
















































































































 
  Topological time series analysis: with applications to  

               biomedical and speech signal processing   
 









































	 	 	 	 	 	 	 	 	 	               朱⼀⻜ (SUSTech)






 	 	                   杭州师范⼤学数学学院陈建功⼤讲堂, 2022.11






	 	 	 	 	 	 	 	 	 	 	 	 			      





















Periodic phenomena: a motivating example



Let 𝕋 ² = ( ℝ / ℤ )² be the 2D torus.  Consider the dynamical system given by







If σ is rational, then every orbit is periodic.  Otherwise every orbit is dense in 𝕋 ².

















From time series to topological shapes 


Most periodic time series can be realized by a topological circle S¹ embedded 
in a Euclidean space of higher dimension.
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Ideas of topological data analysis (TDA)



The topological type (more precisely, homotopy type) is robust against 
perturbations.
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Ideas of topological data analysis (TDA)



Features of topological shapes, such as the number of holes, can be captured 
by algebraic invariants that are computable.



Comparing these invariants effectively distinguishes the topological types of 
shapes.
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Topological time series analysis



Let us make the assumption that sampled signals are distributed over a 
manifold.  To topologically analyze time series, we then proceed as follows:




	 Step1  Embed the data into a Euclidean space of suitable dimension;




	 Step 2  Compute the algebraic invariants for statistical inference. 
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An application: detection of wheeze in medical science (pulmonology)



Wheezes are abnormal lung sounds and usually 
imply obstructive airway diseases.





The most important characteristic of wheeze signals 
is their periodic patterns.





The accuracy of topological periodicity detection is 98.39% (Emrani et al., IEEE 
Signal Processing Letters, 2014), while in two earlier papers with different 
methods they are 86.2% and 95.5%.





As a warm-up, our research group has reproduced their results using the 
original data and open-source TDA programming package.
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An application: detection of wheeze in medical science (pulmonology)






               Original sound signals            Realized topological           “Persistence barcodes” as  

       	 	 	 	 	 	 	 	 	 	 	 	 shapes embedded in          representations of the algebraic

                		 	 	 	 	 	 	 	 	 	 2D Euclidean space            invariant (1D homology group)
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A pipeline for topological time series analysis
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Application I: detection of mouse scratching behavior



Joint with the biomedical engineering group led by 
Fangyi Chen and the data science group led by Zhen 
Zhang, both at SUSTech, we applied topological 
methods to the problem of automated and real-time 
detection of mouse scratching behavior, with 
motivations from pharmacology.





Prior to our group’s involvement, 
machine learning via neural networks 
was applied with satisfactory accuracy 
(https://yifeizhu.github.io/scratch.mp4).





However, the learning process was time consuming, which is impractical for 
time-sensitive purposes and lab efficiency.
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Application I: detection of mouse scratching behavior



We observed that the scratching behavior exhibits periodicity.  In the meantime, 
however, global movements of a mouse may significantly reduce the pattern.












To resolve this issue, we adopted the following approaches:




Approach 1  Sum up all 460 x 640 pixels to extract a series of 1D data which 
ignores differences caused by global movements.  Too coarse?





Approach 2  Blur the images by pooling, and feed the topological pipeline 
with reduced 100-dimensional data.  Still too refined?
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Application I: detection of mouse scratching behavior



Approach 1 (1D data), combined with carefully designed filtration for wave 
signals + suitably chosen geometric statistics, yielded a close-to-real-time, 
decently accurate detection performance.
















       2 filtrations:  Sliding window embedding (dim=6, delay=1)

                       then project to 2D
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Application I: detection of mouse scratching behavior



Approach 2 (multi-dimensional data), combined with persistent homology and 
its representations, yielded recognizable characteristics but required 
considerable computational time.
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Application II: classification of voiced and unvoiced speech signals



Joint with Meng Yu of Tencent AI Lab, we applied topological methods to 
classify voiced/unvoiced and vowel/consonant speech data, with motivations 
from industrial applications.  



We were inspired by Carlsson et al.’s discovery of the Klein-bottle distribution 
of local natural images, as well as their subsequent recent work of topological 
convolutional neural networks learning video data.  We would like to 
understand an analogous “moduli space” for speech data and how its input 
may enable smarter learning.





Display of speech signals 


There are speech signal 
processing softwares for 
professional use.
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Application II: classification of voiced and unvoiced speech signals



Here is a flowchart for our 
topological approach:





Topological profiles for vowels and consonants 

 
               Features for vowels                                Features for consonants      

Left: frame size: 15ms, frame shift: 5ms; Right: frame size: 45ms, frame shift: 22.5ms                      Left: pulmonic consonant; Right: non-pulmonic consonant
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Application II: classification of voiced and unvoiced speech signals



Using real-world speech data from the MFA aligner, we further fed the 
topological features for machine learning, and obtained positive preliminary 
results for classification. 

















Mamta

was














Application II: classification of voiced and unvoiced speech signals



Using real-world speech data from the MFA aligner, we further fed the 
topological features for machine learning, and obtained positive preliminary 
results for classification. 


















Tragopan














Application II: classification of voiced and unvoiced speech signals



Using real-world speech data from the MFA aligner, we further fed the 
topological features for machine learning, and obtained positive preliminary 
results for classification. 


















BAM














Application II: classification of voiced and unvoiced speech signals



Using real-world speech data from the MFA aligner, we further fed the 
topological features for machine learning, and obtained positive preliminary 
results for classification. 































Persistent homology 


















Sliding window embedding 



Euclidean embedding of time series data dates back to Takens’s work on fluid 
turbulence in the 1980s.




Theorem (Takens 1981).  Let M be a compact manifold of dimension n.  Given 
pairs (φ, y) with Φ : M → M a smooth diffeomorphism and y : M → ℝ a smooth 
function, it is a generic property that the map Φ(φ, y) : M → ℝ²ⁿ ⁺¹ defined by





is an embedding.
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                                                        Thank you.
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