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Motivations: elliptic genera and elliptic cohomology

Elliptic genera (Ochanine ’87) An elliptic genus g : ΩSO
∗ → R is

characterized by its logarithm being an elliptic integral, i.e.,

t+
g(CP2)

3
t3 +

g(CP4)

5
t5 + · · · =

∫ t

0

dx√
1− 2δx2 + εx4

for some constants δ, ε ∈ R.

Examples signature (δ = ε = 1), Â-genus (δ = −1/8, ε = 0)

The universal elliptic genus, with R = C[δ2, ε4] ∼= MF
(
Γ0(2)

)
• ⊗C

MO〈2〉−∗(pt) =

MO〈4〉−∗(pt) =

MO〈8〉−∗(pt) =

ΩSO
∗

ΩSpin
∗

ΩString
∗

CJqK

ZJqK

MF•∼=Z[c4,c6,(c34−c26)/(12)3]

w

Witten ’87
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The universal elliptic genus, with R = C[δ2, ε4] ∼= MF
(
Γ0(2)

)
• ⊗C

MO〈2〉−∗(pt) =

MO〈4〉−∗(pt) =

MO〈8〉−∗(pt) =

ΩSO
∗

ΩSpin
∗

ΩString
∗

CJqK

ZJqK

MF•∼=Z[c4,c6,(c34−c26)/(12)3]

w

Witten ’87

Yifei Zhu Symmetry encoded by norm maps



Motivations: elliptic genera and elliptic cohomology

Elliptic genera (Ochanine ’87) An elliptic genus g : ΩSO
∗ → R is

characterized by its logarithm being an elliptic integral, i.e.,

t+
g(CP2)

3
t3 +

g(CP4)

5
t5 + · · · =

∫ t

0

dx√
1− 2δx2 + εx4

for some constants δ, ε ∈ R.

Examples signature (δ = ε = 1), Â-genus (δ = −1/8, ε = 0)
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Motivations: elliptic genera and elliptic cohomology

Index theory (Witten ’87, ’88) Given a spin manifold M , its
genus w(M) = the S1-equivariant index of a Dirac operator on the
free loop space LM . supercharge of a supersymmetric nonlinear sigma model

Symmetries (Eguchi-Ooguri-Tachikawa 2011) The elliptic genus
of the K3 surface has a natural decomposition in terms of
dimensions of irreducible representations of the largest Mathieu
group M24. |M24|= 210 · 33 · 5 · 7 · 11 · 23

X4 + Y 4 + Z4 +W 4 = 0 in CP3 has symmetry G ⊂M24 with |G| = 27 · 3

(Gannon ’16) proof of the M24-moonshine for this Jacobi form
(Duncan-Griffin-Ono ’15) 22 more moonshines for mock modular forms
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Remark The proofs are numerical; conformal field theories (or
super vertex operator algebras) carrying these symmetries are yet
to be found.
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Motivations: elliptic genera and elliptic cohomology

Witten genus of a “family” orientations for cohomology theories

MO〈8〉 tmf topological modular forms

MU〈6〉 E an elliptic cohomology theory

Ando-Hopkins-Rezk ’10

an E∞ map

Ando-Hopkins-Strickland ’04

an H∞ map

(Atiyah-Bott-Shapiro ’64) Â-orientation: MO〈4〉 → KO

(Segal ’88, Baas-Dundas-Rognes ’04, Dong-Liu-Ma ’05,
Stolz-Teichner ’11) Geometry of elliptic cohomology in terms of
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(Segal ’88, Baas-Dundas-Rognes ’04, Dong-Liu-Ma ’05,
Stolz-Teichner ’11) Geometry of elliptic cohomology in terms of
conformal field theories / vertex operator algebras / ... remains
conjectural.

Yifei Zhu Symmetry encoded by norm maps



Motivations: elliptic genera and elliptic cohomology

Witten genus of a “family” orientations for cohomology theories

MO〈8〉 tmf topological modular forms

MU〈6〉 E an elliptic cohomology theory

Ando-Hopkins-Rezk ’10

an E∞ map

Ando-Hopkins-Strickland ’04

an H∞ map

(Atiyah-Bott-Shapiro ’64) Â-orientation: MO〈4〉 → KO
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(Segal ’88, Baas-Dundas-Rognes ’04, Dong-Liu-Ma ’05,
Stolz-Teichner ’11) Geometry of elliptic cohomology in terms of
conformal field theories / vertex operator algebras / ... remains
conjectural.

Yifei Zhu Symmetry encoded by norm maps



Motivations: elliptic genera and elliptic cohomology

Witten genus of a “family” orientations for cohomology theories

MO〈8〉 tmf topological modular forms

MU〈6〉 E an elliptic cohomology theory

Ando-Hopkins-Rezk ’10

an E∞ map

Ando-Hopkins-Strickland ’04

an H∞ map

(Atiyah-Bott-Shapiro ’64) Â-orientation: MO〈4〉 → KO
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(Segal ’88, Baas-Dundas-Rognes ’04, Dong-Liu-Ma ’05,
Stolz-Teichner ’11) Geometry of elliptic cohomology in terms of
conformal field theories / vertex operator algebras / ... remains
conjectural.

Yifei Zhu Symmetry encoded by norm maps



Motivations: elliptic genera and elliptic cohomology

Witten genus of a “family” orientations for cohomology theories

MO〈8〉 tmf topological modular forms

MU〈6〉 E an elliptic cohomology theory

Ando-Hopkins-Rezk ’10

an E∞ map

Ando-Hopkins-Strickland ’04

an H∞ map

(Atiyah-Bott-Shapiro ’64) Â-orientation: MO〈4〉 → KO
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Multiplicative structures and symmetries of the geometry

DnMU〈6〉 DnE Dn(−) := (−)∧n/Σn, n≥0

MU〈6〉 E H∞ means commutative up to homotopy

Dng

g

The vertical maps correspond to power operations; e.g., given

E0X ∼= π0E
Σ∞+ X =: π0A = [S,A]S ∼= [E,A]E 3 f

we have
E

α−→ DnE
Dnf−−−→ DnA→ A

and thus a power operation Qα : E0X → E0X.
When E = KU , this is the n-fold tensor product of complex vector
bundles over X, with α corresponding to representations of Σn.
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland ’01, Lurie ’09)

elliptic cohomology theory =

{
R, C/R, E,

E0(pt) ∼= R, Spf E0(CP∞) ∼= Ĉ

}

A formal group G is a group object in formal schemes.

A formal group law F is G with a chosen coordinate t:

OG ∼= RJtK  RJt1, t2K 3 F
(
t(P1), t(P2)

)
= t(P1 +

G
P2)

F
(
c1(Luniv), c1(Luniv)

)
= c1(Luniv ⊗ Luniv)

Coordinates on GE := Spf E0(CP∞)↔ ortns MU〈0〉 → E.
Question Which coordinates correspond to H∞ orientations?
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}

A formal group G is a group object in formal schemes.

A formal group law F is G with a chosen coordinate t:

OG ∼= RJtK  RJt1, t2K 3 F
(
t(P1), t(P2)

)
= t(P1 +

G
P2)

F
(
c1(Luniv), c1(Luniv)

)
= c1(Luniv ⊗ Luniv)

Coordinates on GE := Spf E0(CP∞)↔ ortns MU〈0〉 → E.
Question Which coordinates correspond to H∞ orientations?

Yifei Zhu Symmetry encoded by norm maps



Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland ’01, Lurie ’09)

elliptic cohomology theory =

{
R, C/R, E,

E0(pt) ∼= R, Spf E0(CP∞) ∼= Ĉ
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Elliptic cohomology and Morava E-theories

Theorem (Morava ’78, Goerss-Hopkins-Miller ’90s–2004)

E : {formal groups over perfect fields} → {E∞-ring spectra}

Spf E0(CP∞) = universal deformation of a fg Γ of height n
over a perfect field k of char p

π∗E ∼= W(k)Ju1, . . . , un−1K[u±1], |u| = 2

A deformation (G, i, η) of Γ/k to R (Lubin-Tate ’66):

G π∗G i∗Γ Γ
η

Spf R Spf R/m Spf R/m Spf k
π i

x y
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H∞ MU〈0〉-orientations for Morava E-theories

Theorem (Z.)

Let k be an algebraic extension of Fp, Γ be a formal group over k
of height n, and E be the Morava E-theory associated to Γ/k.
Given any coordinate xΓ on Γ, there exists a unique coordinate x

on GE lifting xΓ such that MU〈0〉 x−→ E is an H∞ map.

Remarks

(Ando ’95) k = Fp, Γ = Honda fg, E 6= elliptic cohomology

When n = 2, the composite MU〈6〉 →MU〈0〉 → E does not
factor through the Witten genus.
E = local tmf  π∗E = completion of MF•  ? genus

sees quasimodular forms and mock modular forms (Z. ’15)
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Norm-coherent coordinates

A correspondence (Ando-Hopkins-Strickland ’04, Rezk ’09)

E(Γ/k)! Γ/k
univ defo−−−−−→ GE/W(k)Ju1, . . . , un−1K

	 	
power operations deformations of Frobenius

Theorem (Strickland 1997)

Fix Γ/k. Then deformations of Frobenius (G, i, η)→ (G′, i′, η′)
are classified by rings Ar, r ≥ 0, with pr the order of the subgroup
scheme ker(G→ G′) ⊂ G.

Remark This theorem gives universal examples over Ar:

Guniv ×A0 Ar = sr
∗Guniv

ψ
(pr)
univ−−−→ tr

∗Guniv = ?
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Norm-coherent coordinates

H = finite subgroup of G fH : G→ G/H x = coord on G

=⇒ xH
:= Normf∗H

(x) = det( ·x) is a coord on G/H

OG/H

f∗
H−−→OG

Normf∗
H−−−−−→OG/H

Explicitly,

f∗
H

(xH ) =
∏
Q∈H

(
x+
G
x(Q)

)
Definition

A coordinate x on G is norm-coherent if

ψH (x) = f∗
H

(xH ) for any finite H ⊂ G

where ψH is obtained from the universal example of Strickland.
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Norm-coherent coordinates

A criterion for H∞ ortns (Ando ’95, Ando-Hopkins-Strickland ’04)
Let E be the Morava E-theory associated to Γ/k as before. Then
the orientation MU〈0〉 → E is an H∞map if and only if its
corresponding coordinate on GE is norm-coherent.

Theorem (Z.)

Any coordinate on Γ over k extends uniquely to a
norm-coherent coordinate on GE over π0E.

This construction is functorial under base change of Γ/k,
under k-isogeny out of Γ, and under k-Galois descent.

Remark A connection to Coleman’s norm operator in local class
field theory via Lubin-Tate theory is yet to be understood.
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Thank you.
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