MAT8021, Algebraic Topology

Corrigendum to Assignment 6^{*}

April 8, 2024

3. Suppose G is a topological group and $x \in H_k(G; \mathbb{Z})$ where k is odd. Show that $x^2 = 0$ in $H_{2k}(G; \mathbb{Z})$.

Without an additional assumption that G is abelian, the claim in this question is **incorrect**. Here is how the argument was supposed to go and where it broke down.

Let $\xi \in C_k(G)$ such that $[\xi] = x$. Then $[\mu_*(\xi \times \xi)] = x^2$, where $\mu : G \times G \to G$ is the multiplication map and \times is defined on simplices by

$$\begin{array}{cc} \times : C_k(X) \times C_\ell(Y) \to C_{k+\ell}(X \times Y) \\ (\sigma \ , \ \tau) & \mapsto \sigma \times \tau = \sum_{\substack{\alpha \ (k, \ell) - \\ \text{shuffles}}} \operatorname{sgn}(\alpha) \cdot [(\sigma \times \tau) \circ f_\alpha] \end{array}$$

with

$$f_{\alpha} \colon \Delta_{k+\ell} \to \Delta_k \times \Delta_\ell \\ (t_1, \dots, t_{k+\ell}) \mapsto \left((t_{\alpha(1)}, \dots, t_{\alpha(k)}), (t_{\alpha(k+1)}, \dots, t_{\alpha(k+\ell)}) \right)$$

the "un-shuffle" maps.

Given any (k, ℓ) -shuffle α , we have $\alpha(1) \leq \cdots \leq \alpha(k)$ and $\alpha(k+1) \leq \cdots \leq \alpha(k+\ell)$. Thus it is in bijective correspondence with an (ℓ, k) -shuffle $\alpha' : (1, \ldots, k+\ell) \mapsto (\alpha(k+1), \ldots, \alpha(k+\ell), \alpha(1), \ldots, \alpha(k))$. Moreover, α and α' differ by $k\ell$ transpositions. Therefore,

$$\sigma \times \tau = (-1)^{k\ell} t_*(\tau \times \sigma) \tag{1}$$

where $t: X \times Y \to Y \times X$ sends (x, y) to (y, x). In particular, setting X = Y = Gand $\tau = \sigma$ so that $\ell = k$, we see that $\sigma \times \sigma = -t_*(\sigma \times \sigma)$.

However, $t_*(\sigma \times \sigma) \neq \sigma \times \sigma$, so we cannot proceed from here, obtain $\sigma \times \sigma = -\sigma \times \sigma$ in the free abelian group $C_{2k}(G \times G)$, and conclude that $\sigma \times \sigma = 0$. In fact, by looking at the "smallest" example with $X = \Delta[1], k = 1$, and $\sigma = id$, we compute explicitly that $t_*(\sigma \times \sigma) = -\sigma \times \sigma$ (swapping the signed

^{*}I thank Yiliang Tang, Yifan Wu, Zijie Wen, Guanlin Lin-Shen, Zhichao Wang, and Yanfei Zhu for their efforts in clarifying this.

triangular regions in a unit square across the diagonal results in a minus sign), which simply divides the sign $(-1)^{k\ell}$ to the left-hand side of (1) and does not yield further information.

If **in addition** G is abelian (or abelian up to homotopy), then $\mu = \mu \circ t$ (or $\mu \simeq \mu \circ t$). Thus from (1) we obtain

$$\mu_*(\sigma \times \tau) = (-1)^{k\ell} \mu_* t_*(\tau \times \sigma) = (-1)^{k\ell} \mu_*(\tau \times \sigma)$$

which gives the graded commutativity of the Pontryagin product in homology.

Besides topological groups G, this multiplicative structure in homology exists more generally for *H*-spaces. See Hatcher Section 3C, especially Example 3C.7 which shows a class in odd degree squaring to nonzero. Also compare the cupproduct structure in cohomology to be discussed in class soon.