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Abstract: Exceptional degeneracies, unique to open systems, are important in non-Hermitian topology. 15 

While bulk-Fermi-arcs connecting second-order exceptional points (EP2s) have been observed, the existence 16 

of bulk-Fermi-arcs linking higher-order exceptional points remains unexplored. Here, we introduce an 17 

unconventional bulk-Fermi-arc in systems with parity-time and pseudo-Hermitian symmetries, which links 18 

paired third-order exceptional points (EP3s), where three eigenvalues share identical real parts but distinct 19 

imaginary parts. We realize these systems using topological circuits and experimentally demonstrate this 20 

unconventional bulk-Fermi-arc. A winding number defined from resultant vector shows that the bulk-Fermi-21 

arc is stabilized by the exchange of Riemannian sheets. Furthermore, analysis via eigenframe deformation 22 

mailto:huj@shu.edu.cn
mailto:jiahongwei@tongji.edu.cn
mailto:phchan@ust.hk


and rotation reveals that the EP3 pair is topologically nontrivial and equivalent to a single defective triple 23 

point. The EP3s can split from the triple point by varying system parameters, with this splitting protected by 24 

topological equivalence. This finding offers insights into non-Hermitian topology with potential applications 25 

in wave engineering. 26 

Introduction 27 

The band degeneracies have been extensively recognized as topological defects in parameter space 1-20. 28 

A very typical example of such defects in the three-dimensional (3D) Hermitian setting is the Weyl point 1-29 

7. Its topological invariant, generally obtained by integrating Berry curvature on a closed surface enclosing 30 

the Weyl point, is a crucial measure for predicting Fermi arc surface states at system boundaries 1-6. Recently, 31 

non-Hermitian physics has attracted growing interest as it addresses the ubiquitous open systems that 32 

exchange energy with the surrounding environment. The energy exchange is represented by the imaginary 33 

parts of the complex eigenvalues, which significantly expands the classes of topological phases of matter 10-34 

23. The exceptional point (EP) is a unique feature of non-Hermiticity, featuring the coalescence of both 35 

eigenvalues and eigenstates. In two dimensional (2D) systems, a pair of EPs of order two (EP2) can be 36 

obtained by splitting a topologically nontrivial Dirac point by introducing non-Hermitian perturbations. Due 37 

to the eigenvalue braiding around each EP, the EPs generally carry half-quantized topological invariants, 38 

known as energy vorticity, resulting in a stable bulk-Fermi-arc (BFA) linking the pair of EP2s 11-13. This is 39 

fundamentally distinct from the commonly observed Fermi-arc surface states that arise from the 2D 40 

projection of Weyl points in 3D Hermitian systems 1,3-6, while the BFA resides in the bulk dispersion of a 2D 41 

system supporting the EP pairs 11-13. So far, the BFA is widely recognized as a stable link of EP2s. However, 42 

other forms of BFAs, which link higher-order EPs, remain unexplored. 43 

 In this study, we unveil an unconventional BFA linking paired exceptional points of order three (EP3), 44 



which can widely exist in 2D non-Hermitian systems with parity-time (PT) symmetry and an additional 45 

pseudo-Hermitian symmetry. High-order exceptional points, unlike second-order ones, are multifold 46 

degeneracies where three or more eigenvalues and their eigenstates coalesce 21-24. These points, common in 47 

non-Hermitian systems, enable unique applications such as enhanced sensitivity and the realization of exotic 48 

topological structures, making them useful for advancing sensing technologies and exploring novel physical 49 

phenomena 25,26. In 2D systems with multiple eigenstates, the EP3s can exist in the form of cusps that are 50 

located entirely on exceptional lines (EL) under the protection of PT symmetry 20-22,27. Here we reveal that 51 

by imposing an additional pseudo-Hermitian symmetry, EP3s can emerge in pairs. Unexpectedly, these 52 

paired EP3s are stably connected by an unconventional form of BFA, on which the three eigenvalues possess 53 

identical real parts but disparate imaginary parts, significantly distinguished from the conventional form. By 54 

defining winding numbers using a resultant vector 22, we find that the paired EP3s possess opposite winding 55 

numbers, indicating inverse exchanging processes of Riemannian sheets around the two EP3s, which 56 

stabilizes the unconventional BFA. The two EP3s linked by the BFA originate from the splitting of an 57 

accidental three-fold degeneracy that holds two linearly independent eigenstates (dubbed a defective triple 58 

point, DTP), which is also distinguished from the conventional case. It is known that paired EP2s stably 59 

linked by a BFA carry nontrivial eigenvector topology 11,12. However, prior topological characterization for 60 

high-order EPs that utilizes the resultants, which primarily focuses on the eigenvalues 21,22, cannot reveal the 61 

topological nontriviality of eigenvectors of the EP3 pair. To address this limitation, we incorporate the 62 

eigenvectors and employ the notion of eigenframe deformation and rotation, which aligns with the 63 

intersection homotopy 28,29, to characterize the topology of such singularities that are located entirely on ELs. 64 

The paired EP3s, which possess opposite winding numbers of resultant vectors and are connected by the 65 

BFA, are shown to have a nontrivial topology identical to that of the DTP. Therefore, the splitting of the 66 



EP3s from the DTP is topologically protected. Finally, by realizing such systems with nonreciprocal circuits, 67 

the new form of BFA is experimentally demonstrated.  68 

Results and Discussion 69 

We start with a direct comparison between the two forms of BFAs. As shown in Fig. 1a, a 2D Hermitian 70 

system with PT symmetry generally displays Dirac point degeneracies as linear crossings of two bands. By 71 

introducing non-Hermitian perturbations with specific symmetries, the Dirac point is split into a pair of EP2s 72 

(see Fig. 1b), which are stably connected by the conventional BFA with two eigenvalues sharing identical 73 

real parts but different imaginary parts 11-13. The unconventional BFA we study is inherently different. We 74 

consider the following 2D non-Hermitian Hamiltonian with three eigenstates, 75 
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where fx and fy are real and constitute the 2D parameter space. This non-Hermitian Hamiltonian is chosen to 77 

manifest both PT symmetry and an additional η-pseudo-Hermitian symmetry 30,31 (ηHη-1=H†, η takes the 78 

form of Minkowski metric η=diag(-1,1,1) 32). The specific function g(fx, fy) =0.343-fx +b is chosen because 79 

it exhibits an accidental three-fold degeneracy at b=0, as shown in Fig. 1c. This degeneracy is defective and 80 

has two linearly independent eigenstates, which we therefore refer to as a defective triple point (DTP). By 81 

introducing perturbations while preserving the symmetries (simply by tuning b), this DTP can split into a 82 

pair of EP3s lying on the cusps of ELs. The EP3s are stably connected by a special type of BFA, which 83 

resides in the broken phase region, as displayed in Fig. 1d. We note that the three eigenvalues on the BFA 84 

have identical real parts, while their imaginary parts are different. The DTP should be distinguished from the 85 

EP3, despite that they are both defective three-fold degeneracies, due to the fact that the EP3 only has one 86 

eigenstate. 87 



 To experimentally observe the unconventional BFA, we employ a nonreciprocal electric circuit that 88 

incorporates three nodes (labeled A, B, and C in Fig. 2a) to emulate the hoppings in a three-state non-89 

Hermitian model. The tight-binding hopping parameters are utilized to construct a synthetic 2D parameter 90 

space. The electric circuit platform 33-37 offers significant advantages over others in implementing and 91 

precisely controlling complex nonreciprocal hoppings, thanks to the diverse range of readily available active 92 

circuit elements. Nonreciprocity in electric circuits refers to the direction-dependent transfer of signals or 93 

energy between two nodes, enabling functionalities such as directional amplification and robust 94 

unidirectional transport. This is often achieved using a negative impedance converter with current inversion 95 

(INIC), an active circuit element that breaks reciprocity by introducing asymmetric hopping parameters 34,37. 96 

The PT symmetry inherent to the non-Hermitian system ensures that these asymmetric hopping parameters 97 

are real and can be implemented using conductance or inductance combined with the INIC35. The structure 98 

of the circuit elements and their corresponding hopping parameters are shown in the left panel of Fig. 2a . 99 

Specifically, an INIC in series with a capacitor, denoted as ±Ci (see right panel of Fig. 2a), is employed to 100 

achieve the nonreciprocal hoppings depicted. In this setup, the circuit’s admittance matrix J and its 101 

eigenvalues, labeled j, are analogous to the Hamiltonian matrix and energy spectra, respectively 33,34,36. In 102 

the experiment, we applied current inputs to each of the three nodes and measured the resulting voltage 103 

responses. From these measurements, we constructed the matrix-form Green’s function, whose inverse 104 

yields the circuit Laplacian, enabling the analysis of its eigenvalue and eigenstate spectra. Further details on 105 

the experimental implementation and measurements can be found in Methods. 106 

 We first observe the unperturbed case (b=0) where the DTP is present on the 2D plane of dispersion 107 

diagram. From left panel of Fig. 2b, we see that four ELs (orange lines) emerge from the DTP (red star), 108 

three with fy > 0.121 and one with fy < 0.121, and we measured the admittance bands marked by the three 109 



dashed lines (fy=0.3, 0.121 and 0.01), which are shown in the right panel of Fig. 2b. It can be identified that 110 

three of the ELs are formed by the degeneracies of the 2nd and the 3rd bands (fy=0.3 and 0.01, right panel), 111 

while the other is formed by the 1st and the 2nd bands (fy=0.3, right panel). The DTP therefore serves as the 112 

aggregation node of all the ELs. By introducing the perturbations (b=0.0299), the DTP is split into two EP3s 113 

lying on the cusps of ELs (see the left panel of Fig. 2c). We see that each of the EP3s are connected by two 114 

ELs, and one EL is formed by the degeneracy of the 1st and the 2nd bands, while the other is formed by the 115 

degeneracy of the 2nd and the 3rd bands (see the right panel of Fig. 2c). The unconventional BFA (blue line 116 

in Fig. 2c), on which the real parts of all three eigenvalues coalesce, can be clearly indicated by the 117 

experimental results in the right panel of Fig. 2c. By further increasing the perturbations (b=0.0569), the 118 

separation between the paired EP3s in parameter space becomes larger. However, the BFA is stable against 119 

this perturbation, which still stably links the two EP3s, as shown in the left panel of Fig. 2d. Additionally, 120 

from the right panel of Fig. 2d, we observe that the dispersive nature on the BFA that the real parts of all 121 

three eigenvalues coalesce remains intact regardless of increasing the perturbation in the Hamiltonian. This 122 

experimental result demonstrates the stability of the BFA, which comes from the topological nontriviality of 123 

the paired EP3s. 124 

 Now we delve into the topological aspects of the stability of the unconventional BFA. As we have 125 

claimed, the assembling of the paired EP3s is topologically nontrivial. This point of view compliments the 126 

conventional understanding where the winding number of cusps of ELs are defined with the resultant vector 127 

21,22, 128 
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and the integration results for the two EP3s are W=±1. Here lλ denotes a closed loop enclosing a single EP3, 130 

e.g., L1 or L2, as displayed in the lower panel of Fig. 3a. R1 and R2 denote the components of the resultant 131 



vector field. Details on obtaining the resultant vector and deriving Eq. (2) are shown in Supplementary Note 132 

2. The opposite windings arise from the fact that the eigenvalues undergo converse exchanges of Riemannian 133 

sheets around the two EP3s. As can be observed in Fig. 3b and 3c (theoretical: solid lines, experimental: 134 

symbols), along loops L1 and L2, the eigenvalues j2 and j3 are initially coincident because the starting point 135 

(SP) of loop L1 is selected to be on the EL formed by j2 and j3 (see stars in the lower panel of Fig. 3a). As the 136 

tracking point on L1 departs from the EL, the degeneracy point of j2 and j3 bifurcates. j2 will then coalesce 137 

with j1 as the tracking point approaches the other EL along L1. From this point, j1 and j2 form a common 138 

Riemannian sheet in their real part dispersions because they become conjugated. Finally, when the 139 

eigenvalues continue to evolve with the moving of the tracking point along L1, the three eigenvalues 140 

exchange their order j1j2↔j3 (indicated by the vertical dashed lines), which indicates the exchange of two 141 

Riemannian sheets - one shared by Re(j1) and Re(j2), and the other by j3. The eigenvalues on loop L2 simply 142 

experience the reverted order exchange process. As shown in Fig. 3c, j1 and j2, initially coalesce at SP, 143 

bifurcate as the tracking point departs from the EL. Next, j2 coalesces, bifurcates, and finally coalesces again 144 

with j3, through which they swap with j1 (j1↔j2j3, indicated by the dashed lines). The BFA is stable because 145 

it arises from the intersection of the two Riemannian sheets, an inevitable consequence when these sheets 146 

exchange orders (indicated by the nonzero winding W) as they evolve around the EP3s. 147 

 We expect that the assembling of paired EPs linked by the BFA should carry nontrivial topology 11,12. 148 

However, applying Eq. (2) on a closed loop encircling both EP3s (on loop L3) yields a trivial result (W=0) 149 

because the order exchange of eigenvalues cancels out on L3. This is clearly indicated by the vertical dashed 150 

lines in Fig. 3d, showing the evolution of eigenvalues along the loop. Therefore, considering only the 151 

eigenvalues is insufficient to demonstrate the topological nontriviality of the paired EP3s. In topological 152 

band theories, additional topological characteristics are encoded in the evolution of eigenstates, such as the 153 



Berry phase 35 and the homotopical invariants 8. However, such approaches may not be applicable here due 154 

to the presence of ELs on the loops. We therefore employ an intuitively meaningful approach that utilizes 155 

the notion of intersection homotopy 20,21,28,29 to characterize the topology of such non-isolated singularities. 156 

The symmetry of system (PT and pseudo-Hermitian) reveals that the eigenstates obey the Minkowski-type 157 

orthogonal relation  158 
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which further determines that the eigenframe evolves in the form of deformation and rotation when the 160 

Hamiltonian changes in parameter space. Here we employ the eigenframe approach to implement topological 161 

characterization because the eigenframe deformation allows the eigenstates to be parallel within the 162 

evolution process, and thus intersecting ELs by the loop (i.e. L3 in Fig. 3a) is allowed. Additionally, the 163 

topological characterization result with eigenframe does not depend on how the conjugate eigenstates are 164 

ordered in broken phase sectors (see details in Supplementary Note 3.3). This approach therefore effectively 165 

addresses the gap closing on the ELs where the loops intersect 20. The evolution process along L3 is provided 166 

in Fig. 3e and 3f, corresponding to the real and imaginary parts of eigenstates, respectively. The eigenframe 167 

deformation process is obvious because the right eigenstates are not always orthogonal to each other, and 168 

sometimes they become parallel or antiparallel when the tracking point approaches ELs, resulting from the 169 

Minkowski-type orthogonal relationship (see Supplementary Fig. S6). After a cycle of evolution along L3, 170 

the eigenstates 1  and 3  evolve to their antipodal points (indicated by the red and black dashed lines) 171 

but 2  evolves to the initial state without changing the sign ( 1 1  , 2 2   and 3 3  ), which 172 

is protected by the PT symmetry. This indicates that both 1  and 3  experience quantized accumulated 173 

angle π (see the lower panel of Fig. 3e) to their initial states arccos( )T

i     (here i  denotes the 174 

initial state). The imaginary parts of eigenstates serve as an intermediate process because the initial and final 175 



states (and the accumulated angle) are real (see Fig. 3f). Notably, the accumulated angles of the eigenstates 176 

are not quantized along L1 and L2, because eigenstates exchange orders within the evolution process (see Fig. 177 

3b and 3c). By tuning the system parameters, the two EP3s can merge into a DTP, with the eigenframe 178 

evolution on a closed loop encircling the DTP being identical to that in Fig. 3e and 3f (results provided in 179 

Supplementary Fig. S7 to avoid redundancy). This demonstrates that the EP3 pair is topological equivalent 180 

to the DTP from an eigenframe rotation/deformation perspective. Therefore, the merging of the paired EP3s 181 

into a single DTP is a consequence of topological conservation. Additionally, due to this topological 182 

nontriviality, the DTP cannot be totally eliminated, but will be split into an intersection of ELs and an isolated 183 

Dirac point by varying b from 0 to negative. 184 

Conclusion 185 

 In summary, we unveil an unconventional BFA that stably connects paired EP3s located at the cusps of 186 

ELs in non-Hermitian systems with PT symmetry and an additional pseudo-Hermitian symmetry. The 187 

winding numbers of the EP3s can be defined with the resultant vectors, and the assembling of EP3s carrying 188 

opposite windings of resultant vectors is topologically nontrivial and can coalesce into a DTP under 189 

symmetry-preserving parameter changes. This perspective complements the conventional topological 190 

understandings of cusps ELs based on resultant vectors 21,22. The topological nontriviality of the EP3 pair 191 

(or the DPT) is characterized through the eigenframe deformation and rotation process. Our topological 192 

characterization transcends the traditional theories that only consider the evolution of eigenvalues, offering 193 

a more holistic theoretical understanding for a generic non-Hermitian singularities. Moreover, by 194 

implementing the system in a nonreciprocal circuit, we experimentally demonstrate the BFA. The study 195 

extends the notion of BFA from EP2s to higher order EP3s. It is thus a direct motivation for exploring other 196 

forms of BFA linking even higher order EP pairs (e.g., EP4s) that are protected by symmetries in parameter 197 



space. Future work may focus on realizing the BFA in periodic systems, offering platforms to explore the 198 

finite-size effects associated with it. Our discovery also opens new avenues for wave manipulation and 199 

precise control in non-Hermitian systems. The topological robustness of these bulk-Fermi-arcs serves as a 200 

basis for designing advanced devices tailored for energy transport, high-sensitivity sensing, and sophisticated 201 

signal processing. These results lay a solid foundation for innovative applications in wave engineering and 202 

next-generation photonic technologies. 203 

Methods 204 

In our circuit design, a Negative Impedance Converter through Current Inversion (INIC) is 205 

implemented, using two equal resisters Ra in both the positive and negative feedback paths (Fig. 2b), enabling 206 

precise emulation of nonreciprocal hoppings. The output current Iout is opposite to the input current Iin, 207 

making the capacitance behave as Ci when observed from the output node, while as − Ci when observed 208 

from the input node. The designed circuit sample includes three nodes (labeled A, B and C in Fig. 2a) that 209 

simulate the nonreciprocal hoppings in the three-state non-Hermitian model [Eq. (1)]. The circuit obeys 210 

Kirchhoff’s law, expressed as I = JV, where I is the input current vector, V represents the node voltages, and 211 

J is the admittance matrix. In the grounded configuration, the system is described by:  212 

,J D W C                                    (4) 213 

where D is the conductance matrix, W is the ground matrix, and C is the adjacency matrix. For our circuit 214 

sample in Fig. 2a, the three matrixes can be respectively expressed as: 215 

 1 1diag( ,  , )x y x yD i C i C i C i C i C i C          ,                   (5) 216 

diag( 1 , 1 , 1 )ga ga gb gb gc gcW i C R i C R i C R      ,                   (6) 217 
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In our design, we set the grounded capacitance and resistance respectively as  219 

0 0 0, ,gb gc ga ga gb gcC C C C C c R R R R       ,                    (8) 220 

and the hopping capacitance as: 221 

1 ( , ) , ,x y x x y yC g f f c C f c C f c   ,                          (9) 222 

where C0=1nF, R0=1MΩ and c=10nF. By inserting Eqs. (5-9) into Eq. (4), The admittance matrix yields: 223 

0 0
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.           (10) 224 

Here, we can confirm that the second term realizes the three-state non-Hermitian matrix H in Eq.(1). 225 

Since the driving frequency is an external parameter (1kHz in experiments), ω=2πf is also constant. The 226 

first term is also unchanged, causing only a complex shift in the eigenvalues without affecting the eigenstates. 227 

As a result, the parameters can be precisely adjusted by modifying the corresponding capacitances in Eq.(9) 228 

as needed.  229 

The experimental setup, including the circuit samples, is shown in Supplementary Fig. S1. we use 230 

surface-mounted device (SMD) capacitors, resistors, and operational amplifiers (OpAmps, model 231 

ADA4625-1ARDZ-R7) on a printed circuit board (PCB). Capacitors are connected in parallel between 232 

adjacent nodes, with toggle switches allowing flexible selection of capacitance values.  233 

In experimental operation, the OpAmps are powered by two DC power supply (RS PRO Bench Power 234 

Supply, 0 →30V, 0→5A) with dual voltages of +5V and 5V. A waveform generator (Keysight: M3201A) 235 

drives sinusoidal voltage (1V–2V at 1kHz) applied to each node, with the voltage response measured via 236 

an oscilloscope (RS PRO IDS1074B). Input current is determined by a shunt resistor (4.21 kΩ) connected 237 

from the input node to the voltage source. Analyzing the voltage response to the input current yields the 238 

admittance matrix J, which contributes to the admittance eigenvalues and eigenstates, facilitating 239 



observation of the bulk-Fermi-arc. 240 
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 258 

Fig. 1| Comparison between the conventional BFA and the unconventional BFA. a, Dispersion diagram near the 2D Dirac 259 

point (DP), obtained with the PT symmetric Hermitian Hamiltonian 1 3x yH f f   . Re(ω) denotes real part of eigenvalues 260 

as a function of fx and fy for the two eigenvalues in orange and blue, respectively. b, Paired second order exceptional points 261 

(EP2, red dots) obtained from splitting the DP by introducing gain and loss term 
3qi  to the Dirac Hamiltonian (

1~3  denote 262 

Pauli matrices), where q is the perturbation term. The paired EP2s are stably connected by the conventional bulk-Fermi-arc 263 

(BFA). The eigenvalues on the conventional BFA are conjugate to each other (real parts coalescence). c, Dispersion diagram 264 

near the defective triple point (DTP) on the 2D parameter space. The red lines denote ELs, and the DTP is embedded on the 265 

ELs. The three real eigenvalues are marked in orange, blue and green, respectively. d, Paired EP3s obtained from splitting the 266 

DTP by introducing perturbations with symmetries preserved. EP3s are both cusps of ELs, which are stably connected by the 267 

unconventional BFA residing in the broken phase domain. The three eigenvalues on the unconventional BFA share identical 268 

real parts and have different imaginary parts. Two of the three eigenvalues on the unconventional BFA are conjugate to each 269 

other, while the other eigenvalue is real.  270 

 271 



 272 

Fig. 2| Experimental observation of the unconventional BFA with topological circuit. a, implementation of the 273 

Hamiltonian. Left panel: The system includes three nodes A, B and C. The hoppings between A and B, and between A and C 274 

are nonreciprocal hoppings, implemented using an impedance converter with current inversion (INIC) circuit in series with 275 

capacitors (C1, Cx). The hopping between B and C is reciprocal, realized with a pure capacitor (Cy). The hoppings between A 276 

and C and between B and C implement synthetic dimensions fx and fy, and the hopping between A and B is a linear function 277 

of fx and fy, g(fx,fy)=0.343-fx+b. Here, b in the linear function denotes the perturbation term. Rag, Rbg and Rcg are all grounded 278 

resistors; Cag, Cbg and Ccg are all grounded capacitors. Right panel: INIC structure, with two equal resisters Ra in both the 279 

positive and negative feedback paths, and capacitor Ci in series. b-d, Experimental measurements of admittance eigenvalues 280 



for the cut planes with perturbation term b=0 (b), b=0.0299 (c) and b=0.0569 (d), respectively. Left panels: Degeneracies in 281 

the synthetic 2D parameter space on these cut planes. The ELs, DTP and BFAs are denoted by the orange lines, red star, and 282 

blue line, respectively. The experimentally identified degeneracies are marked with solid dots. Dashed lines in different color 283 

correspond to the measured lines (fy =t) on the right panels. Right panels: Real parts of the dispersion of eigenvalues as a 284 

function of fx for different fy lines (fy =t) on the corresponding cut planes. The eigenvalues are ordered in exact phases from 285 

small to large. The experimentally measured admittance eigenvalues are marked in circles, and all the degeneracies (EL, DTP, 286 

EP3 and BFA) are indicated by arrows. The experimental error bars are provided in Supplementary Note 1. The unconventional 287 

BFA can be found to stably connect the paired EP3s. Increasing the perturbation simply enlarges the interspace between the 288 

two EP3s, but cannot eliminate the BFA, demonstrating the stability of the BFA. Experimental raw data for plotting (b-d) is 289 

provided in the Supplementary Data. 290 

 291 



 292 

Fig. 3| Topological understanding of the unconventional BFA and the paired EP3s. a. Two closed loops encircling each 293 

of the paired EP3s (purple loop L1, and blue loop L2), and another loop encircling both (green loop L3). The eigenvalues on the 294 

loops are shown in the upper panel, and the structures of the loops in the 2D parameter space are shown in the lower panel. b 295 

and c. The eigenvalue evolution processes along L1(b) and L2 (c), respectively. The eigenvalues j1 and j2 and j3 are colored in 296 

yellow, blue and green, respectively. The order exchange processes are inverse along L1 and L2. For L1, j1 and j2 coalesce and 297 

swap with j3 (j1,2↔j3), while for L2, j2 and j3 coalesce and swap with j1 (j1↔j2,3). d. The eigenvalue evolution processes along 298 

L3. The eigenvalues do not experience order exchange along L3. The solid lines and rhombus symbols in panels b, c and d 299 

correspond to theoretical and experimental results, respectively. e and f. Demonstration of the nontrivial topology of the paired 300 

EP3s with the evolution process of eigenframe along L3, corresponding to the real and imaginary parts of eigenstates, 301 



respectively. The eigenstates φ1 and φ2 and φ3 are also colored in yellow, blue and green, respectively. The lower panels show 302 

the corresponding accumulated angles to the initial states. We see that the imaginary parts of eigenstates serve as intermediate 303 

process. Eigenstates φ1 and φ3 accumulate nontrivial quantized angle π, and thus their final states are on the antipodal points 304 

to the initial states. The accumulated angle for φ2 is zero. The experimental raw data for plotting the symbols in (b-d) is 305 

provided in the Supplementary Data. 306 

  307 
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 5 

Supplementary Note 1: Experimental errors and impact of EP3 sensitivity 6 

In the circuit experimental setup (Fig. S1), experimental errors are inevitable and arise from various factors, 7 

including measurement inaccuracies of the instruments, internal resistance of the circuits, as well as parasitic 8 

capacitance and resistance. In this section, we present a detailed analysis of these experimental errors. 9 

Additionally, we highlight the high sensitivity of the EP3s, which makes them particularly susceptible to 10 

such errors, and provide a discussion of their impact on the experimental results. 11 

 We begin by presenting the data on the experimental errors. Figures S2 and S3 correspond to the data 12 

in Fig. 2b-d and Fig. 3b1, b2, c1 in the main text, respectively. The deviations between the experimental and 13 

theoretical results are illustrated with error bars. The analysis shows that for most parameter values, the 14 

errors are relatively small. However, at degeneracies, such as EL, EP3, and DPT, the errors become larger. 15 

Notably, even at the BFA, which is not a degeneracy, the error is larger compared to non-degenerate 16 

parameters. The maximum errors for each type of point are summarized in Table S1. Among these, the error 17 

at EP3 is the largest. This can be attributed to the fact that EP3 represents a third-order degeneracy and 18 

exhibits high sensitivity to parameter variations and system symmetries.  19 

In the experiments, it is challenging to precisely set the selected parameter (capacitance value) to the 20 

theoretical EP3, and maintaining exact symmetries is hindered by the parasitic capacitance and resistance of 21 

the circuit elements. To identify the most experimentally approximated EP3, measurements were taken at 22 



points near the theoretical EP3. For instance, in Fig2.b2 for fy= 0.246, the theoretical EP3 is located at 23 

fx=0.12702175, To approximate this, measurements were conducted at the close parameters fx=0.126, 24 

fx=0.1265, fx=0.127 with the resulting admittance eigenvalues compared. The real parts of the experimental 25 

eigenvalues are indicated with green arrows in Fig. S5, which shows the experimental error is smallest and 26 

the closest approximation to the EP3 occurs at fx=0.126. Despite the small difference of 0.0005 among the 27 

three experimental parameters, the results vary obviously due to the high sensitivity of the EP3. 28 

 29 

Supplementary Note 2: Defining the winding number of the EP3 with resultant vector 30 

Now we review the derivation process 3 of the form Eq. (2) in the main text using the resultant. Such a 31 

method only considers the evolution of eigenvalues in a loop but does not consider the eigenstates behavior, 32 

and hence does not capture the topological information encoded in the eigenstates 4. However, such an 33 

approach is still useful as it explains the stability of these high order EPs 3, despite that it cannot demonstrate 34 

the topological nontriviality of paired EP3s lying on the cusps. We use this form to define the winding 35 

number of a single EP3, and EP3s with opposite windings can merge. Notably, this winding number cannot 36 

demonstrate that the EP3 pair is topologically nontrivial, as Eq. (2) provides a trivial result W=0 integrated 37 

along l3 that encloses the EP3 pair. Similarly, by applying Eq. (2) on a closed loop enclosing the DPT, one 38 

also obtains a trivial result W=0. Paired EPs connected by the BFA together generally carry nontrivial 39 

topology 5,6, therefore, this winding number, which only considers the eigenvalues, is insufficient in 40 

visualizing the topological nontriviality of the paired EP3s. 41 

 We start from the characteristic polynomial of the Hamiltonian  42 

1

1 1 0( ) det[ ( ) ] ( ) ( ) ... ( ) ( )n n

f n nP H f a f a f a f a f    

                (S1) 43 

where H is the Hamiltonian matrix, ω is the eigenvalue, and f defines the parameter space. We here consider 44 



2D parameter space, and therefore f has two components fx and fy. The set {an(f),…,a0(f)} are functions of 45 

the parameter space, and for our cases, these functions are real because the system has PT symmetry. The 46 

integer n shows that the Hamiltonian is an n×n matrix. At a μth-fold degeneracy (ωμ at fμ), ( )fP
   must 47 

vanish. Since ωμ is the μ-multiple root of ( )fP

 , the successive derivatives 

( ) ( ) /i i i

f fP P
 

     (i=1, 48 

2, 3, …, μ1) must also vanish at ωμ (we note that 
(0)

f fP P
 
 ). This information is encoded into the zeros 49 

of the resultant. In mathematics, the resultant of two polynomials 
1 2,P PR  is a polynomial expression of their 50 

coefficients that is equal to zero if and only if the polynomials have a common root 3. The resultant is obtained 51 

as 
1 2 1 2, ,det[ ]P P P PR S  , where 

1 2,P PS   is the Sylvester matrix of P1 and P2. For example, with the 52 

polynomials P1=anx
n+an-1x

n-1+an-2x
n-2+…+a0 and P2=bmxm+bm-1x

m-1+bm-2x
m-2+…+b0, one can obtain their 53 

Sylvester matrix  54 
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                  (S2) 55 

Since 
( )i

fP


 (i=0, 1, 2, 3, …, μ1) all have a common root ωμ, one can obtain a set of null resultants at fμ 56 

( 1) ( )
,

0i i
f f

P P
R

 

   with i=1, 2, 3, …, μ1                      (S3) 57 

This equation is actually a necessary and sufficient condition for obtaining a μth-fold degeneracy. Since a 58 

μth-fold degeneracy can be of different forms, for example in our considered Hamiltonians, a three-fold 59 

degeneracy can be an EP3 or a DTP. Obtaining them utilizes the same condition Eq. (S3), it is therefore 60 

unprecise to claim that Eq. (S3) is a necessary and sufficient condition for obtaining a EP3 in Ref. [3]. The 61 

set of resultants can form a vector with μ1 components 62 



(0) (1) (1) (2) (2) (3) ( 2) ( 1)1 2 3 1 , , , ,
( , , ,..., ) ( , , ,..., )

f f f f f f f f
P P P P P P P P

R R R R R R R R R  

       
             (S4) 63 

It is obvious that the vector R forms a vector field in the parameter space, and is critical (R=0) at the μth-fold 64 

degeneracy. We therefore can define a winding number for the critical point with the vector field R. Let us 65 

take EP3 lying on the cusp of EL as an example. The vector field has two components R1 and R2 because 66 

μ=3, and only has one critical point, lying on the EP3. We note that R is not a zero vector at EL because the 67 

R2 component is not zero at the EL, which exclude the impact of the singular ELs in defining the winding 68 

numbers. The winding number can be defined with the normal vector of R [i.e., 2 1( , )R R ] 69 

2 1 1 2
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R dR R dR
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                            (S5) 70 

We can insert 
1 1 1/ /x x y ydR R f df R f df       and 

2 2 2/ /x x y ydR R f df R f df       71 
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       (S6) 72 

Then Eq. (2) in the main text can be obtained. 73 

 The derivation details here follow Ref. [3]. This form [i.e., Eq. (S6)] has several advantages over the 74 

Berry connection approach. The most important advantage is that this equation overcomes the ill-defined 75 

Berry connection at ELs. We know that the Berry phase integral cannot be calculated if the closed loop 76 

intersects ELs. There could also be some disadvantages, for example, the vector field R cannot distinguish 77 

different forms of degeneracies of the same fold, which is obvious from our systems as EP3 and DTP are 78 

inherently different although they are both three-fold degeneracies. They are both critical points R=0 of the 79 

vector field. This disadvantage comes from the fact that this method simply considers the evolution of 80 

eigenvalues (as displayed in Fig. 3b-c in the main text) but ignores the topological information encoded in 81 

the eigenstates. However, the eigenstates always encode additional topological information, which 82 



supplements Eq. (S13) which simply provides a trivial topological characterization for a loop encircling the 83 

EP3 pair or the DPT. We address this issue in the next section, as we obtain information from the eigenstates. 84 

Supplementary Note 3: Characterizing the topology of a loop encircling hypersurface 85 

singularities with eigenframe 86 

In this section, we will show that the eigenframe evolution as parameters vary includes both deformation 87 

and rotation processes, resulting from the inner product space of the eigenframe. Our considered systems 88 

have both PT symmetry (Hamiltonian H is real H=H*) and an additional η-pseudo-Hermitian symmetry 89 

(ηHη-1=H†), which means that ηHη-1=H†=HT (the superscript T means transpose). This relation determines 90 

the evolution of the eigenframe 7,8. We first look at the left and right eigenvalue problems  91 

,T

m m m mH H                                   (S7) 92 

where m  and m  denote the left and right eigenstates respectively, corresponding to the same eigenvalue 93 

ω. The symmetries impose 
1

m mH      , meaning that  94 

1 1

m mH                                      (S8) 95 

This obviously indicates an important relationship between the left and the right eigenstates 96 

m m                                        (S9) 97 

Non-Hermitian systems have a general biorthogonal relation 
T

m n mn      (Note that these eigenstates 98 

T

m  and n  are associated with the same eigenvalue ω. Here we abandon the conventional biorthogonal 99 

relation established with the eigenstates that are associated with ω and ω* 9, as the current form is more 100 

convient for establishing eigenframe deformation appoach), which shows an orthogonal relation of the right 101 

eigenstates via an indefinite inner product, 102 

T

m n mn                                     (S10) 103 

This relationship is the Minkowski-type orthogonal relation that has been provided in the Eq. (3) in the main 104 



text, and this relation determines that the eigenframe evolves in the form of Lorentz-like transformations. 105 

Here we note that the Minkowski metric has the property 
1 T    . We now consider the evolution of 106 

the eigenframe, which is governed by the equation 107 

m mH i                                   (S11) 108 

where λ is the parameter that tracks the reference point on a path, and m denotes the index of the eigenstate 109 

(m=1, 2, 3). If the tracking point is off exceptional degenerate lines (i.e., ELs defined in the main text), the 110 

eigenstates are complete, and thus we can expand any field with the eigenstates 111 

1( ( )) [ ( ( ))] ( ( ))m

n n m

m

U                              (S12) 112 

where ξ denotes the parameter space with components ξ1, ξ2, ξ3…. The linear combination form Eq. (S12) 113 

means that n  satisfies Eq. (S11). We therefore insert Eq. (S12) into Eq. (S11)  114 

1( ( )) [ ( ( ))] ( ( ))m

n mi H U       






                    (S13) 115 

From now on, the repeated index represents summed over according to the Einstein’s summation rule 10. The 116 

left-hand side is a partial derivative and can be expanded in view of Eq. (S12) 117 

1
1[ ( ( ))] ( ( ))

( ( )) ( ( )) [ ( ( ))]
m

mn m
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U
i i i U

    
       

  


 

 
  

        (S14) 118 

One can use the instantaneous eigenvalue problem in static evolution problems 119 

( ( )) ( ( )) ( ( )) ( ( ))m m mH                                   (S15) 120 

We can apply a scalar product with the left eigenstate l  from the left side in Eq. (S13-S14), which gives 121 

1
1 1
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l
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U
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           (S16) 122 

The term with partial derivatives on the right-hand side can be expanded with the parameters 123 

1,2,3...

( ( )) ( ( )) a
m m

a
a

      

  

  


  
                       (S17) 124 

Now we define an affine connection  125 



n

a m n ma
A  




 


                             (S18) 126 

where Eq. (S10) is used. One can solve U-1 from Eq. (S16) as  127 

( )
1

0 0 (0) 0
Pexp[ ( ( ))] Pexp( ) exp[ ( ( ))]

a
a

a aU ds A i ds s A d i ds s
s

    




     

    
       (S19) 128 

The second term is a dynamical phase and thus can be ignored. The geometric phase is simply, 129 

( )
1

(0)
P exp( )a

aU A d
 


                                 (S20) 130 

and P denotes the path ordering operator, because of the matrix form of the connection A. Therefore, A is 131 

exactly the non-Abelian parallel transport gauge of the eigenframe. 132 

3.1 Topological meaningful path due to frame deformation 133 

 To encircle hypersurface singularities that are located entirely on ELs, the closed loop inevitably 134 

intersects ELs. Therefore, the loop is divided into several paths with terminal points locating on the ELs. 135 

Now we demonstrate that such open paths could be topological meaningful via the evolution of the 136 

eigenframe. We can take loop l3 in the main text as an example. This loop is composed of four segments, 137 

with two segments α1 and α2 being in the exact phase sector (shaded region in Fig. S6a1), and the other two 138 

segments β1 and β2 in the broken phase sector. Here we define an important physical quantity, the local metric, 139 

whose entries are obtained by a bilinear-form indefinite inner product, 140 

mn m ng                                      (S21) 141 

Observing the exact phase domain that α resides in, it is not difficult to obtain that g has the diagonal form 142 

under proper normalizations 143 

1 0 0

0 1 0

0 0 1

g

 
 

 
 
  

                                  (S22) 144 

This metric form coincides with the orthogonality relation in Eq. (S10). Since g is a constant matrix, the 145 



partial derivative vanishes 146 

0a mng

                                       (S23) 147 

Substituting Eq. (S21) into Eq. (S23), one obtains 148 

0a am n m n 
                                  (S24) 149 

Now we insert the identity operator l l l l

l l

I        , Eq. (S24) reads, 150 

0

a a

a a

m l l n m l l n

l l

m l ln ml l n
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              (S25) 151 

We note that 152 

 
*

a am l l m 
                                  (S26) 153 

meaning that  154 

* 0a a

l l

m ln ml nA g g A
 

                               (S27) 155 

Here we have established the relationship between the affine connection and the local metric. In the exact 156 

phase sector, the eigenstates can all be gauge to be real, and therefore, the affine connection is also real. Then 157 

Eq. (S27) is simplified 158 

0a a

l l

m ln ml nA g g A
 

                               (S28) 159 

The assembling of Eq. (S21) and Eq. (S27) allows one to obtain that the affine connection is a linear 160 

combination of the following generators 161 

1 2 3

0 0 0 0 0 1 0 1 0

0 0 1 , 0 0 0 , 1 0 0

0 1 0 1 0 0 0 0 0

T T T

     
     

  
     
          

               (S29) 162 

It is obvious that the exponential 163 

1 1 2 2 3 3exp( )t T t T t T                               (S30) 164 

generates an SO(2,1) Lie group, which includes hyperbolic transformations characterized by T1 and T3, and 165 



a rotation characterized by T2. The rotation characterized the geometric phase exp(πT2) denotes that the first 166 

( 1 ) and the third eigenstates ( 3 ) rotate a nontrivial π angle with 2  being the rotation axis. Such a 167 

situation cannot occur, because this geometric phase predicts the linear band cross between their 168 

corresponding eigenvalues (ω1 and ω3). However, since in an exact phase sector, the order of eigenvalues is 169 

well defined, and ω1 and ω3 are separated by ω2, ω1 and ω3 cannot be degenerate without crossing ω2. This 170 

prohibits the direct degeneracy between ω1 and ω3. Then we consider the geometric phase represented by 171 

the exponential  172 
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                          (S31) 173 

This exponential form is different from exp(t2T2), because this exponential form has entries being hyperbolic 174 

functions. As |t1| increases, the exponential form diverges. However, despite such a non-converge situation, 175 

we can still consider the limits |t1|→∞. If t1→+∞, both cosht1 and sinht1 approaches +∞, and we 176 

approximately have cosht1 ≈ sinht1=ρ. The action of Eq. (S31) on the eigenframe gives 177 

   1 2 3 1 1 1 2 3 2 3, , exp( ) , ( ), ( )t T                               (S32) 178 

This signifies that two eigenstates become parallel, meaning that the tracking point on the path approaches 179 

an EL formed by the degeneracy of the 2nd and the 3rd bands (e.g., the starting point of path α1 in Fig. S6a1). 180 

Similarly, the exponential form  181 

 3
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3 33
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                          (S33) 182 

can be used to predict the EL formed by the 2nd and the 3nd bands, e.g., the ending point of α1 in Fig. S6a1. 183 

If t1→-∞, then cosht1 approaches +∞, and sinht1 approaches -∞. We therefore have the approximation cosht1 184 

≈ -sinht1=ρ. The action of Eq. (S33) on eigenframe becomes  185 



   1 2 3 1 1 1 2 3 2 3, , exp( ) , ( ), ( )t T                               (S34) 186 

which obviously results in two anti-parallel eigenstates. This also means that the tracking point on the path 187 

approaches EL formed by the 2nd and the 3rd bands. The evolution of t1 from +∞ to -∞ indicates a nontrivial 188 

path. We can consider the concatenation α1β1α2 in Fig. S6a1 as an example, whose two terminal points are 189 

on ELs formed by the 2nd and the 3rd bands. As the tracking point moves along the path from one terminal 190 

point to the other, φ2 and φ3 evolve from parallel to antiparallel states (see Fig. S6a2), meaning that t1 varies 191 

from +∞ to -∞. Such a process gives rise to a relative rotation angle between φ2 and φ3 quantized as π, 192 

because the two initially coalesced eigenstates bifurcate and rotate in opposite directions, and finally they 193 

are oriented in opposite directions. This is typically the eigenframe deformation process. Since this quantized 194 

relative angle emerge for an open path, the topological meaningfulness of this open path is signified. Such a 195 

situation is quite different from isolated singularities, for which an open path is generally meaningless.  196 

In a broken phase sector, the evolution process will be more complicated and cannot be visualized with 197 

the analytical approach. However, such a frame deformation process can be extended to an open path in the 198 

broken phase sector (e.g., β1 and β2 in Fig. S6a1-S6b1). On such loops, there exists a similar process, because 199 

two coalesced eigenstates bifurcate to form a conjugate pair. If we track a point along a path in broken phase 200 

sector (terminal points are on ELs), the conjugate eigenstates evolve from real states to real states, the 201 

conjugate nature impose that the initial states are parallel states, and the final states are also parallel states. 202 

This means that the complex eigenstates also have a quantized relative rotation angle as 0 or 2π. This 203 

situation applies to β1 and β2 in Fig. S6a1-S3b1, as indicated by right panels of Fig. S6a2-S3b2, where the 204 

imaginary parts of φ2 and φ3 evolve from 0 to 0. It is also possible that the conjugate eigenstates evolve from 205 

real states to imaginary states, then the conjugation relation impose the final states to be antiparallel states. 206 

This loop includes a quantized relative rotation of π. However, such a situation was not applicable to these 207 



considered paths (e.g., β1 and β2) in this paper.  208 

From these discussions, we can conclude that in investigating a closed loop, the eigenframe evolution 209 

process along each open path should be investigated. The overall topological characterization of the loop 210 

combines the evolution processes of all paths at the terminal points on ELs. Therefore, the topology of a 211 

hypersurface singularity not only involves the overall quantization behavior of each eigenstate along the 212 

whole loop, but also involves the quantization behavior of relative rotations along each path. Such a physical 213 

meaningful approach is compatible with intersection homotopy 11,12. 214 

3.2 Topological equivalence relation between the paired EP3s and the DTP 215 

In the main text, we have shown that introducing the perturbations with preserved symmetries, the DTP can 216 

be split into the EP3 pair, which comes from the topological equivalence relation between the paired EP3s 217 

and the DTP. Here we will demonstrate this equivalence with the evolution of eigenframe. A closed loop 218 

encircling the DTP is shown in Fig. S7a, and the corresponding evolution of eigenvalues along the loop is 219 

shown in Fig. S7b. As we have introduced in the main text, the BFA is the intersection of two Riemannian 220 

sheets formed by the dispersion of the real parts of eigenvalues. One is the common sheet of Re(j2) and 221 

Re(j3), as they are conjugate to each other j2=j3
* and share the same real part. The other is formed by the real 222 

eigenvalue j1. Therefore, the BFA in our case must reside in the broken phase sector, so that only the real 223 

parts of the three eigenvalues on BFA coalesce (Note that if BFA is in exact phase regions, the BFA will be 224 

a three-fold degeneracy). The fact that the BFA is the intersection of Riemannian sheets determines that if a 225 

tracking point moves across the BFA, there has to be an order exchange of eigenvalues. This phenomenon 226 

is obvious for loops l1 and l2 (Fig. 3b1 and Fig. 3b2), as l1 and l2, which only enclose a single EL3, inevitably 227 

intersect BFA. Notably, the order exchange of eigenvalues is a swapping process of a conjugate band with 228 

the other real band (see Fig. 3b1 and Fig. 3b2), which is determined by the real parts of eigenvalues. In this 229 



context, it is obvious that the eigenvalues also do not experience order exchange along loop in Fig. S7a that 230 

encloses the DTP, similar to the situation along loop l3 in the main text (Fig. 3c1). The eigenframe 231 

deformation and rotation process is shown in Fig. S7c, with the left and right panels showing the real and 232 

imaginary parts of the eigenstates. Through the comparison against Fig. 3c2-3c3 in the main text, we see that 233 

the evolution processes are almost identical except for some deviations in the intermediate process. Along 234 

both loops, the eigenstates φ1 and φ3 all evolve to their antipodal points, meaning that the accumulated angles 235 

are quantized as π (lower panels of Fig. S7c). While φ2 evolves to the initial states without changing the sign. 236 

Such an identical processes demonstrate that the paired EP3s is topologically equivalent to the DTP, and 237 

they can both be topologically characterized as nontrivial due to the π quantization. Therefore, introducing 238 

perturbations that splits the DTP to the paired EP3s is a topologically protected process from a frame rotation 239 

perspective. This result also shows that the EP3 pair linked by the BFA in our case is topologically nontrivial. 240 

This situation is similar to the conventional case that the EP2 pair linked by a conventional BFA is 241 

topologically nontrivial 5,6. In section 4, we will show that this topological nontriviality ensures that the DTP 242 

cannot be fully illuminated. Except for the case that the DTP can be split into paired EP3s by making b to 243 

be positive, the DTP can be split into an intersection of ELs and an isolated Dirac point by decreasing b to 244 

be negative. 245 

3.3 Why the topological characterization approach addresses the ELs intersected by the loops 246 

In conventional homotopic theories, the homotopic loop always avoids intersecting any degeneracy. 247 

However, if a singularity is not isolated and locates entirely on ELs, a loop encircling it will inevitably 248 

intersect the ELs. Such a loop is an intersection homotopic loop 12, which represents a new topological 249 

characterization approach distinguished from the conventional homotopy characterization. The notion of 250 

eigenframe deformation and rotation approach used here is thus a physical meaningful method that is 251 



compatible with the intersection homotopy. The key advantage of this approach is that the topological 252 

characterization result is immune to the sequence of the two conjugate bands in the broken phase sector. As 253 

a tracking point moves along a loop and crosses an EL, two eigenvalues coalesce their real parts and disparate 254 

their imaginary parts. Therefore, uncertainty of the sequence of eigenvalues is introduced by the EL 255 

degeneracy, because the upper band and lower band cannot be distinguished. However, our approach is 256 

immune to this uncertainty. We can take the loop in Fig. 4a as an example, where we have exchanged the 257 

order of j2 and j3 in the broken phase sector (see the comparison between Fig. 5a and Fig. 4b). In Fig. 5b, we 258 

plot the evolution process of the eigenframe. Compared with Fig. S7c, we find that the evolution of the real 259 

parts of the eigenstates remains intact, only the imaginary parts become their negatives (right panels in Fig. 260 

S8b and S7c). As we have known, the imaginary parts only serve as an intermediate process, because the 261 

eigenstates are real at the initial and the final points. That is why our approach well addresses the uncertainty 262 

caused by the EL. 263 

Supplementary Note 4: Splitting of DTP into an intersection of ELs and a Dirac point 264 

Although the DTP is an accidental degeneracy and is unstable, it carries nontrivial topological information. 265 

Therefore, as long as the symmetries are preserved, the DTP cannot be fully eliminated, but will be split into 266 

other forms of degeneracies. In the main text, we have shown that the DTP can be split into a pair of EP3s 267 

linked by a BFA by increasing the perturbation term b from 0 to positive. In this section, we will show that 268 

by decreasing b to negative, the DTP also becomes unstable and will be split into another two forms of 269 

degeneracies. 270 

 The results are shown in Fig. S9, where panels a and b correspond to b=-0.0299 and b=-0.0599 in Eq. 271 

(1), respectively. Here IP stands for intersection point, at which the ELs intersect transversely. While DP 272 

stands for Dirac point, which is isolated from ELs. Their corresponding dispersion diagrams (with both real 273 



and imaginary parts of eigenvalues) are shown in panels a1-a4 and b1-b4 respectively. Both IP and DP are 274 

linear band crossings as indicated by a2, a4 and b2, b4. Additionally, IP and DP are stably degeneracies, and 275 

decreasing the perturbation term b only makes the distance between IP and DP larger, as displayed in panels 276 

a and b. 277 

 278 

Fig. S1| Experimental setup for measuring the unconventional bulk-Fermi-arc. The instruments include the 279 

DC power supply (used for the power supply of operational amplifier), Oscilloscope (measuring output 280 

signals), and waveform generator (generating input current). 281 



 282 

Fig. S2| Experimental and theoretical results of the dispersion of imaginary parts of the bulk-Fermi-arc. a-c 283 

are for different perturbation term b=0, 0.0299 and 0.0569, corresponding to b-d in the main text. 284 

 285 



 286 

Fig. S3| Vertical error bars illustrate the experimental deviations from the theoretical results associated with 287 

the measured data in Fig. 2b-d. For each experimental data point, the middle of the error bar represents the 288 

theoretical value (indicated by the line), while the half-length of the error bar corresponds to the absolute 289 

difference between the measured eigenvalue in Fig. 2b-d and the theoretical value. 290 

 291 

 292 



 293 

Fig. S4| Similar to Fig. S3, but panels a-c correspond to the results in Fig. 3b1, b2 and c1 in the main text, 294 

respectively. 295 

 296 



 297 

Experimental 

points 

General 

Point  
EL DTP  BFA EP3 

Maximum error 5% 8% 6% 6% 19% 

Table S1| Maximum error in experimental measurements for each type of points. 298 

 299 
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 301 

Fig. S5| The real parts of the experimental eigenvalues at the points near the theoretical EP3 for identification 302 

of the most experimentally approximated EP3.303 



 304 

Fig. S6| Illustration of topological meaningful path. The loop l3 in the main text can be decomposed into two 305 

parts in panels a1 (concatenation of α1, β1 and α2) and b1 (path β2), respectively. The part in panel a1 can be 306 

decomposed into three segments α1, β1 and α2. All the paths are terminated at ELs. a2-b2 Eigenframe 307 

evolution processes along the concatenated path α1β1α2 (in panel a1) and path β2 (in panel b1). 308 

 309 

 310 

 311 



 312 

Fig. S7| Topological characterization of the DPT. a. A closed loop encircling the DTP. The DTP is adjacent 313 

to four ELs, and the loop intersects the ELs four times. b. Evolution of eigenvalues along the loop in panel 314 

a. The eigenvalues do not experience order exchange along the loop as indicated by the dashed lines. c. 315 

Evolution of eigenframe along the loop in panel a, with the left and right columns showing the real and 316 

imaginary parts of eigenstates, respectively. The eigenstates φ1 and φ3 evolve to their antipodal points along 317 

the loop, showing that their accumulated angles are quantized as π, as indicated by the lower panels (left). 318 

This demonstrates that the DPT is topological equivalent to the EP3 pair, because the evolution is identical 319 

to Fig. 3c2-3c3 in the main text. The evolution of the imaginary parts serves as intermediate process as the 320 

initial and final states are all real (right column of panel c).  321 
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 324 

Fig. S8| Exchanging the sequence of j2 and j3 in the broken phase sector does not impact the topological 325 

characterization. a. Evolution of eigenvalues along the loop in Fig. S7a. The orders of j2 and j3 have been 326 

exchanged compared with Fig. S7b. b. Evolution of the eigenframe under the new sequence. The evolution 327 

of real parts is identical to the evolution process under the original sequence (left panel, compared with the 328 

left panel in Fig. S7c). The imaginary parts are added with a minus sign, which is only an intermediate 329 

process and does not impact the topological characterization (right panel, compared with the right panel in 330 

Fig. S7c). 331 



 332 

Fig. S9| a and b, degeneracies in the synthetic 2D parameter space corresponding to b=-0.0299 and b=-333 

0.0599, respectively. a1-a4 and b1-b4, Their corresponding dispersion diagrams with both real and imaginary 334 

parts of eigenvalues on different yellow lines in panels a and b.  335 
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