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Overview



Our goal is to explain:




With hindsight, how explicit examples of rank-2 and rank-3 Higgs bundles •
arise in topological classifications of (gapless) quantum mechanical systems,




Why “hyperbolic band theory” (after A.J. Kollár et al. ’19) and such “gapless” •
(non-Hermitian) systems are natural from the mathematical viewpoint of 
Higgs bundles, and




Afforded by such systems, how the physical bulk–edge correspondence may •
have a mathematical origin of the (geometric) Langlands correspondence, as 
evidenced by the respective roles played by Higgs bundles.




This stems from ongoing joint work with


H. Jia, J. Hu, C. T. Chan (physically),

W. Yang, Z. Fang, C. Huang (mathematically) et al.
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Motivations: Quantum materials and their math modeling



As an umbrella term in condensed matter physics, quantum materials refer to 
solids with exotic/exceptional/not found in nature ... physical properties at the 
macroscopic level that arise from the interactions of their electrons at the 
microscopic level, beginning at atomic and subatomic scales where the 
extraordinary effects of quantum mechanics cause unique and unexpected 
behaviors.
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opic level, beginning at atomic and subato
mic scales where the extraordinary effects 
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The unreasonable effectiveness of topology in the science of quantum •
materials, Ashvin Vishwanath of Harvard delivering the Buckley prize talk at 
this year’s APS March Meeting in Minneapolis (薛其坤 of Tsinghua and 
SUSTech was the co-winner of the prize)

U.S. Department of Energy, Office of Science.  Basic research needs for •
quantum materials: Research to discover, harness, and exploit exotic 
electronic properties (brochure), 2016.

⽅忠 等，“拓扑电⼦材料计算预测”，2023年度国家⾃然科学奖⼀等奖
•
第⼀届魅丽数学与交叉应⽤会议“数学与⽣物医药、数学与先进材料”，2024年5•
⽉，苏州




















Motivations: Quantum materials and their math modeling



Mathematical modeling of electronic energy band structures therein concerns 
topological/homotopical classification of Hamiltonians [= quantum mechanical 
systems = (families of) matrices with prescribed symmetries] and, in particular, 
singularity/degeneracy in the relevant moduli spaces, against which fine-tuning 
a system leads to exceptional properties of solid materials. This mathematical 
modeling is then followed by 
experimental realization, 
engineering, ... 
(though there is 
approach the other 
way around).





In collaboration with physicists, our 
preliminary works explored the intriguing topological structures arising from 
certain novel non-Hermitian systems, whose moduli spaces have stratified, 
non-isolated singularities, as well as their circuit realizations and unconventional 
physical consequences. However, the mathematical modeling was rather ad 
hoc and the topological classifications remain incomplete.
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Thanks to Hopf bundles and Higgs bundles as eigenbundles, we now have a 
conceptually more systematic, visibly more intuitive understanding of the topic.





















Mathematical set-up: Eigenframe rotation of non-Hermitian systems



With motivations from topological classifications of non-Hermitian gapless 
quantum mechanical systems and their applications to materials science, let us 
consider the real matrix (a Hamiltonian)







It satisfies a variant of Hermitian symmetry such that where




is a Riemannian metric form.




Its characteristic polynomial







has a double root if and only if .  As a parameter space for this




Hamiltonian H, the f2f3-plane becomes a stratified space:




0.  Over {(0, 0)}, H has a double eigenvalue, whose eigenspace is 2-dimensional.
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Again, we aim to find computable algebraic invariants that systematically 
classify the evolutions of eigenvectors along loops in such stratified 
parameter spaces, including when they cross the discriminant surface 
resulting in degeneracies of various sorts. The space of polynomials x4 + ax2 + bx+ c














Eigenframe rotation as vector bundles: Revisiting the Hermitian case



The Hermitian case is simple, as the singularity is isolated, yet has profound 
physical implications already known to Arnold.  Let us consider the real 
Hamiltonian







It represents all 
symmetric 2 x 2 matrices spectrally, since any 
has



the same eigenvalues and eigenvectors as



Its characteristic 
polynomial







has a double root if and only if




The parameter f1f3-plane thus has an isolated singular point (0, 0).
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It represents all symmetric 2 x 2 matrices spectrally, since any has



the same eigenvalues and eigenvectors as



Its characteristic polynomial
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The parameter f1f3-plane thus has an isolated singular point (0, 0).
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Eigenframe rotation as vector bundles: Revisiting the Hermitian case



How does the eigenframe rotate over this stratified parameter plane?



As our starting point, previous work of Wu et al. [Science, 2019] classified the 
eigenframe rotation by



and obtained non-Abelian topological charge for n-band Hermitian systems 
when n > 2, such as





Their explanation for the appearance of the O(1)ⁿ-action was rather ad hoc.



One of our key steps is a more conceptual understanding of the above moduli 
spaces in the case of n = 2 through bundle theory.  To see how they rotate, let 
us compute the unit eigenvectors explicitly.
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Eigenframe rotation as vector bundles: Revisiting the Hermitian case



To solve for eigenvectors v+ corresponding to ω+, perform Gaussian elimination 
through elementary row operations:


Observe that when θ → (– π)+, we have cos θ + 1 → 0+ and sin θ → 0–,

        whereas when θ → π–,      we have cos θ + 1 → 0+ and sin θ → 0+.

We compute that
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Eigenframe rotation as vector bundles: Revisiting the Hermitian case



Lemma.  The universal rank-1 eigenbundle for Hermitian 2-band systems is 
given by the Hopf bundle





















Corollary.  The universal eigenbundle for real 
Hermitian 2-band systems is given by a pair of 
orthogonally intersecting half Möbius bands over 
the unit circle in the punctured parameter plane.  
In particular, eigenframe rotations along a generic 
loop in the moduli space are classified by 
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Eigenframe rotation as Higgs bundles: The non-Hermitian case



Lemma.  The universal rank-1 eigenbundle for Hermitian 2-band systems is 
given by the Hopf bundle
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Eigenframe rotation as Higgs bundles: The non-Hermitian case



Recall that non-Hermitian 2-band systems have a stratified parameter plane:







0.  Over {(0, 0)}, H has a double eigenvalue, whose 

     eigenspace is 2-dimensional.

1.  Over {f2 = ±f3} − {(0, 0)}, again H has a double 

     eigenvalue, but its eigenspace is of dimension 1.

2.  Over {f2 ≠ ±f3}, H has 2 distinct eigenvalues.  When |f2| < |f3|, the eigenvectors are

     real.  When |f2| > |f3|, the eigenvectors are not real.



A Higgs bundle (E, φ) → C is 
essentially a family of matrices, 
and if you try to diagonalize one 
you get a spectral cover.



Portrait from Kienzle and Rayan, 
Hyperbolic band theory through Higgs 
bundles, Adv. Math., 2022.
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Hyperbolic metric on the base C.  Kollár et al., Nature, 2019.  















Eigenframe rotation as Higgs bundles: The non-Hermitian case



Proposition.  The universal eigenbundle for non-Hermitian 2-band systems is 
given by a pair of kissing half Möbius bands over the stratified unit circle in the 
punctured parameter plane, whose 0-dimensional stratum consists of 4 points.

















Here is a video showing the eigenframe rotation: https://yifeizhu.github.io/swallowtail/rotate.mp4



Note.  In the non-Hermitian case, since the eigenvectors are in ℂ², we have 
adopted (a variant of) the Hermitian angle to characterize the eigenframe 
rotation and degeneration.
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Eigenframe rotation as Higgs bundles: The non-Hermitian case



Question.  How to compute the topological charge?



In progress:  Need to compute the intersection fundamental group of the 
stratified moduli space.


0’th intersection homology group recovers the Hermitian 2-band charge of ℤ.
•
Need compatibility with our earlier ad hoc classification: 
•







Question.  How does the eigenframe rotation in the non-Hermitian case relate 
to that in the Hermitian case?



Conjecture.  It does so through a deformation (or homotopy) of Riemannian 
metrics, i.e., a 1-parameter continuous family {ηt} 0 ≤ t ≤ 1 of metrics with







Here is a video of the eigenbundle deformation: https://yifeizhu.github.io/swallowtail/deform.mp4
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Gajer, The intersection Dold–Thom theorem,  
Topology, 1996.  (Ph.D. student of Blaine Lawson, 1993) 
 
Goresky and MacPherson, 1974.
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Eigenframe rotation as Higgs bundles: The non-Hermitian case



Question.  How does eigenframe rotate in non-Hermitian 3-band systems?



In progress:  We have investigated slices of the 3D moduli spaces containing 
swallowtails, and discovered cancellation of charges as well as reduction to the 
2-band case.



Example.  
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Bulk–edge correspondence



We have been experimentally investigating the bulk–edge correspondence for 
hypersurface singularities stemmed from our theoretical analysis with the 
swallowtail moduli spaces, i.e., the topology of bulk states (moduli space) 
determines the numerology of edge states (parametrized system).



There has not been a rigorous mathematical explanation for such a 
correspondence in general, but it is reminiscent of the Langlands duality. 



Indeed, Higgs bundles sit on one side of the geometric Langlands duality!  
We’ve at least found some testing ground.
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More precisely, e.g., the bulk–edge correspondence relates a topological invariant of the bulk 

insulator (the first Chern number of the Bloch eigenbundle, also called the Hall conductance)

with an invariant of a surface state (the winding number about the Fermi energy in the complex

Bloch variety).  Moreover, any topological invariant is determined from the band structure over

the nilpotent cone, i.e., the fiber above 0 in the Hitchin base.
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