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Abstract—In artificial-intelligence-aided signal processing, existing1

deep learning models often exhibit a black-box structure. The integra-2

tion of topological methods serves a dual purpose of making models3

more interpretable as well as extracting structural information from time-4

dependent data for smarter learning. Here, we provide a transparent5

and broadly applicable methodology, TopCap, to capture topological6

features inherent in time series for machine learning. Rooted in high-7

dimensional ambient spaces, TopCap is capable of capturing features8

rarely detected in datasets with low intrinsic dimensionality. Compared9

to prior approaches, we obtain descriptors which probe finer information10

such as the vibration of a time series. This information is then vectorised11

and fed to multiple machine learning algorithms. Notably, in classifying12

voiced and voiceless consonants, TopCap achieves an accuracy ex-13

ceeding 96%, significantly outperforming traditional convolutional neural14

networks in both accuracy and efficiency, and is geared towards design-15

ing topologically enhanced convolutional layers for deep learning speech16

and audio signals.17

1 INTRODUCTION18

IN 1966, Mark Kac asked the famous question: “Can you19

hear the shape of a drum?” To hear the shape of a drum20

is to infer information about the shape of the drumhead21

from the sound it makes, using mathematical theory. In this22

article, we venture to flip and mirror the question across23

senses and address instead: “Can we see the sound of a24

human speech?”25

The artificial intelligence (AI) advancements have led to26

a widespread adoption of voice recognition technologies,27

encompassing applications such as speech-to-text conver-28

sion and music generation. The rise of topological data29

analysis (TDA) [1] has integrated topological methods into30

many areas including AI [2, 3], which makes neural net-31

works more interpretable and efficient, with a focus on32

structural information. In the field of voice recognition33

[4, 5], more specifically consonant recognition [6, 7, 8, 9,34

10], prevalent methodologies frequently revolve around the35

analysis of energy and spectral information. While topo-36

logical approaches are still rare in this area, we combine37

TDA and machine learning to obtain a classification for38

speech data, based on geometric patterns hidden within39

phonetic segments. The method we propose, TopCap (re-40

ferring to capturing topological structures of data), is not41

only applicable to audio data but also to general-purpose42

time series data that require extraction of structural infor-43

mation for machine learning algorithms. Initially, we endow44

phonetic time series with point-cloud structure in a high- 45

dimensional Euclidean space via time-delay embedding 46

(TDE, see Fig. 1a) with appropriate choices of parameters. 47

Subsequently, 1-dimensional persistence diagrams are com- 48

puted using persistent homology (see Sec. S.2.2 for an expla- 49

nation of the terminologies). We then conduct evaluations 50

with nine machine learning algorithms, in comparison with 51

a convolutional neural network (CNN) without topological 52

inputs, to demonstrate the significant capabilities of TopCap 53

in the desired classification. 54

Conceptually, TDA is an approach that examines data 55

structure through the lens of topology. This discipline was 56

originally formulated to investigate the shape of data, par- 57

ticularly point-cloud data in high-dimensional spaces [11]. 58

Characterised by a unique insensitivity to metrics, robust- 59

ness against noise, invariance under continuous deforma- 60

tion, and coordinate-free computation [1], TDA has been 61

combined with machine learning algorithms to uncover in- 62

tricate and concealed information within datasets [12, 3, 13, 63

14, 15, 16]. In these contexts, topological methods have been 64

employed to extract structural information from the dataset, 65

thereby enhancing the efficiency of the original algorithms. 66

Notably, TDA excels in identifying patterns such as clusters, 67

loops, and voids in data, establishing it as a burgeoning tool 68

in the realm of data analysis [17]. Despite being a nascent 69

field of study, with its distinctive emphasis on the shape 70

of data, TDA has led to novel applications in various far- 71

reaching fields, as evidenced in the literature. These include 72

image recognition [18, 19, 20], time series forecasting [21] 73

and classification [22], brain activity monitoring [23, 24], 74

protein structural analysis [25, 26], speech recognition [27], 75

signal processing [28, 29], neural networks [30, 31, 32, 2], 76

among others. It is anticipated that further development of 77

TDA will pave a new direction to enhance numerous aspects 78

of daily life. 79

The task of extracting features that pertain to structural 80

information is both intriguing and formidable. This process 81

is integral to a multitude of practical applications [33, 34, 82

35, 36], as scholars strive to identify the most effective 83

representatives and descriptors of shape within a given 84

dataset. Despite the fact that TDA is specifically designed 85

for shape capture, there are several hurdles that persist in 86

this newly developed field of study. These include (1) the 87

nature and sensitivity of descriptors obtained by methods in 88

TDA, (2) the dimensionality of the data and other parameter 89
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Fig. 1: Illustrations of methodology. a, Time-delay embedding (dimension=3, delay=10, skip=1) of f(tn) = sin(2tn) −
3 sin(tn), with tn = π

50
n (0 ⩽ n ⩽ 200). Resulting point clouds lay on a closed curve in 3-dimensional Euclidean space.

The colour indicates their original locations in the time series. b, A topological space and its triangulation. On the left
is a topological space consisting of a 1-dimensional sphere (i.e., a circle) and a 2-dimensional sphere with a single point
of contact, denoted as S

1 ∨ S
2. The right depicts a triangulation of this topological space. c, Average temperature in the

U.S. with monthly values (dark blue dots) and yearly values (green curve). The left panel shows a single-year section of
average temperature. d, Computing PH. The four plots consecutively show how a diagram or a barcode is computed:
Connect each pair of points with a distance less than ϵ by a line segment, fill in each triple of points with mutual distances
less than ϵ with a triangular region, etc., and compute the corresponding homology groups. In this way, as “time” ϵ
increases, points in the diagram or intervals in the barcode record the “birth” and “death” of each generator of a homology
group, i.e., the occurrence and disappearance of a loop (or a higher-dimensional hole), thereby revealing the essential
topological features of the point cloud that persist. e, Characterising the vibration of a time series in terms of its variability
of frequency, amplitude, and average line. f, Commonly used representations for PH, with an example of 100 points
uniformly distributed over a bounded region in 2D Euclidean space.

choices, (3) the vectorisation of topological features, and (4)90

computational cost. These challenges will be elaborated in91

the following paragraphs within this section. Subsequently,92

we will demonstrate how our proposed methodology, Top-93

Cap, addresses these challenges through an application to94

consonant classification.95

When applying TDA, the most imminent question is to96

comprehend the characteristics and nature of descriptors97

extracted via topological methods. TDA is grounded in the98

pure-mathematical field of algebraic topology (AT) [37, 38],99

with persistent homology (PH) being its primary tool [39,100

40]. While AT can quantify topological information to a101

certain extent [38, 1, 17], it is vitally important to understand102

both the capabilities and limitations of TDA. Generally103

speaking, TDA methods distinguish objects based on con-104

tinuous deformation. For example, PH cannot differentiate a105

disk from a filled rectangle, given that one can continuously106

deform the rectangle into a disk by pulling out its four107

edges. In contrast, PH can distinguish between a filled rect-108

angle and an unfilled one due to the presence of a “hole” in109

the latter, preventing a continuous deformation between the110

two. In certain circumstances, these methods are considered111

excessively ambiguous to capture the structural information 112

in data, thereby necessitating a more precise descriptor of 113

shapes. To draw an analogy, TDA can be conceptualised 114

as a scanner with diverse inputs encompassing time series, 115

graphs, pictures, videos, etc. The output of this scanner is a 116

multiset of intervals in the extended real line, referred to as a 117

persistence diagram (PD)1 or a persistence barcode (PB) [11, 118

41, 42] (cf. Fig. 1f). In particular, by maximal persistence (MP) 119

we mean the maximal length of the intervals. The precision 120

of the topological descriptor depends on two factors: (1) 121

the association of a topological space, i.e., the process of 122

transforming the input data into a topological space (see 123

Fig. 1b for a simplicial-complex representation of spaces; 124

typically, the original datasets are less structured, and one 125

should find a suitable representation of the data), and (2) 126

the vectorisation of PD or PB, i.e., how to perform statistical 127

inference with PD/PB. Despite there are many theoretical 128

results which provide a solid foundation for TDA, few can 129

elucidate the practical implications of PD and PB. For exam- 130

1In this article, we shall freely use the usual birth-by-death PDs and
their birth-by-lifetime variants, whichever better serve our purposes.
See Sec. S.2.2 for details.
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Fig. 2: The varied shapes of vowels, voiced consonants, and voiceless consonants. a, the left 3 panels and the right 3 panels
depict 2 vowels, respectively. For each, the first picture is the time series of the vowel, the second picture corresponds to the
3-dimensional principal component analysis of the point cloud resulting from performing TDE (dimension=100, delay=1,
skip=1) on this time series, and the third picture is the PD of this point cloud. b, The analogous features for 2 voiced
consonants. c, Those for 2 voiceless consonants.

ple, what does it mean if many points are distributed near131

the birth–death diagonal line in a PD? In most cases, these132

points are regarded as descriptors of noise and are often133

disregarded if possible. Consequently, the TDA scanner can134

be seen as an imprecise observer, overlooking much of the135

information contained in less significant regions. In this136

article, we present an example of simulated time series to137

demonstrate that points distributed in such regions indeed138

encode vibration patterns of the time series, and a different139

distribution in these regions leads to a different pattern140

of vibration. This serves as a motivation for proposing141

TopCap and is further discussed in Sec. 2.1. It turns out that142

topological descriptors can be sharpened by noting patterns143

in these regions.144

In view of the capability of topological methods to dis-145

cern vibration patterns in time series, we apply them to clas-146

sify consonant signals into voiced and voiceless categories.147

As a first demonstration of our findings, to visualise vowels,148

voiced consonants, and voiceless consonants in TDE and149

PD, see Fig. 2 (cf. Sec. S.1 for details of phonetic categories).150

The first challenge, as many researchers may encounter151

when applying topological methods, is to determine the152

dimension of point clouds derived from input data [43, 44,153

45]. This essentially involves transforming the input into a154

topological space. In situations where the dimensionality155

of the data is large, researchers often project the data into156

a lower-dimensional topological space to facilitate visuali-157

sation and reduce computational cost [23, 24, 46]. On the158

other hand, as in this study and other applications with time159

series analysis [47, 48, 49, 50, 22, 51, 27], low-dimensional160

data are embedded into a higher-dimensional space. In161

both scenarios, deciding on the data dimensionality is both162

critical and challenging. Often, tuning the dimension is a163

tremendous task. In Sec. 3 of Discussion below, we delve164

into the issue of data dimensionality. In our case, as it might 165

seem counterintuitive compared to most algorithms, when 166

the data are embedded into a higher-dimensional space, the 167

computation will be a little faster, the point cloud appears 168

smoother and more regular, and most importantly, more 169

salient topological features can be spotted, which seldom 170

happen in lower-dimensional spaces. When encountering 171

the dimensionality of data, researchers would think of the 172

well-known curse of dimensionality [52]: As a typical algo- 173

rithm grapple, with the increase of dimension, more data 174

are needed to be involved, often growing exponentially 175

and thereby escalating computational cost. Even worse, the 176

computational cost of the algorithm itself normally rises as 177

the dimension goes higher. However, topological methods 178

do not necessarily prefer data of lower dimension. For com- 179

puting PH (see Fig. 1d for the process of computing PD/PB 180

from point clouds), a commonly used algorithm [53, 54] 181

sees complexity grow with an increase in the number n of 182

simplices during the process, with a worst-case polynomial 183

time-complexity of O(n3). As such, the computational cost 184

is directly related to the number of simplices formed during 185

filtration. Our observation shows that computation time 186

may not increase much given an increase of dimension of 187

data, because the latter may have little effect on the size 188

(i.e., number of points) of the point cloud and thus neither 189

on the number of simplices formed during filtration. 190

Having obtained a suitable topological space from input 191

data, one can derive a PD/PB from the topological space, 192

which constitutes a multiset of intervals. The subsequent 193

challenge lies in the vectorisation of the PD/PB for its 194

integration into a machine-learning algorithm. The vec- 195

torisation process is essentially linked to the construction 196

of the topological space, as the combination of different 197

methods for constructing the topological space and vectori- 198
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sation together determine the descriptor utilised in machine199

learning. A plethora of vectorisation methods exist, such200

as persistence landscape (PL) [55] and persistence image201

(PI) [56], among others, as documented in various studies202

[40, 57] (cf. Fig. 1f). The selection of these methods requires203

careful consideration. In Sec. 4 of Methods, we employ MP204

and its corresponding birth time as two features. These205

have been integrated into nine traditional machine learn-206

ing algorithms to classify voiced and voiceless consonants,207

yielding an accuracy that exceeds 96% with each algorithm.208

This vectorisation method is quite simple, primarily due to209

our construction of topological spaces from phonetic time210

series, as detailed in the Method section. This construction211

enables PH to capture significant topological features within212

the time series. In Sec. 2.1, we also observe a pattern of213

vibration which could potentially be vectorised by PI into a214

matrix. As one of its strengths, PI emphasises regions where215

the weighting function scores are high, which makes it a216

computationally flexible method. Future work may involve217

a more precise recognition of such patterns using PI.218

An outline for the remainder of this article goes as fol-219

lows. Sec. 1.1 gives an overview of closely related works in220

the field, with an extended commentary relegated to Sec. S.4.221

Sec. 2 of Results provides in more detail the motivations222

for TopCap, presents final results of classifying voiced and223

voiceless consonants, including a comparison with tradi-224

tional deep learning neural networks, and explains our225

purposes in practical use. Sec. 3 of Discussion highlights im-226

portant parameter setups and indicates potential directions227

for future work, with further discussion in Sec. S.3. Sec. 4228

of Methods contains a detailed template of TopCap. Sec. 5229

gives the data and code sources for our experiments.230

1.1 Related works231

Time series analysis [58] is a prevalent tool for various232

applied sciences. The recent surge in TDA has opened new233

avenues for the integration of topological methods into time234

series analysis [21, 59, 60]. Much literature has contributed235

to the theoretical foundation in this area. For example,236

theoretical frameworks for processing periodic time series237

have been proposed by Perea and Harer [61], followed by238

their and their collaborators’ implementation in discovering239

periodicity in gene expressions [62]. Their article [61] stud-240

ied the geometric structure of truncated Fourier series of a241

periodic function and its dependence on parameters in time-242

delay embedding (TDE), providing a solid background for243

TopCap. In addition to periodic time series, towards more244

general and complex scenarios, quasi-periodic time series245

have also been the subject of scholarly attention. Research246

in this direction has primarily concentrated on the selection247

of parameters for geometric space reconstruction [63] and248

extended to vector-valued time series [64].249

In this article, a topological space is constructed from250

data using TDE, a technique that has been widely em-251

ployed in the reconstruction of time series (see Fig. 1a and252

cf. Sec. S.2.1 for more background). Thanks to the topologi-253

cal invariance of TDE, the general construction of simplicial-254

complex representation (see Fig. 1b) and computation of PH255

from point clouds (see Fig. 1d) apply to time series data,256

although this transformation involves subtle technical issues 257

in practice. For instance, Emrani et al. utilised TDE and PH 258

to identify the periodic structure of dynamical systems, with 259

applications to wheeze detection in pulmonology [47]. They 260

selected the embedded dimension d as 2, and their delay pa- 261

rameter τ was determined by an autocorrelation-like (ACL) 262

function, which provided a range for the delay between the 263

first and second critical points of the ACL function. Pereira 264

and de Mello proposed a data clustering approach based 265

on PD [48]. The data were initially reconstructed by TDE, 266

with d = 2 and τ = 3, so as to obtain the corresponding 267

PD, which was then subjected to k-means clustering. The 268

delay τ was determined using the first minimum of an 269

auto mutual information, and the embedded dimension d 270

was set to be 2 as using 3 dimensions did not significantly 271

improve the results. Khasawneh and Munch introduced a 272

topological approach for examining the stability of a class 273

of nonlinear stochastic delay equations [49]. They used false 274

nearest neighbours to determine the embedded dimension 275

d = 3 and chose the delay to equal the first zeros of the 276

ACL function. Subsequently, the longest persistence lifetime 277

in PD was used as a vectorisation to quantify periodicity. 278

Umeda focused on a classification problem for volatile time 279

series by extracting the structure of attractors, using TDA 280

to represent transition rules of the time series [22]. He 281

assigned d = 3, τ = 1 in his study and introduced a novel 282

vectorisation method, which was then applied to a con- 283

volutional neural network (CNN) to achieve classification. 284

Gidea and Katz employed TDA to detect early signs prior 285

to financial crashes [51]. They studied multi-dimensional 286

time series with τ = 1 and used persistence landscape as 287

a vectorisation method. For speech recognition, Brown and 288

Knudson examined the structure of point clouds obtained 289

via TDE of human speech signals [27]. The TDE parameters 290

were set as d = 3, τ = 20, after which they examined the 291

structure of point clouds and their corresponding PB. 292

Upon reviewing the relevant literature, we see that 293

currently there is no general framework for systematically 294

choosing d and τ , and researchers often have to make 295

choices in an ad hoc fashion for practical needs. While the 296

TDE–PH topological approach to handling time series data 297

is not new, TopCap extracts features from high-dimensional 298

spaces. For example, in our experiment d = 100. It happens 299

in some cases that in a low-dimensional space, regardless 300

of how optimal the choice of τ is, the structure of the time 301

series cannot be adequately captured. In contrast, given a 302

high-dimensional space, feature extraction from data be- 303

comes simpler. Of course, operating in a high-dimensional 304

space comes with its own cost. For example, the adjustment 305

of τ then requires careful consideration. Nonetheless, it also 306

offers advantages, which we will elucidate step by step in 307

the subsequent sections. 308

2 RESULTS 309

This research drew inspiration from Carlsson and his col- 310

laborators’ discovery of the Klein-bottle distribution of high- 311

contrast, local patches of natural images [20], as well as their 312

subsequent recent work on topological CNNs for learning 313

image and even video data [2]. By analogy, we aim to 314

understand a distribution space for speech data, even a 315
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directed graph structure on it modeling the complex net-316

work of speech-signal sequences for practical purposes such317

as speaker diarisation, and how these topological inputs318

may enable smarter learning (cf. Sec. S.1). Here are some319

of our first findings in this direction, set in the context of320

topological time series analysis.321

2.1 Detection of vibration patterns322

The impetus behind TopCap lies in an observation of how323

PD can capture vibration patterns within time series. To324

begin with, our aim is to determine which sorts of in-325

formation can be extracted using topological methods. As326

the name indicates, topological methods quantify features327

based on topology, which distinguishes spaces that cannot328

continuously deform to each other. In the context of time329

series, we conduct a series of experiments to scrutinise the330

performance of topological methods, their limitations as331

well as their potential.332

Given a periodic time series, its TDE target is situated on333

a closed curve (i.e., a loop) in a sufficiently high-dimensional334

Euclidean space (see Fig. 1a). Despite the satisfactory point-335

cloud representation of a periodic time series, it remains336

rare in practical measurement and observation to capture337

a truly periodic series. Often, we find ourselves dealing338

with time series that are not periodic yet exhibit certain339

patterns within some time segments. For instance, Fig. 1c340

portrays the average temperature of the United States from341

the year 2012 to 2022, as documented in [65]. Although the342

temperature does not adhere strictly to a periodic pattern,343

it does display a noticeable cyclical trend on an annual344

basis. Typically, the temperature tends to rise from January345

to July and fall from August to December, with each year346

approximately comprising one cycle of the variation pat-347

tern. One strength of topological methods is their ability348

to capture “cycles”. A question then arises naturally: Can349

these methods also capture the cycle of temperature as well350

as subtle variations within and among these cycles? To351

be more precise, we first observe that variations occur in352

several ways. For instance, the amplitude (or range) of the353

annual temperature variation may fluctuate slightly, with354

the maximum and minimum annual temperatures varying355

from year to year. Additionally, the trend line for the annual356

average temperature also shows fluctuations, such as the357

average temperature in 2012 surpassing that of 2013. Despite358

each year’s temperature pattern bearing resemblance to359

that depicted in the left panel in Fig. 1c (representing a360

single cycle of temperature within a year), it may be more361

beneficial for prediction and response strategies to focus on362

the evolution of this pattern rather than its specific form. In363

other words, attention should be directed towards how this364

cycle varies over the years. This leads to several questions.365

How can we consistently capture these subtle changes in366

the pattern’s evolution, such as variations in the frequency,367

amplitude, and trend line of cycles? How can we describe368

the similarities and differences between time series that369

possess distinct evolutionary trajectories? In applications,370

these are crucial inquiries that warrant further exploration.371

To address these questions, we propose three kinds of372

“fundamental variations” which are utilised for depicting373

the evolutionary trace of a time series. Consider a series of374

a periodic function f(tn) = f(tn + T ), where T is a period.375

(1) Variation of frequency. Denote the frequency by F = T−1. 376

Note that the series is not necessarily periodic in the 377

mathematical sense. Rather, it exhibits a recurring pat- 378

tern after the period T . For instance, the average tem- 379

perature from Fig. 1c is not a periodic series, but we 380

consider its period to be one year since it follows a 381

specific pattern, i.e., the one displayed in the left panel of 382

Fig. 1c. This 1-year pattern always lasts for a year as time 383

progresses. Hence, there is no frequency variation in this 384

example. This type of variations can be represented as 385

g1(tn) = f
(

F (tn) · tn
)

, where F (tn) is a series repre- 386

senting the changing frequency. This type of variation 387

occurs, for example, when one switches their vocal tone 388

or when one’s heartbeats experience a transition from 389

walking mode to running mode. 390

(2) Variation of amplitude. The amplitudes of temperature 391

in the years 2014 and 2015 are 42.73◦F and 40.93◦F, 392

respectively. So the variation of amplitude from 2014 to 393

2015 is −1.80◦F. This can be represented by g2(tn) = 394

A(tn) · f(tn), where A(tn) is a series of the changing 395

amplitude. This type of variation is observed when 396

a particle vibrates with resistance or when there is a 397

change in the volume of a sound. 398

(3) Variation of average line. The average temperatures 399

through the years 2012 and 2013 are 55.28◦F and 52.43◦F, 400

respectively. The variation of average line from 2012 to 401

2013 is −2.85◦F. Let g3(tn) = f(tn)+L(tn), where L(tn) 402

is a series representing the variation of average line. This 403

type of variation is observed when a stock experiences 404

a downturn over several days or when global warming 405

causes a year-by-year increase in temperature. 406

To summarise, Fig. 1e provides a visual representation of 407

the three fundamental variations. It is important to note 408

that these variations are not utilised to depict the pattern 409

itself but rather to illustrate the variation within the pattern 410

or how the time series oscillates over time. This approach 411

offers a dynamic perspective on the evolution of the time 412

series, capturing changes in patterns that static analyses 413

may overlook. 414

Using three simulated time series corresponding to the 415

above three fundamental types of variation (see Sec. 4.1 for 416

detailed construction), we demonstrate that PD can distin- 417

guish these variations and detect how significant they are. 418

See Fig. 3, where a smaller value of c indicates a more rapid 419

fundamental variation. Here, regardless of which value c 420

takes, each individual diagram features a prominent single 421

point at the top and a cluster of points with relatively short 422

duration, except when F (tn) = 1 (i.e., c = 4). In this case, 423

the series represents a cosine function, and thus the diagram 424

consists of a single point. Normally, one tends to overlook 425

the points in a PD that exhibit a short duration as they 426

are sometimes inferred as noise. However, in this example, 427

the distribution of those points holds valuable information 428

regarding the three fundamental variations. As shown in 429

Fig. 3, each fundamental variation has its distinct pattern 430

of distribution in the lower region of a diagram, which 431

leads to refined inferences: If the points spiral along the 432

vertical axis of lifetime, it is probably due to a variation 433

of amplitude; if every two or four points stay close to form 434

a “shuttle”, it probably indicates a variation of average line; 435
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Fig. 3: 1-dimensional PH reveals three fundamental variations. a, Detecting variation of frequency. Upper-right panels
zoom in to show the barcode distribution in the lower dense region, where the position and colour of each value of c in
the main legend corresponds to those of its panel. Note that when c = 4, there is a single point, and so the panel for this
value is omitted. b, Detecting variation of amplitude. c, Detecting variation of average line.

otherwise the points just seem to randomly spread over,436

which more likely results from a variation of frequency. It437

is also straightforward to distinguish the values of c for438

a specific fundamental variation, by their most significant439

point in the diagram: Longer lifetime for the barcode of the440

solitary point indicates slower variation. The lower region441

of a diagram also gives some hints in this respect.442

In this simulated example, we demonstrated how PD443

could be utilised as a uniform means to distinguish three444

fundamental variations of the cosine series and their respec-445

tive rates of change. However, it is important to note that446

in general scenarios, identifying the fundamental variations447

in a time series using topological methods may encounter448

significant challenges. Although topological methods are449

indeed capable of capturing this information, vectorising450

this information for subsequent utilisation remains a com-451

plex task at this stage. Having recognised the potential of452

topological methods, we resort to an alternative algorithm453

for handling time series. Specifically, despite the difficulty454

in vectorising PD to measure each fundamental variation,455

we have developed a simplified algorithm to measure the456

vibration of time series as a whole. This approach provides457

a comprehensive understanding of the overall behaviour of458

a time series, bypassing the need for complex vectorisation.459

2.2 Traditional machine learning methods with novel460

topological features461

Using datasets comprising human speech, we initially em-462

ploy the Montreal Forced Aligner to align natural speech463

into phonetic segments. Following preprocessing of these464

phonetic segments, TDE is conducted with dimension pa-465

rameter d = 100 and delay parameter τ set to equal 6T/d,466

where T approximates the (minimal) period of the time467

series. Following additional refinement procedures, PDs are468

computed for these segments and are then vectorised based469

on MP and its corresponding birth time. The comprehensive470

procedural framework is expounded in Secs. 4.2 and 4.3,471

while the corresponding workflow is shown in Fig. 4e.472

In the applications of TDE, the dimension parameter d is473

usually determined through some algorithms designed to474

identify the minimal appropriate dimension [45, 66]. The 475

delay parameter τ is determined by an ACL function with 476

no specific rule, but in many cases τ = mT/d for some 477

positive integer m. In our pursuit of enhanced extraction of 478

topological features, a relatively high dimension is chosen 479

(see Sec. 3 for more discussion on dimension in TDE). 480

Given this higher dimension, the usual case of τ = T/d 481

with m = 1 may prove excessively diminutive, particularly 482

in light of the time series only taking values in discrete 483

time steps. Consequently, in TopCap we adopt an adjusted 484

parametrisation for τ = mT/d with a relatively large value 485

m = 6. 486

We input the pair of MP and birth time from 1- 487

dimensional PD for each sound record to multiple tradi- 488

tional classification algorithms: Tree, Discriminant, Logis- 489

tic Regression, Naive Bayes, Support Vector Machine, k- 490

Nearest Neighbours, Kernel, Ensemble, and Neural Net- 491

work. We use the application of the MATLAB (R2022b) Clas- 492

sification Learner, with 5-fold cross-validation, and set aside 493

30% records as test data. This application performs machine 494

learning algorithms in an automatic way. There are a total 495

of 1016 records, with 712 training samples and 304 test 496

samples. Among them, 694 records are voiced consonants 497

and the remaining are voiceless consonants. The models we 498

choose in this application are Optimizable Tree, Optimizable 499

Discriminant, Efficient Logistic Regression, Optimizable 500

Naive Bayes, Optimizable SVM, Optimizable KNN, Kernel, 501

Optimizable Ensemble, and Optimizable Neural Network. 502

Our results are compared with those obtained from a CNN, 503

for which we compute the short-time Fourier transform 504

of phones (implemented in Python with signal.stft or 505

scipy.signal.spectrogram) and directly classify the 506

resulting spectrograms using CNN, without extracting any 507

topological features. 508

The results are shown in Fig. 4a–d. The receiver op- 509

erating characteristic curve (ROC), area under the curve 510

(AUC), and accuracy metrics collectively demonstrate the 511

efficacy of these topological features as inputs for a variety 512

of machine learning algorithms. Each of the algorithms 513

incorporating topological inputs attains AUC and accuracy 514

surpassing 96%, whereas CNN without topological inputs 515
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Fig. 4: Machine learning results with topological features. a, ROCs of TopCap’s traditional machine learning algorithms
with topological inputs and of CNN without topological inputs. b, Accuracy and AUC of TopCap versus CNN. c, Diagrams
of records represented as (birth time, lifetime) for voiced consonants (left) and voiceless consonants (right), where voiced
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experiment. Here |S| denotes the number of samples in a time series, |P | denotes the number of points in the point cloud,
and T denotes the (minimal) period of the time series computed by the ACL function.

merely yields an AUC of 90% and an accuracy of 85%. The516

ROC and AUC together depict the high performance of our517

classification model across all classification thresholds. The518

2D histograms depicted in Fig. 4c–d collectively illustrate519

the distinct distributions of voiced and voiceless consonants.520

Voiced consonants tend to exhibit a relatively higher birth521

time and lifetime, which provides an explanation for the522

high performance of these algorithms. Despite the intricate523

structure that a PD may present, appropriately extracted524

topological features enable traditional machine learning al-525

gorithms to separate complex data effectively. This high-526

lights the potential of TDA in enhancing the performance527

of machine learning models.528

It is noteworthy that the CNN we use as a compara-529

tive, which comprises 5 layers with more than 43 million530

parameters, is considerably more intricate than traditional 531

machine learning algorithms with TopCap. Nonetheless, in 532

effect, this CNN requires 2 hours for sufficient training (1602 533

spectrograms in total). In contrast, learning with topological 534

inputs achieves both higher accuracy as in Fig. 4a–b and 535

higher efficiency, under 5 minutes including topological 536

feature extraction on the same device (mere seconds for 537

machine learning alone). 538

In summary, from our topological detection results, the 539

most significant distinction between voiced and voiceless 540

consonants is that the former exhibit higher MP. This can 541

scarcely be detected in lower dimensions regardless of how 542

we tune the delay parameter τ . Besides the figure above, see 543

also Fig. 2 for a sample of the recognition of vowels as well 544

as consonants in terms of their shapes. 545
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a

b

c

Fig. 5: Variation of 1-dimensional PDs due to the fundamental variations of time series. a, PDs of drastic fundamental
variations. The small panel on top right of each diagram shows the original time series, with 4 segments extracted from
the same record of [A], each starting from time 0 and ending at time 600, 800, 1000, 1200, respectively. It can directly be
seen from the time series that the variation of amplitude in (a) is bigger than (b); for frequency, see c; normally, we do not
discuss the average line of phonetic data as it is assumed to be constant. Below, each diagram shows the clustering density
of points in the lower region of the PD. b, PDs of mild fundamental variations for 4 time-series segments extracted from
the other record of [A], with the same ending and starting times as in (a). The lower density diagrams demonstrate that
unstable time series are characterised by a higher density of points in the lower region of PD. Moreover, stable series tend
to attain high MP. c, Spectral frequency plots of the time series with rapid variations (left) and with mild variations (right).

2.3 The three fundamental variations gleaned from a546

persistence diagram547

A PD for 1-dimensional PH encodes much more information548

beyond the birth time and lifetime of the point of MP.549

The three fundamental variations examined in Sec. 2.1 also550

manifest themselves in certain regions of the PD, which can551

in turn be vectorised.552

To capture these variations, we perform an experiment553

with two records of the vowel [A]. Specifically, we demon-554

strate the fundamental variations by comparing the PDs555

of (a) the record of [A] relatively unstable with respect to556

the fundamental variations and (b) the other record of the557

same vowel that is relatively stable. To better illustrate the558

results, we crop each record into 4 overlapping intervals, 559

each starting from time 0 and ending at 600, 800, 1000, 1200, 560

respectively. When adding a new segment of 200 units into 561

the original sample each time, the amplitude and frequency 562

of the series altered more drastically in case (a). A more 563

rapid changing rate may lead to more points distributed 564

in the lower region of the diagram. The outcomes are 565

presented in Fig. 5. The plots in Fig. 5c show that the spectral 566

frequency of (a) indeed varies faster than that of (b). 567

We should also mention that the 1-dimensional PD here 568

serves as a profile for the collective effect of the fundamental 569

variations. Currently, it is unclear how the points in the 570

lower region change in response to a specific variation. 571
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3 DISCUSSION572

In the realm of applying topological methods to analyse573

time series [47, 48, 49, 50, 22, 51, 27], the determination of574

parameters for TDE emerges as a pivotal aspect. This stems575

from the significant impact that the selection of parameters576

has on the resulting topological spaces and their corre-577

sponding PDs. There exist several convenient algorithms for578

parameter selection. For example, the False Nearest Neigh-579

bours algorithm (FNN), a widely utilised tool, provides a580

method for deciding the minimal embedded dimension [66].581

However, in the context of PH, usually the objective is not582

to achieve a minimal dimension. Contrarily, a dimension583

of substantial magnitude may be desirable due to certain584

advantages it offers.585

In this section, as a main novel feature of TopCap, we586

reveal and leverage the relationship between embedded587

dimension and maximal persistence. We relegate further588

aspects of parameter selection to Sec. S.3.589

In the TDE–PH approach, the determination of dimen-590

sion in a TDE can be complex. However, it plays a pivotal591

role in the extraction of topological descriptors such as592

MP. It is observed that a larger dimension can significantly593

enhance the theoretically optimal MP of a time series. In594

TopCap, the dimension of TDE is set to be 100, a relatively595

large dimension for the experiment. On the other hand,596

several factors also constrain this choice. These include597

the length of the sampled time series, since the dimension598

cannot exceed the length (otherwise it would render the599

resulting point cloud literally pointless). The constraints also600

include the periodicity of the time series, as the time-delay601

window size should be compatible with the approximate602

period of the time series, which is to be elaborated below.603

According to Perea and Harer [61, Proposition 5.1], there604

is no information loss for trigonometric polynomials if and605

only if the dimension of TDE exceeds twice the maximal fre-606

quency. Here, no information loss implies that the original607

time series can be fully reconstructed from the embedded608

point cloud. In general, for a periodic function, a higher609

dimension of TDE can yield a more precise approxima-610

tion by trigonometric polynomials. Although there are no611

absolutely periodic functions in real data, each time series612

exhibits its own pattern of vibration, as discussed in Sec. 2.1,613

and a higher dimension of embedding may be employed614

to capture a more accurate vibration pattern in the time615

series. Furthermore, an increased embedded dimension may616

result in reduced computation time for PD. For instance,617

computation times for a voiced consonant [N] are 0.2671,618

0.2473, and 0.2375 seconds, corresponding to embedded619

dimensions 10, 100, and 1000 (see Fig. 6a). This is attributed620

to the reduction due to a higher dimension on the number621

of points in the embedded point cloud. While this reduction622

in computation time may not be considered substantial623

compared to the impact of changing skip (see Fig. 6d), it624

may become significant when handling large datasets. More625

importantly, an increased embedded dimension can yield626

benefits such as enhanced MP, which serves as a major mo-627

tivation for higher dimensions, as well as a smoother shape628

of resulting point clouds obtained through TDE, which629

makes the embedding visibly reasonable. Typically, for most630

algorithms, a lower dimension is preferred due to factors631

such as those associated with curse of dimensionality and 632

computation cost. By contrast, in TopCap, we opt instead 633

for a higher dimension. 634

However, the embedded dimension cannot be arbitrarily 635

large. As illustrated in Fig. 6c, when the embedded dimen- 636

sion escalates to 1280, it becomes unfeasible to capture a 637

significant MP in the phonetic time series. This results from 638

a break of the point cloud. When the embedded dimension 639

further reaches 1290, an empty 1-dimensional barcode is 640

obtained due to the lack of points necessary to form even 641

a single cycle. In this way, the dimension of TDE is related 642

to the length of the time series. 643

Using a sound record of the voiced consonant [N] as 644

an exemplar, we delineate the correlation between MP and 645

embedded dimension in Fig. 6a–c. As depicted in Fig. 6b, 646

MP tends to escalate rapidly and nonlinearly with the 647

increase in dimension, signifying that a more substantial 648

MP is captured in higher-dimensional TDE. Notably, two 649

precipitous drops in MP are observed, corresponding to 650

embedded dimensions 600 and 1190. When d = 600, this 651

time series can theoretically attain its optimal MP when 652

τ = 2 (see Sec. S.2.1). However, given the length of the series 653

is 1337 and the window size is d · τ = 1200, with the skip 654

set as 5, only 28 points are in the resulting point cloud for 655

PD computation. The sparse point cloud fails to represent 656

the original series adequately, leading to a decrease in MP. 657

A similar phenomenon occurs when the dimension reaches 658

1190. The principal component analysis for dimension 1280 659

is shown in Fig. 6c. In this scenario, as observed above, 660

the hypothetical cycle fails to form as there is a break in 661

the point cloud, resulting in a free-fall in MP. In contrast, 662

when d = 630, this series has a significant MP when τ = 1, 663

resulting in a window size of d·τ = 630. There are 142 points 664

in the point cloud for the persistence diagram if skip equals 665

5, ensuring that the MP rises again without any breakdown. 666

The embedded dimension also contributes significantly to 667

the geometric property of time-delay embedding, as the 668

shape becomes smoother in higher dimensions and the 669

point cloud more structural. 670

As mentioned above, there are three crucial parameters 671

in TDE, namely, d, τ , and skip. However, it is worth noting 672

that the TDE–PH approach encompasses many other signif- 673

icant variables and choices. These include the construction 674

of underlying topological space of the point clouds (i.e., the 675

distance function for pairwise points), and the type of com- 676

plexes utilised in filtering PH, among others. Some of these 677

choices, despite their importance, were seldom addressed in 678

the literature. Here, we propose a method for determining 679

delay in order to capture the theoretically optimal MP of a 680

time series in high-dimensional TDE. In future research, we 681

aim at more systematic approaches for determining other 682

parameters, particularly dimension of the TDE. 683

4 METHODS 684

4.1 Constructing vibrating time series 685

There are three kinds of fundamental variations mentioned 686

in Sec. 2.1. In order to substantiate our argument, let tn = 687
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0.01n with 0 ⩽ tn ⩽ 7π and for each c ∈ {1, 2, 3, 4} define688

f(tn) = cos(tn)

F (tn) =
c

4
+

1− c
4

7π
· tn

g1(tn) = f
(

F (tn) · tn
)

Note that F (tn) = c/4 when tn = 0 and F (tn) = 1 when689

tn = 7π. In fact, F (tn) is a sequence of line segments con-690

necting (0, c/4) and (7π, 1). Correspondingly, the frequency691

of g1(tn) changes more slowly as c increases. In the extreme692

case when c = 4, we have F (tn) = 1, so693

g1(tn) = f
(

F (tn) · tn
)

= f(tn) = cos(tn)

which is a periodic function. For each value of c, we applied694

TDE to the series g1(tn) with dimension 3, delay 100, skip695

10 and computed the 1-dimensional PD of the embedded696

point cloud. See Fig. 3a for the results. Replacing F (tn) by697

A(tn) and L(tn), we obtained the diagrams in Figs. 3b and698

3c, respectively.699

4.2 Obtaining phonetic data from natural speech 700

We used speech files sourced from SpeechBox [67], 701

ALLSSTAR Corpus, task HT1 language English L1 file, 702

retrieved on 28th January 2023. SpeechBox is a web-based 703

system providing access to an extensive collection of digital 704

speech corpora developed by the Speech Communication 705

Research Group in the Department of Linguistics at North- 706

western University. This section contains a total of 25 indi- 707

vidual files, comprising 14 files from women and 11 files 708

from men. The age range of these speakers spans from 18 to 709

26 years, with an average of 19.92. Each file is presented in 710

the WAV format and is accompanied by its corresponding 711

aligned file in Textgrid format, which features three tiers of 712

sentences, words, and phones. Collectively, these 25 speech 713

files amount to a total duration of 41.21 minutes. The speech 714

file contains each individual reading the same sentences 715

consecutively for a duration ranging from 80 to 120 seconds, 716

contingent upon each person’s pace. The original .wav file 717

has a sampling frequency of 22050 and comprises only 718

one channel. Since the Montreal Forced Aligner (MFA) [68] 719
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is trained in a sampling frequency of 16000, we opted to720

adjust the sampling frequency of the .wav files accordingly.721

We then extracted the “words” tier from Textgrid and722

aligned words into phones using English MFA dictionary723

and acoustic model (MFA version 2.0.6). Thus we obtained724

corresponding phonetic data from these speech files.725

Subsequently, we used voiced and voiceless consonants726

in those segments as our dataset. Voiced consonants are727

consonants for which vocal cords vibrate in the throat dur-728

ing articulation, while voiceless consonants are pronounced729

otherwise (see also Sec. S.1). Specifically, using Praat [69], we730

extracted voiced consonants [N], [m], [n], [j], [l], [v], and [Z];731

for voiceless consonants, we selected [f], [k], [8], [t], [s], and732

[tS]. These phones were then read as time series. Our selec-733

tion was limited to these voiced and voiceless consonants,734

as we aimed to balance the ratio of voiced and voiceless735

consonant records in these speech files. Additionally, some736

consonants, such as [d] and [h], appeared difficult to classify737

by our methods.738

4.3 Deriving topological features from phonetic data739

Prior to the extraction of topological features from a time740

series, we first imbued this 1-dimensional time series with741

a (Euclidean) topological structure through TDE. It is note-742

worthy that this technique also applies to multi-dimensional743

time series. The ambient space throughout this article is744

always a Euclidean space. By establishing the topological745

structure there, or more precisely, the distance matrices, we746

subsequently calculated PH. We elaborate on the following747

main steps. See Fig. 4e for the flow chart of this section.748

4.3.1 Data cleaning749

This involved eliminating the initial and final segments of a750

time series until the first point with an amplitude exceeding751

0.03 occurred. This approach was aimed at mitigating the752

impact of environmental noise at the beginning and end of753

a phone. Any resulting series with fewer than 500 points will754

be disregarded, as such series were considered insufficiently755

long or to contain excessive environmental noise.756

4.3.2 Parameter selection for time-delay embedding757

We selected suitable parameters for TDE to capture the the-758

oretically optimal MP of a given time series. The dimension759

of the embedding was fixed to be 100. Our principle for760

determining an appropriate dimension is that we want to761

choose the embedded dimension to be large for a time series762

of limited length. As discussed in Sec. 3 and cf. Sec. S.2.1, a763

higher dimension results in a more accurate approximation.764

This approach also aimed to enhance computational effi-765

ciency and the occurrence of more prominent MP. Nonethe-766

less, it is imperative to exercise caution when selecting the767

dimension, as excessively large dimensions may lead to768

empty point clouds and other uncontrollable factors.769

With a proper dimension, we then computed the delay770

for the embedding. According to Perea and Harer [61], in771

the case of a periodic function, the optimal delays τ can be772

expressed as773

τ = m ·
T

d

where T denotes the (minimal) period, d represents the 774

dimension of the embedding, and m is a positive integer. 775

Under these conditions, we could obtain the theoretically 776

optimal MP. The time series under consideration in our case 777

was far from periodic, however, so we used the first peak of 778

the ACL function to represent the period T and set m = 6, 779

thus obtaining a relatively proper delay τ . The common 780

choice of τ is to let window size equal the (minimal) period. 781

However, in the case of a discrete time series, one often 782

obtains τ = 0 or τ = 1 in this way, since the dimension of 783

TDE is too large in comparison. Therefore, one strategy is to 784

increase m to get a relatively reasonable τ . The performance 785

of delay obtained in this way is presented in Sec. 3. 786

Then τ was rounded to the nearest integer (if it equals 787

0, take 1 instead). It was common that τ · d exceeded 788

the number of points in the series, resulting in an empty 789

embedding. In this case, we adopted τ = |S|/d, where 790

|S| denotes the number of points (i.e., the point capacity 791

of the time series), and then rounded it downwards. This 792

enabled us to obtain the appropriate delay for each time 793

series, thereby facilitating the attainment of significant MP 794

for the specified dimension. 795

Lastly, we let skip equal to 5. We chose this skip mainly 796

to reach a satisfactory computation time. The impact of the 797

skip parameter in TDE on MP and computation time is 798

expounded upon in Sec. S.3.1. 799

Once the parameters were set, the time series were 800

transformed into point clouds. If the number |P | of points in 801

a point cloud was less than 40, we excluded this time series 802

from further analysis, considering that there were too few 803

points to represent the original structure of the time series. 804

The problem of lacking points is also discussed in Sec. 3. 805

4.3.3 Computing persistent homology 806

Using Ripser [70, 71], we could compute the PDs of the 807

point clouds in a fast and efficient way. We then extracted 808

MP from each 1-dimensional PD, using persistence birth 809

time and lifetime as two features of a time series. The 810

process of vectorising a PD presents a challenge due to the 811

indeterminate (and potentially large) number of intervals in 812

the barcode, coupled with the ambiguous information they 813

contain. This ambiguity arises from our lack of knowledge 814

about the types of information that can be derived from 815

different parts of the PD. Here we only extracted the MP 816

and corresponding birth time. This decision was informed 817

by our prior selection of an appropriate set of parameters, 818

which ensured that the MP reached its optimal. 819

5 DATA AND CODE AVAILABILITY 820

The data that support the findings of this study are openly 821

available in SpeechBox [67], ALLSSTAR Corpus, L1-ENG 822

division at https://speechbox.linguistics.northwestern.edu. 823

The source code and supplementary materials for Top- 824

Cap can be accessed on the GitHub page at https://github. 825

com/AnnFeng233/TDA Consonant Recognition. 826

https://speechbox.linguistics.northwestern.edu
https://github.com/AnnFeng233/TDA_Consonant_Recognition
https://github.com/AnnFeng233/TDA_Consonant_Recognition
https://github.com/AnnFeng233/TDA_Consonant_Recognition
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SUPPLEMENTARY INFORMATION1144

00■S.1 Generalities on phonetic data1145

As a research field of linguistics, phonetics studies the1146

production as well as the classification of human speech1147

sounds from the world’s languages. In phonetics, a phone is1148

the smallest basic unit of human speech sounds. It is a short1149

speech segment possessing distinct physical or perceptual1150

properties. Phones are generally classified into two principal1151

categories: vowels and consonants. A vowel is defined as a1152

speech sound pronounced by an open vocal tract with no1153

significant build-up of air pressure at any point above the1154

glottis, and at least making some airflow escape through1155

the mouth. In contrast, a consonant is a speech sound that1156

is articulated with a complete or partial closure of the vocal1157

tract and usually forces air through a narrow channel in1158

one’s mouth or nose.1159

Unlike vowels which must be pronounced by vibrated1160

vocal cords, consonants can be further categorised into two1161

classes according to whether the vocal cords vibrate or not1162

during articulation. If the vocal cords vibrate, the consonant1163

is known as a voiced consonant. Otherwise, the consonant is1164

voiceless. Since vocal cord vibration can produce a stable pe-1165

riodic signal of air pressure, voiced consonants tend to have1166

more periodic components than voiceless consonants, which1167

can in turn be detected by PH as topological characteristics1168

from phonetic time series data.1169

Indeed, one of the more heuristic motivations for our re-1170

search project is to reexamine (and even revise) the linguistic1171

classifications of phones through the mathematical lens of1172

topological patterns and shape of speech data, analogous1173

to Carlsson and his collaborators’ seminal work [S1] on the1174

distribution of image data (cf. Fig. S1).1175

Fig. S1: A charted “distribution space” of vowels created by
linguists [S2]. The vertical axis of the chart denotes vowel
height. Vowels pronounced with the tongue lowered are
located at the bottom and those raised are at the top. The
horizontal axis of this chart denotes vowel backness. Vowels
with the tongue moved towards the front of the mouth are
in the left of the chart, while those with to the back are
placed in the right. The last parameter is whether the lips
are rounded. At each given spot, vowels on the right and
left are rounded and unrounded, respectively.

00■S.2 Mathematical generalities of the TDE–PH approach 1176

to time series data 1177

00■S.2.1 Time-delay embedding 1178

Time-delay embedding (TDE) is also known as sliding win- 1179

dow embedding, delay embedding, and delay coordinate 1180

embedding. For simplicity, we focus on 1-dimensional time 1181

series. TDE of a real-valued function f : R → R, with 1182

parameters positive integer d and positive real number τ , 1183

is defined to be the vector-valued function 1184

SW d,τf : R → R
d

t 7→
(

f(t), f(t+ τ), . . . , f
(

t+ (d− 1)τ
)

)

Here, d is the dimension of the target space for the embed- 1185

ding, τ is the delay, and their product d · τ is called the 1186

window size. According to the Manifold Hypothesis, a time 1187

series lies on a manifold. The method then reconstructs 1188

this topological space from the input time series, when 1189

d is at least twice the dimension of the latent manifold 1190

M . Given a trajectory γ : R → M whose image is dense 1191

in M , the embedding property holds for the time series 1192

f(tn) (generically, in a technical sense we omit here) via an 1193

“observation” function G : M → R, i.e., f(tn) = G
(

γ(tn)
)

. 1194

In [S3, Sec. 5], Perea and Harer established that the N - 1195

truncated Fourier series expansion 1196

SNf(t) =
N
∑

n=0

ak cos(kt) + bk sin(kt)

of a periodic time series f can be reconstructed into a circle 1197

when d ≥ 2N , i.e., 1198

SWd,τf(R) ∼= S
1

Moreover, let L be a constant such that 1199

f

(

t+
2π

L

)

= f(t)

Then the 1-dimensional MP of the resulting point cloud 1200

is the largest when the window size d · τ is integrally 1201

proportional to 2π/L, i.e., 1202

d · τ = m
2π

L

for a positive integer m. Intuitively, an increase in the 1203

dimension of TDE results in a better approximation when 1204

truncating the Fourier series, and the MP of the point cloud 1205

becomes the most significant when the window size equals 1206

a period. 1207

This methodology also proves particularly advantageous 1208

in scenarios where the system under investigation exhibits 1209

nonlinear dynamics, precluding straightforward analysis of 1210

the time series data. Via a suitable embedding, the inherent 1211

geometric configuration of the system emerges, enabling 1212

deeper comprehension and refined analysis. 1213

00■S.2.2 Persistent homology 1214

Topology is a subject area that studies the properties of 1215

geometric objects that remain unchanged under continuous 1216

transformations or smooth perturbations. It focuses on the 1217

intrinsic features of a space that regardless of its rigid shape 1218

or size. Algebraic topology (AT) provides a quantitative 1219

description of these topological properties. 1220
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A simplicial complex (and its numerous variants and1221

analogues) is a powerful tool in AT which enables us to1222

represent a topological space using discrete data. Unlike1223

the original space, which can be challenging to compute1224

and analyse, a simplicial complex provides a combinatorial1225

description that is much more amenable to computation.1226

We can use algebraic techniques to study the properties of a1227

simplicial complex, such as its homology and cohomology1228

groups, which encode and reveal information about the1229

topology of the underlying space.1230

Formally, a simplicial complex with vertices in a set V is1231

a collection K of nonempty finite subsets σ ⊂ V such that1232

any nonempty subset τ of σ always implies τ ∈ K (called a1233

face of σ) and that σ intersecting σ′ implies their intersection1234

σ ∩ σ′ ∈ K . A set σ ∈ K with (i + 1) elements is called an1235

i-simplex of the simplicial complex K . For instance, consider1236

S
1 ∨ S

2, a circle kissing a sphere at a single point, as a1237

topology space. It can be approximated by the simplicial1238

complex K with 6 vertices a, b, c, d, e, f . This simplicial1239

complex can be enumerated as1240

K =
{

{a}, {b}, {c}, {d}, {e}, {f},

{a, b}, {a, c}, {b, c}, {c, d}, {c, f}, {d, f}, {c, e},

{d, e}, {f, e},

{c, d, f}, {c, e, f}, {c, d, e}, {d, e, f}
}

which is a combinatorial avatar for S1 ∨ S
2 via a “triangula-1241

tion” operation on the latter. See Fig. S2.1242

a

b

c

f

e

d

Simplicial-Complex Representation

Fig. S2: From a topological space to its triangulation.

Given a simplicial complex K , let p be a prime number1243

and Fp be the finite field with p elements. Define Ci(K;Fp)1244

to be the Fp-vector space with basis the set of i-simplices in1245

K . To keep track of the order of vertices within a simplex,1246

we use the alternative notation with square brackets in the1247

following. If σ = [v0, v1, . . . , vi] is an i-simplex, define the1248

boundary of σ, denoted by ∂σ, to be the alternating sum of1249

the (i− 1)-dimensional faces of σ given by1250

∂σ :=
i

∑

k=0

(−1)
k
[v0, . . . , v̂k, . . . , vi]

where [v0, . . . , v̂k, . . . , vi] is the k-th (i−1)-dimensional face1251

of σ missing the vertex vk. We can extend ∂ to Ci(K;Fp) as1252

an Fp-linear operator so that ∂ : Ci(K;Fp) → Ci−1(K;Fp).1253

The composition of boundary operators satisfies ∂ ◦ ∂ = 0.1254

The elements in Ci(K;Fp) with boundary 0 are called i-1255

cycles. They form a subspace of Ci(K;Fp), denoted by1256

Zi(K;Fp). The elements in Ci(K;Fp) that are the images1257

of elements of Ci+1(K;Fp) under ∂ are called i-boundaries.1258

They form a subspace too, denoted by Bi(K;Fp). It follows 1259

from ∂ ◦ ∂ = 0 that 1260

Bi(K;Fp) ⊂ Zi(K;Fp)

Then define the quotient space 1261

Hi(K;Fp) := Zi(K;Fp)/Bi(K;Fp)

to be the i-th homology group of K with Fp-coefficients. We call 1262

dim
(

Hi(K;Fp)
)

the i-th Betti number, denoted by βi(K), 1263

which counts the number of i-dimensional holes in the 1264

corresponding topological space. As such, these homology 1265

groups are also called the homology groups of the space (it 1266

can be shown that they are independent of the particular 1267

ways in which the space is triangulated). For example, the 1268

Betti numbers of S1 ∨S
2 from above are β1 = 1, β2 = 1, and 1269

βi = 0 when i ⩾ 3. 1270

The usefulness of these invariants, besides their com- 1271

putability (essentially Gaussian elimination in linear alge- 1272

bra), lies in their tractability along deformations. Given two 1273

simplicial complexes K and L, a simplicial map f : K → L 1274

(that preserves the simplicial structure) induces an Fp-linear 1275

map Hi(f ;Fp) : Hi(K;Fp) → Hi(L;Fp). Thus, if two spaces 1276

are topologically equivalent (in fact, “homotopy equivalent” 1277

suffices), their homology groups must be isomorphic and 1278

the Betti numbers match up. 1279

Let (X, d) be a finite point cloud with metric d. Define a 1280

family of simplicial complexes, called Rips complexes, by 1281

Rϵ(X) := {σ ⊂ X | d(x, x′) ≤ ϵ for all x, x′ ∈ σ}

The family 1282

R(X) := {Rϵ(X)}ϵ≥0

is known as the Rips filtration of X . Clearly, if ϵ1 ≤ ϵ2, then 1283

Rϵ1(X) →֒ Rϵ2(X). Thus, for each i we obtain a sequence 1284

Hi

(

Rϵ0(X);Fp

)

→ Hi

(

Rϵ1(X);Fp

)

→ · · ·

→ Hi

(

Rϵm(X);Fp

)

where 0 = ϵ0 < ϵ1 < · · · < ϵm < ∞. As ϵ varies, the 1285

topological features in the simplicial complexes Rϵ(X) vary, 1286

resulting in the emergence and disappearance of holes. 1287

Given the values of ϵ, record the instances of emergence 1288

and disappearance of holes, which correspond to cycle 1289

classes in the homology groups along the above sequence. 1290

Each class has a descriptor (b, d) ∈ R
2, where b represents 1291

the birth time, d represents the death time, and b−d represents 1292

the lifetime of the holes. In this way, we obtain a multiset 1293

{(bj , dj)}j∈J =: dgmi

(

R(X)
)

which encodes the “persistence” of topological features of 1294

X . This multiset can be represented as a multiset of points 1295

in the 2-dimensional coordinate system called a persistence 1296

diagram for the i-th PH or as an array of interval segments 1297

called a persistence barcode. In particular, we use maximal 1298

persistence to refer to the maximal lifetime among all the 1299

points in a persistence diagram. 1300
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dimension = 10 dimension = 50 dimension = 100
desired delay = 40 desired delay = 8 desired delay = 4

delay skip MP delay skip MP delay skip MP
1 1 0.0610 1 1 0.2834 1 1 0.4270
10 1 0.1299 3 1 0.3021 2 1 0.4337
20 1 0.1312 4 1 0.3054 2 5 0.4146
30 1 0.1281 5 1 0.3058 3 1 0.4357
39 1 0.1229 6 1 0.3042 3 5 0.4120
39 5 0.1134 7 1 0.3052 4 1 0.4381
40 1 0.1290 7 5 0.2886 4 5 0.4139
40 5 0.1195 8 1 0.3093 5 1 0.4375
41 1 0.1200 8 5 0.2928 5 5 0.4105
41 5 0.1153 9 1 0.3091 6 1 0.4347
45 1 0.0940 9 5 0.2913 6 5 0.4114
50 1 0.1226 10 1 0.3069 7 1 0.4380
60 1 0.1315 15 1 0.3070 8 1 0.4378
94 1 empty 18 1 empty 9 1 empty

Tab. S1: MP for choices of dimension, delay, and skip in TDE. The desired delay is computed by the algorithm in Sec. 4 of
Methods. Empty in MP means the delay is too large to obtain point-cloud data.

00■S.3 More specifics on parameter selection with TopCap1301

00■S.3.1 Skip, maximal persistence, and persistence execu-1302

tion time1303

Computation time assumes a critical role when processing a1304

substantial volume of data. In this context, the parameter1305

skip in TDE is considered, as it significantly influences1306

the number of points within the point clouds, thereby di-1307

rectly impacting the number of simplices during persistent1308

filtration and thus the computation time for PD. In this1309

subsection, we demonstrate that an appropriate increment1310

in the skip parameter can markedly reduce computation1311

time. However, it is noteworthy that MP exhibits resilience1312

to an increase in skip to a certain extent. Consequently, in1313

this case, it is feasible to augment skip in TDE to expedite1314

the computation of PD. For details on the complexity of1315

computing persistent homology, the interested reader may1316

refer to Zomorodian and Carlsson [S4, Sec. 4.3] as well as1317

Edelsbrunner et al. [S5, Sec. 4].1318

Using an example of a sound record of the voiced1319

consonant [m], we elucidate the relationship between skip,1320

computation duration, and size of the resulting point1321

clouds obtained via TDE in Fig. 6d. Computation duration1322

is measured each time after restarting the Jupyter note-1323

book, on Dell Precision 3581, with CPU Intel® CoreTM
1324

i7-13800H of basic frequency 2.50 GHz and 14 cores.1325

Computation time means the time for executing the code1326

ripser(Points,maxdim=1). As depicted in Fig. 6d, a1327

substantial reduction in computation time is observed with1328

an increase in the skip parameter. In contrast, our computa-1329

tion’s output MP appears stable.1330

00■S.3.2 Multiple dependency of maximal persistence1331

As mentioned in the main text, there are three crucial pa-1332

rameters in TDE, namely, d, τ , and skip. In this subsection,1333

we present a table that delineates the topological descriptor1334

MP in relation to these from TopCap.1335

The experiment is executed on a record of the voiced1336

consonant [N], which comprises 887 sampled points as the1337

length of this time series. Theoretically, given a periodic1338

function, one obtains the optimal MP of the function in a1339

fixed dimension under the condition that the TDE window1340

size (i.e., the product of dimension and delay) equals a1341

period (cf. Sec. S.2.1). However, the phonetic time series1342

that we typically handle deviate far from being periodic. 1343

Despite our approach to calculating the period of time series 1344

by ACL functions, we cannot assure that the (theoretically 1345

derived) desired delay will indeed yield the optimal MP 1346

of a time series in general. Nevertheless, this desired delay 1347

usually gives relatively good MP. For instance, as illustrated 1348

in Tab. S1, when the dimension is 10, the desired delay is 40. 1349

This corresponds to an MP of 0.1290, which is marginally 1350

lower than the MP of 0.1315 achieved at a delay of 60. 1351

However, as the dimension rises, the point clouds from TDE 1352

become more regular. It becomes increasingly probable that 1353

at the desired delay, one can indeed obtain the optimal MP 1354

of the time series. For example, when the dimension is either 1355

50 or 100, the MP of the time series is achieved at the desired 1356

delay. This provides additional justification for preferring 1357

higher dimensions: The table reveals that an augmentation 1358

in dimension may lead to a more substantial enhancement 1359

in the MP of a time series than simply tuning delay. 1360

00■S.4 Review and outlook on topology-enhanced ma- 1361

chine learning 1362

Here we present a general review of literature on the topics 1363

(1) TDA and its applications, which encompasses genesis 1364

of the subject, recommended resources, and practical ap- 1365

plications; (2) vectorisation of PH, wherein we summarize 1366

topological methods geared towards machine learning. 1367

00■S.4.1 Topological data analysis and its applications 1368

The evolution of TDA is relatively nascent when juxtaposed 1369

with other enduring fields, and its applications are still 1370

somewhat delimited. The genesis of the concept of invari- 1371

ants of filtered complexes can be traced back to Baran- 1372

nikov in 1994, which are nowadays referred to as PD/PB 1373

(persistence diagram/barcode) [S6]. These invariants were 1374

conceived with the objective of quantifying some specific 1375

critical point within some ambit of an extension of function. 1376

In 1999, Robins pioneered the concept of persistent Betti 1377

numbers of inverse systems and underscored their stability 1378

in Hausdorff distance [S7]. 1379

The modern incarnation of persistent homology was es- 1380

tablished in the first decade of the 21st century. Zomorodian, 1381

under the tutelage of Edelsbrunner, completed his doctoral 1382
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thesis in 2001, wherein he employed persistence to distin-1383

guish between topological noise and inherent features of a1384

space [S8]. After that, the term persistent homology group first1385

appeared in the work by Edelsbrunner et al. in 2002 [S9].1386

This seminal work formalised topological methodologies to1387

chronicle the evolution of an expanding complex originat-1388

ing from a point set in Euclidean 3-space, a process they1389

termed as topological simplification. The expansion pro-1390

cess is recognised as filtration. They classified topological1391

modifications based on the lifetime of topological features1392

during filtration and proposed an algorithm to compute1393

this simplification process. Subsequently, in 2005, Carlsson1394

et al. applied persistent homology to generate a barcode as1395

a shape descriptor [S10]. Their methodology was able to1396

distinguish between shapes with varying degrees of “sharp”1397

features, such as corners. In the same year, Zomorodian and1398

Carlsson presented an algebraic interpretation of persistent1399

homology and developed a natural algorithm for computing1400

persistent homology of spaces in any dimension over any1401

field [S11]. Cohen-Steiner et al. considered the stability prop-1402

erty of persistence algorithm [S12]. Robustness is measured1403

by the bottleneck distance between persistence diagrams.1404

In 2008, Carlsson, Singh, and Sexton founded Ayasdi, a1405

company that combines mathematics and finance to truly1406

put theory into practice. The inception of TDA may be com-1407

plex, as it originates from some pure mathematical fields1408

such as Morse theory and PH. However, the underlying1409

principle remains steadfast: to identify topological features1410

that can quantify the shape of the data to certain degrees,1411

which is robust against noise and perturbations.1412

An abundance of materials is available that offer a1413

thorough understanding of TDA for both specialists and1414

general audience. In 2009, Carlsson wrote an extensive1415

survey on the applications of geometry and topology to the1416

analysis of various types of data [S13]. This work introduced1417

topics such as the characteristics of topological methods,1418

persistence, and clusters. A recent publication by Carlsson1419

and Vejdemo-Johansson discussed practical case studies of1420

topological methods, such as their applications to image1421

data and time series [S14]. For nonspecialists seeking to1422

delve into TDA, the introductory article [S15] by Chazal1423

and Michel may be more accessible. It provides explicit1424

explanations and hands-on guidance on both the theoretical1425

and practical aspects of the subject.1426

Several software tools assist researchers in building1427

case studies on data. The GUDHI library [S16], an open-1428

source C++ library with a Python interface, includes a1429

comprehensive set of tools involving different complexes1430

and vectorisation tools. Ripser [S17], also a C++ library1431

with a Python binding, surpasses GUDHI in computing Vi-1432

etoris–Rips PD/PB, especially when high-dimensional cases1433

or large quantities of PD/PB are present. TTK [S18] is both a1434

library and software designed for topological analysis with1435

a focus on scientific visualisation. Other standard libraries1436

include Dionysus, PHAT, DIPHA, and Giotto2. Additionally,1437

2In order, they are available at

https://mrzv.org/software/dionysus2
https://bitbucket.org/phat-code/phat
https://github.com/DIPHA/dipha
https://giotto-ai.github.io/gtda-docs/0.4.0

an R interface named TDA [S19] is available for the libraries 1438

GUDHI, Dionysus, and PHAT. 1439

The recent proliferation of TDA has established it as 1440

an effective instrument in numerous studies. Owing to the 1441

characteristics of topological methods [S13], a multitude 1442

of applications have been discovered, particularly in the 1443

realm of recognition. In the field of biomedicine, Nico- 1444

lau et al. utilised the topological method Mapper [S20] to 1445

analyse transcriptional data related to breast cancer [S21]. 1446

This method is used due to its high performance in shape 1447

recognition in high dimensions. The book [S22] authored 1448

by Rabadán and Blumberg provides an introduction to 1449

TDA techniques and their specific applications in biology, 1450

encompassing topics such as evolutionary processes and 1451

cancer genomics. 1452

In signal processing, Emrani et al. introduced a topo- 1453

logical approach for the analysis of breathing sound signals 1454

for the detection of wheezing, which can distinguish ab- 1455

normal wheeze signals from normal breathing signals due 1456

to the periodic patterns within wheezing [S23]. Robinson’s 1457

monograph [S24] offers a systematic exploration of the 1458

intersection between topology and signal processing. 1459

In the context of deep learning, Bae et al. proposed a PH- 1460

based deep residual learning algorithm for image restora- 1461

tion tasks [S25]. Hofer et al. incorporated topological signa- 1462

tures into deep neural networks to learn unusual structures 1463

that are typically challenging for most machine learning 1464

techniques [S26]. More recently, having extracted statistical 1465

features of images and videos through topological means, 1466

Love et al. input these features to the kernel of convolutional 1467

layers [S27, S1]. In their case, manifolds in relation to the 1468

natural-image space are used to parametrise image filters, 1469

which also parametrise slices in layers of neural networks. 1470

These signify a new phase of development for the subject. 1471

For complex networks, an early application of PH on 1472

sensor networks is presented in the work [S28] by de Silva 1473

and Ghrist. They applied topological methods to graphs 1474

representing the distance estimation between nodes and a 1475

proximity sensor. Subsequently, Horak et al. discussed PH 1476

in different networks, observing that persistent topological 1477

attributes are related to the robustness of networks and 1478

reflect deficiencies in certain connectivity properties [S29]. 1479

Additionally, Jonsson’s book [S30] provides insights on how 1480

to construct a simplicial complex from a graph. Recently, Wu 1481

et al. applied a persistent variant of the GLMY homology for 1482

directed graphs of Grigor’yan, Lin, Muranov, and Yau to the 1483

study of networks of complex diseases [S31, S32]. 1484

00■S.4.2 Vectorising persistent homology for machine learning 1485

When executing PH on point-cloud data, one typically ob- 1486

tains PD/PB, which is a set of intervals on the (extended 1487

real) line. Indeed, PD/PB can be considered a form of 1488

vectorisation of the original data. However, they may not 1489

be sufficiently accessible for further applications, such as in- 1490

tegration into machine learning algorithms for future model 1491

development. Since the intervals exist on the extended line, 1492

some may involve +∞ as their terminal point, which can 1493

pose challenges for certain algorithms. This issue can be mit- 1494

igated by setting a threshold for the maximal lifetime, which 1495

is a relatively straightforward solution. However, there are 1496

more intrinsic challenges embedded in the vectorisation of 1497

https://mrzv.org/software/dionysus2
https://bitbucket.org/phat-code/phat
https://github.com/DIPHA/dipha
https://giotto-ai.github.io/gtda-docs/0.4.0
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PD/PB that are not easily resolved and may pose difficulties1498

for researchers attempting to leverage this powerful tool.1499

For example, the number of intervals in PD/PB is not fixed;1500

sometimes, there may be 10, and other times there may be1501

100. Moreover, PD is too sparse to put into machine learning1502

algorithms. Researchers may extract the top five longest1503

intervals from the set as a method of vectorisation, or1504

remove intervals with a length less than a certain threshold1505

from the set, or implement the distance functions and kernel1506

methods of PD/PB to achieve vectorisation. In this article,1507

vectorisation in TopCap is relatively simple, as we extract1508

the MP and its corresponding birth time as two topological1509

features to feed into machine learning algorithms.1510

There is no definitive rule to determine that one method1511

of vectorisation is superior to another, as the performance1512

of vectorisation methods largely depends on the data and1513

how they are transformed into a topological space. Indeed,1514

there are a great many creative methods for vectorising PH.1515

Persistence Landscapes (PL) [S33], developed by Bubenik,1516

is one popular method. Bubenik’s work introduces both1517

theoretical and experimental aspects of PL in a statistical1518

manner. Generally speaking, PL maps PD into a function1519

space that is stable and invertible [S34]. A toolbox [S35] is1520

also available for implementing PL. Persistence Image [S36],1521

another vectorisation method developed by Adams et al.,1522

stably maps PD to a finite-dimensional vector representation1523

depending on resolution, weight function, and distribution1524

of points in PD. For additional vectorisation methods, one1525

may consider the article [S37] by Ali et al., which presents1526

13 ways to vectorise PD.1527
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