
Given a topological space 𝑋 and 𝑘 ∈ ℤ≥0, we can asso-
ciate groups 𝐻𝑘(𝑋; 𝑅) and 𝐻𝑘(𝑋; 𝑅), the 𝑘th homology and
cohomology groups (with coefficients in 𝑅), where 𝑅 is a com-
mutative ring such as ℤ orℚ. These algebraic invariants de-
fine functors from the category of topological spaces to the
category of 𝑅-modules: for any continuous map of topo-
logical spaces 𝑓∶ 𝑋 → 𝑌 there are induced 𝑅-linear maps𝑓∗ ∶ 𝐻𝑘(𝑋; 𝑅) → 𝐻𝑘(𝑌; 𝑅) (covariant),𝑓∗ ∶ 𝐻𝑘(𝑌; 𝑅) → 𝐻𝑘(𝑋; 𝑅) (contravariant).
The cohomology groups 𝐻∗(𝑋; 𝑅) = ⨁𝑘 𝐻𝑘(𝑋; 𝑅) in fact
have the structure of a graded 𝑅-algebra with respect to the
cup product operation.

The group𝐻0(𝑋; ℤ) is the free abelian group on the path
components of the topological space 𝑋 and 𝐻0(𝑋; ℤ) is
its dual. If 𝑋 is path-connected, 𝐻1(𝑋; ℤ) is naturally iso-
morphic to the abelianization of 𝜋1(𝑋, 𝑥0) with respect to
any basepoint 𝑥0, and its elements are certain equivalence
classes of (unbased) loops in 𝑋 .

For a topological group 𝐺 there exists an associated clas-
sifying space B𝐺 for principal 𝐺-bundles. It is constructed
as the quotient of a (weakly) contractible space E𝐺 by a
proper free action of 𝐺. The space B𝐺 is unique up to
(weak) homotopy equivalence. If 𝐺 is a discrete group,
then B𝐺 is precisely an Eilenberg-MacLane space 𝐾(𝐺, 1), i.e.,
a path-connected topological space with 𝜋1(B𝐺) ≅ 𝐺 and
trivial higher homotopy groups. For example, up to ho-
motopy equivalence, Bℤ is the circle, Bℤ2 is the infinite-
dimensional real projective space ℝP∞, and the Grassma-
nian of 𝑑-dimensional linear subspaces in ℝ∞ is BGL𝑑(ℝ).

Some motivation to study the cohomology of B𝐺: its
cohomology classes define characteristic classes of princi-
pal 𝐺-bundles, invariants that measure the ‘twistedness’
of the bundle. For instance the cohomology algebra𝐻∗(BGL𝑑(ℝ); ℤ) can be described in terms of Pontryagin
and Stiefel–Whitney classes.

With B𝐺 we can define the group homology and group co-
homology of a discrete group 𝐺 by𝐻𝑘(𝐺; 𝑅) ≔ 𝐻𝑘(B𝐺; 𝑅), 𝐻𝑘(𝐺; 𝑅) ≔ 𝐻𝑘(B𝐺; 𝑅).

We can refine Question 1.1 to the following:

Question 1.2. Given family {𝑋𝑛}𝑛 of moduli spaces or
discrete groups, how do the homology and cohomology
groups of the 𝑛th space in the sequence change as the pa-
rameter 𝑛 increases?

In this article we discuss Question 1.2 with a particu-
lar focus on the families of configuration spaces and braid
groups. For further reading1 we recommend R. Cohen’s
survey [Coh09] on stability of moduli spaces.

1A version of this note with an extended reference list is available at https://
arxiv.org/abs/2201.04096.

1.2. Homological stability.

Definition 1.3. A sequence of spaces or groups {𝑋𝑛}𝑛≥0
with maps𝑋0 𝑠0−→ … 𝑠𝑛−2−−−→ 𝑋𝑛−1 𝑠𝑛−1−−−→ 𝑋𝑛 𝑠𝑛−→ 𝑋𝑛+1 𝑠𝑛+1−−−→ …
satisfies homological stability if, for each 𝑘, the induced map
in degree-𝑘 homology(𝑠𝑛)∗ ∶ 𝐻𝑘(𝑋𝑛; ℤ) → 𝐻𝑘(𝑋𝑛+1; ℤ)
is an isomorphism for all 𝑛 ≥ 𝑁𝑘 for some stability thresh-
old 𝑁𝑘 ∈ ℤ depending on 𝑘. The maps 𝑠𝑛 are sometimes
called stabilization maps and the set {(𝑛, 𝑘) ∈ ℤ2 | 𝑛 ≥ 𝑁𝑘}
is the stable range.

If the maps 𝑠𝑛 ∶ 𝑋𝑛 → 𝑋𝑛+1 are inclusions we define𝑋∞ ∶= ⋃𝑛≥1 𝑋𝑛 to be the stable group or space. Under
mild assumptions, if {𝑋𝑛}𝑛 satisfies homological stability,
then 𝐻𝑘(𝑋∞; ℤ) ≅ 𝐻𝑘(𝑋𝑛; ℤ) for 𝑛 ≥ 𝑁𝑘.
We call the groups 𝐻𝑘(𝑋∞; ℤ) the stable homology.
2. An Example: Configuration Spaces

and the Braid Groups
2.1. A primer on configuration spaces.

Definition 2.1. Let 𝑀 be a topological space, such as
a graph or a manifold. The (ordered) configuration space𝐹𝑛(𝑀) of 𝑛 particles on 𝑀 is the space𝐹𝑛(𝑀) = {(𝑥1, … , 𝑥𝑛) ∈ 𝑀𝑛 | 𝑥1, … , 𝑥𝑛 distinct},
topologized as a subspace of𝑀𝑛. Notably, 𝐹0(𝑀) is a point
and 𝐹1(𝑀) = 𝑀.

Configuration spaces have a long history of study in con-
nection to topics as broad-ranging as homotopy groups of
spheres and robotic motion planning.

Oneway to conceptualize the configuration space 𝐹𝑛(𝑀)
is as the complement of the union of subspaces of 𝑀𝑛 de-
fined by equations of the form 𝑥𝑖 = 𝑥𝑗.

𝐹2([0, 1]) =
Figure 1. The space 𝐹2([0, 1]) is obtained by deleting the
diagonal from the square [0, 1]2.

In other words, we can construct 𝐹𝑛(𝑀) by deleting the
“fat diagonal” of𝑀𝑛, consisting of all 𝑛-tuples in𝑀𝑛 where
two or more components coincide. In the simplest case,
when 𝑛 = 2 and𝑀 is the interval [0, 1], we see that 𝐹2([0, 1])
consists of two contractible components, as in Figure 1.

Another way we can conceptualize 𝐹𝑛(𝑀) is as the space
of embeddings of the discrete set {1, 2, … , 𝑛} into𝑀, appro-
priately topologized. Wemay visualize a point in 𝐹𝑛(𝑀) by
labelling 𝑛 points in 𝑀, as in Figure 2.
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� ∈ 𝐹4(Σ)

Figure 2. A point in the ordered configuration space of an
open surface Σ.

From this perspective, we may reinterpret the path com-
ponents of 𝐹2([0, 1]): one component consists of all con-
figurations where particle 1 is to the left of particle 2, and
one component has particle 1 on the right. See Figure 3.

𝐹2([0, 1]) =
�

�

�

�
Figure 3. The path components of 𝐹2([0, 1]).

Any path through [0, 1]2 that interchanges the rela-
tive positions of the two particles must involve a ‘colli-
sion’ of particles, and hence exit the configuration space𝐹2([0, 1]) ⊆ [0, 1]2. We encourage the reader to verify that,
in general, the configuration space 𝐹𝑛([0, 1]) is the union
of 𝑛! contractible path components, indexed by elements
of the symmetric group 𝑆𝑛. See Figure 4.

�� � � ∈ 𝐹4([0, 1])
Figure 4. A point in 𝐹4([0, 1]) in the path component indexed
by the permutation 2143 in 𝑆4.

In contrast, if 𝑀 is a connected manifold of dimension2 or more, then 𝐹𝑛(𝑀) is path-connected: given any two
configurations, we can construct a path through 𝑀𝑛 from
one configuration to the other without any ‘collisions’ of
particles. In this case 𝐻0(𝐹𝑛(𝑀); ℤ) ≅ ℤ for all 𝑛 ≥ 0, and
this is our first glimpse of stability in these spaces as 𝑛 →∞.

For any space 𝑀, the symmetric group 𝑆𝑛 acts freely
on 𝐹𝑛(𝑀) by permuting the coordinates of an 𝑛-tuple(𝑥1, … , 𝑥𝑛), equivalently, by permuting the labels on a
configuration as in Figure 2. The orbit space 𝐶𝑛(𝑀) =𝐹𝑛(𝑀)/𝑆𝑛 is the (unordered) configuration space of 𝑛 particles
on𝑀. This is the space of all 𝑛-element subsets of𝑀, topol-
ogized as the quotient of 𝐹𝑛(𝑀). The reader may verify that
the quotient map (illustrated in Figure 5) is a regular 𝑆𝑛-
covering space map. In particular, by covering space the-
ory, the quotient map 𝐹𝑛(𝑀) → 𝐶𝑛(𝑀) induces an injective
map on fundamental groups.

In the case that 𝑀 is the complex plane ℂ, we can iden-
tify 𝐶𝑛(ℂ) with the space of monic degree-𝑛 polynomials
over ℂ with distinct roots, by mapping a configuration{𝑧1, … , 𝑧𝑛} to the polynomial 𝑝(𝑥) = (𝑥−𝑧1)⋯ (𝑥−𝑧𝑛). For
this reason the topology of 𝐶𝑛(ℂ) has deep connections to
classical problems about finding roots of polynomials.

𝐹𝑛(𝑀)

𝐶𝑛(𝑀) ≔ 𝐹𝑛(𝑀)/𝑆𝑛

�
�

�
�

Figure 5. The quotient map 𝐹𝑛(𝑀) → 𝐶𝑛(𝑀).
We will address Question 1.2 for the families {𝐶𝑛(𝑀)}𝑛

and {𝐹𝑛(𝑀)}𝑛, but we first specialize to the case when𝑀 = ℂ. Although the spaces 𝐶𝑛(ℂ) and 𝐹𝑛(ℂ) are path-
connected, in contrast to the configuration spaces of 𝑀 =[0, 1], they have rich topological structures: they are classi-
fying spaces for the braid groups and the pure braid groups,
respectively, which we now introduce.
2.2. A primer on the braid groups. Since 𝐹𝑛(ℂ) is path-
connected, as an abstract group its fundamental group is
independent of choice of basepoint. For path-connected
spaces, we sometimes drop the basepoint from the nota-
tion for 𝜋1.
Definition 2.2. The fundamental group 𝜋1(𝐶𝑛(ℂ)) is
called the braid group 𝐁𝑛 and 𝜋1(𝐹𝑛(ℂ)) is the pure braid
group 𝐏𝑛.

We can understand 𝜋1(𝐹𝑛(ℂ)) as follows. Choose a base-
point configuration (𝑧1, … , 𝑧𝑛) in 𝐹𝑛(ℂ), and then we may
visualize a loop as a ‘movie’ where the 𝑛 particles contin-
uously move around ℂ, eventually returning pointwise to
their starting positions. If we represent time by a third spa-
cial dimension, as shown in Figure 6, we can view the par-
ticles as tracing out a braid. Note that, up to homeomor-
phism, we may view 𝐹𝑛(ℂ) as the configuration space of
the open 2-disk.

� �

� �

�

�

�

�

�

�
Figure 6. A visualization of a loop 𝛾(𝑡) in 𝐹5(ℂ) representing an
element of 𝜋1(𝐹5(ℂ)) ≅ 𝐏5.

Loops in 𝐶𝑛(ℂ) are similar, with the crucial distinction
that the 𝑛 particles are unlabelled and indistinguishable,
and so need only return set-wise to their basepoint config-
uration.

524 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 4




































































































































Ti Cn Bn



Figure 7. A braid on 3 strands.

It is traditional to represent elements of the group𝐁𝑛 and its subgroup 𝐏𝑛 by equivalence classes of braid
diagrams, as illustrated in Figure 7. These braid diagrams
depict 𝑛 strings (called strands) in Euclidean 3-space, an-
chored at their tops at 𝑛 distinguished points in a hori-
zontal plane, and anchored at their bottoms at the same 𝑛
points in a parallel plane. The strands may move in space
but may not double back or pass through each other. The
group operation is concatenation, as in Figure 8.

Figure 8. The group structure on 𝐁𝑛.
The braid groups were defined rigorously by Artin in

1925, but the roots of this notion appeared in the earlier
work of Hurwitz, Firckle, and Klein in the 1890s and of
Vandermonde in 1771. This topological interpretation of
braid groups as the fundamental groups of configuration
spaces was formalized in 1962 by Fox and Neuwirth.

Artin established presentations for the braid group and
the pure braid group. His presentation for 𝐁𝑛,𝐁𝑛 ≅ ⟨𝜎1, 𝜎2 … , 𝜎𝑛−1 ||| 𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖 if |𝑖 − 𝑗| ≥ 2𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1 ⟩,
uses (𝑛 − 1) generators 𝜎𝑖 corresponding to half-twists of
adjacent strands, as in Figure 9.

Figure 9. Artin’s generator 𝜎𝑖 for 𝐁𝑛.
Artin also gave a finite presentation for 𝐏𝑛. We will not

state it in full, but comment that there are (𝑛2) generators𝑇𝑖𝑗, (𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}) corresponding to full twists of
each pair of strands, as in Figure 10.

Corresponding to the regular covering space map𝐹𝑛(ℂ) → 𝐶𝑛(ℂ) of Figure 5, there is a short exact sequence
of groups 1 → 𝐏𝑛 → 𝐁𝑛 → 𝑆𝑛 → 1.

j 

Figure 10. Artin’s generator 𝑇𝑖𝑗 = 𝑇𝑗𝑖 for 𝐏𝑛.
The quotient map 𝐁𝑛 → 𝑆𝑛, shown in Figure 11, takes a
braid, forgets the 𝑛 strands and simply records the permu-
tation induced on their endpoints. The generator 𝜎𝑖 maps
to the simple transposition (𝑖 𝑖 + 1). The kernel is those
braids that induce the trivial permutation, i.e., the pure
braid group.

1

1

32

2 3
Figure 11. The quotient map 𝐁𝑛 → 𝑆𝑛.
2.3. Homological stability for the braid groups. Arnold
calculated some homology groups of 𝐁𝑛 in low degree (Ta-
ble 1).

𝑘 0 1 2 3 4 5𝑛
0 ℤ
1 ℤ
2 ℤ ℤ
3 ℤ ℤ
4 ℤ ℤ ℤ2
5 ℤ ℤ ℤ2
6 ℤ ℤ ℤ2 ℤ2 ℤ3
7 ℤ ℤ ℤ2 ℤ2 ℤ3
8 ℤ ℤ ℤ2 ℤ2 ℤ6 ℤ3
9 ℤ ℤ ℤ2 ℤ2 ℤ6 ℤ3

Table 1. The homology groups 𝐻𝑘(𝐁𝑛; ℤ). Empty spaces are
zero groups. Stable groups are shaded.

The 𝑘 = 0 column follows from the fact that 𝐶𝑛(ℝ2) is
path-connected and the 𝑘 = 1 column can be obtained
by abelianizing Artin’s presentation of 𝐁𝑛. Even the low-
degree calculations in Table 1 suggest a pattern: the ho-
mology of 𝐁𝑛 in a fixed degree 𝑘 becomes independent of𝑛 as 𝑛 increases.

Arnold proved the following stability result, in terms of
the stabilization map 𝑠𝑛 ∶ 𝐁𝑛 ↪ 𝐁𝑛+1 defined by adding
an unbraided (𝑛 + 1)𝑠𝑡 strand as in Figure 12.

Figure 12. The stabilization map 𝑠3 ∶ 𝐁3 ↪ 𝐁4.
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