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How blind is your favourite cohomology theory?

B 1.P.C. Greenlees

Summary. This article is about a notorious method in algebraic topology. The method
~is that of Adams Spectral Sequences, and it has a reputation amongst those who do not
* use it for being abstruse and highly technical. Tt is ironic that this is because the method

often succeeds in its aim of faithfully reducing a geometric problem 1o an algebraic one.
~ Indeed the reduction is often quite standard whilst the algebra is extremely intricate; this
- can lead to the mistaken impression that the method is remote from the topology and
 purely computational. The aim of this article is to explain the significance of the method
- and outline how it can be used in practice without becoming involved in the hard work
- of doing anything. | hope this will bring out into the open the fact that the method justifies
. the confidence we have in the philosophy of algebraic topology as a whole. Those who
- are interested in the real mathematics behind all this might look first at [2], and then
at [4] for a more demanding and sophisticated generalisation. The relevant part of [22]
- might be a suitable step from the present article, It provides a much more specific and
- practical introduction to the use of the classical Adams Spectral Sequence. The introductory
~ chapters of [30] also provide a brisk and readable account of several forms of the spectral
~ sequence and later chapters illustrate the state of the art in Adams Spectral Sequence calcula-
{ tions of stable homotopy groups,
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. How to use algebraic topology

Let us consider a typical use of algebraic topology. We start with a geometric
. problem, and decide it is too hard. For example we may be considering an n-
* dimensional vector bundle ¢ over a space X and trying to decide if it is isomorphic
‘1o the trivial product bundle X = IR™ If we can spot a bundle isomorphism all
zis well, but otherwise we proceed in two steps.

- First we render the problem amenable to topological methods by translating it
_into homotopy theory. In fact there is a certain “classifying™ space BO(n) so that
" we have a natural correspondence between isomorphism classes of n-dimensional
real vector bundles over X and homotopy classes of continuous functions X — BO(n)
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194 J.B.C. Greenlees

(this latter set is denoted by [X, BO(n)]). Thus ¢ corresponds to a certain homotopy
class [ f;]: X = BO(n).

Note that in this translation we have not lost any information, but nor have
we made our problem much easier. However we already have many more construc-
tions available to us in homotopy theory than we had in bundle theory. Further-
more we have freedom to vary spaces and functions up to homotopy: we can
transport our ignorance Lo a convenient spot.,

Second, we want to convert our problem into one we can solve. For this we
use some algebraic ‘invariant’, that is an algebraic construct depending only on
the homotopy class of f;. Here we have a choice. There are many possible invariants,
and we must play off two factors against each other: how much information the
invariant loses against how easy it is to calculate. In our example a popular invari-
ant is the total Stiefel-Whitney class w, (&) which is an element of the mod 2 cohomo-
logy ring H*(X;IF,). Equivalently we consider the map f*: H *(BOn); IF,)
-+ H*(X;TF,) induced by f, in cohomology; if it is nontrivial then £ 15 nontrivial
too,

MNote that we have definitely lost information. (For example the tangent bundle
of §? is nontrivial but the corresponding map in cohomology is trivial.) On the
other hand we have regained rigidity and with it a rich supply of algebraic opera-
tions to help us calculate. For example if £=¢'@®£", then w ()=w, () w, (L") (in
the ring H*(X;IF,)) and so indecomposability of w (&) in H*(X;IF;) implies that
of ¢ as a bundle.

Let us now concentrate on the second step. Thus T will suppose you have already
translated your original problem into a homotopy problem about homotopy classes
of maps between two spaces X and ¥. We are faced with the problem of choosing
an invariant for understanding [ X, Y], or at least for deciding if f: X — Y is nullho-
motopic or essential,

Unfortunately there is a gap. We may fail to prove geometrically that f is null,
but fail to prove using our chosen invariant that f is essential. There are three
possible explanations.

(1) fis null but we are not good enough at homotopy theory to prove it.

(2) f is essential and our invariant can tell, but our algebra is not sufficiently
ingenious to prove it.

or (3) [ is essential but our invariant is incapable of detecting this.

Obviously it will eliminate a great deal of wasted effort if we can tell when ()
is the case. Even better if we have a framework guiding us to the important algebra
if (2) is the case. In other words we want a constructive method for reversing
the reduction from homotopy theory to algebra as far as possible, and a character-
isation of how far this is. We want a guarantee our invariant will solve our problem.
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We will largely ignore the important (but secondary) problem of how efficient
a given invariant is at doing what it can. This will often be the deciding factor
in practice, but requires specific information and a lot of experience. On the other
hand we will only discuss a particularly easy class of invariants provided by coho-
mology theories k*(-) and we will assume that the problem of calculating k*(X)
for spaces X of interest is a relatively easy one. This need not be the case, but
we will concentrate on theories for which it is.

1. What can we do with mod 2 cohomology?

In this section we will make a serious effort to examine the power of one particular
invariant: reduced mod 2 cohomology A*(-;TF,). Let us suppose we are given
spaces X and Y and a map j: X — Y. Strictly speaking we wish X and Y to be
well behaved (simplicial complexes say), to have chosen basepoints in X and ¥
and to require that f (and any other map we consider) takes one basepoint to
the other. We will first indicate how we might use H*(+;IF;) to show f is essential
and then observe various cases in which A*(-;IF;) cannot help us. The reader
may be reminded of [3] and [33].

Methods. () We have already seen one method; the method of generalized degree.
lffinduoesf“'EHom{ﬂ“{Y;Fﬂ. f*(X ;F,)) which is nonzero then f is essential.

However this method does not detect the maps in the following two examples.

(a) Let X and Y be S', the set of unit complex numbers and let (25: 5l 8!
be the squaring map. It is well known that this map induces multiplication by
two in integral cohomology and hence it is essential. On the other hand this also
shows that ¢2% induces zero in mod 2 cohomology.

(b) Let X be §° the space of unit vectors in € xC and let ¥ be the complex
projective line ©P'(=§7). Then we may take J to be the map

n: § — CP'
(zgs 2))* [20:2,]
induced by passage to homogeneous coordinates.

Of course [*(5%;TF,) is zero except in codegree 3; and A*(CP';IF,) is zero except
in codegree 2; thus by dimension alone *=0. We will sketch below a method
for proving r is essential using mod 2 cohomology.
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{1} Let us recall a construction from ho-
motopy theory. If 2 X =V is any map
then we may form the mapping cone
Y, CX as the quotient space of Yu
[0,1]= X in which all points (0,x) are
identified to a single point ¢ and the point
(1, x) is identified with f(x)e¥. Strictly
speaking we should also identify all possi-
ble candidates (s, xg) for a basepoint to
the cone point ¢ so that Yu,CX has a -
preferred basepoint. The mapping cone Yu, CX

This construction has the property that if two maps [ and g are homotopic then
Y, CX=Yu,CX. Note also that we clearly have Y, CX=Yv5X, the union
of Y with the suspension SX (= point w, CX) with their basepoints identified. Thus,
in order to show [ is essential it is enough to show Yu,;CX + ¥ v 5X. The other
property of the mapping cone we will use is that the sequence

xLay—vucx

induces a long exact sequence in cohomology (this may be seen in a number
of ways from the Eilenberg-Steenrod axioms).

Thus if f induces zero in mod 2 cohomology we have a short exact sequence
(1) 0= A*(V; )= A* (YU, CX; )« A*(SX;IF)«0

which is to say A*(Yu,CX;IF,) is an extension of A*(Y;IF,) by A*(SX;TF,).

Now of course any extension of [F;-vector spaces is in fact a direct sum. However
H*(-:F,) is not just a vector space. First of all it is a ring (without unit since
we are using reduced cohomology). In view of this we can reconsider our examples
ia) and (b) above.

(a) It is easy to see directly from the definitions that §'u,,,CS' is in fact the
real projective plane, RP2. From the sequence (1) we see H*RP*:F,) has IF,
in codegrees one and two. It is also well known that the square t* of the generator
tin codegree | is the generator of codegree 2 (and not zero).

On the other hand if [ is zero the sequence (1) is split by a map Vv 58X =Y
and so (since maps induced by maps of spaces preserve the ring structure
A*(Yv5X;IF) is a direct product of the rings A*(Y;F,) and A*(SX;IF;). Hence,
since we have H*(S' ., CS';IF;) 2 H*(5' v §*; ) it follows that {2 %0.

(b) Again one can easily check from the definitions that $*u, CS*=CP? and
again it is well known that A*(CP*;F,) has IF, in codegree 2 generated by x
say and IF, in codegree 4 generated by x*.
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Thus as before A*(CP?;F,) % A*(5* v §*;IF,) and so 5 +0.

However it is also easy to see that the usual suspension isomorphism
Ai(X ;)= A" "(SX,IF,) does not preserve the ring structure (consider codegrees).
Indeed H*(SX;IF,) always has the trivial ring structure. On the other hand given
amap [ X — Y we can always consider its suspension

Sf: §SX — SY
[s, x]+[s, fx]

Thus the ring structure is inadequate for telling us if §¢25>: §5* = 5% and §y: §*—=§°
are essential.

We are therefore led to seek the richest algebraic structure on H*(X;IF,) which
is preserved by maps [* induced by maps of spaces and by the suspension
isomorphism A*(SX:F,)=SH*(X;TF,). In particular it turns out that any collec-
tion o of functions

ab: H'(X ;)= A""(X;F,) (one for each X and n)

which correspond under induced maps and suspension isomorphisms consists of
group homomorphisms. It is then easy to see that the collection of all such 2
forms a graded algebra A* over IF,, and that A*(X;IF,) is a module over it.
The algebra 4% is called the Steenrod Algebra of stable natural transformations
of mod 2 cohomology.

The remarkable fact 15 that A* can be explicitly determined and calculations can
be done within it and on it as a whole. (Steenrod constructed a family of elements
of A*, which we will meet below [34], Adem found some relations between them
[6], Serre showed that Steenrod’s elements generated A% and Adem’s relations
implied all relations [31] and Milnor elucidated the full structure of A4* [27].
Monetheless much remains to be understood about 4* and it is an active area
of research.)

In fact the structure of f*(X ;TF,) as a module over A* is related to its ring struc-
ture. Indeed the elements constructed by Steenrod are versions of the squaring
operation designed to commute with suspension; they are the Steenrod Squares
Sq'i=0,1, 2, ...), which are provided by homomorphisms

Sg': A"(X:W,)— A""(X;IF,) (one for each n and X).
These (in addition to commuting with induced maps and suspensions) have the
properties

(i) Sgfx=x? il xefl
and | -

) Sg'x=0 il xeH" for n<1i.

Also S¢” is the identity and Sq' the Bockstein associated to the coefficient sequence
0—F2-F4-F2-0.
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If properties (i) and (ii) are taken to heart and the ring structure of H*(X:F)
is retained alongside the A*-structure then the resulting invariant is even more
powerful [11] and has spectacular applications [25]. However in the interests of
history, simplicity and clarity we will only consider A*(X;IF;) as a module over
A*,

Returning once more to the examples (a) and (b) we see by property (i) that the
extension (1) regarded as an extension of A*-modules is nontrivial in both cases.
Hence, since the A*-module structure is preserved by suspension, we find that
the corresponding extensions for Skf: §% X —S* Y are nontrivial for all k, and hence
that all suspensions of {23 and # are essential.

In summary the method is
(0) Consider f*e Hom . (A*(Y; ), A* (X))
and if it is zero

(1) Consider A*(Yu,CX;TF,) as an element of Extl.(*(Y;[F,), A*(SX:IF)).

It is then no surprise that there follows a succession of invariants defined if earlier
ones are zero and lying in subquotients of the group Ext,.(A*(Y;F,). A*(s° X ;)
of s-extensions [19] of A*-modules.

Blindnesses. (A) By deliberately restricting our attention to structure preserved
by suspension we have ensured our methods are blind to anything destroyed by
suspension. Thus if f: X —Y has the property that §*f: §*X —5"Y is null, the
above methods will see f as the trivial map. For example twice n: §*—8% is in
fact essential whereas its suspension is null, so mod 2 cohomology (as a module
over A*) cannot detect the nontriviality of twice 1.

Thus the most we can hope to understand is the set [S*X,§*Y] for large k. In
fact this is an abelian group and independent of k for k > dimension X + 2 (Freuden-
thal Suspension Theorem): we write {X, Y} for this group and call it the group
of stable maps from X to ¥.

(B) Mod 2 cohomology only sees mod 2 phenomena. Indeed we may take X (or
Y) to be a mod 3 lens space, defined as the mapping cone of the cubing map
¢3%: §'— 5% Since (3 induces an isomorphism of mod 2 cohomology it follows
that A*(S* Uy, S IF;)=0. But if A*(X:TF;) is zero, all of the Ext groups we
use to define the invariants of our map f: X — ¥ are zero, and so the above methods
cannot help us. On the other hand we know from mod 3 cohomology that we
are missing something (for example the identity map of §'u 4, CS').

Similarly, if an essential map [ has the property that 3f=0 then, since f and
3f will have identical invariants mod 2 (since the invariants are natural and multipli-
cation by 3 is an isomorphism mod 2) the above methods are blind to f. For
example if v: 87— HP' =§* is analogous to n, f=8. Sv: 8§ -8 has the property
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that 3f=0, whilst mod 3 cohomology can be used to show that f and all its
suspensions are essential,

Evidently the only property of the number 3 we have used is that it is odd. Thus
mod 2 cohomology is blind to 2 coprimary behaviour,

2. Justifying tradition

We have presented the methods and blindnesses of mod 2 cohomology VETY SUgges-
tively, but when ordinary cohomology was the only one available the comparative
approach was not so obvious. With the benefit of hindsight and suggestion we
may be led to suspect some version of the following.

Theorem (Adams (1958) [1]). The above methods suffice to calculate all about [X, Y]
that the above blindnesses do not exclude, which is to say the 2-completion of 1X, Y}

Of course this is not quite the wording Adams used, and although intriguing our
paraphrase is not very helpful. In fact his actual theorem provides an algebraic
framework within which to use the above methods. Tt states that there is a spectral
sequence
E3'=Exti(A*(Y; ), A*(S'X;F,)={S"* X, Y},

What does this mean? Perhaps we should think of it as an algebraic induction
process. The induction starts with the E, term, and the theorem identifies this
as the Ext group we have already come across. The ‘inductive’ step from E, to
E, ., involves doing some work for each r. Thus one obtains by ‘induction” the
E term. The theorem then says that this is closely associated to the group X, Y};
that we are interested in. In fact the groups E%' with t—s=n are subquotients
corresponding to a certain filtration of {§*X, Y}; . There are thus three parts
to the theorem.

{0) There is a spectral sequence
By itself this in uninteresting: spectral sequences are easy to construct.
(1) The spectral sequence tells us about {X, Y}, .

This part (known as the convergence statement) tells us that the spectral sequence
15 relevant,

{2} The spectral sequence has the stated E J-term.

This makes the spectral sequence useful. Indeed it also shows the spectral sequence
generalises the methods we saw in the previous section.

If you want to use the theorem as a calculational tool you proceed in three steps
(A) Calculate Ext(H*(Y:FF,), A*(5' X : IF,)).
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This step itsell falls into two parts.

(i) Identify the structure of A*(X:FF,) and A*(Y;F,) as modules over A* There
are well known methods of finding out the structure as IF;-vector spaces; after
that some igenuity may be required, but for spaces we understand moderately
well this step is not a major problem.

(ii) Calculate the Ext group using standard methods of homological algebra. This
step is quite hard work but, provided we only need the answer for small values
of t —s, it is mechanical.

Step A cuts out the routine difficulties of a generic nature and leaves behind the
few obstructions characteristic of our particular spaces of interest.

(B,) Calculate E, ., from E,. This is very hard, and there are an infinite number
of r to do it for. On the other hand the algebraic structure of the spectral sequence
cuts down the work considerably, and in many cases leaves no work to be done
at all.

(C) Deduce {§'°X, Y}, from E,. Again this can be very hard, but still the alge-
braic structure of the spectral sequence is on our side.

I must emphasise that perhaps the greatest uses of the Adams Spectral Sequence
are not calculational. For example it can be used to show that a certain map X = X'
induces an isomorphism [ X', Y}, —{X, Y}, by showing it induces an isomorph-
ism of E, terms ([14], [21] see also [8]). However 1 will give the most widely
known use of the Adams Spectral Sequence.

Example: Calculation of the n™ stable homotopy group of the sphere for small n

Recall that {5", §°} ==, (S") for large k, and so the Adams Spectral Sequence
Ey*=Exts.(A*(8°:F,), A*(S; )= {5 58%,

is relevant to our purpose. Indeed we know that 5", 8" =0 for n<0 (by the
Simplicial Approximation Theorem), {S°, §°} =Z (by the Hurewicz Isomorphism
Theorem), and that {5" 5°} is a finite abelian group for n>=0 [32] so that the
spectral sequence calculates the 2 component. We will be satisfied with this.

{A) Calculate E,. Here Step (i) is trivial because of course A*(5";F,) consists
of a single copy of IF, in codegree n and zero elsewhere. There is a unique A*
structure on this. Step (i) is quite messy. Simply from a presentation of A* it
is a tedious exercise to calculate the E,-term in the range depicted below. It is
conventional and convenient to graph the cohomological degree s vertically and
the geometric degree t —s horizontally (so that all groups contributing to {S", g0
appear in the single column with t —s=n).

Each symbol in the table below represents the generator of one copy of IF,.
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g 1 ) I

6 | hi

50 hi

4| hf hahs
3| M hZ h, hi by
2| W h? |hgh, h3 |hghy
1| ho | hy h, hs
0 1

The direct calculation proceeds row by row with increasing s, and from left to
right in each row. In the course of the calculation a pattern emerges: in the zeroth
column (i.e. t —s=0) there is always a single IF, in each box, and then there 1s
no entry in the row until about the 25" column. In fact this pattern can be proved
to persist and is known as Adams’ Vanishing Line Theorem [1]. In any case
the above table is complete for t —s <7 and all s. Notice that names of the generators
imply a multiplicative structure, To explain this would take us too far afield; we
will hardly use it, but for more extensive calculations it is an indispensible aid.
Using more sophisticated methods the E, term is known at least for t—s<70

[35].

(B,) Calculate E,, , from E,. The way this is done is to calculate certain differentials,
which are maps

' 3. g+r, r4+r=1
d: EX—E]

(i.e. they increase s by r and decrease t —s by one). These have the property that
dl ﬂand’F:+]_H‘. ra .r::l

In our case the only differential for any r that goes between nonzero groups is
the one leaving h, in the t—s=1 column. Suppose d, h.—f_! for ¥ <r (so that
d h, is defined) and d, h, =Aihi"'. We can argue that =0 in several ways. For
example we have alrcad} found a nonzero element n of {S', §° }1 . and so h, must
be in the kernel of every d, so that it survives until E, where it can cnrraspﬂnd
to n. (Alternatively we can relate multiplication by h, to group extensions and




202 LP.C. Greenlees

argue with the known value {S°, S“}: =Z, or use the fact that d, is a derivation
and .i'lﬂ h1_ ={]].

Thus all differentials are zero and we can conclude E%'=E%" for t—s5<6. (In fact
the first nonzero differential arrives in the column r—s5=14.)

(C) Without doing any work we find that the order of {8, 5}, is as tabulated

n|DI23456?

155501 | o 2 2 8 0 0 2 <16

Tt turns out that multiplication by h, corresponds to multiplication by 2 in
(§7,5%) and this allows one to deduce {§°,5°}; =Z, (as we know) and that

18% 8%, =Z8.
It is in fact the case that {§7, 8%, =Z/16; indeed {S",5°}; is known for n=45
([23], (7], [13], [30]).

3. Blindness of other theories

Our theme has been that an Adams Spectral Sequence characterises the blindness
of the cohomology theory used to define it. In this section | will summarise these
characterizations for certain well known theories. The technical difficulties are usu-
ally greater then for mod p cohomology — and in fact it is usually more convenient
to work with the associated homology theory [4]. It is still often possible to give
an analogous algebraic description of the E,-term in this case, but we will not
digress to discuss it. We will restrict ourselves to quite vague descriptions of what
the theory can tell us, and comment briefly on sources, significance and calculational
convenience. For further details see [4] and [9].

Theory What it sees
(1) H*:F) - (X, Y}
Precisely similar to the mod 2 case we saw in the previous section [1].

2 H*(Q - - {X, ¥}®Q.

Rationally, stable homotopy theory is rather trivial, so the language of Adams
Spectral Sequences is unnecessary here.

()  H5B) = (X, 7).

Although it is not blind, integral cohomology is never used in practice. It is much
easier to calculate {X, Y}®@, using rational cohomology and {X, Y} : using mod
p-cohomology and reassemble the answer by algebraic methods.
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4 K,y e — A periodic form of {X, ¥}.
i K-theory).

The periodicity referred to i1s an attenuated form of Bott periodicity and mixes
up {8*X, Y} for various k. Since (for finite X) {$*X, ¥} is zero if k is sufficiently
negative, whereas this i1s not true for the periodic form, it 1s apparent that K-theory
sees a very distorted picture of reality. However this distortion emphasises certain
important sysiematic phenomena, and is therefore valuable in its own right. For
K-theory this periodic form of { X, ¥} is well understood ([10]) and so s its relation-
ship to [X, Y] itself.

Similar remarks apply to the more exotic Morava K-theories [20] and taken togeth-
er, the relevant periodic forms account for the whole of {X, ¥} and this clarifies
the importance of the associated systematic phenomena [29], [26].

(5) MU*(*)--— {X, Y}
{complex cobordism)

The machinery requires a lot of hard work to set up but in the case where X
and ¥ are spheres the method is the most efficient known method of calculation
at odd primes. On the other hand MU*X can often be hard to calculate. See
[28], [4] and [30].

i6) ¥ ) - —-{X, Y}
(Stable cohomotopy)

I included this example to emphasize the absurdity of ignoring the calculational
aspect of the problem. The spectral sequence is entirely useless in general since
one does not know the Steenrod Algebra or the cohomotopy of X or ¥ and
so caleulating the £, term will perhaps be harder than obtaining the answer directly.

4. Blindness of some equivariant theories

In the above examples the construction applied to {X, Y} to discover what a
theory sees was usually arithmetic. The case of K-theory was different, but we
did not give a precise description. For a nonarithmetic but elementary example
we give some spectral sequences in equivariant topology.

Suppose then that G is a finite group which acts on spaces X and ¥ We wish
1o use cohomaological methods to deduce as much as possible about maps preserving
the G-action. As in the nonequivanant case, cohomology theories satisfy the homo-
topy axiom (G-maps homotopic through G-maps induce the same map in cohomaol-
ogy) and the suspension axiom (suspension of a space by a linear G-sphere simply
shifts the cohomology groups in dimension). Thus if [X, ¥]% denotes G-homotopy
classes of G-maps, we can at best hope to learn about the stable maps {X, Y}",
that is about [§* X, §¥ ¥]° where §" is the one point compactification of a represen-
tation V¥ “large™ compared with the dimension of X [5].
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We offer four spectral sequences in equivariant topology. The first three are equi-
variant generalisations of the classical Adams Spectral Sequence of successively
greater power, and the fourth is intrinsically equivariant and of a different type.

(7)  mod p Borel cohomology ---—— {X AEG,,YAEG.,}°,.

Here G is a p-group and mod p Borel cohomology (also known as ordinary equi-
variant cohomology) is defined by b*(X)=H*(EG, A ;X ;[F,) so that it has coeffi-
cient ring b* = H*(G; IF,). The space EG , is constructed from the usual nonequivar-
iantly contractible space EG on which G acts freely, by adding a disjoint basepoint,
and one can think of X » EG, as “ X made into a free G-space”. Here, in addition
to the familiar p-completion due to the fact we have used mod p coefficients, we
also have a geometric completion, making X and ¥ G-free. This Adams Spectral
Sequence would never be used since it is subsumed in the following one.

(8  mod p coBorel cohomology ----- - (X, YA EG+}“;.

Again G is a p-group and mod p coBorel cohomology is a theory derived from
Borel cohomology. The associated homology theory is defined by cy(X )=
A,(EG. n 3 X:F,) and hence has coefficients ¢, = H (G IF,). (Note that this means
¢ =c_; is nonzero only for i negative or zero and so Borel and coBorel theories
are definitely distinct.)

Since Borel and coBorel theories agree on G-free spaces this clearly generalises
the previous example. This spectral sequence shares with the classical Adams Spec-
tral Sequence the advantage of being calculable [16].

Under the further assumption that G is an elementary abelian p-group we have
a further generalisation

(9  mod p Borel homology ------ - {X, Y}

Here we emphasize that G must be elementary abelian and Borel homology has
coefficient ring b, with b,=b"'=H (G, F,). The remarkable fact here is that the
homology theory does not just weaken finiteness assumptions in the familiar fash-
ion, but actually provides an enormously more powerful invariant than the corre-
sponding cohomology theory. In the case when Y is G-free this spectral sequence
agrees with the coBorel cohomology spectral sequence. Calculation with this spec-
tral sequence is more of a challenge than for the coBorel cohomology one —
which is only to be expected in view of the benefits enjoyed. The details for G
of rank 1 are contained in [15] and for rank = 1 in [18].

(10) nonequivariant stable homotopy ---—- — (X AEG,,Y}"

Here we find the remarkable fact that nonequivariant homotopy sees quite a lot
about equivariant homotopy. For example, by the affirmed Segal Conjecture [14],
if Y is finite and G is a p-group {X A EG,, Y}9 ={(X, Y}%". When X =5§° and
Y is chosen suitably (the function spectrum of maps from Y, to Y,) the spectral
sequence relates the action of G on the nonequivariant stable maps { ¥y, Y5} (homo-
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topy egquivariant information) to strictly equivariant information, and it can be
put in the following form.

Ey'=H(G; {Y,, Va])={S " i A EGy, Yo

See [17] for more details.

5. How these results are proved

It is not appropriate for me to give detailed proofs in this article, but I want
to sketch the method of constructing an Adams Spectral Sequence and outline
how the E, and convergence problems are dealt with. Let us supposc we are
concerned with the generalised cohomeology theory E*(-) and wish to use it to
calculate {X, Y} as far as possible.

The fundamental technical convenience is that E*(-) is represented in a suitably
large stable category [12]. Thus E*(X)=1{X, E}* for a certain object E. Now our
aim is to understand {X, Y} algebraically using E*(-) only, and the method is
to find the parts of {X, Y] detected by finer and finer cohomological methods.
To construct an Adams Spectral Sequence in the casiest possible way we realise
this geometrically, starting with ¥ and removing copies of E repeatedly. One finds
that the residue of Y left after this analysis depends only on E and is independent
of the particular order in which parts were removed. We may call it Y,.. The
blindness of the theory for this problem is precisely {X,Y,} and the theory can
tell you exactly about {X, ¥/Y.}. This much is purely formal. The convergence
problem is that of finding a helpful description of Y/Y,., or at least of {X, Y/Y, b
This will require a proper understanding of the cohomology theory E*(-).

The description of the E, term arises as follows. As soon as we know E is repre-
cented it is obvious that the Steenrod Algebra for E is {E, E}*=E*E. Provided
this has sufficiently good finiteness properties we may proceed. In fact we arrange
that the way copies of E are removed from Y corresponds precisely to the process
of forming a resolution of E*Y by E* E-free modules, and so that when we map
X into this system (1. we apply IX,-}) it corresponds to applying Homg.g(", E*X)
to the algebraic resolution. This identifies the E, term of the resolution as the
chain complex of which Extfg(E* Y, E* X is the cohomology. The correspondence
is organised so that passage to E; corresponds to taking this cohomology.

The above discussion is only appropriate under strong assumptions on the coho-
mology theory E*(-), mainly reflected in the good algebraic behaviour of E¥E
(although there are also finiteness assumptions on E* Y). The necessary assumptions
on the theory can be considerably weakened by working with the corresponding
homology theory E, () (and now there will be no finiteness assumptions on E, Y)
[4]. Accordingly, to retain an algebraic description of the E, term we must attempt
to dualise the algebra, and unfortunately the relevant homological coalgebra 1s
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usually of the relative kind (involving resolutions of both variables). This means
that to geometrically realise the algebra, as well as decomposing Y as before we
must face the problem of also resolving X in a suitable fashion (which will be
different from that appropriate to Y). For X a sphere this is not necessary but
for more general X the problem is equivalent to proving a Universal Coefficient
Theorem for E,(+), and this requires a detailed understanding of E-homology.

If we can overcome the above difficulties (and a few other less severe ones) we
obtain a spectral sequence which is the correct analogue of the classical Adams
Spectral Sequence. The non-calculational benefit of this relativisation is that the
pieces we remove from Y need not actually be copies of E itself, but may be
other objects well behaved for E_(+) (so called injective ones [24]). The first advan-
tage this confers is that such an analysis of ¥ by E-injectives exists under minimal
assumptions. More significantly it means that the Y, obtained in this way may
be “smaller” than the one constructed by removing copies of E only, and hence
Y/Y, may be closer to Y (ie. we get a stronger convergence theorem). This is
what happened for Borel homology and cohomology. Notice here that this benefit
is enjoyed even when the cohomology spectral sequence is defined and has the
correct E, term; even when we are not forced to use homology we may gain
by doing so. The object ¥/Y,, obtained in this way is called the Bousfield E-nilpotent
completion of ¥, and sometimes written E*Y or ¥ g [9]. It also turns out that
despite the resolution of X as well, the blindness of the theory remains [ X, Y|
and the theory still sees | X, Y/Y, } as before. This means we can discuss the blind-
ness of a theory unambiguously without knowing if the appropriate resolution
of X exists.
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