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Motivations: elliptic genera and elliptic cohomology
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Motivations: elliptic genera and elliptic cohomology

Elliptic genera (Ochanine '87)  An elliptic genus g: Q3¢ — R is
characterized by its logarithm being an elliptic integral, i.e.,
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9(CP") 5, 9(CP )t5+_“:/ dx
3 5 0 V1—2822+ ex?

for some constants d,¢ € R.
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Motivations: elliptic genera and elliptic cohomology

Elliptic genera (Ochanine '87)  An elliptic genus g: Q3¢ — R is
characterized by its logarithm being an elliptic integral, i.e.,

2 4 t
9(CP") 5, 9(CP )t5+_“:/ dx
3 5 0 V1—2822+ ex?

for some constants d,¢ € R.

Examples signature (6 = e = 1), A-genus (§ = —1/8,¢ = 0)
The universal elliptic genus, with R = C[d2, €4]
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Elliptic genera (Ochanine '87)  An elliptic genus g: Q3¢ — R is
characterized by its logarithm being an elliptic integral, i.e.,
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Index theory (Witten '87, '88) Given a spin manifold M, its
genus w(M) = the S'-equivariant index of a Dirac operator on the
free loop space LM.
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genus w(M) = the S'-equivariant index of a Dirac operator on the
free loop space LM.

Symmetries (Eguchi-Ooguri-Tachikawa 2011)
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Index theory (Witten '87, '88) Given a spin manifold M, its
genus w(M) = the S'-equivariant index of a Dirac operator on the
free loop space LM.

Symmetries (Eguchi-Ooguri-Tachikawa 2011) The elliptic genus
of the K3 surface has a natural decomposition in terms of
dimensions of irreducible representations of the largest Mathieu

group May.
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Motivations: elliptic genera and elliptic cohomology

Index theory (Witten '87, '88) Given a spin manifold M, its
genus w(M) = the S'-equivariant index of a Dirac operator on the
free loop space LM.

Symmetries (Eguchi-Ooguri-Tachikawa 2011) The elliptic genus
of the K3 surface has a natural decomposition in terms of
dimensions of irreducible representations of the largest Mathieu
group May. |May|=210.33.5.7.11.23
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Motivations: elliptic genera and elliptic cohomology

Index theory (Witten '87, '88) Given a spin manifold M, its
genus w(M) = the S'-equivariant index of a Dirac operator on the
free loop space LM.

Symmetries (Eguchi-Ooguri-Tachikawa 2011) The elliptic genus
of the K3 surface has a natural decomposition in terms of
dimensions of irreducible representations of the largest Mathieu
group May. |May|=210.33.5.7.11.23
X4+ Y4+ Z4 +W* =0 in CP3 has symmetry G C May4 with |G| =27 -3
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Motivations: elliptic genera and elliptic cohomology

Index theory (Witten '87, '88) Given a spin manifold M, its
genus w(M) = the S'-equivariant index of a Dirac operator on the
free loop space LM.

Symmetries (Eguchi-Ooguri-Tachikawa 2011) The elliptic genus
of the K3 surface has a natural decomposition in terms of
dimensions of irreducible representations of the largest Mathieu
group May.

(Gannon '16) proof of the May4-moonshine for this Jacobi form
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Motivations: elliptic genera and elliptic cohomology

Index theory (Witten '87, '88) Given a spin manifold M, its
genus w(M) = the S'-equivariant index of a Dirac operator on the
free loop space LM.

Symmetries (Eguchi-Ooguri-Tachikawa 2011) The elliptic genus
of the K3 surface has a natural decomposition in terms of
dimensions of irreducible representations of the largest Mathieu
group May.

(Gannon '16) proof of the My4-moonshine for this Jacobi form

(Duncan-Griffin-Ono '15) 22 more moonshines for mock modular forms
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Motivations: elliptic genera and elliptic cohomology

Index theory (Witten '87, '88) Given a spin manifold M, its
genus w(M) = the S'-equivariant index of a Dirac operator on the
free loop space LM.

Symmetries (Eguchi-Ooguri-Tachikawa 2011) The elliptic genus
of the K3 surface has a natural decomposition in terms of
dimensions of irreducible representations of the largest Mathieu
group Moay.

Remark The proofs are numerical; conformal field theories (or
super vertex operator algebras) carrying these symmetries are yet
to be found.
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Index theory (Witten '87, '88) Given a spin manifold M, its
genus w(M) = the S'-equivariant index of a Dirac operator on the
free |OOp Space LM. supercharge of a supersymmetric nonlinear sigma model

Symmetries (Eguchi-Ooguri-Tachikawa 2011) The elliptic genus
of the K3 surface has a natural decomposition in terms of
dimensions of irreducible representations of the largest Mathieu
group Moay.

Remark The proofs are numerical; conformal field theories (or
super vertex operator algebras) carrying these symmetries are yet
to be found.
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Witten genus of a “family”
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Witten genus of a “family” orientations for cohomology theories

MO(8) tmf
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MO<8> tmf topological modular forms

MU<6> E an elliptic cohomology theory
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Witten genus of a “family” orientations for cohomology theories

MO<8> tmf topological modular forms

Ando-Hopkins-Strickland '04
MU<6> E an elliptic cohomology theory

an Hoo map
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Motivations: elliptic genera and elliptic cohomology

Witten genus of a “family” orientations for cohomology theories

Ando-Hopkins-Rezk '10 i
MO<8> tmf topological modular forms

an Eoc map

Ando-Hopkins-Strickland '04
MU<6> E an elliptic cohomology theory

an Hoo map
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Ando-Hopkins-Strickland '04
MU<6> E an elliptic cohomology theory

an Hoo map

Yifei Zhu Symmetry encoded by norm maps



Motivations: elliptic genera and elliptic cohomology

Witten genus of a “family” orientations for cohomology theories

MO(8) tmf

(Atiyah-Bott-Shapiro '64) A-orientation: MO(4) — KO
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MO(8) tmf

(Atiyah-Bott-Shapiro '64)  A-orientation: MO(4) — KO
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Motivations: elliptic genera and elliptic cohomology

Witten genus of a “family” orientations for cohomology theories

MO(8) tmf

(Atiyah-Bott-Shapiro '64) A-orientation: MO(4) — KO

(Segal '88, Baas-Dundas-Rognes '04, Dong-Liu-Ma '05,
Stolz-Teichner '11)  Geometry of elliptic cohomology in terms of
conformal field theories / vertex operator algebras / ... remains
conjectural.
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Multiplicative structures and symmetries of the geometry

MU(6) E
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU(6) E
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy
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Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations;

Yifei Zhu Symmetry encoded by norm maps



Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given

E'X >f
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Dng
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MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given

E'X ~ mgE¥FX >f
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Multiplicative structures and symmetries of the geometry

Dng
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MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given

E'X =~ ngE>FX = 1A >f
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given

E°X = myEXFX = myA =[S, Alg >f
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given

E°X 2 mgBF X = mgA =[S, Als = [E, Alp > f
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given
E°X 2 mgBF X = mgA =[S, Als = [E, Alp > f

we have

Ed 4
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given
E°X 2 mgBF X = mgA =[S, Als = [E, Alp > f

we have 5
D, E 2, DA
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Dng
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MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given
E°X = mgE*F X = mgA =[S, Als = [E,Alg > f

we have 5
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Yifei Zhu Symmetry encoded by norm maps



Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given
E°X = mgE*F X = mgA =[S, Als = [E,Alg > f

we have 5
EXDEZY D oA A
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given
E°X 2 mgBF X = mgA =[S, Als = [E, Alp > f

we have 5
EXDEZY D oA A

and thus a power operation Q,: F°X — E°X.
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given
E°X 2 mgBF X = mgA =[S, Als = [E, Alp > f

we have 5
ES D EEY DA A

and thus a power operation Q,: F°X — E°X.
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given
E°X 2 mgBF X = mgA =[S, Als = [E, Alp > f

we have 5
ES D, E2 DA A
and thus a power operation Q,: F°X — E°X.
When E = KU, this is the n-fold tensor product of complex vector

bundles over X,
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Multiplicative structures and symmetries of the geometry

Dng

D, MU 6) D,E Dn(=)=(=)""/Sn, n>0

MU<6> F  Hoc means commutative up to homotopy

The vertical maps correspond to power operations; e.g., given
E°X 2 mgBF X = mgA =[S, Als = [E, Alp > f

we have 5
ES D, E2 DA A
and thus a power operation Q,: F°X — E°X.
When E = KU, this is the n-fold tensor product of complex vector

bundles over X, with « corresponding to representations of %,,.
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory = { }
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R
elliptic cohomology theory = { ; }
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R, C/R
elliptic cohomology theory = { , C/R, }
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory =

{ R, CJR, E, }
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R, C/R, E
elliptic cohomology theory = { 2 /R, ) }

E°(pt) 2 R,
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R7 E7

elliptic cohomology theory = { EO(pt) = R, Spf EO(CP>®) C }
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R7 E7

elliptic cohomology theory = { EO(pt) = R, Spf EO(CP>®) C }

o A formal group GG is a group object in formal schemes.
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R7 E7

elliptic cohomology theory = { EO(pt) = R, Spf EO(CP>®) C }

o A formal group GG is a group object in formal schemes.

o A formal group law F'is G with a chosen coordinate t:
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R’ E7

elliptic cohomology theory = { EO(pt) = R, Spf EO(CP>®) C }

o A formal group GG is a group object in formal schemes.

o A formal group law F'is G with a chosen coordinate ¢:

O¢ = R[]
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R7 E7

elliptic cohomology theory = { EO(pt) = R, Spf EO(CP>®) C }

o A formal group GG is a group object in formal schemes.

o A formal group law F'is G with a chosen coordinate t:

Og = R[t] ~ R[t1,t2] > F(t(1),t(1%))
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R’ E7

elliptic cohomology theory = { EO(pt) = R, Spf EO(CP>®) C }

o A formal group GG is a group object in formal schemes.

o A formal group law F'is G with a chosen coordinate t:

O 2 R[] ~ R[t1,t2] 3 F(t(P1),t(P%)) = (P ps )
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R’ E7

elliptic cohomology theory = { E%(pt) & R, Spf EO(CP™) = C }

o A formal group GG is a group object in formal schemes.

o A formal group law F'is G with a chosen coordinate t:

Oc¢ 2 R[t] ~ R[t1,t2] > F(t(P1),t(P)) = t(P s P)
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R’ E7

elliptic cohomology theory = { E%(pt) & R, Spf EO(CP™) = C }

o A formal group GG is a group object in formal schemes.

o A formal group law F'is G with a chosen coordinate t:
Oc¢ 2 R[t] ~ R[t1,t2] > F(t(P1),t(P)) = t(P s P)

F(Cl (»Cuniv)a C1 (Euniv)) = (['univ ® »Cuniv)
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Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R’ E7

elliptic cohomology theory = { EO(pt) = R, Spf EO(CP>®) C }

o A formal group GG is a group object in formal schemes.

o A formal group law F'is G with a chosen coordinate t:
Oc¢ 2 R[t] ~ R[t1,t2] > F(t(P1),t(P)) = t(P s P)
F(Cl (»Cuniv)a C1 (Euniv)) = (['univ ® »Cuniv)
e Coordinates on G := Spf E°(CP>)
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elliptic cohomology theory = { EO(pt) = R, Spf EO(CP>®) C }

o A formal group GG is a group object in formal schemes.

o A formal group law F'is G with a chosen coordinate t:
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Elliptic cohomology and Morava E-theories

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

R? C/R7 E7

elliptic cohomology theory = { EO(pt) = R, Spf EO(CP>®) C }

o A formal group GG is a group object in formal schemes.

o A formal group law F'is G with a chosen coordinate t:
Oc¢ 2 R[t] ~ R[t1,t2] > F(t(P1),t(P)) = t(P s Py)
F(Cl (»Cuniv)a C1 (Euniv)) = (['univ ® ﬁuniv)

e Coordinates on G = Spf E°(CP>) « ortns MU(0) — E.
Question Which coordinates correspond to H, orientations?
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)

E: {formal groups over perfect fields} — { E--ring spectra}
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o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p
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E: {formal groups over perfect fields} — { E--ring spectra}

o Spf EY(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T, E =2 W(E)[uy,..., up1][ut], |u|=2
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2

A deformation (G, i,n) of I'/k to R (Lubin-Tate '66):
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2

A deformation (G,i,n) of I'/k to R (Lubin-Tate '66):

Spf k

Yifei Zhu Symmetry encoded by norm maps



Elliptic cohomology and Morava E-theories

Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2

A deformation (G,i,m) of I'/k to R (Lubin-Tate '66):
G r

Spf R Spf k
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2

A deformation (G,i,n) of I'/k to R (Lubin-Tate '66):
G r
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2

A deformation (G,i,n) of I'/k to R (Lubin-Tate '66):

G ' ——— T

|

i

Spf R Spf R/m

Spf k
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Elliptic cohomology and Morava E-theories

Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2

A deformation (G,i,n) of I'/k to R (Lubin-Tate '66):

G ™G #P —————— T
L _
SpfR — " Spf R/m Spf R/m ——— Spf k
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2

A deformation (G,i,n) of I'/k to R (Lubin-Tate '66):

G G ! #T r

L |

T 7

Spf R

Spf R/m Spf R/m

Spf k
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2

A deformation (G,i,n) of I'/k to R (Lubin-Tate '66):

G ™G i #T r
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T 7
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Theorem (Morava '78, Goerss-Hopkins-Miller '90s—2004)
E: {formal groups over perfect fields} — { E--ring spectra}

o Spf E°(CP>) = universal deformation of a fg T' of height n
over a perfect field £ of char p

o T E = W(Kk)[u1,...,up1][utl], |ul =2

A deformation (G,i,n) of I'/k to R (Lubin-Tate '66):

G ™G i #T r

L |

T 7

Spf R

Spf R/m Spf R/m

Spf k
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Let £ be an algebraic extension of IF), I' be a formal group over k
of height n,
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Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
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H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I,
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H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x

on G lifting x|,

Yifei Zhu Symmetry encoded by norm maps



H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x

on G lifting . such that MU(0) % E is an Hy, map.

Yifei Zhu Symmetry encoded by norm maps



H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x

on G lifting . such that MU(0) = E is an Hy, map.
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H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x
on G lifting . such that MU(0) % E is an Hy, map.

Remarks
@ (Ando '95) k =F,, I' = Honda fg,
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Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x
on G lifting . such that MU(0) % E is an Hy, map.

Remarks
@ (Ando '95) k =F,, I' = Honda fg, E # elliptic cohomology
@ When n = 2,
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H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x
on G lifting . such that MU(0) % E is an Hy, map.

Remarks
@ (Ando '95) k =F,, I' = Honda fg, E # elliptic cohomology
@ When n = 2, the composite MU (6) — MU(0) — E does not
factor through the Witten genus.
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H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x
on Gp lifting . such that MU(0) % E is an Hoo map.

Remarks
@ (Ando '95) k =F,, I' = Honda fg, E # elliptic cohomology
e When n = 2, the composite MU (6) — MU (0) — E does not
factor through the Witten genus.
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H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x
on G lifting . such that MU(0) % E is an Hy, map.

Remarks
@ (Ando '95) k =F,, I' = Honda fg, E # elliptic cohomology
@ When n = 2, the composite MU (6) — MU(0) — E does not

factor through the Witten genus.
FE = local tmf

Yifei Zhu Symmetry encoded by norm maps



H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x
on G lifting . such that MU(0) % E is an Hy, map.

Remarks
@ (Ando '95) k =F,, I' = Honda fg, E # elliptic cohomology
@ When n = 2, the composite MU (6) — MU(0) — E does not

factor through the Witten genus.
E = local tmf ~~» w,FE = completion of MF,
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Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x
on G lifting . such that MU(0) % E is an Hy, map.

Remarks
@ (Ando '95) k =F,, I' = Honda fg, E # elliptic cohomology
@ When n = 2, the composite MU (6) — MU(0) — E does not
factor through the Witten genus.
E = local tmf ~~» w,FE = completion of MF,

sees quasimodular forms and mock modular forms (Z. '15)
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H. MU (0)-orientations for Morava E-theories

Let £ be an algebraic extension of IF), I' be a formal group over k
of height n, and E' be the Morava E-theory associated to I'/k.
Given any coordinate x, on I', there exists a unique coordinate x
on G lifting . such that MU(0) % E is an Hy, map.

Remarks
@ (Ando '95) k =F,, I' = Honda fg, E # elliptic cohomology
@ When n = 2, the composite MU (6) — MU(0) — E does not
factor through the Witten genus.
E = local tmf ~~» m,FE = completion of MF, ~» 7 genus

sees quasimodular forms and mock modular forms (Z. '15)
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A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)
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Norm-coherent coordinates

A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(F/k)) ey GE/W(k)[[ul,...,un_l]]
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A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]
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A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]

O

power operations
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A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]

O O

power operations deformations of Frobenius
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A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]

O O

power operations deformations of Frobenius

Theorem (Strickland 1997)

Fix T'/k.
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A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]

O O

power operations deformations of Frobenius

Theorem (Strickland 1997)

Fix I'/k. Then deformations of Frobenius (G,i,7) — (G',#,1)
are classified by rings A,, r > 0,
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Norm-coherent coordinates

A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]

O O

power operations deformations of Frobenius

Theorem (Strickland 1997)

Fix I'/k. Then deformations of Frobenius (G,i,7) — (G',#,1)
are classified by rings A,, » > 0, with p" the order of the subgroup
scheme ker(G — G') C G.
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Norm-coherent coordinates

A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]

O O

power operations deformations of Frobenius

Theorem (Strickland 1997)

Fix I'/k. Then deformations of Frobenius (G,i,7) — (G',#,1)
are classified by rings A,, » > 0, with p" the order of the subgroup
scheme ker(G — G') C G.

Remark This theorem gives universal examples over A,

* univ *
57 Guniv > tr Guniv
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Norm-coherent coordinates

A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]

O O

power operations deformations of Frobenius

Theorem (Strickland 1997)

Fix I'/k. Then deformations of Frobenius (G,i,7) — (G',#,1)
are classified by rings A,, » > 0, with p" the order of the subgroup
scheme ker(G — G') C G.

Remark This theorem gives universal examples over A,

~ * . univ * .
5y Guniv > tr Guniv
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Norm-coherent coordinates

A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]

O O

power operations deformations of Frobenius

Theorem (Strickland 1997)

Fix I'/k. Then deformations of Frobenius (G,i,7) — (G',#,1)
are classified by rings A,, » > 0, with p" the order of the subgroup
scheme ker(G — G') C G.

Remark This theorem gives universal examples over A,
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A correspondence (Ando-Hopkins-Strickland '04, Rezk '09)

E(D/k) e T/k 290 G W) [ug, . .., up_1]

O O

power operations deformations of Frobenius

Theorem (Strickland 1997)

Fix I'/k. Then deformations of Frobenius (G,i,7) — (G',#,1)
are classified by rings A,, » > 0, with p" the order of the subgroup
scheme ker(G — G') C G.

Remark This theorem gives universal examples over A,

®")
dj niv
Guniv X Ao A, = S:Guniv =y t;"kGuniv =7
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H = finite subgroup of G fyu: G—G/H x = coord on G

= 1z, = Normyy (z) = det(-z) is a coord on G/H
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H = finite subgroup of G fyu: G—G/H x = coord on G

= z, = Normy; (z) = det(-x) is a coord on G/H
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Norm-coherent coordinates

H = finite subgroup of G fy: G—G/H x = coord on G

= z, = Normy; (z) = det(-x) is a coord on G/H

H
Og/ug — Oc
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Norm-coherent coordinates

H = finite subgroup of G fyu: G—G/H x = coord on G

= z, = Normy; (z) = det(-x) is a coord on G/H
* Norm x

H H
Og/g —>0¢ ——0O¢g/u
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Norm-coherent coordinates

H = finite subgroup of G fyu: G—G/H x = coord on G
= 1z, = Normyy (z) = det(-z) is a coord on G/H
* Norm x

H H
Og/g —>0¢ ——0O¢g/u

Explicitly,

Yifei Zhu Symmetry encoded by norm maps



Norm-coherent coordinates

H = finite subgroup of G fyu: G—G/H x = coord on G
= 1z, = Normyy (z) = det(-z) is a coord on G/H
* Norm x

H H
Og/g —0¢ ————0g/u

Explicitly,

Definition

A coordinate  on G is norm-coherent
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Norm-coherent coordinates

H = finite subgroup of G fyu: G—G/H x = coord on G

= 1z, = Normyy (z) = det(-z) is a coord on G/H
* Norm x

H H
Og/g —>0¢ ——0O¢g/u

Explicitly,
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Norm-coherent coordinates

H = finite subgroup of G fyu: G—G/H x = coord on G

= 1z, = Normyy (z) = det(-z) is a coord on G/H
* Norm x

H H
Og/g —0¢ ————0g/u

Explicitly,

VY (x) = fr(zy) for any finite H C G

where 1), is obtained from the universal example of Strickland.
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Norm-coherent coordinates

A criterion for Hy ortns (Ando '95, Ando-Hopkins-Strickland '04)
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Norm-coherent coordinates

A criterion for Hy ortns (Ando '95, Ando-Hopkins-Strickland '04)
Let E be the Morava E-theory associated to I'/k as before.
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Norm-coherent coordinates

A criterion for Hy ortns (Ando '95, Ando-Hopkins-Strickland '04)
Let E be the Morava E-theory associated to I'/k as before. Then
the orientation MU (0) — E is an Hyo map

Yifei Zhu Symmetry encoded by norm maps



Norm-coherent coordinates

A criterion for Hy ortns (Ando '95, Ando-Hopkins-Strickland '04)
Let E be the Morava E-theory associated to I'/k as before. Then
the orientation MU (0) — E is an Hy, map if and only if its
corresponding coordinate on G'g is norm-coherent.

Yifei Zhu Symmetry encoded by norm maps



Norm-coherent coordinates

A criterion for Hy ortns (Ando '95, Ando-Hopkins-Strickland '04)

Let E be the Morava E-theory associated to I'/k as before. Then
the orientation MU (0) — E is an Hy, map if and only if its
corresponding coordinate on G'g is norm-coherent.

@ Any coordinate on I' over k extends uniquely to a
norm-coherent coordinate on G over myE.

Yifei Zhu Symmetry encoded by norm maps



Norm-coherent coordinates

A criterion for Hy ortns (Ando '95, Ando-Hopkins-Strickland '04)

Let E be the Morava E-theory associated to I'/k as before. Then
the orientation MU (0) — E is an Hy, map if and only if its
corresponding coordinate on G'g is norm-coherent.

@ Any coordinate on I' over k extends uniquely to a
norm-coherent coordinate on G over myE.

@ This construction is functorial

Yifei Zhu Symmetry encoded by norm maps



Norm-coherent coordinates

A criterion for Hy ortns (Ando '95, Ando-Hopkins-Strickland '04)

Let E be the Morava E-theory associated to I'/k as before. Then
the orientation MU (0) — E is an Hy, map if and only if its
corresponding coordinate on G'g is norm-coherent.

@ Any coordinate on I' over k extends uniquely to a
norm-coherent coordinate on G over myE.

@ This construction is functorial under base change of I'/k,

Yifei Zhu Symmetry encoded by norm maps



Norm-coherent coordinates

A criterion for Hy ortns (Ando '95, Ando-Hopkins-Strickland '04)

Let E be the Morava E-theory associated to I'/k as before. Then
the orientation MU (0) — E is an Hy, map if and only if its
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Remark A connection to Coleman’s norm operator in local class
field theory via Lubin-Tate theory is yet to be understood.
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