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YIFEI ZHU

We construct an integral model for Lubin–Tate curves. These curves arise as
moduli of finite subgroups of deformations of formal groups. In particular, they
are p-adic completions of the modular curves X0(p) at a mod-p supersingular
point. Our model is semistable in the sense that the only singularities of its special
fiber are normal crossings. Given this model, we obtain a uniform presentation for
the Dyer–Lashof algebras for Morava E-theories of height 2. These algebras are
local moduli of power operations in elliptic cohomology.
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1 Introduction

1.1 Overview

Understanding various sorts of moduli spaces is central to contemporary mathematics.
In algebraic geometry, (elliptic) modular curves parametrize elliptic curves equipped
with level structures, which specify features attached to the group structure of an elliptic
curve. Each type of level structure corresponds to a specific subgroup of the modular
group SL2(Z), which acts on the upper half of the complex plane. The complex-
analytic model for a modular curve is the quotient of the upper-half plane by the action
of such a subgroup, as a Riemann surface.

Over Z, Deligne and Rapoport initiated the study of semistable models for the modular
curves X0(Np) [Deligne–Rapoport 1973, VI.6]. The affine curve xy = p over W(Fp)
appeared in their work as a local model for X0(p) near a mod-p supersingular point.
Recently, Weinstein produced semistable models for Lubin–Tate curves (at height 2)
by passing to the infinite p∞ -level, when they each have the structure of a perfectoid
space [Weinstein 2016]. Such a Lubin–Tate curve is the rigid space attached to the
p-adic completion of a modular curve at one of its mod-p supersingular points. Since
the supersingular locus is the interesting part of the special fiber of a modular curve,
Weinstein’s work essentially provides semistable models for X(Npm). His affine
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models include curves with equations xy q − x qy = 1 and y q + y = x q+1 over Fq ,
where q is a power of p 6= 2.

In this paper, with motivation from algebraic topology, we construct a new semistable
model over W(Fp) for the modular curve X0(p) near a mod-p supersingular point.
The equation (see (1.3) below) for our integral affine model is more complicated than
that of the Deligne–Rapoport model, while it reduces modulo p to x (y − x p) = 0.
The integral modular equation is essential to our application that produces an explicit
presentation for the Dyer–Lashof algebra of a Morava E-theory at height 2, uniform
for all p.

The Dyer–Lashof algebra governs power operations on Morava E-theory as a general-
ized cohomology theory [Rezk 2009]. Since cohomology operations are natural trans-
formations between functors, this algebra is a moduli space. Indeed, over the sphere
spectrum S, Morava E-theories are topological realizations of Lubin–Tate curves of
level 1. Their operations are thus parametrized by Lubin–Tate curves of higher levels.

To be more precise, our results fit into the following framework.

moduli of E``G
to be understood as G varies

moduli of E``Γ1(N) moduli of CN

moduli of Quasi E``G moduli of Emoduli of E
Theorem C

moduli of LK(1)E
punctured formal neighborhood of the

supersingular point as an ordinary locus

moduli of G
Theorem A

has power operations

G = Γ1(N) derived version of

at cusps at a supersingular point Serre–Tate

Ando–Hopkins–Strickland

Rezk

related (also to KTate )

K(1)-localization

Huan

In this diagram, the arrows between the boxed regions establish the aforementioned
correspondences among modular curves, Lubin–Tate curves, and Dyler–Lashof al-
gebras [Lubin–Serre–Tate 1964, Ando–Hopkins–Strickland 2004, Rezk 2009]. Here,
E is a Morava E-theory spectrum of height 2 at the prime p, G is the formal
group of E as a Lubin–Tate universal deformation, and CN is a universal ellip-
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tic curve equipped with a level-Γ1(N) structure whose formal group is isomorphic
to G (see Section 2 below). Conjecturally, the moduli of E should be the re-
striction of a moduli for a suitable equivariant elliptic cohomology theory E``G

[Lurie 2009, Schwede 2018, Huan 2018, Rezk 2013b].

This paper represents an attempt to understand the above picture by working explicitly
through the boxed regions. To obtain the local model for X0(p), our strategies can
be summarized in the following diagram (cf. Figure 3.6 below). Here, we exploit the
effectiveness of a modular form in terms of its calculable invariants, i.e., its weight,
level, and a finite number of its first Fourier coefficients.

global moduli
(modular forms)

punctured formal neighborhood
around the cusps

(modular forms evaluated at Tate curves)

formal neighborhood
of a supersingular point

(local parameters / functions on Lubin–Tate curves)

restriction / completion restriction / completion

We now explain our main results in more detail and state the theorems in Sections 1.2
and 1.3, respectively, concerning aspects of algebraic geometry and algebraic topology.

1.2 Moduli of elliptic curves and of formal groups, and Theorem A

Known to Kronecker, the congruence

(1.1) ( j− j̃ p)( j̃− j p) ≡ 0 mod p

gives an equation for the modular curve X0(p) that represents (in a relative sense,
cf. Section 2.2 below) the moduli problem [Γ0(p)] for elliptic curves over a perfect
field of characteristic p. As a functor, this moduli problem associates to such an elliptic
curve its finite flat subgroup schemes of rank p. A choice of such a subgroup scheme
is equivalent to a choice of an isogeny from the elliptic curve with a prescribed kernel.
The j-invariants of the source and target curves along this isogeny are parametrized by
j and j̃.

More precisely, this Kronecker congruence provides a local description for [Γ0(p)] at
a supersingular point. For large primes p, the mod-p supersingular locus may consist
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of more than one closed point. In this case, X0(p) does not have an equation in the
simple form above. Only its completion at a single supersingular point has.

There are polynomials that describe X0(p) as a curve over Spec(Z). The computa-
tional algebra system Magma has Modular Polynomial Databases (http://magma.
maths.usyd.edu.au/magma/handbook/modular_curves). There, classical mod-
ular polynomials lift and globalize the Kronecker congruence. In contrast, canonical
modular polynomials appear simpler with a different pair of parameters. Below is a
sample of the latter, where the first three modular curves are of genus 0 and the fourth
is of genus 1.

X0(2) x3 + 48x2 + (768− j)x + 212

≡ x(x2 − j) mod 2

X0(3) x4 + 36x3 + 270x2 + (756− j)x + 36

≡ x(x3 − j) mod 3

X0(5) x6 + 30x5 + 315x4 + 1300x3 + 1575x2 + (750− j)x + 53

≡ x(x5 − j) mod 5

X0(11) x12 − 5940x11 + 14701434x10 + (−139755 j− 19264518900)x9

+ (723797800 j + 13849401061815)x8 + (67496 j2 − 1327909897380 j

− 4875351166521000)x7 + (2291468355 j2 + 1036871615940600 j

+ 400050977713074380)x6 + (−5346 j3 + 4231762569540 j2

− 310557763459301490 j + 122471154456433615800)x5

+ (161201040 j3 + 755793774757450 j2 + 17309546645642506200 j

+ 6513391734069824031615)x4 + (132 j4 − 49836805205 j3

+ 6941543075967060 j2 − 64815179429761398660 j

+ 104264884483130180036700)x3 + (468754 j4 + 51801406800 j3

+ 214437541826475 j2 + 77380735840203400 j

+ 804140494949359194)x2 + (− j5 + 3732 j4 − 4586706 j3

+ 2059075976 j2 − 253478654715 j + 2067305393340)x + 116

≡ x
(
x11 − j2( j− 1)3) mod 11

In these canonical modular polynomials for X0(p), the variable

(1.2) x = x(z) := ps
[
η(pz)
η(z)

]2s

where η is the Dedekind η -function and s = 12/gcd(p−1, 12) (s equals the exponent

http://magma.maths.usyd.edu.au/magma/handbook/modular_curves
http://magma.maths.usyd.edu.au/magma/handbook/modular_curves
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in the constant term of each polynomial). The Atkin–Lehner involution (see Section
2.3 below) sends x to ps/x . Computing these polynomials can be difficult. As Milne
warns in [Milne 2017, Section 6], “one gets nowhere with brute force methods in this
subject.” Fortunately, for our purpose, we need only a suitable local (but still integral)
equation for X0(p) completed at a single mod-p supersingular point. We shall present
this equation as a variant of the above polynomials in j and x .

Recall from Section 1.1 that the above completion of X0(p) is a Lubin–Tate curve, which
is a moduli space for formal groups. Indeed, there is a connection between the moduli of
formal groups and the moduli of elliptic curves. This connection is based on the Serre–
Tate theorem. It states that p-adically, the deformation theory of an elliptic curve is
equivalent to the deformation theory of its p-divisible group [Lubin–Serre–Tate 1964,
Section 6]. In particular, the p-divisible group of a supersingular elliptic curve is
formal. Thus the local information provided by the Kronecker congruence (and its
integral lifts) becomes useful for understanding deformations of formal groups of
height 2.

Lubin and Tate developed the deformation theory for one-dimensional formal groups
of finite height [Lubin–Tate 1966, esp. Theorem 3.1]. More recently, with motivation
from algebraic topology, Strickland studied the classification of finite subgroups of
Lubin–Tate universal deformations. In particular, he proved a representability theorem
for this moduli of deformations [Strickland 1997, Theorem 42]. The representing
objects are Gorenstein affine formal schemes. We call them Lubin–Tate curves of level
Γ0(pm), where pm is the rank of the subgroups.

Our first main result gives an explicit model for height-2 Lubin–Tate curves of level
Γ0(p) over the Witt ring W(Fp). The special fiber is semistable in the sense that its
only singularities are normal crossings. This model describes the complete local ring
of the modular curve X0(p) at a mod-p supersingular point in terms of generators and
relations.

Let G0 be a formal group over Fp of height 2 and let G be its universal deformation
over the Lubin–Tate ring. For each m ≥ 0, denote by Am the ring that classifies degree-
pm subgroups of the formal group G. It is the ring of functions on the Lubin–Tate
curve of level Γ0(pm). In particular, write A0 ∼= W(Fp)JhK for the Lubin–Tate ring.

Theorem A The ring A1 ∼= W(Fp)Jh, αK
/(

w(h, α)
)

is determined by the polynomial

(1.3) w(h, α) = (α− p)
(
α+ (−1) p)p −

(
h− p2 + (−1) p)α

which reduces to w(h, α) ≡ α(α p − h) mod p.
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Remark 1.4 The rings Am are denoted by OSubm(G) in [Strickland 1997]. The letter
h stands for “Hasse” in the Hasse invariant (see Section 2.4 below). Due to a different
choice of parameters, the last congruence above is not in the form (1.1) of Kronecker’s.
Section 2.4 discusses definitions and details of the parameters. Remark 2.25 discusses
dependence of (1.3) on the choices involved for different primes p.

Remark 1.5 Let α̃ denote the image of α under the Atkin–Lehner involution (see
Section 2.3 below). We will show in (2.24) that α · α̃ = (−1) p−1p (cf. xy = p in the
Deligne–Rapoport model in Section 1.1). Note that the product equals the constant
term of (1.3) as a polynomial in α of degree p + 1. Thus factoring out α from the
equation w(h, α) = 0, we obtain a congruence

h ≡ α p + α̃ mod p

This congruence is a manifest of the Eichler–Shimura relation Tp ≡ F + V mod p
between the Hecke, Frobenius, and Verschiebung operators. This relation reinter-
prets the Kronecker congruence for the moduli problem [Γ0(p)] in characteristic p
(cf. [Katz–Mazur 1985, pages ix–x] and see the discussion of dual isogenies in Sec-
tion 2.5). Below in this remark we will give an explanation for the congruence
h ≡ Tp α mod p.

The polynomial w(h, α) can be viewed as a local variant of a canonical modular
polynomial, whose parameters are the j-invariant j and an eta-quotient x (1.2). These
parameters correspond to h and α respectively. Indeed, for the key step (3.3) in our
proof of Theorem A below, we adapt a technique with q-expansions that appeared
in [Choi 2006, Example 2.4, esp. (2.4)]. There, Choi worked with an eta-quotient
φp , which almost equals the image x̃ of x under the Atkin–Lehner involution. This
function φp corresponds to α̃ in (3.3). The function j (p)

m in his equation (2.4) equals j
if m = 1. When m = p and u = 1, it corresponds to h̃ in (3.4).

The sequence { j (p)
m }∞m=1 is an example of (l,N)-type sequences [ibid., Definition 3.1].

The latter generalize { j (p)
n }∞n=1 where p ∈ {2, 3, 5, 7, 13}1 from [Ahlgren 2003] and

{ jm}∞m=0 from [Bruinier–Kohnen–Ono 2004]. These sequences each consist of Hecke
translates of a Hauptmodul. This sort of Hecke translates explains the analogous
relation h ≡ Tp α mod p above.

For comparison and later reference, we summarize the parameters in this remark as
follows.

1Here the constraint on p is necessary for univalence of (global) modular functions on
zero-genus congruence subgroups. Cf. Lemma 3.2 below, where we remove this constraint by
working with local functions.
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canonical polynomial classical polynomial

global ( j, x)
∣∣∣( j̃, x̃)

∣∣∣ ( j (p)
p = Tp j, φp) ( j̃, j)

local (h ≡ Tp α, α)
∣∣∣( h̃, α̃)

∣∣∣ ( h̃, h)

Table 1.6: Parameters for [Γ0(p)]

1.3 Moduli of Morava E-theory spectra and Theorem C

The Adem relations

(1.7) QrQs =
∑

i+j = r+s

(
j− s− 1

2 j− r

)
QiQ j r > 2s

describe the rule of multiplication (composition) for the Araki–Kudo–Dyer–Lashof
operations Qs . These operations are power operations in ordinary homology with
F2 -coefficients of infinite loop spaces. In general, for ordinary homology with Fp -
coefficients, the collection of its power operations has the structure of a graded Hopf
algebra over Fp , called the mod-p Dyer–Lashof algebra (cf. [Rezk 2006, (1)–(3) in
9.1] and [ibid., Example 10.2] for relationship with the Steenrod operations).

Quillen’s work connects complex cobordism and the theory of one-dimensional formal
groups [Quillen 1969]. This connection leads to a height filtration for the stable homo-
topy category, which has turned out to be a highly effective principle since the 1970s for
organizing large-scale periodic phenomena in the stable homotopy groups of spheres
[Miller–Ravenel–Wilson 1977, Devinatz–Hopkins–Smith 1988, Hopkins–Smith 1998,
Ravenel 1992]. The height of a formal group indicates the filtration level of its corre-
sponding cohomology theory. Ordinary cohomology with Fp -coefficients fits into this
framework of chromatic homotopy theory, as theories concentrated at height ∞.

The power operation algebras for cohomology theories at other chromatic levels have
been studied as well. In particular, central to the chromatic viewpoint is a family of
Morava E-theories, one for each finite height n at a particular prime p. More precisely,
given any formal group G0 of height n over a perfect field of characteristic p, there
is a Morava E-theory associated to the Lubin–Tate universal deformation of G0 . Via
Bousfield localizations, these Morava E-theories determine the chromatic filtration
of the stable homotopy category [Ravenel 1984, Goerss–Hopkins 2004, Goerss 2008,
Lurie 2010].

There is a connection between (stable) power operations in a Morava E-theory E and
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deformations of powers of Frobenius on its corresponding formal group G0 . This con-
nection is via Rezk’s theorem, which is built on the work of Ando, Hopkins, and Strick-
land [Ando 1995, Strickland 1997, Strickland 1998, Ando–Hopkins–Strickland 2004].
It gives an equivalence of categories between (i) graded commutative algebras over
a Dyer–Lashof algebra for E and (ii) quasicoherent sheaves of graded commutative
algebras over the moduli problem of deformations of G0 and Frobenius isogenies
[Rezk 2009, Theorem B]. Here, the Dyer–Lashof algebra is a collection of power
operations that governs all homotopy operations on commutative E-algebra spectra
[Rezk 2009, Theorem A].

At height 2, information from the moduli of elliptic curves allows a concrete under-
standing of the power operation structure on Morava E-theories. Rezk computed the
first example of a presentation for an E-theory Dyer–Lashof algebra, in terms of explicit
generators and quadratic relations analogous to the Adem relations (1.7) [Rezk 2008].
Moreover, he gave a presentation, which applies to E-theories at all primes p, for the
mod-p reduction of their Dyer–Lashof algebras [Rezk 2012, 4.8]. Underlying this
presentation is the Kronecker congruence (1.1) [Rezk 2012, Proposition 3.15].

Our second main result provides an “integral lift” of Rezk’s mod-p presentation, with a
different set of generators, in the same sense that Theorem A above lifts the Kronecker
congruence. We begin with the following as a stepping-stone to this result.

Let E be a Morava E-theory spectrum of height 2 at the prime p. There is an additive to-
tal power operation ψ p : E0 → E0(BΣp)/I , or W(Fp)JhK → W(Fp)Jh, αK

/(
w(h, α)

)
,

where I is a transfer ideal.

Theorem B With the above notation, the following statements hold.

(i) The polynomial w(h, α) = wp+1α
p+1 + · · ·+ w1α+ w0 , wi ∈ E0 , can be given

as (1.3) from Theorem A. In particular, wp+1 = 1, w1 = −h, w0 = (−1) p+1p,
and the remaining coefficients

wi = (−1) p ( p−i+1)
[(

p
i− 1

)
+ (−1) p+1p

(
p
i

)]
(ii) The image ψ p(h) =

∑p
i=0 Qi(h)αi = α+

∑p
i=0 α

i∑p
τ=1 wτ+1 di,τ , where

di,τ =
τ−1∑
n=0

(−1)τ−n wn
0

∑
m1+···+mτ−n=τ+i

1≤ms≤ p+1
mτ−n≥ i+1

wm1 · · ·wmτ−n

In particular, Q0(h) ≡ h p mod p.
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The above theorem leads to the second main result of the paper. Continue with the
notation in Theorem B. Let Γ be the Dyer–Lashof algebra for E , which is the ring of
additive power operations on K(2)-local commutative E-algebras.

Theorem C The Dyer–Lashof algebra Γ admits a presentation as the associative ring
generated over E0 ∼= W(Fp)JhK by elements Qi , 0 ≤ i ≤ p, subject to the following
set of relations.

(i) Adem relations

QkQ0 = −
p−k∑
j=1

w j
0 Qk+jQj−

p∑
j=1

j−1∑
i=0

wi
0 dk, j−i QiQj for 1 ≤ k ≤ p

where the first summation is vacuous if k = p.

(ii) Commutation relations

Qi c = (Fc) Qi for c ∈ W(Fp) and all i, with F the Frobenius automorphism

Q0 h = e0 + (−1) p+1r
p−1∑
m=0

smep+m+1 + (−1) p
(

ep + r e2p +

p∑
m=1

smep+m

)

+

p−1∑
j=1

(−1) p j
[

ej + r s p−je2p + r
p−j−1∑
m=0

sm(ep+j+m + (−1) p+1ep+j+m+1
)]

Qk h = (−1) p (p−k)
(

p
k

)(
ep + r e2p +

p∑
m=1

smep+m

)
+

p−1∑
j=k

(−1) p ( j−k)
(

j
k

)[
ej

+ r s p−je2p + r
p−j−1∑
m=0

sm(ep+j+m + (−1) p+1ep+j+m+1
)]

for 0 < k < p

Qp h = ep + r e2p +

p∑
m=1

smep+m

where r = h− p2 + (−1) p , s = p + (−1) p , and

en =

p+1∑
m=n

(−1)(p+1)(m−n)
(

m
n

)
Qm−1

+

2p∑
m=n

(−1)(p+1)(m−n)
(

m
n

) ∑
i+j=m

0≤ i, j≤ p

p∑
τ=1

wτ+1 di,τ Qj

the first summation for en being vacuous if p + 2 ≤ n ≤ 2 p, and being vacuous
in its term m = 0 if n = 0.
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The Dyer–Lashof algebra Γ has the structure of a twisted bialgebra over E0 . The
“twists” are described by the commutation relations above. The product structure
satisfies the Adem relations. Certain Cartan formulas give rise to the coproduct structure
as follows.

Theorem D Let A be any K(2)-local commutative E-algebra. There are additive
individual power operations Qk : π0(A) → π0(A), 0 ≤ k ≤ p, which satisfy the fol-
lowing Cartan formulas as well as the Adem and commutation relations from Theorem
C. For each 0 ≤ k ≤ p, Qk(xy) equals the expression on the right-hand side of the
commutation relation for Qk h, where r = h − p2 + (−1) p and s = p + (−1) p as
above, and

en =

2p∑
m=n

(−1)(p+1)(m−n)
(

m
n

) ∑
i+j=m

0≤ i, j≤ p

Qi(x) Qj(y)

Proof In Section 4.2 below proving Theorem C, we will present a proof for the
commutation relations, in such a way that the same formal procedure applies to give
the stated Cartan formulas.

Remark 1.8 Theorems C and D recover corresponding earlier results in [Rezk 2008,
Zhu 2014, Zhu 2015] for p = 2, 3, and 5 respectively.

To be more precise, for p = 3, the presentations do not coincide but are equivalent.
Cf. Example 2.17 and Definition 2.23 below after we discuss models for the total power
operation ψ p . The equivalency will be addressed in Remark 2.25. Theorem B was
stated with respect to a particular basis for the target ring E0(BΣp)/I of ψ p as a free
module over E0 of rank p + 1. Theorem C was stated with respect to a particular basis
for the Dyer–Lashof algebra Γ as an associative ring over E0 on ( p + 1) generators.

For p = 5, in [Zhu 2015, Example 4.1], we did not completely determine the Dyer–
Lashof algebra due to constraints with our earlier methods (cf. [ibid., Example 2.14]).
The issue was that, after a quadratic extension of F5 , the mod-5 Hasse invariant factors
into a pair of Galois conjugates (see Example 2.18 below). We calculated with global
modular forms instead of local functions on Lubin–Tate curves. Thus we were unable to
determine the image under ψ p of h ∈ E0 (denoted ibid. by u1 , with h standing for the
global Hasse invariant), which corresponds to a local deformation parameter at one of
the two supersingular points. Nevertheless, in fact, the current and earlier presentations
for the Dyer–Lashof algebra in this case agree formally. This agreement is a manifest
of the functoriality, with respect to base field extension, of the Dyer–Lashof algebra as
a moduli space.
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Caution 1.9 In this paper, we use the word “model” for two distinct but closely related
objects. One is an algebraic curve with an explicit defining equation as customary in
algebraic geometry. The other is a set of data involving formal groups and elliptic curves
that is designed to facilitate explicit calculations in algebraic topology (Definitions 2.3,
2.6, and 2.23).

Remark 1.10 Let E be a Morava E-theory of height n. Recent work of Behrens
and Rezk on spectral algebra models for unstable vn -periodic homotopy theory has
identified (i) the completed E-homology of the n’th Bousfield–Kuhn functor applied to
an odd-dimensional sphere with (ii) the E-cohomology of the K(n)-localized André–
Quillen homology of the spectrum of cochains on the odd-dimensional sphere valued
in the K(n)-local sphere spectrum [Behrens–Rezk 2017, Theorem 8.1]. The former
(i) computes unstable vn -periodic homotopy groups of spheres via a homotopy fixed
point spectral sequence of Devinatz and Hopkins. By calculations of Rezk, (ii) can be
identified at heights n = 1 and n = 2 via another spectral sequence, whose E2 -page
consists of Ext-groups of certain rank-one modules over the Dyer–Lashof algebra of E
(see [Rezk 2013a, Example 2.13]).

We have applied Theorems A and B in this context of unstable chromatic homotopy
theory to make these Ext-groups more explicit in [Zhu 2018], with subsequent work
joint in part with Wang towards general patterns in higher chromatic levels after
[Rezk 2012, Weinstein 2016].
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1.5 Outline for the rest of the paper

In Section 2, we collect, streamline, and provide an in-depth analysis of necessary
preliminary materials from [Zhu 2015, Sections 2.1–2.3 and 3.1]. The presentation
here is self-contained.
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After a brief discussion of the homotopy-theoretic setup, we present in Sections 2.1
and 2.2 models for Morava E-theories of height 2 and their power operations, which
are built from data of formal groups and elliptic curves. Section 2.3 is an interlude
on the Atkin–Lehner involution, which becomes important later. We then introduce
parameters for the local formal moduli in Section 2.4 and give a detailed analysis of
their behavior at the cusps of the global moduli, as summarized in Lemma 2.15 and
Definition 2.23.

Sections 3 and 4 are devoted to proving the main theorems stated in Sections 1.2 and
1.3 above, respectively, for the moduli spaces in algebraic geometry and in algebraic
topology. The key ingredients for the proof in Section 3 are Lemmas 2.15 and 3.2.

2 Modeling Morava E-theories of height 2 via moduli spaces
of elliptic curves

Given a formal group G0 over Fp of height 2, let E be the Morava E-theory spectrum
associated to G0/Fp by the Goerss–Hopkins–Miller theorem [Goerss–Hopkins 2004].
We have

π∗(E) = W(Fp)Jµ1K[µ±1]

with |µ1| = 0 and |µ| = 2.

Let xE ∈ Ẽ2(CP∞) be a class that extends to a complex orientation of E . Then
E∗(CP∞) ∼= E∗JxEK and the formal scheme Spf

(
E0(CP∞)

)
has a group structure

[Hopkins 1999, Section 1]. In particular, xE · µ is a coordinate on this formal group,
i.e., a uniformizer for its ring of functions [Ando 2000, Definition 1.4 and Remark 1.7].

The degree-0 coefficient ring E0 = W(Fp)Jµ1K is the Lubin–Tate ring that classi-
fies formal deformations of G0 [Lubin–Tate 1966, Theorem 3.1]. The formal group
Spf
(
E0(CP∞)

)
is the universal deformation G of G0 over E0 .

As an E∞ -ring spectrum, E affords power operations constructed from the extended
power functors Dm(−) :=

(
−
)∧E m

hΣm
on E-modules, for each integer m ≥ 0, given by

taking the m-fold smash product over E modulo the action of the symmetric group Σm

up to homotopy.

In particular, we have the (additive) total p-power operation

(2.1) ψ p : E0 → E0(BΣp)/I
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where I =
⊕

0<i<p im
(
E0(BΣi × BΣp−i) → E0(BΣp)

)
is the ideal generated by

images of transfers. It gives rise to individual power operations Qi : π0(A) → π0(A),
0 ≤ i ≤ p, for any K(2)-local commutative E-algebra A (see [Bruner et al. 1986,
Definition I.4.2] and [Zhu 2014, Definition 3.5]).

2.1 Models for an E-theory and Lubin–Tate curves of level 1

Given such an E-theory above, to carry out explicit calculations for its power operations,
we work with elliptic curves as models (cf. [Zhu 2015, Sections 2.1–2.2]).

First, let C0 be a supersingular elliptic curve over Fp . Its formal completion Ĉ0 at the
identity section is a formal group of height 2 over Fp . By [Lazard 1955, Théorème
IV], Ĉ0 is isomorphic to G0 .

Next, to associate an elliptic curve to the universal formal deformation G of G0 , we
construct a universal deformation of the elliptic curve C0 . For representability, we
equip C0 with a level-Γ1(N) structure, N ≥ 3 and p - N .

More precisely, consider the representable moduli problem PN of isomorphism classes
of smooth elliptic curves over Z[1/N] with a choice of a point of exact order N and
a nonvanishing invariant 1-form. Let MN be its representing scheme,2 which is of
relative dimension 1 over Z[1/N]. Let CN be the universal elliptic curve over this
modular curve MN . In general, for p and N large, the supersingular locus of MN at p
consists of more than one closed point, and C0 is the fiber of CN over one of them. By
the Serre–Tate theorem [Lubin–Serre–Tate 1964] (cf. [Katz–Mazur 1985, 2.9.1]), over
a formal neighborhood of the supersingular point, the formal completion ĈN of CN at
the identity section is isomorphic to the universal formal deformation G of G0 ∼= Ĉ0 .

As part of the data associated with PN , the invariant 1-form gives a basis for the
relative cotangent space at the identity. See [ibid., 2.2.1–2.2.4] for details, including
the notion of a basis ω adapted to a formal parameter T at the identity. To ease notation,
we shall not distinguish ω and dT when there is no ambiguity.

Remark 2.2 From the above discussion in this subsection, we see that up to isomor-
phism, the E-theory E associated to G0/Fp does not depend on the choice of C0 and
CN which model its formal group G.

2See [Mahowald–Rezk 2009, Proposition 3.2] and [Zhu 2015, Examples 2.1–2.2] for explicit
presentations in the cases when N = 3, 4, and 5.
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Definition 2.3 ([Zhu 2015, Definition 2.9]) Let E be a Morava E-theory of height 2
at the prime p. With notation as above, a PN -model for E is the following set of data:

Mod. 1 a supersingular elliptic curve C0 over Fp equipped with a level-Γ1(N)
structure;

Mod. 2 a universal deformation CN of C0 over MN ;

Mod. 3 a coordinate u on the formal group ĈN ;

Mod. 4 an isomorphism between Spf(E0) and the formal completion of MN at the
supersingular point corresponding to C0 ; and

Mod. 5 the isomorphism between Spf
(
E0(CP∞)

)
and ĈN , as formal groups over

E0 , that sends xE · µ to u.

As discussed above, the existence of the isomorphisms in Mod. 4 and Mod. 5 follows
from the Lubin–Tate theorem combined with the Serre–Tate theorem.

The formal schemes in Mod. 4 are each of relative dimension 1 over the formal
completion Spf

(
W(Fp)

)
of Spec(Z) at its Fp -point. We call them Lubin–Tate curves

of level 1 (the level-Γ1(N) structure is auxiliary for our purpose).

2.2 Models for power operations on E and Lubin–Tate curves of level
Γ0(p)

By work of Ando, Hopkins, Rezk, and Strickland, power operations on E correspond
to finite flat subgroup schemes of G, or equivalently, to isogenies from G [Rezk 2009,
Theorem B]. Thus, again via the Serre–Tate theorem, we model the latter by isogenies
between elliptic curves in order to obtain explicit formulas for the power operations.

More precisely, as the base ring E0 is p-local, we need only work with the moduli
problems [Γ0(pr)] of isomorphism classes of elliptic curves with a choice of degree-pr

subgroup scheme. It suffices to analyze [Γ0(p)] and its Atkin–Lehner involution.3

Indeed, the ring of (additive) power operations on any Morava E-theory is quadratic
[Rezk 2017, Main Theorem and Proposition 4.10]: with ring multiplication given by
composition, the pr -power operations are generated by the p-power ones, subject to
quadratic relations that describe products of two generators.

The moduli problem [Γ0(p)] is relatively representable over the moduli stack of elliptic
curves [Katz–Mazur 1985, 4.2 and 5.1.1]. In particular, the simultaneous moduli

3See [Katz–Mazur 1985, 11.3.1] with more details below in Section 2.3.
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problem PN × [Γ0(p)] is representable by a scheme MN, p , which is finite flat over
MN of degree p + 1.

Remark 2.4 The scheme MN, p is of relative dimension 1 over Z[1/N]. It is com-
monly referred to as the modular curve of level Γ0(p), whose compactification is
denoted by X0(p) in the literature, without reference to the auxiliary level-N structure.
Up to base change, this modular curve is independent of the rigidification by PN (for
representability), or by any other types of level-N structure (cf. [Katz 1973, Chapter
1, esp. 1.13] where full level-Γ(N) structures are used). Also cf. [Katz–Mazur 1985,
13.4.7] where P rigidifies [Γ0(p)]. In particular, varying N will not change the local
equation for MN, p as a scheme over MN .

Now, we construct a universal degree-p isogeny over MN, p as follows (cf. [Zhu 2015,
Construction 2.11]). Over MN, p , let G (p)

N be the universal example of a degree-p
subgroup scheme of CN and write C (p)

N := CN/G
(p)
N for the quotient elliptic curve.

Define Ψ(p)
N : CN → C (p)

N over MN, p by the formula

(2.5) ũ
(
Ψ(p)

N (P)
)

=
∏

Q∈G (p)
N

u(P− Q)

where u is a coordinate on CN at the identity O and ũ is the coordinate on C (p)
N induced

by u (see [Ando 2000, Section 4.3]).

This isogeny Ψ(p)
N is a deformation of Frobenius in the sense that its restriction over

the supersingular point is the Frobenius isogeny Frob: C0 → C (p)
0 , as the p-torsion

subgroup scheme C0[p] = 0.

Definition 2.6 Let ψ p be the total power operation on E in (2.1). With notation as
above, a PN -model for ψ p is the data of Mod. 1–5 together with the following:

Mod. 6 a universal deformation Ψ(p)
N : CN → C (p)

N of Frob: C0 → C (p)
0 over

MN, p ; and

Mod. 7 an isomorphism over E0 between Spf
(
E0(BΣp)/I

)
and the formal com-

pletion of MN, p at the supersingular point corresponding to C0 .

Remark 2.7 The existence of the isomorphism in Mod. 7 follows from Strickland’s
theorem on Morava E-theories of symmetric groups in terms of rings of functions
on the formal moduli [Strickland 1998, Theorem 1.1], combined with the Serre–Tate
theorem.
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The formal schemes in Mod. 7 are each of relative dimension 1 over Spf
(
W(Fp)

)
and

finite flat of degree p + 1 over Spf(E0). We call them Lubin–Tate curves of level Γ0(p)
(again, the auxiliary N is omitted).

2.3 Atkin–Lehner involution on the global moduli

Instead of a universal deformation of Frobenius, an alternative viewpoint for modeling
the total p-power operation is through an Atkin–Lehner involution.

Let us consider a PN -model for ψ p as in Definition 2.6. With notation from last
subsection, there is an automorphism on MN, p , induced by the map(

CN , P0, du, G (p)
N

)
7→
(
CN/G

(p)
N , Ψ(p)

N (P0), dũ, CN[p]/G (p)
N

)
of simultaneous level-

(
PN ,Γ0(p)

)
structures on (distinct) elliptic curves, where CN[p]

denotes the p-torsion subgroup scheme of CN (cf. [Katz–Mazur 1985, 11.2 and
11.3.1]). We call this automorphism an Atkin–Lehner involution in connection with
Atkin and Lehner’s theory of modular forms on Γ0(p) [Atkin–Lehner 1970, Lemmas
7–10]. It is an involution since CN[p] ⊂ CN is of degree p2 .

Given Ψ(p)
N on CN , the Atkin–Lehner involution of MN, p induces an isogeny on the

quotient curve C (p)
N = CN/G

(p)
N , namely,

Ψ̃(p)
N : C (p)

N → C (p)
N /G̃ (p)

N

where G̃ (p)
N = CN[p]/G (p)

N .

Over the mod-p ordinary locus of MN, p , as the p-divisible group of CN sits in a
short exact sequence of its formal (connected) and étale components [Tate 1967, (4) in
Section 2.2], the Atkin–Lehner involution interchanges these two sorts of formal and
étale degree-p subgroups.

Via the correspondences in Mod. 4 and Mod. 7, given any x ∈ E0 , ψ p(x) is the image
x̃ of x under the Atkin–Lehner involution.

Remark 2.8 Note that since ψ p acts on the scalars W(Fp) ⊂ E0 as the p-power
Frobenius automorphism, it is not an involution for this subring.

Convention 2.9 Henceforth whenever we write a tilde ∼ over a symbol, we mean the
analogue of this symbol under an Atkin–Lehner involution.
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2.4 h and α as deformation and norm parameters in the local moduli

In [Katz–Mazur 1985, 7.7–7.8], various pairs of parameters are proposed for the local
ring of [Γ0(p)] at a supersingular point, when one views the moduli problem as an “open
arithmetic surface” (cf. [ibid., page xiii and 5.1.1]). More explicitly, a presentation for
this local ring over a perfect field of characteristic p is given in [ibid., 13.4.7], which
Rezk applied to produce a mod-p presentation for the ring of power operations on E
in [Rezk 2012, 4.8].

We shall give an integral presentation for the local ring of [Γ0(p)] in terms of the
parameters T and N

(
X(P)

)
from [Katz–Mazur 1985, 7.7].

The parameter T is a uniformizer for the Lubin–Tate ring that carries the universal
formal deformation (cf. [ibid., 5.2 (Reg. 4)]). We therefore call it a deformation
parameter for the local moduli of [Γ0(p)]. Via Mod. 4, it corresponds to µ1 ∈ E0 .

Globally over the moduli, the Hasse invariant at p is a modular form over Fp of level
1 and weight p− 1 (see [ibid., 12.4] and [Silverman 2009, V §4]). Up to p-torsion, it
lifts to an integral modular form on CN/MN for all p and all N ≥ 3 prime to p (see
[Calegari 2013, Theorem 1.8.1], [Buzzard 2003, journal p. 35], and [Meier 2016]).4

The Hasse invariant vanishes precisely over the mod-p supersingular locus. Its restric-
tion to a formal neighborhood of a supersingular point equals a deformation parameter
T [Katz–Mazur 1985, 12.4.4].

Convention 2.10 For the reason above, henceforth we will write h (the initial letter
of “Hasse”) for a deformation parameter and also for its corresponding element in
E0 ⊂ E0(BΣp)/I .

The other parameter N
(
X(P)

)
is constructed as a norm [ibid., 7.5.2], where X is a

coordinate on the formal group of a universal elliptic curve, and P a point on the curve
of exact order p (see [ibid., 5.4]). We call N

(
X(P)

)
a norm parameter for the local

moduli of [Γ0(p)]. Via Mod. 7, it should correspond to an element in E0(BΣp)/I whose
powers generate this ring as a free module over E0 of rank p + 1 (the degree of MN, p

over MN ) by Weierstrass preparation.

Observe that from the definition (2.5) of the universal degree-p isogeny Ψ(p)
N over

4See also [Zhu 2015, Example 2.6] for an explicit calculation of the Hasse invariant when
p = 5 and N = 4 as well as an illustration of the global-local moduli. We will return to this
calculation below in Example 2.18.
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MN, p , setting

(2.11) α :=
∏

Q∈G (p)
N −{O}

u(Q)

we obtain a norm parameter for [Γ0(p)] associated with the coordinate u. This Γ0(p)-
norm is a modular form on CN/MN, p . We will also write α for the aforementioned
element in E0(BΣp)/I that corresponds to the restriction of this modular form over the
formal neighborhood of the supersingular point.5

Thus E0 ∼= W(Fp)JhK and by Weierstrass preparation there exists a unique monic
polynomial w(h, α) in α of degree p + 1 with coefficients in E0 such that

(2.12) E0(BΣp)/I ∼= E0[α]
/(

w(h, α)
)

= W(Fp)Jh, αK
/(

w(h, α)
)

Remark 2.13 We observe that this norm parameter α is the multiple which defines
the relative cotangent map at the identity along Ψ(p)

N , that is,
(
Ψ(p)

N

)∗dũ = α · du.

2.5 The norm parameters α and α̃ near the cusps of X0(p)

Given the geometric interpretation for the norm parameter α from Remark 2.13, we
next consider the compactified moduli MN, p over MN and determine the values of α ,
as a modular form, at the cusps of MN, p (cf. [Katz 1973, 1.13 and 1.11]).

Recall that MN, p −MN, p is finite étale over Z[1/N]. Over Z[1/N, ζN] with ζN a
primitive N ’th root of unity, it is a disjoint union of sections, called the cusps of MN, p ,
two of which lie over each cusp of MN . Among each pair of the two cusps, one is étale
over MN , which corresponds to the (étale) subgroups Hi of the Tate curve Tate(qN)
generated by (ζ i

p q1/p)N , with ζp a primitive p’th root of unity and i = 0, 1, . . . , p−1.
The other cusp is ramified over MN , corresponding to the (formal) subgroup µ♠µp of
Tate(qN) generated by ζp so that the quotient Tate(qN)/µ♠µp = Tate(qNp). These cusps

5This is a footnote intended for the expert. In [Zhu 2014, Zhu 2015], we chose distinct
symbols κ for the modular form constructed as a Γ0(p)-norm, and α for the modular function
as a multiple of κ by modular unit of weight p , passing from a weighted projective space
to one of its affine local charts (cf. last footnote). As this perspective is not involved with
addressing the central problem of the current paper, to ease notation and make the exposition
more accessible, here we have suppressed the difference of symbols. This global-to-local
procedure underlies Mod. 4, Mod. 5, and Mod. 7 as well as the choice of a nonvanishing
invariant 1-form in the moduli problem PN (cf. [Katz–Mazur 1985, 8.1.7.1], we work locally
with Gm\PN = Gm

∖(
Γ1(N)× [ω]

)
= Γ1(N) auxiliary to [Γ0(p)]).
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appear in the literature as the unramified and ramified cusps of X0(p), respectively,
without reference to the auxiliary level-N structure.

Recall from Section 2.3 that, over the ordinary locus, the Atkin–Lehner involution
on MN, p interchanges the two sorts of étale and formal degree-p subgroups of the
p-divisible group. It thus extends to an automorphism on MN, p which interchanges
the two sorts of unramified and ramified cusps, respectively.

In [ibid., 1.11], to discuss Hecke operators, Katz gave a detailed analysis of the degree-p
isogenies π from Tate(qN), each with one of the above subgroups as kernel. They are
defined over the punctured formal neighborhood Z[1/N, ζN][1/p, ζp]((q1/p)) around
the cusps. In particular, Katz calculated the cotangent maps to their dual isogenies π̂
and obtained π̂

∗(ωcan) = ωcan near the ramified cusps whereas π̂∗(ωcan) = p · ωcan

near the unramified cusps [ibid., lines 4–5 on book p. 91]. Here, ωcan is the canonical
1-form on a Tate curve (cf. [Katz–Mazur 1985, T.2 in 8.8]).

Recall from last subsection that the norm parameter α is the multiple which defines the
cotangent map induced by the universal degree-p isogeny Ψ(p)

N over MN, p . We now
determine the values of α , as a modular form, at the cusps from the above calculation
of Katz. For this process, we need to carefully analyze the dual isogenies and 1-
forms involved, by imposing conditions on the supersingular elliptic curve C0 and the
coordinate u on CN of a PN -model as follows (cf. [Zhu 2015, Section 3.1]).

Let us introduce the following strengthened version of Mod. 1:

Mod. 1+ a supersingular elliptic curve C0 over Fp2 , equipped with a level-Γ1(N)
structure, whose p2 -power Frobenius endomorphism equals the map of
multiplication by (−1) p−1p, that is, Frob2 = (−1) p−1[p].

Remark 2.14 By [Poonen 2010], given any supersingular elliptic curve C/Fp , there
exists such a C0 isomorphic to C over Fp (cf. [Baker et al. 2005, Lemma 3.21],
[Zhu 2014, Remark 3.3], and [Rezk 2012, 3.8]). In particular, the dual isogeny of
Frob: C0 → C (p)

0 is the Frobenius isogeny out of C (p)
0 for all p 6= 2.

Lemma 2.15 Let C0 be in Mod. 1+ and CN be in Mod. 2. Then there exists a
coordinate u+ on CN such that its associated modular form α in (2.11) equals p at the
ramified cusps and (−1) p−1 at the unramified cusps of MN, p . The definition of u+

may require an extension of scalars on MN, p .

The proof is technical and will be given at the end of this section. Let us first move on
to some examples.
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Example 2.16 ([Rezk 2008, Section 3]) Let p = 2 and N = 3. Rezk worked with
a P3 -model where C0 : y2 + y = x3 in Mod. 1+ , corresponding to the unique mod-2
supersingular point in the moduli. The universal curve C3 : y2 + axy + y = x3 in
Mod. 2 has a chosen 3-torsion point (0, 0) (cf. [Mahowald–Rezk 2009, Proposition
3.2]). He then set u = x/y in Mod. 3, which has the property in Lemma 2.15. Indeed,
his deformation parameter a and norm parameter d satisfy d3 − ad − 2 = 0. This
identity factors into (d−2)(d + 1)2 = 0 if a = 3, which is an integral lift for the Hasse
invariant 1 of the Tate curve.

Example 2.17 ([Zhu 2014, Sections 2.1–3.1]) Let p = 3 and N = 4. We worked
with a P4 -model where C0 : y2 + xy − y = x3 − x2 in Mod. 1 (Frob2 = [−3]),
corresponding to the unique mod-3 supersingular point in the moduli. The universal
curve C4 : y2 + axy + aby = x3 + bx2 in Mod. 2 has a chosen 4-torsion point (0, 0).
We set u = x/y in Mod. 3. Our deformation parameter h = a2 +b and norm parameter
α satisfy α4 − 6α2 + (h − 9)α − 3 = 0, which factors into (α − 3)(α + 1)3 = 0 if
h = 1.

Example 2.18 ([Zhu 2015, Sections 2.1–2.3]) Let p = 5 and N = 4. We worked
with a P4 -model where C4 is the same curve as in Example 2.17. Its Hasse invariant
at the prime 5 factors as

a4 − a2b + b2 =
(
a2 + 2(1 + η)b

)(
a2 + 2(1− η)b

)
over F5 with η2 = 2. Thus the mod-5 supersingular locus consists of two closed
points. We chose C0 in Mod. 1+ that corresponds to the first factor, and again u = x/y
in Mod. 3.

Setting h = a4−16a2b + 26b2 as an integral lift of the Hasse invariant above, we were
only able to calculate that

(2.19) α6 − 10α5 + 35α4 − 60α3 + 55α2 − hα+ 5 = 0

where α is the (global) modular form constructed as a norm with the coordinate u. We
were unable to deduce an equation for a lift of the factor a2 + 2(1 + η)b of the Hasse
invariant.

If we further set h = 26 ≡ 1 mod 5, (2.19) then factors into (α−5)(α−1)5 = 0. Thus
u satisfies the property in Lemma 2.15. The relation (2.19) should specialize to one for
the corresponding deformation and norm parameters at the chosen supersingular point.
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Example 2.20 ([Rezk 2015]) Let p = 5 and N = 3. We worked with a P3 -model
where C3 is the same curve as in Example 2.16. Its Hasse invariant at the prime 5
factors as

−a4 − a = −a(a + 1)(a2 − a + 1)

Thus the mod-5 supersingular locus consists of three closed points. We chose C0 in
Mod. 1 that corresponds to the first factor (Frob2 = [−5]) and u = x/y in Mod. 3.
Setting h = −a4 + 19a as an integral lift of the Hasse invariant above, we calculated
that

(2.21) α6 − 5aα4 + 40α3 − 5a2α2 − hα− 5 = 0

where α is the (global) modular form constructed as a norm with the coordinate u. This
identity factors into (α+ 5)(α− 1)5 = 0 if we set a = 3 so that h = −24 ≡ 1 mod 5.
Again, the relation (2.21) should specialize to one for the corresponding deformation
and norm parameters at the chosen supersingular point, which is equivalent to the
relation from Example 2.18 as an equation for a Lubin–Tate curve of level Γ0(5).

Remark 2.22 The coordinate u+ in Lemma 2.15 (and u in Example 2.17) should
restrict to a distinguished coordinate on the formal group ĈN as well as to one on
the formal group of Tate(qN), which was originally studied by Ando [Ando 1995,
Theorem 2.5.7]. We have given an exposition of this fact in [Zhu 2015, Section 3.1],
with more details and greater generality in [Zhu 2017]. Our results in the current paper
are independent of the existence of Ando’s coordinates.

Definition 2.23 ([Zhu 2015, Definition 3.8]) Let ψ p be the total power operation on
E in (2.1). Continuing with Definition 2.6, we call the following set of data a preferred
model for ψ p :

Mod. 0+ an integer N ≥ 3 that is prime to p;

Mod. 1+ a supersingular elliptic curve C0 over Fp2 , equipped with a level-Γ1(N)
structure, whose p2 -power Frobenius endomorphism equals the map of
multiplication by (−1) p−1p, that is, Frob2 = (−1) p−1[p];

Mod. 2+ a universal deformation CN of C0 over MN ;

Mod. 3+ a coordinate u on the formal group ĈN which extends to a coordinate on
CN satisfying the property that the associated modular form of Γ0(p)-
norm equals p at the ramified cusps and (−1) p−1 at the unramified cusps
of MN, p ;

Mod. 4+ an isomorphism between Spf(E0) and the formal completion of MN at
the supersingular point corresponding to C0 ;
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Mod. 5+ the isomorphism between Spf
(
E0(CP∞)

)
and ĈN , as formal groups over

E0 , that sends xE · µ to u;

Mod. 6+ a universal deformation Ψ(p)
N : CN → C (p)

N of Frob: C0 → C (p)
0 over

MN, p ; and

Mod. 7+ an isomorphism over E0 between Spf
(
E0(BΣp)/I

)
and the formal com-

pletion of MN, p at the supersingular point corresponding to C0 .

As discussed above, the existence of the curve in Mod. 1+ follows from Remark 2.14
and the existence of the coordinate in Mod. 3+ follows from Lemma 2.15.

Analogous to [Zhu 2014, Corollary 3.2], note that given a preferred model we have

(2.24) α · α̃ = (−1) p−1p

where α̃ is the Atkin–Lehner involution of the norm parameter α , itself also a norm
parameter (cf. [Katz–Mazur 1985, row 7 for [Γ0(pn)] of table in 7.7]).

Remark 2.25 Given Definition 2.23, let us summarize at this point the dependence
on the various choices made therein of the stated formulas in Theorems A, B, and C.

Up to isomorphism, the height-2 Morava E-theory spectrum E is independent of
the choice Mod. 1+ (or Mod. 1) by Lazard’s theorem and the Goerss–Hopkins–Miller
theorem, and independent of Mod. 2 by the Lubin–Tate theorem (Remark 2.2). In
particular, different choices between Mod. 1 and Mod. 1+ may result in different but
equivalent formulas in the theorems (see, e.g., the case p = 3 in Remark 1.8).

The choice Mod. 2, i.e., for different values of N , does not affect the coefficients in the
modular equation (1.3) as long as Mod. 1+ (or Mod. 1) has been fixed (Remark 2.4).
Consequently, the formulas in Theorems B and C are independent of N .

The choice Mod. 3+ (or Mod. 3) does affect the coefficients in (1.3) as its parameter α
is built explicitly using a coordinate u. Different choices result in different bases in
Theorem B for the target ring E0(BΣp)/I of ψ p as a free module over E0 , and different
bases in Theorem C for the Dyer–Lashof algebra Γ as an associative ring over E0 .
This choice Mod. 3+ can in fact be further strengthened and made unique, though we
do not need it to be so here (Remark 2.22).

The rest Mod. 4–7 of the list are formal, which will not affect the formulas once the
choices above have been made.
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As we shall see in the proofs of the theorems below in Sections 3 and 4, for a fixed
prime p, all preferred models for ψ p from Definition 2.23 will give the same formulas
as stated in the theorems.

Proof of Lemma 2.15 Let [X,Y,Z] be the homogeneous Weierstrass coordinates of
CN , with the identity section O = [0, 1, 0]. Let u = X/Y so that u(O) = 0. Then
locally u is a coordinate on the formal group ĈN (cf. [Silverman 2009, IV §1]).

Let Ψ(p)
N : CN → C (p)

N over MN, p be the universal degree-p isogeny from (2.5)
constructed using the above coordinate u. Recall from earlier in this subsection Katz’s
calculation of degree-p isogenies on Tate(qN) over Z[1/N, ζN][1/p, ζp]((q1/p)). Up to
a unique isomorphism σp , the universal isogeny Ψ(p)

N restricts over a punctured disc
around a ramified cusp as

πp : Tate(qN)→ Tate(qN)/µ♠µp = Tate(qNp), q 7→ q p

with π̂∗p(ωcan) = ωcan and thus π∗p (ωcan) = p · ωcan . Around an unramified cusp Ψ(p)
N

restricts up to a unique isomorphism σ0 as

π0 : Tate(qN)→ Tate(qN)/H0 = Tate(qN/p), q 7→ q1/p

with π̂∗0(ωcan) = p · ωcan and thus π∗0 (ωcan) = ωcan .

Let λ be the unit in Z[1/N, ζN] such that du restricts to λ · ωcan on Tate(qN). Let
νp and ν0 be the units in Z[1/N, ζN][1/p, ζp] such that dũ restricts to νp · λp · ωcan

on Tate(qNp) and to ν0 · λp · ωcan on Tate(qN/p). The latter two units arise from the
isomorphisms σp and σ0 respectively. Since

(
Ψ(p)

N

)∗dũ = α · du, comparing this
identity to those in last paragraph, we see that α = νpλ

p−1p at a ramified cusp and
α = ν0λ

p−1 at an unramified cusp.

On the other hand, over the chosen supersingular point in the PN -model, by construc-
tion Ψ(p)

N restricts to Frob: C0 → C (p)
0 . Thus by rigidity [Katz–Mazur 1985, 2.4.2]

the identity Frob2 = (−1) p−1[p] from Mod. 1+ lifts to

(2.26) Ψ̃(p)
N ◦Ψ(p)

N = τ ◦ (−1) p−1[p]

where Ψ̃(p)
N : C (p)

N → C (p)
N /G̃ (p)

N is the Atkin–Lehner involution of Ψ(p)
N from Section

2.3, with G̃ (p)
N = CN[p]/G (p)

N , and τ : CN/CN[p] → C (p)
N /G̃ (p)

N is the canonical iso-
morphism inducing the identity map on relative cotangent spaces. Comparing (2.26)
to π̃p ◦ πp = π̃0 ◦ π0 = [p] around the cusps [Katz 1973, last line on book p. 90 and
lines 1–3 on p. 91], we see that v0 · vp = (−1) p−1 as ṽp = v0 .

Set u+ := ν
−1/(p−1)
p λ−1 ·u = −ν−1/(p−1)

0 λ−1 ·u. It is straightforward to check that the
Γ0(p)-norm α associated to this coordinate u+ takes the desired values at the cusps.
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3 Proof of Theorem A

Choose any preferred model as in Definition 2.23. We may assume that the j-invariant
for the supersingular point of this model lies in Fp . In fact, by a theorem of Deuring
(see [Cox 2013, Theorem 14.18, combined with Proposition 14.15]), there exists a
supersingular elliptic curve over Fp for every p > 3. This existence is also true for
p ≤ 3 as shown by explicit examples [Silverman 2009, beginning of V §4 and Example
4.5]. Thus the corresponding j-invariant lies in Fp . Since the condition on Frob2 in
Mod. 1+ involves at most a substitution of supersingular curves via an isomorphism
over Fp (see Remark 2.14), the chosen j-invariant remains in Fp .

Let j0 ∈ Z be a lift of this supersingular j-invariant.

In the scheme MN, p representing the simultaneous moduli problem PN × [Γ0(p)],
consider a formal neighborhood U that contains this single supersingular point. Note
that U ∼= Spf(A1) by the Serre–Tate theorem (see Remark 2.7 and recall from the
discussion preceding Theorem A that Am denotes the ring of functions on the Lubin–
Tate curve of level Γ0(pm)).

Define a modular function h := j− j0 , where j (z) = q−1 + 744 + O(q) with q = e2πiz

as usual. Since j0 lifts a supersingular j-invariant, h then serves as a deformation
parameter for A0 and A1 . Locally, modulo p, it is a restriction of the Hasse invariant
(cf. [Katz–Mazur 1985, 12.4.4]).

Let α be the norm parameter (locally near the supersingular point) for A1 associ-
ated with Mod. 3+ of this model. By Weierstrass preparation there exists a unique
polynomial

(3.1) w(h, α) = α p+1 +

p∑
i=0

wi α
i

with wi ∈ W(Fp)JhK such that A1 ∼= A0[α]
/(

w(h, α)
)

(cf. (2.12)).

Write h̃ and α̃ for the images of h and α under the Atkin–Lehner involution. Note
that, as a function on the Lubin–Tate curve Spf(A1), α̃ is only locally defined over
the moduli scheme MN, p . Nevertheless, by construction as a norm parameter, it
is the restriction of a globally defined modular form (the local uniformizer u in the
construction can be taken as a fraction x/y between the affine Weierstrass coordinates
x and y, up to a constant unit depending only on the elliptic curve CN , cf. the proof of
Lemma 2.15). This local function α̃ thus has a q-expansion (at the unramified cusp
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∞), though it may differ from the expansion of the global function.

The following technical lemma is crucial to our proof of the theorem. We postpone its
own proof to the end of the section.

Lemma 3.2 The local function α̃ has a q-expansion

α̃(z) = µ0 q−1 + O(1) = µ0(q−1 + a0) + O(q)

for some µ0 ∈ W(Fp)× ∩ Z and a0 ∈ Z such that a0 ≡ 744− j0 mod p.

By this lemma, for 2 ≤ i ≤ p, there exist constants w̃i ∈ pZ such that

(3.3) α̃ p + w̃p α̃
p−1 + · · ·+ w̃2 α̃ = µ p

0 q−p + O(1)

On the other hand, we have

(3.4) h̃ (z) = j (pz)− j0 = q−p + O(1)

Comparing the two displays above, we then have

α̃ p + w̃p α̃
p−1 + · · ·+ w̃2 α̃ = µ p

0 h̃ + K + O(q)

for some K ∈ Z. Passing to the mod-p reduction of this identity, we see that K ∈ pZ.
Therefore, by an abuse of notation, we can instead choose a deformation parameter h
such that

α̃ p + w̃p α̃
p−1 + · · ·+ w̃2 α̃ = h̃ + O(q)

without changing α̃ and w̃i that we already obtained. Multiplying α̃ to both sides of
this identity, we obtain

(3.5) α̃ p+1 + w̃p α̃
p + · · ·+ w̃2 α̃

2 = h̃ α̃+ O(1)

We claim that the last term O(1) is constant. In fact, since A1 is a free module over
A0 of rank p + 1, α̃ p+1 can be expressed as a linear combination of α̃i , 0 ≤ i ≤ p,
with coefficients polynomials in h̃ over W(Fp). Given the q-expansions of h̃ in (3.4)
and of α̃ from Lemma 3.2, we see that the term O(1) must be a constant integer,
corresponding to the basis element α̃i , i = 0, with coefficient an integer.

Thus the terms w̃i and O(1) in (3.5) are all constant integers.

Applying the Atkin–Lehner involution to (3.5), we then conclude that except for i = 1,
the coefficients wi in (3.1) are all constant integers. It remains to determine their values.
We apply Lemma 2.15 and exploit holomorphicity of the modular functions wi over the
complex-analytic moduli scheme. For this holomorphicity, we evoke GAGA and the
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Figure 3.6: Transporting functions over the moduli

Lefschetz principle (cf. the first paragraph of [Katz 1973, Introduction]). Specifically,
we move from the formal neighborhood of the supersingular point to the cusps via
the global functions as in Figure 3.6. The two pictures illustrate the same process
(cf. [Calegari 2013, Figure 2] and [Deligne–Rapoport 1973, book p. 290]) with X0(11)
of genus 1 as an example. Explicitly, comparing the former local equation

α p+1 + wp α
p + · · ·+ w2 α

2 − hα+ w0 = 0

to the latter local equation

(α− p)
(
α− (−1) p−1)p

= 0

we obtain the polynomial w(h, α) in Theorem A (h corresponds to (−1) p2+1 + p2 ≡
1 mod p, consistent with [Katz–Mazur 1985, 12.4.2]). This completes the proof of
Theorem A.

Proof of Lemma 3.2 First, note that α̃ has integral coefficients in its q-expansion,
since α does by the q-expansion principle [Katz 1973, Corollary 1.6.2] applied locally
(in the sense above).

Recall from Remark 2.13 that the parameter α has a geometric interpretation as
the multiple in the cotangent map along the p-power isogeny Ψ(p)

N : CN → C (p)
N =

CN/G
(p)
N . Under the Atkin–Lehner involution, the parameter α̃ then gives the cotangent



28 Yifei Zhu

map along Ψ̃(p)
N : C (p)

N → C (p)
N /G̃ (p)

N where G̃ (p)
N = CN[p]/G (p)

N . In particular, by
rigidity, we have an identity

Ψ̃(p)
N ◦Ψ(p)

N = τ ◦ (−1) p−1[p]

that lifts Frob2 = (−1) p−1[p] over the supersingular point, where τ : CN/CN[p] →
C (p)

N /G̃ (p)
N is the canonical isomorphism. Thus, up to a unit in the global sections of

MN, p , Ψ̃(p)
N can be identified with the (Verschiebung) isogeny dual to the (Frobenius)

isogeny Ψ(p)
N (cf. the proof of Lemma 2.15).

On the other hand, recall the Hasse invariant as defined in [Katz–Mazur 1985, 12.4.1],
modulo p, from the tangent map to Verschiebung. Since locally the deformation
parameter h = j− j0 is an integral lift of the Hasse invariant, we have

(3.7) α̃ ≡ µ h mod (p, α)

for some unit µ ∈ A0/(p). From this congruence, we deduce the q-expansion for α̃ as
follows.

Let the lowest exponent of q in the expansion be m ∈ Z.

Suppose m < −1. This leading term of α̃ ∈ A1 cannot come from an element in
h2 · A0 ⊂ A1 , because the neighborhood U contains a single supersingular point and
a Hasse invariant has simple zeros (cf. [ibid., 12.4.3]). Thus it must come from an
element in α · A1 .

Case 1. Let us suppose that the coefficient of qm is not divisible by p. Since
α · α̃ = (−1) p−1p as in (2.24), the modular function α must then have a leading
coefficient divisible by p, which leads to a contradiction (we deduced in last paragraph
that the leading term of α̃ came from an element in α · A1 ).

Case 2. If the coefficient of qm is divisible by p, then α·α̃ = (−1) p−1p implies that α̃ ≡
0 mod p, as α becomes invertible in this case. This congruence is again a contradiction,
since α̃ only becomes zero modulo p at precisely the closed supersingular point.

We have therefore shown that m ≥ −1.

Now, by the argument from Case 2, we deduce that the coefficient of qm is not divisible
by p (there is no more contradiction in Case 1, now that m ≥ −1). This time,
α · α̃ = (−1) p−1p implies that α ≡ 0 mod p,6 as α̃ is invertible. Thus the congruence

6More precisely, α ≡ 0 mod p near the unramified cusps, not contradicting the stated
congruence in Theorem A.
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(3.7) strengthens to be

α̃ ≡ µ h mod p

and the claimed q-expansion for α̃ follows.

4 Proof of Theorems B and C

Theorem B (i) follows from [Strickland 1998, Theorem 1.1]. We show the remaining
parts in two steps below (Sections 4.1 and 4.2).

4.1 The total power operation formula and the Adem relations

To compute ψ p(h), we follow the recipe illustrated in [Zhu 2015, Example 2.14] and
generalize [ibid., proof of Proposition 4.5]. By (1.3) and (2.24), since

w(h, α) = wp+1α
p+1 + · · ·+ w1α+ w0

= wp+1α
p+1 + · · · − hα+ α̃ α

is zero in the target ring of ψ p , we have

h = wp+1α
p + · · ·+ w2 α+ α̃

where wp+1 , . . . , w2 are constants, i.e., they do not involve h, as computed in Theorem
B (i). Applying the Atkin–Lehner involution to this identity, we then obtain

ψ p(h) = h̃ = wp+1 α̃
p + · · ·+ w2 α̃+ α

For 1 ≤ τ ≤ p, we need only express each α̃τ as a polynomial in α of degree at
most p with coefficients in E0 . The constant terms d0,τ of these polynomials have
been computed as dτ in [Zhu 2015, proof of Proposition 4.5]. The same method there
applies to give the stated formulas for the higher coefficients di,τ with 1 ≤ i ≤ p.7

This completes the proof of Theorem B.

To derive the Adem relations, we generalize [Zhu 2014, proof of Proposition 3.6 (iv)]

7In fact, those formulas hold for all 0 ≤ i ≤ p and τ ≥ 1 in expressing α̃τ from αi (with
the convention that wτ = 0 if τ > p + 1).
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(cf. [Zhu 2015, proof of Proposition 4.5]). In view of the relation α · α̃ = w0 , we have

ψ p(ψ p(x)
)

= ψ p
( p∑

j=0

Qj(x)α j
)

=

p∑
j=0

ψ p(Qj(x)
)
ψ p(α) j

=

p∑
j=0

( p∑
i=0

QiQj(x)αi
)
α̃ j

=

p∑
j=0

( j∑
i=0

wi
0 QiQj(x) α̃ j−i +

p∑
i=j+1

w j
0 QiQj(x)αi−j

)

=

p∑
k=0

αk
( p∑

j=0

j∑
i=0

wi
0 dk, j−i QiQj(x) +

p−k∑
j=0

w j
0 Qk+jQj(x)

)
where dk,0 = 0 if k > 0 (and d0,0 = 1 from before). Write the expression in last line
above as

∑p
k=0 Ψk(x)αk . For 1 ≤ k ≤ p, the vanishing of each Ψk then gives the

stated relation for QkQ0 .

4.2 The commutation relations

To facilitate computations, let us make a change of variables β := α+ (−1) p . We then
have

ψ p(hx) = ψ p(h)ψ p(x) =

p∑
i=0

Qi(h)αi
p∑

j=0

Qj(x)α j

=

2p∑
m=0

( ∑
i+j=m

0≤ i, j≤ p

Qi(h) Qj(x)
)
αm

=

2p∑
m=0

( ∑
i+j=m

0≤ i, j≤ p

Qi(h) Qj(x)
)(
β + (−1) p+1)m

=

2p∑
m=0

( ∑
i+j=m

0≤ i, j≤ p

Qi(h) Qj(x)
) m∑

n=0

(
m
n

)
βn(−1)(p+1)(m−n)

=

2p∑
n=0

en β
n
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where

en =

2p∑
m=n

(−1)(p+1)(m−n)
(

m
n

) ∑
i+j=m

0≤ i, j≤ p

Qi(h) Qj(x)

Formulas for the terms Qi(h) above are given by Theorem B (ii). Note that Q1(h)
includes a term of 1.

We now reduce ψ p(hx) above modulo w(h, α), by first rewriting the latter as a poly-
nomial in β :

w(h, α) = (α− p)
(
α+ (−1) p)p −

(
h− p2 + (−1) p)α

=
(
β + (−1) p+1 − p

)
β p −

(
h− p2 + (−1) p)(β + (−1) p+1)

= β p+1 + vp β
p + v1 β + v0

where vp = (−1) p+1 − p, v1 = −
(
h − p2 + (−1) p

)
, and v0 = (−1) p+1v1 . We then

carry out a long division of ψ p(hx) by w(h, α) with respect to β and obtain

ψ p(hx) ≡
p∑

j=0

f j β
j mod w(h, α)

where

f j =



ep − v1e2p + vp

p−1∑
m=0

(−1)m+1ep+1+m vm
p j = p

ej + v0

p−j−1∑
m=0

(−1)m+1ep+j+1+m vm
p + v1

p−j∑
m=0

(−1)m+1ep+j+m vm
p 0 < j < p

e0 + v0

p−1∑
m=0

(−1)m+1ep+1+m vm
p j = 0

Thus we can rewrite

ψ p(hx) =

p∑
j=0

f j
(
α+ (−1) p) j

=

p∑
j=0

f j

j∑
i=0

(
j
i

)
αi (−1) p ( j−i)

=

p∑
i=0

[ p∑
j=i

(−1) p ( j−i)
(

j
i

)
f j

]
αi

On the other hand, ψ p(hx) =
∑p

i=0 Qi(hx)αi . Comparing this identity to the last
expression for ψ p(hx) above, term by term, we obtain the commutation relations as
stated. This completes the proof of Theorem C.
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