MAT8021, Algebraic Topology

Assignment 8

Two links in \mathbb{R}^3

- 1. The left-hand portion of the picture is a union L_1 of two disconnected circles in \mathbb{R}^3 . Show that the complement $X = \mathbb{R}^3 \setminus L_1$ retracts down onto $S^2 \vee S^2 \vee S^1 \vee S^1$. Use this to show that the cup product of any two elements in $H^1(X)$ is zero.
- 2. The right-hand portion of the picture is a link L_2 in \mathbb{R}^3 . Show that the complement $Y = \mathbb{R}^3 \setminus L_2$ has the same cohomology as the space X from the previous problem. (Possible hint: Show that the space retracts down onto something gotten by gluing two tori together along $S^1 \vee S^1$. Don't appeal to any major duality theorems like Alexander duality.)
- 3. Show that the cup product of the two generators in $H^1(Y)$ is nonzero. (Possible hint: Compare it with a torus.)
- 4. Given a map $f: X \to Y, b \in H^p(Y)$, and $x \in H_n(X)$, show that

$$f_*(f^*(b) \frown x) = b \frown f_*(x)$$

(This formula goes by many names: the "projection formula," or "Frobenius reciprocity." The special case when p = n gives $\langle f^*b, x \rangle = \langle b, f_*x \rangle$ for the Kronecker pairing $\langle -, - \rangle \colon H^p(X; R) \otimes H_p(X; R) \to R$ induced by the evaluation map.)

- 5. Let *I* be a directed set, *L* an abelian group, and $A: I \to A\mathbf{b}$ an *I*-directed diagram of abelian groups, with bonding maps $f_{ij}: A_i \to A_j$ for $i \leq j$. Show that a map $A \to c_L$, the constant functor at *L*, given by compatible maps $f_i: A_i \to L$, is a direct limit if and only if
 - (a) for any $b \in L$ there exists $i \in I$ and $a_i \in A_i$ such that $f_i a_i = b$, and
 - (b) for any $a_i \in A_i$ such that $f_i a_i = 0 \in L$, there exists $j \ge i$ such that $f_{ij}a_i = 0 \in A_j$.

6. (a) Embed \mathbb{Z}/p^n into \mathbb{Z}/p^{n+1} by sending 1 to p, and write $\mathbb{Z}_{p^{\infty}}$ for the union. It is called the *Prüfer group* (at p). Show that $\mathbb{Z}_{p^{\infty}} \cong \mathbb{Z}[1/p]/\mathbb{Z}$ and that

$$\mathbb{Q}/\mathbb{Z} \cong \bigoplus_p \mathbb{Z}_{p^{\infty}}$$

where the sum runs over the prime numbers.

- (b) Compute $\mathbb{Z}_{p^{\infty}} \otimes_{\mathbb{Z}} A$ for A each of the following abelian groups: \mathbb{Z}/n , $\mathbb{Z}[1/q]$ (for q a prime), and $\mathbb{Z}_{q^{\infty}}$ (for q a prime).
- (c) Compute $\operatorname{Tor}_{1}^{\mathbb{Z}}(M, \mathbb{Z}[1/p])$ and $\operatorname{Tor}_{1}^{\mathbb{Z}}(M, \mathbb{Z}_{p^{\infty}})$ for any abelian group M in terms of the self-map $p: M \to M$.
- 7. Show that if $f: X \to Y$ induces an isomorphism in homology with coefficients in the prime fields \mathbb{F}_p (for all primes p) and \mathbb{Q} , then it induces an isomorphism in homology with coefficients in \mathbb{Z} .
- 8. Suppose X is a path-connected (based) space, M is a compact orientable manifold, and $f: S^1 \wedge X \to M$ is a map inducing an isomorphism on homology with integer coefficients. Show that X has the same homology as a sphere S^n . Hint: Besides Poincaré duality, need to use the fact that cup product is 0 on $S^1 \wedge X$ (recall relative cup products).
- 9. Suppose M is a compact oriented 4n-dimensional manifold with $H^{2n}(M;\mathbb{Z})$ torsion free. Poincaré duality gives us a pairing

$$x, y \mapsto x \cdot y \colon H^{2n}(M; \mathbb{Z}) \times H^{2n}(M; \mathbb{Z}) \to \mathbb{Z}$$

which is distributive and satisfies $x \cdot y = y \cdot x$. If e_1, \ldots, e_g are a basis of $H^{2n}(M;\mathbb{Z})$, there is a symmetric matrix $A = (a_{ij})$ such that $e_i \cdot e_j = a_{ij}$. If we choose a different basis $f_k = \sum_i c_{ki}e_i$, we get a different matrix B. Express B in terms of A using matrix multiplication.

10. Suppose M and N are *n*-dimensional compact manifolds with orientations $[M] \in H_n(M; \mathbb{Z})$ and $[N] \in H_n(N; \mathbb{Z})$. We define the *degree* of a map $f: M \to N$ to be the unique integer a such that $f_*([M]) = a[N]$.

Show that the degree of a map $\mathbb{CP}^2 \to \mathbb{CP}^2$ is always a square.

11. One statement of Poincaré duality for manifolds with boundary says: If M is a compact manifold with boundary ∂M , there are isomorphisms

$$D: H^p(M; \mathbb{Z}/2) \to H_{n-p}(M, \partial M; \mathbb{Z}/2)$$

(M is not necessarily orientable).

Use this to show that there is no compact 3-dimensional manifold W with boundary $\partial W = \mathbb{RP}^2$.