Unconventional bulk-Fermi-arc links paired third-order exceptional
points splitting from a defective triple point
Jing Hu ^{1,2,*} Ruo-Yang Zhang ² , Mudi Wang ² , Dongyang Wang ³ , Shaojie Ma ⁴ , Jian Huang ¹ , Linjun Wang ¹ ,
Xiaoping Ouyang ⁵ , Yifei Zhu ⁶ , Hongwei Jia ^{2,7,†} , C. T. Chan ^{2,‡}
¹ School of Materials Science and Engineering, Shanghai University, Shanghai, China.
² Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
³ Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, United Kingdom.
⁴ Department of Optical Science and Engineering, School of Information Science and Technology, Fudan
University, Shanghai, China.
⁵ Northwest Institute of Nuclear Technology, Xi'an, China
⁶ Department of Mathematics, Southern University of Science and Technology, Shenzhen, China.
⁷ Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University,
Shanghai, China.
* <u>huj@shu.edu.cn</u> ;
Abstract: Exceptional degeneracies, unique to open systems, are important in non-Hermitian topology.
While bulk-Fermi-arcs connecting second-order exceptional points (EP2s) have been observed, the existence
of bulk-Fermi-arcs linking higher-order exceptional points remains unexplored. Here, we introduce an
unconventional bulk-Fermi-arc in systems with parity-time and pseudo-Hermitian symmetries, which links
paired third-order exceptional points (EP3s), where three eigenvalues share identical real parts but distinct
imaginary parts. We realize these systems using topological circuits and experimentally demonstrate this
unconventional bulk-Fermi-arc. A winding number defined from resultant vector shows that the bulk-Fermi-
arc is stabilized by the exchange of Riemannian sheets. Furthermore, analysis via eigenframe deformation

and rotation reveals that the EP3 pair is topologically nontrivial and equivalent to a single defective triple
 point. The EP3s can split from the triple point by varying system parameters, with this splitting protected by
 topological equivalence. This finding offers insights into non-Hermitian topology with potential applications
 in wave engineering.

27 Introduction

The band degeneracies have been extensively recognized as topological defects in parameter space ¹⁻²⁰. 28 A very typical example of such defects in the three-dimensional (3D) Hermitian setting is the Weyl point ¹⁻ 29 ⁷. Its topological invariant, generally obtained by integrating Berry curvature on a closed surface enclosing 30 the Weyl point, is a crucial measure for predicting Fermi arc surface states at system boundaries ¹⁻⁶. Recently, 31 32 non-Hermitian physics has attracted growing interest as it addresses the ubiquitous open systems that 33 exchange energy with the surrounding environment. The energy exchange is represented by the imaginary parts of the complex eigenvalues, which significantly expands the classes of topological phases of matter 10-34 ²³. The exceptional point (EP) is a unique feature of non-Hermiticity, featuring the coalescence of both 35 eigenvalues and eigenstates. In two dimensional (2D) systems, a pair of EPs of order two (EP2) can be 36 37 obtained by splitting a topologically nontrivial Dirac point by introducing non-Hermitian perturbations. Due 38 to the eigenvalue braiding around each EP, the EPs generally carry half-quantized topological invariants, known as energy vorticity, resulting in a stable bulk-Fermi-arc (BFA) linking the pair of EP2s ¹¹⁻¹³. This is 39 40 fundamentally distinct from the commonly observed Fermi-arc surface states that arise from the 2D projection of Weyl points in 3D Hermitian systems ^{1,3-6}, while the BFA resides in the bulk dispersion of a 2D 41 system supporting the EP pairs ¹¹⁻¹³. So far, the BFA is widely recognized as a stable link of EP2s. However, 42 43 other forms of BFAs, which link higher-order EPs, remain unexplored.

44 In this study, we unveil an unconventional BFA linking paired exceptional points of order three (EP3),

45	which can widely exist in 2D non-Hermitian systems with parity-time (PT) symmetry and an additional
46	pseudo-Hermitian symmetry. High-order exceptional points, unlike second-order ones, are multifold
47	degeneracies where three or more eigenvalues and their eigenstates coalesce ²¹⁻²⁴ . These points, common in
48	non-Hermitian systems, enable unique applications such as enhanced sensitivity and the realization of exotic
49	topological structures, making them useful for advancing sensing technologies and exploring novel physical
50	phenomena ^{25,26} . In 2D systems with multiple eigenstates, the EP3s can exist in the form of cusps that are
51	located entirely on exceptional lines (EL) under the protection of <i>PT</i> symmetry ^{20-22,27} . Here we reveal that
52	by imposing an additional pseudo-Hermitian symmetry, EP3s can emerge in pairs. Unexpectedly, these
53	paired EP3s are stably connected by an unconventional form of BFA, on which the three eigenvalues possess
54	identical real parts but disparate imaginary parts, significantly distinguished from the conventional form. By
55	defining winding numbers using a resultant vector ²² , we find that the paired EP3s possess opposite winding
56	numbers, indicating inverse exchanging processes of Riemannian sheets around the two EP3s, which
57	stabilizes the unconventional BFA. The two EP3s linked by the BFA originate from the splitting of an
58	accidental three-fold degeneracy that holds two linearly independent eigenstates (dubbed a defective triple
59	point, DTP), which is also distinguished from the conventional case. It is known that paired EP2s stably
60	linked by a BFA carry nontrivial eigenvector topology ^{11,12} . However, prior topological characterization for
61	high-order EPs that utilizes the resultants, which primarily focuses on the eigenvalues ^{21,22} , cannot reveal the
62	topological nontriviality of eigenvectors of the EP3 pair. To address this limitation, we incorporate the
63	eigenvectors and employ the notion of eigenframe deformation and rotation, which aligns with the
64	intersection homotopy ^{28,29} , to characterize the topology of such singularities that are located entirely on ELs.
65	The paired EP3s, which possess opposite winding numbers of resultant vectors and are connected by the
66	BFA, are shown to have a nontrivial topology identical to that of the DTP. Therefore, the splitting of the

67 EP3s from the DTP is topologically protected. Finally, by realizing such systems with nonreciprocal circuits,

68 the new form of BFA is experimentally demonstrated.

69 **Results and Discussion**

We start with a direct comparison between the two forms of BFAs. As shown in Fig. 1a, a 2D Hermitian system with *PT* symmetry generally displays Dirac point degeneracies as linear crossings of two bands. By introducing non-Hermitian perturbations with specific symmetries, the Dirac point is split into a pair of EP2s (see Fig. 1b), which are stably connected by the conventional BFA with two eigenvalues sharing identical real parts but different imaginary parts ¹¹⁻¹³. The unconventional BFA we study is inherently different. We consider the following 2D non-Hermitian Hamiltonian with three eigenstates,

76
$$H = \begin{bmatrix} -g(f_x, f_y) - f_x + 1 & -g(f_x, f_y) & -f_x \\ g(f_x, f_y) & g(f_x, f_y) + f_y & -f_y \\ f_x & -f_y & f_x + f_y \end{bmatrix}$$
(1)

77where f_x and f_y are real and constitute the 2D parameter space. This non-Hermitian Hamiltonian is chosen to manifest both PT symmetry and an additional η -pseudo-Hermitian symmetry 30,31 ($\eta H \eta^{-1} = H^{\dagger}$, η takes the 78form of Minkowski metric η =diag(-1,1,1)³²). The specific function $g(f_x, f_y) = 0.343 - f_x + b$ is chosen because 79 80 it exhibits an accidental three-fold degeneracy at b=0, as shown in Fig. 1c. This degeneracy is defective and 81 has two linearly independent eigenstates, which we therefore refer to as a defective triple point (DTP). By 82 introducing perturbations while preserving the symmetries (simply by tuning b), this DTP can split into a 83 pair of EP3s lying on the cusps of ELs. The EP3s are stably connected by a special type of BFA, which resides in the broken phase region, as displayed in Fig. 1d. We note that the three eigenvalues on the BFA 84 85 have identical real parts, while their imaginary parts are different. The DTP should be distinguished from the 86 EP3, despite that they are both defective three-fold degeneracies, due to the fact that the EP3 only has one 87 eigenstate.

88	To experimentally observe the unconventional BFA, we employ a nonreciprocal electric circuit that
89	incorporates three nodes (labeled A, B, and C in Fig. 2a) to emulate the hoppings in a three-state non-
90	Hermitian model. The tight-binding hopping parameters are utilized to construct a synthetic 2D parameter
91	space. The electric circuit platform ³³⁻³⁷ offers significant advantages over others in implementing and
92	precisely controlling complex nonreciprocal hoppings, thanks to the diverse range of readily available active
93	circuit elements. Nonreciprocity in electric circuits refers to the direction-dependent transfer of signals or
94	energy between two nodes, enabling functionalities such as directional amplification and robust
95	unidirectional transport. This is often achieved using a negative impedance converter with current inversion
96	(INIC), an active circuit element that breaks reciprocity by introducing asymmetric hopping parameters ^{34,37} .
97	The PT symmetry inherent to the non-Hermitian system ensures that these asymmetric hopping parameters
98	are real and can be implemented using conductance or inductance combined with the INIC ³⁵ . The structure
99	of the circuit elements and their corresponding hopping parameters are shown in the left panel of Fig. 2a .
100	Specifically, an INIC in series with a capacitor, denoted as $\pm C_i$ (see right panel of Fig. 2a), is employed to
101	achieve the nonreciprocal hoppings depicted. In this setup, the circuit's admittance matrix J and its
102	eigenvalues, labeled j , are analogous to the Hamiltonian matrix and energy spectra, respectively ^{33,34,36} . In
103	the experiment, we applied current inputs to each of the three nodes and measured the resulting voltage
104	responses. From these measurements, we constructed the matrix-form Green's function, whose inverse
105	yields the circuit Laplacian, enabling the analysis of its eigenvalue and eigenstate spectra. Further details on
106	the experimental implementation and measurements can be found in Methods.
107	We first observe the unperturbed case ($b=0$) where the DTP is present on the 2D plane of dispersion

108 diagram. From left panel of Fig. 2b, we see that four ELs (orange lines) emerge from the DTP (red star),

109 three with $f_y > 0.121$ and one with $f_y < 0.121$, and we measured the admittance bands marked by the three

110 dashed lines ($f_{y}=0.3, 0.121$ and 0.01), which are shown in the right panel of Fig. 2b. It can be identified that 111 three of the ELs are formed by the degeneracies of the 2nd and the 3rd bands ($f_{\nu}=0.3$ and 0.01, right panel), 112 while the other is formed by the 1st and the 2nd bands ($f_v=0.3$, right panel). The DTP therefore serves as the 113 aggregation node of all the ELs. By introducing the perturbations (b=0.0299), the DTP is split into two EP3s 114lying on the cusps of ELs (see the left panel of Fig. 2c). We see that each of the EP3s are connected by two 115 ELs, and one EL is formed by the degeneracy of the 1st and the 2nd bands, while the other is formed by the degeneracy of the 2nd and the 3rd bands (see the right panel of Fig. 2c). The unconventional BFA (blue line 116 117 in Fig. 2c), on which the real parts of all three eigenvalues coalesce, can be clearly indicated by the 118 experimental results in the right panel of Fig. 2c. By further increasing the perturbations (b=0.0569), the 119 separation between the paired EP3s in parameter space becomes larger. However, the BFA is stable against 120 this perturbation, which still stably links the two EP3s, as shown in the left panel of Fig. 2d. Additionally, 121 from the right panel of Fig. 2d, we observe that the dispersive nature on the BFA that the real parts of all 122 three eigenvalues coalesce remains intact regardless of increasing the perturbation in the Hamiltonian. This 123 experimental result demonstrates the stability of the BFA, which comes from the topological nontriviality of 124 the paired EP3s.

Now we delve into the topological aspects of the stability of the unconventional BFA. As we have claimed, the assembling of the paired EP3s is topologically nontrivial. This point of view compliments the conventional understanding where the winding number of cusps of ELs are defined with the resultant vector 21,22 ,

129
$$W = \frac{1}{2\pi} \sum_{\alpha = x, y} \iint_{I_{\lambda}} \frac{(R_1 \partial R_2 / \partial f_{\alpha} - R_2 \partial R_1 / \partial f_{\alpha}) df_{\alpha}}{|R_2^2 + R_1^2|}$$
(2)

and the integration results for the two EP3s are $W=\pm 1$. Here l_{λ} denotes a closed loop enclosing a single EP3, e.g., L_1 or L_2 , as displayed in the lower panel of Fig. 3a. R_1 and R_2 denote the components of the resultant

132	vector field. Details on obtaining the resultant vector and deriving Eq. (2) are shown in Supplementary Note
133	2. The opposite windings arise from the fact that the eigenvalues undergo converse exchanges of Riemannian
134	sheets around the two EP3s. As can be observed in Fig. 3b and 3c (theoretical: solid lines, experimental:
135	symbols), along loops L_1 and L_2 , the eigenvalues j_2 and j_3 are initially coincident because the starting point
136	(SP) of loop L_1 is selected to be on the EL formed by j_2 and j_3 (see stars in the lower panel of Fig. 3a). As the
137	tracking point on L_1 departs from the EL, the degeneracy point of j_2 and j_3 bifurcates. j_2 will then coalesce
138	with j_1 as the tracking point approaches the other EL along L_1 . From this point, j_1 and j_2 form a common
139	Riemannian sheet in their real part dispersions because they become conjugated. Finally, when the
140	eigenvalues continue to evolve with the moving of the tracking point along L_1 , the three eigenvalues
141	exchange their order $j_1 j_2 \leftrightarrow j_3$ (indicated by the vertical dashed lines), which indicates the exchange of two
142	Riemannian sheets - one shared by $\operatorname{Re}(j_1)$ and $\operatorname{Re}(j_2)$, and the other by j_3 . The eigenvalues on loop L_2 simply
143	experience the reverted order exchange process. As shown in Fig. 3c, j_1 and j_2 , initially coalesce at SP,
144	bifurcate as the tracking point departs from the EL. Next, j_2 coalesces, bifurcates, and finally coalesces again
145	with j_3 , through which they swap with j_1 ($j_1 \leftrightarrow j_2 j_3$, indicated by the dashed lines). The BFA is stable because
146	it arises from the intersection of the two Riemannian sheets, an inevitable consequence when these sheets
147	exchange orders (indicated by the nonzero winding W) as they evolve around the EP3s.

We expect that the assembling of paired EPs linked by the BFA should carry nontrivial topology ^{11,12}. However, applying Eq. (2) on a closed loop encircling both EP3s (on loop L_3) yields a trivial result (W=0) because the order exchange of eigenvalues cancels out on L_3 . This is clearly indicated by the vertical dashed lines in Fig. 3d, showing the evolution of eigenvalues along the loop. Therefore, considering only the eigenvalues is insufficient to demonstrate the topological nontriviality of the paired EP3s. In topological band theories, additional topological characteristics are encoded in the evolution of eigenstates, such as the Berry phase ³⁵ and the homotopical invariants ⁸. However, such approaches may not be applicable here due to the presence of ELs on the loops. We therefore employ an intuitively meaningful approach that utilizes the notion of intersection homotopy ^{20,21,28,29} to characterize the topology of such non-isolated singularities. The symmetry of system (*PT* and pseudo-Hermitian) reveals that the eigenstates obey the Minkowski-type orthogonal relation

159
$$\varphi_i^T \eta \varphi_j \begin{cases} = 0 & i \neq j \\ \neq 0 & i = j \end{cases}$$
(3)

160 which further determines that the eigenframe evolves in the form of deformation and rotation when the 161 Hamiltonian changes in parameter space. Here we employ the eigenframe approach to implement topological 162 characterization because the eigenframe deformation allows the eigenstates to be parallel within the evolution process, and thus intersecting ELs by the loop (i.e. L_3 in Fig. 3a) is allowed. Additionally, the 163 topological characterization result with eigenframe does not depend on how the conjugate eigenstates are 164 165ordered in broken phase sectors (see details in Supplementary Note 3.3). This approach therefore effectively addresses the gap closing on the ELs where the loops intersect 20 . The evolution process along L_3 is provided 166 167 in Fig. 3e and 3f, corresponding to the real and imaginary parts of eigenstates, respectively. The eigenframe 168 deformation process is obvious because the right eigenstates are not always orthogonal to each other, and 169 sometimes they become parallel or antiparallel when the tracking point approaches ELs, resulting from the 170Minkowski-type orthogonal relationship (see Supplementary Fig. S6). After a cycle of evolution along L_3 , 171the eigenstates φ_1 and φ_3 evolve to their antipodal points (indicated by the red and black dashed lines) but φ_2 evolves to the initial state without changing the sign $(\varphi_1 \rightarrow -\varphi_1, \varphi_2 \rightarrow \varphi_2 \text{ and } \varphi_3 \rightarrow -\varphi_3)$, which 172is protected by the PT symmetry. This indicates that both φ_1 and φ_3 experience quantized accumulated 173angle π (see the lower panel of Fig. 3e) to their initial states $\theta = \arccos(\varphi^T \cdot \varphi_i)$ (here φ_i denotes the 174175initial state). The imaginary parts of eigenstates serve as an intermediate process because the initial and final 176 states (and the accumulated angle) are real (see Fig. 3f). Notably, the accumulated angles of the eigenstates 177are not quantized along L_1 and L_2 , because eigenstates exchange orders within the evolution process (see Fig. 1783b and 3c). By tuning the system parameters, the two EP3s can merge into a DTP, with the eigenframe evolution on a closed loop encircling the DTP being identical to that in Fig. 3e and 3f (results provided in 179 180 Supplementary Fig. S7 to avoid redundancy). This demonstrates that the EP3 pair is topological equivalent 181 to the DTP from an eigenframe rotation/deformation perspective. Therefore, the merging of the paired EP3s 182 into a single DTP is a consequence of topological conservation. Additionally, due to this topological 183 nontriviality, the DTP cannot be totally eliminated, but will be split into an intersection of ELs and an isolated 184 Dirac point by varying b from 0 to negative.

185 Conclusion

186 In summary, we unveil an unconventional BFA that stably connects paired EP3s located at the cusps of 187 ELs in non-Hermitian systems with PT symmetry and an additional pseudo-Hermitian symmetry. The winding numbers of the EP3s can be defined with the resultant vectors, and the assembling of EP3s carrying 188 189 opposite windings of resultant vectors is topologically nontrivial and can coalesce into a DTP under 190 symmetry-preserving parameter changes. This perspective complements the conventional topological 191 understandings of cusps ELs based on resultant vectors ^{21,22}. The topological nontriviality of the EP3 pair 192 (or the DPT) is characterized through the eigenframe deformation and rotation process. Our topological 193 characterization transcends the traditional theories that only consider the evolution of eigenvalues, offering 194 a more holistic theoretical understanding for a generic non-Hermitian singularities. Moreover, by 195implementing the system in a nonreciprocal circuit, we experimentally demonstrate the BFA. The study 196 extends the notion of BFA from EP2s to higher order EP3s. It is thus a direct motivation for exploring other 197 forms of BFA linking even higher order EP pairs (e.g., EP4s) that are protected by symmetries in parameter

space. Future work may focus on realizing the BFA in periodic systems, offering platforms to explore the finite-size effects associated with it. Our discovery also opens new avenues for wave manipulation and precise control in non-Hermitian systems. The topological robustness of these bulk-Fermi-arcs serves as a basis for designing advanced devices tailored for energy transport, high-sensitivity sensing, and sophisticated signal processing. These results lay a solid foundation for innovative applications in wave engineering and next-generation photonic technologies.

204 Methods

205 In our circuit design, a Negative Impedance Converter through Current Inversion (INIC) is 206 implemented, using two equal resisters R_a in both the positive and negative feedback paths (Fig. 2b), enabling 207 precise emulation of nonreciprocal hoppings. The output current Iout is opposite to the input current Iin, 208 making the capacitance behave as C_i when observed from the output node, while as $-C_i$ when observed 209 from the input node. The designed circuit sample includes three nodes (labeled A, B and C in Fig. 2a) that 210 simulate the nonreciprocal hoppings in the three-state non-Hermitian model [Eq. (1)]. The circuit obeys 211 Kirchhoff's law, expressed as I = JV, where I is the input current vector, V represents the node voltages, and 212 J is the admittance matrix. In the grounded configuration, the system is described by:

$$J = D + W - C, \tag{4}$$

where D is the conductance matrix, W is the ground matrix, and C is the adjacency matrix. For our circuit sample in Fig. 2a, the three matrixes can be respectively expressed as:

216
$$D = \operatorname{diag}(-i\omega C_1 - i\omega C_x, i\omega C_1 + i\omega C_y, i\omega C_x + i\omega C_y), \qquad (5)$$

217
$$W = \operatorname{diag}(i\omega C_{ga} + 1/R_{ga}, i\omega C_{gb} + 1/R_{gb}, i\omega C_{gc} + 1/R_{gc}), \qquad (6)$$

218
$$C = i\omega \begin{bmatrix} 0 & C_1 & C_x \\ -C_1 & 0 & C_y \\ -C_x & C_y & 0 \end{bmatrix}.$$
 (7)

219 In our design, we set the grounded capacitance and resistance respectively as

220
$$C_{gb} = C_{gc} = C_0, C_{ga} = C_0 + c, R_{ga} = R_{gb} = R_{gc} = R_0,$$
(8)

and the hopping capacitance as:

222
$$C_1 = g(f_x, f_y)c, \ C_x = f_x c, \ C_y = f_y c,$$
 (9)

where $C_0=1$ nF, $R_0=1$ M Ω and c=10nF. By inserting Eqs. (5-9) into Eq. (4), The admittance matrix yields:

224
$$J = (i\omega C_0 + 1/R_0) + i\omega c \begin{bmatrix} -g(f_x, f_y) - f_x + 1 & -g(f_x, f_y) & -f_x \\ g(f_x, f_y) & g(f_x, f_y) + f_y & -f_y \\ f_x & -f_y & f_x + f_y \end{bmatrix}.$$
 (10)

Here, we can confirm that the second term realizes the three-state non-Hermitian matrix *H* in Eq.(1). Since the driving frequency is an external parameter (1kHz in experiments), $\omega = 2\pi f$ is also constant. The first term is also unchanged, causing only a complex shift in the eigenvalues without affecting the eigenstates. As a result, the parameters can be precisely adjusted by modifying the corresponding capacitances in Eq.(9) as needed.

The experimental setup, including the circuit samples, is shown in Supplementary Fig. S1. we use surface-mounted device (SMD) capacitors, resistors, and operational amplifiers (OpAmps, model ADA4625-1ARDZ-R7) on a printed circuit board (PCB). Capacitors are connected in parallel between adjacent nodes, with toggle switches allowing flexible selection of capacitance values.

In experimental operation, the OpAmps are powered by two DC power supply (RS PRO Bench Power Supply, $0 \rightarrow 30V$, $0 \rightarrow 5A$) with dual voltages of +5V and -5V. A waveform generator (Keysight: M3201A) drives sinusoidal voltage (1V - 2V at 1kHz) applied to each node, with the voltage response measured via an oscilloscope (RS PRO IDS1074B). Input current is determined by a shunt resistor (4.21 k Ω) connected from the input node to the voltage source. Analyzing the voltage response to the input current yields the admittance matrix *J*, which contributes to the admittance eigenvalues and eigenstates, facilitating

- 240 observation of the bulk-Fermi-arc.
- 241
- 242 Acknowledgements: This work is supported by National Key R&D Program of China (No.
- 243 2023YFA1608703) and Hong Kong RGC grants (No. AoE/P-502/20 and 16307821).
- Author contributions: H.Jia. and C.T.Chan. planned the project. J.Hu. and H.Jia. designed the sample. J.Hu.
- carried out the measurements with the help of M.Wang. and D.Wang.. J.Hu. and H.Jia. analyzed the data.
- 246 R.Y.Zhang. and H.Jia. constructed the theoretical framework. J.Hu., H.Jia. and C.T.Chan. wrote the
- 247 manuscript. J.Hu., R.Y.Zhang., S.Ma., J.Huang., L.Wang., X.Ouyang., Y.Zhu., H.Jia. and C.T.Chan.
- contributed to the discussion.
- 249 Competing interests: All authors declare no competing interesting.
- 250 Additional Information:
- 251 Supplementary Information is available for this paper.
- 252 Correspondence and requests for materials should be addressed to: <u>huj@shu.edu.cn;</u>
- 253 jiahongwei@tongji.edu.cn; phchan@ust.hk
- 254 Reprints and permissions information is available at www.nature.com/reprints.
- 255 Data availability: All data are available in the main text and the supplementary information.
- 256 Code availability: The code is available from the corresponding author on reasonable request.

258

259 Fig. 1| Comparison between the conventional BFA and the unconventional BFA. a, Dispersion diagram near the 2D Dirac 260 point (DP), obtained with the PT symmetric Hermitian Hamiltonian $H = f_x \sigma_1 + f_y \sigma_3$. Re(ω) denotes real part of eigenvalues 261 as a function of f_x and f_y for the two eigenvalues in orange and blue, respectively. **b**, Paired second order exceptional points 262 (EP2, red dots) obtained from splitting the DP by introducing gain and loss term $qi\sigma_3$ to the Dirac Hamiltonian (σ_{1-3} denote 263 Pauli matrices), where q is the perturbation term. The paired EP2s are stably connected by the conventional bulk-Fermi-arc 264 (BFA). The eigenvalues on the conventional BFA are conjugate to each other (real parts coalescence). c, Dispersion diagram 265 near the defective triple point (DTP) on the 2D parameter space. The red lines denote ELs, and the DTP is embedded on the 266 ELs. The three real eigenvalues are marked in orange, blue and green, respectively. d, Paired EP3s obtained from splitting the 267 DTP by introducing perturbations with symmetries preserved. EP3s are both cusps of ELs, which are stably connected by the 268 unconventional BFA residing in the broken phase domain. The three eigenvalues on the unconventional BFA share identical 269 real parts and have different imaginary parts. Two of the three eigenvalues on the unconventional BFA are conjugate to each 270 other, while the other eigenvalue is real.

273Fig. 2| Experimental observation of the unconventional BFA with topological circuit. a, implementation of the 274Hamiltonian. Left panel: The system includes three nodes A, B and C. The hoppings between A and B, and between A and C 275 are nonreciprocal hoppings, implemented using an impedance converter with current inversion (INIC) circuit in series with 276 capacitors (C_1, C_x) . The hopping between **B** and **C** is reciprocal, realized with a pure capacitor (C_y) . The hoppings between **A** 277and C and between B and C implement synthetic dimensions f_x and f_y , and the hopping between A and B is a linear function 278 of f_x and f_y , $g(f_x,f_y)=0.343-f_x+b$. Here, b in the linear function denotes the perturbation term. R_{ag} , R_{bg} and R_{cg} are all grounded 279 resistors; Cag, Cbg and Ccg are all grounded capacitors. Right panel: INIC structure, with two equal resisters Ra in both the 280 positive and negative feedback paths, and capacitor C_i in series. **b-d**, Experimental measurements of admittance eigenvalues

281	for the cut planes with perturbation term $b=0$ (b), $b=0.0299$ (c) and $b=0.0569$ (d), respectively. Left panels: Degeneracies in
282	the synthetic 2D parameter space on these cut planes. The ELs, DTP and BFAs are denoted by the orange lines, red star, and
283	blue line, respectively. The experimentally identified degeneracies are marked with solid dots. Dashed lines in different color
284	correspond to the measured lines ($f_y = t$) on the right panels. Right panels: Real parts of the dispersion of eigenvalues as a
285	function of f_x for different f_y lines ($f_y = t$) on the corresponding cut planes. The eigenvalues are ordered in exact phases from
286	small to large. The experimentally measured admittance eigenvalues are marked in circles, and all the degeneracies (EL, DTP,
287	EP3 and BFA) are indicated by arrows. The experimental error bars are provided in Supplementary Note 1. The unconventional
288	BFA can be found to stably connect the paired EP3s. Increasing the perturbation simply enlarges the interspace between the
289	two EP3s, but cannot eliminate the BFA, demonstrating the stability of the BFA. Experimental raw data for plotting (b-d) is
290	provided in the Supplementary Data.

292

293 Fig. 3| Topological understanding of the unconventional BFA and the paired EP3s. a. Two closed loops encircling each 294of the paired EP3s (purple loop L_1 , and blue loop L_2), and another loop encircling both (green loop L_3). The eigenvalues on the 295 loops are shown in the upper panel, and the structures of the loops in the 2D parameter space are shown in the lower panel. b 296 and c. The eigenvalue evolution processes along $L_1(\mathbf{b})$ and $L_2(\mathbf{c})$, respectively. The eigenvalues j_1 and j_2 and j_3 are colored in 297 yellow, blue and green, respectively. The order exchange processes are inverse along L_1 and L_2 . For L_1 , j_1 and j_2 coalesce and 298 swap with j_3 ($j_{1,2}\leftrightarrow j_3$), while for L_2 , j_2 and j_3 coalesce and swap with j_1 ($j_1\leftrightarrow j_2$,3). **d.** The eigenvalue evolution processes along 299 L_3 . The eigenvalues do not experience order exchange along L_3 . The solid lines and rhombus symbols in panels b, c and d 300 correspond to theoretical and experimental results, respectively. e and f. Demonstration of the nontrivial topology of the paired 301 EP3s with the evolution process of eigenframe along L_3 , corresponding to the real and imaginary parts of eigenstates,

302	respectively. The eigenstates φ_1 and φ_2 and φ_3 are also colored in yellow, blue and green, respectively. The lower panels show
303	the corresponding accumulated angles to the initial states. We see that the imaginary parts of eigenstates serve as intermediate
304	process. Eigenstates φ_1 and φ_3 accumulate nontrivial quantized angle π , and thus their final states are on the antipodal points
305	to the initial states. The accumulated angle for φ_2 is zero. The experimental raw data for plotting the symbols in (b-d) is
306	provided in the Supplementary Data.

308 References:

309	1.	Wan, X., Turner, A. M., Vishwanath, A., et al. Topological semimetal and Fermi-arc surface
310		states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
311	2.	Lu, L., Wang, Z., Ye, D., et al. Experimental observation of Weyl points. Science 349, 622-624
312		(2015).
313	3.	Noh, J., Huang, S., Leykam, D., et al. Experimental observation of optical Weyl points and Fermi
314		arc-like surface states. Nat. Phys. 13, 611-617 (2017).
315	4.	He, H., Qiu, C., Cai, X., et al. Observation of quadratic Weyl points and double-helicoid arcs. Nat.
316		Commun. 11, 1820 (2020).
317	5.	Wang, Q., Xiao, M., Liu, H., et al. Optical interface states protected by synthetic Weyl points.
318		<i>Phys. Rev. X</i> 7, 031032 (2017).
319	6.	Yang, B., Guo, Q., Tremain, B., et al. Ideal Weyl points and helicoid surface states in artificial
320		photonic crystal structures. Science 359, 1013–1016 (2018).
321	7.	Lu, L., Fu, L., Joannopoulos, J. D., et al. Weyl points and line nodes in gyroid photonic crystals.
322		Nat. Photon. 7, 294–299 (2013).
323	8.	Wu, Q. S., Soluyanov, A. A. & Bzdušek, T. Non-Abelian band topology in noninteracting metals.
324		Science 365 , 1273–1277 (2019).
325	9.	Bzdušek, T., Wu, Q. S., Rüegg, A., et al. Nodal-chain metals. Nature 538, 75–78 (2016).
326	10.	Miri, M. A. & Alù, A. Exceptional points in optics and photonics. <i>Science</i> 363 , eaar7709 (2019).
327	11.	Kawabata, K., Bessho, T. & Sato, M. Classification of exceptional points and non-Hermitian
328		topological semimetals. Phys. Rev. Lett. 123, 066405 (2019).
329	12.	Zhou, H., Peng, C., Yoon, Y., et al. Observation of bulk Fermi arc and polarization half charge
330		from paired exceptional points. Science 359, 1009–1012 (2018).
331	13.	Kozii, V. & Fu, L. Non-Hermitian topological theory of finite-lifetime quasiparticles: Prediction
332		of bulk Fermi arc due to exceptional point. Phys. Rev. B 109, 235139 (2024).
333	14.	Wang, C., Sweeney, W. R., Stone, A. D., et al. Coherent perfect absorption at an exceptional
334		point. Science 373 , 1261–1265 (2021).
335	15.	Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev.
336		<i>Phys.</i> 4 , 745–760 (2022).

- 337 16. Doppler, J., Mailybaev, A. A., Böhm, J., et al. Dynamically encircling an exceptional point for
 338 asymmetric mode switching. *Nature* 537, 76–79 (2016).
- 339 17. Özdemir, Ş. K., Rotter, S., Nori, F., et al. Parity–time symmetry and exceptional points in
 340 photonics. *Nat. Mater.* 18, 783–798 (2019).
- 18. Hodaei, H., Hassan, A. U., Wittek, S., et al. Enhanced sensitivity at higher-order exceptional
 points. *Nature* 548, 187–191 (2017).
- 343
 19. Jia, H., Zhang, R. Y., Hu, J., et al. Topological classification for intersection singularities of
 344
 acceptional surfaces in pseudo-Hermitian systems. *Commun. Phys.* 6, 293 (2023).
- 20. Hu, J., Zhang, R. Y., Wang, Y., et al. Non-Hermitian swallowtail catastrophe revealing transitions
 among diverse topological singularities. *Nat. Phys.* **19**, 1098–1103 (2023).
- 347 21. Tang, W., Ding, K. & Ma, G. Realization and topological properties of third-order exceptional
 348 lines embedded in exceptional surfaces. *Nat. Commun.* 14, 6660 (2023).
- Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-protected multifold exceptional points and
 their topological characterization. *Phys. Rev. Lett.* **127**, 186602 (2021).
- 351 23. Mandal, I. & Bergholtz, E. J. Symmetry and higher-order exceptional points. *Phys. Rev. Lett.* 127,
 352 186601 (2021).
- 353 24. Montag, A. & Kunst, F. K. Symmetry-induced higher-order exceptional points in two dimensions.
 354 *Phys. Rev. Res.* 6, 023205 (2024).
- 355 25. Hodaei, H., Hassan, A. U., Wittek, S. et al. Enhanced sensitivity at higher-order exceptional
 356 points. *Nature* 548, 187–191 (2017).
- Wang, K., Xiao, L., Lin, H. et al. Experimental simulation of symmetry-protected higher-order
 exceptional points with single photons. *Sci. Adv.* 9, eadi0732 (2023).
- 359 27. Mandal, I. & Bergholtz, E. J. Symmetry and higher-order exceptional points. *Phys. Rev. Lett.* 127,
 360 186601 (2021).
- 361 28. Kirwan, F. & Woolf, J. An introduction to intersection homology theory (CRC Press, 2006).
- 362 29. Gajer, P. *The intersection Dold-Thom theorem* (State University of New York at Stony Brook,
 363 1993).
- 364 30. Mostafazadeh, A. Pseudo-Hermitian representation of quantum mechanics. *Int. J. Geom. Methods* 365 *M.* 7, 1191–1306 (2010).

- 366 31. Mostafazadeh, A. & Batal, A. Physical aspects of pseudo-Hermitian and PT-symmetric quantum
 367 mechanics. J. Phys. A 37, 11645 (2004).
- 368 32. Freedman, D. Z. & Van Proeyen, A. *Supergravity* (Cambridge University Press, 2012).
- 369 33. Imhof, S., Berger, C., Bayer, F., et al. Topolectrical-circuit realization of topological corner
 370 modes. *Nat. Phys.* 14, 925–929 (2018).
- 34. Helbig, T., Hofmann, T., Imhof, S., et al. Generalized bulk–boundary correspondence in nonHermitian topolectrical circuits. *Nat. Phys.* 16, 747–750 (2020).
- 373 35. Stegmaier, A., Imhof, S., Helbig, T., Hofmann, T., Lee, C. H., Kremer, M., ... & Thomale, R.
 374 (2021). Topological defect engineering and PT symmetry in non-Hermitian electrical circuits.
 375 Physical Review Letters, 126(21), 215302.
- 36. Lee, C. H., Imhof, S., Berger, C., Bayer, F., Brehm, J., Molenkamp, L. W., ... & Thomale, R.
 (2018). Topolectrical circuits. Communications Physics, 1(1), 39.
- 378 37. Hofmann, T., Helbig, T., Lee, C. H., Greiter, M., & Thomale, R. (2019). Chiral voltage
 379 propagation and calibration in a topolectrical Chern circuit. *Physical review letters*, *122*(24),
 380 247702.
- 38. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. *Rev. Mod. Phys.*382 82, 1959–2007 (2010).

1	Supplementary Information: Unconventional bulk-Fermi-arc links paired third-order
2	exceptional points splitting from a defective triple point
3	Jing Hu, Ruo-Yang Zhang, Mudi Wang, Dongyang Wang, Shaojie Ma, Jian Huang, Linjun Wang,
4	Xiaoping Ouyang, Yifei Zhu, Hongwei Jia*, C. T. Chan*
5	
6	Supplementary Note 1: Experimental errors and impact of EP3 sensitivity
7	In the circuit experimental setup (Fig. S1), experimental errors are inevitable and arise from various factors,
8	including measurement inaccuracies of the instruments, internal resistance of the circuits, as well as parasitic
9	capacitance and resistance. In this section, we present a detailed analysis of these experimental errors.
10	Additionally, we highlight the high sensitivity of the EP3s, which makes them particularly susceptible to

11 such errors, and provide a discussion of their impact on the experimental results.

12 We begin by presenting the data on the experimental errors. Figures S2 and S3 correspond to the data 13 in Fig. 2b-d and Fig. 3b1, b2, c1 in the main text, respectively. The deviations between the experimental and 14 theoretical results are illustrated with error bars. The analysis shows that for most parameter values, the 15errors are relatively small. However, at degeneracies, such as EL, EP3, and DPT, the errors become larger. 16 Notably, even at the BFA, which is not a degeneracy, the error is larger compared to non-degenerate 17parameters. The maximum errors for each type of point are summarized in Table S1. Among these, the error 18 at EP3 is the largest. This can be attributed to the fact that EP3 represents a third-order degeneracy and 19 exhibits high sensitivity to parameter variations and system symmetries.

In the experiments, it is challenging to precisely set the selected parameter (capacitance value) to the theoretical EP3, and maintaining exact symmetries is hindered by the parasitic capacitance and resistance of the circuit elements. To identify the most experimentally approximated EP3, measurements were taken at points near the theoretical EP3. For instance, in Fig2.b2 for $f_y=0.246$, the theoretical EP3 is located at $f_x=0.12702175$, To approximate this, measurements were conducted at the close parameters $f_x=0.126$, $f_x=0.1265$, $f_x=0.127$ with the resulting admittance eigenvalues compared. The real parts of the experimental eigenvalues are indicated with green arrows in Fig. S5, which shows the experimental error is smallest and the closest approximation to the EP3 occurs at $f_x=0.126$. Despite the small difference of 0.0005 among the three experimental parameters, the results vary obviously due to the high sensitivity of the EP3.

29

30 Supplementary Note 2: Defining the winding number of the EP3 with resultant vector

Now we review the derivation process ³ of the form Eq. (2) in the main text using the resultant. Such a 31 32 method only considers the evolution of eigenvalues in a loop but does not consider the eigenstates behavior, and hence does not capture the topological information encoded in the eigenstates ⁴. However, such an 33 34 approach is still useful as it explains the stability of these high order EPs ³, despite that it cannot demonstrate the topological nontriviality of paired EP3s lying on the cusps. We use this form to define the winding 35 36 number of a single EP3, and EP3s with opposite windings can merge. Notably, this winding number cannot 37 demonstrate that the EP3 pair is topologically nontrivial, as Eq. (2) provides a trivial result W=0 integrated 38 along l_3 that encloses the EP3 pair. Similarly, by applying Eq. (2) on a closed loop enclosing the DPT, one 39 also obtains a trivial result W=0. Paired EPs connected by the BFA together generally carry nontrivial topology ^{5,6}, therefore, this winding number, which only considers the eigenvalues, is insufficient in 40 41 visualizing the topological nontriviality of the paired EP3s.

42 We start from the characteristic polynomial of the Hamiltonian

43
$$P_{f}(\omega) = \det[H(f) - \omega] = a_{n}(f)\omega^{n} + a_{n-1}(f)\omega^{n-1} + \dots + a_{1}(f)\omega + a_{0}(f)$$
(S1)

45 2D parameter space, and therefore f has two components f_x and f_y . The set $\{a_n(f), \dots, a_0(f)\}$ are functions of 46 the parameter space, and for our cases, these functions are real because the system has PT symmetry. The integer *n* shows that the Hamiltonian is an $n \times n$ matrix. At a μ th-fold degeneracy (ω_{μ} at f_{μ}), $P_{f_{\mu}}(\omega_{\mu})$ must 47 vanish. Since ω_{μ} is the μ -multiple root of $P_{f_{\mu}}(\omega)$, the successive derivatives $P_{f_{\mu}}^{(i)} = \partial^{i} P_{f_{\mu}}(\omega) / \partial \omega^{i}$ (*i*=1, 48 2, 3, ..., μ -1) must also vanish at ω_{μ} (we note that $P_{f_{\mu}}^{(0)} = P_{f_{\mu}}$). This information is encoded into the zeros 49 of the resultant. In mathematics, the resultant of two polynomials R_{P_1,P_2} is a polynomial expression of their 50 coefficients that is equal to zero if and only if the polynomials have a common root³. The resultant is obtained 51 as $R_{P_1,P_2} = \det[S_{P_1,P_2}]$, where S_{P_1,P_2} is the Sylvester matrix of P_1 and P_2 . For example, with the 52 polynomials $P_1 = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_0$ and $P_2 = b_m x^m + b_{m-1} x^{m-1} + b_{m-2} x^{m-2} + \ldots + b_0$, one can obtain their 53 54 Sylvester matrix

55

56 Since $P_{f_{\mu}}^{(i)}$ (*i*=0, 1, 2, 3, ..., μ -1) all have a common root ω_{μ} , one can obtain a set of null resultants at f_{μ}

57
$$R_{P_{f_{\mu}}^{(i-1)}, P_{f_{\mu}}^{(i)}} = 0 \text{ with } i=1, 2, 3, \dots, \mu-1$$
(S3)

This equation is actually a necessary and sufficient condition for obtaining a μ th-fold degeneracy. Since a μ th-fold degeneracy can be of different forms, for example in our considered Hamiltonians, a three-fold degeneracy can be an EP3 or a DTP. Obtaining them utilizes the same condition Eq. (S3), it is therefore unprecise to claim that Eq. (S3) is a necessary and sufficient condition for obtaining a EP3 in Ref. [3]. The set of resultants can form a vector with μ -1 components

$$R = (R_1, R_2, R_3, \dots, R_{\mu-1}) = (R_{P_{f_{\mu}}^{(0)}, P_{f_{\mu}}^{(1)}}, R_{P_{f_{\mu}}^{(1)}, P_{f_{\mu}}^{(2)}}, R_{P_{f_{\mu}}^{(2)}, P_{f_{\mu}}^{(3)}}, \dots, R_{P_{f_{\mu}}^{(\mu-2)}, P_{f_{\mu}}^{(\mu-1)}})$$
(S4)

It is obvious that the vector *R* forms a vector field in the parameter space, and is critical (*R*=**0**) at the μ th-fold degeneracy. We therefore can define a winding number for the critical point with the vector field *R*. Let us take EP3 lying on the cusp of EL as an example. The vector field has two components R_1 and R_2 because μ =3, and only has one critical point, lying on the EP3. We note that *R* is not a zero vector at EL because the R_2 component is not zero at the EL, which exclude the impact of the singular ELs in defining the winding numbers. The winding number can be defined with the normal vector of *R* [i.e., $(-R_2, R_1)$]

70
$$W = \frac{1}{2\pi} \iint_{I} \frac{-R_2 dR_1 + R_1 dR_2}{|R_2^2 + R_1^2|}$$
(S5)

71 We can insert $dR_1 = \partial R_1 / \partial f_x df_x + \partial R_1 / \partial f_y df_y$ and $dR_2 = \partial R_2 / \partial f_x df_x + \partial R_2 / \partial f_y df_y$

$$W = \frac{1}{2\pi} \iint_{l} \frac{(R_{1}\partial R_{2} / \partial f_{x} - R_{2}\partial R_{1} / \partial f_{x})df_{x} + (R_{1}\partial R_{2} / \partial f_{y} - R_{2}\partial R_{1} / \partial f_{y})df_{y}}{|R_{2}^{2} + R_{1}^{2}|}$$

$$= \frac{1}{2\pi} \sum_{\alpha = x, y} \iint_{l} \frac{(R_{1}\partial R_{2} / \partial f_{\alpha} - R_{2}\partial R_{1} / \partial f_{\alpha})df_{\alpha}}{|R_{2}^{2} + R_{1}^{2}|}$$
(S6)

73 Then Eq. (2) in the main text can be obtained.

63

74The derivation details here follow Ref. [3]. This form [i.e., Eq. (S6)] has several advantages over the 75Berry connection approach. The most important advantage is that this equation overcomes the ill-defined 76 Berry connection at ELs. We know that the Berry phase integral cannot be calculated if the closed loop 77intersects ELs. There could also be some disadvantages, for example, the vector field R cannot distinguish 78 different forms of degeneracies of the same fold, which is obvious from our systems as EP3 and DTP are 79 inherently different although they are both three-fold degeneracies. They are both critical points R=0 of the 80 vector field. This disadvantage comes from the fact that this method simply considers the evolution of 81 eigenvalues (as displayed in Fig. 3b-c in the main text) but ignores the topological information encoded in 82 the eigenstates. However, the eigenstates always encode additional topological information, which

supplements Eq. (S13) which simply provides a trivial topological characterization for a loop encircling the

EP3 pair or the DPT. We address this issue in the next section, as we obtain information from the eigenstates. 84

85 Supplementary Note 3: Characterizing the topology of a loop encircling hypersurface

singularities with eigenframe 86

87 In this section, we will show that the eigenframe evolution as parameters vary includes both deformation 88 and rotation processes, resulting from the inner product space of the eigenframe. Our considered systems have both PT symmetry (Hamiltonian H is real $H=H^*$) and an additional η -pseudo-Hermitian symmetry 89 $(\eta H \eta^{-1} = H^{\dagger})$, which means that $\eta H \eta^{-1} = H^{\dagger} = H^{T}$ (the superscript T means transpose). This relation determines 90 the evolution of the eigenframe ^{7,8}. We first look at the left and right eigenvalue problems 91

92
$$H^{T}\varphi'_{m} = \omega\varphi'_{m}, \ H\varphi_{m} = \omega\varphi_{m}$$
(S7)

93 where φ'_m and φ_m denote the left and right eigenstates respectively, corresponding to the same eigenvalue ω . The symmetries impose $\eta H \eta^{-1} \varphi'_m = \omega \varphi'_m$, meaning that 94

 $H\eta^{-1}\varphi'_m = \omega\eta^{-1}\varphi'_m$ 95 (S8)

96 This obviously indicates an important relationship between the left and the right eigenstates

 $\varphi'_m = \eta \varphi_m$ 97 (S9)

Non-Hermitian systems have a general biorthogonal relation $\varphi_m'^T \varphi_n = \delta_{mn}$ (Note that these eigenstates 98 $\varphi_m'^T$ and φ_n are associated with the same eigenvalue ω . Here we abandon the conventional biorthogonal 99 relation established with the eigenstates that are associated with ω and ω^{*9} , as the current form is more 100 101 convient for establishing eigenframe deformation appoach), which shows an orthogonal relation of the right 102 eigenstates via an indefinite inner product,

103

 $\varphi_m^T \eta \varphi_n = \delta_{mn}$ (S10)

104 This relationship is the Minkowski-type orthogonal relation that has been provided in the Eq. (3) in the main 105 text, and this relation determines that the eigenframe evolves in the form of Lorentz-like transformations.

Here we note that the Minkowski metric has the property $\eta = \eta^{-1} = \eta^T$. We now consider the evolution of

107 the eigenframe, which is governed by the equation

108
$$H |\varphi_m\rangle = i\partial_\lambda |\varphi_m\rangle$$
(S11)

109 where λ is the parameter that tracks the reference point on a path, and *m* denotes the index of the eigenstate

110 (m=1, 2, 3). If the tracking point is off exceptional degenerate lines (i.e., ELs defined in the main text), the

111 eigenstates are complete, and thus we can expand any field with the eigenstates

112
$$\phi_n(\xi(\lambda)) = \sum_m [U(\xi(\lambda))]^{-1}{}_n^m \varphi_m(\xi(\lambda))$$
(S12)

113 where ξ denotes the parameter space with components $\xi^1, \xi^2, \xi^3, \dots$ The linear combination form Eq. (S12)

114 means that ϕ_n satisfies Eq. (S11). We therefore insert Eq. (S12) into Eq. (S11)

115
$$i\frac{\partial}{\partial\lambda}\phi(\xi(\lambda)) = H[U(\xi(\lambda))]^{-1}{}_{n}^{m}\varphi_{m}(\xi(\lambda))$$
(S13)

116 From now on, the repeated index represents summed over according to the Einstein's summation rule ¹⁰. The

117 left-hand side is a partial derivative and can be expanded in view of Eq. (S12)

118
$$i\frac{\partial}{\partial\lambda}\phi(\xi(\lambda)) = i\frac{\partial[U(\xi(\lambda))]^{-1}}{\partial\lambda}\varphi_m(\xi(\lambda)) + i[U(\xi(\lambda))]^{-1}\frac{\partial}{\partial\lambda}\frac{\partial\varphi_m(\xi(\lambda))}{\partial\lambda}$$
(S14)

119 One can use the instantaneous eigenvalue problem in static evolution problems

120
$$H(\xi(\lambda))\varphi_m(\xi(\lambda)) = \omega_m(\xi(\lambda))\varphi_m(\xi(\lambda))$$
(S15)

121 We can apply a scalar product with the left eigenstate $\langle \varphi'_l |$ from the left side in Eq. (S13-S14), which gives

122
$$-i\omega_{l}[U(\xi(\lambda))]^{-1}{}_{n}^{l} = \frac{\partial[U(\xi(\lambda))]^{-1}{}_{n}^{l}}{\partial\lambda} + \left\langle \varphi_{l}^{\prime} \right| \frac{\partial\left|\varphi_{m}(\xi(\lambda))\right\rangle}{\partial\lambda} [U(\xi(\lambda))]^{-1}{}_{n}^{m}$$
(S16)

123 The term with partial derivatives on the right-hand side can be expanded with the parameters

124
$$\frac{\partial \left| \varphi_m(\xi(\lambda)) \right\rangle}{\partial \lambda} = \sum_{a=1,2,3...} \frac{\partial \left| \varphi_m(\xi(\lambda)) \right\rangle}{\partial \xi^a} \frac{\partial \xi^a}{\partial \lambda}$$
(S17)

125 Now we define an affine connection

126
$$A_{a\ m}^{\ n} = -\left\langle \varphi_{n}^{\prime} \left| \frac{\partial}{\partial \xi^{a}} \right| \varphi_{m} \right\rangle$$
(S18)

127 where Eq. (S10) is used. One can solve U^{-1} from Eq. (S16) as

128
$$U^{-1} = \operatorname{Pexp}\left[\int_{0}^{\lambda} ds \frac{\partial \xi^{a}}{\partial s} A_{a} - i \int_{0}^{\lambda} ds \omega(\xi(s))\right] = \operatorname{Pexp}\left(\int_{\xi(0)}^{\xi(\lambda)} A_{a} d\xi^{a}\right) \times \exp\left[-i \int_{0}^{\lambda} ds \omega(\xi(s))\right]$$
(S19)

129 The second term is a dynamical phase and thus can be ignored. The geometric phase is simply,

130
$$U^{-1} = \operatorname{Pexp}(\int_{\xi(0)}^{\xi(\lambda)} A_a d\xi^a)$$
(S20)

and P denotes the path ordering operator, because of the matrix form of the connection A. Therefore, A is
exactly the non-Abelian parallel transport gauge of the eigenframe.

133 **3.1 Topological meaningful path due to frame deformation**

To encircle hypersurface singularities that are located entirely on ELs, the closed loop inevitably intersects ELs. Therefore, the loop is divided into several paths with terminal points locating on the ELs. Now we demonstrate that such open paths could be topological meaningful via the evolution of the eigenframe. We can take loop l_3 in the main text as an example. This loop is composed of four segments, with two segments α_1 and α_2 being in the exact phase sector (shaded region in Fig. S6a1), and the other two segments β_1 and β_2 in the broken phase sector. Here we define an important physical quantity, the local metric, whose entries are obtained by a bilinear-form indefinite inner product,

141
$$g_{mn} = \langle \varphi_m | \eta | \varphi_n \rangle$$
(S21)

142 Observing the exact phase domain that α resides in, it is not difficult to obtain that g has the diagonal form 143 under proper normalizations

144
$$g = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(S22)

145 This metric form coincides with the orthogonality relation in Eq. (S10). Since g is a constant matrix, the

146 partial derivative vanishes

147
$$\partial_{\mu a} g_{mn} = 0 \tag{S23}$$

148 Substituting Eq. (S21) into Eq. (S23), one obtains

149
$$\left\langle \partial_{\xi^{a}} \varphi_{m} \middle| \eta \middle| \varphi_{n} \right\rangle + \left\langle \varphi_{m} \middle| \eta \middle| \partial_{\xi^{a}} \varphi_{n} \right\rangle = 0$$
 (S24)

150 Now we insert the identity operator $I = \sum_{l} |\varphi_{l}'\rangle\langle\varphi_{l}| = \sum_{l} |\varphi_{l}\rangle\langle\varphi_{l}'|$, Eq. (S24) reads,

151

$$\sum_{l} \left\langle \partial_{\xi^{a}} \varphi_{m} \left| \left| \varphi_{l}^{\prime} \right\rangle \left\langle \varphi_{l} \left| \eta \right| \varphi_{n} \right\rangle + \sum_{l} \left\langle \varphi_{m} \left| \eta \right| \varphi_{l} \right\rangle \left\langle \varphi_{l}^{\prime} \right| \left| \partial_{\xi^{a}} \varphi_{n} \right\rangle \right. \right. \\
\left. = \sum_{l} \left\langle \partial_{\xi^{a}} \varphi_{m} \left| \left| \varphi_{l}^{\prime} \right\rangle g_{ln} + \sum_{l} g_{ml} \left\langle \varphi_{l}^{\prime} \right| \left| \partial_{\xi^{a}} \varphi_{n} \right\rangle = 0 \right. \right. \tag{S25}$$

152 We note that

153
$$\left\langle \partial_{\xi^{a}} \varphi_{m} \left| \left| \varphi_{l}^{\prime} \right\rangle = \left(\left\langle \varphi_{l}^{\prime} \right| \left| \partial_{\xi^{a}} \varphi_{m} \right\rangle \right)^{*} \right.$$
(S26)

154 meaning that

155
$$A^*_{\xi^a \ m} g_{ln} + g_{ml} A_{\xi^a \ n}^{\ l} = 0$$
(S27)

Here we have established the relationship between the affine connection and the local metric. In the exact
phase sector, the eigenstates can all be gauge to be real, and therefore, the affine connection is also real. Then
Eq. (S27) is simplified

159
$$A_{\xi^{a} \ m}^{\ l} g_{ln} + g_{ml} A_{\xi^{a} \ n}^{\ l} = 0$$
(S28)

160 The assembling of Eq. (S21) and Eq. (S27) allows one to obtain that the affine connection is a linear

161 combination of the following generators

162
$$T_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad T_{2} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad T_{3} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(S29)

163 It is obvious that the exponential

164
$$\exp(t_1T_1 + t_2T_2 + t_3T_3)$$
 (S30)

165 generates an SO(2,1) Lie group, which includes hyperbolic transformations characterized by T_1 and T_3 , and

a rotation characterized by T_2 . The rotation characterized the geometric phase $\exp(\pi T_2)$ denotes that the first (φ_1) and the third eigenstates (φ_3) rotate a nontrivial π angle with φ_2 being the rotation axis. Such a situation cannot occur, because this geometric phase predicts the linear band cross between their corresponding eigenvalues (ω_1 and ω_3). However, since in an exact phase sector, the order of eigenvalues is well defined, and ω_1 and ω_3 are separated by ω_2 , ω_1 and ω_3 cannot be degenerate without crossing ω_2 . This prohibits the direct degeneracy between ω_1 and ω_3 . Then we consider the geometric phase represented by the exponential

173
$$\exp(t_1 T_1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cosh t_1 & \sinh t_1 \\ 0 & \sinh t_1 & \cosh t_1 \end{bmatrix}$$
(S31)

This exponential form is different from $\exp(t_2T_2)$, because this exponential form has entries being hyperbolic functions. As $|t_1|$ increases, the exponential form diverges. However, despite such a non-converge situation, we can still consider the limits $|t_1| \rightarrow \infty$. If $t_1 \rightarrow +\infty$, both $\cosh t_1$ and $\sinh t_1$ approaches $+\infty$, and we approximately have $\cosh t_1 \approx \sinh t_1 = \rho$. The action of Eq. (S31) on the eigenframe gives

178
$$\left[\varphi_1, \varphi_2, \varphi_3 \right] \exp(t_1 T_1) = \left[\varphi_1, \rho(\varphi_2 + \varphi_3), \rho(\varphi_2 + \varphi_3) \right]$$
(S32)

This signifies that two eigenstates become parallel, meaning that the tracking point on the path approaches an EL formed by the degeneracy of the 2nd and the 3rd bands (e.g., the starting point of path α_1 in Fig. S6a1). Similarly, the exponential form

182
$$\exp(t_3 T_3) = \begin{bmatrix} \cosh t_3 & \sinh t_3 & 0\\ \sinh t_3 & \cosh t_3 & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(S33)

can be used to predict the EL formed by the 2nd and the 3nd bands, e.g., the ending point of α_1 in Fig. S6a1. If $t_1 \rightarrow -\infty$, then $\cosh t_1$ approaches $+\infty$, and $\sinh t_1$ approaches $-\infty$. We therefore have the approximation $\cosh t_1$

185 $\approx -\sinh t_1 = \rho$. The action of Eq. (S33) on eigenframe becomes

186
$$\left[\varphi_1, \varphi_2, \varphi_3 \right] \exp(t_1 T_1) = \left[\varphi_1, \rho(\varphi_2 - \varphi_3), -\rho(\varphi_2 - \varphi_3) \right]$$
(S34)

187 which obviously results in two anti-parallel eigenstates. This also means that the tracking point on the path 188 approaches EL formed by the 2nd and the 3rd bands. The evolution of t_1 from $+\infty$ to $-\infty$ indicates a nontrivial 189 path. We can consider the concatenation $\alpha_1\beta_1\alpha_2$ in Fig. S6a1 as an example, whose two terminal points are 190 on ELs formed by the 2nd and the 3rd bands. As the tracking point moves along the path from one terminal 191 point to the other, φ_2 and φ_3 evolve from parallel to antiparallel states (see Fig. S6a2), meaning that t_1 varies 192 from $+\infty$ to $-\infty$. Such a process gives rise to a relative rotation angle between φ_2 and φ_3 quantized as π , 193 because the two initially coalesced eigenstates bifurcate and rotate in opposite directions, and finally they 194 are oriented in opposite directions. This is typically the eigenframe deformation process. Since this quantized 195 relative angle emerge for an open path, the topological meaningfulness of this open path is signified. Such a 196 situation is quite different from isolated singularities, for which an open path is generally meaningless.

197 In a broken phase sector, the evolution process will be more complicated and cannot be visualized with 198the analytical approach. However, such a frame deformation process can be extended to an open path in the 199 broken phase sector (e.g., β_1 and β_2 in Fig. S6a1-S6b1). On such loops, there exists a similar process, because 200 two coalesced eigenstates bifurcate to form a conjugate pair. If we track a point along a path in broken phase 201 sector (terminal points are on ELs), the conjugate eigenstates evolve from real states to real states, the 202 conjugate nature impose that the initial states are parallel states, and the final states are also parallel states. 203 This means that the complex eigenstates also have a quantized relative rotation angle as 0 or 2π . This 204 situation applies to β_1 and β_2 in Fig. S6a1-S3b1, as indicated by right panels of Fig. S6a2-S3b2, where the 205 imaginary parts of φ_2 and φ_3 evolve from 0 to 0. It is also possible that the conjugate eigenstates evolve from 206 real states to imaginary states, then the conjugation relation impose the final states to be antiparallel states. 207 This loop includes a quantized relative rotation of π . However, such a situation was not applicable to these 208 considered paths (e.g., β_1 and β_2) in this paper.

From these discussions, we can conclude that in investigating a closed loop, the eigenframe evolution process along each open path should be investigated. The overall topological characterization of the loop combines the evolution processes of all paths at the terminal points on ELs. Therefore, the topology of a hypersurface singularity not only involves the overall quantization behavior of each eigenstate along the whole loop, but also involves the quantization behavior of relative rotations along each path. Such a physical meaningful approach is compatible with intersection homotopy ^{11,12}.

215 **3.2 Topological equivalence relation between the paired EP3s and the DTP**

216 In the main text, we have shown that introducing the perturbations with preserved symmetries, the DTP can 217 be split into the EP3 pair, which comes from the topological equivalence relation between the paired EP3s 218 and the DTP. Here we will demonstrate this equivalence with the evolution of eigenframe. A closed loop 219 encircling the DTP is shown in Fig. S7a, and the corresponding evolution of eigenvalues along the loop is 220 shown in Fig. S7b. As we have introduced in the main text, the BFA is the intersection of two Riemannian 221 sheets formed by the dispersion of the real parts of eigenvalues. One is the common sheet of $Re(j_2)$ and Re(*j*₃), as they are conjugate to each other $j_2=j_3^*$ and share the same real part. The other is formed by the real 222 223 eigenvalue j_1 . Therefore, the BFA in our case must reside in the broken phase sector, so that only the real 224 parts of the three eigenvalues on BFA coalesce (Note that if BFA is in exact phase regions, the BFA will be 225 a three-fold degeneracy). The fact that the BFA is the intersection of Riemannian sheets determines that if a 226 tracking point moves across the BFA, there has to be an order exchange of eigenvalues. This phenomenon 227 is obvious for loops l_1 and l_2 (Fig. 3b1 and Fig. 3b2), as l_1 and l_2 , which only enclose a single EL3, inevitably 228 intersect BFA. Notably, the order exchange of eigenvalues is a swapping process of a conjugate band with 229 the other real band (see Fig. 3b1 and Fig. 3b2), which is determined by the real parts of eigenvalues. In this 230 context, it is obvious that the eigenvalues also do not experience order exchange along loop in Fig. S7a that 231 encloses the DTP, similar to the situation along loop l_3 in the main text (Fig. 3c1). The eigenframe 232 deformation and rotation process is shown in Fig. S7c, with the left and right panels showing the real and 233 imaginary parts of the eigenstates. Through the comparison against Fig. 3c2-3c3 in the main text, we see that 234the evolution processes are almost identical except for some deviations in the intermediate process. Along 235 both loops, the eigenstates φ_1 and φ_3 all evolve to their antipodal points, meaning that the accumulated angles are quantized as π (lower panels of Fig. S7c). While φ_2 evolves to the initial states without changing the sign. 236 237 Such an identical processes demonstrate that the paired EP3s is topologically equivalent to the DTP, and they can both be topologically characterized as nontrivial due to the π quantization. Therefore, introducing 238 239 perturbations that splits the DTP to the paired EP3s is a topologically protected process from a frame rotation 240 perspective. This result also shows that the EP3 pair linked by the BFA in our case is topologically nontrivial. 241 This situation is similar to the conventional case that the EP2 pair linked by a conventional BFA is topologically nontrivial ^{5,6}. In section 4, we will show that this topological nontriviality ensures that the DTP 242 243 cannot be fully illuminated. Except for the case that the DTP can be split into paired EP3s by making b to 244be positive, the DTP can be split into an intersection of ELs and an isolated Dirac point by decreasing b to 245 be negative.

246 **3.3 Why the topological characterization approach addresses the ELs intersected by the loops**

In conventional homotopic theories, the homotopic loop always avoids intersecting any degeneracy. However, if a singularity is not isolated and locates entirely on ELs, a loop encircling it will inevitably intersect the ELs. Such a loop is an intersection homotopic loop 12 , which represents a new topological characterization approach distinguished from the conventional homotopy characterization. The notion of eigenframe deformation and rotation approach used here is thus a physical meaningful method that is 252 compatible with the intersection homotopy. The key advantage of this approach is that the topological 253characterization result is immune to the sequence of the two conjugate bands in the broken phase sector. As 254 a tracking point moves along a loop and crosses an EL, two eigenvalues coalesce their real parts and disparate their imaginary parts. Therefore, uncertainty of the sequence of eigenvalues is introduced by the EL 255256degeneracy, because the upper band and lower band cannot be distinguished. However, our approach is 257immune to this uncertainty. We can take the loop in Fig. 4a as an example, where we have exchanged the order of j_2 and j_3 in the broken phase sector (see the comparison between Fig. 5a and Fig. 4b). In Fig. 5b, we 258 259 plot the evolution process of the eigenframe. Compared with Fig. S7c, we find that the evolution of the real 260 parts of the eigenstates remains intact, only the imaginary parts become their negatives (right panels in Fig. 261 S8b and S7c). As we have known, the imaginary parts only serve as an intermediate process, because the 262 eigenstates are real at the initial and the final points. That is why our approach well addresses the uncertainty 263 caused by the EL.

264 Supplementary Note 4: Splitting of DTP into an intersection of ELs and a Dirac point

Although the DTP is an accidental degeneracy and is unstable, it carries nontrivial topological information. Therefore, as long as the symmetries are preserved, the DTP cannot be fully eliminated, but will be split into other forms of degeneracies. In the main text, we have shown that the DTP can be split into a pair of EP3s linked by a BFA by increasing the perturbation term b from 0 to positive. In this section, we will show that by decreasing b to negative, the DTP also becomes unstable and will be split into another two forms of degeneracies.

The results are shown in Fig. S9, where panels a and b correspond to b=-0.0299 and b=-0.0599 in Eq. (1), respectively. Here IP stands for intersection point, at which the ELs intersect transversely. While DP stands for Dirac point, which is isolated from ELs. Their corresponding dispersion diagrams (with both real and imaginary parts of eigenvalues) are shown in panels a1-a4 and b1-b4 respectively. Both IP and DP are linear band crossings as indicated by a2, a4 and b2, b4. Additionally, IP and DP are stably degeneracies, and decreasing the perturbation term b only makes the distance between IP and DP larger, as displayed in panels a and b.

Fig. S1| Experimental setup for measuring the unconventional bulk-Fermi-arc. The instruments include the

- 280 DC power supply (used for the power supply of operational amplifier), Oscilloscope (measuring output
- signals), and waveform generator (generating input current).

Fig. S2| Experimental and theoretical results of the dispersion of imaginary parts of the bulk-Fermi-arc. a-c

are for different perturbation term b=0, 0.0299 and 0.0569, corresponding to b-d in the main text.

Fig. S3 Vertical error bars illustrate the experimental deviations from the theoretical results associated with the measured data in Fig. 2b-d. For each experimental data point, the middle of the error bar represents the theoretical value (indicated by the line), while the half-length of the error bar corresponds to the absolute difference between the measured eigenvalue in Fig. 2b-d and the theoretical value.

291

Fig. S4| Similar to Fig. S3, but panels a-c correspond to the results in Fig. 3b1, b2 and c1 in the main text,

295 respectively.

302 Fig. S5| The real parts of the experimental eigenvalues at the points near the theoretical EP3 for identification

303 of the most experimentally approximated EP3.

Fig. S6| Illustration of topological meaningful path. The loop l_3 in the main text can be decomposed into two parts in panels a1 (concatenation of α_1 , β_1 and α_2) and b1 (path β_2), respectively. The part in panel a1 can be decomposed into three segments α_1 , β_1 and α_2 . All the paths are terminated at ELs. a2-b2 Eigenframe evolution processes along the concatenated path $\alpha_1\beta_1\alpha_2$ (in panel a1) and path β_2 (in panel b1).

310

313 Fig. S7| Topological characterization of the DPT. a. A closed loop encircling the DTP. The DTP is adjacent 314 to four ELs, and the loop intersects the ELs four times. b. Evolution of eigenvalues along the loop in panel 315 a. The eigenvalues do not experience order exchange along the loop as indicated by the dashed lines. c. Evolution of eigenframe along the loop in panel a, with the left and right columns showing the real and 316 317 imaginary parts of eigenstates, respectively. The eigenstates φ_1 and φ_3 evolve to their antipodal points along 318 the loop, showing that their accumulated angles are quantized as π , as indicated by the lower panels (left). 319 This demonstrates that the DPT is topological equivalent to the EP3 pair, because the evolution is identical 320 to Fig. 3c2-3c3 in the main text. The evolution of the imaginary parts serves as intermediate process as the 321 initial and final states are all real (right column of panel c).

Fig. S8| Exchanging the sequence of j_2 and j_3 in the broken phase sector does not impact the topological characterization. a. Evolution of eigenvalues along the loop in Fig. S7a. The orders of j_2 and j_3 have been exchanged compared with Fig. S7b. b. Evolution of the eigenframe under the new sequence. The evolution of real parts is identical to the evolution process under the original sequence (left panel, compared with the left panel in Fig. S7c). The imaginary parts are added with a minus sign, which is only an intermediate process and does not impact the topological characterization (right panel, compared with the right panel in Fig. S7c).

332

Fig. S9| a and b, degeneracies in the synthetic 2D parameter space corresponding to b=-0.0299 and b=0.0599, respectively. a1-a4 and b1-b4, Their corresponding dispersion diagrams with both real and imaginary

335 parts of eigenvalues on different yellow lines in panels a and b.

338	1.	Imhof, S., Berger, C., Bayer, F., et al. Topolectrical-circuit realization of topological corner
339		modes. Nat. Phys. 14, 925–929 (2018).
340	2.	Helbig, T., Hofmann, T., Imhof, S., et al. Generalized bulk-boundary correspondence in non-
341		Hermitian topolectrical circuits. Nat. Phys. 16, 747-750 (2020).
342	3.	Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-protected multifold exceptional points and
343		their topological characterization. Phys. Rev. Lett. 127, 186602 (2021).
344	4.	Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys.
345		82, 1959–2007 (2010).
346	5.	Kawabata, K., Bessho, T. & Sato, M. Classification of exceptional points and non-Hermitian
347		topological semimetals. Phys. Rev. Lett. 123, 066405 (2019).
348	6.	Zhou, H., Peng, C., Yoon, Y., et al. Observation of bulk Fermi arc and polarization half charge
349		from paired exceptional points. Science 359, 1009–1012 (2018).
350	7.	Jia, H., Zhang, R. Y., Hu, J., et al. Topological classification for intersection singularities of
351		exceptional surfaces in pseudo-Hermitian systems. Commun. Phys. 6, 293 (2023).
352	8.	Hu, J., Zhang, R. Y., Wang, Y., et al. Non-Hermitian swallowtail catastrophe revealing transitions
353		among diverse topological singularities. Nat. Phys. 19, 1098–1103 (2023).
354	9.	Kawabata, K., Shiozaki, K., Ueda, M., et al. Symmetry and topology in non-Hermitian physics.
355		<i>Phys. Rev. X</i> 9, 041015 (2019).
356	10.	Freedman, D. Z. & Van Proeyen, A. Supergravity (Cambridge University Press, 2012).
357	11.	Kirwan, F. & Woolf, J. An introduction to intersection homology theory (CRC Press, 2006).
358	12.	Gajer, P. The intersection Dold-Thom theorem (State University of New York at Stony Brook,
359		1993).
260		
200		