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As an umbrella term in condensed matter physics, refer to
solids with exotic/exceptional/not found in nature ... physical properties at the
macroscopic level that arise from the interactions of their electrons at the
microscopic level, beginning at atomic and subatomic scales where the

extraordinary effects of qguantum mechanics cause unique and unexpected
behaviors.

« The unreasonable effectiveness of topology in the science of quantum
materials, Ashvin Vishwanath of Harvard delivering the Buckley prize talk at
this year’'s APS March Meeting in Minneapolis (E2E# of Tsinghua and
SUSTech was the co-winner of the prize)

« U.S. Department of Energy, Office of Science. Basic research needs for
quantum materials: Research to discover, harness, and exploit exotic
electronic properties (brochure), 2016.
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Guzman et al., Model-free characterization of

topological edge and corner states in
mechanical networks, PNAS 2024.
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« Hongwei Jia, Ruo-Yang Zhang, Jing Hu, Yixin Xiao, Shuang Zhang, Yifei Zhu, and C. T.
Chan. Topological classification for intersection singularities of exceptional surfaces in
pseudo-Hermitian systems. Communication Physics, 6:293, 2023.

- Jing Hu, Ruo-Yang Zhang, Yixiao Wang, Xiaoping Ouyang, Yifei Zhu, Hongwei Jia, and
Che Ting Chan. Non-Hermitian swallowtail catastrophe revealing transitions among
diverse topological singularities. Nature Physics, 19:1098-1103, 2023.
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singularity/degeneracy in the relevant moduli spaces, against which fine-tuning
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there is approach the other way around).

In collaboration with physicists, our preliminary works explored the intriguing
topological structures arising from certain novel non-Hermitian systems, whose
moduli spaces have stratified, non-isolated singularities, as well as their circuit
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« Hongwei Jia, Jing Hu, Ruo-Yang Zhang, Yixin Xiao, Dongyang Wang, Mudi Wang,
Shaojie Ma, Xiaoping Ouyang, Yifei Zhu, and C. T. Chan. Anomalous bulk—edge
correspondence intrinsically beyond line-gap topology in non-Hermitian swallowtail
gapless phase, 2024. Preprint.

« Hongwei Jia, Jing Hu, Ruo-Yang Zhang, Yixin Xiao, Dongyang Wang, Mudi Wang,
Shaojie Ma, Xiaoping Ouyang, Yifei Zhu, and C. T. Chan. Unconventional topological
edge states beyond the paradigms of line-gap topology, 2024. Preprint.
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of electronic energy band structures therein concerns
topological/homotopical classification of Hamiltonians [= quantum mechanical
systems = (families of) matrices with prescribed symmetries] and, in particular,
singularity/degeneracy in the relevant moduli spaces, against which fine-tuning
a system leads to exceptional properties of solid materials. This mathematical
modeling is then followed by experimental realization, engineering, ... (though
there is approach the other way around).

In collaboration with physicists, our preliminary works explored the intriguing
topological structures arising from certain novel non-Hermitian systems, whose
moduli spaces have stratified, non-isolated singularities, as well as their circuit
realizations and unconventional physical consequences. However, the
mathematical modeling was rather ad hoc and the topological classifications
remain incomplete.

Thanks to Hopf bundles and Higgs bundles as , We now have a
conceptually more systematic, visibly more intuitive understanding of the topic.
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With motivations from topological classifications of non-Hermitian gapless
quantum mechanical systems and their applications to materials science, let us
consider the real matrix (a Hamiltonian)
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It satisfies a variant of Hermitian symmetry such that 7nHn ' = H' where
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has a double root if and only if fo==*f3 . As a parameter space for this

Hamiltonian H, the f.f;-plane becomes a

1. Over {f: = +fs} — {(0, 0)}, again H has a double eigenvalue, but its eigenspace is
of dimension 1.
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With motivations from topological classifications of non-Hermitian gapless
quantum mechanical systems and their applications to materials science, let us
consider the real matrix (a Hamiltonian)

—f2 —J3

It satisfies a variant of Hermitian symmetry such that nHn ' = H' where
f2

H=H(fs fs) = [f3 fz]

n= [_01 (1)] is a Minkowski-like metric form.

Its characteristic polynomial

f3—w f2
—f —fz—w

has a double root if and only if fo==£f3 . As a parameter space for this

'J+ﬁﬁ

Hamiltonian H, the f.fs-plane becomes a

2. Over {f. # s}, H has 2 distinct eigenvalues. When |f| < |fs, the
eigenvectors are real. When |fz| > [fs|, the eigenvectors are not real.
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Question. We would like to classify, up to “intersection” homotopy, the loops
in this stratified space, according to how the eigenvectors evolve along each
loop and the resulting monodromy. What would be computable algebraic
invariants for such a “stratified vector bundle?”

Another example of non-Hermitian “3-band systems” is also of particular
interest to us. One such Hamiltonian takes the form
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Hj3 = —f1 fi—fz  f3
L fs o =T

Governing eigenvalues with multiplicity, the
discriminant surface of its characteristic polynomial
is a pair of swallowtails in the fif.fs-space:
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The equation for this surface is a non-homogeneous
real polynomial in f1, f2, f3 of degree 6.

Swallowtail couple sw2
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Question. We would like to classify, up to “intersection” homotopy, the loops
in this stratified space, according to how the eigenvectors evolve along each
loop and the resulting monodromy. What would be computable algebraic
invariants for such a “stratified vector bundle?”

Another example of non-Hermitian “3-band systems” is also of partlcular
interest to us. One such Hamiltonian takes the form =

(11— f1— fo fi f2
Hj3 = — 1 fi—fs f3
L fs o =T

Governing eigenvalues with multiplicity, the
discriminant surface of its characteristic polynomial
is a pair of swallowtails in the fif.fs-space:

V. I. Arnold’s tombstone at the
Novodevichy Cemetery in Moscow
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Remarks on eigenvalues and eigenvectors of Hermitian matrices,
Berry phase, adiabatic connections and quantum Hall effect, 1995.

Also: Polymathematics, 2000.
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A Higgs bundle (E,@)—C is
essentially a family of matrices

Peter Higgs (bosons)

Nigel Hitchin 1987
Carlos Simpson

C compact Riemann surface (or more generally Kahler manifold)
E holomorphic vector bundle

¢ Higgs field: a holomorphic 1-form taking values in the

bundle of endomorphisms of E such that p A =0
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Recall that non-Hermitian 2-band systems have a stratified parameter plane:
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eigenspace is 2-dimensional.
1. Over {f. = +fs} — {(0, 0)}, again H has a double
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H(f, f3) = [

Recall that non-Hermitian 2-band systems have a stratified parameter plane:
eigenspace is 2-dimensional.
1. Over {f. = £fs} — {(0, 0)}, again H has a double

f2
fs f ] \/
f3
eigenvalue, but its eigenspace is of dimension 1. /\

—f2 —J3
0. Over {(0, 0)}, H has a double eigenvalue, whose

2. Over {f. # +fs}, H has 2 distinct eigenvalues. When |fz| < [fs|, the eigenvectors are
real. When |f2| > |fs|, the eigenvectors are not real.

A Higgs bundle (E,@)—C is

essentially a family of matrices,
and if you try to diagonalize one
you get a speciral cover.

Portrait from Kienzle and Rayan,
Hyperbolic band theory through Higgs
bundles, Adv. Math., 2022.

Hyperbolic metric on the base C. Kollar et al., Nature, 2019.
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Question. How to compute the topological charge?

In progress: Need to compute the of the
stratified moduli Space. Gajer, The intersection Dold—-Thom theorem,
Topology, 1996. (Ph.D. student of Blaine Lawson, 1993)

Goresky and MacPherson, 1974.
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Question. How to compute the topological charge?

In progress: Need to compute the intersection fundamental group of the
stratified moduli space.

- 0’th intersection homology group recovers the Hermitian 2-band charge of Z.
- Need compatibility with our earlier ad hoc classification:

m (S'VS'I VS 2 ZxZ+Z

Question. How does the eigenframe rotation in the non-Hermitian case relate
to that in the Hermitian case?

Conjecture. It does so through a deformation (or homotopy) of Riemannian
metrics, i.e., a 1-parameter continuous family {n:}o<t<1 of metrics with

it
_ |e 0
Mt [ 0 1]

Here is a video of the eigenbundle deformation: https://yifeizhu.github.io/swallowtail/deform.mp4
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Question. How does eigenframe rotate in non-Hermitian 3-band systems?

In progress: We have investigated slices of the 3D moduli spaces containing
swallowtails, and discovered cancellation of charges as well as reduction to the

2-band case.

Example (Swallowtail quadruple sw4).
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More precisely, e.qg., the bulk—edge correspondence relates a topological invariant of the bulk
insulator (the first Chern number of the Bloch eigenbundle, also called the Hall conductance)
with an invariant of a surface state (the winding number about the Fermi energy in the complex
Bloch variety). Moreover, any topological invariant is determined from the band structure over
the , I.e., the fiber above 0 in the Hitchin base.
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Bulk-edge correspondence

We have been experimentally investigating the for
hypersurface singularities stemmed from our theoretical analysis with the
swallowtail moduli spaces, i.e., the topology of bulk states (parametrized
system) corresponds to the numerology of edge states (moduli space).

There has not been a rigorous mathematical explanation for such a
correspondence in general, but it is reminiscent of the
Indeed, sit on one side of the geometric Langlands duallty'

We’ve at least found some testing ground.
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Thank you.



