hopkins–Strickland 2004, Part 3]. Since G is over k of characteristic p,
the finite subgroups D of GE must be of degree pr for some r ≥ 0.

Let A be an “abstract” finite abelian group of order pr . Let SE = Spf
(
π0(E)

)
and

T = Spf(R) with R as in (6.1). Let i : T → SE be a morphism of formal schemes,
faithfully flat and locally of finite presentation, which classifies a deformation of G /k
to R. Write AT for the constant formal group scheme of A over T . We have
the following (cf. [Ando–Hopkins–Strickland 2004, Definitions 3.1, 9.9, Proposition
10.10 (i), 12.5]).

Definition 8.4 A morphism

(8.5) ℓ : AT → i∗GE

of formal groups over T , equivalent to a group homomorphism ϕ
ℓ
: A→ i∗GE (T), is a

level A-structure on GE , if the effective Cartier divisor D
ℓ

:=
∑

a∈A[ϕ
ℓ
(a)] of degree

pr is a subgroup of i∗GE .

Remark 8.6 Note that a level A-structure ℓ on GE uniquely corresponds to a finite
subgroup D = D

ℓ
, which is different from the scheme-theoretic image of AT under ℓ

(the latter automatically a subgroup, but possibly of smaller degree). Automorphisms of
A correspond to automorphisms of D (cf. [Ando–Hopkins–Strickland 2004, Definition
3.1 (3)]).

Given a level A-structure ℓ : ASpf(R) → i∗GE on GE as above, we have the following
(cf. [Ando–Hopkins–Strickland 2004, Definition 3.9, Remark 3.12]).

Definition 8.7 Define ψE
ℓ : π0(E)→ R to be the composite

π0(E)
Dpr
−−→ π0

(
E(BΣpr )+

)
→ π0

(
E(BΣpr )+

)
/Itr

αr

−→ R
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where the power operation Dpr arises from the H∞ -ring structure of E (2.8), Itr is
the ideal generated by the images of transfers from proper subgroups of Σpr , and αr

classifies the subgroup of i∗GE corresponding to ℓ (8.6, 2.7).

Remark 8.8 In the presence of a level structure as in Definition 8.7, the structure
morphism i of T over SE in Definition 8.4 is given by the classifying map

α : A0 sr

−→ Ar αr

−→ R

from Corollaries 4.12 and 5.12, while ψE
ℓ is precisely the classifying map

α′ : A0 tr−→ Ar αr

−→ R

(cf. [Rezk 2009, Theorem B] for the identification with tr ).

Let F := EX+ and f : E → F be the natural map of H∞ -ring spectra. Given any level
A-structure ℓ : AT → i∗GE on GE , let ℓ′ be the unique level A-structure on GF induced
by f ,11 so that the following pullback squares commute.

A
T′ i′∗GF GF

AT i∗GE GE

ℓ′

ℓ

G f

over

T ′ i∗SF SF

T T SE

i′

i

S f

11Level A-structures on GF are defined analogously to those on GE as in Definition 8.4.
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Let ψF
ℓ′ : T ′ → SF be the morphism analogous to ψE

ℓ in Definition 8.7, obtained by
the naturality of power operations on E0(X). We then have the following definition
(cf. [Ando–Hopkins–Strickland 2004, 3.13–3.15]).

Definition 8.9 Define ψF/E
ℓ to be the unique T -morphism that fits into the following

commutative diagram.

(8.10)

SF i∗SF ψE
ℓ
∗SF SF

SE T T SE

ψ
F/E
ℓ

S f S f

i ψE
ℓ

ψF
ℓ′

⌟⌞

In particular, when F = E(CP∞)+ , write ψF/E
ℓ as

ψG/E
ℓ : i∗GE → ψE

ℓ
∗GE

Remark 8.11 Let F = E(CP∞)+ . When A = Z/p, the diagram (8.10) lifts (3.6).

More generally, let D ⊂ i∗GE correspond to ℓ as in Remark 8.6. Comparing (8.10) to
the universal example (5.14) and Remark 8.8, we see that ψG/E

ℓ is precisely the isogeny
lD from (6.10) if we assume without loss of generality that the ⋆-isomorphism (4.13)
is the identity.

8.12 Norm maps In view of [Ando–Hopkins–Strickland 2004, Theorem 3.25], we
have compared above the ingredients that constitute descent data for level structures on
GE (level structures ℓ, classifying maps i and ψE

ℓ , isogenies ψG/E
ℓ ) with corresponding

terms from the earlier sections of this paper. There is one more and key ingredient
which goes into the condition [Ando–Hopkins–Strickland 2004, 4.14] for H∞ MU⟨0⟩-
orientations.

Let ψ : G → G ′ be an isogeny of formal groups with kernel K . Let µ, π : G ×K →
G be the group, projection maps, and q : G → G /K be the quotient map, as in (2.3).
We have the following (cf. [Ando–Hopkins–Strickland 2004, Definitions 10.1, 10.9]).



44 Yifei Zhu

Definition 8.13 Define Nψ : OG → OG ′ to be the horizontal composite

(8.14) OG

OG×K

OG /K
∼−→ OG ′

OG

OG×K

q∗
µ∗

Normπ∗

µ∗ π∗

where the vertical maps exhibit OG /K as an equalizer, Normπ∗ sends a to the deter-
minant of multiplication by a on OG×K as a finite free OG -module via π∗ , and the
factorization through OG /K was shown, e.g., in [Strickland 1997, Theorem 19].

Remark 8.15 Since q ◦ µ = q ◦ π , we have Normπ∗ ◦ µ∗ = q∗ ◦ Normq∗ (by an
argument similar to the proof of the factorization mentioned above). Thus the dashed
arrow in (8.14) is Normq∗ by uniqueness from the universal property of an equalizer.

Suppose that the isogeny ψ is over a field k of characteristic p, and is hence of degree
pr for some r ≥ 0. Comparing [Strickland 1997, Theorem 19 (i)] and Proposition
3.11, we see that Nψ is precisely the map Λ∗

ψ = Normψ∗ in (3.10).

8.16 H∞ orientations from norm coherence Having set up the notation for norm
maps as well as descent of level structures, we observe that the condition of Ando,
Hopkins, and Strickland for H∞ MU⟨0⟩-orientations can be stated without reference
to topological apparatus such as power operations.

Proposition 8.17 Let g : MU⟨0⟩ → E be a map of homotopy commutative ring
spectra, and X = Xg be its corresponding coordinate on GE as in (2.6). Then the
condition of [Ando–Hopkins–Strickland 2004, 4.14] that for any level structure (8.5)
the section X satisfies the identity

(8.18) ψE
ℓ
∗(X) = N

ψ
G/E
ℓ

i∗(X)

is equivalent to the norm-coherence condition on X as in (6.22).

Proof Let ψ be the isogeny ψG/E
ℓ : i∗GE → ψE

ℓ
∗GE over R = OT from Defini-

tion 8.9, and Y be any coordinate on i∗GE . In view of Remark 8.6, we have from
[Ando–Hopkins–Strickland 2004, 10.11] that

ψ∗Nψ(Y) = q∗Nq(Y) =
∏
a∈A

T∗
a (Y) =

∏
Q∈D(R)

(
Y +

i∗GE

Y(Q)
)
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where Ta : i∗GE → i∗GE translates any R-point P on i∗GE to P + Q, with Q = ϕ
ℓ
(a)

(cf. (3.14) for the first equality). Comparing this to (6.19), with F = i∗GE , we see that

ψ∗Nψ(Y) = f ∗
D

(YD )

Now, given any coordinate X on GE , write Y = YX := i∗(X) and Y ′ = Y ′
X

:= ψE
ℓ
∗(X).

Pulling (8.18) back along ψG/E
ℓ , we then obtain an equivalent identity

(8.19) l∗
D
(Y ′) = f ∗

D
(YD )

where lD = ψG/E
ℓ from Remark 8.11, and Y ′ = αr∗tr∗(X) from Remark 8.8. In view

of (6.11, 6.12), we see that (8.19) is equivalent to (6.22) (cf. (6.23)). It follows that
(8.18) and our norm-coherence condition agree (cf. (6.28)).

Corollary 8.20 Let E , GE , and G be as in (8.2). Given any coordinate XG on
G , there exists a unique coordinate X on GE lifting XG such that its corresponding
MU⟨0⟩-orientation for E is H∞ .

Proof Given Proposition 8.17, the corollary follows from Proposition 7.1. In particu-
lar, as p is not a zero-divisor in π0(E), we may apply [Ando–Hopkins–Strickland 2004,
Proposition 6.1] for H∞ MU⟨2k⟩-orientations with k = 0 (cf. the discussion following
1.6 there).

.
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