




Topological analysis and deep learning of human speech data



Some of the most active areas of research in machine learning today are explainable AI 
and interpretable AI.  In explainable AI, methods are developed to open up black boxes 
such as neural networks, while interpretable AI creates white box methods with possibly 
lower accuracy.  Most progress in these areas has been empirical and rooted in computer 
science, but there is a growing body of literature that suggests fresh insights.  They come 
from fields that are traditionally considered to be pure mathematics, including algebra, 
geometry, and topology.  In this talk, we give an overview of topological approaches to 
analyzing time-dependent data, with applications to speech recognition as one of the 
essential components of AI.  Leveraging a reciprocity between explainable and 
interpretable aspects, we further discuss work in progress towards designing topologically 
enhanced convolutional layers for deep learning speech and audio signals.
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Overview



Our goal is to explain, through examples of time series analysis and speech 
signal processing,




Topology of artificial neural network architectures (Explainable AI) and
•



Topological inputs for designing neural networks (Interpretable AI).
•


This represents ongoing joint work with


Meng Yu (Tencent AI Lab),
•
Siheng Yi, Zhiwang Yu, Qingrui Qu, Zeyang Ding, Haiyu Zhang, Pingyao •
Feng, Yuhe Qin (SUSTech), 


and partly supported by

NSFC grant 12371069, Methods of algebraic topology to study moduli •
spaces: with applications to homotopy theory, condensed matter physics, 
and time series analysis, and 

Guangdong Provincial Key Laboratory of Interdisciplinary Research and •
Application for Data Science.
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In 1966, Mark Kac asked the famous question: 



                                Can you hear the shape of a drum?



To hear the shape of a drum is to infer information about the shape of the 
drumhead from the sound it makes, using mathematical theory.

 

In this talk, we mirror the question across senses and address instead: 



                         Can we see the sound of a human speech?
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Periodic phenomena: a motivating example



Let 𝕋 ² = ( ℝ / ℤ )² be the 2D torus.  Consider the dynamical system given by







If σ is rational, then every orbit is periodic.  Otherwise every orbit is dense in 𝕋 ².

















From time series to topological shapes 


Most periodic time series can be realized by a topological circle S¹ embedded 
in a Euclidean space of higher dimension.
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Ideas of topological data analysis (TDA)



The topological type (more precisely, homotopy type) is robust against 
perturbations.
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Ideas of topological data analysis (TDA)



Features of topological shapes, such as the number of holes, can be captured 
by algebraic invariants that are computable.



Comparing these invariants effectively distinguishes the topological types of 
shapes.
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Topological time series analysis



Let us make the assumption that sampled signals are distributed over a 
manifold.  To topologically analyze time series, we then proceed as follows:




	 Step1  Embed the data into a Euclidean space of suitable dimension;




	 Step 2  Compute the algebraic invariants for statistical inference. 
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An application: detection of wheeze in medical science (pulmonology)



Wheezes are abnormal lung sounds and usually 
imply obstructive airway diseases.





The most important characteristic of wheeze signals 
is their periodic patterns.





The accuracy of topological periodicity detection is 98.39% (Emrani et al., IEEE 
Signal Processing Letters, 2014), while in two earlier papers with different 
methods they are 86.2% and 95.5%.





As a warm-up, our research group has reproduced their results using the 
original data and open-source TDA programming package.
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An application: detection of wheeze in medical science (pulmonology)






               Original sound signals            Realized topological           “Persistence barcodes” as  

       	 	 	 	 	 	 	 	 	 	 	 	 shapes embedded in          representations of the algebraic

                		 	 	 	 	 	 	 	 	 	 2D Euclidean space            invariant (1D homology group)
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A pipeline for topological time series analysis
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Application I: detection of mouse scratching behavior



Joint with the biomedical engineering group led by 
Fangyi Chen and the data science group led by Zhen 
Zhang, both at SUSTech, we applied topological 
methods to the problem of automated and real-time 
detection of mouse scratching behavior, with 
motivations from pharmacology.





Prior to our group’s involvement, 
machine learning via neural networks 
was applied with satisfactory accuracy 
(https://yifeizhu.github.io/scratch.mp4).





However, the learning process was time consuming, which is impractical for 
time-sensitive purposes and lab efficiency.
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Application I: detection of mouse scratching behavior



We observed that the scratching behavior exhibits periodicity.  In the meantime, 
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Application I: detection of mouse scratching behavior



Approach 1 (1D data, Qingrui Qu), combined with carefully designed filtration 
for wave signals + suitably chosen geometric statistics, yielded a close-to-real-
time, decently accurate detection performance.
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Application I: detection of mouse scratching behavior



Approach 2 (multi-dimensional data, Siheng Yi), combined with persistent 
homology and its representations, yielded recognizable characteristics but 
required considerable computational time.
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Application II: classification of speech signals



Joint with Meng Yu of Tencent AI Lab, we applied topological methods to 
classify voiced/voiceless and vowel/consonant speech data, with motivations 
from industrial applications.  



We were inspired by Carlsson et al.’s discovery of the Klein-bottle distribution 
of local natural images, as well as their subsequent recent work of topological 
convolutional neural networks learning video data.  We would like to 
understand an analogous “moduli space” for speech data and how its input 
may enable smarter learning.





Display of speech signals 


There are speech signal 
processing softwares for 
professional use.
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Application II: classification of speech signals



Here is a flowchart for our 
topological approach:





Topological profiles for vowels and consonants 

 
               Features for vowels                                Features for consonants      

Left: frame size: 15ms, frame shift: 5ms; Right: frame size: 45ms, frame shift: 22.5ms                      Left: pulmonic consonant; Right: non-pulmonic consonant
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Application II: classification of speech signals



Using real-world speech data from the MFA aligner, our research group (Feng) 
further fed the topological features for machine learning, and obtained positive 
preliminary results for classification. 
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A formal recap of the topological methods applied 
Persistent homology
•


















Sliding window embedding (time-delay embedding) •



Euclidean embedding of time series data dates back to Takens’s work on 
fluid turbulence in the 1980s.





Theorem (Takens 1981).  Let M be a compact manifold of dimension n.  
Given pairs (φ, y) with φ : M → M a smooth diffeomorphism and y : M → ℝ a 
smooth function, it is a generic property that the map Φ(φ, y) : M → ℝ²ⁿ ⁺¹ 
defined by




is an embedding.
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From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  We may view the Klein bottle 
as a moduli space for local image data.



A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein 
bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they 
have incorporated the tangent bundle of a Klein 
bottle into TCNNs for learning video data.  Both 
learnings achieved higher accuracies with smaller 
training sets.


















as














From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  We may view the Klein bottle 
as a moduli space for local image data.



A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein 
bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they 
have incorporated the tangent bundle of a Klein 
bottle into TCNNs for learning video data.  Both 
learnings achieved higher accuracies with smaller 
training sets.


















Mom














From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  We may view the Klein bottle 
as a moduli space for local image data.



A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein 
bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they 
have incorporated the tangent bundle of a Klein 
bottle into TCNNs for learning video data.  Both 
learnings achieved higher accuracies with smaller 
training sets.


















Mt














From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  We may view the Klein bottle 
as a moduli space for local image data.



A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein 
bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they 
have incorporated the tangent bundle of a Klein 
bottle into TCNNs for learning video data.  Both 
learnings achieved higher accuracies with smaller 
training sets.


















É














From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  We may view the Klein bottle 
as a moduli space for local image data.



A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein 
bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they 
have incorporated the tangent bundle of a Klein 
bottle into TCNNs for learning video data.  Both 
learnings achieved higher accuracies with smaller 
training sets.


















Erase














From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  We may view the Klein bottle 




Gunnar Carlsson et al., On the local behavior of spaces of natural images, International  
Journal of Computer Vision, 2008. 
 
Carlsson, Topology and data, Bulletin of the American Mathematical Society, 2009. 



bottle as a topological input for designing 
convolutional layers in neural networks that learn 
image data.  Moreover, they have incorporated the 
tangent bundle of a Klein bottle into TCNNs for 
learning video data.  Both learnings a
















Free














From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!



A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein 
bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they have incorporated the tangent 
bundle of a Klein bottle into TCNNs for learning 
video data.  Both learnings achieved higher 
accuracies with smaller training sets.



























Modern














From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  



A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein 
bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they have incorporated the tangent 
bundle of a Klein bottle into TCNNs for learning 
video data.  Both learnings achieved higher 
accuracies with smaller training sets.



We have reproduced some of their results.  
Analogously, a main goal is to use topological 
methods to reveal distribution spaces for speech 
signals and apply them to deep learning.
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that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  
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bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they have incorporated the tangent 
bundle of a Klein bottle into TCNNs for learning 
video data.  Both learnings achieved higher 
accuracies with smaller training sets.



As a second warm-up, our research group 
(Zhiwang Yu, Haiyu Zhang) have reproduced some 
of their results.  Analogously, a main goal is to use 
topological methods to reveal distribution spaces for speech signals and apply 
them to deep learning.
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From topological data analysis to topological deep learning



Motivated by the works of Carlsson and his collaborators’, in consultation with 
Meng Yu of Tencent AI Lab, we have been investigating analogous questions 
for speech signals, with the additional tool of time-delay embedding for turning 
time series data to point clouds in Euclidean spaces.




For phonetic data, linguists created a charted “distribution space” of vowels:
•



Using speech files from SpeechBox, our •
topological approach achieved an average 
accuracy exceeding 95% in classifying 
voiced and voiceless consonants via 
machine learning.




A main goal remains to use topological •
methods to reveal distribution spaces for 
speech signals and apply them to deep learning.
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From topological data analysis to topological deep learning



Motivated by the works of Carlsson and his collaborators’, in consultation with 
Meng Yu of Tencent AI Lab, we have been investigating analogous questions 
for speech signals, with the additional tool of time-delay embedding for turning 
time series data to point clouds in Euclidean spaces.



For phonetic data, linguists created a charted “distribution space” of vowels:

Using speech files from SpeechBox, our topological 
approach achieved an average accuracy exceeding 
96% in classifying voiced and voiceless consonants 
via machine learning.  A main goal remains to use 
topological methods to reveal a distribution space 
for speech data, even a digraph on it modeling the 
complex network of speech-signal sequences, and 
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From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in both accuracy and efficiency, our 
streamlined algorithm TopCap significantly outperformed traditional deep 
learning neural networks for classification of voiced and voiceless consonants 
from real human speech data.
















to

eeE




•








From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in both accuracy and efficiency, our 
streamlined algorithm TopCap significantly outperformed traditional deep 
learning neural networks for classification of voiced and voiceless consonants 
from real human speech data.
















I

2St
Sep

Free




•








From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in both accuracy and efficiency, our 
streamlined algorithm TopCap significantly outperformed traditional deep 
learning neural networks for classification of voiced and voiceless consonants 
from real human speech data.
















Too

trees

Flee




•








From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in both accuracy and efficiency, our 
streamlined algorithm TopCap significantly outperformed traditional deep 
learning neural networks for classification of voiced and voiceless consonants 
from real human speech data.
















manoei

Fear




•








From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low  












As a demonstration of 
their effectiveness, in 
both accuracy and efficiency, our 
streamlined algorithm TopCap 
significan tly 
outperfor med 
traditional



•

f

fossa

Increase dimension for smoothness?




•








From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low  












As a demonstration of 
their effectiveness, in 
both accuracy and efficiency, our 
streamlined algorithm TopCap 
significan tly 
outperfor med 
traditional



•

fossa

i

sssstsaaEs

Increase dimension for smoothness?













From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in both accuracy and efficiency, our 
streamlined algorithm TopCap significantly outperformed traditional deep 
learning neural networks for classification of voiced and voiceless consonants 
from real human speech data.
















soet ate

Fatheadedness













From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in both accuracy and efficiency, our 
streamlined algorithm TopCap significantly outperformed traditional deep 
learning neural networks for classification of voiced and voiceless consonants 
from real human speech data.
















Boats

t

t_eoaaEe













From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in 
both accuracy and efficiency, our 
streamlined algorithm TopCap significantly 
outperformed traditional deep 
learning neural 
networks for 
classificat ion of vo




Sestets

INTE

Easter













From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in 
both accuracy and efficiency, our 
streamlined algorithm TopCap significantly 
outperformed traditional deep 
learning neural 
networks for 
classificat ion of vo




Faroes

aaaeEteaake













From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in 
both accuracy and efficiency, our 
streamlined algorithm TopCap significantly 
outperformed traditional deep 
learning neural 
networks for 
classificat ion of vo




Peaassetermes

me

Fessness













From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demon
stration of their 
effectiv eness, 
in both accura
cy and efficien
cy, our streaml
ined algorith




as SE

sense










From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in both accuracy and efficiency, our 
streamlined algorithm TopCap significantly outperformed traditional deep 
learning neural networks for classification of voiced and voiceless consonants 
from real human speech data.








Eels

see










From topological data analysis to topological deep learning



With applications to speech recognition as one of the essential components of 
artificial intelligence, we established two conceptually novel approaches to 
address the challenges and difficulties in analyzing nonlinear time series data, 
not limited to speech signals:


A new, apparently paradoxical parameter selection scheme of choosing 1.
high Euclidean embedded dimension for time series data whose intrinsic 
dimensionality is low, and

Venturing beyond periodicity, an implementation with TDA to detect what 2.
we termed the “three fundamental variations” as finer structures inherent in 
time series data, namely, variabilities of frequency, of amplitude, and of 
average line, enabled by a scrutiny of learnable TDA descriptors.




As a demonstration of their effectiveness, in both accuracy and efficiency, our 
streamlined algorithm TopCap significantly outperformed traditional deep 
learning neural networks for classification of voiced and voiceless consonants 
from real human speech data.








3200










From topological data analysis to topological deep learning



Our preliminary work on distribution space for speech data through 
“explainable neural networks” has indicated that the situation is quite different 
from that of image data.



Conjecture.  Instead of a universal distribution analogous to the Klein bottle for 
image data, specific distributions apply to specific languages and are trained 
through the human brain. 



We have been experimenting with more extensive datasets, including 
LJSpeech, LibriSpeech, TIMIT, as well as extending comparison of our 
approach to state-of-the-art methods to demonstrate its advantages.
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Question.  Is there a computational approach through persistent homology for 
temporal Gestalt perception of audio signals?














a

Cf. Lin Chen, Topological structure in visual perception, Science, 1982 
and Hongwei Lin’s recent work on computational Gestalt models based 
on persistent homology. 














From topological data analysis to topological deep learning



Reservoir networks and photonic circuits have been applied to vowel 
recognition, too.  



























It will be useful to design and fine-tune them topologically (joint with Huan Li of 
optical science and engineering at Zhejiang University and Xinxiang Niu of 
Huawei).
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                                                       Thank you.

























