MAT8021, Algebraic Topology

Assignment 13

Due in-class on Tuesday, May 21

- 1. Carefully prove that the following are covering spaces. Recall that $\mathbb{C}^* = \mathbb{C} \setminus \{0\}.$
 - (a) The map $\pi : \mathbb{C} \to \mathbb{C}^*$ defined by $\pi(z) = e^z$.
 - (b) For $n \in \mathbb{Z} \setminus \{0\}$, the map $\pi : \mathbb{C}^* \to \mathbb{C}^*$ defined by $\pi(z) = z^n$.
- 2. Prove that the map $\pi : \mathbb{C} \to \mathbb{C}$ defined by $\pi(z) = z^2$ is not a covering space.
- 3. Let $f: \widetilde{X} \to X$ and $g: \widetilde{Y} \to Y$ be covering spaces. Define $h: \widetilde{X} \times \widetilde{Y} \to X \times Y$ via the formula $h(\xi, \eta) = (f(\xi), g(\eta))$. Prove that h is a covering space.
- 4. Let $f: \widetilde{X} \to X$ be a cover and let $X' \subset X$ be a subspace. Define $\widetilde{X}' = f^{-1}(X')$ and $f' = f|_{\widetilde{X}'}$. Prove that $f': \widetilde{X}' \to X'$ is a cover. We will call this the *restriction* of f to X'.
- 5. Let T be the infinite 4-valent tree from class and let \widetilde{X} be any connected graph which is oriented and labeled as a cover of the figure-8 graph X. In particular, we have covering maps $f: T \to X$ and $g: \widetilde{X} \to X$. Let v be any vertex of T and let w be any vertex of \widetilde{X} . Prove that there exists a covering map $h: T \to \widetilde{X}$ such that $f = g \circ h$.
- 6. Let $\pi: \widetilde{X} \to X$ be a covering space such that $\pi^{-1}(p)$ is finite and nonempty for all $p \in X$. Prove that X is compact Hausdorff if and only if \widetilde{X} is compact Hausdorff.
- 7. Let $\pi: \widetilde{X} \to X$ be a covering space and let $f: Y \to X$ be an arbitrary continuous map. Define

$$f^*(Y) = \{(y, \widetilde{x}) \in Y \times X \mid f(y) = \pi(\widetilde{x})\}$$

and let

$$f^*(\pi)\colon f^*(Y)\to Y$$

be the restriction of the projection $Y \times \widetilde{X} \to Y$ to the first factor. Prove that $f^*(\pi) : f^*(Y) \to Y$ is a covering map.