MAT8021, Algebraic Topology

Assignment 6

Due in-class on Friday, May 9

Only hand in the first five questions.

- 1. Find all (2,3)-shuffles α and give formulas for the associated shuffle maps $f_{\alpha} \colon \Delta[5] \to \Delta[2] \times \Delta[3]$.
- 2. Find recursive formulas for $\dim_{\mathbb{Z}/2} H_k((\mathbb{RP}^2)^n; \mathbb{Z}/2)$ in terms of k and n.
- 3. Find a pair of chain complexes C_* and D_* such that the tensor product chain complex $C_* \otimes D_*$ does not satisfy the Künneth formula, i.e., there is some n such that

$$H_n(C_* \otimes D_*) \not\cong \bigoplus_{p+q=n} H_p(C_*) \otimes H_q(D_*) \oplus \bigoplus_{p+q=n-1} \operatorname{Tor} \left(H_p(C_*), H_q(D_*) \right)$$

- 4. Find the homology of the complex Grassmannian $\operatorname{Gr}_{\mathbb{C}}(3,5)$.
- 5. There is a continuous map from one Grassmannian $\operatorname{Gr}(k, n)$ to the next $\operatorname{Gr}(k, n+1)$ by sending a plane $V \subset \mathbb{R}^n$ to the plane

$$\{(0, x_1, \dots, x_n) \mid (x_1, \dots, x_n) \in V\}$$

Show that the image consists of a union of Schubert cells, and find the dimension of the smallest cell not in the image.

Here is a series of exercises/examples on product structure in homology.

1. A differential graded algebra is a chain complex A_* with associative multiplication maps $: A_p \times A_q \to A_{p+q}$ satisfying the Leibniz rule

$$\partial(x \cdot y) = (\partial x) \cdot y + (-1)^p x \cdot (\partial y)$$

for $x \in A_p, y \in A_q$.

Show that given elements $[x] \in H_p(A)$ and $[y] \in H_q(A)$, we get a welldefined element $[x] \cdot [y]$ in $H_{p+q}(A)$. Show that this makes $H_*(A)$ into a graded ring. 2. Recall that a *topological group* G is a space with continuous maps

$\mu\colon G\times G\to G$	multiplication
$\nu\colon G\to G$	inverse
$\iota\colon \{*\}\to G$	identity

so that on the underlying set, we get a group with $g \cdot h = \mu(g, h), g^{-1} = \nu(g)$, and $e = \iota(*)$.

- (a) Show that $H_*(G)$ is a ring by defining a multiplication on $C_*(G)$. This is called a *Pontryagin ring* structure on $H_*(G)$.
- (b) If G is abelian, show that $C_*(G)$ (and hence $H_*(G)$) is graded commutative, i.e., $x \cdot y = (-1)^{|x||y|} y \cdot x$ for any $x, y \in C_*(G)$, where |x| and |y| denote the degrees of x and y respectively.
- 3. (a) Let $G = \mathbb{R}$. What is the Pontryagin ring structure on $H_*(\mathbb{R})$?
 - (b) Show that $H_*(S^1)$ is isomorphic to $\mathbb{Z}[\alpha]/(\alpha^2)$ with $|\alpha| = 1$.
 - (c) More generally, it turns out that

$$H_*(S^1 \times S^1) \cong \mathbb{Z}[\alpha, \beta]/(\alpha^2, \beta^2, \alpha\beta + \beta\alpha) \eqqcolon \Lambda[\alpha, \beta]$$

is an exterior algebra on α, β with $|\alpha| = |\beta| = 1$. Similarly $H_*(S^1 \times S^1 \times S^1) \cong \Lambda[\alpha, \beta, \gamma]$, etc. In contrast, if $G = S^3$ regarded as the unit quaternions, what is the Pontryagin ring structure on $H_*(S^3)$?

- 4. Let G = SO(3) be the 3×3 matrices over \mathbb{R} with determinant 1.
 - (a) Viewing it as the group of rotations in \mathbb{R}^3 , describe a homeomorphism $\mathrm{SO}(3) \cong \mathbb{RP}^3$ by defining a map $D^3 \to \mathrm{SO}(3)$ that factors through \mathbb{RP}^3 .
 - (b) Give a presentation for $H_*(SO(3))$ as a ring.
 - (c) What about $H_*(SO(3); \mathbb{Z}/2)$? In particular, show that the square of the generator of $H_1(SO(3); \mathbb{Z}/2)$ equals zero.
- 5. Suppose G is a topological group and X is a topological space with a continuous map $G \times X \to X$ which is an action of G. Show that $H_*(X)$ becomes a left module over the Pontryagin ring $H_*(G)$.

Here is a series of exercises on *intersection homology* (Greg Friedman's book is recommended for further reading).¹ Let X be a simplicial complex.

• A *filtration* of X is a sequence of subcomplexes of X:

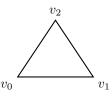
$$X = X^n \supseteq X^{n-1} \supseteq \cdots \supseteq X^2 \supseteq X^1 \supseteq X^0 \supseteq X^{-1} = \emptyset$$

Each connected component of $X^i - X^{i-1}$ is called a *stratum*.

¹Thanks to Zhou Fang for supplying it.

- Let \mathcal{F} be the set of strata of X. A *perversity* on X is a function $\bar{p}: \mathcal{F} \to \mathbb{Z}$ such that $\bar{p}(S) = 0$ if $S \subset X^n X^{n-1}$.
- An *i*-simplex σ is said to be \bar{p} -allowable if $\dim(\sigma \cap S) \leq \dim(\sigma) + \dim(S) n + \bar{p}(S)$ for every stratum S of X.
- An *i*-chain ζ is said to be \bar{p} -allowable if every simplex of ζ and of $\partial \zeta$ is \bar{p} -allowable.
- Define the group $I^{\bar{p}}C_i(X)$ to be the subset of $C_i(X)$ consisting of \bar{p} allowable *i*-chains. It can be shown that the chain complex $(C_*(X), \partial)$ restricts to a chain complex $(I^{\bar{p}}C_*(X), \partial)$. The Goresky-MacPherson intersection homology groups are defined to be $I^{\bar{p}}H_i(X) := H_i(I^{\bar{p}}C_*(X))$.

Now, let X be the boundary of the simplex $[v_0, v_1, v_2]$. Suppose that X is filtered as $\{v_2\} = X^0 \subset X^1 = X$.



- 1. Compute the intersection homology of this stratified space. (Hint: Consider the three cases of $\bar{p}(\{v_2\}) > 0$, $\bar{p}(\{v_2\}) = 0$, and $\bar{p}(\{v_2\}) < 0$.)
- 2. Compute the intersection homology of $S^1 \vee S^1$ with a stratification by its singular point similar to the above.
- 3. Is the intersection homology defined above independent of choice of a filtration? Give a proof or a counterexample.

The following illustrates the basic idea of *persistent homology* by a toy example. Suppose that we are given 3 data points in a Euclidean plane at the vertices of an equilateral triangle as above. For t > 0, draw a disc of radius t around each point. Construct the Čech complex X_t as a simplicial complex with

- a 0-simplex for each data point,
- a 1-simplex connecting each pair of 0-simplices whose associated discs intersect, and
- a 2-simplex for each triple of 0-simplices whose associated discs have a triple overlap (etc., inductively).

Assuming that the edge length of the triangle equals 1, compute the persistent homology $\{H_n(X_t)\}_{t>0}$. Illustrate your results by drawing the barcodes for each n: each bar corresponds to a generator of the homology group and goes along the *t*-axis, with its left end at the time when it is born and its right end when it dies. How would you interpret them?