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Background: chromatic homotopy theory

A connection between Topology and Arithmetic (Quillen ’69)

stable homotopy theory! 1-dim formal group laws

complex-oriented h∗(−) F (x, y) over h∗(pt)

c1(L1 ⊗ L2) = F
(
c1(L1), c1(L2)

)
Example

H∗(−;Z)! Ga(x, y) = x+ y

K∗(−)! Gm(x, y) = x+ y − xy = 1− (1− x)(1− y)
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Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland ’01, Lurie ’09, ’18)

elliptic cohomology theory =

{
E, CE0(pt),

α : Spf E0(CP∞)
∼−→ Ĉ

}

Theorem (Morava ’78, Goerss-Hopkins-Miller ’90s–’04)

E : {formal groups over perfect fields, isos} → {E∞-ring spectra}

Spf E0(CP∞) = the univ deformation of a fg F of height n
over a perfect field k of char p

π∗E ∼= W(k)Ju1, . . . , un−1K[u±1], |u| = −2
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}

Theorem (Morava ’78, Goerss-Hopkins-Miller ’90s–’04)

E : {formal groups over perfect fields, isos} → {E∞-ring spectra}

Spf E0(CP∞) = the univ deformation of a fg F of height n
over a perfect field k of char p

π∗E ∼= W(k)Ju1, . . . , un−1K[u±1], |u| = −2

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland ’01, Lurie ’09, ’18)

elliptic cohomology theory =

{
E, CE0(pt),

α : Spf E0(CP∞)
∼−→ Ĉ
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Power operations for Morava E-theory

M = E-module π0M = [S,M ]S ∼= [E,M ]E

PE(M) =
∨
i≥0

PiE(M) =
∨
i≥0

(M ∧E · · · ∧E M︸ ︷︷ ︸
i-fold

)hΣi

A = commutative E-algebra
= algebra for the monad PE with µ : PE(A)→ A

total power operation ψi : π0A→ π0

(
ABΣ+

i

)
∀η ∈ π0PiE(E), individual po Qη : π0A→ π0A

}
/I
 additive

E
fη−→ PiE(E)

PiE(fx)
−−−−→ PiE(A) ↪→ PE(A)

µ−→ A
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Power operations for Morava E-theory (height n prime p)

Theorem (Rezk ’09, Barthel-Frankland ’13)

If A = K(n)-local commutative E-algebra, then

π∗A = graded amplified L-complete Γ-ring

Γ = twisted bialgebra over E0 (Dyer-Lashof algebra)

∃ Q0 ∈ Γ with Q0(x) ≡ xp mod p (Frobenius congruence)

Goal make this structure explicit just as for Dyer-Lashof/Steenrod
operations in ordinary homology.
The case of n = 2 has been worked out.  Arithmetic
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Power operations for Morava E-theory (height n = 2)

Theorem (Z. ’15)

Given any Morava E-theory E of height 2 at a prime p, there is an
explicit presentation for its algebra of power operations, in terms of
generators Qi : E

0(−)→ E0(−), 0 ≤ i ≤ p, and quadratic
relations

QiQ0 = −
p−i∑
k=1

wk0 Qi+kQk −
p∑

k=1

k−1∑
m=0

wm0 di, k−mQmQk

for 1 ≤ i ≤ p, where the coefficients w0 and di, k−m arise from
certain modular equations for elliptic curves.

Remark The first example, for p = 2, was calculated by Rezk ’08.
These have been applied to computations in unstable v2-periodic
homotopy theory (Z. ’18).
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Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of formal groups and algebras of power operations

Recall E-theory at height n and prime p has an underlying model

Fk
univ defo←−−−−− ΓW(k)Ju1,...,un−1K ! E

	 	
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland ’04, Rezk ’09)
qcoh sheaves of grd comm algs

over the moduli problem of
defos of F/k and Frob isogs

 ∼=


grd comm algs over
the Dyer-Lashof algebra

for E


Goal Compute one side explicitly to get the other side.

Yifei Zhu Power operations in elliptic cohomology and arithmetic topics



Moduli of elliptic curves and D.-L. algebras at height 2

Moduli of formal groups and moduli of ell. curves (Serre-Tate ’64)
p-adically, defo thy of an ec ∼= defo thy of its p-divisible gp

[Γ0(p)] as an open arithmetic surface (Katz-Mazur ’85)
parameters for its local ring at a supersingular point

Theorem (Z. ’15)

A choice of such parameters, h and α, satisfies the equation
(α− 1)p(α− p)−

(
(−1)p + (−1)p−1(−p)p+h

)
α = 0

Question At height n > 2, can we get an explicit presentation for
the Dyer-Lashof algebra of Morava E-theory?
Investigating J. Weinstein’s approach to integral models for
modular curves via the infinite Lubin-Tate tower.
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A picture from Jared Weinstein, Semistable models for modular curves of arbitrary level

Thank you.
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