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P IESRE

We give an overview of topological approaches to analyzing time-dependent data,
with an emphasis on detection of periodic phenomena. This methodology enjoys robust—
ness afforded by continuous deformation and change of measures, captures interesting
geometric features underlying the data, and requires a reasonable computational cost.
We illustrate these by reporting progress on two specific applications: (i) automated and
real-time detection of mouse scratching behavior, joint with Fangyi Chen and Zhen
Zhang, and (ii) classification of voiced and unvoiced speech signals, joint with Meng Yu.
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Yifei Zhu is an Assistant Professor in mathematics of Southern University of Science
and Technology. His current research focuses on interactions of algebraic topology with
algebraic geometry and number theory, especially moduli spaces from spectral algebraic
geometry in the context of the Langlands program, as well as applications of geometry and
topology to interdisciplinary research, including condensed-matter physics and material
science.
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Periodic phenomena: a motivating example

Let T2 = (R/Z)? be the 2D torus. Consider the dynamical system given by
$y,: T> x R — T*
(a,b),t) — (a+t,b+ ot)

If o is rational, then every orbit is . Otherwise every orbit is dense in T2

From time series to topological shapes

Most periodic time series can be realized by a embedded
in a Euclidean space of higher dimension.
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Ideas of topological data analysis (TDA)

Features of topological shapes, such as the number of holes, can be captured
by algebraic invariants that are

Comparing these invariants effectively the topological types of
shapes.
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An application: detection of wheeze in medical science (pulmonology)
Wheezes are abnormal lung and usually

imply obstructive airway diseases.

The most important characteristic of wheeze signals
s their patterns.

The accuracy of topological periodicity detection is 98.39% (Emrani et al., IEEE
Signal Processing Letters, 2014), while in two earlier papers with different
methods they are 86.2% and 95.5%.

As a warm-up, our research group has reproduced their results using the
original data and open-source TDA programming package.
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An application: detection of wheeze in medical science (pulmonology)

Original sound signals Realized topological “Persistence barcodes” as

shapes embedded in representations of the algebraic
2D Euclidean space invariant (1D homology group)
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A pipeline for topological time series analysis

Time series data: x4, X5, X3, X4, ...

Preprocessing ——>

2D Euclidean shape: point cloud (x4, X147), (X2, X247), (x3,x3{Q<.

Topological feature extraction —— delay

Algebraic invariants: homology groups, persistence barcodes, ...

Statistical inference ——>

Characteristics conclusions
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Fangyi Chen and the data science group led by Zhen
Zhang, both at SUSTech, we applied topological
methods to the problem of and

detection of mouse scratching behavior, with
motivations from

Prior to our group’s involvement,
machine learning via neural networks
was applied with satisfactory accuracy
(https://yifeizhu.github.io/scratch.mp4).

However, the learning process was , which is impractical for
time-sensitive purposes and lab efficiency.
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Application I: detection of mouse scratching behavior

We observed that the scratching behavior exhibits periodicity. In the meantime,
however, of a mouse may significantly reduce the pattern.

To resolve this issue, we adopted the following approaches:

Approach 1 all 460x640 pixels to extract a series of 1D data which
ignores differences caused by global movements. Too coarse?

Approach 2 Blur the images by , and feed the topological pipeline
with reduced 100-dimensional data. Still too refined?
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Application I: detection of mouse scratching behavior

Approach 2 (multi-dimensional data), combined with and
its representations, yielded recognizable characteristics but required
considerable computational time.
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Application lI: classification of voiced and unvoiced speech signals

Here is a flowchart for our
topological approach:

Topological profiles for vowels and consonants

Features for vowels Features for consonants

Left: frame size: 15ms, frame shift: 5ms; Right: frame size: 45ms, frame shift: 22.5ms Left: pulmonic consonant; Right: non-pulmonic consonant
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Persistent homology

Sliding window embedding

Euclidean embedding of time series data dates back to Takens’s work on fluid
turbulence in the 1980s.

Theorem (Takens 1981). Let M be a compact manifold of dimension n. Given
pairs (¢, y) with @: M — M a smooth diffeomorphism and y: M — R a smooth

function, it is a generic property that the map ®e.,: M — R2"*1 defined by

D) () = (y (@), y(p(x)),... ,y(sozn(ﬂf)))

IS an



Thank you.
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