MAT8021, Algebraic Topology

Assignment 9

Due in-class on Tuesday, April 23

- 1. Fix a ring R and an integer n. Suppose C_* , D_* are chain complexes of R-modules such that
 - the groups C_k are free R-modules for k > n, and
 - the homology groups $H_k(D_*)$ are zero for $k \geq n$

Additionally, suppose we are given maps $f_m: C_m \to D_m$ for $m \le n$ such that $\partial f_m = f_{m-1}\partial$.

Show (by induction) that we can extend this to a chain map $f: C_* \to D_*$ and that any two extensions are chain homotopic.

For the remaining questions, all chain complexes are over $\mathbb{Z}/2$, i.e., 2x = 0 for all x.

A cochain complex C^* has *cup-i products* if it is equipped with operations $(x,y) \mapsto x \smile_i y$ for $i \geq 0$ such that

- if $x \in C^p$, $y \in C^q$, then $x \smile_i y \in C^{p+q-i}$
- $(x+x') \smile_i y = x \smile_i y + x' \smile_i y$ and similarly $x \smile_i (y+y') = x \smile_i y + x \smile_i y'$
- $\delta(x \smile_0 y) = (\delta x) \smile_0 y + x \smile_0 (\delta y)$
- for i > 0,

$$\delta(x \smile_i y) = (\delta x) \smile_i y + x \smile_i (\delta y) + x \smile_{i-1} y + y \smile_{i-1} x$$

For instance, one can show (using the method of acyclic models) that $C^*(X)$, for X a space, naturally comes equipped with cup-i products, each one expressing "how noncommutative" the previous one was.

2. Show that for all $j \leq p$ we get a well-defined "squaring" operation Sq^j : $H^p(C^*) \to H^{p+j}(C^*)$ given by

$$\operatorname{Sq}^{j}[x] = [x \smile_{p-j} x]$$

such that $\operatorname{Sq}^{j}([x+y]) = \operatorname{Sq}^{j}([x]) + \operatorname{Sq}^{j}([y])$. (In the cohomology of a space, these are called the Steenrod squares.)

- 3. If $f: C^* \to D^*$ is a map of cochain complexes such that $f(x \smile_i y) = f(x) \smile_i f(y)$, show that the induced map $H^*(C^*) \to H^*(D^*)$ preserves the squaring operations.
- 4. If $0 \to C^* \to D^* \to E^* \to 0$ is a short exact sequence of cochain complexes preserving cup-i products, show that the connecting homomorphism

$$\delta \colon H^p(E^*) \to H^{p+1}(C^*)$$

satisfies $\delta(\operatorname{Sq}^{j}[x]) = \operatorname{Sq}^{j}(\delta[x]).$